Sample records for reactive metals processing

  1. Effects of thermomechanical processing on strength and toughness of iron - 12-percent-nickel - reactive metal alloys at -196 C

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1978-01-01

    Thermomechanical processing (TMP) was evaluated as a method of strengthening normally tough iron-12-nickel-reactive metal alloys at cryogenic temperatures. Five iron-12 nickel alloys with reactive metal additions of aluminum, niobium, titanium, vanadium, and aluminum plus niobium were investigated. Primary evaluation was based on the yield strength and fracture toughness of the thermomechanically processed alloys at -196 C.

  2. Processing and mechanical properties of metal-ceramic composites with controlled microstructure formed by reactive metal penetration

    NASA Astrophysics Data System (ADS)

    Ellerby, Donald Thomas

    1999-12-01

    Compared to monolithic ceramics, metal-reinforced ceramic composites offer the potential for improved toughness and reliability in ceramic materials. As such, there is significant scientific and commercial interest in the microstructure and properties of metal-ceramic composites. Considerable work has been conducted on modeling the toughening behavior of metal reinforcements in ceramics; however, there has been limited application and testing of these concepts on real systems. Composites formed by newly developed reactive processes now offer the flexibility to systematically control metal-ceramic composite microstructure, and to test some of the property models that have been proposed for these materials. In this work, the effects of metal-ceramic composite microstructure on resistance curve (R-curve) behavior, strength, and reliability were systematically investigated. Al/Al2O3 composites were formed by reactive metal penetration (RMP) of aluminum metal into aluminosilicate ceramic preforms. Processing techniques were developed to control the metal content, metal composition, and metal ligament size in the resultant composite microstructure. Quantitative stereology and microscopy were used to characterize the composite microstructures, and then the influence of microstructure on strength, toughness, R-curve behavior, and reliability, was investigated. To identify the strength limiting flaws in the composite microstructure, fractography was used to determine the failure origins. Additionally, the crack bridging tractions produced by the metal ligaments in metal-ceramic composites formed by the RMP process were modeled. Due to relatively large flaws and low bridging stresses in RMP composites, no dependence of reliability on R-curve behavior was observed. The inherent flaws formed during reactive processing appear to limit the strength and reliability of composites formed by the RMP process. This investigation has established a clear relationship between processing, microstructure, and properties in metal-ceramic composites formed by the RMP process. RMP composite properties are determined by the metal-ceramic composite microstructure (e.g., metal content and ligament size), which can be systematically varied by processing. Furthermore, relative to the ceramic preforms used to make the composites, metal-ceramic composites formed by RMP generally have improved properties and combinations of properties that make them more desirable for advanced engineering applications.

  3. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source

    NASA Astrophysics Data System (ADS)

    Peter, Tilo; Polonskyi, Oleksandr; Gojdka, Björn; Mohammad Ahadi, Amir; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2012-12-01

    We quantitatively assessed the influence of reactive gases on the formation processes of transition metal clusters in a gas aggregation cluster source. A cluster source based on a 2 in. magnetron is used to study the production rate of titanium and cobalt clusters. Argon served as working gas for the DC magnetron discharge, and a small amount of reactive gas (oxygen and nitrogen) is added to promote reactive cluster formation. We found that the cluster production rate depends strongly on the reactive gas concentration for very small amounts of reactive gas (less than 0.1% of total working gas), and no cluster formation takes place in the absence of reactive species. The influence of discharge power, reactive gas concentration, and working gas pressure are investigated using a quartz micro balance in a time resolved manner. The strong influence of reactive gas is explained by a more efficient formation of nucleation seeds for metal-oxide or nitride than for pure metal.

  4. Enhancing Aluminum Reactivity by Exploiting Surface Chemistry and Mechanical Properties

    DTIC Science & Technology

    2015-06-01

    alter its mechanical properties . In bulk material processing , annealing and quenching metals such as Al can relieve residual stress and improve...increasing  Al  reactivity is to alter its mechanical  properties .  In bulk material  processing , annealing and quenching metals such as  Al  can relieve...mechanical properties . On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Aluminum particles underwent

  5. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  6. Heavy metal removal capacity of individual components of permeable reactive concrete

    NASA Astrophysics Data System (ADS)

    Holmes, Ryan R.; Hart, Megan L.; Kevern, John T.

    2017-01-01

    Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.

  7. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, Janda K. G.; Jellison, James L.; Staley, David J.

    1995-01-01

    A system for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs.

  8. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides

    DOE PAGES

    Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; ...

    2015-05-27

    Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attainmore » a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.« less

  9. METAL CAPTURE BY SORBENTS IN COMBUSTION PROCESSES

    EPA Science Inventory

    The article gives results of an investigation of the use of sorbents to control trace metal emissions from combustion processes and an exploration of the underlying mechanisms. mphasis was on mechanisms in which the metal vapor was reactively scavenged by simple commercial sorben...

  10. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  11. Synthesis and processing of composites by reactive metal penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix compositesmore » to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.« less

  12. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  13. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  14. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  15. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  16. Process parameter-growth environment-film property relationships for reactive sputter deposited metal (V, Nb, Zr, Y, Au) oxide, nitride, and oxynitride films. Final report, 1 January 1989-30 June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aita, C.R.

    1993-09-30

    The research developed process parameter-growth environment-film property relations (phase maps) for model sputter-deposited transition metal oxides, nitrides, and oxynitrides grown by reactive sputter deposition at low temperature. Optical emission spectrometry was used for plasma diagnostics. The results summarized here include the role of sputtered metal-oxygen molecular flux in oxide film growth; structural differences in highest valence oxides including conditions for amorphous growth; and using fundamental optical absorption edge features to probe short range structural disorder. Eight appendices containing sixteen journal articles are included.

  17. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  18. Effects of Processing and Powder Size on Microstructure and Reactivity in Arrested Reactive Milled Al + Ni

    DTIC Science & Technology

    2012-05-01

    reactive milled (RM) experiments forming nickel aluminides [3,4,6,8–10,12,15,16,18,19], titanium - based alloys [5] and combustion reactions in metal...highly heterogeneous and is refined during processing until reaction occurs. The refinement process consists of the cold welding of powder grains within... welding at the surface of deforming particles, which pro-Table 2 Sample preparation measurements corresponding to the designed exper- iments presented

  19. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    DTIC Science & Technology

    2006-12-01

    24 Table 3.3 Hazards of Sodium Reaction Products, Hydride And Oxide...........................26 Table 3.4 Chemical Reactivity Of Selected...Liquid Metal Fast Breeder Reactor ORIGEN Oak Ridge Isotope Generator ORIGENARP Oak Ridge Isotope Generator Automated Rapid Processing PWR ...nuclear reactors, both because of the possibility of increased reactivity due to boiling and the potential loss of effectiveness of coolant heat transfer

  20. Diffusion and surface alloying of gradient nanostructured metals

    PubMed Central

    Lu, Ke

    2017-01-01

    Gradient nanostructures (GNSs) have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed. PMID:28382244

  1. Induction slag reduction process for purifying metals

    DOEpatents

    Traut, Davis E.; Fisher, II, George T.; Hansen, Dennis A.

    1991-01-01

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  2. Formation of Reactive Br Species by Freezing in Solutions of NaBr-Metal-Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Kinjo, M.; Arakaki, T.

    2005-12-01

    The role of reactive halogen species (e.g. BrOH) in the destruction of stratospheric ozone is well known and largely understood. In recent years, it became clear that reactive Br species can also play a significant role in tropospheric ozone destruction, but sources of reactive Br species in the troposphere are not well understood. When an aqueous solution is frozen, solutes in the solution are excluded from the ice phase and the solutes are concentrated in the solution phase. Freezing processes cause red-ox reactions in the solution. We tried to understand the effects of freezing processes of solutions on formation of reactive Br species. Hydrogen peroxide (HOOH) and metallic ions were added to a mixing solution of NaBr and allyl alcohol (AA). If reactive Br species are formed, they react with AA, and free Br ion concentration decreases in the solution. When HOOH and Fe(III) or Cu(II) were added to the NaBr and AA solution and frozen, free Br ion concentration decreased. It is possible that OH radical formation from reaction between HOOH and Fe(II) or Cu(I) was induced by freezing processes and the OH radical probably oxidized Br ion to reactive Br species. Study of the effects of pH showed that decrease of Br ion concentration was the highest at pH = 4.0. Freezing processes could be an important source of reactive Br species in high altitude clouds and Polar Regions.

  3. Effect of trace metals and electron shuttle on simultaneous reduction of reactive black-5 azo dye and hexavalent chromium in liquid medium by Pseudomonas sp.

    PubMed

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Ahmad, Riaz

    2015-11-01

    This study demonstrates the role of electron shuttles and trace metals in the biotransformation of azo dye reactive black-5 and hexavalent chromium (CrVI) that are released simultaneously in tannery effluent. Previously isolated bacterial strain Pseudomonas putida KI was used for the simultaneous reduction of the dye (100 mg L(-1)) and CrVI (2 mg L(-1)) in a mineral salts medium (MSM). Among various trace metals, only Cu(II) had a stimulating effect on the bacterial-mediated reduction process. Application of electron shuttles such as hydroquinone and uric acid at a low concentration (1mM) had a positive effect on the reduction process and caused simultaneous reduction of 100% dye and 97% CrVI in 12-18 h. Mannitol, EDTA and sodium benzoate at all concentrations (ranging from 1 to 9 mM) showed an inhibitory effect on the reduction of reactive black-5 and CrVI. An inverse linear relationship between the velocity of reaction (V) and the concentration [S] of electron shuttles was observed. The results imply that both types and concentration of an electron shuttle and trace metals can affect the simultaneous reduction of reactive black-5 and CrVI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Catalytic Isonitrile Insertions and Condensations Initiated by RNC–X Complexation

    PubMed Central

    Fleming, Fraser F.

    2014-01-01

    Isonitriles are delicately poised chemical entities capable of being coaxed to react as nucleophiles or electrophiles. Directing this tunable reactivity with metal and non-metal catalysts provides rapid access to a large array of complex nitrogenous structures ideally functionalized for medicinal applications. Isonitrile insertion into transition metal complexes has featured in numerous synthetic and mechanistic studies, leading to rapid deployment of isonitriles in numerous catalytic processes, including multicomponent reactions (MCR). Covering the literature from 1990–2014, the present review collates reaction types to highlight reactivity trends and allow catalyst comparison. PMID:25484847

  5. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    PubMed

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  6. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Särhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sören; Nyberg, Tomas

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition ratemore » from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.« less

  7. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  8. ENVIROMETAL TECHNOLOGIES, INC., METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN IN-SITU REACTIVE IRON WALL

    EPA Science Inventory

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...

  9. Mass spectrometry in the characterization of reactive metal alkoxides.

    PubMed

    Peruzzo, Valentina; Chiurato, Matteo Andrea; Favaro, Monica; Tomasin, Patrizia

    2018-01-01

    Metal alkoxides are metal-organic compounds characterized by the presence of MOC bonds (M = metal). Their chemistry seems to be, in principle, relatively simple but the number of possible reactant species arising as a consequence of their behavior is very remarkable. The physico-chemical properties of metal alkoxides are determined by many different parameters, the most important ones being the electronegativity of the metal, the ramification of the ligand, and the acidity of the corresponding alcohol. Their reactivity makes them suitable and versatile candidates for many applications, including homogeneous catalysis, synthesis of new ceramic materials through the sol-gel process and, recently, also for Cultural Heritage. Metal alkoxides are characterized by a strong tendency to give clusters and/or oligomers through oxo-bridges. Mass spectrometry has been successfully employed for the characterization of metal alkoxides in the gas-phase. Electron ionization (EI) allowed the assessment of the molecular weight and of the most relevant decomposition pathways giving information on the relative bond strength of differently substituted molecules. On the other hand, information on the reactivity in solution of these molecules have been obtained by electrospray ionization (ESI)-matrix assisted laser desorption ionization (MALDI) experiments performed on their reaction products. These data were relevant to investigate the sol-gel process. In this review, these aspects are described and the results obtained are critically evaluated. © 2016 Wiley Periodicals, Inc. Mass Spec Rev. © 2016 Wiley Periodicals, Inc.

  10. Reactivity of metal oxide sorbents for removal of sulfur compounds from coal gases at high temperature and pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, K.C.; Crowe, E.R.; Gangwal, S.K.

    1997-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated to effectively remove hydrogen sulfide with various metal oxide sorbents at high temperatures and pressures. Metal oxide sorbents such as zinc titanate oxide, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide were found to be promising sorbents in comparison with other removal methods such as membrane separation and reactive membrane separation. The removal reaction of H{sub 2}S from coal gas mixtures with zinc titanate oxide sorbents was conducted in a batch reactor. The main objectives of this research are to formulate promising metal oxide sorbentsmore » for removal of hydrogen sulfide from coal gas mixtures, to compare reactivity of a formulated sorbent with a sorbent supplied by the Research Triangle Institute at high temperatures and pressures, and to determine effects of concentrations of moisture contained in coal gas mixtures on equilibrium absorption of H{sub 2}S into metal oxide sorbents. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures.« less

  11. Corrosion of titanium and zirconium in organic solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapp, R.A.; Saldanha, B.J.; Kvochak, J.J.

    1995-09-01

    Experiences of reactive metal corrosion in organic acids will be discussed. Emphasis will be placed on anhydrous organic solutions, and organic acids containing halides which are often added as catalysts or promoters. The case examples will illustrate the importance of evaluating reactive metals under conditions that closely simulate actual process chemistry, type of exposure (vapor, liquid, condensate), and final fabricated form, to ensure that the material will provide predictable long-term service in a commercial facility.

  12. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  13. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  14. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers

    NASA Astrophysics Data System (ADS)

    Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.

    In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.

  15. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laursen, S.L.

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  16. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.

    PubMed

    Bartzas, Georgios; Komnitsas, Kostas

    2010-11-15

    A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. DEVELOPMENT OF SULFATE RADICAL-BASED CHEMICAL OXIDATION PROCESSES FOR TREATMENT OF PCBS

    EPA Science Inventory

    This study investigates transition metal based activation of peroxymonosulfate for generation of highly reactive sulfate radicals to degrade Polychlorinated Biphenyls (PCBs) in contaminated aqueous and sediment systems. Environmental friendly transition metal iron (Fe (II), Fe (I...

  18. Studies of Metal-Metal Bonded Compounds in Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, John F.

    The overall goals of this research are (1) to define the fundamental coordination chemistry underlying successful catalytic transformations promoted by metal-metal bonded compounds, and (2) to explore new chemical transformations that occur at metal-metal bonded sites that could lead to the discovery of new catalytic processes. Transformations of interest include metal-promoted reactions of carbene, nitrene, or nitrido species to yield products with new C–C and C–N bonds, respectively. The most promising suite of transition metal catalysts for these transformations is the set of metal-metal bonded coordination compounds of Ru and Rh of the general formula M 2(ligand) 4, where Mmore » = Ru or Rh and ligand = a monoanionic, bridging ligand such as acetate. Development of new catalysts and improvement of catalytic conditions have been stymied by a general lack of knowledge about the nature of highly reactive intermediates in these reactions, the knowledge that is to be supplied by this work. Our three specific objectives for this year have been (A) to trap, isolate, and characterize new reactive intermediates of general relevance to catalysis, (B) to explore the electronic structure and reactivity of these unusual species, and how these two properties are interrelated, and (C) to use our obtained mechanistic knowledge to design new catalysts with a focus on Earth-abundant first-row transition metal compounds.« less

  19. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  20. Scleroderma Autoantigens Are Uniquely Fragmented by Metal-catalyzed Oxidation Reactions: Implications for Pathogenesis

    PubMed Central

    Casciola-Rosen, Livia; Wigley, Fredrick; Rosen, Antony

    1997-01-01

    The observation that revelation of immunocryptic epitopes in self antigens may initiate the autoimmune response has prompted the search for processes which induce novel fragmentation of autoantigens as potential initiators of autoimmunity. The reversible ischemia reperfusion which characterizes scleroderma has focused attention on reactive oxygen species as molecules which might induce autoantigen fragmentation. We demonstrate that several of the autoantigens targeted in diffuse scleroderma are uniquely susceptible to cleavage by reactive oxygen species, in a metal-dependent manner. Multiple features of the fragmentation reaction and its inhibition indicate that these autoantigens possess metal-binding sites, which focus metal-catalyzed oxidation reactions (and consequent fragmentation) to specific regions of the antigens. These data suggest that the autoantibody response in scleroderma is the immune marker of unique protein fragmentation, induced by ischemia reperfusion in the presence of appropriate metals, and focus attention on abnormal metal status as a potential pathogenic principle in this disease. PMID:8996243

  1. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  2. Tuning reactivity of diphenylpropynone derivatives with metal-associated amyloid-β species via structural modifications.

    PubMed

    Liu, Yuzhong; Kochi, Akiko; Pithadia, Amit S; Lee, Sanghyun; Nam, Younwoo; Beck, Michael W; He, Xiaoming; Lee, Dongkuk; Lim, Mi Hee

    2013-07-15

    A diphenylpropynone derivative, DPP2, has been recently demonstrated to target metal-associated amyloid-β (metal-Aβ) species implicated in Alzheimer's disease (AD). DPP2 was shown to interact with metal-Aβ species and subsequently control Aβ aggregation (reactivity) in vitro; however, its cytotoxicity has limited further biological applications. In order to improve reactivity toward Aβ species and lower cytotoxicity, along with gaining an understanding of a structure-reactivity-cytotoxicity relationship, we designed, prepared, and characterized a series of small molecules (C1/C2, P1/P2, and PA1/PA2) as structurally modified DPP2 analogues. A similar metal binding site to that of DPP2 was contained in these compounds while their structures were varied to afford different interactions and reactivities with metal ions, Aβ species, and metal-Aβ species. Distinct reactivities of our chemical family toward in vitro Aβ aggregation in the absence and presence of metal ions were observed. Among our chemical series, the compound (C2) with a relatively rigid backbone and a dimethylamino group was observed to noticeably regulate both metal-free and metal-mediated Aβ aggregation to different extents. Using our compounds, cell viability was significantly improved, compared to that with DPP2. Lastly, modifications on the DPP framework maintained the structural properties for potential blood-brain barrier (BBB) permeability. Overall, our studies demonstrated that structural variations adjacent to the metal binding site of DPP2 could govern different metal binding properties, interactions with Aβ and metal-Aβ species, reactivity toward metal-free and metal-induced Aβ aggregation, and cytotoxicity of the compounds, establishing a structure-reactivity-cytotoxicity relationship. This information could help gain insight into structural optimization for developing nontoxic chemical reagents toward targeting metal-Aβ species and modulating their reactivity in biological systems.

  3. Method for bonding thin film thermocouples to ceramics

    DOEpatents

    Kreider, Kenneth G.

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  4. CHROTRAN 1.0: A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Hansen, Scott K.; Pandey, Sachin; Karra, Satish; Vesselinov, Velimir V.

    2017-12-01

    Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a multi-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, chrotran, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling, and biomass death. Our software implementation handles heterogeneous flow fields, as well as arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.

  5. CHROTRAN: a mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott; Pandey, Sachin; Karra, Satish

    Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a three-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, CHROTRAN, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling and biomass death.more » Our software implementation handles heterogeneous flow fields, arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.« less

  6. CHROTRAN: a mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers

    DOE PAGES

    Hansen, Scott; Pandey, Sachin; Karra, Satish; ...

    2017-04-25

    Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a three-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, CHROTRAN, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling and biomass death.more » Our software implementation handles heterogeneous flow fields, arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.« less

  7. Iterative reactions of transient boronic acids enable sequential C-C bond formation

    NASA Astrophysics Data System (ADS)

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.

  8. The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous Synthesis and Pattering for Flexible Electronics.

    PubMed

    Tsai, Song-Ling; Liu, Yi-Kai; Pan, Heng; Liu, Chien-Hung; Lee, Ming-Tsang

    2016-01-08

    The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication.

  9. Solvent- and catalyst-free mechanochemical synthesis of alkali metal monohydrides

    DOE PAGES

    Hlova, Ihor Z.; Castle, Andra; Goldston, Jennifer F.; ...

    2016-07-06

    Alkali metal monohydrides, AH (A = Li–Cs) have been synthesized in quantitative yields at room temperature by reactive milling of alkali metals in the presence of hydrogen gas at 200 bar or less. The mechanochemical approach reported here eliminates problems associated with the malleability of alkali metals — especially Li, Na, and K — and promotes effective solid–gas reactions, ensuring their completion. This is achieved by incorporating a certain volume fraction of the corresponding hydride powder as a process control agent, which allows continuous and efficient milling primarily by coating the surface of metal particles, effectively blocking cold welding. Formationmore » of high-purity crystalline monohydrides has been confirmed by powder X-ray diffraction, solid-state NMR spectroscopy, and volumetric analyses of reactively desorbed H 2 from as-milled samples. The proposed synthesis method is scalable and particularly effective for extremely air-sensitive materials, such as alkali and alkaline earth metal hydrides. Furthermore, the technique may also be favorable for production in continuous reactors operating at room temperature, thereby reducing the total processing time, energy consumption and, hence, the cost of production of these hydrides or their derivatives and composites.« less

  10. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, R.; Nath, P.

    1982-06-22

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation is disclosed. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment. 1 fig.

  11. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  12. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans.

    PubMed

    Dewald, Eva; Gube, Monika; Baumann, Ralf; Bertram, Jens; Kossack, Veronika; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas; Brand, Peter

    2015-08-01

    Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.

  13. Asymptomatic prospective and retrospective cohorts with metal-on-metal hip arthroplasty indicate acquired lymphocyte reactivity varies with metal ion levels on a group basis

    PubMed Central

    Hallab, NJ; Caicedo, M; McAllister, K; Skipor, A; Amstutz, H; Jacobs, JJ

    2012-01-01

    Some tissues from metal-on-metal (MoM) hip arthroplasty revisions have shown evidence of adaptive-immune reactivity (i.e., excessive peri-implant lymphocyte infiltration/activation). We hypothesized that, prior to symptoms, some people with MoM hip arthroplasty will develop quantifiable metal-induced lymphocyte reactivity responses related to peripheral metal ion levels. We tested 3 cohorts (Group-1: n=21 prospective longitudinal MoM hip arthroplasty; Group-2: n=17 retrospective MoM hip arthroplasty; and Group-3: n=20 controls without implants). We compared implant position, metal-ion release, and immuno-reactivity. MoM cohorts had elevated (p<0.01) amounts of serum Co and Cr compared to controls as early as 3 mos post-op (Group-1:1.2ppb-Co, 1.5ppb-Cr; Group-2: 3.4ppb-Co,, 5.4ppb-Cr; Group-3: 0.01ppb-Co, 0.1ppb-Cr). However, only after 1 to 4 yrs post-op did 56% of Group-1 develop metal-reactivity (vs. 5%pre-op, metal-LTT, SI>2), compared with 76% of Group-2 and 15% of Group-3 controls (patch testing was a poor diagnostic indicator with only 1/21 Group-1 positive). Higher cup-abduction angles (50° vs. 40°) in Group-1 were associated with higher serum Cr (p<0.07). However, sub-optimal cup-anteversion angles (9° vs. 20°) had higher serum Co (p<0.08). Serum Cr and Co were significantly elevated in reactive vs. non-reactive Group-1 participants (p<0.04). CD4+CD69+ T-helper lymphocytes (but not CD8+) and IL-1β, IL-12 and IL-6 cytokines were all significantly elevated in metal-reactive vs. non-reactive Group-1 participants. Our results showed that lymphocyte reactivity to metals can develop within the first 1 to 4 years after MoM arthroplasty in asymptomatic patients and lags increases in metal ion levels. This increased metal reactivity was more prevalent in those individuals with extreme cup angles and higher amounts of circulating metal. PMID:22941579

  14. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.

    PubMed

    Whited, Matthew T; Grubbs, Robert H

    2009-10-20

    Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = [N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)](-)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss the classification of this reactivity in the context of a scheme originally delineated by Roper. These "Roper-type" carbenes perform a number of multiple-bond metatheses leading to atom and group transfer from electrophilic heterocumulene (e.g., CO(2), CS(2), PhNCS) and diazo (e.g., N(2)O, AdN(3)) reagents. In one instance, we have extended this methodology to a process for catalytic C-H functionalization by a double C-H activation-group transfer process. Although the scope of these reactions is currently limited, these new pathways may find broader utility as the reactivity of late-metal carbenes continues to be explored. Examination of alternative transition metals and supporting ligand sets will certainly be important. Nonetheless, our findings show that carbene generation by double C-H activation is a viable strategy for C-H functionalization, leading to products not accessible through traditional C(sp(3))-H activation pathways.

  15. Molten salt applications in materials processing

    NASA Astrophysics Data System (ADS)

    Mishra, Brajendra; Olson, David L.

    2005-02-01

    The science of molten salt electrochemistry for electrowinning of reactive metals, such as calcium, and its in situ application in pyro-reduction has been described. Calcium electrowinning has been performed in a 5 10 wt% calcium oxide calcium chloride molten salt by the electrolytic dissociation of calcium oxide. This electrolysis requires the use of a porous ceramic sheath around the anode to keep the cathodically deposited calcium and the anodic gases separate. Stainless steel cathode and graphite anode have been used in the temperature range of 850 950 °C. This salt mixture is produced as a result of the direct oxide reduction (DOR) of reactive metal oxides by calcium in a calcium chloride bath. The primary purpose of this process is to recover the expensive calcium reductant and to recycle calcium chloride. Experimental data have been included to justify the suitability as well as limitations of the electrowinning process. Transport of oxygen ions through the sheath is found to be the rate controlling step. Under the constraints of the reactor design, a calcium recovery rate of approx. 150 g/h was achieved. Feasibility of a process to produce metals by pyrometallurgical reduction, using the calcium reductant produced electrolytically within the same reactor, has been shown in a hybrid process. Several processes are currently under investigation to use this electrowon calcium for in situ reduction of metal oxides.

  16. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up.

    PubMed

    Scherer, M M; Richter, S; Valentine, R L; Alvarez, P J

    2000-01-01

    Permeable reactive barriers (PRBs) are receiving a great deal of attention as an innovative, cost-effective technology for in situ clean up of groundwater contamination. A wide variety of materials are being proposed for use in PRBs, including zero-valent metals (e.g., iron metal), humic materials, oxides, surfactant-modified zeolites (SMZs), and oxygen- and nitrate-releasing compounds. PRB materials remove dissolved groundwater contaminants by immobilization within the barrier or transformation to less harmful products. The primary removal processes include: (1) sorption and precipitation, (2) chemical reaction, and (3) biologically mediated reactions. This article presents an overview of the mechanisms and factors controlling these individual processes and discusses the implications for the feasibility and long-term effectiveness of PRB technologies.

  17. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  18. Football Pools and the Reactivity Series of Metals.

    ERIC Educational Resources Information Center

    Heselden, Russ

    2001-01-01

    Describes an activity which presents the reactivity of metals series as a football pool with more reactive metals at the top of the table and unreactive metals at the bottom. Describes how the activity can be applied in different ways for different ability groups. (Author/MM)

  19. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  20. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  1. Allylic amination reactivity of Ni, Pd, and Pt heterobimetallic and monometallic complexes.

    PubMed

    Carlsen, Ryan W; Ess, Daniel H

    2016-06-14

    Transition metal heterobimetallic complexes with dative metal-metal interactions have the potential for novel fast reactivity. There are few studies that both compare the reactivity of different metal centers in heterobimetallic complexes and compare bimetallic reactivity to monometallic reactivity. Here we report density-functional calculations that show the reactivity of [Cl2Ti(N(t)BuPPh2)2M(II)(η(3)-methallyl)] heterobimetallic complexes for allylic amination follows M = Ni > Pd > Pt. This reactivity trend was not anticipated since the amine addition transition state involves M(II) to M(0) reduction and this could disadvantage Ni. Comparison of heterobimetallic complexes to the corresponding monometallic (CH2)2(N(t)BuPPh2)2M(II)(η(3)-methallyl) complexes reveals that this reactivity trend is due to the bimetallic interaction and that the bimetallic interaction significantly lowers the barrier height for amine addition by >10 kcal mol(-1). The impact of the early transition metal center on the amination addition barrier height depends on the late transition metal center. The lowest barrier heights for this reaction occur when late and early transition metal centers are from the same periodic table row.

  2. CHROTRAN, 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott K.; Pandey, Sachin; Karra, Satish

    2017-04-13

    CHROTRAN is a fork of the widely-used PFLOTRAN flow and reactive transport numerical simulation code. It implements custom physics and chemistry appropriate to the design of in-situ reduction of heavy metals such as Cr(VI) in groundwater. CHROTRAN includes full dynamics for five species: the metal to be remediated, an electron donor, biofilm, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, and biofilm inactivation. The software implementation handles heterogeneous flow fields, arbitrarily many chemical species and amendment injectionmore » points, and features full coupling between flow and reactive transport, allowing for assessment of the effect of bio-fouling.« less

  3. Novel metals and metal complexes as platforms for cancer therapy.

    PubMed

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping

    2010-06-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.

  4. Metal-catalyzed protein tyrosine nitration in biological systems.

    PubMed

    Campolo, Nicolás; Bartesaghi, Silvina; Radi, Rafael

    2014-11-01

    Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO(-)) and nitrogen dioxide ((•)NO₂). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO₂(-)) to (•)NO₂ in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.

  5. Relationship between welding fume concentration and systemic inflammation after controlled exposure of human subjects with welding fumes from metal inert gas brazing of zinc-coated materials.

    PubMed

    Brand, Peter; Bauer, Marcus; Gube, Monika; Lenz, Klaus; Reisgen, Uwe; Spiegel-Ciobanu, Vilia Elena; Kraus, Thomas

    2014-01-01

    It has been shown that exposure of subjects to emissions from a metal inert gas (MIG) brazing process of zinc-coated material led to an increase of high-sensitivity C-reactive protein (hsCRP) in the blood. In this study, the no-observed-effect level (NOEL) for such emissions was assessed. Twelve healthy subjects were exposed for 6 hours to different concentrations of MIG brazing fumes under controlled conditions. High-sensitivity C-reactive protein was measured in the blood. For welding fumes containing 1.20 and 1.50 mg m zinc, high-sensitivity C-reactive protein was increased the day after exposure. For 0.90 mg m zinc, no increase was detected. These data indicate that the no-observed-effect level for emissions from a MIG brazing process of zinc-coated material in respect to systemic inflammation is found for welding fumes with zinc concentrations between 0.90 and 1.20 mg m.

  6. PROTON GENERATION BY DISSOLUTION OF INTRINSIC OR AUGMENTED ALUMINOSILICATE MINERALS FOR IN SITU CONTAMINANT REMEDIATION BY ZERO-VALENCE-STATE IRON

    EPA Science Inventory

    Metallic, or zero-valence-state, iron is being incorporated into permeable reactive subsurface barriers for remediating a variety of contaminant plume types. The remediation occurs via reductive processes that are associated with surface corrosion of the iron metal. Reaction rate...

  7. Study of thermite mixture consolidated by the cold gas dynamic spray process

    NASA Astrophysics Data System (ADS)

    Bacciochini, A.; Maines, G.; Poupart, C.; Akbarnejad, H.; Radulescu, M.; Jodoin, B.; Zhang, F.; Lee, J. J.

    2014-05-01

    The present study focused on the cold gas dynamic spray process for manufacturing porosity free, finely structured energetic materials with high reactivity and structural integrity. The experiments have focused the reaction between the aluminium and metal oxide, such as Al-CuO system. The consolidation of the materials used the cold gas dynamic spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact. Reactive composites are formed in arbitrary shapes with close to zero porosity and without any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.

  8. In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis.

    PubMed

    Gouget, Guillaume; Debecker, Damien P; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David

    2017-08-07

    Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H 2 ), and a mixture of H 2 and carbon dioxide (CO 2 ) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H 2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H 2 activates CoB for the catalysis of CO 2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.

  9. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: A Review

    PubMed Central

    Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.

    2018-01-01

    Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical, and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter, or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article. PMID:29755967

  10. Selective Complexation and Reactivity of Metallic Nitride and OxoMetallic Fullerenes with Lewis Acids and Use as an Effective Purification Method

    PubMed Central

    Stevenson, Steven; Mackey, Mary A.; Pickens, Jane E.; Stuart, Melissa A.; Confait, Bridget S.; Phillips, J. Paige

    2009-01-01

    Metallic nitride fullerenes (MNFs) and oxometallic fullerenes (OMFs) react quickly with an array of Lewis acids. Empty-cage fullerenes are largely unreactive under conditions used in this study. The reactivity order is Sc4O2@Ih-C80 > Sc3N@C78 > Sc3N@C68 > Sc3N@D5h-C80 > Sc3N@Ih-C80. Manipulations of Lewis acids, molar ratios and kinetic differences within the family of OMF and MNF metallofullerenes are demonstrated in a selective precipitation scheme, which can be used either alone for purifying Sc3N@Ih-C80 or combined with a final HPLC pass for Sc4O2@Ih-C80, Sc3N@D5h-C80, Sc3N@C68, or Sc3N@C78. The purification process is scalable. Analysis of experimental rate constants versus electrochemical band gap explains the order of reactivity among the OMF and MNFs. PMID:19911812

  11. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: a Review

    NASA Astrophysics Data System (ADS)

    Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.

    2018-04-01

    Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article.

  12. Reactive extraction at liquid-liquid systems

    NASA Astrophysics Data System (ADS)

    Wieszczycka, Karolina

    2018-01-01

    The chapter summarizes the state of knowledge about a metal transport in two-phase system. The first part of this review focuses on the distribution law and main factors determination in classical solvent extraction (solubility and polarity of the solute, as well as inter- and intramolecules interaction. Next part of the chapter is devoted to the reactive solvent extraction and the molecular modeling requiring knowledge on type of extractants, complexation mechanisms, metals ions speciation and oxidation during complexes forming, and other parameters that enable to understand the extraction process. Also the kinetic data that is needed for proper modeling, simulation and design of processes needed for critical separations are discussed. Extraction at liquid-solid system using solvent impregnated resins is partially identical as in the case of the corresponding solvent extraction, therefore this subject was also presented in all aspects of separation process (equilibrium, mechanism, kinetics).

  13. Heterogeneous processes in CF4/O2 plasmas probed using laser-induced fluorescence of CF2

    NASA Astrophysics Data System (ADS)

    Hansen, S. G.; Luckman, G.; Nieman, George C.; Colson, Steven D.

    1990-09-01

    Laser-induced fluorescence of CF2 is used to monitor heterogeneous processes in ≊300 mTorr CF4/O2 plasmas. CF2 is rapidly removed at fluorinated copper and silver surfaces in 13.56-MHz rf discharges as judged by a distinct dip in its spatial distribution. These metals, when employed as etch masks, are known to accelerate plasma etching of silicon, and the present results suggest catalytic dehalogenation of CF2 is involved in this process. In contrast, aluminum and silicon dioxide exhibit negligible reactivity with CF2, which suggests that aluminum masks will not appreciably accelerate silicon etching and that ground state CF2 does not efficiently etch silicon dioxide. Measurement of CF2 decay in a pulsed discharge coupled with direct laser sputtering of metal into the gas phase indicates the interaction between CF2 and the active metals is purely heterogeneous. Aluminum does, however, exhibit homogeneous reactivity with CF2. Redistribution of active metal by plasma sputtering readily occurs; silicon etch rates may also be enhanced by the metal's presence on the silicon surface. Polymers contribute CF2 to the plasma as they etch. The observation of an induction period suggests fluorination of the polymer surface is the first step in its degradation. Polymeric etch masks can therefore depress the silicon etch rate by removal of F atoms, the primary etchants.

  14. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  15. Heteronuclear Metal Cluster Compounds Synthesis and Reactivity

    DTIC Science & Technology

    1990-08-10

    important role in the formation of complexes with heteronuclear metal - metal bonds. Since this is our Final Report recent results are reported and...DTe FL’ Copy AFOSR-86-0125 Lfl X’ HETERONUCLEAR METAL CLUSTER COMPOUNDS00 SYNTHESIS AND REACTIVITY F. Gordon A. Stone, IDepartment of Inorganic...Security Classification) HETERONUCLEAR METAL CLUSTER COMPOUNDS: SYNTHESIS AND REACTIVITY 12. PERSONAL AUTHOR(S) F. GORDON A. STONE 13a. TYPE OF REPORT

  16. Coated graphite articles useful in metallurgical processes and method for making same

    DOEpatents

    Holcombe, Cressie E.; Bird, Eugene L.

