Sample records for reactive surface area

  1. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder dissolution experiment. In the model of the flow-through column experiment, the accessible mineral surface area, computed from the multi-scale image analysis, is evaluated in addition to the traditional surface area estimates.

  2. Effect of surface curvature on diffusion-limited reactions on a curved surface

    NASA Astrophysics Data System (ADS)

    Eun, Changsun

    2017-11-01

    To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.

  3. Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media

    NASA Astrophysics Data System (ADS)

    Beckingham, Lauren E.; Steefel, Carl I.; Swift, Alexander M.; Voltolini, Marco; Yang, Li; Anovitz, Lawrence M.; Sheets, Julia M.; Cole, David R.; Kneafsey, Timothy J.; Mitnick, Elizabeth H.; Zhang, Shuo; Landrot, Gautier; Ajo-Franklin, Jonathan B.; DePaolo, Donald J.; Mito, Saeko; Xue, Ziqiu

    2017-05-01

    The rates of mineral dissolution reactions in porous media are difficult to predict, in part because of a lack of understanding of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area used in reactive transport models for porous media are typically ad hoc and often based on average grain size, increased to account for surface roughness or decreased by several orders of magnitude to account for reduced surface reactivity of field as opposed to laboratory samples. In this study, accessible mineral surface areas are determined for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan) using a multi-scale image analysis based on synchrotron X-ray microCT, SEM QEMSCAN, XRD, SANS, and FIB-SEM. This analysis not only accounts for accessibility of mineral surfaces to macro-pores, but also accessibility through connected micro-pores in smectite, the most abundant clay mineral in this sample. While the imaging analysis reveals that most of the micro- and macro-pores are well connected, some pore regions are unconnected and thus inaccessible to fluid flow and diffusion. To evaluate whether mineral accessible surface area accurately reflects reactive surface area a flow-through core experiment is performed and modeled at the continuum scale. The core experiment is performed under conditions replicating the pilot site and the evolution of effluent solutes in the aqueous phase is tracked. Various reactive surface area models are evaluated for their ability to capture the observed effluent chemistry, beginning with parameter values determined as a best fit to a disaggregated sediment experiment (Beckingham et al., 2016) described previously. Simulations that assume that all mineral surfaces are accessible (as in the disaggregated sediment experiment) over-predict the observed mineral reaction rates, suggesting that a reduction of RSA by a factor of 10-20 is required to match the core flood experimental data. While the fit of the effluent chemistry (and inferred mineral dissolution rates) greatly improve when the pore-accessible mineral surface areas are used, it was also necessary to include highly reactive glass phases to match the experimental observations, in agreement with conclusions from the disaggregated sediment experiment. It is hypothesized here that the 10-20 reduction in reactive surface areas based on the limited pore accessibility of reactive phases in core flood experiment may be reasonable for poorly sorted and cemented sediments like those at the Nagaoka site, although this reflects pore rather than larger scale heterogeneity.

  4. The role of advanced reactive surface area characterization in improving predictions of mineral reaction rates

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Zhang, S.; Mitnick, E.; Cole, D. R.; Yang, L.; Anovitz, L. M.; Sheets, J.; Swift, A.; Kneafsey, T. J.; Landrot, G.; Mito, S.; Xue, Z.; Steefel, C. I.; DePaolo, D. J.; Ajo Franklin, J. B.

    2014-12-01

    Geologic sequestration of CO2 in deep sedimentary formations is a promising means of mitigating carbon emissions from coal-fired power plants but the long-term fate of injected CO2 is challenging to predict. Reactive transport models are used to gain insight over long times but rely on laboratory determined mineral reaction rates that have been difficult to extrapolate to field systems. This, in part, is due to a lack of understanding of mineral reactive surface area. Many models use an arbitrary approximation of reactive surface area, applying orders of magnitude scaling factors to measured BET or geometric surface areas. Recently, a few more sophisticated approaches have used 2D and 3D image analyses to determine mineral-specific reactive surface areas that account for the accessibility of minerals. However, the ability of these advanced surface area estimates to improve predictions of mineral reaction rates has yet to be determined. In this study, we fuse X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB analysis to determine mineral-specific accessible reactive surface areas for a core sample from the Nagaoka pilot CO2 injection site (Japan). This sample is primarily quartz, plagioclase, smectite, K-feldspar, and pyroxene. SEM imaging shows abundant smectite cement and grain coatings that decrease the fluid accessibility of other minerals. However, analysis of FIB-SEM images reveals that smectite nano-pores are well connected such that access to underlying minerals is not occluded by smectite coatings. Mineral-specific accessible surfaces are determined, accounting for the connectivity of the pore space with and without connected smectite nano-pores. The large-scale impact of variations in accessibility and dissolution rates are then determined through continuum scale modeling using grid-cell specific information on accessible surface areas. This approach will be compared with a traditional continuum scale model using mineral abundances and common surface area estimates. Ultimately, the effectiveness of advanced surface area characterization to improve mineral dissolution rates will be evaluated by comparison of model results with dissolution rates measured from a flow-through column experiment.

  5. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    NASA Astrophysics Data System (ADS)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react with CO2-rich fluids, decreasing the effective reactive surface area. Predictive models of CO2 sequestration under geological conditions should take into account the inhibiting role of surface coating formation. The CO2 rich fluid-rock interactions may also have significant consequences on metal mobilization. Our results indicated that the formation of stable carbonate complexes enhances the solubility of uranium minerals of both albitite and granite, facilitating the U(IV) oxidation, and limiting the extent of uranium adsorption onto particles in oxidized waters. This clearly produces an increase of the uranium mobility with significant consequences for the environment.

  6. HIGH REACTIVITY SORBENTS FOR SO2 CONTROL

    EPA Science Inventory

    The paper discusses studies, relating to air pollution control from coal-fired utility boilers, that show that the primary variable affecting sorbent reactivity at high temperature or at low temperature with water droplets is surface area. For the development of high surface area...

  7. Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2018-05-01

    The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.

  8. A reactive transport model for Marcellus shale weathering

    NASA Astrophysics Data System (ADS)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore fluids. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude from these observations that availability of reactive surface area and transport of H2O and gases are the most important factors affecting rates of Marcellus shale weathering of the in the shallow subsurface. This weathering study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature, pressure, and salinity conditions.

  9. A Reactive Transport Model for Marcellus Shale Weathering

    NASA Astrophysics Data System (ADS)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important factors affecting chemical weathering of the Marcellus shale in the shallow subsurface. This study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature and pressure.