    1995-01-01

    Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

  17. In vitro Reactivity to Implant Metals Demonstrates a Person Dependent Association with both T-Cell and B-Cell Activation

    PubMed Central

    Hallab, Nadim James; Caicedo, Marco; Epstein, Rachael; McAllister, Kyron; Jacobs, Joshua J

    2009-01-01

    Hypersensitivity to metallic implants remains relatively unpredictable and poorly understood. We initially hypothesized that metal-induced lymphocyte proliferation responses to soluble metal challenge (ions) are mediated exclusively by early T-cell activation (not B-cells), typical of a Delayed-Type-Hypersensitivity response. We tested this by comparing proliferation (6-days) of primary lymphocytes with early T-cell and B-cell activation (48-hours) in three groups of subjects likely to demonstrate elevated metal-reactivity: Group 1(n=12) history of metal-sensitivity with no implant; Group 2a(n=6) well performing metal-on-metal THRs, and Group 2b(n=20) subjects with poorly performing metal-on-polymer total joint arthroplasties (TJA). Group 1 showed 100%(12/12) metal reactivity (Stimulation Index>2) to Ni. Group 2a&2b were 83%(5/6) and 75%(15/22) metal reactive (to Co, Cr or Ni) respectively. Of the n=32 metal reactive subjects to Co, Cr or Ni (SI>2), n=22/32 demonstrated >2-fold elevations in % of T-cell or B-cell activation (CD25+,CD69+) to metal challenge compared to untreated control. 18/22 metal-activated subjects demonstrated an exclusively T-cell or B-cell activation response to metal challenge, where 6/18 demonstrated exclusively B-cell activation and 12/18 demonstrated a T-cell only response, as measured by surface activation markers CD25+ and CD69+. However, there was no direct correlation (R2<0.1) between lymphocyte proliferation and % T-cell or B-cell activation (CD25+:CD69+). Proliferation assays (LTT) showed greater ability to detect metal reactivity than did subject-dependent results of flow-cytometry analysis of T-cell or B-cell activation. The high incidence of lymphocyte reactivity and activation, indicate that more complex than initially hypothesized immune responses may contribute to the etiology of debris induced osteolysis in metal-sensitive individuals. PMID:19235773

  18. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  19. Novel Metals and Metal Complexes as Platforms for Cancer Therapy

    PubMed Central

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q. Ping

    2013-01-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[PtII(NH3)2Cl2], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed. PMID:20337575

  20. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins

    PubMed Central

    2017-01-01

    As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal–oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal–oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron–oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs. PMID:29286645

  1. Explosive Welding in the 1990's

    NASA Technical Reports Server (NTRS)

    Lalwaney, N. S.; Linse, V. D.

    1985-01-01

    Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.

  2. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.

    1994-01-01

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  3. Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation

    DOE PAGES

    Yang, Liang; Wang, C. Z.; Lin, Shiwei; ...

    2018-01-01

    Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titaniummore » (0001) surface and further prevented oxidation in the deeper layers. As a result, the mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.« less

  4. Impact of trace metals on the water structure at the calcite surface

    NASA Astrophysics Data System (ADS)

    Wolthers, Mariette; Di Tommaso, Devis; De Leeuw, Nora

    2014-05-01

    Carbonate minerals play an important role in regulating the chemistry of aquatic environments, including the oceans, aquifers, hydrothermal systems, soils and sediments. Through mineral surface processes such as dissolution, precipitation and sorption, carbonate minerals affect the biogeochemical cycles of not only the constituent elements of carbonates, such as Ca, Mg, Fe and C, but also H, P and trace elements. Surface charging of the calcite mineral-water interface, and its reactivity towards foreign ions can be quantified using a surface structural model that includes, among others, the water structure at the interface (i.e. hydrogen bridging) [1,2] in accordance with the CD-MUSIC formalism [3]. Here we will show the impact of foreign metals such as Mg and Sr on the water structure around different surface sites present in etch pits and on growth terraces at the calcite (10-14) surface. We have performed Molecular Dynamics simulations of metal-doped calcite surfaces, using different interatomic water potentials. Results show that the local environment around the structurally distinct sites differs depending on metal presence, suggesting that metal substitutions in calcite affect its reactivity. The information obtained in this study will help in improving existing macroscopic surface model for the reactivity of calcite [2] and give more general insight in mineral surface reactivity in relation to crystal composition. [1] Wolthers, Charlet, & Van Cappellen (2008). Am. J. Sci., 308, 905-941. [2] Wolthers, Di Tommaso, Du, & de Leeuw (2012). Phys. Chem. Chem. Phys. 14, 15145-15157. [3] Hiemstra and Van Riemsdijk (1996) J. Colloid Interf. Sci. 179, 488-508.

  5. Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments.

    PubMed

    Oliva, Josep; De Pablo, Joan; Cortina, José-Luis; Cama, Jordi; Ayora, Carlos

    2011-10-30

    Apatite II™, a biogenic hydroxyapatite, was evaluated as a reactive material for heavy metal (Cd, Cu, Co, Ni and Hg) removal in passive treatments. Apatite II™ reacts with acid water by releasing phosphates that increase the pH up to 6.5-7.5, complexing and inducing metals to precipitate as metal phosphates. The evolution of the solution concentration of calcium, phosphate and metals together with SEM-EDS and XRD examinations were used to identify the retention mechanisms. SEM observation shows low-crystalline precipitate layers composed of P, O and M. Only in the case of Hg and Co were small amounts of crystalline phases detected. Solubility data values were used to predict the measured column experiment values and to support the removal process based on the dissolution of hydroxyapatite, the formation of metal-phosphate species in solution and the precipitation of metal phosphate. Cd(5)(PO(4))(3)OH(s), Cu(2)(PO(4))OH(s), Ni(3)(PO(4))(2)(s), Co(3)(PO(4))(2)8H(2)O(s) and Hg(3)(PO(4))(2)(s) are proposed as the possible mineral phases responsible for the removal processes. The results of the column experiments show that Apatite II™ is a suitable filling for permeable reactive barriers. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  7. Process for direct conversion of reactive metals to glass

    DOEpatents

    Rajan, John B.; Kumar, Romesh; Vissers, Donald R.

    1990-01-01

    Radioactive alkali metal is introduced into a cyclone reactor in droplet form by an aspirating gas. In the cyclone metal reactor the aspirated alkali metal is contacted with silica powder introduced in an air stream to form in one step a glass. The sides of the cyclone reactor are preheated to ensure that the initial glass formed coats the side of the reactor forming a protective coating against the reactants which are maintained in excess of 1000.degree. C. to ensure the formation of glass in a single step.

  8. Non-focusing active warhead

    DOEpatents

    Hornig, H.C.

    1998-12-22

    A non-nuclear, non-focusing, active warhead that comprises a high explosive charge contained within a casing of reactive metal is disclosed. When the high explosive is detonated, the reactive metal is dispersed and reacts with the air, which significantly increases the explosive yield of the warhead. The active warhead produces therefore much higher blast effects with significantly reduced weight compared to conventional munitions. The warhead is highly effective against such targets as aircraft which typically have thin fuselages, for example. The explosiveness of this warhead can be enhanced further by elevating the temperature and therefore the reactivity of the reactive metal before or during the explosion. New methods of enhancing the reactivity of the metal are also taught. 4 figs.

  9. Non-focusing active warhead

    DOEpatents

    Hornig, Howard C.

    1998-01-01

    A non-nuclear, non-focusing, active warhead that comprises a high explosive charge contained within a casing of reactive metal. When the high explosive is detonated, the reactive metal is dispersed and reacts with the air, which significantly increases the explosive yield of the warhead. The active warhead produces therefore much higher blast effects with significantly reduced weight compared to conventional munitions. The warhead is highly effective against such targets as aircraft which typically have thin fuselages, for example. The explosiveness of this warhead can be enhanced further by elevating the temperature and therefore the reactivity of the reactive metal before or during the explosion. New methods of enhancing the reactivity of the metal are also taught.

  10. Multinuclear metal-binding ability of a carotene

    PubMed Central

    Horiuchi, Shinnosuke; Tachibana, Yuki; Yamashita, Mitsuki; Yamamoto, Koji; Masai, Kohei; Takase, Kohei; Matsutani, Teruo; Kawamata, Shiori; Kurashige, Yuki; Yanai, Takeshi; Murahashi, Tetsuro

    2015-01-01

    Carotenes are naturally abundant unsaturated hydrocarbon pigments, and their fascinating physical and chemical properties have been studied intensively not only for better understanding of the roles in biological processes but also for the use in artificial chemical systems. However, their metal-binding ability has been virtually unexplored. Here we report that β-carotene has the ability to assemble and align ten metal atoms to afford decanuclear homo- and heterometal chain complexes. The metallo–carotenoid framework shows reversible metalation–demetalation reactivity with multiple metals, which allows us to control the size of metal chains as well as the heterobimetallic composition and arrangement of the carotene-supported metal chains. PMID:25857402

  11. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    EPA Science Inventory

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  12. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  13. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments

    USGS Publications Warehouse

    Lee, B.-G.

    2000-01-01

    Understanding how animals are exposed to the large repository of metal pollutants in aquatic sediments is complicated and is important in regulatory decisions. Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc. Metal concentrations in animal tissue correlated with metal concentrations extracted from sediments, but not with metal in porewater, across a range of reactive sulfide concentrations, from 0.5 to 30 micromoles per gram. These results contradict the notion that metal bioavailability in sediments is controlled by geochemical equilibration of metals between porewater and reactive sulfides, a proposed basis for regulatory criteria for metals.

  14. DARPA - Advanced Composite Materials Annual Presentation Held in Gainesville, Florida on 19-20 November 1992

    DTIC Science & Technology

    1992-11-20

    34 and M.D. Sacks 13) "Fabrication of SiC -Based Composites by Reactive Infiltration of Metals (RIM)" K. Wang," G.W. Scheiffele, P.J. Sanchez-Soto, and...Ig I I keactive Infiltration of Metals (RIM) Ii * Densification with little or no shrinkage e SIC -based composites with little or no residual metal...M.D. Sacks I) Indicates Presenter Intermetallic: Matrix Composites 14) *Processing of Compositionally Tailored Silica-Free MoSi 2/ SiC Composites ’ S

  15. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  16. The Synergistic Effect of Proteins and Reactive Oxygen Species on Electrochemical Behaviour of 316L Stainless Steel for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Simionescu, N.; Benea, L.; Dumitrascu, V. M.

    2018-06-01

    The stainless steels, especially 316L type is the most used metallic biomaterials for biomedical applications due to their good biocompatibility, low price, excellent corrosion resistance, availability, easy processing and high strength. Due to these favorable properties 316L stainless steel has become the most attractive biomaterial for dental implants, stents and orthopedic implants. However an implant material in the human body is exposed to an action effect of other molecules, including proteins (such as albumin) and reactive oxygen species (such as hydrogen peroxide - H2O2 ) produced by bacteria and immune cells. In the literature there are few studies to follow the effect of proteins and reactive oxygen species on 316L stainless steel used as implant material and are still unclear. The degree of corrosion resistance is the first criterion in the use of a metallic biomaterial in the oral or body environment. The aim of this research work is to investigate the influence of proteins (albumin) and reactive oxygen species (H2O2 ) in combination, taking into account the synergistic effect of these two factors on 316L stainless steel. Albumin is present in the body near implants and reactive oxygen species could appear in inflammatory processes as well. The study shows that the presence of albumin and reactive species influences the corrosion resistance of 316L stainless steel in biological solutions. In this research work the corrosion behavior of 316L stainless steel is analyzed by electrochemical methods such as: open circuit potential (OCP), Electrochemical Impedance Spectroscopy (EIS). It was found that, the electrochemical results are in a good agreement with micro photographs taken before and after corrosion assays. The albumin and reactive oxygen species have influence on 316L stainless steel behavior.

  17. Mechanical Behavior and Processing of Aluminum Metal Matrix Composites

    DTIC Science & Technology

    1992-02-21

    SUgeCT TERMS Spray Atomization and Co-Deposition; metal Matrix IS. NUMBER OF PAGeiS Composites; Solidification Mechanisms; Non -Equilibrium...continuously reinforced MMCs, such as: (a) fiber damage, (b) microstructural non -uniformity, (c) fiber to fiber contact, and (d) extensive...of the high reactiJity of lithium. The excessive high temperature reactivity of aluminum-lithium alloys results in the formation of non -protective

  18. Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for TCE Degradation in Groundwater

    PubMed Central

    Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N.

    2014-01-01

    Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater, and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053•Iv + 0.059 (−122 A/m3 ≤ Iv ≤ 244 A/m3) where k1 and Iv are the pseudo first-order rate constant (min−1) and volume normalized current (A/m3), respectively. Persulfate is mainly decomposed by Fe2+ produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe3+ reduction on the cathode. SO4•− and •OH co-contribute to TCE degradation, but •OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192

  19. Harnessing redox activity for the formation of uranium tris(imido) compounds

    NASA Astrophysics Data System (ADS)

    Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.

    2014-10-01

    Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

  20. Study and modification of the reactivity of carbon fibers

    NASA Technical Reports Server (NTRS)

    Walker, P. L., Jr.; Ismail, I. M.; Mahajan, O. P.; Eapen, T. A.

    1980-01-01

    The reactivity to air of polyactylonitrile-based carbon fiber cloth was enhanced by the addition of metals to the cloth. The cloth was oxidized in 54 wt% nitric acid in order to increase the surface area of the cloth and to add carbonyl groups to the surface. Metal addition was then achieved by soaking the cloth in metal acetate solution to effect exchange between the metal carbon and hydrogen on the carbonyl groups. The addition of potassium, sodium, calcium and barium enhanced fiber cloth reactivity to air at 573 K. Extended studies using potassium addition showed that success in enhancing fiber cloth reactivity to air depends on: extent of cloth oxidation in nitric acid, time of exchange in potassium acetate solution and the thoroughness of removing metal acetate from the fiber pore structure following exchange. Cloth reactivity increases essentially linearly with increase in potassium addition via exchange.

  1. Cold machining of high density tungsten and other materials

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1969-01-01

    Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.

  2. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less

  3. A method of producing high quality oxide and related films on surfaces

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Strongin, Myron; Gao, Yongli

    1991-01-01

    Aluminum oxide or aluminum nitride films were deposited on molecular beam epitaxy (MBE) grown GaAS(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia, or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid to form the desired compound or a precursor that can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities, and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE systems. Ongoing research using the same apparatus suggests that photon or electron irradiation could be used to promote the reactions needed to produce the intended material.

  4. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  5. Solid polymer battery electrolyte and reactive metal-water battery

    DOEpatents

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  6. Surface rejuvenation for multilayer metal deposition on polymer microspheres via self-seeded electroless plating

    NASA Astrophysics Data System (ADS)

    Karagoz, Bunyamin; Sirkecioglu, Okan; Bicak, Niyazi

    2013-11-01

    A surface rejuvenation process was developed for generation variable thickness of metal deposits on polymer microspheres via electroless plating. Thus, Ni(II), Cu(II) and Ag(I) complexes formed on triethylenetetramine (TETA) functional crosslinked poly(glycidyl methacrylate) (PGMA) microspheres were reduced to zero-valent metals. The resulting metals (1.1-1.5 mmol g-1) were employed as seed points for electroless metal plating (self-seeding) without using Pd or tin pre-activating species. Treatment of the metalized surfaces with hydrazine or hydrazinium formate was demonstrated to reactivate (rejuvenate) the surface and allows further metal deposition from electroless plating solutions. Followed repeating of the surface rejuvenation-metalization steps resulted in step wise increasing of the metal deposits (90-290 mg per g in each cycle), as inferred from metal analyses, ESEM and XPS analysis. Experiments showed that, after 6 times of cycling the metal deposits exceed 1 g per g of the microspheres on average. The process seemed to be promising for tuning up of the metal thickness by stepwise electroless plating.

  7. Iodine-catalyzed diazo activation to access radical reactivity.

    PubMed

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  8. Wetting and Interfacial Reactivity of Zn-Coated Steel Products with Cu-Si, Cu-Sn and Al-Si Filler Metals for Laser Brazing Application

    NASA Astrophysics Data System (ADS)

    Koltsov, Alexey; Cretteur, Laurent

    2018-03-01

    The laser brazing process is successfully applied in automotive industry for joining of roofs and hatchbacks of vehicles. The bad wetting of the brazing alloy during the process can lead to the formation of random external porosities which are not allowed on visible parts. This paper describes the wettability and reactivity mechanisms at short contact time of Cu and Al matrix brazing alloys with different reactive elements (Si, Sn) on different steel products such as hot-dip galvanized steels, galvannealed steel and bare steel. Wetting experiments were carried out by the dispensed drop technique. The effects of alloying elements and brazing alloy matrix on interfacial reactivity are discussed. It was found that Cu matrix containing 3 wt.% Si is the most favorable for short time liquid/solid adhesion relatively to the other studied brazing alloy compositions. The brazing ability of different steel products is well correlated with the wettability and interfacial reactivity results.

  9. Study of thermite mixtures consolidated by cold gas dynamic spray process

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Maines, Geoffrey; Poupart, Christian; Radulescu, Matei; Jodoin, Bertrand; Lee, Julian

    2013-06-01

    The present study focused on the cold gas dynamic spray process for manufacturing finely structured energetic materials with high reactivity, vanishing porosity, as well as structural integrity and arbitrary shape. The experiments have focused the reaction between the aluminum and metal oxides, such as Al-CuO and Al-MoO3 systems. To increase the reactivity, an initial mechanical activation was achieved through interrupted ball milling. The consolidation of the materials used the supersonic cold gas spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact, forming activated nano-composites in arbitrary shapes with close to zero porosity. This technique permits to retain the feedstock powder micro-structure and prevents any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.

  10. Stabilization/solidification of radioactive salt waste by using xSiO2-yAl2O3-zP2O5 (SAP) material at molten salt state.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Lee, Han-Soo

    2008-12-15

    The molten salt waste from the pyroprocess is one of the problematic wastes to directly apply a conventional process such as vitrification or ceramization. This study suggested a novel method using a reactive material for metal chlorides at a molten temperature of salt waste, and then converting them into manageable product at a high temperature. The inorganic composite, SAP (SiO2-Al2O3-P2O5), synthesized by a conventional sol-gel process has three or four distinctive domains that are bonded sequentially, Si-O-Si-O-A-O-P-O-P. The P-rich phase in the SAP composite is unstable for producing a series of reactive sites when in contact with a molten LiCl salt. After the reaction, metal aluminosilicate, metal aluminophosphate, metal phosphates and gaseous chlorines are generated. From this process, the volatile salt waste is stabilized and it is possible to apply a high temperature process. The reaction products were fabricated successfully by using a borosilicate glass with an arbitrary composition as a chemical binder. There was a low possibility for the valorization of radionuclides up to 1200 degrees C, based on the result of the thermo gravimetric analysis. The Cs and Sr leach rates by the PCT-A method were about 1 x 10(-3) g/(m2 day). For the final disposal of the problematic salt waste, this approach suggested the design concept of an effective stabilizer for metal chlorides and revealed the chemical route to the fabrication of monolithic wasteform by using a composite as an example. Using this method, we could obtain a higher disposal efficiency and lower waste volume, compared with the present immobilization methods.

  11. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    NASA Astrophysics Data System (ADS)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  12. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  13. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  14. Welding bulk metallic glass using nanostructured reactive multilayer foils

    NASA Astrophysics Data System (ADS)

    Trenkle, Jonathan C.

    We have used Al/Ni reactive foils to weld Zr57Ti 5Cu20Ni8Al10 metallic glasses. The welds are a composite morphology comprised of glass ligaments and intermetallic AlNi (the product of the reactive foil). The presence of the presumably brittle intermetallic (in lieu of the glass) is expected to limit the mechanical properties of the welds. Based on fracture toughness measurements and the crack propagation paths, we conclude that virtually all of the toughness can be ascribed to the presence of the metallic glass ligaments. Increasing the pressure applied during welding increases the fraction of the joint made of these ligaments and so increases the fracture toughness as well. To eliminate the intermetallic from the weld altogether, we attempted to fabricate reactive mulitlayer foils that form an amorphous product by melting and cooling rapidly during a self-propagating reaction. We began with reactive foils with overall composition Zr2Ni but quickly determined that the foils did not fully melt. We then attempted to lower the melting temperature and increase the glass forming ability and the heat of mixing by adding Al and Cu. These foils again did not fully melt. Finally we systematically determined that foils of overall compositions Hf37Ni63, Ni 80P20, and Ni60P40, which are all known binary metallic glasses, will potentially melt during a self-propagating reaction. Knowledge of the phase transformations during a self-propagating reaction is necessary to engineer reactive foils for future applications. Furthermore, reactive foils provide an opportunity to study phase transformations under high heating rates not easily achievable. Characterizing the processes in the reaction zone however is challenging, requiring both temporal resolution better than ˜ 100 mus (the time required for the reaction front to pass a fixed location) and spatial resolution of < 100 mum (the approximate width of the reaction zone). Using synchrotron x-ray radiation, we have studied these phase transformations in situ in Al/Ni multilayers. Unlike previous annealing and quenching studies in these multilayers, we observed no metastable or intermediate phases.

  15. FAST NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  16. Introduction to Pits and Weapons Systems (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, D.

    2012-07-02

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutoniummore » is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.« less

  17. Reactivity of pi-complexes of Ti, V, and Nb towards dithioacetic acid: Synthesis and structure of novel metal sulfur-containing complexes

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.; Andras, Maria T.; Hepp, Aloysius F.

    1990-01-01

    In order to use sulfur-containing resources economically and with minimal environmental damage, it is important to understand the desulfurization processes. Hydrodesulfurization, for example, is carried out on the surface of a heterogeneous metal sulfide catalyst. Studies of simple, soluble inorganic systems provide information regarding the structure and reactivity of sulfur-containing compounds with metal complexes. Further, consistent with recent trends in materials chemistry, many model compounds warrant further study as catalyst precursors. The reactivity of low-valent organometallic sandwich pi-complexes toward dithiocarboxylic acids is described. For example, treatment of bisbenzene vanadium with CH3CSSH affords a divanadium tetrakis(dithioacetate) complex. The crystallographically determined V-V bond distance, 2.800(2), is nearly the same as the V-V bond distance in a V(mu-nu squared-S2)2V' unit in the mineral patonite (VS4)n. The stability of the V2S4 core in the dimer is demonstrated by evidence of V2S4(+) in the mass spectrum (70 eV, solid probe) of the vanadium dimer. Several other systems relevant to HDS catalysis are also discussed.

  18. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith; Woosley, Steve; Campbell, Brett

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers,more » plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)« less

  19. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate.

    PubMed

    Huang, Caijin; Liu, Qiuwen; Fan, Wenjie; Qiu, Xiaoqing

    2015-11-16

    Reactivity is of great importance for metal nanoparticles used as catalysts, biomaterials and advanced sensors, but seeking for high reactivity seems to be conflict with high chemical stability required for metal nanoparticles. There is a subtle balance between reactivity and stability. This could be reached for colloidal metal nanoparticles using organic capping reagents, whereas it is challenging for powder metal nanoparticles. Here, we developed an alternative approach to encapsulate copper nanoparticles with a chemical inertness material--hexagonal boron nitride. The wrapped copper nanoparticles not only exhibit high oxidation resistance under air atmosphere, but also keep excellent promoting effect on thermal decomposition of ammonium perchlorate. This approach opens the way to design metal nanoparticles with both high stability and reactivity for nanocatalysts and their technological application.

  20. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate

    PubMed Central

    Huang, Caijin; liu, Qiuwen; Fan, Wenjie; Qiu, Xiaoqing

    2015-01-01

    Reactivity is of great importance for metal nanoparticles used as catalysts, biomaterials and advanced sensors, but seeking for high reactivity seems to be conflict with high chemical stability required for metal nanoparticles. There is a subtle balance between reactivity and stability. This could be reached for colloidal metal nanoparticles using organic capping reagents, whereas it is challenging for powder metal nanoparticles. Here, we developed an alternative approach to encapsulate copper nanoparticles with a chemical inertness material—hexagonal boron nitride. The wrapped copper nanoparticles not only exhibit high oxidation resistance under air atmosphere, but also keep excellent promoting effect on thermal decomposition of ammonium perchlorate. This approach opens the way to design metal nanoparticles with both high stability and reactivity for nanocatalysts and their technological application. PMID:26567862

  1. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  2. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will workmore » satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.« less

  3. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.« less

  4. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Liao, Lei; Shi, Feifei

    Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less

  5. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability

    DOE PAGES

    Zhao, Jie; Liao, Lei; Shi, Feifei; ...

    2017-07-26

    Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less

  6. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    PubMed

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  7. Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain

    DOE PAGES

    McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi

    2015-11-06

    In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermalmore » treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.« less

  8. Mineralogy controls on reactive transport of Marcellus Shale waters.

    PubMed

    Cai, Zhang; Wen, Hang; Komarneni, Sridhar; Li, Li

    2018-07-15

    Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50-90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75-99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20-70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock-contaminant interactions and natural attenuation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  10. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  11. Do constructed wetlands remove metals or increase metal bioavailability?

    PubMed

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Problems affecting the fidelity of pressure measuring instruments for planetary probes

    NASA Technical Reports Server (NTRS)

    Hudson, J. B.

    1972-01-01

    Determination is made of the nature and magnitude of surface-related effects that cause errors in pressure measuring instruments, with special reference being made to instruments intended for use in planetary probes. The interaction of gases with clean surfaces of metals likely to be used as gage construction materials was studied. Special emphasis was placed on the adsorption, chemical reaction, and electron-induced desorption processes. The results indicated that all metals tested were subject to surface processes which would degrade gage fidelity. It was also found, however, that the formation of inert adsorbed layers on these metal surfaces, such as carbon on platinum, greatly reduced or eliminated these effects. This process, combined with a system design which avoids contact between reactive gases and hot filaments, appears to offer the most promising solution to the gage fidelity problem.

  13. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Aguilera, Angeles

    2016-10-01

    Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.

  15. Probing Nanoparticle Reactivity at the Single-Molecule Level

    DTIC Science & Technology

    2014-02-15

    nanorod hetero - nuclear particle (top) and a bime- tallic nanorod with two metal components (bottom). Both sys- tems have a metal-metal junction . Au...catalysts for co oxidation . J Am Chem Soc 133, 1978–1986 (2011). 32 F. Liu, J. Y. Lee & W. Zhou. Template preparation of multisegment ptni nanorods as...reactivity at nanoscale metal?metal junctions . (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or

  16. Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water

    DTIC Science & Technology

    2016-10-01

    contamination, runoff, variable terrain requirements, reactive filter barrier. Unclassified Unclassified UU UL 47 Dr. Steve Larson 601-634-3431 Page...Figure 1. Illustration of a Sediment Control Filter Sock ............................................................... 1 Figure 2. Conceptual...Design of the Flexible Reactive Filter Barriers to Remove Soluble and Sediment Bound Metal(loids) in Stormwater Runoff

  17. Hexavalent chromium induces reactive oxygen species and impairs the antioxidant power of human erythrocytes and lymphocytes: Decreased metal reducing and free radical quenching ability of the cells.

    PubMed

    Husain, Nazim; Mahmood, Riaz

    2017-08-01

    The toxicity of hexavalent chromium [Cr(VI)] in biological systems is thought to be closely associated with the generation of free radicals and reactive oxygen species. These species are produced when Cr(VI) is reduced to its trivalent form in the cell. This process results in oxidative stress due to an imbalance between the detoxifying ability of the cell and the production of free radicals. We have studied the effect of potassium dichromate (K 2 Cr 2 O 7 ), a [Cr(VI)] compound, on the antioxidant power of human erythrocytes and lymphocytes under in vitro conditions. Incubation of erythrocytes and lymphocytes with different concentrations of K 2 Cr 2 O 7 resulted in a marked dose-dependent decrease in reduced glutathione and an increase in oxidized glutathione and reactive oxygen species levels. The antioxidant power of the cells was decreased, as determined by metal reducing and free radical quenching assays. These results show that [Cr(VI)] upregulates the generation of reactive oxygen species and, as a consequence, the cellular antioxidant defences are compromised. The resulting oxidative stress may contribute to Cr(VI)-induced cellular damage.

  18. Factoring uncertainty into restoration modeling of in-situ leach uranium mines

    USGS Publications Warehouse

    Johnson, Raymond H.; Friedel, Michael J.

    2009-01-01

    Postmining restoration is one of the greatest concerns for uranium in-situ leach (ISL) mining operations. The ISL-affected aquifer needs to be returned to conditions specified in the mining permit (either premining or other specified conditions). When uranium ISL operations are completed, postmining restoration is usually achieved by injecting reducing agents into the mined zone. The objective of this process is to restore the aquifer to premining conditions by reducing the solubility of uranium and other metals in the ground water. Reactive transport modeling is a potentially useful method for simulating the effectiveness of proposed restoration techniques. While reactive transport models can be useful, they are a simplification of reality that introduces uncertainty through the model conceptualization, parameterization, and calibration processes. For this reason, quantifying the uncertainty in simulated temporal and spatial hydrogeochemistry is important for postremedial risk evaluation of metal concentrations and mobility. Quantifying the range of uncertainty in key predictions (such as uranium concentrations at a specific location) can be achieved using forward Monte Carlo or other inverse modeling techniques (trial-and-error parameter sensitivity, calibration constrained Monte Carlo). These techniques provide simulated values of metal concentrations at specified locations that can be presented as nonlinear uncertainty limits or probability density functions. Decisionmakers can use these results to better evaluate environmental risk as future metal concentrations with a limited range of possibilities, based on a scientific evaluation of uncertainty.

  19. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    PubMed

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  20. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source

    NASA Astrophysics Data System (ADS)

    Polonskyi, Oleksandr; Ahadi, Amir Mohammad; Peter, Tilo; Fujioka, Kenji; Abraham, Jan Willem; Vasiliauskaite, Egle; Hinz, Alexander; Strunskus, Thomas; Wolf, Sebastian; Bonitz, Michael; Kersten, Holger; Faupel, Franz

    2018-05-01

    Metal clusters and nanoparticles (NPs) have been studied intensively due to their unique chemical, physical, electrical, and optical properties, resulting from their dimensions, which provided host of applications in nanoscience and nanotechnology. Formation of new materials by embedding NPs into various matrices (i.e. formation of nanocomposites) further expands the horizon of possible application of such nanomaterials. In the last few decades, the focus was put on the formation of metallic and metal oxide NPs via a so-called gas aggregation nanoparticle source employing magnetron sputtering (i.e. Haberland concept). In this paper, an overview is given of the recent progress in formation and deposition of NPs by the gas aggregation method. Examples range from noble metals (Ag, Au) through reactive metals (Al, Ti) to Si and the respective oxides. Emphasis is placed on the mechanism of nanoparticle growth and the resulting properties. Moreover, kinetic Monte Carlo simulations were developed to explain the growth mechanism and dynamics of nanoparticle formation depending on the experimental conditions. In addition, the role of trace amounts of reactive gases and of pulsed operation of the plasma on the nucleation process is addressed. Finally, the treatment of the NPs in the plasma environment resulting in nanoparticle charging, morphological and chemical modifications is discussed. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  1. Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.

    PubMed

    Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-08

    Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.

  2. Reactive Atmosphere Processing of BaTiO(3) and Origins of Its Photorefractive Effect

    DTIC Science & Technology

    1989-04-01

    BaTiO3 structure. Dickinson et al.10 prepared a series of compounds in which various amounts of primarily trivalent metals (Ti 3+ , V, Cr, Mn, Fe, Co...which was contained in a capillary tube mounted next to the BaTiO3 sample. The chromium sample was calibrated against a Varian 3.3x10-47 pitch on KCI...3 1 (13) where M is a trivalent metal ion and [V02+]I is the impurity- related concentration of oxygen vacancies. Note that the charge of the metal

  3. Thermodynamic Constraints in Using AuM (M = Fe, Co, Ni, and Mo) Alloys as N₂ Dissociation Catalysts: Functionalizing a Plasmon-Active Metal.

    PubMed

    Martirez, John Mark P; Carter, Emily A

    2016-02-23

    The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.

  4. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  5. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    PubMed

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully understanding the activity of gold are considered.

  6. IODIDE AEROSOL SORBENTS FOR MERCURY CAPTURE IN COMBUSTION EXHAUSTS

    EPA Science Inventory

    Several sorbent processes are being studied for their feasibility for mercury capture. Mercury is different from the other heavy metals as it is not as chemically reactive (due to a filled outer electronic shell), thus making it difficult for sorbents to chemically trap it (a). ...

  7. Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, T. Prabhakar; Barnett, Mark O.; Zheng, Chunmiao

    DE-FG02-06ER64213: Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales Investigators: T. Prabhakar Clement (PD/PI) and Mark O. Barnett (Auburn), Chunmiao Zheng (Univ. of Alabama), and Norman L. Jones (BYU). The objective of this project was to develop scalable modeling approaches for predicting the reactive transport of metal contaminants. We studied two contaminants, a radioactive cation [U(VI)] and a metal(loid) oxyanion system [As(III/V)], and investigated their interactions with two types of subsurface materials, iron and manganese oxyhydroxides. We also developed modeling methods for describing the experimental results. Overall, the project supportedmore » 25 researchers at three universities. Produced 15 journal articles, 3 book chapters, 6 PhD dissertations and 6 MS theses. Three key journal articles are: 1) Jeppu et al., A scalable surface complexation modeling framework for predicting arsenate adsorption on goethite-coated sands, Environ. Eng. Sci., 27(2): 147-158, 2010. 2) Loganathan et al., Scaling of adsorption reactions: U(VI) experiments and modeling, Applied Geochemistry, 24 (11), 2051-2060, 2009. 3) Phillippi, et al., Theoretical solid/solution ratio effects on adsorption and transport: uranium (VI) and carbonate, Soil Sci. Soci. of America, 71:329-335, 2007« less

  8. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    PubMed

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  10. Combinations of chlorocatechols and heavy metals cause DNA degradation in vitro but must not result in increased mutation rates in vivo.

    PubMed

    Schweigert, N; Belkin, S; Leong-Morgenthaler, P; Zehnder, A J; Eggen, R I

    1999-01-01

    Chlorocatechols introduced into the environment directly or as a result of degradation processes are highly toxic, particularly when combined with heavy metals. With in vitro DNA degradation assays, the high reactivity of chlorocatechols combined with heavy metals could be shown, whereby copper was shown to be more active than iron. Structure-activity analysis showed that the degradation potential of the chlorocatechols decreased with an increasing number of chloratoms. The addition of reactive oxygen species scavengers allowed the identification of hydrogen peroxide as an important agent leading to DNA damage in this reaction. The potential of other reactive compounds, however, can neither be determined nor excluded with this approach. Exposure of Escherichia coli and Salmonella typhimurium cultures to the same mixtures of chlorocatechols and copper surprisingly did not lead to an enhanced mutation rate. This phenomenon was explained by doing marker gene expression measurements and toxicity tests with E. coli mutants deficient in oxidative stress defense or DNA repair. In catechol-copper-exposed cultures an increased peroxide level could indeed be demonstrated, but the highly efficient defense and repair systems of E. coli avoid the phenotypical establishment of mutations. Increased mutation rates under chronic exposure, however, cannot be excluded.

  11. Reactive Molecular Dynamics Investigations of Alkoxysilane Sol-Gel and Surface Coating Processes

    NASA Astrophysics Data System (ADS)

    Deetz, Joshua David

    The ability to generate nanostructured materials with tailored morphology or chemistry is of great technological interest. One proven method of generating metal-oxide materials, and chemically modifying metal-oxide surfaces is through the reactions of molecular building blocks known as alkoxysilanes. Alkoxysilanes are a class of chemicals which contain one or more organic alkoxy groups bonded to silicon atoms. Alkoxysilane (Si-O-R) chemical groups can undergo reactions to form bridges (Si-O-M) with metal oxides. Due to their ability to "attach" to metal-oxides through condensation reactions, alkoxysilanes have a number of interesting applications, such as: the generation of synthetic siloxane materials through the sol-gel process, and the formation of functionalized surface coatings on metal-oxide surfaces. Despite widespread study of sol-gel and surface coatings processes, it is difficult to predict the morphology of the final products due to the large number of process variables involved, such as precursor molecule structure, solvent effects, solution composition, temperature, and pH. To determine the influence of these variables on the products of sol-gel and coatings processes reactive molecular dynamics simulations are used. A reactive force field was used (ReaxFF) to allow the chemical bonds in simulation to dynamically form and break. The force field parameters were optimized using a parallel optimization scheme with a combination of experimental information, and density functional theory calculations. Polycondensation of alkoxysilanes in mixtures of alcohol and water were studied. Steric effects were observed to influence the rates of hydrolysis and condensation in solutions containing different precursor monomers. By restricting the access of nucleophiles to the central silicon atom, the nucleation rate of siloxanes can be controlled. The influence of solution precursor, water, and methanol composition on reaction rates was explored. It was determined that the rate of alkoxysilane hydrolysis is strongly dependent on the concentration of water. The dynamics of siloxane cluster formation are revealed, which provides insight for experimentalists. The silanization of hydroxylated silica surfaces by alkoxysilanes was modeled in pseudo-infinite liquid solution. Butyl-, octyl-, or dodecylsilanes were exposed to hydroxylated silica surfaces in order to observe the influence of silyl headgroup size on the morphology and formation kinetics of silane films on silica substrates. The radius of gyration and order parameter of the hydrocarbon silyl groups were found to increase with grafting density. This was the first simulation study of the dynamic grafting of alkoxysilanes to a substrate.

  12. Formation of metal and dielectric liners using a solution process for deep trench capacitors.

    PubMed

    Ham, Yong-Hyun; Kim, Dong-Pyo; Baek, Kyu-Ha; Park, Kun-Sik; Kim, Moonkeun; Kwon, Kwang-Ho; Shin, Hong-Sik; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We demonstrated the feasibility of metal and dielectric liners using a solution process for deep trench capacitor application. The deep Si trench via with size of 10.3 microm and depth of 71 microm were fabricated by Bosch process in deep reactive ion etch (DRIE) system. The aspect ratio was about 7. Then, nano-Ag ink and poly(4-vinylphenol) (PVPh) were used to form metal and dielectric liners, respectively. The thicknesses of the Ag and PVPh liners were about 144 and 830 nm, respectively. When the curing temperature of Ag film increased from 120 to 150 degrees C, the sheet resistance decreased rapidly from 2.47 to 0.72 Omega/sq and then slightly decreased to 0.6 Omega/sq with further increasing the curing temperature beyond 150 degrees C. The proposed liner formation method using solution process is a simple and cost effective process for the high capacity of deep trench capacitor.

  13. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule.

    PubMed

    Zheng, Peng; Arantes, Guilherme M; Field, Martin J; Li, Hongbin

    2015-06-25

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  14. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    PubMed Central

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  15. Combining the Power of Irmpd with Ion-Molecule Reactions: the Structure and Reactivity of Radical Ions of Cysteine and its Derivatives

    NASA Astrophysics Data System (ADS)

    Lesslie, Michael; Osburn, Sandra; Berden, Giel; Oomens, J.; Ryzhov, Victor

    2015-06-01

    Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the "mobile proton". Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures.

  16. Platinum transfer from hCTR1 to Atox1 is dependent on the type of platinum complex.

    PubMed

    Wu, Xuelei; Yuan, Siming; Wang, Erqiong; Tong, Yang; Ma, Guolin; Wei, Kaiju; Liu, Yangzhong

    2017-05-24

    In spite of their wide application, the cellular uptake of platinum based anticancer drugs is still unclear. The copper transport protein, hCTR1, is proposed to facilitate the cellular uptake of cisplatin, whereas organic cation transport (OCT) is more important for oxaliplatin. It has been reported that both N-terminal and C-terminal metal binding motifs of hCTR1 are highly reactive to cisplatin, which is the initial step of protein assisted cellular uptake of cisplatin. It is still unknown how the platinum drugs in hCTR1 transfer to cytoplasmic media, and whether various platinum complexes possess different activities in this process. Herein, we investigated the reaction of the platinated C-terminal metal binding motif of hCTR1 (C8) with the down-stream protein Atox1. Results show that Atox1 is highly reactive to the platinated C8 adducts of cisplatin and transplatin, whereas the oxaliplatin/C8 adduct is much less reactive. The platinum transfer from C8 to Atox1 occurs in the reaction, which results in the protein unfolding of Atox1. These results demonstrated that the platinated intracellular-domain of hCTR1 is reactive to Atox1, and the reactivity is dependent on the ligand and the coordination structure of platinum complexes. The different reactivity is consistent with the hypothesis that hCTR1 is more significant in the transport of cisplatin than that of oxaliplatin.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  18. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  19. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  20. Synthesis of metal-polymer nanocomposites for fuel applications

    NASA Astrophysics Data System (ADS)

    Pontes Lima, Ricardo Jose

    Metal particles have long been of interest as fuel and fuel additives for propellants and explosives because their high-density energy. In general, their volumetric energy density is higher as compared to conventional hydrocarbon-based fuel. This advantage is clearly beneficial for volume-limited rocket propulsion systems, in which the most important parameter is the density-based specific impulse. It is widely known that the reactivity of metal particles increases when particle size decreases. Significant improvements in combustion behaviors of propellant have been attributed to the use of nanosize metal particles, for example faster burning rates and shorter ignition delay time. For this reason the application of nanosize particles as fuel could be preferable than large particles. However, several difficulties limit the use of ultrafine particles in fuel applications and propellants. Most of them are attributed to the oxide layer formation on the particles that prevents good combustion performance. In boron applications, practical difficulties such as poor ignition and combustion performance, have so far limited extensive use of boron for fuel applications. Indications are that application of non-oxide coatings on particles protects them against premature oxidation and enhances their combustion properties. A number of methods have been proposed to coat metal particles with a variety of organic compounds or other metals. Common applications provides coatings of saturated hydrocarbons or fatty acids, such as oleic acid as a means to passivation the particles. Recently, high-energy ball milling, in combination with chemical reactions, was applied to fabricate nanostructured metal particles coated with organic compounds. One of the advantages of this technique is that the passivation be integrated into the production of particles as a single step. For example, the reactive milling of boron in oleic acid solution showed an improved reactivity of as-milled powders. However, the versatility of the mechanical milling technique suggests that a vast range of organic compounds could be applied to the capping of particles. Thus, developing a new method to obtain metal nanosized particles coated with chemical substances that can further improve the properties of particles is a great challenge. The first contribution of this work is to investigate the reactive milling process of metal powders, such as boron and aluminum, to better understand the experimental methodology as a means to obtain energetic-capped metal particles. To this end, a comparative experimental study was performed to evaluate two variations of the mechanical milling. In a typical procedure, metal powders and the reagents are poured into the mill vial at the start of milling. The organic reactions occur simultaneously in the milling process. In the alternative procedure, the powders are milled prior the addition of the organic reagent, thus a stepwise process is done. For both methods, an organic functionalized compound was grafted onto the particles, followed by their incorporation into an energetic polymer matrix to create a metal-polymer composite. The results highlight the differences in shape in size of particles, identifying some drawbacks for both applications, as well as analyzing the effects on combustion properties of the organic-capped powders and the binder composites. The analysis of the first results of the reactive milling showed that this way might lead to by-products and self-polymerization of organic coatings. That is the main drawback for the simultaneous milling process, preventing a better performance of as-milled powders. Considering this problem, it was necessary to modify the milling procedure to further improve the capping of metal particle. Thus, the second part of experiments applies an energetic polymer direct grafted onto particles as a means to further improvements in the energetic properties of powders. Glycidyl azide polymer (GAP) was chosen as candidate to coat the particles because of its good energetic properties. Since the mixture viscosity increases as the size of particles decreases, low-viscosity reagents are recommended to avoid very high viscosity. The molecular weight of GAP can range from 700 to 5500 and the number of hydroxyl end groups from 0 (GAP plasticizer) to 3. Among these polymers, the GAP plasticizer (700 g mol-1, low viscosity) has good properties to be applied in reactive milling. However, some functionalized groups are necessary to graft the polymer onto metal particles and the GAP plasticizer does not carry telechelic hydroxyl groups. To achieve a better reactivity of this polymer and the fresh metal surface, the GAP plasticizer was chemically modified to make some additional acid-functionalized branches in the main chain of the polymer. The direct method for coating the metal particles with the modified GAP was more effective in forming the energetic layer, which has influenced the dispersion of powders into polymers and increased the total energy release by the combustion of metal-polymer composites. The last phase of this research addressed the production of boron-polymer composites for combustion purposes. Boron has a very high gravimetric (58 kJ/g) and volumetric (136 kJ/cc) heating value. This clearly exceeds other metal or other conventional hydrocarbon fuels in both mass and volumetric energy production. Despite of this great potential energy, boron has rarely achieved its potential in propulsion systems, whereas the aluminum is the most common metal employed in the preparation of composite solid propellants. A number of studies addressed to the boron combustion attribute its reduced performance to a certain combustion property of the metal. The boron oxide (B2O3) layer, normally found on the particles is highly stable and leads to long ignition delay times. Therefore, the elemental boron ignites in a two-stage process. The first stage corresponds to the burning of boron covered with an oxide layer, and the second stage involves the completion of the combustion of the bare boron particle. The use of light metals, such as magnesium and aluminum as additives in boron formulations, has been indicated as a means to enhance its combustion efficiency. Recently, improvements of the combustion efficiency of boron were associated with the use of magnesium and aluminum as additives. The mechanism proposed for these improvements was boron oxide removal by reaction with aluminum and the additional heat release by the easy ignition of magnesium. In this work, it was proposed to apply of a layer of energetic polymer on the boron particles, which, in addition to releasing a significant amount of energy, brings other benefits in terms of the final application of the particles as fuel (i.e., the dispersion of particles into a polymer binder).

  1. [The biochemical carcinogenesis of selected heavy metals in bladder cancer].

    PubMed

    Rorbach-Dolata, Anna; Marchewka, Zofia; Piwowar, Agnieszka

    2015-01-01

    Bladder cancer takes the second place in the classification of morbidity of urinary system cancers. Many chemical factors take part in cancerogenesis. It is suggested that exposure to heavy metals such as arsenic, chromium, nickel and cadmium as well as its metabolites may trigger the bladder cancer through inducing excessive reactive oxygen species production and oxidative stress formation which are responsible for DNA damage. In patients with bladder cancer is observed the disorder of processes regulated by p-53, including apoptosis. There are many patients with bladder cancer with confirmed absence of retinoblastoma protein, which is responsible of holding on the process of coming up the cells with mutation into synthesis, where the replication process undergoes. It is mentioned that excessive expression of proto-oncogenes may also cause the bladder cancer. The article concerns biochemical effects of exposure to chosen heavy metals and their potential role in bladder cancer progression.

  2. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    DOE PAGES

    Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...

    2016-05-30

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al 2O 3 and α-Fe 2O 3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-hmore » exposure time, Pb(II) binds preferentially to the alpha-Al 2O 3 (1-102) and α-Fe 2O 3 (0001) surfaces at low Pb concentration ([Pb] = 10 –7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10 –6 to 10 –4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10 –7 to 10 –4 M). In comparison, the α-Al 2O 3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al 2O 3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al 2O 3 (1-102) and α-Fe 2O 3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al 2O 3 (1-102) and α-Fe 2O 3 (0001) at [Me(II)] of 10 –7 M; at 10 –5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10 –5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb L-III-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10 –5 M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 μm) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Lastly, our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces.« less

  3. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Gélabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Gescher, Johannes; Ona-Nguema, Georges; Eng, Peter J.; Bargar, John R.; Farges, Francois; Spormann, Alfred M.; Brown, Gordon E.

    2016-09-01

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) surfaces at low Pb concentration ([Pb] = 10-7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10-6 to 10-4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10-7 to 10-4 M). In comparison, the α-Al2O3 (0 0 0 1) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0 0 0 1) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) at [Me(II)] of 10-7 M; at 10-5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10-5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb LIII-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10-5 M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 μm) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces.

  4. Indenylmetal Catalysis in Organic Synthesis.

    PubMed

    Trost, Barry M; Ryan, Michael C

    2017-03-06

    Synthetic organic chemists have a long-standing appreciation for transition metal cyclopentadienyl complexes, of which many have been used as catalysts for organic transformations. Much less well known are the contributions of the benzo-fused relative of the cyclopentadienyl ligand, the indenyl ligand, whose unique properties have in many cases imparted differential reactivity in catalytic processes toward the synthesis of small molecules. In this Review, we present examples of indenylmetal complexes in catalysis and compare their reactivity to their cyclopentadienyl analogues, wherever possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator.

    PubMed

    Dienel, Thomas; Gómez-Díaz, Jaime; Seitsonen, Ari P; Widmer, Roland; Iannuzzi, Marcella; Radican, Kevin; Sachdev, Hermann; Müllen, Klaus; Hutter, Jürg; Gröning, Oliver

    2014-07-22

    Catalytic activity is of pivotal relevance in enabling efficient and selective synthesis processes. Recently, covalent coupling reactions catalyzed by solid metal surfaces opened the rapidly evolving field of on-surface chemical synthesis. Tailored molecular precursors in conjunction with the catalytic activity of the metal substrate allow the synthesis of novel, technologically highly relevant materials such as atomically precise graphene nanoribbons. However, the reaction path on the metal substrate remains unclear in most cases, and the intriguing question is how a specific atomic configuration between reactant and catalyst controls the reaction processes. In this study, we cover the metal substrate with a monolayer of hexagonal boron nitride (h-BN), reducing the reactivity of the metal, and gain unique access to atomistic details during the activation of a polyphenylene precursor by sequential dehalogenation and the subsequent coupling to extended oligomers. We use scanning tunneling microscopy and density functional theory to reveal a reaction site anisotropy, induced by the registry mismatch between the precursor and the nanostructured h-BN monolayer.

  6. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  7. Dynamics and reactivity of trapped electrons on supported ice crystallites.

    PubMed

    Stähler, Julia; Gahl, Cornelius; Wolf, Martin

    2012-01-17

    The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we estimated the electron surface density for DEA, yielding cross sections that are orders of magnitude higher than the electron density measured in the gas phase.

  8. Trends in reactivity of electrodeposited 3d transition metals on gold revealed by operando soft x-ray absorption spectroscopy during water splitting

    NASA Astrophysics Data System (ADS)

    Velasco-Vélez, J. J.; Jones, Travis E.; Pfeifer, Verena; Dong, Chung-Li; Chen, Yu-Xun; Chen, Chieh-Ming; Chen, Hsin-Yu; Lu, Ying-Rui; Chen, Jin-Ming; Schlögl, R.; Knop-Gericke, A.; Chuang, C.-H.

    2017-01-01

    We activated gold electrodes for their use as electrocatalyst for water splitting by electrodepositing Cu, Ni and Co. A combination of operando x-ray absorption spectroscopy and potentiometric control under aqueous conditions revealed the trends in reactivity yielded by these electrodes, which are directly associated with the cross- and overpotentials as well as the occupancy of the 3d orbitals. It was found that under anodic polarization the materials electrodeposited on gold suffer from a lack of stability, while under cathodic polarization they exhibit stable behavior. The observed activity is strongly related to the lack of stability shown by these composites under anodic polarization revealing a dynamic process ruled by corrosion. By operando x-ray absorption, we established that the overall enhancement of the activity for the oxygen evolution reaction is directly attributable to the cross-potential and corrosion process of the electrodeposited materials. It is associated with the high potential deposition, which is the origin of the incipient oxidation-corrosion resistance of the lattice. We conclude that the observed trends in the total current are directly associated with the loss of oxygen in the metal-oxide lattice and the subsequent dissolution of metallic ions in the electrolyte under anodic polarization.

  9. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  10. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.« less

  11. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  12. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bio-inspired approaches have become increasing popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a 3D template for the formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive towards a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Ptmore » ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.« less

  13. Effects of metal composition and ratio on peptide-templated multimetallic PdPt nanomaterials

    DOE PAGES

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; ...

    2017-02-03

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bioinspired approaches have become increasingly popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a three-dimensional template for formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive toward a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratiomore » to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted, which indicated a slight catalytic enhancement for the multicomponent materials. Finally, these results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.« less

  14. Tunable reactivity of supported single metal atoms by impurity engineering of the MgO(001) support.

    PubMed

    Pašti, Igor A; Johansson, Börje; Skorodumova, Natalia V

    2018-02-28

    Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much more strongly when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.

  15. Stability of gas atomized reactive powders through multiple step in-situ passivation

    DOEpatents

    Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.

    2017-05-16

    A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.

  16. Photoinitiated Electron Collection in Mixed-Metal Supramolecular Complexes: Development of Photocatalysts for Hydrogen Production. Final Report of Progress August 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanko, James M.

    Mixed-metal supramolecular complexes containing one or two RuII light absorbing subunits coupled through polyazine bridging ligands to a RhIII reactive metal center were prepared for use as photocatalysts for the production of solar H 2 fuel from H 2O. The electrochemical, photophysical, and photochemical properties upon variation of the monodentate, labile ligands coordinated to the Rh reactive metal center were investigated.

  17. Select Papers. Volume 1

    DTIC Science & Technology

    2011-08-01

    the Texture Evolution During Cold Rolling of Al –Mg Alloys . s.l.: Journal of Alloys and Compounds 2011, 508, 922–928. 11. Suhuddin, U.F.H.R.; Mironov...graphene onto a substrate with insulator properties . The current transfer process is still preliminary and presents a number of challenges. Since the...dimensions. The fabrication process flow for the stators uses chemical solution deposited PZT, metal sputtering and evaporation, reactive ion etching

  18. Reactivity of Zerovalent Metals in Aquatic Media: Effects of Organic Surface Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tratnyek, Paul G.; Salter-Blanc, Alexandra; Nurmi, James

    2011-09-02

    Granular, reactive zerovalent metals (ZVMs)—especially iron (ZVI)—form the basis for model systems that have been used in fundamental and applied studies of a wide variety of environmental processes. This has resulted in notable advances in many areas, including the kinetics and mechanisms of contaminant reduction reactions, theory of filtration and transport of colloids in porous media, and modeling of complex reactive-transport scenarios. Recent emphasis on nano-sized ZVI has created a new opportunity: to advance the understanding of how coatings of organic polyelectrolytes—like natural organic matter (NOM)—influence the reactivity of environmental surfaces. Depending on many factors, organic coatings can be activatingmore » or passivating with respect to redox reactions at particle-solution interfaces. In this study, we show the effects of organic coatings on nZVI vary with a number of factors including: (i) time (i.e., “aging” is evident not only in the structure and composition of the nZVI but also in the interactions between nZVI and NOM) and (ii) the type of organic matter (i.e., suspensions of nZVI are stabilized by NOM and the model polyelectrolyte carboxymethylcellulose (CMC), but NOM stimulates redox reactions involving nZVI while CMC inhibits them).« less

  19. Reactive molecular dynamics of the initial oxidation stages of Ni111 in pure water: effect of an applied electric field.

    PubMed

    Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T

    2012-12-06

    Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.

  20. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.

    PubMed

    Liu, Yi-Kai; Lee, Ming-Tsang

    2014-08-27

    This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.

  1. Asymmetric photoredox transition-metal catalysis activated by visible light.

    PubMed

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-06

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the 'green' synthesis of non-racemic chiral molecules.

  2. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  3. DNA binding of supramolecular mixed-metal complexes

    NASA Astrophysics Data System (ADS)

    Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.

    2001-10-01

    The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.

  4. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.

    PubMed

    Doerr, Nora A; Ptacek, Carol J; Blowes, David W

    2005-06-01

    The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.

  5. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  6. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  7. Development of Metal Cluster-Based Energetic Materials at NSWC-IHD

    DTIC Science & Technology

    2011-01-01

    reactivity of NixAly + clusters with nitromethane was investigated using a gas-phase molecular beam system. Results indicate that nitromethane is highly...clusters make up the subunit of a molecular metal-based energetic material. The reactivity of NixAly+ clusters with nitromethane was investigated using...a gas-phase molecular beam system. Results indicate that nitromethane is highly reactive toward the NixAly+ clusters and suggests it would not make

  8. Diverse metal reduction and nano- mineral formation by metal-reducing bacteria enriched from inter-tidal flat sediments

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, B.; Seo, H.; Roh, Y.

    2009-12-01

    Dissimilatory metal-reducing bacteria utilize diverse metal oxides as electron acceptors and couple this microbial metal reduciton to growth. However, the microbe-metal interactions playing important roles in the metal geochemistry and organic matter degradation in the tidal flat sediments have not been uncovered enough to employ in various environmental and industrial applications. The objective of this study was to examine biomineralization and bioremediation by the facultative metal-reducing bacteria isolated from the inter-tidal flat sediments in southwestern of Korea. 16S-rRNA analysis showed bacterial consortium mainly consists of genus of Clostridium sp. The enriched bacteria were capable of reducing diverse metals such as iron oxide, maganese oxide, Cr(VI) and Se(VI) during glucose fermentation process at room temperature. The bacteria reduced highly toxic and reactive elements such as Cr(VI) and Se(VI) to Cr(III) and Se(0). The results showed that microbial processes induced transformation from toxic states of heavy metals to less toxic and mobile states in natural environments. Andthe bacteria also reduced iron oxyhydroxide such as ferrihydrite and akaganeite (β-FeOOH) and formed nanometer-sized magnetite (Fe3O4). This study indicates microbial processes not only can be used for bioremediation of inorganic contaminants existing in the marine environments, but also form the magnetite nanoparticles which are exhibit superparamagnetic properties that can be useful for relevant medical and industrial applications.

  9. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even atmore » a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.« less

  10. Exploring the anionic reactivity of ynimines, useful precursors of metalated ketenimines.

    PubMed

    Laouiti, Anouar; Couty, François; Marrot, Jérome; Boubaker, Taoufik; Rammah, Mohamed M; Rammah, Mohamed B; Evano, Gwilherm

    2014-04-18

    Insights into the reactivity of ynimines under anionic conditions are reported. They were shown to be excellent precursors of metalated ketenimines, which can be generated in situ by the reaction of ynimines with organolithium reagents or strong bases. The metalated ketenimines can then be trapped with various electrophiles and, depending on their substitution pattern, afford original and divergent entries to various building blocks.

  11. A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly.

    PubMed

    Bogie, Paul M; Holloway, Lauren R; Lyon, Yana; Onishi, Nicole C; Beran, Gregory J O; Julian, Ryan R; Hooley, Richard J

    2018-04-02

    A strained, "springloaded" Fe 2 L 3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML 3 fragments with pendant, "hanging" NH 2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.

  12. Light-induced catalytic and cytotoxic properties of phosphorescent transition metal compounds with a d8 electronic configuration.

    PubMed

    To, Wai-Pong; Zou, Taotao; Sun, Raymond Wai-Yin; Che, Chi-Ming

    2013-07-28

    Transition metal compounds are well documented to have diverse applications such as in catalysis, light-emitting materials and therapeutics. In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation. The long lifetimes (more than 1 μs) of the triplet states of transition metal compounds allow for bimolecular reactions/processes such as energy transfer and/or electron transfer to occur. Reactions of triplet excited states of luminescent metal compounds with oxygen in cells may generate reactive oxygen species and/or induce damage to DNA, leading to cell death. This article recaps the recent findings on photochemical and phototoxic properties of luminescent platinum(II) and gold(III) compounds both from the literature and experimental results from our group.

  13. Laminated rare earth structure and method of making

    DOEpatents

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  14. FFTF Passive Safety Test Data for Benchmarks for New LMR Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.

    Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less

  15. Process Parameter-Growth Environment-Film Property Relationships for Reactive Sputter Deposited Metal (V, Nb, Zr, Y, Au) Oxide, Nitride, and Oxynitride Films

    DTIC Science & Technology

    1993-09-30

    speed of light in vac- ring within the first 5 min of exposure. In a separate ex- uum, and g(A) is the detected fraction of emitted radia- periment...fold: film growth by reactive sputter deposition, in situ discharge diagnostics, film charcterization. A radio frequency diode apparatus was used to...l-’ZrO, films is reported.)3 1) Films were grown on Supers!]I II fused silica in a hot-oil pumped rf diode sputter deposition system using a 13-cm

  16. Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony

    2012-07-15

    The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.

  17. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, Gary L.

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  18. Nitrous oxide production from reactive nitrification intermediates: a concerted action of biological and chemical processes

    NASA Astrophysics Data System (ADS)

    Brüggemann, Nicolas; Heil, Jannis; Liu, Shurong; Wei, Jing; Vereecken, Harry

    2017-04-01

    This contribution tries to open up a new perspective on biogeochemical N2O production processes, taking the term bio-geo-chemistry literally. What if a major part of N2O is produced from reactive intermediates of microbiological N turnover processes ("bio…") leaking out of the involved microorganisms into the soil ("…geo…") and then reacting chemically ("…chemistry") with the surrounding matrix? There are at least two major reactive N intermediates that might play a significant role in these coupled biological-chemical reactions, i.e. hydroxylamine (NH2OH) and nitrite (NO2-), both of which are produced during nitrification under oxic conditions, while NO2- is also produced during denitrification under anoxic conditions. Furthermore, NH2OH is assumed to be also a potential intermediate of DNRA and/or anammox. First, this contribution will summarize information about several chemical reactions involving NH2OH and NO2- leading to the formation of N2O. These abiotic reactions are: reactions of NO2- with reduced metal cations, nitrosation reactions of NO2- and soil organic matter (SOM), the reaction between NO2- and NH2OH, and the oxidation of NH2OH by oxidized metal ions. While these reactions can occur over a broad range of soil characteristics, they are ignored in most current N trace gas studies in favor of biological processes only. Disentangling microbiological from purely chemical N2O production is further complicated by the fact that the chemically formed N2O is either undiscernible from N2O produced during nitrification, or shows an intermediate 15N site preference between that of N2O from nitrification and denitrification, respectively. Results from experiments with live and sterilized soil samples, with artificial soil mixtures and with phenolic lignin decomposition model compounds will be presented that demonstrate the potential contribution of these abiotic processes to soil N trace gas emissions, given a substantial leakage rate of these reactive intermediates into the soil matrix. It will be shown that the magnitude of these chemically produced N2O fluxes is not only governed by soil nitrogen availability and soil water content, but also by organic matter content and composition, pH, redox conditions and redox-active metal ion content. The presented data reveal that the interplay between biological and chemical processes is relevant for soil N2O emissions. The integration of these processes and their additional controlling variables in soil N trace gas emission models would very likely have a great potential for reducing the uncertainty in emission model results and for facilitating the design of appropriate, site-specific N2O mitigation strategies.

  19. Evidence for photochemical production of reactive oxygen species in desert soils.

    PubMed

    Georgiou, Christos D; Sun, Henry J; McKay, Christopher P; Grintzalis, Konstantinos; Papapostolou, Ioannis; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Zhang, Gaosen; Koutsopoulou, Eleni; Christidis, George E; Margiolaki, Irene

    2015-05-11

    The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars.

  20. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    PubMed

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. © 2014 SETAC.

  1. Short-distance probes for protein backbone structure based on energy transfer between bimane and transition metal ions

    PubMed Central

    Taraska, Justin W.; Puljung, Michael C.; Zagotta, William N.

    2009-01-01

    The structure and dynamics of proteins underlies the workings of virtually every biological process. Existing biophysical methods are inadequate to measure protein structure at atomic resolution, on a rapid time scale, with limited amounts of protein, and in the context of a cell or membrane. FRET can measure distances between two probes, but depends on the orientation of the probes and typically works only over long distances comparable with the size of many proteins. Also, common probes used for FRET can be large and have long, flexible attachment linkers that position dyes far from the protein backbone. Here, we improve and extend a fluorescence method called transition metal ion FRET that uses energy transfer to transition metal ions as a reporter of short-range distances in proteins with little orientation dependence. This method uses a very small cysteine-reactive dye monobromobimane, with virtually no linker, and various transition metal ions bound close to the peptide backbone as the acceptor. We show that, unlike larger fluorophores and longer linkers, this donor–acceptor pair accurately reports short-range distances and changes in backbone distances. We further extend the method by using cysteine-reactive metal chelators, which allow the technique to be used in protein regions of unknown secondary structure or when native metal ion binding sites are present. This improved method overcomes several of the key limitations of classical FRET for intramolecular distance measurements. PMID:19805285

  2. High-Performance Metal/Carbide Composites with Far-From-Equilibrium Compositions and Controlled Microstructures

    PubMed Central

    Hu, Liangfa; O’Neil, Morgan; Erturun, Veysel; Benitez, Rogelio; Proust, Gwénaëlle; Karaman, Ibrahim; Radovic, Miladin

    2016-01-01

    The prospect of extending existing metal-ceramic composites to those with the compositions that are far from thermodynamic equilibrium is examined. A current and pressure-assisted, rapid infiltration is proposed to fabricate composites, consisting of reactive metallic and ceramic phases with controlled microstructure and tunable properties. An aluminum (Al) alloy/Ti2AlC composite is selected as an example of the far-from-equilibrium systems to fabricate, because Ti2AlC exists only in a narrow region of the Ti-Al-C phase diagram and readily reacts with Al. This kind of reactive systems challenges conventional methods for successfully processing corresponding metal-ceramic composites. Al alloy/Ti2AlC composites with controlled microstructures, various volume ratios of constituents (40/60 and 27/73) and metallic phase sizes (42–83 μm, 77–276 μm, and 167–545 μm), are obtained using the Ti2AlC foams with different pore structures as preforms for molten metal (Al alloy) infiltration. The resulting composites are lightweight and display exceptional mechanical properties at both ambient and elevated temperatures. These structures achieve a compressive strength that is 10 times higher than the yield strength of the corresponding peak-aged Al alloy at ambient temperature and 14 times higher at 400 °C. Possible strengthening mechanisms are described, and further strategies for improving properties of those composites are proposed. PMID:27752106

  3. In situ reactive multi-material Ti6Al4V-calcium phosphate-nitride coatings for bio-tribological applications.

    PubMed

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2018-05-24

    To reduce the wear related damage of medical grade Ti-6Al-4V alloy, laser engineered net shaping (LENS™) based in situ reactive multi-material additive manufacturing was employed to process a mixed coating of Ti-6Al-4V powder and calcium phosphate (CaP) in an oxygen free, nitrogen-argon environment. The resultant coatings were composite materials of titanium nitrides and calcium titanate in an α-Ti matrix. Hardness was increased by up to ~148% to 868 ± 9 HV as compared to the untreated Ti-6Al-4V substrate. Similarly, when tribological properties were evaluated in deionized (DI) water medium against alumina counter material, the wear damage was reduced by ~91% as compared to the untreated Ti-6Al-4V substrate. Furthermore, the untreated Ti-6Al-4V substrate released Ti ions of ~12.45 ppm concentration during wear whereas the Ti6Al4V-5%CaP coating processed in an argon-nitrogen environment released ions of ~3.17 ppm concentration under similar testing conditions. The overall coefficient of friction was also found to decrease due to the addition of CaP and processing the Ti6Al4V-CaP mixture in an argon-nitrogen environment. Our results indicate that this reactive multi-material additive manufacturing of metal-ceramic composites is an effective way of enhancing the tribological performance of metallic materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Gleghorn; E Davydova; R Basu

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groupsmore » of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.« less

  5. Lithography-free glass surface modification by self-masking during dry etching

    NASA Astrophysics Data System (ADS)

    Hein, Eric; Fox, Dennis; Fouckhardt, Henning

    2011-01-01

    Glass surface morphologies with defined shapes and roughness are realized by a two-step lithography-free process: deposition of an ~10-nm-thin lithographically unstructured metallic layer onto the surface and reactive ion etching in an Ar/CF4 high-density plasma. Because of nucleation or coalescence, the metallic layer is laterally structured during its deposition. Its morphology exhibits islands with dimensions of several tens of nanometers. These metal spots cause a locally varying etch velocity of the glass substrate, which results in surface structuring. The glass surface gets increasingly rougher with further etching. The mechanism of self-masking results in the formation of surface structures with typical heights and lateral dimensions of several hundred nanometers. Several metals, such as Ag, Al, Au, Cu, In, and Ni, can be employed as the sacrificial layer in this technology. Choice of the process parameters allows for a multitude of different glass roughness morphologies with individual defined and dosed optical scattering.

  6. Method for continuously recovering metals using a dual zone chemical reactor

    DOEpatents

    Bronson, Mark C.

    1995-01-01

    A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing.

  7. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  8. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    PubMed Central

    2011-01-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface. PMID:21943229

  9. Trace desulfurization. [DOE patent application

    DOEpatents

    Chen, H.L.; Stevens, C.G.

    A method for reducing a trace concentration of sulfur-containing compounds in a gas stream from about one part in 10/sup 4/ to about one part in 10/sup 7/. The method includes the steps of irradiating the gas stream with an energy source which has a central emission frequency chosen to substantially match a wavelength of energy absorption of the sulfur-containing compounds and of subsequently contacting the gas stream with a reactive surface which includes a reactant selected from elemental metals and metal oxides so that metallic sulfur-containing compounds are formed. The reduction in concentration allows the gas stream to be processed in certain reactions having catalysts which would otherwise be poisoned by the sulfur-containing compounds.

  10. Microbially mediated clinoptilolite regeneration in a multifunctional permeable reactive barrier used to remove ammonium from landfill leachate contamination: laboratory column evaluation.

    PubMed

    Nooten, Thomas Van; Diels, Ludo; Bastiaens, Leen

    2010-05-01

    This study focuses on multifunctional permeable reactive barrier (multibarrier) technology, combining microbial degradation and abiotic ion exchange processes for removal of ammonium from landfill leachate contamination. The sequential multibarrier concept relies on the use of a clinoptilolite-filled buffer compartment to ensure a robust ammonium removal in case of temporary insufficient microbial activities. An innovative strategy was developed to allow in situ clinoptilolite regeneration. Laboratory-scale clinoptilolite-filled columns were first saturated with ammonium, using real landfill leachate as well as synthetic leachates as feed media. Other inorganic metal cations, typically present in landfill leachate, had a detrimental influence on the ammonium removal capacity by competing for clinoptilolite exchange sites. On the other hand, the metals had a highly favorable impact on regeneration of the saturated material. Feeding the columns with leachate deprived from ammonium (e.g., by microbial nitrification in an upgradient compartment), resulted in a complete release of the previously sorbed ammonium from the clinoptilolite, due to exchange with metal cations present in the leachate. The released ammonium is then available for microbial consumption in a downgradient compartment. The regeneration process resulted in a slightly increased ammonium exchange capacity afterward. The described strategy throws a new light on sustainable use of sorption materials for in situ groundwater remediation, by avoiding the need for material replacement and the use of external chemical regenerants.

  11. Stabilization of the initial electrochemical potential for a metal-based potentiometric titration study of a biosorption process.

    PubMed

    Naja, Ghinwa; Mustin, Christian; Volesky, Bohumil; Berthelin, Jacques

    2006-01-01

    An interactive metal-based potentiometric titration method has been developed using an ion selective electrode for studying the sorption of metal cations. The accuracy of this technique was verified by analyzing the metal sorption mechanism for the biomass of Rhizopus arrhizus fungus and diatomite, two dissimilar materials (organic and mineral, strong sorbent and weak sorbent) of a different order of cation exchange capacity. The problem of the initial electrochemical potential was addressed identifying the usefulness of a Na-sulfonic resin as a strong chelating agent applied before the beginning of sorption titration experiments so that the titration curves and the sorption uptake could be quantitatively compared. The resin stabilized the initial electrochemical potential to -405+/-5 mV corresponding to 2 micro gl(-1) of lead concentration in solution. The amounts of lead sorbed by R. arrhizus biomass and diatomite were 0.9 mmol g(-1) (C(e)=5.16 x 10(-2)mM) and 0.052 mmol g(-1) (C(e)=5.97 x 10(-2) mM), respectively. Lead sorption by the fungal biomass was pinpointed to at least two types of chemical active sites. The first type was distinguished by high reactivity and a low number of sites whereas the other was characterized by their higher number and lower reactivity.

  12. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.

    PubMed

    Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason

    2013-02-19

    Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of unpaired electrons on the metal center. Thus, we introduce the exchange-enhanced reactivity (EER) principle, which predicts the preferred spin state during oxidation reactions, the dependence of the barrier on the number of unpaired electrons in the TS, and the dependence of the deformation energy of the reactants on the spin state. We complement EER with orbital-selection rules, which predict the structure of the preferred TS and provide a handy theory of bioinorganic oxidative reactions. These rules show how EER provides a Hund's Rule for chemical reactivity: EER controls the reactivity landscape for a great variety of transition-metal complexes and substrates. Among many reactivity patterns explained, EER rationalizes the abundance of high-spin oxoiron(IV) complexes in enzymes that carry out bond activation of the strongest bonds. The concepts used in this Account might also be applicable in other areas such as in f-block chemistry and excited-state reactivity of 4d and 5d OMCs.

  13. 40 CFR 52.253 - Metal surface coating thinner and reducer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.253 Metal surface... conform to paragraph (k) of § 52.254 so as to be defined as a nonphotochemically reactive solvent. (d...-photochemically reactive solvent. (e) If there is an inadequate supply of necessary solvent ingredients needed in...

  14. TREATMENT OF HEAVY METALS USING AN ORGANIC SULFATE REDUCING PRB

    EPA Science Inventory

    A mpilot-scale permeable reactive wall consisting of a leaf-rich compost-pea gravel mixture was installed at a site in the Vancouver area, Canada to evaluate its potential use for treatment of a large dissolved heavy metal plume. The compost based permeable reactive wall promote...

  15. Remediation of Explosives Contaminated Groundwater With Zero-Valent Iron

    DTIC Science & Technology

    2011-10-01

    1947. Howson, P.E., Mackenzie, P.D. and Horney, D.P., 1996. Enhanced reactive metal wall for dehalogenation of hydrocarbons. Tertiary Enhanced...reactive metal wall for dehalogenation of hydrocarbons, United States. Hundal, L.S., Singh, J., Bier, E.L., Shea, P.J., Comfort, S.D. and Power, W.L

  16. ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  18. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review.

    PubMed

    Sharma, Virender K; Feng, Mingbao

    2017-09-28

    This paper presents a review on the environmental applications of metal-organic frameworks (MOFs), which are inorganic-organic hybrid highly porous crystalline materials, prepared from metal ion/clusters and multidentate organic ligands. The emphases are made on the enhancement of the performance of advanced oxidation processes (AOPs) (photocatalysis, Fenton reaction methods, and sulfate radical (SO 4 - )-mediated oxidations) using MOFs materials. MOFs act as adsorption and light absorbers, leading to superior performance of photocatalytic processes. More recent examples of photocatalytic degradation of dyes are presented. Additionally, it is commonly shown that Fe-based MOFs exhibited excellent catalytic performance on the Fenton-based and SO 4 •- -mediated oxidations of organic pollutants (e.g., dyes, phenol and pharmaceuticals). The significantly enhanced generation of reactive species such as OH and/or SO 4 - by both homogeneous and heterogeneous catalysis was proposed as the possible mechanism for water depollution. Based on the existing literature, the challenge and future perspectives in MOF-based AOPs are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Method for treating reactive metals in a vacuum furnace

    DOEpatents

    Hulsey, W.J.

    1975-10-28

    The invention is directed to a method for reducing the contamination of reactive metal melts in vacuum furnaces due to the presence of residual gaseous contaminants in the furnace atmosphere. This reduction is achieved by injecting a stream of inert gas directly over the metal confined in a substantially closed crucible with the flow of the gas being sufficient to establish a pressure differential between the interior of the crucible and the furnace atmosphere.

  20. Ultrafast dynamics of electrons in ammonia.

    PubMed

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.