  10. An upscaled rate law for magnesite dissolution in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Wen, Hang; Li, Li

    2017-08-01

    Spatial heterogeneity in natural subsurface systems governs water fluxes and residence time in reactive zones and therefore determines effective rates of mineral dissolution. Extensive studies have documented mineral dissolution rates in natural systems, although a general rate law has remain elusive. Here we fill this gap by answering two questions: (1) how and to what extent does spatial heterogeneity affect water residence time and effectively-dissolving surface area? (2) what is the upscaled rate law that quantifies effective dissolution rates in natural, heterogeneous media? With data constraints from experimental work, 240 Monte-Carlo numerical experiments of magnesite dissolution within quartz matrix were run with spatial distributions characterized by a range of permeability variance σ2lnκ (0.5-6.0) and correlation length (2-50 cm). Although the total surface area and global residence time (τa) are the same in all experiments, the water fluxes through reactive magnesite zones varies between 0.7 and 72.8% of the total water fluxes. Highly heterogeneous media with large σ2lnκ and long λ divert water mostly into non-reactive preferential flow paths, therefore bypassing and minimizing flow in low permeability magnesite zones. As a result, the water residence time in magnesite zones (i.e., reactive residence time τa,r) is long and magnesite dissolution quickly reaches local equilibrium, which leads to small effective surface area and low dissolution rates. Magnesite dissolution rates in heterogeneous media vary from 2.7 to 100% of the rates in the equivalent homogeneous media, with effectively-dissolving surface area varying from 0.18 to 6.83 m2 (out of 51.71 m2 total magnesite surface area). Based on 240 numerical experiments and 45 column experiments, a general upscaled rate law in heterogeneous media, RMgCO3,ht =kAe,hm(1 - exp(-τa/τa,r))α, was derived to quantify effective dissolution rates. The dissolution rates in heterogeneous media are a function of the rate constants k being those measured under well-mixed conditions, effective surface area in equivalent homogeneous media Ae,hm, and the heterogeneity factor (1 - exp(-τa/τa,r))α. The heterogeneity factor quantify heterogeneity effects and depends on the relative magnitude of global residence time (τa) and reactive residence time (τa,r), as well as the shape factor α(= 5 σlnκ2) of the gamma distribution for reactive residence times. Exponential forms of rate laws have been used at the micro-scale describing direct interactions among water and mineral surface, and at the catchment scale describing weathering rates and concentration-discharge relationships. These observations highlight the key role of mineral-water contact time in determining dissolution rates at different scales. This work also emphasizes the importance of critical interfaces between reactive and non-reactive zones as determined by the details of spatial patterns and effective surface area as a scaling factor that quantifies dissolution rates in heterogeneous media across scales.

  11. Probing the molecular-level control of aluminosilicate dissolution: A sensitive solid-state NMR proxy for reactive surface area

    NASA Astrophysics Data System (ADS)

    Washton, Nancy M.; Brantley, Susan L.; Mueller, Karl T.

    2008-12-01

    For two suites of volcanic aluminosilicate glasses, the accessible and reactive sites for covalent attachment of the fluorine-containing (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS) probe molecule were measured by quantitative 19F nuclear magnetic resonance (NMR) spectroscopy. The first set of samples consists of six rhyolitic and dacitic glasses originating from volcanic activity in Iceland and one rhyolitic glass from the Bishop Tuff, CA. Due to differences in the reactive species present on the surfaces of these glasses, variations in the rate of acid-mediated dissolution (pH 4) for samples in this suite cannot be explained by variations in geometric or BET-measured surface area. In contrast, the rates scale directly with the surface density of TFS-reactive sites as measured by solid-state NMR. These data are consistent with the inference that the TFS-reactive M-OH species on the glass surface, which are known to be non-hydrogen-bonded Q 3 groups, represent loci accessible to and affected by proton-mediated dissolution. The second suite of samples, originating from a chronosequence in Kozushima, Japan, is comprised of four rhyolites that have been weathered for 1.1, 1.8, 26, and 52 ka. The number of TFS-reactive sites per gram increases with duration of weathering in the laboratory for the "Icelandic" samples and with duration of field weathering for both "Icelandic" and Japanese samples. One hypothesis is consistent with these and published modeling, laboratory, and field observations: over short timescales, dissolution is controlled by fast-dissolving sites, but over long timescales, dissolution is controlled by slower-dissolving sites, the surface density of which is proportional to the number of TFS-reactive Q 3 sites. These latter sites are not part of a hydrogen-bonded network on the surface of the glasses, and measurement of their surface site density allows predictions of trends in reactive surface area. The TFS treatment method, which is easily monitored by quantitative 19F solid-state NMR, therefore provides a chemically specific and quantifiable proxy to understand the nature of how sites on dissolving silicates control dissolution. Furthermore, 27Al NMR techniques are shown here to be useful in identifying clays on the glass surfaces, and these methods are therefore effective for quantifying concentrations of weathering impurities. Our interpretations offer a testable hypothesis for the mechanism of proton-promoted dissolution for low-iron aluminosilicate minerals and glasses and suggest that future investigations of reactive surfaces with high-sensitivity NMR techniques are warranted.

  12. Spatial imaging of carbon reactivity centers in Pd/C catalytic systems† †Electronic supplementary information (ESI) available: Detailed experimental procedures and FE-SEM images. See DOI: 10.1039/c5sc00802f

    PubMed Central

    Pentsak, E. O.; Kashin, A. S.; Polynski, M. V.; Kvashnina, K. O.; Glatzel, P.

    2015-01-01

    Gaining insight into Pd/C catalytic systems aimed at locating reactive centers on carbon surfaces, revealing their properties and estimating the number of reactive centers presents a challenging problem. In the present study state-of-the-art experimental techniques involving ultra high resolution SEM/STEM microscopy (1 Å resolution), high brilliance X-ray absorption spectroscopy and theoretical calculations on truly nanoscale systems were utilized to reveal the role of carbon centers in the formation and nature of Pd/C catalytic materials. Generation of Pd clusters in solution from the easily available Pd2dba3 precursor and the unique reactivity of the Pd clusters opened an excellent opportunity to develop an efficient procedure for the imaging of a carbon surface. Defect sites and reactivity centers of a carbon surface were mapped in three-dimensional space with high resolution and excellent contrast using a user-friendly nanoscale imaging procedure. The proposed imaging approach takes advantage of the specific interactions of reactive carbon centers with Pd clusters, which allows spatial information about chemical reactivity across the Pd/C system to be obtained using a microscopy technique. Mapping the reactivity centers with Pd markers provided unique information about the reactivity of the graphene layers and showed that >2000 reactive centers can be located per 1 μm2 of the surface area of the carbon material. A computational study at a PBE-D3-GPW level differentiated the relative affinity of the Pd2 species to the reactive centers of graphene. These findings emphasized the spatial complexity of the carbon material at the nanoscale and indicated the importance of the surface defect nature, which exhibited substantial gradients and variations across the surface area. The findings show the crucial role of the structure of the carbon support, which governs the formation of Pd/C systems and their catalytic activity. PMID:29511504

  13. Area production in supercritical, transitional mixing layers for reactive flow applications

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N.

    2002-01-01

    An investigation of surface area production is conducted for supercritical mixing layers; the results are relevant to flame area evolution and fluid disintegration. In this study, the surface is chosen perpendicular to the mass fraction gradient.

  14. Fabrication of hollow boron-doped diamond nanostructure via electrochemical corrosion of a tungsten oxide template.

    PubMed

    Lim, Young-Kyun; Lee, Eung-Seok; Lee, Choong-Hyun; Lim, Dae-Soon

    2018-08-10

    In the study, a hollow boron-doped diamond (BDD) nanostructure electrode is fabricated to increase the reactive surface area for electrochemical applications. Tungsten oxide nanorods are deposited on the silicon substrate as a template by the hot filament chemical vapor deposition (HFCVD) method. The template is coated with a 100 nm BDD layer deposited by HFCVD to form a core-shell nanostructure. The WO x core is finally electrochemically dissolved to form hollow BDD nanostructure. The fabricated hollow BDD nanostructure electrode is investigated via scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The specific surface areas of the electrodes were analyzed and compared by using Brunauer-Emmett-Teller method. Furthermore, cyclic voltammetry and chronocoulometry are used to investigate the electrochemical characteristics and the reactive surface area of the as-prepared hollow BDD nanostructure electrode. A hollow BDD nanostructure electrode exhibits a reactive area that is 15 times that of a planar BDD thin electrode.

  15. Enhanced reactivity of nanoscale iron particles through a vacuum annealing process

    NASA Astrophysics Data System (ADS)

    Riba, Olga; Barnes, Robert J.; Scott, Thomas B.; Gardner, Murray N.; Jackman, Simon A.; Thompson, Ian P.

    2011-10-01

    A reactivity study was undertaken to compare and assess the rate of dechlorination of chlorinated aliphatic hydrocarbons (CAHs) by annealed and non-annealed nanoscale iron particles. The current study aims to resolve the uncertainties in recently published work studying the effect of the annealing process on the reduction capability of nanoscale Fe particles. Comparison of the normalized rate constants (m2/h/L) obtained for dechlorination reactions of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) indicated that annealing nanoscale Fe particles increases their reactivity 30-fold. An electron transfer reaction mechanism for both types of nanoscale particles was found to be responsible for CAH dechlorination, rather than a reduction reaction by activated H2 on the particle surface (i.e., hydrogenation, hydrogenolysis). Surface analysis of the particulate material using X-ray diffraction (XRD) and transmission electron microscopy (TEM) together with surface area measurement by Brunauer, Emmett, Teller (BET) indicate that the vacuum annealing process decreases the surface area and increases crystallinity. BET surface area analysis recorded a decrease in nanoscale Fe particle surface area from 19.0 to 4.8 m2/g and crystallite dimensions inside the particle increased from 8.7 to 18.2 nm as a result of annealing.

  16. Nano- to Formation-Scale Estimates of Mineral-Specific Reactive Surface Area

    NASA Astrophysics Data System (ADS)

    Cole, D. R.; Swift, A.; Sheets, J.; Anovitz, L. M.

    2017-12-01

    Predictions of changes in fluid composition, coupled with the evolution of the solid matrix, include the generation and testing of reactive transport models. However, translating a heterogeneous natural system into physical and chemical model parameters, including the critical but poorly-constrained metric of fluid-accessible surface area, continues to challenge Earth scientists. Studies of carbon storage capacity, permeability, rock strain due to mineral dissolution and precipitation, or the prediction of rock evolution through diagenesis and weathering each consider macroscale outcomes of processes that often are critically impacted by rock surface geometry at the nanoscale. The approach taken here is to consider the whole vertical extent of a saline reservoir and then to address two questions. First, what is the accessible surface area for each major mineral, and for all adjacent pore sizes from <2 nm on up, within each major lithofacies in that formation? Second, with the formation thus divided into units of analysis, parameterized, and placed into geologic context, what constraints can be placed on reactive surface area as a function of mineral composition? A complex sandstone covering a substantial fraction of the quartz-K-feldspar-illite ternary is selected and mineral-specific surface area quantified using neutron scattering, nitrogen and mercury porosimetry, multi-signal high-resolution mineral mapping, and other techniques. For neutron scattering, scale-specific pore geometries enable more accurate translation of volume into surface area. By applying this workflow to all end-member lithologies of this reservoir formation, equations and maps of surface area as a function of position on a quartz-feldspar-clay ternary plot are developed for each major mineral. Results from this work therefore advance our ability to parameterize models not just for the particular formation studied, but for similar geologic units as well.

  17. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion

    PubMed Central

    Gil‐Lozano, Carolina; Uceda, Esther R.; Losa‐Adams, Elisabeth; Davila, Alfonso F.; Gago‐Duport, Luis

    2017-01-01

    Abstract Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water‐sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere‐water and water‐sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size. PMID:29104844

  18. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    PubMed

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  19. Pore-scale study of multiphase reactive transport in fibrous electrodes of vanadium redox flow batteries

    DOE PAGES

    Chen, Li; He, YaLing; Tao, Wen -Quan; ...

    2017-07-21

    The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less

  20. Estimation of reactive surface area using a combined method of laboratory analyses and digital image processing

    NASA Astrophysics Data System (ADS)

    Ma, Jin; Kong, Xiang-Zhao; Saar, Martin O.

    2017-04-01

    Fluid-rock interactions play an important role in the engineering processes such as chemical stimulation of enhanced geothermal systems and carbon capture, utilization, and storage. However, these interactions highly depend on the accessible reactive surface area of the minerals that are generally poorly constrained for natural geologic samples. In particular, quantifying surface area of each reacting mineral within whole rock samples is challenging due to the heterogeneous distribution of minerals and pore space. In this study, detailed laboratory analyses were performed on sandstone samples from deep geothermal sites in Lithuania. We measure specific surface area of whole rock samples using a gas adsorption method (so-called B.E.T.) with N2 at a temperature of 77.3K. We also quantify their porosity and pore size distribution by a Helium gas pycnometer and a Hg porosimetry, respectively. Rock compositions are determined by a combination of X-ray fluorescence (XRF) and quantitative scanning electron microscopy (SEM) - Energy-dispersive X-ray spectroscopy (EDS), which are later geometrically mapped on images of two-dimensional SEM- Backscattered electrons (BSE) with a resolution of 1.2 μm and three-dimensional micro-CT with a resolution of 10.3 μm to produce a digital mineral map for further constraining the accessibility of reactive minerals. Moreover, we attempt to link the whole rock porosity, pore size distribution, and B.E.T. specific surface area with the digital mineral maps. We anticipate these necessary analyses to provide in-depth understanding of fluid sample chemistry from later hydrothermal reactive flow-through experiments on whole rock samples at elevated pressure and temperature.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, YaLing; Tao, Wen -Quan

    The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less

  2. A comparison of different activated carbon performances on catalytic ozonation of a model azo reactive dye.

    PubMed

    Gül, S; Eren, O; Kır, S; Onal, Y

    2012-01-01

    The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption. The highest BET surface area carbon (1,275 m(2)/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.