  1. Manufacturing of composite titanium-titanium nitride coatings by reactive very low pressure plasma spraying (R-VLPPS)

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-11-01

    Very Low Pressure Plasma Spraying (VLPPS) is an emerging spray process nowadays intensively studied by many research centers in the World. To date, studies are mostly focused on the manufacturing of ceramic or metallic coatings. None refers to composite coatings manufacturing by reactive plasma spraying under very low pressure (i.e., ~150 Pa). This paper aims at presenting the carried-out developments and some results concerning the manufacturing of composite coatings by reactive spraying. Titanium was selected as metallic material in order to deposit titanium-nitride titanium coatings (Ti-TiN). Nitrogen was used as plasma gas and was injected along an Ar-H2-N2 plasma jet via a secondary injector in order to reach the nitrogen content on the substrate surface. Thus, different kind of reactive mechanisms were highlighted. Resulting coatings were characterized by Scanning Electron Microscopy (SEM) observations. Porous microstructures are clearly identified and the deposits exhibit condensed vapours and molten particles. Glow Discharge Optical Emission Spectroscopy (GDOES) analysis evidenced nitrogen inside the deposits and X-Ray Diffraction (XRD) analysis confirmed the formation of titanium nitride phases, such as TiN and Ti2N, depending upon the location of the nitrogen injection. Microhardness values as high as 800 VHN were measured on manufactured samples (to be compared to 220 VHN for pure titanium VLPPS-manufactured coatings).

  2. Effect of minor reactive metal additions on fracture toughness of iron: 12-percent nickel alloy at-196 deg and 25 deg C

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.; Stephens, J. R.

    1976-01-01

    The slow bend precracked Charpy fracture toughness and tensile behavior of arc-melted and hot-rolled Fe-12Ni alloys containing up to 4 atomic percent reactive metal additions were determined at -196 C and 25 C after water quenching from three annealing temperatures. The fracture toughness of Fe-12Ni at -196 C was improved by small amounts of Al, Ce, Hf, La, Nb, Ta, Ti, V, Y, and Zr, but not by Si. Cryogenic toughness was improved up to 7.5 times that of binary Fe-12Ni and varied with the reactive metal, its concentration, and the annealing temperature.

  3. Production of sintered porous metal fluoride pellets

    DOEpatents

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  4. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  5. Developing Multilayer Thin Film Strain Sensors With High Thermal Stability

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III

    2006-01-01

    A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.

  6. Metal Cluster Models for Heterogeneous Catalysis: A Matrix-Isolation Perspective.

    PubMed

    Hübner, Olaf; Himmel, Hans-Jörg

    2018-02-19

    Metal cluster models are of high relevance for establishing new mechanistic concepts for heterogeneous catalysis. The high reactivity and particular selectivity of metal clusters is caused by the wealth of low-lying electronically excited states that are often thermally populated. Thereby the metal clusters are flexible with regard to their electronic structure and can adjust their states to be appropriate for the reaction with a particular substrate. The matrix isolation technique is ideally suited for studying excited state reactivity. The low matrix temperatures (generally 4-40 K) of the noble gas matrix host guarantee that all clusters are in their electronic ground-state (with only a very few exceptions). Electronically excited states can then be selectively populated and their reactivity probed. Unfortunately, a systematic research in this direction has not been made up to date. The purpose of this review is to provide the grounds for a directed approach to understand cluster reactivity through matrix-isolation studies combined with quantum chemical calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Diffusion mechanism in molten salt baths during the production of carbide coatings via thermal reactive diffusion

    NASA Astrophysics Data System (ADS)

    Ghadi, Aliakbar; Saghafian, Hassan; Soltanieh, Mansour; Yang, Zhi-gang

    2017-12-01

    The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investigated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ± 0.5, 5.2 ± 0.5, or 5.7 ± 0.5 μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the substrate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.

  8. Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS–, but not H2S, to generate [ZnPc-SH]−, which can be converted back to ZnPc by protonation. CoPc reacts with HS–, but not H2S, to form [CoIPc]−, which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  9. Elementary surface processes during reactive magnetron sputtering of chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monje, Sascha; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidationmore » sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.« less

  10. Impact of metal-induced degradation on the determination of pharmaceutical compound purity and a strategy for mitigation.

    PubMed

    Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L

    2011-04-05

    Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    DTIC Science & Technology

    2016-03-25

    electrochemical reaction rates of processes that drive corrosion, e.g. the oxygen reduction reaction (ORR). To this end, we have used reactive...elements on the kinetics of oxygen reduction reaction catalyzed on titanium oxide in order to develop new approaches for controlling galvanic corrosion... consumption of anions in reactions with metal cations can deplete the electrolyte. However, in the atmospheric electrolyte, the electrolyte

  12. Thermodynamic interpretation of reactive processes in Ni-Al nanolayers from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Sandoval, Luis; Campbell, Geoffrey H.; Marian, Jaime

    2014-03-01

    Metals that can form intermetallic compounds by exothermic reactions constitute a class of reactive materials with multiple applications. Ni-Al laminates of thin alternating layers are being considered as model nanometric metallic multilayers for studying various reaction processes. However, the reaction kinetics at short timescales after mixing are not entirely understood. In this work, we calculate the free energies of Ni-Al alloys as a function of composition and temperature for different solid phases using thermodynamic integration based on state-of-the-art interatomic potentials. We use this information to interpret molecular dynamics (MD) simulations of bilayer systems at 800 K and zero pressure, both in isothermal and isenthalpic conditions. We find that a disordered phase always forms upon mixing as a precursor to a more stable nano crystalline B2 phase. We construe the reactions observed in terms of thermodynamic trajectories governed by the state variables computed. Simulated times of up to 30 ns were achieved, which provides a window to phenomena not previously observed in MD simulations. Our results provide insight into the early experimental reaction timescales and suggest that the path (segregated reactants) → (disordered phase) → (B2 structure) is always realized irrespective of the imposed boundary conditions.

  13. The effect of reactive ion etch (RIE) process conditions on ReRAM device performance

    NASA Astrophysics Data System (ADS)

    Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.

    2017-09-01

    The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.

  14. Core-shell AgSiO2-protoporphyrin IX nanoparticle: Effect of the Ag core on reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Pá; ez-Martinez, C.; Dreesen, L.

    2015-03-01

    Photodynamic therapy (PDT) for cancer is based on the use of a light sensitive molecule to produce, under specific irradiation, toxic reactive oxygen species (ROS). A way to improve the therapy efficiency is to increase the amount of produced ROS near cancer cells. This aim can be achieved by using a metal enhanced process arising when an optically active molecule is located near a metallic nanoparticle (NP). Here, the coupling effect between silver (Ag) NPs and protoporphyrin IX (PpIX) molecules, a clinically approved photosensitizer, is studied compared first, to PpIX fluorescence yield and second, to ROS production efficiency. By applying a modified Stöber process, PpIX was encapsulated into a silica (SiO2) shell, surrounding a 60 nm sized Ag core. We showed that, compared to SiO2-PpIX NPs, Ag coated SiO2-PpIX NPs dramatically decreased PpIX fluorescence together with singlet oxygen production efficiency. However, after incubation time in the dark, the amount of superoxide anions generated by the Ag doped sample was higher than the control sample one.

  15. A Forty Year Odyssey in Metallo-Organic Chemistry.

    PubMed

    Nicholas, Kenneth M

    2015-07-17

    In this invited Perspective, I provide a personal account highlighting several of my group's research contributions in metallo-organic chemistry over the past 40 years. Our early work focused primarily in stoichiometric structure/reactivity of transition metal-organic compounds and their use in organic synthesis. More recent efforts have centered on the discovery and development of new metal-catalyzed organic reactions via reactive metal-organic intermediates. The major research findings that are described here include (1) propargyl-cobalt complexes as electrophilic agents for C-C and C-Nu coupling; (2) the activation of carbon dioxide by metal complexes; (3) metal-promoted C-H nitrogenation reactions; (4) oxo-metal catalyzed deoxygenation reactions; and (5) catalyst discovery via dynamic templating with substrate- and transition-state analogues.

  16. An innovative coupling between column leaching and oxygen consumption tests to assess behavior of contaminated marine dredged sediments.

    PubMed

    Couvidat, Julien; Benzaazoua, Mostafa; Chatain, Vincent; Zhang, Fan; Bouzahzah, Hassan

    2015-07-01

    Contaminated dredged sediments are often considered hazardous wastes, so they have to be adequately managed to avoid leaching of pollutants. The mobility of inorganic contaminants is a major concern. Metal sulfides (mainly framboïdal pyrite, copper, and zinc sulfides) have been investigated in this study as an important reactive metal-bearing phase sensitive to atmospheric oxygen action. An oxygen consumption test (OC-Test) has been adapted to assess the reactivity of dredged sediments when exposed to atmospheric oxygen. An experimental column set-up has been developed allowing the coupling between leaching and oxygen consumption test to investigate the reactivity of the sediment. This reactivity, which consisted of sulfide oxidation, was found to occur for saturation degree between 60 and 90 % and until the 20th testing week, through significant sulfates releases. These latter were assumed to come from sulfide oxidation in the first step of the test, then probably from gypsum dissolution. Confrontation results of OC-Test and leachate quality shows that Cu was well correlated to sulfates releases, which in turn, leads to Ca and Mg dissolution (buffer effect). Cu, and mostly Zn, was associated to organic matter, phyllosilicates, and other minerals through organo-clay complexes. This research confirmed that the OC-Test, originally developed for mine tailings, could be a useful tool in the dredged sediment field which can allow for intrinsic characterization of reactivity of a material suspected to readily reacting with oxygen and for better understanding of geochemical processes that affect pollutants behavior, conversion, and transfer in the environment.

  17. Controlled Expansion of a Strong-Field Iron Nitride Cluster: Multi-Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity.

    PubMed

    Drance, Myles J; Mokhtarzadeh, Charles C; Melaimi, Mohand; Agnew, Douglas W; Moore, Curtis E; Rheingold, Arnold L; Figueroa, Joshua S

    2018-05-02

    Multimetallic clusters have long been investigated as molecular surrogates for reactive sites on metal surfaces. In the case of the μ 4 -nitrido cluster [Fe 4 (μ 4 -N)(CO) 12 ] - , this analogy is limited owing to the electron-withdrawing effect of carbonyl ligands on the iron nitride core. Described here is the synthesis and reactivity of [Fe 4 (μ 4 -N)(CO) 8 (CNAr Mes2 ) 4 ] - , an electron-rich analogue of [Fe 4 (μ 4 -N)(CO) 12 ] - , where the interstitial nitride displays significant nucleophilicity. This characteristic enables rational expansion with main-group and transition-metal centers to yield unsaturated sites. The resulting clusters display surface-like reactivity through coordination-sphere-dependent atom rearrangement and metal-metal cooperativity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A system for removing components of a gaseous mixture is provided comprising: a reactor fluid containing vessel having conduits extending therefrom, aqueous fluid within the reactor, the fluid containing a ligand and a metal, and at least one reactive surface within the vessel coupled to a power source. A method for removing a component from a gaseous mixture is provided comprising exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand. A method of capturing a component of a gaseous mixture is providedmore » comprising: exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand, altering the oxidation state of the metal, the altering unbinding the component from the ligand, and capturing the component.« less

  19. Energy Pooling, Ion Recombination, and Reactions of Rubidium and Cesium in Hydrocarbon Gasses.

    NASA Astrophysics Data System (ADS)

    Bresler, Sean Michael; Park, J.; Heaven, Michael

    2017-06-01

    Diode Pumped Alkali Lasers (DPAL) are continuous wave lasers, potentially capable of megawatt average powers. These lasers exploit the D1 and D2 lines of alkali metals resulting in a 3-level laser with the lasing transition in the near infrared region of the electromagnetic spectrum. Energy pooling processes involving collisions between excited alkali metals cause a fraction of the gain media to be highly excited and eventually ionized. These high energy cesium atoms and ions chemically react with small hydrocarbons utilized as buffer gasses for the system, depleting the gain media. A kinetic model supported by experimental data is introduced to explain the cumulative effects of optical trapping, energy pooling, and chemical reactivity in heavy alkali metal (Rb, Cs) systems. Spectroscopic studies demonstrating metal hydride formation will also be presented.

  20. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  1. Reactivity-based drug discovery using vitamin B(6)-derived pharmacophores.

    PubMed

    Wondrak, Georg T

    2008-05-01

    Endogenous reactive intermediates including photoexcited states of tissue chromophores, reactive oxygen species (ROS), reactive carbonyl species (RCS), transition metal ions, and Schiff bases have been implicated in the initiation and progression of diverse human pathologies including tumorigenesis, atherosclerosis, diabetes, and neurodegenerative disease. In contrast to structure-based approaches that target macromolecules by selective ligands, reactivity-based drug discovery uses chemical reagents as therapeutics that target reactive chemical species involved in human pathology. Reactivity-based design of prototype agents that effectively antagonize, modulate, and potentially even reverse the chemistry underlying tissue damage from oxidative and carbonyl stress therefore holds great promise in delivering significant therapeutic benefit. Apart from its established role as an essential cofactor for numerous enzymes, a large body of evidence suggests that B(6)-vitamers contain reactive pharmacophores that mediate therapeutically useful non-vitamin drug actions as potent antioxidants, metal chelators, carbonyl scavengers, Schiff base forming agents, and photosensitizers. Based on the fascinating chemical versatility of B(6)-derived pharmacophores, B(6)-vitamers are therefore promising lead compounds for reactivity-based drug design.

  2. Flexible digestion strategies and trace metal assimilation in marine bivalves

    USGS Publications Warehouse

    Decho, Alan W.; Luoma, Samuel N.

    1996-01-01

    Pulse-chase experiments show that two marine bivalves take optimal advantage of different types of particulate food by varying food retention time in a flexible two-phase digestive system. For example, carbon is efficiently assimilated from bacteria by subjecting nearly all the ingested bacteria to prolonged digestion. Prolonging digestion also enhances assimilation of metals, many of which are toxic in minute quantities if they are biologically available. Detritus-feeding aquatic organisms have always lived in environments naturally rich in particle-reactive metals. We suggest that avoiding excess assimilation of metals could be a factor in the evolution of digestion strategies. We tested that suggestion by studying digestion of particles containing different Cr concentrations. We show that bivalves are capable of modifying the digestive processing of food to reduce exposure to high, biologically available, Cr concentrations. The evolution of a mechanism in some species to avoid high concentrations of metals in food could influence how effects of modern metal pollution are manifested in marine ecosystems.

  3. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal.

    PubMed

    Ho, Shih-Hsin; Zhu, Shishu; Chang, Jo-Shu

    2017-12-01

    Pollution of heavy metals (HMs) is a detrimental treat to human health and need to be cleaned up in a proper way. Biochar (BC), a low-cost and "green" adsorbent, has attracted significant attention due to its considerable HMs removal capacity. In particular, nano-metals have recently been used to assist BC in improving its reactivity, surface texture and magnetism. Synthesis methods and metal precursors greatly influence the properties and structures of the nanocomposites, thereby affecting their HMs removal performance. This review presents advances in synthesis methods, formation mechanisms and surface characteristics of BC nanocomposites, along with the discussions on HMs removal mechanisms and the effects of environmental factors on HMs removal efficiency. Performance of using BC nanocomposites to remediate real HMs-containing wastewater and issues associated with its process scale-up are also discussed. This review aims to provide useful information to facilitate the development of HMs removal by nanoscale-metal assisted BC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Atomic-scale epitaxial aluminum film on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Fan, Yen-Ting; Lo, Ming-Cheng; Wu, Chu-Chun; Chen, Peng-Yu; Wu, Jenq-Shinn; Liang, Chi-Te; Lin, Sheng-Di

    2017-07-01

    Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.

  5. Copper metallothioneins.

    PubMed

    Calvo, Jenifer; Jung, Hunmin; Meloni, Gabriele

    2017-04-01

    Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  6. Hot pressing titanium metal matrix composites reinforced with graphene nanoplatelets through an in-situ reactive method

    NASA Astrophysics Data System (ADS)

    Mu, X. N.; Zhang, H. M.; Cai, H. N.; Fan, Q. B.; Wu, Y.; Fu, Z. J.; Wang, Q. X.

    2017-05-01

    This study proposed an in-situ reactive method that uses graphene as a reinforcement to fabricate titanium metal matrix composites (TiMMCs) through powder metallurgy processing route. The volume fraction of graphene nanoplatelets was 1.8%vol, and the pure titanium was used as a matrix. The Archimedes density, hardness, microstructure and mechanical properties of specimens were compared under different ball milling times (20 min and 2.5 h) and hot pressing temperatures (900°C, 1150°C, and 1300°C,). The ultimate tensile strength of 630 MPa, which demonstrated a 27.3% increase compared with pure Ti, was achieved under a ball milling time of 20 min. Elongation increased with increasing temperature. When the ball milling time and hot pressing temperature were increased to 2.5 h and 1300 °C, respectively, the ultimate tensile strength of the composites reached 750 MPa, showing an increase of 51.5% compared with pure Ti.

  7. In situ remediation of uranium contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptablemore » regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.« less

  8. In situ remediation of uranium contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.; Marozas, D.C.

    1997-12-31

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ tomore » acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.« less

  9. Fabrication of porous noble metal thin-film electrode by reactive magnetron sputtering.

    PubMed

    Cho, Tae-Shin; Choi, Heonjin; Kim, Joosun

    2013-06-01

    Porous platinum films have been fabricated by reactive sputtering combined with subsequent thermal annealing. Using the SEM, XRD, XPS, and polarization resistance measurement techniques, the microstructural development of the film and its resultant electrochemical properties have been characterized. Pore evolution was understood as a result of the thermal grooving of platinum during annealing process. We demonstrated that crystallization should be followed by agglomeration for the evolution of porous microstructures. Furthermore, reaction sputtering affected the adhesion enhancement between the film and substrate compared to the film deposited by non-reactive sputtering. The polarization resistance of the porous platinum film was five times lower than that of the dense platinum film. At 600 degrees C the resistance of the porous film was 5.67 omega x cm2, and that of the dense film was 38 omega x cm2.

  10. Engineering of Pyranose Dehydrogenase for Increased Oxygen Reactivity

    PubMed Central

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  11. Metal catalyst technique for texturing silicon solar cells

    DOEpatents

    Ruby, Douglas S.; Zaidi, Saleem H.

    2001-01-01

    Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

  12. Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction.

    PubMed

    Antonini, James M; Leonard, Stephen S; Roberts, Jenny R; Solano-Lopez, Claudia; Young, Shih-Houng; Shi, Xianglin; Taylor, Michael D

    2005-11-01

    Questions exist concerning the potential carcinogenic effects after welding fume exposure. Welding processes that use stainless steel (SS) materials can produce fumes that may contain metals (e.g., Cr, Ni) known to be carcinogenic to humans. The objective was to determine the effect of in vitro and in vivo welding fume treatment on free radical generation, DNA damage, cytotoxicity and apoptosis induction, all factors possibly involved with the pathogenesis of lung cancer. SS welding fume was collected during manual metal arc welding (MMA). Elemental analysis indicated that the MMA-SS sample was highly soluble in water, and a majority (87%) of the soluble metal was Cr. Using electron spin resonance (ESR), the SS welding fume had the ability to produce the biologically reactive hydroxyl radical (*OH), likely as a result of the reduction of Cr(VI) to Cr(V). In vitro treatment with the MMA-SS sample caused a concentration-dependent increase in DNA damage and lung macrophage death. In addition, a time-dependent increase in the number of apoptotic cells in lung tissue was observed after in vivo treatment with the welding fume. In summary, a soluble MMA-SS welding fume was found to generate reactive oxygen species and cause DNA damage, lung macrophage cytotoxicity and in vivo lung cell apoptosis. These responses have been shown to be involved in various toxicological and carcinogenic processes. The effects observed appear to be related to the soluble component of the MMA-SS sample that is predominately Cr. A more comprehensive in vivo animal study is ongoing in the laboratory that is continuing these experiments to try to elucidate the potential mechanisms that may be involved with welding fume-induced lung disease.

  13. Growth of polymer-metal nanocomposites by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Röder, Johanna; Faupel, Jörg; Krebs, Hans-Ulrich

    2008-12-01

    Complex polymer-metal nanocomposites have a wide range of applications, e.g. as flexible displays and packaging materials. Pulsed laser deposition was applied to form nanostructured materials consisting of metal clusters (Ag, Au, Pd and Cu) embedded in a polymer (polycarbonate, PC) matrix. The size and amount of the metal clusters are controlled by the number of laser pulses hitting the respective targets. For Cu and Pd, smaller clusters and higher cluster densities are obtained as in the cases of Ag and Au due to a stronger reactivity with the polymers and thus a lower diffusivity. Implantation effects, differences in metal diffusivity and reactivity on the polymer surfaces, and the coalescence properties are discussed with respect to the observed microstructures on PC and compared to the metal growth on poly (methyl methacrylate), PMMA.

  14. Adsorption energies of benzene on close packed transition metal surfaces using the random phase approximation

    NASA Astrophysics Data System (ADS)

    Garrido Torres, José A.; Ramberger, Benjamin; Früchtl, Herbert A.; Schaub, Renald; Kresse, Georg

    2017-11-01

    The adsorption energy of benzene on various metal substrates is predicted using the random phase approximation (RPA) for the correlation energy. Agreement with available experimental data is systematically better than 10% for both coinage and reactive metals. The results are also compared with more approximate methods, including van der Waals density functional theory (DFT), as well as dispersion-corrected DFT functionals. Although dispersion-corrected DFT can yield accurate results, for instance, on coinage metals, the adsorption energies are clearly overestimated on more reactive transition metals. Furthermore, coverage dependent adsorption energies are well described by the RPA. This shows that for the description of aromatic molecules on metal surfaces further improvements in density functionals are necessary, or more involved many-body methods such as the RPA are required.

  15. Degradation of organic pollutants by Ag, Cu and Sn doped waste non-metallic printed circuit boards.

    PubMed

    Ramaswamy, Kadari; Radha, Velchuri; Malathi, M; Vithal, Muga; Munirathnam, Nagegownivari R

    2017-02-01

    The disposal and reuse of waste printed circuit boards have been the major global concerns. Printed circuit boards, a form of Electronic waste (hereafter e-waste), have been chemically processed, doped with Ag + , Cu 2+ and Sn 2+ , and used as visible light photocatalysts against the degradation of methylene blue and methyl violet. The elemental analyses of pristine and metal doped printed circuit board were obtained using energy dispersive X-ray fluorescence (EDXRF) spectra and inductively coupled plasma optical emission spectroscopy (ICP-OES). The morphology of parent and doped printed circuit board was obtained from scanning electron microscopy (SEM) measurements. The photocatalytic activity of parent and metal doped samples was carried out for the decomposition of organic pollutants, methylene blue and methyl violet, under visible light irradiation. Metal doped waste printed circuit boards (WPCBs) have shown higher photocatalytic activity against the degradation of methyl violet and methylene blue under visible light irradiation. Scavenger experiments were performed to identify the reactive intermediates responsible for the degradation of methylene blue and methyl violet. The reactive species responsible for the degradation of MV and MB were found to be holes and hydroxyl radicals. A possible mechanism of degradation of methylene blue and methyl violet is given. The stability and reusability of the catalysts are also investigated. Copyright © 2016. Published by Elsevier Ltd.

  16. Preparation and characterization of expanded graphite/metal oxides for antimicrobial application.

    PubMed

    Hung, Wei-Che; Wu, Kuo-Hui; Lyu, Dong-Yi; Cheng, Ken-Fa; Huang, Wen-Chien

    2017-06-01

    Composite materials based on expanded graphite (EG) and metal oxide (MO) particles was prepared by an explosive combustion and blending method. The objective of the study was to develop EG impregnated with metal oxide particulates (Ag 2 O, CuO and ZnO) and evaluate the level of protection the materials conferred against biological agents. The physical properties of the EG/MO composites were examined using SEM, EDX and XRD spectroscopy, and the results indicated that the MO particles were incorporated into the EG matrix after impregnation. The antimicrobial activities of the EG/MO composites against Gram-positive bacteria, Gram-negative bacteria and Bacillus anthracis were investigated using zone of inhibition, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and plate-counting methods. EG/Ag 2 O exhibited a stronger antibacterial activity than EG/CuO and EG/ZnO, with a MIC of 0.3mg/mL and a MBC of 0.5mg/mL. To the best of our knowledge, few studies have demonstrated that EG/MO composites can inhibit the growth of Bacillus anthracis-adhered cells, thus preventing the process of biofilm formation. Nanoscale metal oxides display enhanced reactive properties toward bacteria due to their high surface area, large number of highly reactive edges, corner defect sites and high surface to volume ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Method for continuously recovering metals using a dual zone chemical reactor

    DOEpatents

    Bronson, M.C.

    1995-02-14

    A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing. 6 figs.

  18. Acellular assessments of engineered-manufactured nanoparticle biological surface reactivity

    EPA Science Inventory

    It is critical to assess the surface properties and reactivity of engineered-manufactured nanoparticles (NPs) as these will influence their interactions with biological systems, biokinetics and toxicity. We examined the physicochemical properties and surface reactivity of metal o...

  19. Silicon-Based Nanoscale Composite Energetic Materials

    DTIC Science & Technology

    2013-02-01

    February 2013 HDTRA1-08-1-0006 Steven F. Son et al. Prepared by: Purdue University 130 Chaffee Hall 500 Allison Road West...in preparation or submitted. One patent disclosure has been submitted. We plan to submit another patent disclosure in the next few weeks...approach, termed salt-assisted combustion synthesis (SACS) (28]. In a SACS process, the SHS reactive mixture is combined with alkali metal halides

  20. Insertion of benzene rings into the amide bond: one-step synthesis of acridines and acridones from aryl amides.

    PubMed

    Pintori, Didier G; Greaney, Michael F

    2010-01-01

    Insertion of benzene rings into the amide bond using the reactive intermediate benzyne is described. Aromatic amides undergo smooth insertion when treated with O-triflatophenyl silane benzyne precursors, producing versatile aminobenzophenone products in good to excellent yield. The process is entirely metal-free and has been exemplified on the synthesis of biologically active acridones and acridines.

  1. A Preliminary Investigation of the E-Beam Induced Polymerization of Maleimide and Norbornene End-capped Polyimides

    NASA Technical Reports Server (NTRS)

    Palmese, Giuseppe R.; Meador, Michael A. (Technical Monitor)

    2005-01-01

    A research area of high activity in connection with aerospace engineering has been the development of polymer thermosetting resins that can resist temperature as high as 300 C while maintaining adequate toughness, and providing ease of processing to enable low temperature and low cost composite fabrication methods. In order to meet such requirements, sequential interpenetrating polymer networks (IPNs) based on bismaleimide (BMI) and cyanate ester (CE) monomers were investigated. In these systems, a polycyanurate network is first formed in the presence of BMI and appropriate reactive diluent monomers and in a second step, a network based on the BMI is created in the presence of a fully formed polycyanurate network. The materials developed can be processed at relatively low temperature (less than 150 C) and with the aid of electron beam (EB) curing. Of major importance to the success of this work was the identification of a reactive diluent that improves ease of processing and has tailored reactivity to allow for the controlled synthesis of CE-BMI sequential IPNs. Based on solubility and reactivity of a number of reactive diluents, N-acryloylmorpholine (AMP) was selected as a comonomer for BMI copolymerization. A donor-acceptoreaction mechanism was suggested to explain the relative reactivity of a variety of reactive diluents towards maleimide functionality. The optimum processing parameters for the formation of the first network were determined through the study of metal catalyzed cure and hydrolysis of cyanate esters, whereas the reaction behavior for second network formation in terms of the influence of EB dose rate and temperature was elucidated through an in-situ kinetics study of maleimide and AMP copolymerization. Structure-property relationships were developed which allowed for the design of improved resin systems. In particular, appropriate network coupler possessing cyanate ester and maleimide functionality was synthesized to link the polycyanurate first network to the BMI/AMP second network and thus form linked sequential IPNs (LIPNs). Consequently, Tg as high as 370 C was achieved and a fracture toughness of 120 Joules per square meters was obtained for resin systems that possess adequately low viscosity for processing using liquid molding techniques at low temperature.

  2. Bismaleimide and cyanate ester based sequential interpenetrating polymer networks for high temperature application

    NASA Astrophysics Data System (ADS)

    Geng, Xing

    2005-07-01

    A research area of high activity in connection with aerospace engineering has been the development of polymer thermosetting resins that can withstand temperature as high as 300°C while maintaining adequate toughness and providing ease of processing to enable low temperature and low cost composite fabrication methods. In order to meet such requirements, sequential interpenetrating polymer networks (IPNs) based on bismaleimide (BMI) and cyanate ester (CE) monomers were investigated. In these systems, a polycyanurate network is first formed in the presence of BMI and appropriate reactive diluent monomers and, in a second step, a network based on the BMI is created in the presence of a fully formed polycyanurate network. The materials developed can be processed at relatively low temperature (<150°C) and with the aid of electron beam (EB) curing. Of major importance to the success of this work was the identification of a reactive diluent that improves ease of processing and has tailored reactivity to allow for the controlled synthesis of CE-BMI sequential IPNs. Based on solubility and reactivity of a number of reactive diluents, N-acryloylmorpholine (AMP) was selected as a co-monomer for BMI copolymerization. A donor-acceptor reaction mechanism was suggested to explain the relative reactivity of a variety of reactive diluents towards maleimide functionality. The optimum processing parameters for the formation of the first network were determined through the study of metal catalyzed cure and hydrolysis of cyanate esters, whereas the reaction behavior for second network formation in terms of the influence of EB dose rate and temperature was elucidated through an in-situ kinetics study of maleimide and AMP copolymerization. Structure-property relationships were developed which allowed for the design of improved resin systems. In particular, an appropriate network coupler possessing cyanate ester and maleimide functionality was synthesized to link the polycyanurate first network to the BMI/AMP second network and thus form linked sequential IPNs (LIPNs). Consequently, Tg as high as 370°C was achieved and a fracture toughness of 120 J/m2 was obtained for resin systems that possess adequately low viscosity for processing using liquid molding techniques at low temperature.

  3. All kinds of reactivity: recent breakthroughs in metal-catalyzed alkyne chemistry.

    PubMed

    Anaya de Parrodi, Cecilia; Walsh, Patrick J

    2009-01-01

    Alkynes of reactions: Recent breakthroughs in metal-catalyzed alkyne reactions, which expand the synthetic utility of alkynes, have been achieved. These approaches broaden the range of alkynes that are accessible by C--N and C--C bond-forming reactions and demonstrate that the use of bifunctional heterobimetallic catalysts can lead to new reactivity and excellent enantioselectivity (see scheme).

  4. Covalent Heterogenization of a Discrete Mn(II) Bis-Phen Complex by a Metal-Template/Metal-Exchange Method: An Epoxidation Catalyst with Enhanced Reactivity

    PubMed Central

    Terry, Tracy J.; Stack, T. Daniel P.

    2009-01-01

    Considerable attention has been devoted to the immobilization of discrete epoxidation catalysts onto solid supports due to the possible benefits of site isolation such as increased catalyst stability, catalyst recycling, and product separation. A synthetic metal-template/metal-exchange method to imprint a covalently attached bis-1,10-phenanthroline coordination environment onto high-surface area, mesoporous SBA-15 silica is reported herein along with the epoxidation reactivity once reloaded with manganese. Comparisons of this imprinted material with material synthesized by random grafting of the ligand show that the template method creates more reproducible, solution-like bis-1,10-phenanthroline coordination at a variety of ligand loadings. Olefin epoxidation with peracetic acid shows the imprinted manganese catalysts have improved product selectivity for epoxides, greater substrate scope, more efficient use of oxidant, and higher reactivity than their homogeneous or grafted analogues independent of ligand loading. The randomly grafted manganese catalysts, however, show reactivity that varies with ligand loading while the homogeneous analogue degrades trisubstituted olefins and produces trans-epoxide products from cis-olefins. Efficient recycling behavior of the templated catalysts is also possible. PMID:18351763

  5. Role of a Streambed's Benthic Biolayer in Enhancing Chemical Reactions in Hyporheic Flow

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.

    2016-12-01

    Chemical processing of metals, nutrients, and organic compounds occurs throughout natural waters, however the rate of reactions often is greater at the streambed interface compared with surface water or deeper groundwater. Hydrologic exchange across the sediment interface brings reactive solutes and fine particulate organic matter from surface waters into contact with the streambed biolayer, a zone with algae and other living microflora and fauna, microbial communities, and reactive geochemical coatings on granular sediments. Compared with surface water or deeper hyporheic sediments, the intrinsic rate of reactions may be stimulated in biolayers because of higher rates of metabolic processing and associated redox reactions. Also, hydrologic transport may enhance reaction rates by relieving potential transport limitations through the re-supply of reactive substrates from surface water. As a result the chemical processing that occurs in the biolayer may far exceed processing that occurs in deeper hyporheic flow. Here I highlight new understanding of enhancement of reaction rates and their hydrologic and biogeochemical controls in streambed biolayers compared with hyporheic flow as a whole. The approach distinguishes and quantifies reaction limitation and transport limitation both at the centimeter-scale within the hyporheic zone and at the river network scale where the effect of streambed reactions accumulates and influences downstream water quality.

  6. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    NASA Astrophysics Data System (ADS)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  7. [Effect of vacuum deposition technology on the metal-porcelain bond strength of a new type of CO-CR ceramic and framework dental alloy].

    PubMed

    Wu, Jun-ling; Chao, Yong-lie; Ji, Ping; Gao, Xu

    2007-10-01

    To investigate the effect of a new engineering technique of vacuum deposition-plasma magnetron reactive sputter deposition technique on the metal-porcelain bond strength of a new type of Co-Cr ceramic and framework dental alloy. Before porcelain painted on the specimens, the standardized metal strips made from DA9-4 dental alloy were coated with a thin Al2O3 ceramic film by plasma magnetron reactive sputter deposition technique. The conformation, structure and thickness of the ceramic film were analyzed. The specimens for three-point bending test made from DA9-4 alloy and VMK95 porcelain were used for metal-porcelain bond strength measurement, in the same time the interface of metal-porcelain and element distribution were also observed. The flexural bonding strength of metal-porcelain of sputtering group and control group were (180.55+/-16.45) MPa and (143.80+/-24.49) MPa. The flexural bonding strength of metal-porcelain of sputtering group was higher than control group significantly through statistical analysis (P<0.01). The plasma magnetron reactive sputter deposition technique has a positive effect in improving the bonding strength of DA9-4 dental alloy and ceramic.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liang; Wang, C. Z.; Lin, Shiwei

    Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titaniummore » (0001) surface and further prevented oxidation in the deeper layers. As a result, the mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.« less

  9. Solution-deposited CIGS thin films for ultra-low-cost photovoltaics

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Hersh, Peter; Stanbery, Billy J.

    2010-09-01

    We describe the production of photovoltaic modules with high-quality large-grain copper indium gallium selenide (CIGS) thin films obtained with the unique combination of low-cost ink-based precursors and a reactive transfer printing method. The proprietary metal-organic inks contain a variety of soluble Cu-, In- and Ga- multinary selenide materials; they are called metal-organic decomposition (MOD) precursors, as they are designed to decompose into the desired precursors. Reactive transfer is a two-stage process that produces CIGS through the chemical reaction between two separate precursor films, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are rapidly reacted together under pressure in the presence of heat. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. In a few minutes, the process produces high quality CIGS films, with large grains on the order of several microns, and preferred crystallographic orientation, as confirmed by compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% were achieved using this method. The atmospheric deposition processes include slot die extrusion coating, ultrasonic atomization spraying, pneumatic atomization spraying, inkjet printing, direct writing, and screen printing, and provide low capital equipment cost, low thermal budget, and high throughput.

  10. Joining engineering ceramics

    NASA Astrophysics Data System (ADS)

    Loehman, Ronald E.

    Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.

  11. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Christine M.

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, withmore » the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in multicomponent systems.« less

  12. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    PubMed Central

    Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.

    2012-01-01

    A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  13. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  14. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  15. Method for forming porous sintered bodies with controlled pore structure

    DOEpatents

    Whinnery, LeRoy Louis; Nichols, Monte Carl

    2000-01-01

    The present invention is based, in part, on a method for combining a mixture of hydroxide and hydride functional siloxanes to form a polysiloxane polymer foam, that leaves no residue (zero char yield) upon thermal decomposition, with ceramic and/or metal powders and appropriate catalysts to produce porous foam structures having compositions, densities, porosities and structures not previously attainable. The siloxanes are mixed with the ceramic and/or metal powder, wherein the powder has a particle size of about 400 .mu.m or less, a catalyst is added causing the siloxanes to foam and crosslink, thereby forming a polysiloxane polymer foam having the metal or ceramic powder dispersed therein. The polymer foam is heated to thermally decompose the polymer foam and sinter the powder particles together. Because the system is completely nonaqueous, this method further provides for incorporating reactive metals such as magnesium and aluminum, which can be further processed, into the foam structure.

  16. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  17. Cryogenic Properties of a New Tough-Strong Iron Alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1977-01-01

    A program was undertaken to develop an iron-base alloy having a fracture toughness of 220 MPa. m superscript 1/2 with a corresponding yield stress of 1.4 GPa (200 ksi) at-196 C. An Fe-12Ni alloy was selected as the base alloy. Factors considered included reactive metal additions, effects of interstitial impurities, strengthening mechanisms, and weldability. The goals were met in an Fe-12Ni-0.5Al alloy strengthened by thermomechanical processing or by precipitate strengthening with 2 percent Cu. The alloy is weldable with the weld metal and heat affected zone in the postweld annealed condition having toughness equivalent to the base alloy.

  18. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study (in Korean)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  19. Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping

    NASA Astrophysics Data System (ADS)

    Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.