  3. Final Technical Report. Reactivity of Iron-Bearing Minerals and CO 2 Sequestration and Surface Chemistry of Pyrite. An Interdisciplinary Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strongin, Daniel

    2014-12-31

    Over the course of the scientific program, two areas of research were pursued: reactions of iron oxides with supercritical CO 2 and sulfide and surface reactivity of pyrite. The latter area of interest was to understand the chemistry that results when supercritical CO 2 (scCO 2 ) with H 2 S and/or SO 2 in deep saline formations (DFS) contacts iron bearing minerals. Understanding the complexities the sulfur co-injectants introduce is a critical step in developing CO 2 sequestration as a climate-mitigating strategy. The research strategy was to understand macroscopic observations of this chemistry with anmore » atomic/molecular level view using surface analytical techniques. Research showed that the exposure of iron (oxyhdr)oxides (which included ferrihydrite, goethite, and hematite) to scCO 2 in the presence of sulfide led to reactions that formed siderite (FeCO 3). The results have important implications for the sequestration of CO 2 via carbonation reactions in the Earth’s subsurface. An earlier area of focus in the project was to understand pyrite oxidation in microscopic detail. This understanding was used to understand macroscopic observations of pyrite reactivity. Results obtained from this research led to a better understanding how pyrite reacts in a range of chemical environments. Geochemical and modern surface science techniques were used to understand the chemistry of pyrite in important environmental conditions. The program relied on a strong integration the results of these techniques to provide a fundamental understanding to the macroscopic chemistry exhibited by pyrite in the environment. Major achievements during these studies included developing an understanding of the surface sites on pyrite that controlled its reactivity under oxidizing conditions. In particular sulfur anion vacancies and/or ferric sites were sites of reactivity. Studies also showed that the adsorption of phospholipid on the surface to selectively suppress the reactivity of these sites could of potential importance for suppressing acid mine drainage in the environment (a problem common to coal-mining sites). Biotic studies showed that microbial activity that promotes the oxidation of pyrite to produce AMD could also be suppressed by the adsorption of phospholipid.« less

  4. Using chromate to investigate the impact of natural organics on the surface reactivity of nanoparticulate magnetite

    USGS Publications Warehouse

    Swindle, Andrew L.; Cozzarelli, Isabelle M.; Elwood Madden, Andrew S.

    2015-01-01

    Chromate was used as a chemical probe to investigate the size-dependent influence of organics on nanoparticle surface reactivity. Magnetite–chromate sorption experiments were conducted with ∼90 and ∼6 nm magnetite nanoparticles in the presence and absence of fulvic acid (FA), natural organic matter (NOM), and isolated landfill leachate (LL). Results indicated that low concentrations (1 mg/L) of organics had no noticeable impact on chromate sorption, whereas concentrations of 50 mg/L or more resulted in decreased amounts of chromate sorption. The adsorption of organics onto the magnetite surfaces interfered equally with the ability of the 6 and 90 nm particles to sorb chromate from solution, despite the greater surface area of the smaller particles. Results indicate the presence of organics did not impact the redox chemistry of the magnetite–chromate system over the duration of the experiments (8 h), nor did the organics interact with the chromate in solution. Brunauer–Emmett–Teller (BET) and scanning electron microscopy (SEM) results indicate that the organics blocked the surface reactivity by occupying surface sites on the particles. The similarity of results with FA and NOM suggests that coverage of the reactive mineral surface is the main factor behind the inhibition of surface reactivity in the presence of organics.

  5. Inhibiting Substances as Tracers for the Reactivity Assessment of Fe(0)-PRBs

    NASA Astrophysics Data System (ADS)

    Dahmke, A.

    2001-12-01

    Passivation processes of Fe(0)-barriers are well known from lab-studies (Phillips et al., (2000), Schlicker et al., (2000)) and from field-sites. Normally the passivation processes are correlated with the groundwater composition but quantitative prediction and monitoring of the inhibition velocity under field conditions is a serious problem. Currently, only concentration profiles of contaminants, isotope studies or the measurement of reactivity loss with column-experiments of altered Fe(0)-material from the field sites are used for the characterization of Fe(0)-reactivity. All of theses approaches have serious disadvantages and limitations. Thus the sampling of unaltered Fe(0)-material out of the reactive barrier is difficult and the perturbed installation of the material in column experiments may lead to significant modification in the field behaviour of the Fe(0)-barrier. In addition, the concentration profile of the contaminant is not always a good tool for reactivity estimations due to uncertainties in hydrogeological boundary conditions. The same general restrictions apply also for isotope studies, in which the shift of the d13C signal is used as an indicator for degradation processes of the chlorinated aliphatics. Therefore here the use of Fe(0) inhibiting substances as reactive tracers is presented as a new approach for the characterization of the Fe(0)-reactivity. The methodology of reactive tracers to determine reactive surface areas of Fe(III) in porous was developed last year by Veehmayer et al. (2000) by interpretation of the breakthrough curves of species with known specific interactions with the solid phase. The concept is also applicable for the estimation of reactive sites in Fe(0)-columns, so that the breakthrough curves of oxidants like NO3-, CrO42- or oxidizing organic substances may be interpreted as indicative of reactive reducing sites in the Fe(0)-column. Such correlation was already shown by Schlicker et al., (2000), who explained the movement of passivation fronts by the blocking of reactive sites at the Fe(0) surface. To investigate this approach different column experiments with passivated Fe(0) are being currently carried out. Initial results from the lab indicate that different inorganic as well as organic substances can be used for characterization of the passivation state of the Fe(0) surface. Application of reactive tracer combinations also give some clues about the surface properties of the inhibiting substances, which might be helpful with respect to reactivation approaches for passivated permeable Fe(0)-barriers. Despite the first encouraging but more phenomenological lab results some theoretical problems, like the alteration of the specific surface area during the lab experiments or competition processes between organic or inorganic compounds at the altered surface of the Fe particles have to be addressed more in detail.