    2018-04-01

    We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.

  20. In situ studies of oxide nucleation, growth, and transformation using slow electrons

    NASA Astrophysics Data System (ADS)

    Flege, Jan Ingo; Grinter, David C.

    2018-05-01

    Surface processes such as metal oxidation and metal oxide growth invariably influence the physical and chemical properties of materials and determine their interaction with their surroundings and hence their functionality in many technical applications. On a fundamental level, these processes are found to be governed by a complex interplay of thermodynamic variables and kinetic constraints, resulting in a rich variety of material-specific phenomena. In this review article, we discuss recent results and insights on transition metal oxidation and rare-earth oxide growth acquired by low-energy electron microscopy and related techniques. We demonstrate that the use of in situ surface sensitive methods is a prerequisite to gaining a deeper understanding of the underlying concepts and the mechanisms responsible for the emerging oxide structure and morphology. Furthermore, examples will be provided on how structural and chemical modifications of the oxide films and nanostructures can be followed in real-time and analyzed in terms of local reactivity and cooperative effects relevant for heterogeneous model catalysis.

  1. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands

    DOE PAGES

    Fester, J.; García-Melchor, M.; Walton, A. S.; ...

    2017-01-30

    Here, transition metal oxides show great promise as Earth-abundant catalysts for the oxygen evolution reaction in electrochemical water splitting. However, progress in the development of highly active oxide nanostructures is hampered by a lack of knowledge of the location and nature of the active sites. Here we show, through atom-resolved scanning tunnelling microscopy, X-ray spectroscopy and computational modelling, how hydroxyls form from water dissociation at under coordinated cobalt edge sites of cobalt oxide nanoislands. Surprisingly, we find that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the importantmore » assisting role of a water molecule in its own dissociation process on a metal oxide. Inspired by the experimental findings, we theoretically model the oxygen evolution reaction activity of cobalt oxide nanoislands and show that the nanoparticle metal edges also display favourable adsorption energetics for water oxidation under electrochemical conditions.« less

  2. The use of containerless processing in researching reactive materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. R.; Krishnan, Shankar; Nordine, Paul C.

    1991-01-01

    It has recently become possible to perform containerless, high-temperature liquid-phase processing of many nonvolatile materials without resort to orbital microgravity, thereby facilitating the conduct of materials research in conjunction with noncontact diagnostic instruments. The melt-levitation techniques are electromagnetic, aerodynamic, acoustic, aeroacoustic, and electrostatic; nonorbital microgravity conditions are obtainable aboard NASA's KC-135 aircraft on parabolic flight paths, as well as in drop tubes and towers. Applications encompass the purification of metals and the creation of nonequilibrium and metastable structures. Process control and property measurements include optical pyrometry and emissivity, laser polarimetry, and drop calorimetry.

  3. From fundamental studies of reactivity on single crystals to the design of catalysts

    NASA Astrophysics Data System (ADS)

    H. Larsen, Jane; Chorkendorff, Ib

    One of the prominent arguments for performing surface science studies have for many years been to improve and design new and better catalysts. Although surface science has provided the fundamental framework and tools for understanding heterogeneous catalysis until now there have been extremely few examples of actually designing new catalysts based solely on surface science studies. In this review, we shall demonstrate how a close collaboration between different fundamental disciplines like structural-, theoretical-and reactivity-studies of surfaces as well as a strong interaction with industry can have strong synergetic effects and how this was used to develop a new catalyst. As so often before the studies reviewed here were not initiated with the objective to solve a specific problem, but realizing that a new class of very stable two-dimensional alloys could be synthesized from otherwise immiscible metals made it possible to present a new solution to a specific problem in the industrial catalysis relating to methane activation in the steam reforming process. Methane is the main constituent of natural gas and it is an extremely important raw material for many large scale chemical processes such as production of hydrogen, ammonia, and methanol. In the steam reforming process methane and water are converted into a mixture of mainly hydrogen and carbon monoxide, the so-called synthesis gas. Industrially the steam reforming process usually takes place over a catalyst containing small nickel crystallites highly dispersed on a porous support material like aluminum/magnesium oxides in order to achieve a high active metal area. There is a general consensus that the rate limiting step of this process is the dissociative sticking of methane on the nickel surface. Driven by the desire to understand this step and hopefully be able to manipulate the reactivity, a large number of investigations of the methane/nickel interaction have been performed using nickel single crystals as model catalysts. The process has been investigated, both under thermal conditions and by using supersonic molecular beams elucidating the dynamical aspects of the interaction. The results obtained will be reviewed both with respect to the clean and modified nickel surfaces. Especially the two-dimensional gold-nickel alloy system will be considered since the fundamental results here have lead to the invention of a new nickel based catalyst, which is much more resistant to carbon formation than the conventional nickel catalysts. This may be one of the first examples of how fundamental research can lead to the invention of new catalysts. Other overlayer/alloy combinations, their stability, and reactivity are briefly discussed with respect to manipulation of the surface reactivity towards methane.

  4. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the "cuprosome" as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals.

  5. The hexadehydro-Diels-Alder reaction.

    PubMed

    Hoye, Thomas R; Baire, Beeraiah; Niu, Dawen; Willoughby, Patrick H; Woods, Brian P

    2012-10-11

    Arynes (aromatic systems containing, formally, a carbon-carbon triple bond) are among the most versatile of all reactive intermediates in organic chemistry. They can be 'trapped' to give products that are used as pharmaceuticals, agrochemicals, dyes, polymers and other fine chemicals. Here we explore a strategy that unites the de novo generation of benzynes-through a hexadehydro-Diels-Alder reaction-with their in situ elaboration into structurally complex benzenoid products. In the hexadehydro-Diels-Alder reaction, a 1,3-diyne is engaged in a [4+2] cycloisomerization with a 'diynophile' to produce the highly reactive benzyne intermediate. The reaction conditions for this simple, thermal transformation are notable for being free of metals and reagents. The subsequent and highly efficient trapping reactions increase the power of the overall process. Finally, we provide examples of how this de novo benzyne generation approach allows new modes of intrinsic reactivity to be revealed.

  6. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the performance of pellet binders, and have directly saved energy by increasing filtration rates of the pelletization feed by as much as 23%.« less

  7. Improved synthesis of ceramic superconductors with alkaline earth peroxides - Synthesis and processing of Ba2YCu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Philipp, W. H.; Warner, J. D.; Aron, P. R.; Pouch, J. J.

    1988-01-01

    Synthesis processes for the preparation of ceramic conductors Ba2YCu3O(7-x) from BaO2 or BaCO3 in flowing O2 or N2 are described, and the characteristics of the materials produced in these processes are compared. Results of EDAX, XRD, SEM, and dc resistivity analyses demonstrated that superconducting materials made from BaO2 were more homogeneous, denser, and more metallic than materials produced from BaCO3, because of the higher reactivity of BaO2. Potential applications of this processes are discussed.

  8. Partial oxidation process for producing a stream of hot purified gas

    DOEpatents

    Leininger, Thomas F.; Robin, Allen M.; Wolfenbarger, James K.; Suggitt, Robert M.

    1995-01-01

    A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.

  9. Partial oxidation process for producing a stream of hot purified gas

    DOEpatents

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  10. Multi-layer light-weight protective coating and method for application

    NASA Technical Reports Server (NTRS)

    Wiedemann, Karl E. (Inventor); Clark, Ronald K. (Inventor); Taylor, Patrick J. (Inventor)

    1992-01-01

    A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal.

  11. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  12. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  13. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    PubMed

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, membrane dismantling and damage to DNA, protein and carbohydrates. Plants have very well-organized defense systems, consisting of enzymatic and non-enzymatic antioxidation processes. The primary defense mechanism for heavy metal detoxification is the reduced absorption of these metals into plants or their sequestration in root cells.Secondary heavy metal tolerance mechanisms include activation of antioxidant enzymes and the binding of heavy metals by phytochelatins, glutathione and amino acids. These defense systems work in combination to manage the cascades of oxidative stress and to defend plant cells from the toxic effects of ROS.In this review, we summarized the biochemiCal processes involved in the over production of ROS as an aftermath to heavy metal exposure. We also described the ROS scavenging process that is associated with the antioxidant defense machinery.Despite considerable progress in understanding the biochemistry of ROS overproduction and scavenging, we still lack in-depth studies on the parameters associated with heavy metal exclusion and tolerance capacity of plants. For example, data about the role of glutathione-glutaredoxin-thioredoxin system in ROS detoxification in plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signalling)is still not completely understood. Similarly, induction of glutathione and phytochelatins under oxidative stress is very well reported, but it is still unexplained that some studied compounds are not involved in the detoxification mechanisms. Moreover,although the role of metal transporters and gene expression is well established for a few metals and plants, much more research is needed. Eventually, when results for more metals and plants are available, the mechanism of the biochemical and genetic basis of heavy metal detoxification in plants will be better understood. Moreover, by using recently developed genetic and biotechnological tools it may be possible to produce plants that have traits desirable for imparting heavy metal tolerance.

  14. Study of the Reactive-element Effect in Oxidation of Fe-cr Alloys Using Transverse Section Analytical Electron Microscopy

    NASA Technical Reports Server (NTRS)

    King, W. E.; Ethridge, E. C.

    1985-01-01

    The role of trace additions of reactive elements like Y, Ce, Th, or Hf to Cr bearing alloys was studied by applying a new developed technique of transverse section analytical electron microscopy. This reactive-element effect improves the high temperature oxidation resistance of alloys by strongly reducing the high temperature oxidation rate and enhancing the adhesion of the oxide scale, however, the mechanisms for this important effect remain largely unknown. It is indicated that the presence of yttrium affects the oxidation of Fe-Cr-Y alloys in at least two ways. The reactive element alters the growth mechanism of the oxide scale as evidenced by the marked influence of the reactive element on the oxide scale microstructure. The present results also suggest that reactive-element intermetallic compounds, which internally oxidize in the metal during oxidation, act as sinks for excess vacancies thus inhibiting vacancy condensation at the scale-metal interface and possibly enhancing scale adhesion.

  15. Cluster Models of Metal-Seeded Energetic Materials

    DTIC Science & Technology

    1997-01-31

    cannot be formed by this plasma chemistry because the metals are less reactive. Plasma chemistry reactions for these metals lead to addition to... plasma chemistry method, but they are produced readily from composite sample (metal film on carbon rod) vaporization. Another technique we have used with

  16. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  17. A novel 35 kDa frog liver acid metallophosphatase.

    PubMed

    Szalewicz, A; Radomska, B; Strzelczyk, B; Kubicz, A

    1999-04-12

    The lower molecular weight (35 kDa) acid phosphatase from the frog (Rana esculenta) liver is a glycometalloenzyme susceptible to activation by reducing agents and displaying tartrate and fluoride resistance. Metal chelators (EDTA, 1,10-phenanthroline) inactivate the enzyme reversibly in a time- and temperature-dependent manner. The apoenzyme is reactivated by divalent transition metal cations, i. e. cobalt, zinc, ferrous, manganese, cadmium and nickel to 130%, 75%, 63%, 62%, 55% and 34% of the original activity, respectively. Magnesium, calcium, cupric and ferric ions were shown to be ineffective in this process. Metal analysis by the emission spectrometry method (inductively coupled plasma-atomic emission spectrometry) revealed the presence of zinc, iron and magnesium. The time course of the apoenzyme reactivation, the stabilization effect and the relatively high resistance to oxidizing conditions indicate that the zinc ion is crucial for the enzyme activity. The presence of iron was additionally confirmed by the visible absorption spectrum of the enzyme with a shoulder at 417 nm and by the electron paramagnetic resonance line of high spin iron(III) with geff of 2.4. The active center containing only zinc or both zinc and iron ions is proposed. The frog liver lower molecular weight acid phosphatase is a novel metallophosphatase of lower vertebrate origin, distinct from the mammalian tartrate-resistant, purple acid phosphatases.

  18. Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.

    PubMed

    Estrada-Salas, Rubén E; Valladares, Ariel A

    2009-09-24

    Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.

  19. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  20. Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties

    NASA Astrophysics Data System (ADS)

    Lohmüller, Theobald; Müller, Ulrich; Breisch, Stefanie; Nisch, Wilfried; Rudorf, Ralf; Schuhmann, Wolfgang; Neugebauer, Sebastian; Kaczor, Markus; Linke, Stephan; Lechner, Sebastian; Spatz, Joachim; Stelzle, Martin

    2008-11-01

    A porous metal-insulator-metal sensor system was developed with the ultimate goal of enhancing the sensitivity of electrochemical sensors by taking advantage of redox cycling of electro active molecules between closely spaced electrodes. The novel fabrication technology is based on thin film deposition in combination with colloidal self-assembly and reactive ion etching to create micro- or nanopores. This cost effective approach is advantageous compared to common interdigitated electrode arrays (IDA) since it does not require high definition lithography technology. Spin-coating and random particle deposition, combined with a new sublimation process are discussed as competing strategies to generate monolayers of colloidal spheres. Metal-insulator-metal layer systems with low leakage currents < 10 pA and an insulator thickness as low as 100 nm were obtained at high yield (typically > 90%). We also discuss possible causes of sensor failure with respect to critical fabrication processes. Short circuits which could occur during or as a result of the pore etching process were investigated in detail. Infrared microscopy in combination with focused ion beam etching/SEM were used to reveal a defect mechanism creating interconnects and increased leakage current between the top and bottom electrodes. Redox cycling provides for amplification factors of >100. A general applicability for electrochemical diagnostic assays is therefore anticipated.

  1. Nanostructures nucleation in carbon-metal gaseous phase: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Galiullina, G. M.; Orekhov, N. D.; Stegailov, V. V.

    2018-01-01

    We perform nonequilibrium molecular dynamics simulation of carbon nanoclusters nucleation and early stages of growth from the gaseous phase. We analyze the catalytic effect of iron atoms on the nucleation kinetics and structure of the resultant nanoparticles. Reactive Force Field (ReaxFF) is used in the simulations for the description of bond formation and dissociation during the nucleation process at the nanoscale. The catalytic effect of iron reveals itself even on nanosecond simulation times: iron atoms accelerate the process of clustering but result in less graphitized carbon structures.

  2. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2001-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.

  3. Challenging Density Functional Theory Calculations with Hemes and Porphyrins.

    PubMed

    de Visser, Sam P; Stillman, Martin J

    2016-04-07

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  4. Spreading of mercury droplets on thin silver films at room temperature.

    PubMed

    Be'er, Avraham; Lereah, Yossi; Frydman, Aviad; Taitelbaum, Haim

    2007-05-01

    We study the spreading characteristics of a reactive-wetting system of mercury (Hg) droplets on silver (Ag) films in room temperature. This is done using our recently developed method for reconstructing the dynamical three-dimensional shape of spreading droplets from two-dimensional microscope images [A. Be'er and Y. Lereah, J. Microsc. 208, 148 (2002)]. We study the time evolution of the droplet radius and its contact angle, and find that the spreading process consists of two stages: (i) the "bulk propagation" regime, controlled by chemical reaction on the surface, and (ii) the "fast-flow" regime, which occurs within the metal film as well as on the surface and consists of both reactive and diffusive propagation. We show that the transition time between the two main time regimes depends solely on the thickness of the Ag film. We also discuss the chemical structure of the intermetallic compound formed in this process.

  5. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.

    2018-02-01

    Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

  6. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants.

    PubMed

    Espallargas, N; Fischer, A; Muñoz, A Igual; Mischler, S; Wimmer, M A

    2017-06-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants.

  7. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants

    PubMed Central

    Espallargas, N.; Fischer, A.; Muñoz, A. Igual; Mischler, S.; Wimmer, M.A.

    2017-01-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants. PMID:28808674

  8. Combustion Dynamics of Biocidal Metal-Based Energetic Components in Turbulent Reactive Flows

    DTIC Science & Technology

    2015-11-01

    imperative for successful design of respective metalized energetic systems. This predictive ability must rely on accurate models describing...powders was reported to vary from 900 to 1200 K, depending on milling conditions (Zhang et al. 2010a). Another reactive material designed to...the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 845 II; Baltimore, MD), pp. 972-975. Fuchs

  9. Impact Ignition and Combustion Behavior of Amorphous Metal-Based Reactive Composites

    NASA Astrophysics Data System (ADS)

    Mason, Benjamin; Groven, Lori; Son, Steven

    2013-06-01

    Recently published molecular dynamic simulations have shown that metal-based reactive powder composites consisting of at least one amorphous component could lead to improved reaction performance due to amorphous materials having a zero heat of fusion, in addition to having high energy densities and potential uses such as structural energetic materials and enhanced blast materials. In order to investigate the feasibility of these systems, thermochemical equilibrium calculations were performed on various amorphous metal/metalloid based reactive systems with an emphasis on commercially available or easily manufactured amorphous metals, such as Zr and Ti based amorphous alloys in combination with carbon, boron, and aluminum. Based on the calculations and material availability material combinations were chosen. Initial materials were either mixed via a Resodyn mixer or mechanically activated using high energy ball milling where the microstructure of the milled material was characterized using x-ray diffraction, optical microscopy and scanning electron microscopy. The mechanical impact response and combustion behavior of select reactive systems was characterized using the Asay shear impact experiment where impact ignition thresholds, ignition delays, combustion velocities, and temperatures were quantified, and reported. Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  10. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    DOE PAGES

    Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; ...

    2014-09-14

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η 2:η 2-O 2)–M n+ (M n+ = Sr 2+, Ca 2+, Zn 2+, Lu 3+, Y 3+ and Sc 3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca 2+ and Sr 2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities ofmore » complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca 2+ or Sr 2+ ions were oxidized by an electron acceptor to release O 2, whereas the release of O 2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca 2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less

  11. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    PubMed Central

    Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2014-01-01

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η2:η2-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex. PMID:25242490

  12. Frustrated Lewis pairs: from concept to catalysis.

    PubMed

    Stephan, Douglas W

    2015-02-17

    CONSPECTUS: Frustrated Lewis pair (FLP) chemistry has emerged in the past decade as a strategy that enables main-group compounds to activate small molecules. This concept is based on the notion that combinations of Lewis acids and bases that are sterically prevented from forming classical Lewis acid-base adducts have Lewis acidity and basicity available for interaction with a third molecule. This concept has been applied to stoichiometric reactivity and then extended to catalysis. This Account describes three examples of such developments: hydrogenation, hydroamination, and CO2 reduction. The most dramatic finding from FLP chemistry was the discovery that FLPs can activate H2, thus countering the long-existing dogma that metals are required for such activation. This finding of stoichiometric reactivity was subsequently evolved to employ simple main-group species as catalysts in hydrogenations. While the initial studies focused on imines, subsequent studies uncovered FLP catalysts for a variety of organic substrates, including enamines, silyl enol ethers, olefins, and alkynes. Moreover, FLP reductions of aromatic anilines and N-heterocycles have been developed, while very recent extensions have uncovered the utility of FLP catalysts for ketone reductions. FLPs have also been shown to undergo stoichiometric reactivity with terminal alkynes. Typically, either deprotonation or FLP addition reaction products are observed, depending largely on the basicity of the Lewis base. While a variety of acid/base combinations have been exploited to afford a variety of zwitterionic products, this reactivity can also be extended to catalysis. When secondary aryl amines are employed, hydroamination of alkynes can be performed catalytically, providing a facile, metal-free route to enamines. In a similar fashion, initial studies of FLPs with CO2 demonstrated their ability to capture this greenhouse gas. Again, modification of the constituents of the FLP led to the discovery of reaction systems that demonstrated stoichiometric reduction of CO2 to either methanol or CO. Further modification led to the development of catalytic systems for the reduction of CO2 by hydrosilylation and hydroboration or deoxygenation. As each of these areas of FLP chemistry has advanced from the observation of unusual stoichiometric reactions to catalytic processes, it is clear that the concept of FLPs provides a new strategy for the design and application of main-group chemistry and the development of new metal-free catalytic processes.

  13. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  14. Dredging-related mobilisation of trace metals: a case study in The Netherlands.

    PubMed

    van den Berg, G A; Meijers, G G; van der Heijdt, L M; Zwolsman, J J

    2001-06-01

    Mobilisation of contaminants is an important issue in environmental risk assessment of dredging projects. This study has aimed at identifying the effects of dredging on mobilisation of trace metals (Zn, Cu, Cd and Pb). The intensities and time scales of trace metal mobilisation were investigated during an experimental dredging project conducted under field conditions. The loss of contaminated dredge spoil is mainly reflected by increasing levels of trace metals in the suspended matter, dissolved trace metal concentrations in the water column are not significantly influenced by the dredging activities. This indicates a strong binding mechanism of trace metals to the solid phase or a fast redistribution over sorptive phases in response to oxidation of e.g. trace metal sulphides. Given the differences in levels of reactive phases (Mn, Fe, sulphides and organic matter) between the riverine suspended matter and the sediments, changes in the levels of these parameters in the suspended matter upon dredging may give information on the processes influencing the behaviour of trace metals and on the potential loss of sediment during dredging operations. Therefore, we recommend to routinely measure these parameters in studies on contaminant behaviour related to dredging activities.

  15. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    PubMed Central

    Vidossich, Pietro; Magistrato, Alessandra

    2014-01-01

    Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM)) simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu) and main group (Mg) metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions. PMID:25006697

  16. Understanding the synthesis, performance, and passivation of metal oxide photocathodes

    NASA Astrophysics Data System (ADS)

    Flynn, Cory James

    Metal oxides are ubiquitous in semiconductor technologies for their ease of synthesis, chemical stability, and tunable optical/electronic properties. These properties are especially important to fabricating efficient photoelectrodes for solar-energy applications. To counter inherent problems in these materials, new strategies were developed and successfully implemented on the widely-utilized p-type semiconductor, NiO. As the size of semiconductor materials shrink, the surface-to-volume ratio increases and surface defects dominate the performance of the materials. Surface defects can alter the optical and electronic characteristics of materials by changing the Fermi level, charge-carrier mobility, and surface reactivity. We first present a strategy to increase the electrical mobility of mesoporous metal oxide electrode materials by optimizing shape morphology. Transitioning from nanospheres to hexagonal nanoplatelets increased the charge-carrier mobility by one order of magnitude. We then employed this improved material with a new vapor-phase deposition method termed targeted atomic deposition (TAD) to selectively passivate defect sites in semiconductor nanomaterials. We demonstrated the capabilities of this passivation method by applying a TAD of aluminum onto NiO. By exploiting a temperature-dependent deposition process, we selectively passivated the highly reactive sites in NiO: oxygen dangling bonds associated with Ni vacancies. The TAD treatment completely passivated all measurable surface defects, optically bleached the material, and significantly improved all photovoltaic performance metrics in dye-sensitized solar cells. The technique was proven to be generic to numerous forms of NiO. While the implementation of TAD of Al was successful, the process involved pulsing two precursors to passivate the material. Ideally, the TAD process should require only a single precursor and continuous exposure. We utilized a continuous flow of diborane to perform a TAD of B onto NiO. The TAD process was successfully implemented in a simplified manner. The treatment moderately increased DSSC performance and proved viability with a different vapor-phase precursor.

  17. Optimization of chlorine fluxing process for magnesium removal from molten aluminum

    NASA Astrophysics Data System (ADS)

    Fu, Qian

    High-throughput and low operational cost are the keys to a successful industrial process. Much aluminum is now recycled in the form of used beverage cans and this aluminum is of alloys that contain high levels of magnesium. It is common practice to "demag" the metal by injecting chlorine that preferentially reacts with the magnesium. In the conventional chlorine fluxing processes, low reaction efficiency results in excessive reactive gas emissions. In this study, through an experimental investigation of the reaction kinetics involved in this process, a mathematical model is set up for the purpose of process optimization. A feedback controlled chlorine reduction process strategy is suggested for demagging the molten aluminum to the desired magnesium level without significant gas emissions. This strategy also needs the least modification of the existing process facility. The suggested process time will only be slightly longer than conventional methods and chlorine usage and emissions will be reduced. In order to achieve process optimization through novel designs in any fluxing process, a system is necessary for measuring the bubble distribution in liquid metals. An electro-resistivity probe described in the literature has low accuracy and its capability to measure bubble distribution has not yet been fully demonstrated. A capacitance bubble probe was designed for bubble measurements in molten metals. The probe signal was collected and processed digitally. Higher accuracy was obtained by higher discrimination against corrupted signals. A single-size bubble experiment in Belmont metal was designed to reveal the characteristic response of the capacitance probe. This characteristic response fits well with a theoretical model. It is suggested that using a properly designed deconvolution process, the actual bubble size distribution can be calculated. The capacitance probe was used to study some practical bubble generation devices. Preliminary results on bubble distribution generated by a porous plug in Belmont metal showed bubbles much bigger than those in a water model. Preliminary results in molten aluminum showed that the probe was applicable in this harsh environment. An interesting bubble coalescence phenomenon was also observed in both Belmont metal and molten aluminum.

  18. Performance of two differently designed permeable reactive barriers with sulfate and zinc solutions.

    PubMed

    Pérez, Norma; Schwarz, Alex O; Barahona, Esteban; Sanhueza, Pamela; Diaz, Isabel; Urrutia, Homero

    2018-06-18

    For the first time, this laboratory-scale study evaluates the feasibility of incorporating diffusive exchange in permeable reactive barriers. In order to do this, the performance of two permeable reactive barriers (PRB) with different internal substrate arrangements were compared during the administration of a sulfate solution without metals (for 163 days) and with metals (for 60 days), simulating groundwater contaminated with acid mine drainage (AMD). In order to simulate a traditional PRB, a homogeneous distribution was implemented in the first reactor and the other PRB reactor utilized diffusion-active technology (DAPRB). In the DAPRB, the distribution of the reactive material was interspersed with the conductive material. The measurements in the internal ports showed that transverse gradients of sulfide formed in the DAPRB, causing the diffusion of sulfide from the substrate toward the layer interface, which is where the sulfide reacts by forming complexes with the metal. The DAPRB prevents the microorganisms from direct contact with AMD. This protection caused greater activity (sulfide production). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.

    PubMed

    Stacchiola, Darío J

    2015-07-21

    Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactor's environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalyst's chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.

  20. Enhanced reactive metal wall for dehalogenation of hydrocarbons

    DOEpatents

    Howson, P.E.; Mackenzie, P.D.; Horney, D.P.

    1996-08-06

    A method is provided for remediation of contaminated solutions using a tiered metal wall or column. The tiered metal wall or column has at least three zones with graduated sizes of reducing metal particles. Contaminated solutions pass through the tiered wall or column to dehalogenate contaminant halogenated hydrocarbons. 3 figs.

  1. Enhanced reactive metal wall for dehalogenation of hydrocarbons

    DOEpatents

    Howson, Paul E.; Mackenzie, Patricia D.; Horney, David P.

    1996-01-01

    A method is provided for remediation of contaminated solutions using a tiered metal wall or column. The tiered metal wall or column has at least three zones with graduated sizes of reducing metal particles. Contaminated solutions pass through the tiered wall or column to dehalogenate contaminant halogenated hydrocarbons.

  2. Synthesis of {111} Facet-Exposed MgO with Surface Oxygen Vacancies for Reactive Oxygen Species Generation in the Dark.

    PubMed

    Hao, Ying-Juan; Liu, Bing; Tian, Li-Gang; Li, Fa-Tang; Ren, Jie; Liu, Shao-Jia; Liu, Ying; Zhao, Jun; Wang, Xiao-Jing

    2017-04-12

    Seeking a simple and moderate route to generate reactive oxygen species (ROS) for antibiosis is of great interest and challenge. This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O 2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation. These ROS were confirmed by electron paramagnetic resonance, in situ Raman, and scavenger experiments. Furthermore, heat plays a crucial role for the electron transfer process to accelerate the formation of ·O 2 - , which is verified by temperature kinetic experiments of nitro blue tetrazolium reduction in the dark. Therefore, the presence of oxygen vacancy can be considered as an intensification of the activation process. The designed MgO is acquired in one step via constructing a reduction atmosphere during the combustion reaction process, which has an ability similar to that of noble metal Pd to activate molecular oxygen and can be used as an effective bacteriocide in the dark.

  3. Design principles for electrolytes and interfaces for stable lithium-metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikekar, Mukul D.; Choudhury, Snehashis; Tu, Zhengyuan

    2016-09-08

    The future of electrochemical energy storage hinges on the advancement of science and technology that enables rechargeable batteries that utilize reactive metals as anodes. With specific capacity more than ten times that of the LiC6 anode used in present-day lithium-ion batteries, cells based on Li-metal anodes are of particular interest. Effective strategies for stabilizing the anode in such cells are now understood to be a requirement for progress on exceptional storage technologies, including Li–S and Li–O2 batteries. Multiple challenges—parasitic reactions of Li-metal with liquid electrolytes, unstable and dendritic electrodeposition, and dendrite-induced short circuits—derailed early efforts to commercialize such lithium-metal batteries.more » Here we consider approaches for rationally designing electrolytes and Li-metal/electrolyte interfaces for stable, dendrite-free operation of lithium-metal batteries. On the basis of fundamental understanding of the failure modes of reactive metal anodes, we discuss the key variables that govern the stability of electrodeposition at the Li anode and propose a universal framework for designing stable electrolytes and interfaces for lithium-metal batteries.« less

  4. Design principles for electrolytes and interfaces for stable lithium-metal batteries

    NASA Astrophysics Data System (ADS)

    Tikekar, Mukul D.; Choudhury, Snehashis; Tu, Zhengyuan; Archer, Lynden A.

    2016-09-01

    The future of electrochemical energy storage hinges on the advancement of science and technology that enables rechargeable batteries that utilize reactive metals as anodes. With specific capacity more than ten times that of the LiC6 anode used in present-day lithium-ion batteries, cells based on Li-metal anodes are of particular interest. Effective strategies for stabilizing the anode in such cells are now understood to be a requirement for progress on exceptional storage technologies, including Li-S and Li-O2 batteries. Multiple challenges—parasitic reactions of Li-metal with liquid electrolytes, unstable and dendritic electrodeposition, and dendrite-induced short circuits—derailed early efforts to commercialize such lithium-metal batteries. Here we consider approaches for rationally designing electrolytes and Li-metal/electrolyte interfaces for stable, dendrite-free operation of lithium-metal batteries. On the basis of fundamental understanding of the failure modes of reactive metal anodes, we discuss the key variables that govern the stability of electrodeposition at the Li anode and propose a universal framework for designing stable electrolytes and interfaces for lithium-metal batteries.

  5. On-Surface Synthesis and Reactivity of Functional Organic and Metal-Organic Adsorbates at Metal Surfaces by Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Williams, Christopher Glen

    Surface self-assembly is a promising way to introduce functionality to a surface through design at the molecular level. These self-assembled species allow for new on-surface type reactions to be observed and studied. The experiments described in this thesis demonstrate that the molecules used in self-assembly can potentially lead to interesting synthesis pathways and can be used to explore previously under-researched reaction pathways and surface molecular architecture activity or stability. Alkanes are an unreactive species typically used for driving molecular assembly in surface structures. However, with molecular design, alkanes are capable of reacting on surfaces not typically associated with alkane reactivity. Utilizing high-resolution electron energy loss spectroscopy (HREELS) and octaethylporphyrin, we could observe that dehydrogenation is possible on Cu(100) and Ag(111) surfaces at 500 and 610 K respectively. HREELS revealed that after the dehydrogenation, the molecule undergoes an intramolecular C-C bond formation leading to a tetrabenzo-porphyrin structure. Controls with deposited tetrabenzo-porphyrin were performed to verify the structure. This work provides the first example of dehydrocyclization on Cu(100) and Ag(111) to be analyzed by vibrational spectroscopy. Alkyl species in the 1,3,5-tris-(3,5-diethylphenyl)benzene molecule also undergo a dehydrogenation on Cu(100) and Au(111) at 450 and 500 K. The design of this molecule does not let the intramolecular dehydrocyclization reaction take place, but instead the dehydrogenation leads to intermolecular C-C bond formation between molecular species as noted by the formation of extended structure across the surface. Controls with triphenyl-benzene were done to help characterize the peaks in the spectra and observe varying reactivity when the ethyl groups are absent. The fabrication of uniform single-site metal centers at surfaces is important for higher selectivity in next-generation heterogeneous catalysts. We accomplished this by metal coordination to redox non-innocent dipyridyl-tetrazine ligands. We utilize HREELS to observe a surface confined redox process of dipyridyl-tetrazine with V, Fe, Ag, and Pt. With the formation of the V-dipyridyl-tetrazine species, we are able to see that oxygen exposures to the surface results in a more selective vanadyl species formation as opposed to the multiple binding conformations observed with metallic vanadium nanoparticles. This thesis also reveals that the metal substrate used does not play a passive role with the metal-organic complex. Instead, we are the first to characterize a replacement of the coordinating metal species with atoms from the Ag(111) substrate. This replacement results in the redox reaction between the coordinating metal species and the substrate metal.

  6. Traversing the Links between Heavy Metal Stress and Plant Signaling

    PubMed Central

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  7. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites

    PubMed Central

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m-2 and 0.9±0.1 C m-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701

  8. Chemical composition and reactivity of water on hexagonal Pt-group metal surfaces.

    PubMed

    Shavorskiy, A; Gladys, M J; Held, G

    2008-10-28

    The dissociation behaviour and valence-electronic structure of water adsorbed on clean and oxygen-covered Ru{0001}, Rh{111}, Pd{111}, Ir{111} and Pt{111} surfaces has been studied by high-resolution X-ray photoelectron spectroscopy with the aim of identifying similarities and trends within the Pt-group metals. On average, we find higher reactivity for the 4d metals (Ru, Rh, Pd) as compared to 5d (Ir, Pt), which is correlated with characteristic shifts in the 1b(1) and 3a(1) molecular orbitals of water. Small amounts of oxygen (< 0.2 ML) induce dissociation of water on all five surfaces, for higher coverages (> 0.25 ML) only intact water is observed. Under UHV conditions these higher coverages can only be reached on the 4d metals, the 5d metals are, therefore, not passivated.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myneni, Satish C. B.; Fein, Jeremy; Mishra, Bhoopesh

    Bacteria are ubiquitous in a wide-range of low temperature aqueous systems, and can strongly affect the distribution and transport of metals and radionuclides in the environment. However, the role of metal adsorption onto bacteria, via the reactive cell wall functional groups, has been largely overlooked. Previous macroscale metal sorption, and XAS studies have shown that carboxyl and phosphoryl functional groups to be the important metal binding groups on bacterial cell walls and the sulfhydryl groups were not considered. The goal of our investigation was to evaluate the density of the sulfhydryl sites on different bacterial cell membranes that are commonmore » to soil systems, the binding affinities of these reactive groups towards Hg, and how this binding modifies the speciation of Hg in the natural waters.« less

  10. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    PubMed

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  11. Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  12. Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  13. 2,4-dinitrophenylhydrazine carbonyl assay in metal-catalysed protein glycoxidation.

    PubMed

    Stefek, M; Trnkova, Z; Krizanova, L

    1999-01-01

    Using an experimental in vitro glycation model, long-term incubations of bovine serum albumin with glucose (fructose) resulted in a significant increase in protein content of 2,4-dinitrophenylhydrazine (DNPH)-reactive carbonyl groups, which could be strongly inhibited by anaerobiosis and metal chelation. The pattern of yields of the protein-bound DNPH was not in accordance with that of the sugar-derived carbonyls determined as the ketoamine Amadori product. In spite of the fact that the contribution of the final advanced glycation end-products to the total DNPH-reactivity of glycation-altered protein remains unclear, the present results stress the need of oxidative steps in formation of most of the DNPH-reactive carbonyl compounds generated by glycation. The results provide evidence that, in protein glycoxidation, the DNPH assay is selective enough to discriminate between protein-bound carbonyls produced by metal-catalysed oxidations and those formed in the early glycation steps.

  14. Carbon Nanotube Synthesis in a Flame with Independently Prepared Laser-Ablated Catalyst Particles

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Berger, Gordon M.; Ticich, Thomas M.

    2003-01-01

    Laser ablation has been used ex situ to create metal nanoparticles for introduction into a reactive pyrolysis flame. By prior synthesis of the metal nanoparticles, the effects of the reactive gases can be clearly separated from the pyrolysis chemistry of a solvent carrier, as when nebulized solutions are used. Moreover, varying reactivity issues associated with particle growth and size are bypassed. Our results show that Fe selectively reacts with CO to produce nanotubes, whereas Ni selectively reacts with C2H2 to produce nanofibers. These observations are interpreted through the donation and withdrawal of electron density between the adsorbate's molecular orbitals and surface atoms of the metal nanoparticle. The rate of reaction of Ni with only C2H2 is found to be greater than the rate with C2H2 and CO. This suggests that CO inhibits the Ni-catalyzed reaction.

  15. Laser Flash Photolysis Generation of High-Valent Transition Metal-Oxo Species: Insights from Kinetic Studies in Real Time

    PubMed Central

    Zhang, Rui; Newcomb, Martin

    2010-01-01

    Conspectus High-valent transition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time-scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 × 103 M−1 s−1 for a corrole-iron(V)-oxo species and 1.6 × 106 M−1 s−1 for the putative tetramesitylporphyrin-iron(V)-oxo perchlorate species. The latter rate constant is 25,000 times larger than that for oxidation of cis-cyclooctene by iron(IV)-oxo perchlorate tetramesitylporphyrin radical cation, which is the thermodynamically favored electronic isomer of the putative iron(V)-oxo species. The LFP-determined rate constants can be used to implicate the transient oxidants in catalytic reactions under turnover conditions where high-valent species are not observable. Similarly, the observed reactivities of the putative porphyrin-iron(V)-oxo species might explain the unusually high reactivity of oxidants produced in the cytochrome P450 enzymes, heme-thiolate enzymes that are capable of oxidizing unactivated carbon-hydrogen bonds in substrates so rapidly that iron-oxo intermediates have not been detected under physiological conditions. PMID:18278877

  16. Laser flash photolysis generation of high-valent transition metal-oxo species: insights from kinetic studies in real time.