  6. Gasification Characteristics of Coal/Biomass Mixed Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Reginald

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less

  7. Isothermal Calorimetric Observations of the Affect of Welding on Compatibility of Stainless Steels with High-Test Hydrogen Peroxide Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy C.

    2002-01-01

    Compatibility is determined by the surface area, the chemical constituency and the surface finish of a material. In this investigation exposed area is obviously not a factor as the welded samples had a slightly smaller surface than the unwelded, but were more reactive. The chemical makeup of welded CRES 316L and welded CRES 304L have been observed in the literature to change from the parent material as chromium and iron are segregated in zones. In particular, the ratio of chromium to iron in CRES 316L increased from 0.260 to 0.79 in the heat affected zone (HAZ) of the weld and to 1.52 in the weld bead itself. In CRES 304L the ratio of chromium to iron increased from 0.280 to 0.44 in the HAZ and to 0.33 in the weld bead. It is possible that the increased reactivity of the welded samples and of those welded without purge gas is due to this segregation phenomenon. Likewise the reactivity increased in keeping with the greater roughness of the welded and welded without purge gas samples. Therefore enhanced roughness may also be responsible for the increased reactivity.

  8. NO 2 oxidation reactivity and burning mode of diesel particulates

    DOE PAGES

    Strzelec, Andrea; Vander Wal, Randy L.; Thompson, Thomas N.; ...

    2016-03-24

    The NO 2 oxidation kinetics and burning mode for diesel particulate from light-duty and medium-duty engines fueled with either ultra low sulfur diesel or soy methyl ester biodiesel blends have been investigated and are shown to be significantly different from oxidation by O 2. Oxidation kinetics were measured using a flow-through packed bed microreactor for temperature programmed reactions and isothermal differential pulsed oxidation reactions. The burning mode was evaluated using the same reactor system for flowing BET specific surface area measurements and HR-TEM with fringe analysis to evaluate the nanostructure of the nascent and partially oxidized particulates. The low activationmore » energy measured, specific surface area progression with extent of oxidation, HR-TEM images and difference plots of fringe length and tortuosity paint a consistent picture of higher reactivity for NO 2, which reacts indiscriminately immediately upon contact with the surface, leading to the Zone I or shrinking core type oxidation. In comparison, O 2 oxidation is shown to have relatively lower reactivity, preferentially attacking highly curved lamella, which are more reactive due to bond strain, and short lamella, which have a higher proportion of more reactive edge sites. Furthermore, this preferential oxidation leads to Zone II type oxidation, where solid phase diffusion of oxygen via pores contributes significantly to slowing the overall oxidation rate, by comparison.« less

  9. REACTIVITY STUDY OF SO2 CONTROL WITH ATMOSPHERIC AND PRESSURE HYDRATED SORBENTS

    EPA Science Inventory

    The report gives results of a study to develop an understanding of the factors that control the reactivity of hydrated sorbents toward SO2 in coal fired furnaces. It focused on the impacts of hydrate properties (e.g., particle size, surface area, and chemical composition) and the...

  10. Microphysical, microchemical and adhesive properties of lunar material. 3: Gas interaction with lunar material

    NASA Technical Reports Server (NTRS)

    Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.

    1972-01-01

    Knowledge of the reactivity of lunar material surfaces is important for understanding the effects of the lunar or space environment upon this material, particularly its nature, behavior and exposure history in comparison to terrestrial materials. Adsorptive properties are one of the important techniques for such studies. Gas adsorption measurements were made on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples. Surface area measurements were made on the latter two. Adsorbate gases used were N2, A, O2 and H2O. Krypton was used for the surface area determinations. Runs were made at room and liquid nitrogen temperature in volumetric and gravimetric systems. It was found that the adsorptive/desorptive behavior was in general significantly different from that of terrestrial materials of similar type and form. Specifically (1) the UHV-stored sample exhibited very high initial adsorption indicative of high surface reactivity, and (2) the N2-stored samples at room and liquid nitrogen temperatures showed that more gas was desorbed than introduced during adsorption, indicative of gas release from the samples. The high reactivity is a scribed cosmic ray track and solar wind damage.

  11. Clear microstructure-performance relationships in Mn-containing perovskite and hexaaluminate compounds prepared by activated reactive synthesis.

    PubMed

    Laassiri, Said; Bion, Nicolas; Duprez, Daniel; Royer, Sébastien; Alamdari, Houshang

    2014-03-07

    Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.

  12. Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines

    NASA Astrophysics Data System (ADS)

    Strehlau, Jennifer H.; Toner, Brandy M.; Arnold, William A.; Penn, R. Lee

    2017-01-01

    The reactivity of iron oxyhydroxide nanoparticles in low pH and high ionic strength solutions was quantified to assess abiotic contributions to oxidation-reduction chemistry in acidic brine environments, such as mine groundwater seepage, lakes in Western Australia, and acid mine drainage settings, which are of global interest for their environmental impacts and unique geomicrobiology. Factors expected to influence accessible and reactive surface area, including Fe(II) adsorption and aggregate size, were measured as a function of pH and CaCl2 concentration and related to the kinetics of redox reactions in aqueous suspensions of synthetic goethite (α-FeOOH), akaganeite (β-FeOOH), and ferrihydrite (Fe10O14(OH)2) nanoparticles. Aqueous conditions and iron oxyhydroxides were chosen based on characterization of natural iron-rich mine microbial mats located in Soudan Underground Mine State Park, Minnesota, USA. Quinone species were used as redox sensors because they are well-defined probes and are present in natural organic matter. Fe(II) adsorption to the iron oxyhydroxide mineral surfaces from aqueous solution was measurable only at pH values above 4 and either decreased or was not affected by CaCl2 concentration. Concentrations at or above 0.020 M CaCl2 in acetate buffer (pH 4.5) induced particle aggregation. Assessment of Fe(II) adsorption and particle aggregation in acidic brine suggested that accessible reactive surface area may be limited in acidic brines. This was supported by observations of decreasing benzoquinone reduction rate by adsorbed Fe(II) at high CaCl2 concentration. In contrast, the hydroquinone oxidation rate increased at high CaCl2 concentrations, which may be due to suppressed adsorption of Fe(II) generated by the reaction. Results suggest that iron geochemical cycling in acidic brine environments will be substantially different than for iron oxyhydroxides in low-saline waters with circumneutral pH. These findings have implications for acidic brine lakes and acid mine drainage locations that contain precipitated iron oxyhydroxides.

  13. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  14. Study and modification of the reactivity of carbon fibers

    NASA Technical Reports Server (NTRS)

    Walker, P. L., Jr.; Ismail, I. M.; Mahajan, O. P.; Eapen, T. A.