    PubMed

    Zhang, Rui; Newcomb, Martin

    2008-03-01

    High-valenttransition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 x 10(3) M(-1) s(-1) for a corrole-iron(V)-oxo species and 1.6 x 10(6) M(-1) s(-1) for the putative tetramesitylporphyrin-iron(V)-oxo perchlorate species. The latter rate constant is 25,000 times larger than that for oxidation of cis-cyclooctene by iron(IV)-oxo perchlorate tetramesitylporphyrin radical cation, which is the thermodynamically favored electronic isomer of the putative iron(V)-oxo species. The LFP-determined rate constants can be used to implicate the transient oxidants in catalytic reactions under turnover conditions where high-valent species are not observable. Similarly, the observed reactivities of the putative porphyrin-iron(V)-oxo species might explain the unusually high reactivity of oxidants produced in the cytochrome P450 enzymes, heme-thiolate enzymes that are capable of oxidizing unactivated carbon-hydrogen bonds in substrates so rapidly that iron-oxo intermediates have not been detected under physiological conditions.

  17. Removal of Cr(VI) from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron

    PubMed Central

    Siciliano, Alessio

    2016-01-01

    The chromium pollution of water is an important environmental and health issue. Cr(VI) removal by means of metallic iron is an attractive method. Specifically, nanoscopic zero valent iron (NZVI) shows great reactivity, however, its applicability needs to be further investigated. In the present paper, NZVI was supported on MgO grains to facilitate the treatments for remediation of chromium-contaminated waters. The performances and mechanisms of the developed composite, in the removal of hexavalent chromium, were investigated by means of batch and continuous tests. Kinetic studies, under different operating conditions, showed that reduction of Cr(VI) could be expressed by a pseudo second-order reaction kinetic. The reaction rate increased with the square of Fe(0) amount, while it was inversely proportional to the initial chromium concentration. The process performance was satisfactory also under uncontrolled pH, and a limited influence of temperature was observed. The reactive material was efficiently reusable for many cycles without any regeneration treatment. The performances in continuous tests were close to 97% for about 80 pore volume of reactive material. PMID:28773785

  18. Removal of Cr(VI) from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron.

    PubMed

    Siciliano, Alessio

    2016-08-06

    The chromium pollution of water is an important environmental and health issue. Cr(VI) removal by means of metallic iron is an attractive method. Specifically, nanoscopic zero valent iron (NZVI) shows great reactivity, however, its applicability needs to be further investigated. In the present paper, NZVI was supported on MgO grains to facilitate the treatments for remediation of chromium-contaminated waters. The performances and mechanisms of the developed composite, in the removal of hexavalent chromium, were investigated by means of batch and continuous tests. Kinetic studies, under different operating conditions, showed that reduction of Cr(VI) could be expressed by a pseudo second-order reaction kinetic. The reaction rate increased with the square of Fe(0) amount, while it was inversely proportional to the initial chromium concentration. The process performance was satisfactory also under uncontrolled pH, and a limited influence of temperature was observed. The reactive material was efficiently reusable for many cycles without any regeneration treatment. The performances in continuous tests were close to 97% for about 80 pore volume of reactive material.

  19. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators.

    PubMed

    Badalyan, Artavazd; Stahl, Shannon S

    2016-07-21

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1–2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2′-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2′-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how electron-proton-transfer mediators, such as TEMPO, may be used in combination with first-row transition metals, such as copper, to achieve efficient two-electron electrochemical processes, thereby introducing a new concept for the development of non-precious-metal electrocatalysts.

  20. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    NASA Astrophysics Data System (ADS)

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1-2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how electron-proton-transfer mediators, such as TEMPO, may be used in combination with first-row transition metals, such as copper, to achieve efficient two-electron electrochemical processes, thereby introducing a new concept for the development of non-precious-metal electrocatalysts.

  1. Fabrication of a terahertz quantum-cascade laser with a double metal waveguide based on multilayer GaAs/AlGaAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Pavlov, A. Yu.

    2016-10-15

    The Postgrowth processing of GaAs/AlGaAs multilayer heterostructures for terahertz quantumcascade lasers (QCLs) are studied. This procedure includes the thermocompression bonding of In–Au multilayer heterostructures with a doped n{sup +}-GaAs substrate, mechanical grinding, and selective wet etching of the substrate, and dry etching of QCL ridge mesastripes through a Ti/Au metallization mask 50 and 100 μm wide. Reactive-ion-etching modes with an inductively coupled plasma source in a BCl{sub 3}/Ar gas mixture are selected to obtain vertical walls of the QCL ridge mesastripes with minimum Ti/Au mask sputtering.

  2. Functionalized white graphene - Copper oxide nanocomposite: Synthesis, characterization and application as catalyst for thermal decomposition of ammonium perchlorate.

    PubMed

    Paulose, Sanoop; Raghavan, Rajeev; George, Benny K

    2017-05-15

    Reactivity is of great importance for metal oxide nanoparticles (MONP) used as catalysts and advanced materials, but seeking for higher reactivity seems to be conflict with high chemical stability required for MONP. There is direct balance between reactivity and stability of these MONP. This could be acheived for metal oxide by dispersing them in a substrate. Here, we report a simple, efficient and high-yield process for the production of copper oxide (CuO) nanoparticles dispersed on a chemically inert material, few-layer hexagonal boron nitride (h-BN) with a thickness around 1.7nm and lateral dimensions mostly below 200nm. The mechano-chemical reaction which take place at atmospheric pressure and room temperature involves a urea assisted exfoliation of pristine boron nitride. Copper oxide nanoparticles dispersed on the surface of these few layered h-BN reduced its tendency for aggregation. The optimum concentration of CuO:h-BN was found to be 2:1 which shows highest catalytic activity for the thermal decomposition of ammonium perchlorate. The high catalytic activity of the in situ synthesized CuO-h-BN composite may be attributed to uniform distribution of CuO nanoparticles on the few layered h-BN which in turn provide a number of active sites on the surface due to non aggregation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Reactive sputter deposition of metal oxide nanolaminates

    NASA Astrophysics Data System (ADS)

    Rubin Aita, Carolyn

    2008-07-01

    We discuss the reactive sputter deposition of metal oxide nanolaminates on unheated substrates using four archetypical examples: ZrO2 Al2O3, HfO2 Al2O3, ZrO2 Y2O3, and ZrO2 TiO2. The pseudobinary bulk phase diagrams corresponding to these nanolaminates represent three types of interfaces. I. Complete immiscibility (ZrO2 Al2O3 and HfO2 Al2O3). II. Complete miscibility (ZrO2 Y2O3). III. Limited miscibility without a common end-member lattice (ZrO2 TiO2). We found that, although reactive sputter deposition is a far-from-equilibrium process, thermodynamic considerations strongly influence both phase formation within layers and at interfaces. We show that pseudobinary phase diagrams can be used to predict interfacial cation mixing in the nanolaminates. However, size effects must be considered to predict specific structures. In the absence of pseudoepitaxy, size effects play a significant role in determining the nanocrystalline phases that form within a layer (e.g. tetragonal ZrO2, tetragonal HfO2, and orthorhombic HfO2) and at interfaces (e.g. monoclinic (Zr,Ti)O2). These phases are not bulk standard temperature and pressure phases. Their formation is understood in terms of self-assembly into the lowest energy structure in individual critical nuclei.

  4. Criticality safety strategy and analysis summary for the fuel cycle facility electrorefiner at Argonne National Laboratory West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.

    1996-05-01

    As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less

  5. 40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Calcium Lithium Magnesium Potassium Sodium Zinc powder Other reactive metals and metal hydrides Potential... concentrated waste in Groups 1-A or 1-B Water Calcium Lithium Metal hydrides Potassium SO2Cl2, SOCl2, PCl3...

  6. 40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Calcium Lithium Magnesium Potassium Sodium Zinc powder Other reactive metals and metal hydrides Potential... concentrated waste in Groups 1-A or 1-B Water Calcium Lithium Metal hydrides Potassium SO2Cl2, SOCl2, PCl3...

  7. 40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Calcium Lithium Magnesium Potassium Sodium Zinc powder Other reactive metals and metal hydrides Potential... concentrated waste in Groups 1-A or 1-B Water Calcium Lithium Metal hydrides Potassium SO2Cl2, SOCl2, PCl3...

  8. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  9. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films reduces the activation volume for yielding.« less

  10. The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.

    PubMed

    Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2003-06-16

    The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.

  11. Analysis of Al diffusion processes in TiN barrier layers for the application in silicon solar cell metallization

    NASA Astrophysics Data System (ADS)

    Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.

    2016-07-01

    An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.

  12. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review.

    PubMed

    Shahzad, Babar; Tanveer, Mohsin; Che, Zhao; Rehman, Abdul; Cheema, Sardar Alam; Sharma, Anket; Song, He; Rehman, Shams Ur; Zhaorong, Dong

    2018-01-01

    Industrialization and urbanization have posed serious threats to the environment. Excessive release of heavy metals from industrial effluents and overuse of pesticides in modern agriculture are limiting crop production by polluting environment and deteriorating food quality. Sustaining food quality under heavy metals and pesticide stress is crucial to meet the increasing demands for food. 24-Epibrassinolide (EBL), a ubiquitously occurring plant growth hormone shows great potential to alleviate heavy metals and pesticide stress in plants. This review sums up the potential role of EBL in ameliorating heavy metals and pesticide toxicity in plants extensively. EBL application increases plant's overall growth, biomass accumulation and photosynthetic efficiency by the modulation of numerous biochemical and physiological processes under heavy metals and pesticide stress. In addition, EBL scavenges reactive oxygen species (ROS) by triggering the production of antioxidant enzymes such as SOD, CAT, POX etc. EBL also induces the production of proline and soluble proteins that helps in maintaining osmotic potential and osmo-protection under both heavy metals and pesticide stress. At the end, future needs of research about the application of 24-epibrassinolide have also been discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Unique phase identification of trimetallic copper iron manganese oxygen carrier using simultaneous differential scanning calorimetry/thermogravimetric analysis during chemical looping combustion reactions with methane

    DOE PAGES

    Benincosa, William; Siriwardane, Ranjani; Tian, Hanjing; ...

    2017-07-05

    Chemical looping combustion (CLC) is a promising combustion technology that generates heat and sequestration-ready carbon dioxide that is undiluted by nitrogen from the combustion of carbonaceous fuels with an oxygen carrier, or metal oxide. This process is highly dependent on the reactivity and stability of the oxygen carrier. The development of oxygen carriers remains one of the major barriers for commercialization of CLC. Synthetic oxygen carriers, consisting of multiple metal components, have demonstrated enhanced performance and improved CLC operation compared to single metal oxides. However, identification of the complex mixed metal oxide phases that form after calcination or during CLCmore » reactions has been challenging. Without an understanding of the dominant metal oxide phase, it is difficult to determine reaction parameters and the oxygen carrier reduction pathway, which are necessary for CLC reactor design. This is particularly challenging for complex multi-component oxygen carriers such as copper iron manganese oxide (CuFeMnO 4). This study aims to differentiate the unique phase formation of a highly reactive, complex trimetallic oxygen carrier, CuFeMnO 4, from its single and bimetallic counterparts using thermochemical and reaction data obtained from simultaneous differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) during temperature programmed reductions (TPR) with methane. DSC/TGA experiments during TPR with methane provides heat flow data and corresponding reaction rate data that can be used to determine reaction routes and mechanisms during methane reduction. Furthermore, non-isothermal TPR data provides the advantage of distinguishing reactions that may not be observable in isothermal analysis. The detailed thermochemical and reaction data, obtained during TPR with methane, distinguished a unique reduction pathway for CuFeMnO 4 that differed from its single and bimetallic counterparts. This is remarkable since X-ray diffraction (XRD) data alone could not be used to distinguish the reactive trimetallic oxide phase due to overlapping peaks from various single and mixed metal oxides. The unique reduction pathway of CuFeMnO 4 was further characterized in this study using in-situ XRD TPR with methane to determine changes in the dominant trimetallic phase that influenced the thermochemical and reaction rate data.« less

  14. Unique phase identification of trimetallic copper iron manganese oxygen carrier using simultaneous differential scanning calorimetry/thermogravimetric analysis during chemical looping combustion reactions with methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benincosa, William; Siriwardane, Ranjani; Tian, Hanjing

    Chemical looping combustion (CLC) is a promising combustion technology that generates heat and sequestration-ready carbon dioxide that is undiluted by nitrogen from the combustion of carbonaceous fuels with an oxygen carrier, or metal oxide. This process is highly dependent on the reactivity and stability of the oxygen carrier. The development of oxygen carriers remains one of the major barriers for commercialization of CLC. Synthetic oxygen carriers, consisting of multiple metal components, have demonstrated enhanced performance and improved CLC operation compared to single metal oxides. However, identification of the complex mixed metal oxide phases that form after calcination or during CLCmore » reactions has been challenging. Without an understanding of the dominant metal oxide phase, it is difficult to determine reaction parameters and the oxygen carrier reduction pathway, which are necessary for CLC reactor design. This is particularly challenging for complex multi-component oxygen carriers such as copper iron manganese oxide (CuFeMnO 4). This study aims to differentiate the unique phase formation of a highly reactive, complex trimetallic oxygen carrier, CuFeMnO 4, from its single and bimetallic counterparts using thermochemical and reaction data obtained from simultaneous differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) during temperature programmed reductions (TPR) with methane. DSC/TGA experiments during TPR with methane provides heat flow data and corresponding reaction rate data that can be used to determine reaction routes and mechanisms during methane reduction. Furthermore, non-isothermal TPR data provides the advantage of distinguishing reactions that may not be observable in isothermal analysis. The detailed thermochemical and reaction data, obtained during TPR with methane, distinguished a unique reduction pathway for CuFeMnO 4 that differed from its single and bimetallic counterparts. This is remarkable since X-ray diffraction (XRD) data alone could not be used to distinguish the reactive trimetallic oxide phase due to overlapping peaks from various single and mixed metal oxides. The unique reduction pathway of CuFeMnO 4 was further characterized in this study using in-situ XRD TPR with methane to determine changes in the dominant trimetallic phase that influenced the thermochemical and reaction rate data.« less

  15. Process for removing polychlorinated and polybrominated biphenyls from oils

    DOEpatents

    Orlett, M.J.

    The invention is a relatively simple and inexpensive process for detoxifying oils contaminated with PCBs and/or PBBs. The process is especially suitable for processing lubricating oils containing such contaminants. In one aspect of the invention, the contaminated lubricating oil is contacted with a particulate reagent comprising adsorbent particles carrying a dispersion of metallic sodium. The solid sodium reagent converts the PCB and/or PBB contaminants to environmentally acceptable products and also converts various sodium-reactive additives normally present in lubricating oil to reaction products. The adsorbent reagent retains most of the products and is easily separated from the detoxified oil. The detoxified oil may be fortified with various additives functionally equivalent to those removed during detoxification.

  16. Stack configurations for tubular solid oxide fuel cells

    DOEpatents

    Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.

    2010-08-31

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  17. Closed end regeneration method

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2006-06-27

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  18. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles

    PubMed Central

    Abdal Dayem, Ahmed; Hossain, Mohammed Kawser; Lee, Soo Bin; Kim, Kyeongseok; Saha, Subbroto Kumar; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2017-01-01

    Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices. PMID:28075405

  19. Synthesis of a potential semiconductor neutron detector crystal LiGa(Se/Te)2: materials purity and compatibility effects

    NASA Astrophysics Data System (ADS)

    Stowe, Ashley C.; Morrell, J.; Battacharya, Pijush; Tupitsyn, Eugene; Burger, Arnold

    2011-09-01

    Lithium containing AIBIIICVI semiconductors are being considered as alternative materials for room temperature neutron detection. One of the primary challenges in growing a high quality crystal of such a material is the reactivity of lithium metal. The presence of nitrides, oxides, and a variety of alkali and alkaline earth metal impurities prevent pure synthesis and truncate crystal growth by introducing multiple nucleation centers during growth. Multiple lithium metal purification methods have been investigated which ultimately raised the metal purity to 99.996%. Multi-cycle vacuum distillation removed all but 40 ppm of metal impurities in lithium metal. LiGa(Se/Te)2 was then synthesized with the high purity lithium metal by a variety of conditions. Lithium metal reacts violently with many standard crucible materials, and thermodynamic studies were undertaken to insure that an appropriate crucible choice was made, with high purity iron and boron nitride crucibles being the least reactive practical materials. Once conditions were optimized for synthesis of the chalcopyrite, vertical Bridgman crystal growth resulted in red crystals. The optical, electronic, and thermodynamic properties were collected.

  20. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late transition metals. Although coordinated to a metal, the antimony centers in these complexes retain residual Lewis acidity, as evidenced by their ability to participate in anion binding. Anion binding events at the antimony center have been shown by structural, spectroscopic, and theoretical studies to perturb the antimony-transition metal interaction and in some cases to trigger reactivity at the metal center. Coordinated Sb(III) centers in polydentate ligands have also been found to readily undergo two-electron oxidation, generating strongly Lewis acidic Sb(V) centers in the coordination sphere of the metal. Theoretical studies suggest that oxidation of the coordinated antimony center induces an umpolung of the antimony-metal bond, resulting in depletion of electron density at the metal center. In addition to elucidating the fundamental coordination and redox chemistry of antimony-containing ambiphilic ligands, our work has demonstrated that these unusual behaviors show promise for use in a variety of applications. The ability of coordinated antimony centers to bind anions has been exploited for sensing applications, in which anion coordination at antimony leads to a colorimetric response via a change in the geometry about the metal center. In addition, the capacity of antimony Lewis acids to modulate the electron density of coordinated metals has proved to be key in facilitating photochemical activation of M-X bonds as well as antimony-centered redox-controlled catalysis.

  1. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    NASA Astrophysics Data System (ADS)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  2. Germanium Lift-Off Masks for Thin Metal Film Patterning

    NASA Technical Reports Server (NTRS)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  3. Mineral Commodity Profiles -- Rubidium

    USGS Publications Warehouse

    Butterman, W.C.; Reese, R.G.

    2003-01-01

    Overview -- Rubidium is a soft, ductile, silvery-white metal that melts at 39.3 ?C. One of the alkali metals, it is positioned in group 1 (or IA) of the periodic table between potassium and cesium. Naturally occurring rubidium is slightly radioactive. Rubidium is an extremely reactive metal--it ignites spontaneously in the presence of air and decomposes water explosively, igniting the liberated hydrogen. Because of its reactivity, the metal and several of its compounds are hazardous materials, and must be stored and transported in isolation from possible reactants. Although rubidium is more abundant in the earth?s crust than copper, lead, or zinc, it forms no minerals of its own, and is, or has been, produced in small quantities as a byproduct of the processing of cesium and lithium ores taken from a few small deposits in Canada, Namibia, and Zambia. In the United States, the metal and its compounds are produced from imported raw materials by at least one company, the Cabot Corporation (Cabot, 2003). Rubidium is used interchangeably or together with cesium in many uses. Its principal application is in specialty glasses used in fiber optic telecommunication systems. Rubidium?s photoemissive properties have led to its use in night-vision devices, photoelectric cells, and photomultiplier tubes. It has several uses in medical science, such as in positron emission tomographic (PET) imaging, the treatment of epilepsy, and the ultracentrifugal separation of nucleic acids and viruses. A dozen or more other uses are known, which include use as a cocatalyst for several organic reactions and in frequency reference oscillators for telecommunications network synchronization. The market for rubidium is extremely small, amounting to 1 to 2 metric tons per year (t/yr) in the United States. World resources are vast compared with demand.

  4. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution.

    PubMed

    Wernet, Ph; Kunnus, K; Josefsson, I; Rajkovic, I; Quevedo, W; Beye, M; Schreck, S; Grübel, S; Scholz, M; Nordlund, D; Zhang, W; Hartsock, R W; Schlotter, W F; Turner, J J; Kennedy, B; Hennies, F; de Groot, F M F; Gaffney, K J; Techert, S; Odelius, M; Föhlisch, A

    2015-04-02

    Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon-hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16 - 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

  5. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution

    NASA Astrophysics Data System (ADS)

    Wernet, Ph.; Kunnus, K.; Josefsson, I.; Rajkovic, I.; Quevedo, W.; Beye, M.; Schreck, S.; Grübel, S.; Scholz, M.; Nordlund, D.; Zhang, W.; Hartsock, R. W.; Schlotter, W. F.; Turner, J. J.; Kennedy, B.; Hennies, F.; de Groot, F. M. F.; Gaffney, K. J.; Techert, S.; Odelius, M.; Föhlisch, A.

    2015-04-01

    Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon-hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16,17,18,19 and 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

  6. Four Versatile Metal Reactions.

    ERIC Educational Resources Information Center

    Hearn, Barbara C.

    1988-01-01

    Presents several strategies to teach the reactivity of metal elements. Stresses the safety aspects of these demonstrations using an overhead projector and a plexiglass safety shield. Lists some of the essential learnings desired in these activities. Includes a chart of the activity series of metals. (CW)

  7. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A.

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueledmore » cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)« less

  8. Supersonic Bare Metal Cluster Beams. Final Report

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1997-10-14

    A major portion of the project involved elucidating the relation between reactivity and the electronic structure of transition-metal (TM) clusters of 2--200 atoms, which required the construction and continuous development of two principal apparati; the Fourier Transform-Ion Cyclotron Resonance (FT-ICR) apparatus, and Ultraviolet Photoelectron Spectroscopy (UPS). Together, these machines have enabled the most detailed probing of the structure and chemical reactivity of TM clusters. Clusters of all the transition metals were included in these studies. Fundamental aspects in chemisorption, reactivity, and heterogeneous catalysis have also become better understood as a result of these experiments for important classes of systems such as H{sub 2}, CO, and CO{sub 2} adsorbed onto clusters of many of the metals listed above. In particular, a correlation was found between reactivity of H{sub 2} with Fe, Co, and Ni clusters and differences between the cluster IP and EA. As recounted in a previous technical report, the DOE`s role in the initial discovery of fullerenes at Rice was central, and from the start investigations were made into metal atoms trapped in the fullerenes cage. More recently, the authors have discovered that 2--4 atoms of La, Y, or Sc can be produced by laser vaporization of composite graphite/metal-oxide disks. This work was largely motivated by the prospects of using such endohedral TM metals for their catalytic activity without the well-known difficulties of effective support media and lack of control over particle size. Thus, while it will certainly be important to discover ways to efficiently scale up production (e.g., the solar generation method explored with DOE support), the efforts have concentrated more on characterization, purification, and manipulation of doped fullerenes. For the past two years, much of the group`s effort has involved the production, purification, and characterization of carbon nanotubes.

  9. Experimental determination of sorption in fractured flow systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  10. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  11. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  12. First Principles Simulations of Ice Nucleation at Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Michaelides, Angelos

    2005-03-01

    Ice nucleation at solid surfaces is of relevance to countless scientific and technological processes. In particular the nucleation of ice nano-crystals on metal surfaces is often a key first step in cloud formation and corrosion [1]. Yet unfortunately this remains one of the most poorly understood natural phenomena; severely lacking in atomic level understanding. Here, we discuss detailed density functional theory studies aimed at putting our understanding of ice nucleation at metals on a much firmer footing. Specifically the properties of H2O hexamers - the smallest `building blocks' of ice - adsorbed on a number of close-packed transition metal surfaces have been examined. We find that the competing influences of substrate reactivity and hexamer-substrate epitaxial mismatch conspire to yield a rich variety of (novel) hexameric ice structures, some of which have been observed by recent scanning tunnelling microscopy experiments [2]. [1] H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, (Kluwer, Dordrecht, 2003). [2] K. Morgenstern, et al., (To be published).

  13. Impurity gettering in silicon using cavities formed by helium implantation and annealing

    DOEpatents

    Myers, Jr., Samuel M.; Bishop, Dawn M.; Follstaedt, David M.

    1998-01-01

    Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer.

  14. Impurity gettering in silicon using cavities formed by helium implantation and annealing

    DOEpatents

    Myers, S.M. Jr.; Bishop, D.M.; Follstaedt, D.M.

    1998-11-24

    Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer. 4 figs.

  15. Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences.

    PubMed

    Schmidt, Grégory; Gallon, Salomé; Esnouf, Stéphane; Bourgoin, Jean-Philippe; Chenevier, Pascale

    2009-01-01

    On the tube: The coupling of diazonium ions onto single-walled carbon nanotubes is shown to proceed through a radical chain reaction by kinetic analysis of the absorption peak drop (see picture). Radical species are also revealed by ESR. Metallic (m) nanotubes play a special catalytic role in the functionalization of semiconducting (sc) nanotubes.Due to its simplicity and versatility, diazonium coupling is the most widely used method for carbon nanotube (CNT) functionalization to increase CNT processability and add new functionalities. Yet, its mechanism is so far mostly unknown. Herein, we use kinetic analysis to shed light on this complex mechanism. A free-radical chain reaction is revealed by absorption spectroscopy and ESR. Metallic CNTs are shown to play an unexpected catalytic role. The step determining the selectivity towards metallic CNTs is identified by a Hammett correlation. A mechanistic model is proposed that predicts reactivity and selectivity as a function of diazonium electrophilicity and metallic-to-semiconducting CNT ratio, thus opening perspectives of controlled high-yield functionalization and purification.

  16. Backside contacted field effect transistor array for extracellular signal recording.

    PubMed

    Ingebrandt, S; Yeung, C K; Staab, W; Zetterer, T; Offenhäusser, A

    2003-04-01

    A new approach to the design of field-effect transistor (FET) sensors and the use of these FETs in detecting extracellular electrophysiological recordings is reported. Backside contacts were engineered by deep reactive ion etching and a gas phase boron doping process of the holes using planar diffusion sources. The metal contacts were designed to fit on top of the bonding pads of a standard industrial 22-pin DIL (dual inline) chip carrier. To minimise contact resistance, the metal backside contacts of the chips were electroless plated with gold. The chips were mounted on top of the bonding pads using a standard flip-chip process and a fineplacer unit previously described. Rat embryonic myocytes were cultured on these new devices (effective growth area 6 x 6 mm(2)) in order to confirm their validity in electrophysiological recording. Copyright 2003 Elsevier Science B.V.

  17. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application.

    PubMed

    Li, Shaolin; Wang, Wei; Liang, Feipeng; Zhang, Wei-Xian

    2017-01-15

    Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E h , enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E h -controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E h -controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245mg As+226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Microelectrode investigation of the reactions between metallic pipe materials and monochloramine

    EPA Science Inventory

    Water quality parameters (i.e., pH, dissolved oxygen [DO], and phosphate) are known to impact metal reactivity with disinfectants and therefore corrosion and metals release into drinking water supplies. With various water utilities switching from free chlorine to chloramines for ...

  19. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOEpatents

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  20. Change in the Classroom.

    ERIC Educational Resources Information Center

    Rosner, Marc Alan

    1997-01-01

    Presents numismatic experiments that cover a range of topics that tie physical science and chemistry to society and history. Discusses measuring length; measuring mass; metals, alloys, and amalgams; reactivity of metals and electrochemistry; reactions of metals with acids; money to burn; magnetic properties of coins; inertia; refraction;…

  1. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  2. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    PubMed

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  3. Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.

    PubMed

    Yang, Hao; Makaroff, Katherine; Paz, Nicholas; Aitha, Mahesh; Crowder, Michael W; Tierney, David L

    2015-06-16

    Matrix metalloproteinase-1 (MMP-1) plays crucial roles in disease-related physiologies and pathological processes in the human body. We report here solution studies of MMP-1, including characterization of a series of mutants designed to bind metal in either the catalytic site or the structural site (but not both). Circular dichroism and fluorescence spectroscopy of the mutants demonstrate the importance of the structural Zn(II) in maintaining both secondary and tertiary structure, while UV-visible, nuclear magnetic resonance, electron paramagnetic resonance, and extended X-ray absorption fine structure show its presence influences the catalytic metal ion's coordination number. The mutants allow us to demonstrate convincingly the preparation of a mixed-metal analogue, Co(C)Zn(S)-MMP-1, with Zn(II) in the structural site and Co(II) in the catalytic site. Stopped-flow fluorescence of the native form, Zn(C)Zn(S)-MMP-1, and the mixed-metal Co(C)Zn(S)-MMP-1 analogue shows that the internal fluorescence of a nearby Trp residue is modulated with catalysis and can be used to monitor reactivity under a number of conditions, opening the door to substrate profiling.

  4. Effect of Cu(2+)-complexation on the scavenging ability of chrysin towards photogenerated singlet molecular oxygen (O2((1)Δg)). Possible biological implications.

    PubMed

    Muñoz, Vanesa A; Ferrari, Gabriela V; Montaña, M Paulina; Miskoski, Sandra; García, Norman A

    2016-09-01

    Visible-light irradiation of aqueous-ethanolic solutions of Riboflavin (Rf) in the individual presence of the flavone chrysin (Chr) and its complex with Cu(2+) ([Chr2Cu]; 2:1 L:M) generates singlet molecular oxygen O2((1)Δg), that concomitantly interact with both flavone derivatives. Overall (kt) and reactive (kr) rate constants in the order of 10(7)M(-1)s(-1) were determined for the process. Metal chelation greatly enhances the scavenging ability of [Chr2Cu] towards O2((1)Δg) through a mechanism dominated, in >80%, by the physical component. In this way, practically all O2((1)Δg) is deactivated by the complex without significant loss of the quencher. The isolated flavone quenches O2((1)Δg) in a prevailing reactive fashion. The very low value exhibited by [Chr2Cu] for the kr/kt ratio constitutes a positive quality for antioxidative protectors in biological media, where elevated local concentration and high reactivity of significant molecules make them initial targets for O2((1)Δg) aggression. Finally, two interesting properties in the field of free radicals scavenging by [Chr2Cu] must be mentioned. In first place metal chelation itself, in the obvious sense of free metal ion withdrawal from the oxidizable medium, prevents the initiation of a free radical-mediated oxidation processes through mechanisms of Fenton or lipid peroxidation. In addition, the incorporation of Cu adds to [Chr2Cu] the ability of a free radical scavenger, already described for similar Cu-chelate compounds. This collection of beneficial properties positions the complex as a remarkably promising bioprotector towards ROS-mediated oxidation. A quantification of the efficiency on the initial anti-oxidative effect exerted by Chr and [Chr2Cu] towards tryptophan was carried out. The amino acid is an archetypal molecular model, commonly employed to monitor oxidative degradation of proteinaceous media. It was efficiently photoprotected against O2((1)Δg)-mediated photooxidation by [Chr2Cu]. Copyright © 2016. Published by Elsevier B.V.

  5. Passive Reactive Berm to Provide Low Maintenance Lead Containment at Active Small Arms Firing Ranges: Field Demonstration

    DTIC Science & Technology

    2012-08-01

    These factors can be related to more directly measured parameters such as pH, alkalinity, and total dissolved solids (TDS) (Vaccari 1992). In any...efficiency of 37 to 100 percent can be achieved through the process of hydroxyapatite dissolution and hydroxypyromorphite [Pb10(PO4)6(OH)2...potential metals leaving the range, TSS was an additional parameter that was evaluated. Research performed by the Engineer Research and Development

  6. Low Temperature, Low Pressure Fabrication of Ultra High Temperature Ceramics (UHTCs)

    DTIC Science & Technology

    2006-08-01

    preceramic polymers that convert by pyrolysis to SiC , SiOC or C. Potential polymeric precursors to ZrB2 and ZrC were not selected, because they were not...limited extent, C/ SiC composite substrates using preceramic and precarbon polymers combined with inert fillers and/or reactive metals. The evolved... SiC is an obvious example for powder mixed with a preceramic polymer binder to achieve the desired low-temperature processing. The polymeric

  7. In-situ method to remove iron and other metals from solution in groundwater down gradient from permeable reactive barrier

    DOEpatents

    Carpenter, Clay E.; Morrison, Stanley J.

    2001-07-03

    This invention is directed to a process for treating the flow of anaerobic groundwater through an aquifer with a primary treatment media, preferably iron, and then passing the treated groundwater through a second porous media though which an oxygenated gas is passed in order to oxygenate the dissolved primary treatment material and convert it into an insoluble material thereby removing the dissolved primary treatment material from the groundwater.

  8. Flocculation, heavy metals (Cu, Pb, Zn) and the sand-mud transition on the Adriatic continental shelf, Italy

    USGS Publications Warehouse

    George, D.A.; Hill, P.S.; Milligan, T.G.

    2007-01-01

    Across a limited depth range (5-10 m) on many continental shelves, the dominant sediment size changes from sand to mud. This important boundary, called the sand-mud transition (SMT), separates distinct benthic habitats, causes a significant change in acoustic backscatter, represents a key facies change, and delimits more surface-reactive mud from less surface-reactive sand. With the goal of improving dynamical understanding of the SMT, surficial sediments were characterized across two SMTs on the Adriatic continental shelf of Italy. Geometric mean diameter, specific surface area (SSA), mud fraction (<63 ??m) and heavy metal concentrations were all measured. The SMT related to the Tronto River is identified between 15 and 20 m water depth while the SMT associated with the Pescara River varies between 15 and 25 m water depth. The sediment properties correlate with a new, process-based sedimentological parameter that quantifies the fraction of the sediment in the seabed that was delivered as flocs. These correlations suggest that floc dynamics exert strong influence over sediment textural properties and metal concentrations. Relative constancy in the depth of the SMT along this portion of the margin and its lack of evolution over a period during which sediment input to the margin has dramatically decreased suggest that on the Adriatic continental shelf energy is the dominant control on the depth of the SMT. ?? 2006 Elsevier Ltd. All rights reserved.

  9. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in situ resource utilization on the Moon and Mars. In parallel, there may be commercial applications here on earth, such as new green technologies for metals extraction and for treatment of hazardous waste, e.g., fixing heavy metals.

  10. High rate DC-reactive sputter deposition of Y 2O 3 film on the textured metal substrate for the superconducting coated conductor

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Sup; Park, Chan; Ko, Rock-Kil; Shi, Dongqui; Chung, Jun-Ki; Ha, Hong-Soo; Park, Yu-Mi; Song, Kyu-Jeong; Youm, Do-Jun

    2005-10-01

    Y2O3 film was directly deposited on Ni-3at%W substrate by DC reactive sputtering. DC reactive sputtering was carried out using metallic Y target and water vapor for oxidizing the elements of metallic target on the substrate. The detailed conditions of DC reactive sputtering for depositions of Y2O3 films were investigated. The window of water vapor for proper growth of Y2O3 films was determined by sufficient oxidations of the Y2O3 films and the non-oxidation of the target surface, which was required for high rate sputtering. The window turned out to be fairly wide in the chamber used. As the sputtering power was raised, the deposition rate increased without narrowing the window. The fabricated Y2O3 films showed good texture qualities and surface morphologies. The YBCO film deposited directly on the Y2O3 buffered Ni-3at%W substrate showed Tc, Ic (77 K, self field), and Jc (77 K, self field) of 89 K, 64 A/cm and 1.1 MA/cm2, respectively.

  11. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

    DOE PAGES

    Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; ...

    2015-09-22

    The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observationmore » is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4d xz and 4d yz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.« less

  12. Photoredox Catalysis Unlocks Single-Electron Elementary Steps in Transition Metal Catalyzed Cross-Coupling

    PubMed Central

    2016-01-01

    Since initial reports, cross-coupling technologies employing photoredox catalysts to access novel reactivity have developed with increasing pace. In this Outlook, prominent examples from the recent literature are organized on the basis of the elementary transformation enabled by photoredox catalysis and are discussed in the context of relevant historical precedent in stoichiometric organometallic chemistry. This treatment allows mechanistic similarities inherent to odd-electron transition metal reactivity to be generalized to a set of lessons for future reaction development. PMID:27280163

  13. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  14. A Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride (SF6)

    DTIC Science & Technology

    2014-07-01

    BST) is a complex oxide material with ferroic properties which has been considered for applications ranging from non-volatile memory to microwave...utilizing self-aligned etching to create metal-insulator-metal (MIM) varactors . As part of this method we employed reactive ion etching (RIE) to remove BST...of BST removed vs. etch time for Ar:SF6. .........................................................4 Figure 3. SEM cross-section of varactor showing

  15. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.

  16. Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provo, James L., E-mail: jlprovo@verizon.net

    2016-07-15

    Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surfacemore » (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard electron beam cold crucible evaporation techniques, and after deposition the Er film was hydrided with D{sub 2} gas using a standard nonair exposure hydriding technique. All processing was conducted in an all metal ion pumped ultrahigh vacuum system. Results showed that e-beam deposition of films studied onto Al substrates could be successfully performed, if a permeation barrier of Al{sub 2}O{sub 3} from 500 to 1000 nm was made prior to thin film deposition up to temperatures of 500 °C for 1-h. Hydrides also, could be produced with full gas/metal atomic ratios of ∼2.0 as evidenced by the ErD{sub 2} films produced. Thus, the use of a simple permeation barrier of Al{sub 2}O{sub 3} on Al substrates prior to additional metal film deposition was proven to be a successful method of producing both thin metal films and hydride films of various types for many applications.« less

  17. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr 64Ni 36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  18. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauro, N. A., E-mail: namauro@noctrl.edu; Vogt, A. J.; Derendorf, K. S.