    1980-01-01

    The reactivity to air of polyactylonitrile-based carbon fiber cloth was enhanced by the addition of metals to the cloth. The cloth was oxidized in 54 wt% nitric acid in order to increase the surface area of the cloth and to add carbonyl groups to the surface. Metal addition was then achieved by soaking the cloth in metal acetate solution to effect exchange between the metal carbon and hydrogen on the carbonyl groups. The addition of potassium, sodium, calcium and barium enhanced fiber cloth reactivity to air at 573 K. Extended studies using potassium addition showed that success in enhancing fiber cloth reactivity to air depends on: extent of cloth oxidation in nitric acid, time of exchange in potassium acetate solution and the thoroughness of removing metal acetate from the fiber pore structure following exchange. Cloth reactivity increases essentially linearly with increase in potassium addition via exchange.

  15. Laboratory column experiments and transport modeling to evaluate retardation of uranium in an aquifer downgradient of a uranium in-situ recovery site

    DOE PAGES

    Dangelmayr, Martin A.; Reimus, Paul W.; Wasserman, Naomi L.; ...

    2017-05-01

    The purpose of this study was to determine the attenuation potential and retardation of uranium in sediments taken from boreholes at the Smith-Ranch Highland in-situ recovery (ISR) site. Five column experiments with four different sediments were conducted to study the effects of variable mineralogy and alkalinity on uranium breakthrough. Uranium transport was modeled with PHREEQC using a generalized composite surface complexation model (GC SCM) with one, two, and, three generic surfaces, respectively. Reactive surface areas were approximated with PEST using BET derived surface areas to constrain fitting parameters. Uranium breakthrough was delayed by a factor of 1.68, 1.69 and 1.47more » relative to the non-reactive tracer for three of the 5 experiments at an alkalinity of 540 mg/l. A sediment containing smectite and kaolinite retained uranium by a factor of 2.80 despite a lower measured BET surface area. Decreasing alkalinity to 360 mg/l from 540 mg/l increased retardation by a factor of 4.26. Model fits correlated well to overall BET surface area in the three columns where clay content was less than 1%. For the sediment with clay, models consistently understated uranium retardation when reactive surface sites were restricted by BET results. Calcite saturation was shown to be a controlling factor for uranium desorption as the pH of the system changes. A pH of 6 during a secondary background water flush remobilized previously sorbed uranium resulting in a secondary uranium peak at twice the influent concentrations. Furthermore, this study demonstrates the potential of GC SCM models to predict uranium transport in sediments with homogenous mineral composition, but highlights the need for further research to understand the role of sediment clay composition and calcite saturation in uranium transport.« less

  16. Laboratory column experiments and transport modeling to evaluate retardation of uranium in an aquifer downgradient of a uranium in-situ recovery site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dangelmayr, Martin A.; Reimus, Paul W.; Wasserman, Naomi L.

    The purpose of this study was to determine the attenuation potential and retardation of uranium in sediments taken from boreholes at the Smith-Ranch Highland in-situ recovery (ISR) site. Five column experiments with four different sediments were conducted to study the effects of variable mineralogy and alkalinity on uranium breakthrough. Uranium transport was modeled with PHREEQC using a generalized composite surface complexation model (GC SCM) with one, two, and, three generic surfaces, respectively. Reactive surface areas were approximated with PEST using BET derived surface areas to constrain fitting parameters. Uranium breakthrough was delayed by a factor of 1.68, 1.69 and 1.47more » relative to the non-reactive tracer for three of the 5 experiments at an alkalinity of 540 mg/l. A sediment containing smectite and kaolinite retained uranium by a factor of 2.80 despite a lower measured BET surface area. Decreasing alkalinity to 360 mg/l from 540 mg/l increased retardation by a factor of 4.26. Model fits correlated well to overall BET surface area in the three columns where clay content was less than 1%. For the sediment with clay, models consistently understated uranium retardation when reactive surface sites were restricted by BET results. Calcite saturation was shown to be a controlling factor for uranium desorption as the pH of the system changes. A pH of 6 during a secondary background water flush remobilized previously sorbed uranium resulting in a secondary uranium peak at twice the influent concentrations. Furthermore, this study demonstrates the potential of GC SCM models to predict uranium transport in sediments with homogenous mineral composition, but highlights the need for further research to understand the role of sediment clay composition and calcite saturation in uranium transport.« less

  17. Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.

    PubMed

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja

    2018-06-26

    nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  18. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    PubMed

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.

  20. Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, Milind; Huang, Hai; Kweon, Hyukmin

    2016-03-28

    Reactivity of carbon dioxide (CO 2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO 2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO 2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batchmore » experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments revealed that an initial high-permeability pathway facilitated the formation of wormholes. The peak cation concentrations and general trends were matched using Toughreact. Batch reactor modeling showed that the geometric factors obtained using powder data that related effective surface area to the BET surface area had to be reduced for fractured samples and cores. This indicates that the available surface area in consolidated samples is lower than that deduced from powder experiments. Field-scale modeling of reactive transport and geomechanics was developed in parallel at Idaho National Laboratory. The model is able to take into account complex chemistry, and consider interactions of natural fractures and faults. Poroelastic geomechanical considerations are also included in the model.« less

  1. Fracture sealing caused by mineral precipitation: The role of aperture and mineral heterogeneity on precipitation-induced permeability loss

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2017-12-01

    Fractures act as dominant pathways for fluid flow in low-permeability rocks. However, in many subsurface environments, fluid rock reactions can lead to mineral precipitation, which alters fracture surface geometry and reduces fracture permeability. In natural fractures, surface mineralogy and roughness are often heterogeneous, leading to variations in both velocity and reactive surface area. The combined effects of surface roughness and mineral heterogeneity can lead to large disparities in local precipitation rates that are difficult to predict due to the strong coupling between dissolved mineral transport and reactions at the fracture surface. Recent experimental observations suggest that mineral precipitation in a heterogeneous fracture may promote preferential flow and focus large dissolved ion concentrations into regions with limited reactive surface area. Here, we build on these observations using reactive transport simulations. Reactive transport is simulated with a quasi-steady-state 2D model that uses a depth-averaged mass-transfer relationship to describe dissolved mineral transport across the fracture aperture and local precipitation reactions. Mineral precipitation-induced changes to fracture surface geometry are accounted for using two different approaches: (1) by only allowing reactive minerals to grow vertically, and (2) by allowing three-dimensional mineral growth at reaction sites. Preliminary results from simulations using (1) suggest that precipitation-induced aperture reduction focuses flow into thin flow paths. This flow focusing causes a reduction in the fracture-scale precipitation rate, and precipitation ceases when the reaction zone extends the entire length of the fracture. This approach reproduces experimental observations at early time reasonably well, but as precipitation proceeds, reaction sites can grow laterally along the fracture surfaces, which is not predicted by (1). To account for three-dimensional mineral growth (2), we have incorporated a level-set-method based approach for tracking the mineral interfaces in three dimensions. This provides a mechanistic approach for simulating the dynamics of the formation, and eventual closing, of preferential flow paths by precipitation-induced aperture alteration, that do not occur using (1).