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)« less

  19. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    NASA Astrophysics Data System (ADS)

    Gadea, C.; Marani, D.; Esposito, V.

    2017-02-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolamine (MDEA) used as nucleophilic ligand. The function of the ligand is to control the fast hydrolysis/condensation reactions in water for the metal alkoxide before deposition, leading to formation of the TiO2 only after the jet process. The evolution of the titanium-ligand interactions at increasing amount of MDEA is here elucidated in terms of long term stability. The ink printability parameter (Z) is optimized, resulting in a reactive solution with printability, Z, >1, and chemical stability up to 600 h. Thin titanium oxide films (<500 nm) are proved on different substrates. Pure anatase phase is obtained after annealing at low temperature (ca. 400 °C).

  20. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    DOEpatents

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  1. Development of Techniques for Investigating Energy Contributions to Target Deformation and Penetration During Reactive Projectile Hypervelocity Impact

    DTIC Science & Technology

    2011-07-01

    a reactive and a non reactive shaped charge liner is in the energy release of the combustion ... reactive shaped charge jets the reaction is explained and the possible energy release of the metal combustion is estimated. Addition- ally the...Charges In a shaped charge a -in most cases- conical cavity in the explosive is covered with a liner. If the explosive detonates , a small portion

  2. The role of ligand covalency in the selective activation of metalloenediynes for Bergman cyclization.

    PubMed

    Porter, Meghan R; Zaleski, Jeffrey M

    2016-01-08

    One of the key concerns with the development of radical-generating reactive therapeutics is the ability to control the activation event within a biological environment. To that end, a series of quinoline-metal-loenediynes of the form M( QuiED )·2Cl (M = Cu(II), Fe(II), Mg(II), or Zn(II)) and their independently synthesized cyclized analogs have been prepared in an effort to elucidate Bergman cyclization (BC) reactivity differences in solution. HRMS(ESI) establishes a solution stoichiometry of 1:1 metal to ligand with coordination of one chloride counter ion to the metal center. EPR spectroscopy of Cu( QuiED )·2Cl and Cu ( QuiBD )·2Cl denotes an axially-elongated tetragonal octahedron ( g ║ > g ⊥ > 2.0023) with a d x 2 - y 2 ground state, while the electronic absorption spectrum reveals a pπ Cl→Cu(II) LMCT feature at 19,000 cm -1 , indicating a solution structure with three nitrogens and a chloride in the equatorial plane with the remaining quinoline nitrogen and solvent in the axial positions. Investigations into the BC activity reveal formation of the cyclized product from the Cu(II) and Fe(II) complexes after 12 h at 45 °C in solution, while no product is observed for the Mg(II) or Zn(II) complexes under identical conditions. The basis of this reactivity difference has been found to be a steric effect leading to metal-ligand bond elongation and thus, a retardation of solution reactivity. These results demonstrate how careful consideration of ligand and complex structure may allow for a degree of control and selective activation of these reactive agents.

  3. Vacuum-based surface modification of organic and metallic substrates

    NASA Astrophysics Data System (ADS)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous-containing polymer surfaces through ion implantation of trimethyl phosphine onto PE is presented. Air exposure of the resulting P-implanted PE leads to the surface selective oxidation of phosphorous moieties. P-containing hydrocarbon films are used to model the surface chemical changes of P-containing polymers exposed to AO. Results indicate that oxidized phosphorous species protect the film from AO-induced erosion. The low temperature (<150 K) oxidation of nitrided iron surfaces exposed to oxygen reveal the formation of iron oxynitride (FexNyO z, nitrosonium ions (NO+) as well as nitrite/nitrito and nitrate type species. The production of nitrite/nitrito and nitrate species is taken as evidence for the existence of oxygen insertion chemistry into the iron nitride lattice under these low temperature oxidation conditions. Upon annealing the oxidized iron nitride surface, nitrogen desorbs exclusively as nitric oxide (NO).

  4. Chemically Adjusting Plasma Temperature, Energy and Reactivity (CAPTEAR) Method Using NOx and Combustion for Selective Synthesis of Sc3N@C80 Metallic Nitride Fullerenes

    PubMed Central

    Stevenson, Steven; Thompson, M. Corey; Coumbe, H. Louie; Mackey, Mary A.; Coumbe, Curtis E.; Phillips, J. Paige

    2008-01-01

    Goals are (1) to selectively synthesize MNFs in lieu of empty-cage fullerenes (e.g., C60, C70) without compromising MNF yield and (2) to test our hypothesis that MNFs possess a different set of optimal formation parameters than empty-cage fullerenes. In this work, we introduce a novel approach for the selective synthesis of metallic nitride fullerenes (MNFs). This new method is “Chemically Adjusting Plasma Temperature, Energy and Reactivity” (CAPTEAR). The CAPTEAR approach with copper nitrate hydrate uses NOx vapor from NOx generating solid reagents, air and combustion to “tune” the temperature, energy and reactivity of the plasma environment. The extent of temperature, energy and reactive environment is stoichiometrically varied until optimal conditions for selective MNF synthesis are achieved. Analysis of soot extracts indicate that percentages of C60 and Sc3N@C80 are inversely related, whereas the percentages of C70 and higher empty-cage C2n fullerenes are largely unaffected. Hence, there may be a “competitive link” in the formation and mechanism of C60 and Sc3N@C80. Using this CAPTEAR method, purified MNFs (96% Sc3N@C80, 12 mg) have been obtained in soot extracts without a significant penalty in milligram yield when compared to control soot extracts (4% Sc3N@C80, 13 mg Sc3N@C80). The CAPTEAR process with Cu(NO3)2·2.5 H2O uses an exothermic nitrate moiety to suppress empty-cage fullerene formation, whereas Cu functions as a catalyst additive to offset the reactive plasma environment and boost the Sc3N@C80 MNF production. PMID:18052069

  5. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2004-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.

  6. Increasing the Stability of Metal-Organic Frameworks

    DOE PAGES

    Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai

    2014-01-01

    Metal-organic frameworks (MOFs) are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapsemore » upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.« less

  7. How Is Fe-S Cluster Formation Regulated?

    PubMed

    Mettert, Erin L; Kiley, Patricia J

    2015-01-01

    Iron-sulfur (Fe-S) clusters are fundamental to numerous biological processes in most organisms, but these protein cofactors can be prone to damage by various oxidants (e.g., O2, reactive oxygen species, and reactive nitrogen species) and toxic levels of certain metals (e.g., cobalt and copper). Furthermore, their synthesis can also be directly influenced by the level of available iron in the environment. Consequently, the cellular need for Fe-S cluster biogenesis varies with fluctuating growth conditions. To accommodate changes in Fe-S demand, microorganisms employ diverse regulatory strategies to tailor Fe-S cluster biogenesis according to their surroundings. Here, we review the mechanisms that regulate Fe-S cluster formation in bacteria, primarily focusing on control of the Isc and Suf Fe-S cluster biogenesis systems in the model bacterium Escherichia coli.

  8. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks.

    PubMed

    Momeni, Mohammad R; Cramer, Christopher J

    2018-05-22

    Recent experimental studies on Zr IV -based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.

  9. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    PubMed Central

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  10. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  12. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    PubMed Central

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  13. Analysis of Al diffusion processes in TiN barrier layers for the application in silicon solar cell metallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumm, J.; Samadi, H.; Chacko, R. V.

    An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less

  14. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.

    PubMed

    Gorgas, Nikolaus; Kirchner, Karl

    2018-06-19

    Sustainable processes that utilize nontoxic, readily available, and inexpensive starting materials for organic synthesis constitute a major objective in modern chemical research. In this context, it is highly important to perform reactions under catalytic conditions and to replace precious metal catalysts by earth-abundant nonprecious metal catalysts. In particular, iron and manganese are promising candidates, as these are among the most abundant metals in the earth's crust, are inexpensive, and exhibit a low environmental impact. As far as chemical processes are concerned, hydrogenations and acceptorless alcohol dehydrogenation (AAD), sometimes in conjunction with hydrogen autotransfer reactions, are becoming important areas of research. While the first is a very important synthetic process representing a highly atom-efficient and clean methodology, AAD is an oxidant-free, environmentally benign reaction where carbonyl compounds together with dihydrogen as a valuable product and/or reactant (autotransfer) and water are formed. Carbonyl compounds, typically generated in situ, can be converted into other useful organic materials such as amines, imines, or heterocycles. In 2016 several groups, including ours, discovered for the first time the potential of hydride biscarbonyl Mn(I) complexes bearing strongly bound PNP pincer ligands or related tridentate ligands as highly effective and versatile catalysts for hydrogenation, transfer hydrogenation, and dehydrogenation reactions. These complexes are isoelectronic analogues of the respective hydride monocarbonyl Fe(II) PNP compounds and display similar reactivities but also quite divergent behavior depending on the coligands. Moreover, manganese compounds show improved long-term stability and high robustness toward harsh reaction conditions. In light of these recent achievements, this Account contrasts Mn(I) and Fe(II) PNP pincer catalysts, highlighting specific features that are connected to particular structural and electronic properties. It also addresses opportunities and restrictions in their catalytic applications. Apart from classical hydrogenations, it also covers the most recent developments of these catalysts for AAD resulting in the synthesis of complex organic molecules such as heterocycles via multicomponent reactions. The ambivalent hydrogen-based redox chemistry provides access to a variety of synthetically valuable reductive and oxidative coupling reactions. Hence, these catalysts cover a broad scope of catalytic applications and exhibit activities and productivities that are becoming competitive with those of well-established precious metal catalysts. The knowledge about the nature and characteristics of active Mn(I)- and Fe(II)-based systems paves the way for conceptually and mechanistically well-founded research, which might lead to further developments and the discovery of novel catalysts extending the current scope and limitations of reactivity. It underlines that base metal catalysts are beginning to challenge precious metal catalysts and contributes to the further advancement of waste-free sustainable base metal catalysis.

  15. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Tao, Jinhui

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more thanmore » those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.« less

  16. Fundamental study of an industrial reactive HPPMS (Cr,Al)N process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Brögelmann, T.; Kruppe, N. C.; Engels, M.; von Keudell, A.; Hecimovic, A.; Ludwig, A.; Grochla, D.; Banko, L.

    2017-07-01

    In this work, a fundamental investigation of an industrial (Cr,Al)N reactive high power pulsed magnetron sputtering (HPPMS) process is presented. The results will be used to improve the coating development for the addressed application, which is the tool coating for plastics processing industry. Substrate-oriented plasma diagnostics and deposition of the (Cr,Al)N coatings were performed for a variation of the HPPMS pulse frequency with values from f = 300 Hz to f = 2000 Hz at constant average power P = 2.5 kW and pulse length ton = 40 μs. The plasma was investigated using an oscilloscope, an intensified charge coupled device camera, phase-resolved optical emission spectroscopy, and an energy-dispersive mass spectrometer. The coating properties were determined by means of scanning electron microscopy, glow discharge optical emission spectroscopy, cantilever stress sensors, nanoindentation, and synchrotron X-ray diffraction. Regarding the plasma properties, it was found that the average energy within the plasma is nearly constant for the frequency variation. In contrast, the metal to gas ion flux ratio is changed from JM/JG = 0.51 to JM/JG = 0.10 for increasing frequency. Regarding the coating properties, a structure refinement as well as lower residual stresses, higher universal hardness, and a changing crystal orientation from (111) to (200) were observed at higher frequencies. By correlating the plasma and coating properties, it can be concluded that the change in the gas ion to metal ion flux ratio results in a competitive crystal growth of the film, which results in changing coating properties.

  17. Microgravity

    NASA Image and Video Library

    2001-01-24

    A 3 mm-diameter droplet of aluminum oxide, heated to 2371 deg. C (4,300 deg. F), is suspended in midair by six acoustic transducers. A gas jet (from the nozzle below the drop) helps position the drop for study, and a 500-watt laser melts the sample. Glasses made from aluminum oxide are highly promising for optical transmission and other properties. They are also highly reactive when molten. Containerless processing allows studies of how to form amorphous (glassy) rather than crystalline metal oxides. Credit: Bill Jellison, Containerless Research, Inc.

  18. Visible-light sensitization of vinyl azides by transition-metal photocatalysis.

    PubMed

    Farney, Elliot P; Yoon, Tehshik P

    2014-01-13

    Irradiation of vinyl and aryl azides with visible light in the presence of Ru photocatalysts results in the formation of reactive nitrenes, which can undergo a variety of C-N bond-forming reactions. The ability to use low-energy visible light instead of UV in the photochemical activation of azides avoids competitive photodecomposition processes that have long been a significant limitation on the synthetic use of these reactions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An overview of permeable reactive barriers for in situ sustainable groundwater remediation.

    PubMed

    Obiri-Nyarko, Franklin; Grajales-Mesa, S Johana; Malina, Grzegorz

    2014-09-01

    Permeable reactive barriers (PRBs) are one of the innovative technologies widely accepted as an alternative to the 'pump and treat' (P&T) for sustainable in situ remediation of contaminated groundwater. The concept of the technology involves the emplacement of a permeable barrier containing reactive materials across the flow path of the contaminated groundwater to intercept and treat the contaminants as the plume flows through it under the influence of the natural hydraulic gradient. Since the invention of PRBs in the early 1990s, a variety of materials has been employed to remove contaminants including heavy metals, chlorinated solvents, aromatic hydrocarbons, and pesticides. Contaminant removal is usually accomplished via processes such as adsorption, precipitation, denitrification and biodegradation. Despite wide acknowledgment, there are still unresolved issues about long term-performance of PRBs, which have somewhat affected their acceptability and full-scale implementation. The current paper presents an overview of the PRB technology, which includes the state of art, the merits and limitations, the reactive media used so far, and the mechanisms employed to transform or immobilize contaminants. The paper also looks at the design, construction and the long-term performance of PRBs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Photochemical pathways of the dimeric, mixed dimer, and monomeric sulfophthalocyanines of cobalt(III) and iron(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraudi, G.

    1979-04-01

    The photochemical reactivity of the dimeric, mixed dimer, and monomeric sulfophthalocyanines of cobalt (III) and iron (II) was investigated by steady-state and flash irradiations. The dimeric species photodissociated into sulfophthalocyanine radicals which were coordinated to either Co(III) or Fe(II) metal centers. Reactions of such intermediates were investigated by interception with alcohols and O/sub 2/. Also, photoredox reactions were detected with monomeric acidocobalt(III) sulfophtahlocyanines. These processes produce the oxidation of the acido ligands (Cl/sup -/, Br/sup -/, N/sub 3//sup -/, I/sup -/) and the reduction of the metal center. The photoredox dissociation was also investigated by using mixed dimers of themore » cobalt sulfophthalocyanines with Cr(bpy)/sub 3//sup 3 +/ and Ru(bpy)/sub 3//sup 2 +/. The photogeneration of sulfophthalocyanine radicals was observed as a general reaction which was produced by excitation of either the Cr(bby)/sub 3//sup 3 +/ or Ru(bpy)/sub 3//sup 2 +/ units in the mixed dimer. The nature of the reactive excited states involved in the various photochemical reactions of the sulfophthalocyanines of Co(II), Co(III), Cu(II), and Fe(II) is discussed.« less

  1. Mechanistic Insights into Photocatalyzed Hydrogen Desorption from Palladium Surfaces Assisted by Localized Surface Plasmon Resonances.

    PubMed

    Spata, Vincent A; Carter, Emily A

    2018-04-24

    Nanoparticles synthesized from plasmonic metals can absorb low-energy light, producing an oscillation/excitation of their valence electron density that can be utilized in chemical conversions. For example, heterogeneous photocatalysis can be achieved within heterometallic antenna-reactor complexes (HMARCs), by coupling a reactive center at which a chemical reaction occurs to a plasmonic nanoparticle that acts as a light-absorbing antenna. For example, HMARCs composed of aluminum antennae and palladium (Pd) reactive centers have been demonstrated recently to catalyze selective hydrogenation of acetylene to ethylene. Here, we explore within a theoretical framework the rate-limiting step of hydrogen photodesorption from a Pd surface-crucial to achieving partial rather than full hydrogenation of acetylene-to understand the mechanism behind the photodesorption process within the HMARC assembly. To properly describe electronic excited states of the metal-molecule system, we employ embedded complete active space self-consistent field and n-electron valence state perturbation theory to second order within density functional embedding theory. The results of these calculations reveal that the photodesorption mechanism does not create a frequently invoked transient negative ion species but instead enhances population of available excited-state, low-barrier pathways that exhibit negligible charge-transfer character.

  2. Fabrication and Characterization of Thermite Reactive Nano-Laminates

    NASA Astrophysics Data System (ADS)

    Lee, Evyn; Maria, Jon-Paul; Matveev, Sergey; Dlott, Dana; Rost, Christina; Hopkins, Patrick

    2017-06-01

    Results of fabrication and characterization of thermite reactive nano-laminates (RNLs) via magnetron sputtering will be presented. The samples were created in a bilayer geometry of a metal and metal oxide at varied thicknesses to alter the amount of interfacial area readily available to participate in the reaction. Two systems were investigated to characterize the RNL system: Al/CuO and Zr/CuO. The Al/CuO system was fabricated at a constant overall stack thickness of nearly one micron with varied numbers of bilayers (one to seven). Thermal conductivity and interface conductance of the Al/CuO system were investigated via time-domain thermoreflectance (TDTR). The Zr/CuO system was also fabricated at varying bilayer thickness and was characterized via high throughput shock studies to characterize the oxygen transfer process at short time scales. Emissions were obtained via a flyer plate impact at velocities ranging 0.5- 2 km s-1 at durations of 4-16 ns. The reaction impact threshold was found to be at velocities lower than 0.7(+/-0.05) km s-1. At impact velocities above the threshold, the reaction onset is seen at approximately 1 μs. ARO MURI: Multimodal energy flow at atomically engineered interfaces.

  3. General aspects of metal toxicity.

    PubMed

    Kozlowski, H; Kolkowska, P; Watly, J; Krzywoszynska, K; Potocki, S

    2014-01-01

    This review is focused on the general mechanisms of metal toxicity in humans. The possible and mainly confirmed mechanisms of their action are discussed. The metals are divided into four groups due to their toxic effects. First group comprises of metal ions acting as Fenton reaction catalyst mainly iron and copper. These types of metal ions participate in generation of the reactive oxygen species. Metals such as nickel, cadmium and chromium are considered as carcinogenic agents. Aluminum, lead and tin are involved in neurotoxicity. The representative of the last group is mercury, which may be considered as a generally toxic metal. Fenton reaction is a naturally occurring process producing most active oxygen species, hydroxyl radical: Fe(2+) + He2O2 ↔ Fe(3+) + OH(-) + OH(•) It is able to oxidize most of the biomolecules including DNA, proteins, lipids etc. The effect of toxicity depends on the damage of molecules i.e. production site of the hydroxyl radical. Chromium toxicity depends critically on its oxidation state. The most hazardous seems to be Cr(6+) (chromates) which are one of the strongest inorganic carcinogenic agents. Cr(6+) species act also as oxidative agents damaging among other nucleic acids. Redox inactive Al(3+), Cd(2+) or Hg(2+) may interfere with biology of other metal ions e.g. by occupying metal binding sites in biomolecules. All these aspects will be discussed in the review.

  4. MICROBIAL CHARACTERIZATION OF MANURE BASED PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    The implementation of permeable reactive barriers (PRB) provides a viable option for the remediation of contaminants of environmental significance such as dissolved metals (i.e., chromium), chlorinated solvents, and nitrate/ammonia. The designs of PRBs are usually based on the a...

  5. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater.

    PubMed

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-25

    The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+)) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Method of melting metals to reduce contamination from crucibles

    DOEpatents

    Banker, John G.; Wigginton, Hubert L.

    1977-01-01

    Contamination of metals from crucible materials during melting operations is reduced by coating the interior surface of the crucible with a ceramic non-reactive with the metallic charge and disposing a metal liner formed from a portion of the metallic charge within the coated crucible. The liner protects the ceramic coating during loading of the remainder of the charge and expands against the ceramic coating during heat-up to aid in sintering the coating.

  7. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    PubMed

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. On the existence of free and metal complexed sulfide in the Arabian Sea and its oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Theberge, Stephen M.; Luther, George W.; Farrenkopf, Anna M.

    Free hydrogen sulfide was not detected in the oxygen minimum zone (OMZ) of the Arabian Sea during legs D1 (September 1992) and D3 (October-November 1992) of the Netherlands Indian Ocean Programme (NIOP). However, sulfide complexed to metals was detected by cathodic stripping square wave voltammetry at 2 nM or less throughout the water column. A slight increase in sulfide was measured in the OMZ relative to the surface waters and may be related to sulfur release from organic matter during decomposition. Sulfide complexes are of two general types at low concentrations of metal and sulfide. First, metals such as Mn, Fe, Co and Ni form complexes with bisulfide ion (HS -) that are kinetically labile to dissociation and are reactive. Second, metals such as Cu and Zn form multinuclear complexes with sulfide (S 2-) that are kinetically inert to dissociation; thus, they are less reactive than free (bi)sulfide and the labile metal bisulfide complexes. Zinc and copper sulfide complexes are important in allowing hydrogen sulfide to persist in seawater which contains measurable oxygen.

  9. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    PubMed

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  11. Some issues for blast from a structural reactive material solid

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2018-07-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  12. Observation of a periodic runaway in the reactive Ar/O{sub 2} high power impulse magnetron sputtering discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayestehaminzadeh, Seyedmohammad, E-mail: ses30@hi.is, E-mail: shayesteh@mch.rwth-aachen.de; Arnalds, Unnar B.; Magnusson, Rögnvaldur L.

    2015-11-15

    This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O{sub 2} discharge in order to sustain the plasmamore » in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.« less

  13. Some issues for blast from a structural reactive material solid

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2018-03-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  14. Nanoceramic -Metal Matrix Composites by In-Situ Pyrolysis of Organic Precursors in a Liquid Melt

    NASA Astrophysics Data System (ADS)

    Sudarshan; Surappa, M. K.; Ahn, Dongjoon; Raj, Rishi

    2008-12-01

    We show the feasibility of introducing a dispersion of a refractory ceramic phase into metals by stirring a powder of an organic polymer into a magnesium melt and having it convert into a ceramic within the melt by in-situ pyrolysis of the polymer. The pyrolysis is a highly reactive process, accompanied by the evolution of hydrogen, which disperses the ceramic phase into nanoscale constituents. In the present experiments, a polysilazane-based precursor, which is known to yield an amorphous ceramic constituted from silicon, carbon, and nitrogen, was used. Five weight percent of the precursor (which has a nominal ceramic yield of 75 to 85 wt pct) produced a twofold increase in the room-temperature yield strength and reduced the steady-state strain rate at 450 °C by one to two orders of magnitude, relative to pure magnesium. This polymer-based in-situ process (PIP) for processing metal-matrix composites (MMCs) is likely to have great generality, because many different kinds of organic precursors, for producing oxide, carbides, nitrides, and borides, are commercially available. Also, the process would permit the addition of large volume fractions of the ceramic, enabling the nanostructural design, and production of MMCs with a wide range of mechanical properties, meant especially for high-temperature applications. An important and noteworthy feature of the present process, which distinguishes it from other methods, is that all the constituents of the ceramic phase are built into the organic molecules of the precursor ( e.g., polysilazanes contain silicon, carbon, and nitrogen); therefore, a reaction between the polymer and the host metal is not required to produce the dispersion of the refractory phase.

  15. A Benchmarking Initiative for Reactive Transport Modeling Applied to Subsurface Environmental Applications

    NASA Astrophysics Data System (ADS)

    Steefel, C. I.

    2015-12-01

    Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.

  16. Zinc and cadmium complexes of a plant metallothionein under radical stress: desulfurisation reactions associated with the formation of trans-lipids in model membranes.

    PubMed

    Torreggiani, Armida; Domènech, Jordi; Orihuela, Ruben; Ferreri, Carla; Atrian, Sílvia; Capdevila, Mercè; Chatgilialoglu, Chryssostomos

    2009-06-08

    Metallothioneins (MTs) are sulfur-rich proteins capable of binding metal ions to give metal clusters. The metal-MT aggregates used in this work were Zn- and Cd-QsMT, where QsMT is an MT from the plant Quercus suber. Reactions of reductive reactive species (H(*) atoms and e(aq)(-)), produced by gamma irradiation of water, with Zn- and Cd-QsMT were carried out in both aqueous solutions and vesicle suspensions, and were characterized by different approaches. By using a biomimetic model based on unsaturated lipid vesicle suspensions, the occurrence of tandem protein/lipid damage was shown. The reactions of reductive reactive species with methionine residues and/or sulfur-containing ligands afford diffusible sulfur-centred radicals, which migrate from the aqueous phase to the lipid bilayer and transform the cis double bond of the oleate moiety into the trans isomer. Tailored experiments allowed the reaction mechanism to be elucidated in some detail. The formation of sulfur-centred radicals is accompanied by the modification of the metal-QsMT complexes, which were monitored by various spectroscopic and spectrometric techniques (Raman, CD, and ESI-MS). Attack of the H(*) atom and e(aq)(-) on the metal-QsMT aggregates can induce significant structural changes such as partial deconstruction and/or rearrangement of the metal clusters and breaking of the protein backbone. Substantial differences were observed in the behaviour of the Zn- and Cd-QsMT aggregates towards the reactive species, depending on the different folding of the polypeptide in these two cases.

  17. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    PubMed

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  18. PRB CHEMISTRY CASE STUDY: DENVER FEDERAL CENTER

    EPA Science Inventory

    The Denver Federal Center permeable reactive barrier is a funnel-and-gate system with four reactive gates, each separated by up to about 120 m of metal sheet pile. In this study, ground water sampling, core collection, and solid phase characterization studies were carried out in...

  19. Responses to Oxidative and Heavy Metal Stresses in Cyanobacteria: Recent Advances

    PubMed Central

    Cassier-Chauvat, Corinne; Chauvat, Franck

    2014-01-01

    Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk. PMID:25561236

  20. Multifunctional interphase

    NASA Astrophysics Data System (ADS)

    Rosy, Noked, Malachi

    2018-04-01

    Realization of rechargeable batteries with alkali metal anodes is challenged by their high reactivity and dendritic growth. Now, an alloy-based, artificial solid electrolyte interphase is shown to allow smooth metal deposition, enhance interfacial charge transfer, protect against parasitic reactions and offer extra energy storage.

  1. Green synthesis of Ag nanoparticles using plant metabolites

    NASA Astrophysics Data System (ADS)

    Filippi, Antonio; Mattiello, Alessandro; Musetti, Rita; Petrussa, Elisa; Braidot, Enrico; Marchiol, Luca

    2017-08-01

    Nano-biotechnology is one of the most promising areas in modern nanoscience and technology. In this emerging area of research, nanoparticles (NPs) play an important role since the large-scale production and huge numbers of utilization. Gold and silver nanoparticles are among the most extensively studied nanomaterials, since they show high stability and low chemical reactivity in comparison to other metals. They are commonly synthesized using toxic chemical reducing agents able to reduce metal ions into uncharged NPs and/or high energy supplied procedures. The most commonly used method for the synthesis of NPs requires toxic chemicals like N,N-dimethyl formamide (DMF) or trisodium citrate, but recently a green technique, based on natural reducing agents, has been suggested to substitute the nature-unfriendly chemical methods. Many scientific works put in evidence the efficacy of plant extracts to reduce metal salts into the respective NPs, but this process lacks a clear control of NPs shapes and dimensions, since many different metabolites present into the extracts could participate to the process. This paper aims to clarify the reducing action of single pure natural compounds usually present in plant tissues and to obtain a stable and reproducible protocol for NPs synthesis.

  2. Scandium Terminal Imido Chemistry.

    PubMed

    Lu, Erli; Chu, Jiaxiang; Chen, Yaofeng

    2018-02-20

    Research into transition metal complexes bearing multiply bonded main-group ligands has developed into a thriving and fruitful field over the past half century. These complexes, featuring terminal M═E/M≡E (M = transition metal; E = main-group element) multiple bonds, exhibit unique structural properties as well as rich reactivity, which render them attractive targets for inorganic/organometallic chemists as well as indispensable tools for organic/catalytic chemists. This fact has been highlighted by their widespread applications in organic synthesis, for example, as olefin metathesis catalysts. In the ongoing renaissance of transition metal-ligand multiple-bonding chemistry, there have been reports of M═E/M≡E interactions for the majority of the metallic elements of the periodic table, even some actinide metals. In stark contrast, the largest subgroup of the periodic table, rare-earth metals (Ln = Sc, Y, and lanthanides), have been excluded from this upsurge. Indeed, the synthesis of terminal Ln═E/Ln≡E multiple-bonding species lagged behind that of the transition metal and actinide congeners for decades. Although these species had been pursued since the discovery of a rare-earth metal bridging imide in 1991, such a terminal (nonpincer/bridging hapticities) Ln═E/Ln≡E bond species was not obtained until 2010. The scarcity is mainly attributed to the energy mismatch between the frontier orbitals of the metal and the ligand atoms. This renders the putative terminal Ln═E/Ln≡E bonds extremely reactive, thus resulting in the formation of aggregates and/or reaction with the ligand/environment, quenching the multiple-bond character. In 2010, the stalemate was broken by the isolation and structural characterization of the first rare-earth metal terminal imide-a scandium terminal imide-by our group. The double-bond character of the Sc═N bond was unequivocally confirmed by single-crystal X-ray diffraction. Theoretical investigations revealed the presence of two p-d π bonds between the scandium ion and the nitrogen atom of the imido ligand and showed that the dianionic [NR] 2- imido ligand acts as a 2σ,4π electron donor. Subsequent studies of the scandium terminal imides revealed highly versatile and intriguing reactivity of the Sc═N bond. This included cycloaddition toward various unsaturated bonds, C-H/Si-H/B-H bond activations and catalytic hydrosilylation, dehydrofluorination of fluoro-substituted benzenes/alkanes, CO 2 and H 2 activations, activation of elemental selenium, coordination with other transition metal halides, etc. Since our initial success in 2010, and with contributions from us and across the community, this young, vibrant research field has rapidly flourished into one of the most active frontiers of rare-earth metal chemistry. The prospect of extending Ln═N chemistry to other rare-earth metals and/or different metal oxidation states, as well as exploiting their stoichiometric and catalytic reactivities, continues to attract research effort. Herein we present an account of our investigations into scandium terminal imido chemistry as a timely summary, in the hope that our studies will be of interest to this readership.

  3. The insulation performance of reactive parylene films in implantable electronic devices

    PubMed Central

    Seymour, John P.; Elkasabi, Yaseen; Chen, Hsien-yeh; Lahann, Joerg; Kipke, Daryl R.

    2009-01-01

    Parylene-C (poly-chloro-p-xylylene) is an appropriate material for use in an implantable, microfabricated device. It is hydrophobic, conformally deposited, has a low dielectric constant, and superb biocompatibility. Yet for many bioelectrical applications, its poor wet adhesion may be an impassable shortcoming. This research contrasts parylene-C and poly(p-xylylene) functionalized with reactive group X (PPX-X) layers using long-term electrical soak and adhesion tests. The reactive parylene was made of complementary derivatives having aldehyde and aminomethyl side groups (PPX-CHO and PPX-CH2NH2 respectively). These functional groups have previously been shown to covalently react together after heating. Electrical testing was conducted in saline at 37°C on interdigitated electrodes with either parylene-C or reactive parylene as the metal layer interface. Results showed that reactive parylene devices maintained the highest impedance. Heat-treated PPX-X device impedance was 800% greater at 10 kHz and 70% greater at 1Hz relative to heated parylene-C controls after 60 days. Heat treatment proved to be critical for maintaining high impedance of both parylene-C and the reactive parylene. Adhesion measurements showed improved wet metal adhesion for PPX-X, which corresponds well with its excellent high frequency performance. PMID:19703712

  4. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    NASA Astrophysics Data System (ADS)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  5. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-themore » art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.« less

  6. Concentrations and distributions of metals associated with dissolved organic matter from the Suwannee River (GA, USA)

    USGS Publications Warehouse

    Kuhn, M. Keshia; Neubauer, Elisabeth; Hofmann, Thilo; von der Kammer, Frank; Aiken, George R.; Maurice, Patricia A.

    2015-01-01

    Concentrations and distributions of metals in Suwannee River (SR) raw filtered surface water (RFSW) and dissolved organic matter (DOM) processed by reverse osmosis (RO), XAD-8 resin (for humic and fulvic acids [FA]), and XAD-4 resin (for “transphilic” acids) were analyzed by asymmetrical flow field-flow fractionation (AsFlFFF). SR samples were compared with DOM samples from Nelson's Creek (NLC), a wetland-draining stream in northern Michigan; previous International Humic Substances Society (IHSS) FA and RO samples from the SR; and an XAD-8 sample from Lake Fryxell (LF), Antarctica. Despite application of cation exchange during sample processing, all XAD and RO samples contained substantial metal concentrations. AsFlFFF fractograms allowed metal distributions to be characterized as a function of DOM component molecular weight (MW). In SR RFSW, Fe, Al, and Cu were primarily associated with intermediate to higher than average MW DOM components. SR RO, XAD-8, and XAD-4 samples from May 2012 showed similar MW trends for Fe and Al but Cu tended to associate more with lower MW DOM. LF DOM had abundant Cu and Zn, perhaps due to amine groups that should be present due to its primarily algal origins. None of the fractograms showed obvious evidence for mineral nanoparticles, although some very small mineral nanoparticles might have been present at trace concentrations. This research suggests that AsFlFFF is important for understanding how metals are distributed in different DOM samples (including IHSS samples), which may be key to metal reactivity and bioavailability.

  7. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.

    PubMed

    Braunschweig, Juliane; Bosch, Julian; Meckenstock, Rainer U

    2013-09-25

    Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the environment as, for example, electron acceptor for microbial respiration, electron shuttle between different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive. Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were identified to influence the reactivity. This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the differences between natural and synthetic Fe oxides especially regarding the presence of organic molecules such as humic acids and natural organic matter. Attention is given to the transport behavior of Fe oxides in laboratory systems and in the environment, because of the high affinity of different contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe oxides and their potential as adsorbents for different pollutants are discussed with respect to application and development of remediation technologies. Copyright © 2013. Published by Elsevier B.V.

  8. Nanosized iron based permeable reactive barriers for nitrate removal - Systematic review

    NASA Astrophysics Data System (ADS)

    Araújo, Rui; Castro, Ana C. Meira; Santos Baptista, João; Fiúza, António

    2016-08-01

    It is unquestionable that an effective decision concerning the usage of a certain environmental clean-up technology should be conveniently supported. Significant amount of scientific work focussing on the reduction of nitrate concentration in drinking water by both metallic iron and nanomaterials and their usage in permeable reactive barriers has been worldwide published over the last two decades. This work aims to present in a systematic review of the most relevant research done on the removal of nitrate from groundwater using nanosized iron based permeable reactive barriers. The research was based on scientific papers published between 2004 and June 2014. It was performed using 16 combinations of keywords in 34 databases, according to PRISMA statement guidelines. Independent reviewers validated the selection criteria. From the 4161 records filtered, 45 met the selection criteria and were selected to be included in this review. This study's outcomes show that the permeable reactive barriers are, indeed, a suitable technology for denitrification and with good performance record but the long-term impact of the use of nanosized zero valent iron in this remediation process, in both on the environment and on the human health, is far to be conveniently known. As a consequence, further work is required on this matter, so that nanosized iron based permeable reactive barriers for the removal of nitrate from drinking water can be genuinely considered an eco-efficient technology.

  9. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals. PMID:26215055

  10. Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle

    PubMed Central

    Smirnov, Alexander; Hausner, Douglas; Laffers, Richard; Strongin, Daniel R; Schoonen, Martin AA

    2008-01-01

    Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts. PMID:18489746

  11. Multi-Band Cable Antenna with Irregular Reactive Loading

    DTIC Science & Technology

    2014-11-04

    antenna 10 consists of an insulated solid conductor 12 of radius a. Preferably, this element is made from copper ; however, any highly conductive metal...Docket No. 300035 5 of 12 improved flotation . A low dielectric constant is essential for optimal RF performance. Reactive elements (not shown, see

  12. Particle Engulfment and Pushing by Solidification Interfaces. Part 1; Ground Experiments

    NASA Technical Reports Server (NTRS)

    Juretzko, Frank R.; Dhindaw, Brij K.; Stefanescu, Doru M.; Sen, subhayu; Curreri, Peter A.

    1998-01-01

    Directional solidification experiments have been carried out to determine the pushing/engulfment transition for two different metal/particle systems. The systems chosen were aluminum/zirconia particles and zinc/zirconia particles. Pure metals (99.999% Al and 99.95% Zn) and spherical particles (500 microns in diameter) were used. The particles were non-reactive with the matrices within the temperature range of interest. The experiments were conducted such as to insure a planar solid/liquid interface during solidification. Particle location before and after processing was evaluated by X-ray transmission microscopy for the Al/ZrO2 samples. All samples were characterized by optical metallography after processing. A clear methodology for the experiment evaluation was developed to unambiguously interpret the occurrence of the pushing/engulfment transition. It was found that the critical velocity for engulfment ranges from 1.9 to 2.4 micron/s for Al/ZrO2 and from 1.9 to 2.9 microns/s for Zn/ZrO2.