  2. Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Antelo, Juan; Rahnemaie, Rasoul; van Riemsdijk, Willem H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10 days) with 0.5 M NaHCO 3 (pH = 8.5) at various solid-solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca 2+ and Mg 2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO 4-CO 3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading Γ for a series of top soils. The oxidic SA varies between about 3-30 m 2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite-citrate-bicarbonate extractable), results in the specific surface area between about 200-1200 m 2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ˜1-10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ˜1.4 ± 0.2 mg OC/m 2 oxide for many soils of the collection, forming a NOM-mineral nanoparticle association with an average NOM volume fraction of ˜80%. The average mass density of such a NOM-mineral association is ˜1700 ± 100 kg/m 3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably ( Γ ≈ 1-3 μmol/m 2 oxide) in the samples. As discussed in part II of this paper series ( Hiemstra et al., 2010), the phosphate loading ( Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.

  3. Aging of Nanocrystalline Mackinawite (FeS): Mineralogical and Physicochemical Properties

    NASA Astrophysics Data System (ADS)

    Jeong, H. Y.; Lee, H.

    2011-12-01

    Due to the extraordinary physical properties and high surface areas, nanocrystalline minerals have been widely investigated for their potential uses in treating contaminated groundwaters and surface waters. Most previous studies in this field have focused on either preparation of nanocrystalline minerals or measurement of their reactivity with environmental contaminants. Nanocrystalline minerals, due to the inherent thermodynamic instability, tend to change the physicochemical and mineralogical properties over time, usually resulting in the decreased reactivity. Thus, to better assess the long-term effectiveness of nanocrystalline minerals in field applications, such "aging" effects should be clearly delineated. In the present work, we have investigated the aging impact on nanocrystalline mackinawite (FeS), the ubiquitous Fe-bearing mineral in anoxic sulfidic sediments. Mackinawite (FeS) is known to be an effective scavenger for metal pollutants and a strong reducing reagent for chromate and chlorinated organic compounds. Our preliminary results indicate that nanocrystalline FeS ages via Ostwald ripening, particle aggregation, or mineralogical transformation. By X-ray diffraction (XRD) analysis, aging of nanocrystalline FeS via Ostwald ripening is found to be dominant at acidic pH. Cryogenic transmission electron microscopy (TEM) shows that particle aggregation is most evident at neutral pH. Transformation of nanosized FeS into a more thermodynamically stable greigite (Fe3S4) is observed in the presence of folic acid at acidic pH. The pH-dependent aging process may be linked with changes in the apparent solubility and surface charge of FeS with pH. The Ostwald ripening or particle aggregation of nanocrystalline FeS leads to the decrease surface area, thus causing the decreased reactivity. Given the less reactivity of greigite, the transformation of nanocrystalline FeS to greigite is also expected to result in the decreased reactivity.

  4. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material.

    NASA Astrophysics Data System (ADS)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.

    2003-04-01

    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical elements mobilised by the water-minerals interaction processes. To validate our model we simulated the compacted bentonite (MX80) studied for engineered barriers for radioactive waste confinement and mainly composed of Na-Ca-montmorillonite. The study of particles morphology and reactive surfaces evolutions reveals that aqueous ions have a complex behaviour, especially when competitions between various mineral phases occur. In that case, our model predicts a preferential precipitation of finest particles, favouring smectites instead of zeolites. This work is a part of a PhD Thesis supported by Andra, the French Radioactive Waste Management Agency.

  5. Risk evaluation of uranium mining: A geochemical inverse modelling approach

    NASA Astrophysics Data System (ADS)

    Rillard, J.; Zuddas, P.; Scislewski, A.

    2011-12-01

    It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the reactive mineral surface area. The formation of coatings on dissolving mineral surfaces significantly reduces the amount of surface available to react with fluids. Our results show that negatively charged ion complexes, responsible for U transport, decreases when alkalinity and rock buffer capacity is similarly lower. Carbonate ion pairs however, may increase U mobility when radionuclide concentration is high and rock buffer capacity is low. The present work helps to orient future monitoring of this site in Brazil as well as of other sites where uranium is linked to igneous rock formations, without the presence of sulphides. Monitoring SO4 migration (in acidic leaching uranium sites) seems to be an efficient and simple way to track different hazards, especially in tropical conditions, where the succession of dry and wet periods increases the weathering action of the residual H2SO4. Nevertheless, models of risk evaluation should take into account reactive surface areas and neogenic minerals since they determine the U ion complex formation, which in turn, controls uranium mobility in natural systems. Keywords: uranium mining, reactive mineral surface area, uranium complexes, inverse modelling approach, risk evaluation

  6. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  7. Towards a Model of Reactive-Cracking: the Role of Reactions, Elasticity and Surface Energy Driven Flow in Poro-elastic Media

    NASA Astrophysics Data System (ADS)

    Evans, O.; Spiegelman, M. W.; Wilson, C. R.; Kelemen, P. B.

    2016-12-01

    Many critical processes can be described by reactive fluid flow in brittle media, including hydration/alteration of oceanic plates near spreading ridges, chemical weathering, and dehydration/decarbonation of subducting plates. Such hydration reactions can produce volume changes that may induce stresses large enough to drive fracture in the rock, in turn exposing new reactive surface and modifying the permeability. A better understanding of this potentially rich feedback could also be critical in the design of engineered systems for geologic carbon sequestration. To aid understanding of these processes we have developed a macroscopic continuum description of reactive fluid flow in an elastically deformable porous media. We explore the behaviour of this model by considering a simplified hydration reaction (e.g. olivine + H20 -> serpentine + brucite). In a closed system, these hydration reactions will continue to consume available fluids until the permeability reaches zero, leaving behind it a highly stressed residuum. Our model demonstrates this limiting behaviour, and that the elastic stresses generated are large enough to cause failure/fracture of the host rock. Whilst it is understood that `reactive fracture' is an important mechanism for the continued evolution of this process, it is also proposed that imbibition/surface energy driven flow may play a role. Through a simplified set of computational experiments, we investigate the relative roles of elasticity and surface energy in both a non-reactive purely poro-elastic framework, and then in the presence of reaction. We demonstrate that surface energy can drive rapid diffusion of porosity, thus allowing the reaction to propagate over larger areas. As we expect both surface energy and fracture/failure to be of importance in these processes, we plan to integrate the current model into one that allows for fracture once critical stresses are exceeded.