  13. Carbon dioxide hydrogenation on Ni(110).

    PubMed

    Vesselli, Erik; De Rogatis, Loredana; Ding, Xunlei; Baraldi, Alessandro; Savio, Letizia; Vattuone, Luca; Rocca, Mario; Fornasiero, Paolo; Peressi, Maria; Baldereschi, Alfonso; Rosei, Renzo; Comelli, Giovanni

    2008-08-27

    We demonstrate that the key step for the reaction of CO 2 with hydrogen on Ni(110) is a change of the activated molecule coordination to the metal surface. At 90 K, CO 2 is negatively charged and chemically bonded via the carbon atom. When the temperature is increased and H approaches, the H-CO 2 complex flips and binds to the surface through the two oxygen atoms, while H binds to the carbon atom, thus yielding formate. We provide the atomic-level description of this process by means of conventional ultrahigh vacuum surface science techniques combined with density functional theory calculations and corroborated by high pressure reactivity tests. Knowledge about the details of the mechanisms involved in this reaction can yield a deeper comprehension of heterogeneous catalytic organic synthesis processes involving carbon dioxide as a reactant. We show why on Ni the CO 2 hydrogenation barrier is remarkably smaller than that on the common Cu metal-based catalyst. Our results provide a possible interpretation of the observed high catalytic activity of NiCu alloys.

  14. In situ reinforced polymers using low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems. Formation of anisotropic reinforcements was evaluated using dimethyl sulfone (DMS) as the crystallizable diluent and diglycidyl ether of bisphenol-A (DGEBA)/m-phenylene diamine (mPDA) material system as the epoxy thermoset. Miscible blends of DMS and DGEBA/mPDA form homogenous mixtures that undergo polymerization induced phase separation, once the DGEBA oligomers react with mPDA. The effect of the competition between the crystallization and phase separation of DMS resulted in nano-wires to micro-scale fiber-like crystals that were generated by adjusting the reaction temperature and DMS concentration.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Ruiter, Graham; Carsch, Kurtis M.; Gul, Sheraz

    In this paper, we report the synthesis, characterization, and reactivity of [LFe 3(PhPz) 3OMn( sPhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene–metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2Fe IIMn II vs. Fe III 3Mn II) influence oxygen atom transfer in tetranuclear Fe 3Mn clusters. Finally, in particular, a one-electron redox change atmore » a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.« less

  16. Transport of Organic Compounds Through Porous Systems Containing Humic Acids.

    PubMed

    Smilek, Jiri; Sedlacek, Petr; Lastuvkova, Marcela; Kalina, Michal; Klucakova, Martina

    2017-03-01

    Soil pollution by the presence of different contaminants (e.g. heavy metal ions or pesticides) is one of the biggest problems worldwide. The positive affinity of natural humic acids towards these contaminants might contribute to the soil and ground water protection; therefore it is necessary to study the reactivity and barrier properties of humic acids. An original reactivity-mapping tool based on diffusion techniques designed to study the reactivity and barrier properties of polyelectrolytes was developed and tested on humic acids. The results of diffusion experiments demonstrate that the electrostatic interactions between humic acids functioning as a polyelectrolyte interpenetrated in a supporting hydrogel matrix (agarose) and cationic dye (methylene blue) as a model solute have a crucial impact on the rate of diffusion processes and on the barrier properties of hydrogels. The intensity of interactions was evaluated by fundamental diffusion parameters (effective diffusion coefficients and breakthrough time). The impact of modification of humic acids was also studied by means of diffusion experiments conducted on two types of standard humic acids (Leonardite 1S104H) and humic acids with selectively methylated carboxylic groups.

  17. Gas phase reactions of doubly charged alkaline earth and transition metal(II)-ligand complexes generated by electrospray ionization

    NASA Astrophysics Data System (ADS)

    Kohler, Martin; Leary, Julie A.

    1997-03-01

    Doubly charged metal(II)-complexes of [alpha] 1-3, [alpha] 1-6 mannotriose and the conserved trimannosyl core pentasaccharide as well as doubly charged complexes of Co(II), Mn(II), Ca(II) and Sr(II) with acetonitrile generated by electrospray ionization were studied by low energy collision induced dissociation (CID). Two main fragmentation pathways were observed for the metal(II)-oligosaccharide complexes. Regardless of the coordinating metal, loss of a neutral dehydrohexose residue (162 Da) from the doubly charged precursor ion is observed, forming a doubly charged product ion. However, if the oligosaccharide is coordinated to Co(II) or Mn(II), loss of a dehydroxyhexose cation is also observed. Investigation of the low mass region of the mass spectra of the metal coordinated oligosaccharides revealed intense signals corresponding to [metal(II) + (CH3CN)n2+ (where n = 1-6) species which were being formed by the metal(II) ions and the acetonitrile present in the sample. Analysis of these metal(II)-acetonitrile complexes provided further insight into the processes occurring upon low energy CID of doubly charged metal complexes. The metal(II)-acetonitrile system showed neutral loss and ligand cleavage as observed with the oligosaccharide complexes, as well as a series of six different dissociation mechanisms, most notable among them reduction from [metal(II) + (CH3CN)n2+ to the bare [metal(I)]+ species by electron transfer. Depending on the metal and collision gas chosen, one observes electron transfer from the ligand to the metal, electron transfer from the collision gas to the metal, proton transfer between ligands, heterolytic cleavage of the ligands, reactive collisions and loss of neutral ligands.

  18. Metal mobilisation in hydrothermal sediments at the TAG Hydrothermal Field (MAR, 26°N)

    NASA Astrophysics Data System (ADS)

    Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.

    2017-12-01

    Metalliferous sediments in the vicinity of hydrothermal systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG Hydrothermal Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to identify the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (< 0.1%) and the main part of their primary Cu and Zn content has likely been mobilized. Cu concentrations increase at the edges of the mounds (up to wt. 20%) or in distal depositionary channels (up to wt.10%) where sulphide minerals (e.g. pyrite, chalcopyrite and sphalerite) are still present in the sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and form Mn-oxide crusts between 30 and 60 cm, in which Cu concentrations also increase. Our results demonstrate that metal mobilisation differs depending on the geological environment and their related accumulation processes, causing the absence of Cu on the top of inactive hydrothermal mounds but enriched in more distal sediment basins.

  19. Melt containment member

    DOEpatents

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  20. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.J.

    1996-07-01

    A new reactive flow model for highly non-ideal explosives and propellants is presented. These compositions, which contain large amounts of metal, upon explosion have reaction kinetics that are characteristic of both fast detonation and slow metal combustion chemistry. A reaction model for these systems was incorporated into the two-dimensional, finite element, Lagrangian hydrodynamic code, DYNA2D. A description of how to determine the model parameters is given. The use of the model and variations are applied to AP, Al, and nitramine underwater explosive and propellant systems.

  1. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    PubMed

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO 2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  2. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly

    NASA Astrophysics Data System (ADS)

    Gall, Oren Z.; Zhong, Xiahua; Schulman, Daniel S.; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S.

    2017-06-01

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  3. Catalytic Deoxydehydration of Carbohydrates and Polyols to Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, Kenneth M.

    As the world's fossil fuel resources are being depleted and their costs increase, there is an urgent need to discover and develop new processes for the conversion of renewable, biomass resources into fuels and chemical feedstocks. Research and development in this area have been given high priority by both governmental agencies and industry. To increase the energy content and decrease the boiling points of biomass-derived carbohydrates and polyols to the useful liquid range it is necessary to chemically remove water (dehydrate) and, preferably, oxygen (deoxygenate/reduce). The poly-hydroxylic nature of carbohydrates is attractive for their use as functionalized chemical building blocks,more » but it presents a daunting challenge for their selective conversion to single product chemicals or fuels. The long term, practical objective of this project is to develop catalytic processes for the deoxydehydration (DODH) of biomass-derived carbohydrates and polyols to produce unsaturated alcohols and hydrocarbons of value as chemical feedstocks and fuels; DODH: polyol + reductant --(LMOx catalyst)--> unsaturate + oxidized reductant + H2O. Limited prior studies have established the viability of the DODH process with expensive phosphine reductants and rhenium-catalysts. Initial studies in the PI's laboratory have now demonstrated: 1) the moderately efficient conversion of glycols to olefins by the economical sulfite salts is catalyzed by MeReO3 and Z+ReO4-; 2) effective phosphine-based catalytic DODH of representative glycols to olefins by cheap LMoO2 complexes; and 3) computational studies (with K. Houk, UCLA) have identified several Mo-, W-, and V-oxo complexes that are likely to catalyze glycol DODH. Seeking practically useful DODH reactions of complex polyols and new understanding of the reactivity of polyoxo-metal species with biomass-oxygenates we will employ a two-pronged approach: 1) investigate experimentally the reactivity, both stoichiometric and catalytic, of polyoxo-complexes and practical reductants with representative polyols to establish structure/reactivity relationships and reaction mechanisms; and b) carry out parallel computational studies of these reactions and their mechanisms- both analytical and predictive. Our prioritized action plan is: (1) to optimize the catalytic efficiency, assess the substrate scope/selectivity, and address key mechanistic aspects of Re-catalyzed, sulfite-driven DODH reactions; (2) use the findings from (1), together with computational predictions, to discover new, effective non-precious metal catalysts for sulfite-driven DODH reactions; and 3) to initiate exploratory studies of CO- and H2-driven DODH. Successful execution of this research project will: 1) provide practical chemical processes for the conversion of biomass into useful chemicals and fuels: 2) bring fundamental new understanding of chemical reactions involving metal-oxo catalysts; and 3) provide educational and technical training of future energy scientists.« less

  4. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    PubMed Central

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-01-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions. PMID:26486449

  5. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    DOE PAGES

    Jones, Sam; Ritter, Christian; Herwig, Falk; ...

    2015-12-03

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage themore » interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 10 9 (in some cases 10 10) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H- 12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. Here, we also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.« less

  6. On the structure of transition metals complexes with the new tridentate dye of thiazole series: Theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Fizer, Maksym; Sidey, Vasyl; Tupys, Andrii; Ostapiuk, Yurii; Tymoshuk, Oleksandr; Bazel, Yaroslav

    2017-12-01

    The 1-[(5-Benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol (BnTAN) is a recently synthesized azo dye that can act as a tridentate ligand in complexes with transition metals. In a series of previous works, this analytical reagent was shown to be applicable for selective, reliable, express and relatively inexpensive determination of heavy metals in different objects through the spectrophotometric technique. Although the action of 1-(2-thiazolylazo)-2-naphthol (TAN) dyes as tridentate ligands has been suggested in the literature long time ago, due to the lack of experimental data, it was necessary to investigate the mechanism of formation and the structure of BnTAN complexes with the such transition metals as Cu(II), Zn(II) and Cd(II). Furthermore, the reactivity and properties of different acidity forms and conformers of BnTAN and related TAN dyes were not fully defined, so the determination of these properties by analysis of wavefunction was also necessary. Two standard spectrophotometric methods and voltammetric technique were used to determine the composition of complex of BnTAN with metals ions. All three experimental methods indicate that coordination ratio of metal:dye is equal to 1:2. Moreover, this study reports the stability and geometry of conformers of different forms (anionic/neutral/cationic) of BnTAN, along with a detailed analysis of electronic properties, reactivity and aromaticity of the most stable conformers of BnTAN forms. Each of the above forms has some difference in position of benzyl ring against the thiazole moiety, which is explained in terms of attraction and repulsion of these two fragments induced by partial atomic charges. The crucial influence of hydrogen bond and weak non-covalent interactions between naphthyl, aza- and thiazolyl fragments has been established. The quantum chemical calculations have shown that partial atomic charges of anionic, neutral and cationic forms can explain the reactivity of each BnTAN form, and have also clarified the mechanism of formation of metal complex through the connection of metal with phenol oxygen, thiazolyl nitrogen and one nitrogen of aza group - thus giving two five-membered metal-containing cycles and confirming that BnTAN acts as a tridentate ligand. The obtained results introduce novel and crucial information which can assist in understanding the mechanism of complex formation of BnTAN and display the strength and level of detail of applying quantum chemical methods to reveal the reactivity, energy properties, and electronic properties of this new dye.

  7. Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes

    PubMed Central

    2018-01-01

    Electrodeposition is a widely practiced method for creating metal, colloidal, and polymer coatings on conductive substrates. In the Newtonian liquid electrolytes typically used, the process is fundamentally unstable. The underlying instabilities have been linked to failure of microcircuits, dendrite formation on battery electrodes, and overlimiting conductance in ion-selective membranes. We report that viscoelastic electrolytes composed of semidilute solutions of very high–molecular weight neutral polymers suppress these instabilities by multiple mechanisms. The voltage window ΔV in which a liquid electrolyte can operate free of electroconvective instabilities is shown to be markedly extended in viscoelastic electrolytes and is a power-law function, ΔV : η1/4, of electrolyte viscosity, η. This power-law relation is replicated in the resistance to ion transport at liquid/solid interfaces. We discuss consequences of our observations and show that viscoelastic electrolytes enable stable electrodeposition of many metals, with the most profound effects observed for reactive metals, such as sodium and lithium. This finding is of contemporary interest for high-energy electrochemical energy storage. PMID:29582017

  8. Design and synthesis of polyoxometalate-framework materials from cluster precursors

    NASA Astrophysics Data System (ADS)

    Vilà-Nadal, Laia; Cronin, Leroy

    2017-10-01

    Inorganic oxide materials are used in semiconductor electronics, ion exchange, catalysis, coatings, gas sensors and as separation materials. Although their synthesis is well understood, the scope for new materials is reduced because of the stability limits imposed by high-temperature processing and top-down synthetic approaches. In this Review, we describe the derivatization of polyoxometalate (POM) clusters, which enables their assembly into a range of frameworks by use of organic or inorganic linkers. Additionally, bottom-up synthetic approaches can be used to make metal oxide framework materials, and the features of the molecular POM precursors are retained in these structures. Highly robust all-inorganic frameworks can be made using metal-ion linkers, which combine molecular synthetic control without the need for organic components. The resulting frameworks have high stability, and high catalytic, photochemical and electrochemical activity. Conceptually, these inorganic oxide materials bridge the gap between zeolites and metal-organic frameworks (MOFs) and establish a new class of all-inorganic POM frameworks that can be designed using topological and reactivity principles similar to MOFs.

  9. Alpha-synuclein: relating metals to structure, function and inhibition.

    PubMed

    McDowall, J S; Brown, D R

    2016-04-01

    Alpha-synuclein has long been studied due to its involvement in the progression of Parkinson's disease (PD), a common neurodegenerative disorder, although a consensus on the exact function of this protein is elusive. This protein shows remarkable structural plasticity and this property is important for both correct cellular function and pathological progression of PD. Formation of intracellular oligomeric species within the substantia nigra correlates with disease progression and it has been proposed that formation of a partially folded intermediate is key to the initiation of the fibrillisation process. Many factors can influence changes in the structure of alpha-synuclein such as disease mutations and interaction with metals and neurotransmitters. High concentrations of both dopamine and metals are present in the substantia nigra making this an ideal location for both the structural alteration of alpha-synuclein and the production of toxic oxygen species. The recent proposal that alpha-synuclein is a ferrireductase is important as it can possibly catalyse the formation of such reactive species and as a result exacerbate neurodegeneration.

  10. Synthesis Of Reactive Nano-Fe/Pd Bimetallic System-Impregnated Activated Carbon For The Simultaneous Adsorption And Dechlorination Of PCBs

    EPA Science Inventory

    Synthesis and use of reactive metal particles have shown significant environmental implications for the remediation of groundwater and sediment contaminated with chlorinated compounds. Herein, we have developed an effective strategy, employing a series of innovative granular act...

  11. Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties.

    PubMed

    Aral, Gurcan; Islam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; Duin, Adri C T van

    2018-06-14

    To avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.

  12. Battlefield-Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome

    DTIC Science & Technology

    2012-10-01

    Attending Physician #N/A Control cpm 1308.0 Positive control (PHA) cpm 38247.3 29.2 Mildly Reactive 2 to 4 Reactive 4 to 8 Highly Reactive above 8...Kyron, The Veterans Health Administration has to follow Handbook 1200.05, which states: VHA HANDBOOK 1200.05 October 15, 2010 n. Advertising ...The facility Director is responsible for ensuring that recruiting documents, flyers, and advertisements for non-VA research are not posted within or

  13. Thermite at the Nano-Scale

    NASA Astrophysics Data System (ADS)

    Mily, Edward Joseph, Jr.

    Physical vapor deposition of thin film thermites allow for a clean avenue for probing fundamental properties of nanoenergetic materials that prove difficult for traditional powder processing. Precise control over diffusion dimensions, microstructure, and total amount of material are able to be realized with this fabrication technique and the testing of such materials provide valuable insight into how oxidation occurs. This thesis provides several examples of how existing PVD techniques can be coupled with thermite constituents to further the energetic community's understanding of how oxidation occurs in the solid state with the variation of geometric and chemical alterations. The goal of these investigations was to elucidate which material properties and mechanisms drive exothermic activity. The thermite thin films of Al/CuO, Zr/CuO, and Mg/Cuo with varied reducing metal constituents were tested under slow heating conditions. The trend of the metal variation demonstrated the importance of terminal oxide diffusion properties in either impeding or enhancing oxygen exchange. When the reducing metal forms a terminal oxide with limited oxygen diffusivity, exothermicity requires elevated activation energies to commence self-sustaining reaction. In addition to the effects of chemical variation, bilayer thicknesses were varied and found to decrease exothermic peak temperatures similar to the trends found in intermetallic thin film energetics and powder energetic materials. The thin film thermites were also subjected to extreme initiation methods via laser driven flyer plate impact ignition and high heating rate heat treatment (105 K/s). General insight into nano thermite behavior at environments characteristic of applications was sought, and similar trends discovered among slow vs rapid testing. Decreasing reaction dimensions yielded higher reactivity and diffusion barrier properties role in impacting exothermic behavior persist to into the microsecond regime. Ultimately through this work it has been shown that the process of thermite exothermicity proceeds through more than one pathway and more than the free energy of oxidation of reducing metals should be considered when describing how oxygen exchange occurs. It has been shown that these self-sustaining reactivity can be realized in the solid and.

  14. Characterization of thin film deposits on tungsten filaments in catalytic chemical vapor deposition using 1,1-dimethylsilacyclobutane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yujun, E-mail: shiy@ucalgary.ca; Tong, Ling; Mulmi, Suresh

    Metal filament plays a key role in the technique of catalytic chemical vapor deposition (Cat-CVD) as it serves as a catalyst in dissociating the source gas to form reactive species. These reactive species initiate the gas-phase reaction chemistry and final thin film and nanostructure formation. At the same time, they also react with the metal itself, leading to the formation of metal alloys and other deposits. The deposits on the tungsten filaments when exposed to 1,1-dimethylsilacyclobutane (DMSCB), a single-source precursor for silicon carbide thin films, in the process of Cat-CVD were studied in this work. It has been demonstrated thatmore » a rich variety of deposits, including tungsten carbides (W{sub 2}C and WC), tungsten silicide (W{sub 5}Si{sub 3}), silicon carbide, amorphous carbon, and graphite, form on the W filament surfaces. The structural and morphological changes in the tungsten filaments depend strongly on the DMSCB pressure and filament temperature. At 1000 and 2000 °C, the formation of WC and W{sub 2}C dominates. In addition, a thin amorphous carbon layer has been found at 1500 °C with the 0.12 and 0.24 Torr of DMSCB and a lower temperature of 1200 °C with the 0.48 Torr of DMSCB. An increase in the DMSCB sample pressure gives rise to higher Si and C contents. As a result, the formation of SiC and W{sub 5}Si{sub 3} has been observed with the two high-pressure DMSCB samples (i.e., 0.24 and 0.48 Torr). The rich decomposition chemistry of DMSCB on the W surfaces is responsible for the extensive changes in the structure of the W filament, providing support for the close relationship between the gas-phase decomposition chemistry and the nature of alloy formation on the metal surface. The understanding of the structural changes obtained from this work will help guide the development of efficient methods to solve the filament aging problem in Cat-CVD and also to achieve a controllable deposition process.« less

  15. Mechanism of amino acid interaction with silicon nitride surface during chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    America, William George

    Chemical-Mechanical Planarization (CMP) has become an essential technology for making modern semiconductor devices. This technique was originally applied to overcome the depth of focus limitations of lithography tools during pattern development of metal and dielectric films. As features of the semiconductor device became smaller the lithographic process shifted to shorter exposure wavelengths and the useable depth of focus became smaller. The topography differences on the wafer's surface from all of the previous processing steps became greater than the exposure tools could properly project. CMP helped solve this problem by bringing the features of the wafer surface to the same plane. As semiconductor fabrication technology progressed further, CMP was applied to other areas of the process, including shallow trench isolation and metal line Damascene processing. In its simplest application, CMP polishes on features projecting upward and higher than the average surface. These projections experience more work and are polished faster. Given sufficient time the surface becomes essentially flat, on a micro-scale, and the lithographic projection tools has the same plane onto which to focus. Thus, the pattern is properly and uniformly exposed and subsequent reactive ion etching (RIE) steps are executed. This technique was initially applied to later steps in the wafer processing scheme to render a new flat surface at each metal layer. Building on this success, CMP has been applied to a broad range of steps in the wafer processing particularly where surface topography warrants and when RIE of dielectric or metallic films is not practical. CMP has seen its greatest application in semiconductor logic and memory devices and most recently, a Damascene processing for copper lines and shallow trench isolation. This pattern dependent CMP issue is explored in this thesis as it pertains primarily to shallow trench isolation CMP coupled with a highly selective slurry chemistry.

  16. Wildfires and water chemistry: effect of metals associated with wood ash.

    PubMed

    Cerrato, José M; Blake, Johanna M; Hirani, Chris; Clark, Alexander L; Ali, Abdul-Mehdi S; Artyushkova, Kateryna; Peterson, Eric; Bixby, Rebecca J

    2016-08-10

    The reactivity of metals associated with ash from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico, was assessed through a series of laboratory experiments. Microscopy, spectroscopy, diffraction, and aqueous chemistry measurements were integrated to determine the chemical composition of wood ash and its effect on water chemistry. Climate change has caused dramatic impacts and stresses that have resulted in large-scale increases in wildfire activity in semi-arid areas of the world. Metals and other constituents associated with wildfire ash can be transported by storm event runoff and negatively affect the water quality in streams and rivers. Differences among ash from six tree species based on total concentrations of metals such as Ca, Al, Mg, Fe, and Mn were identified using non-metric multidimensional analysis. Metal-bearing carbonate and oxide phases were quantified by X-ray diffraction analyses and X-ray spectroscopy analyses. These metal-bearing carbonate phases were readily dissolved in the first 30 minutes of reaction with 18 MΩ water and 10 mM HCO3(-) in laboratory batch experiments which resulted in the release of metals and carbonates in the ash, causing water alkalinity to increase. However, metal concentrations decreased over the course of the experiment, suggesting that metals re-adsorb to ash. Our results suggest that the dissolution of metal-bearing carbonate and oxide phases in ash and metal re-adsorption to ash are relevant processes affecting water chemistry after wildfire events. These results have important implications to better understand the impact of wildfire events on water quality.

  17. Prevalence of exposure of heavy metals and their impact on health consequences.

    PubMed

    Rehman, Kanwal; Fatima, Fiza; Waheed, Iqra; Akash, Muhammad Sajid Hamid

    2018-01-01

    Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. © 2017 Wiley Periodicals, Inc.

  18. Disposition and Mechanisms of Toxicities of Metals and Metalloids

    EPA Science Inventory

    Dr. Hughes will provide a concise overview of general disposition (e.g., absorption) and mechanisms of toxicity of metal toxicity (e.g., direct interaction with functional groups of critical proteins, generation of reactive oxygen species, and alteration of cell signaling pathway...

  19. Molecular self-assembly on surfaces

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, E.; Pradier, C. M.

    2012-09-01

    The aim of the present research is to study the interaction of biomolecules, among them single amino acids, on metallic and mineral surfaces, and their chemical reactivity by means of powerful surface science techniques. Therefore, the use of simple biomolecules gives fundamental and significant information, including an adequate control of biomolecule-surface interactions, which will be unattainable to develop with more complex molecules. Furthermore, these studies are focussed on the catalytic properties of different surfaces that could be involved in molecular self-organization processes and the formation of prebiotic organic compounds.

  20. Elastomer toughened polyimide adhesives. [bonding metal and composite material structures for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1985-01-01

    A rubber-toughened, addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber-containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride has been mixed, and utilizing solvent or mixture of solvents for the reaction.

  1. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    PubMed

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions.

  2. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  3. Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury

    PubMed Central

    Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira

    2013-01-01

    Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600

  4. A Bimetallic Nickel-Gallium Complex Catalyzes CO2 Hydrogenation via the Intermediacy of an Anionic d10 Nickel Hydride.

    PubMed

    Cammarota, Ryan C; Vollmer, Matthew V; Xie, Jing; Ye, Jingyun; Linehan, John C; Burgess, Samantha A; Appel, Aaron M; Gagliardi, Laura; Lu, Connie C

    2017-10-11

    Large-scale CO 2 hydrogenation could offer a renewable stream of industrially important C 1 chemicals while reducing CO 2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO 2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h -1 ), compared with prior homogeneous Ni-centered catalysts. The Lewis acidic Ga(III) ion plays a pivotal role in stabilizing catalytic intermediates, including a rare anionic d 10 Ni hydride. Structural and in situ characterization of this reactive intermediate support a terminal Ni-H moiety, for which the thermodynamic hydride donor strength rivals those of precious metal hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis.

  5. Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery.

    PubMed

    Polyakov, Nikolay E; Kispert, Lowell D

    2015-09-05

    Since carotenoids are highly hydrophobic, air- and light-sensitive hydrocarbon compounds, developing methods for increasing their bioavailability and stability towards irradiation and reactive oxygen species is an important goal. Application of inclusion complexes of "host-guest" type with polysaccharides and oligosaccharides such as arabinogalactan, cyclodextrins and glycyrrhizin minimizes the disadvantages of carotenoids when these compounds are used in food processing (colors and antioxidant capacity) as well as for production of therapeutic formulations. Cyclodextrin complexes which have been used demonstrated enhanced storage stability but suffered from poor solubility. Polysaccharide and oligosaccharide based inclusion complexes play an important role in pharmacology by providing increased solubility and stability of lipophilic drugs. In addition they are used as drug delivery systems to increase absorption rate and bioavailability of the drugs. In this review we summarize the existing data on preparation methods, analysis, and chemical reactivity of carotenoids in inclusion complexes with cyclodextrin, arabinogalactan and glycyrrhizin. It was demonstrated that incorporation of carotenoids into the "host" macromolecule results in significant changes in their physical and chemical properties. In particular, polysaccharide complexes show enhanced photostability of carotenoids in water solutions. A significant decrease in the reactivity towards metal ions and reactive oxygen species in solution was also detected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Delayed-Type Hypersensitivity to Metals of Environmental Burden in Patients with Takotsubo Syndrome – Is There a Clinical Relevance?

    PubMed Central

    Manousek, Jan; Stejskal, Vera; Kubena, Petr; Jarkovsky, Jiri; Nemec, Petr; Lokaj, Petr; Dostalova, Ludmila; Zadakova, Andrea; Pavlusova, Marie; Benesova, Klara; Kala, Petr; Miklik, Roman; Spinar, Jindrich; Parenica, Jiri

    2016-01-01

    Objective Takotsubo syndrome (TS) is a heart condition characterised by a sudden transient left ventricular dysfunction; its pathophysiology is probably associated with elevated levels of catecholamines but the exact mechanism is not known as yet. Literature and clinical experience suggest that TS affects persons with various comorbidities. This pilot work aims to evaluate the frequency of comorbidities with potential pathological immune reactivity, and to evaluate the potential association between TS and hypersensitivity to metals assessed by LTT-MELISA®. Methodology, Results A total of 24 patients (23 women, 1 man) with a history of TS attack and 27 healthy controls were evaluated. Hypersensitivity was evaluated by a lymphocyte transformation test (LTT-MELISA®); a questionnaire of environmental burden was used to select evaluated metals. A total of 19 patients (79%) had at least one condition that might potentially be associated with pathological immune reactivity (autoimmune thyroid disease, drug allergy, bronchial asthma, cancer, contact dermatitis, rheumatoid arthritis). Hypersensitivity to metals was identified significantly more frequently in TS patients than in healthy controls (positive reaction to at least one metal was identified in 95.8% of TS patients and in 59.3% of controls; p = 0.003); the difference was statistically significant for mercury (45.8% and 14.8%, respectively; p = 0.029). Conclusion Our work shows that conditions with pathological immune reactivity occur frequently in TS patients, and our data suggest a possible association between TS and hypersensitivity to metals (mercury in particular) evaluated by LTT-MELISA®. We also suggest that apart from the triggering stress factor, potential existence of other serious conditions should be considered when taking medical history of TS patients. PMID:27824862

  7. Assessing the impact of As-Cd-Pb metal mixture on cell transformation by two-stage Balb/c 3T3 cell assay.

    PubMed

    Rodríguez-Sastre, M A; Rojas, E; Valverde, M

    2014-07-01

    Human beings are exposed to metals as a consequence of various industrial activities, including glass production, agrochemical production, metallurgy and battery manufacture. New data about the possible mechanisms involved in the carcinogenic activity of these metals are constantly being reported. Exposure to complex mixtures of metals is more likely to occur than exposure to a single metal alone. Among these elements, arsenic, cadmium and lead are ubiquitous air and water pollutants that continue to threaten the quality of public health around the world. The aim of the present study was to evaluate the capability of a mixture of 2 µM NaAsO2, 2 µM CdCl2 and 5 µM Pb(C2H3O2)2·3H2O at relevant epidemiological concentrations to induce cell transformation processes. Transforming potential was determined by a murine two-stage Balb/c 3T3 cell assay. Cell viability, reactive oxygen species (ROS), DNA damage, cell cycle analysis, senescence, generation time and metallothionein expression were also evaluated. The results showed that the metal mixture induced morphological cell transformation only when acting as initiator stimuli of the process. A decrease in cell viability was observed at the promotion stage, a time during which ROS increase, especially when a metal mixture was applied as a promoter stimulant. Changes in DNA damage were not observed throughout the assay; however, we observed G1 cell cycle arrest. The metal mixture, acting as a promoter, is capable of inducing senescence, but metals employed as initiators with 12-O-tetradecanoylphorbol-13-acetate as a promoter are capable of causing avoidance of senescence and triggering the transformation potential of the cells. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Importance of electronegativity differences and surface structure in molecular dissociation reactions at transition metal surfaces.

    PubMed

    Crawford, Paul; Hu, P

    2006-12-14

    The dissociative adsorption of N2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.

  9. In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: Immobilization and interaction of Cr(III), Pb(II) and Cd(II).

    PubMed

    Dong, Jun; Li, Bowen; Bao, Qiburi

    2017-04-01

    Mg(OH) 2 dissolves slowly and can provide a long-term source of alkalinity, thus a promising alternative reagent for the in situ remediation of heavy metal polluted groundwater. However, the application of Mg(OH) 2 on in situ reactive zone (IRZ) for heavy metal polluted groundwater has never been investigated. In this study, the behaviors of heavy metals in a Mg(OH) 2 IRZ were monitored for 45d. The heavy metals show a sequential precipitation by modified Mg(OH) 2 due to the difference of K sp . Column tests were conducted to investigate the temporal and spatial distribution of heavy metals in Mg(OH) 2 IRZ and evaluate the stabilization effect for multi-heavy metal polluted groundwater. Experimental results indicate that there exist interactions between different heavy metals, and their zoning distribution is attributed either to the competitive adsorption onto porous media (control column) or to the sequential precipitation of heavy metal ions (IRZ column). In contrast with the control column, heavy metal contaminated area in Mg(OH) 2 IRZ significantly shrinks. According to the chemical speciation analysis, when water containing Pb(II), Cd(II) and Cr(III) flows through Mg(OH) 2 IRZ, exchangeable fraction of total concentration significantly reduce and the proportion of carbonate and Fe/Mn oxides fraction increase, indicating the decrease of their mobility and toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: Immobilization and interaction of Cr(III), Pb(II) and Cd(II)

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Li, Bowen; Bao, Qiburi

    2017-04-01

    Mg(OH)2 dissolves slowly and can provide a long-term source of alkalinity, thus a promising alternative reagent for the in situ remediation of heavy metal polluted groundwater. However, the application of Mg(OH)2 on in situ reactive zone (IRZ) for heavy metal polluted groundwater has never been investigated. In this study, the behaviors of heavy metals in a Mg(OH)2 IRZ were monitored for 45 d. The heavy metals show a sequential precipitation by modified Mg(OH)2 due to the difference of Ksp. Column tests were conducted to investigate the temporal and spatial distribution of heavy metals in Mg(OH)2 IRZ and evaluate the stabilization effect for multi-heavy metal polluted groundwater. Experimental results indicate that there exist interactions between different heavy metals, and their zoning distribution is attributed either to the competitive adsorption onto porous media (control column) or to the sequential precipitation of heavy metal ions (IRZ column). In contrast with the control column, heavy metal contaminated area in Mg(OH)2 IRZ significantly shrinks. According to the chemical speciation analysis, when water containing Pb(II), Cd(II) and Cr(III) flows through Mg(OH)2 IRZ, exchangeable fraction of total concentration significantly reduce and the proportion of carbonate and Fe/Mn oxides fraction increase, indicating the decrease of their mobility and toxicity.

  11. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lundin, D.; Brenning, N.; Raadu, M. A.; Huo, Chunqing; Minea, T. M.

    2016-12-01

    A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.

  12. Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provo, James L., E-mail: jlprovo@verizon.net

    2015-07-15

    A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymiummore » (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be obtained with a bulk film oxygen level of ∼0.54 oxygen as determined by microprobe analysis when an evaporation rate of ∼0.313 mg/cm{sup 2} min was used in an atmosphere of D{sub 2} or T{sub 2} gas at a system deposition pressure of 1 × 10{sup −3 }Torr (1.33 × 10{sup −1 }Pa) in an evaporation time of ∼2 min. Platelet type (i.e., a film microstructure showing an overlay of flat plates with large grain sizes) film structures were observed for most films with some film mechanical properties determined (i.e., grain size and Vickers μ-hardness), and reduced stress levels were seen with initial normalized differential (tensile) stress levels being (1.0–4.0) × 10{sup 8 }dyne/cm{sup 2} for tritium loaded samples and (1.5 ± 0.5) × 10{sup 9 }dyne/cm{sup 2} for deuterium loaded samples. Also, stress aging characteristics were determined for some hydride films prepared in a radioactive tritium gas atmosphere. Tritium loading, however, had the undesirable characteristic of having to dispose of the internal processing system fixtures, which can be minimized, but the reactive evaporation technique produced desirable thin films.« less

  13. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the areas of crystal growth and device fabrication technology. High quality single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  14. Multi-technique approach to assess the effects of microbial biofilms involved in copper plumbing corrosion.

    PubMed

    Vargas, Ignacio T; Alsina, Marco A; Pavissich, Juan P; Jeria, Gustavo A; Pastén, Pablo A; Walczak, Magdalena; Pizarro, Gonzalo E

    2014-06-01

    Microbially influenced corrosion (MIC) is recognized as an unusual and severe type of corrosion that causes costly failures around the world. A microbial biofilm could enhance the copper release from copper plumbing into the water by forming a reactive interface. The biofilm increases the corrosion rate, the mobility of labile copper from its matrix and the detachment of particles enriched with copper under variable shear stress due to flow conditions. MIC is currently considered as a series of interdependent processes occurring at the metal-liquid interface. The presence of a biofilm results in the following effects: (a) the formation of localized microenvironments with distinct pH, dissolved oxygen concentrations, and redox conditions; (b) sorption and desorption of labile copper bonded to organic compounds under changing water chemistry conditions; (c) change in morphology by deposition of solid corrosion by-products; (d) diffusive transport of reactive chemical species from or towards the metal surface; and (e) detachment of scale particles under flow conditions. Using a multi-technique approach that combines pipe and coupon experiments this paper reviews the effects of microbial biofilms on the corrosion of copper plumbing systems, and proposes an integrated conceptual model for this phenomenon supported by new experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  16. Spectators Control Selectivity in Surface Chemistry: Acrolein Partial Hydrogenation Over Pd

    PubMed Central

    2015-01-01

    We present a mechanistic study on selective hydrogenation of acrolein over model Pd surfaces—both single crystal Pd(111) and Pd nanoparticles supported on a model oxide support. We show for the first time that selective hydrogenation of the C=O bond in acrolein to form an unsaturated alcohol is possible over Pd(111) with nearly 100% selectivity. However, this process requires a very distinct modification of the Pd(111) surface with an overlayer of oxopropyl spectator species that are formed from acrolein during the initial stages of reaction and turn the metal surface selective toward propenol formation. By applying pulsed multimolecular beam experiments and in situ infrared reflection–absorption spectroscopy, we identified the chemical nature of the spectator and the reactive surface intermediate (propenoxy species) and experimentally followed the simultaneous evolution of the reactive intermediate on the surface and formation of the product in the gas phase. PMID:26481220

  17. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  18. A VARIABLE REACTIVITY MODEL FOR ION BINDING TO ENVIRONMENTAL SORBENTS

    EPA Science Inventory

    The conceptual and mathematical basis for a new general-composite modeling approach for ion binding to environmental sorbents is presented. The work extends the Simple Metal Sorption (SiMS) model previously presented for metal and proton binding to humic substances. A surface com...

  19. An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics

    NASA Astrophysics Data System (ADS)

    Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich

    2018-02-01

    A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.

  20. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

Top