  8. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    NASA Astrophysics Data System (ADS)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.

  9. Reactivation of a dormant earthflow documented by field monitoring data

    NASA Astrophysics Data System (ADS)

    Berti, Matteo; Simoni, Alessandro

    2017-04-01

    Large, deep-seated earthflows are common in mountainous areas where clay soils or fine-grained weak rocks are dominant. Distinctive features of these landslides are the relatively slow movements and the complex style of activity, in which mass flow is accompanied by basal sliding along localized shear zones. Earthflows are subjected to periodic reactivations separated by long intervals of dormancy. Although the dynamics of earthflows is widely documented in the literature, field data on the reactivation process are almost absent because of the difficulty of catching the critical acceleration phase. We document the reactivation of a large, dormant earthflow that occurred in February 2014 in the Northern Apennines of Italy. The Montecchi earthflow is located about 50 km to the south of Bologna, on the left side of the Silla Valley. Slopes are mainly constituted by chaotic sedimentary melanges belonging to the Palombini Shale (lower Cretaceous-Cenomanian). The earthflow first reactivated in November 1994, after an apparently unexceptional precipitation of 95 mm over a week. Surface velocities reached the value of few meters per day during the failure, then the landslide slowed down. One month after the reactivation, the velocity reduced to 1.2 mm/day and five months later it was further decreased to 0.1-0.2 mm/day. In the following years, the landslide became dormant with residual movements in the order of few mm/month. A monitoring system was installed in July 2004 to investigate the slope response to rainfalls and the displacement rates of the landslide during the dormant phase. The monitoring system has been operational for more than 10 years by adapting the number, type, and location of monitoring sensors to the evolving landslide. The monitoring system was operational when, on the 10th of February 2014, the landslide reactivated again. At the time of the failure two monitored sections were operational in the source area (upper section) and in the central part (middle section) of the 1994 earthflow. The upper section essentially consisted of 1 rain gage, 3 surface wire extensometers installed across the main scarp, and 2 instrumented open-standpipe piezometers at 3.6 m depth. In the middle section, 6 instrumented open-standpipe piezometers and 7 pressure sensors directly buried into the ground were installed in the landslide body at depths ranging between 1 and 9 m (about 2 m above the slip surface). Although several sensors were damaged and others were pulled out from the ground during the movement, the reactivation of the earthflow is well documented. The three surface wire extensometers showed a nearly-perfect exponential growth of the displacement rate, that progressively increased from about 1 mm/day one month before the failure to more than 200 mm/day in the last hours. The initial slide in the crown area then loaded the existing, fully-saturated landslide deposits triggering the downslope propagation of the failure. The pressure sensors buried in the landslide material recorded positive pore pressure excesses due to undrained loading (with hydraulic heads well above the ground surface) generally followed by an abrupt decrease, probably related to mechanical unloading or dilation of the landslide mass. These data indicate that the earthflow was reactivated by a relatively small, drained failure in the source area that propagated downslope as an undrained pulse of mechanical compression and extension.

  10. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical simulation studies have served to identify candidate compounds for use as reactive tracers. An emerging class of materials that show promise for use as geothermal and EGS tracers are colloidal nanocrystals (quantum dots). These are semiconductor particles that fluoresce as a function of particle size. Preliminary laboratory experimentation has demonstrated that these thermally stable, water-soluble particles can serve as conservative tracers for geothermal applications. Likewise, they show promise as potential reactive tracers, since their surfaces can be modified to be reversibly sorptive and their diameters are sufficiently large to allow for contrasts in diffusivity with solute tracers.

  11. Surface topographical changes measured by phase-locked interferometry

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Fung, S. S.

    1984-01-01

    An electronic optical laser interferometer capable of resolving depth differences of as low as 30 A and planar displacements of 6000 A was constructed to examine surface profiles of bearing surfaces without physical contact. Topological chemical reactivity was determined by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than virgin ones but that bearing surfaces exposed to lubricants containing an organic chloride reacted much more slowly. The reactivity of stainless steel plates, heated in a nitrogen atmosphere to different temperatures, were examined later at ambient temperature. The change of surface contour as a result of the probe reaction followed Arrhenius-type relation with respect to heat treatment temperature. The contact area of the plate of a ball/plate sliding elastohydrodynamic contact run on trimethylopropane triheptanoate with or without additives was optically profiled periodically. As scuffing was approached, the change of profile within the contact region changed much more rapidly by the acid probe and assumed a constant high value after scuffing. A nonetching metallurgical phase was found in the scuff mark, which was apparently responsible for the high reactivity.

  12. The dynamic nature of crystal growth in pores

    DOE PAGES

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; ...

    2016-09-12

    We report that the kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO 2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocitiesmore » predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Lastly, accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.« less

  13. Time-lapse 3D imaging of calcite precipitation in a microporous column

    NASA Astrophysics Data System (ADS)

    Godinho, Jose R. A.; Withers, Philip J.

    2018-02-01

    Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.

  14. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less

  15. Reactivity of NO2 and CO2 with hardened cement paste containing activated carbon

    NASA Astrophysics Data System (ADS)

    Horgnies, M.; Dubois-Brugger, I.; Krou, N. J.; Batonneau-Gener, I.; Belin, T.; Mignard, S.

    2015-07-01

    The development of building materials to reduce the concentration of NO2 is growing interest in a world where the air quality in urban areas is affected by the car traffic. The main binder in concrete is the cement paste that is partly composed of calcium hydroxide. This alkaline hydrate composing the hardened cement paste shows a high BET surface area (close to 100 m2.g-1) and can absorb low-concentrations of NO2. However, the presence of CO2 in the atmosphere limits the de-polluting effect of reference cement paste, mainly due to carbonation of the alkaline hydrates (reaction leading to the formation of calcium carbonate). The results established in this paper demonstrate that the addition of activated carbon in the cement paste, because of its very high BET surface area (close to 800 m2.g-1) and its specific reactivity with NO2, can significantly improve and prolong the de-polluting effect in presence of CO2 and even after complete carbonation of the surface of the cement paste.

  16. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Bong Suk; Kang, Kyu-Young; Jeong, Myung-Joon

    2017-10-01

    Kraft and organosolv lignins, generally produced in chemical pulping and bio-refinery processes of lignocellulosic biomass, were used to prepare lignin-based carbon aerogels for supercapacitors as raw materials. The difference between lignins and lignin-based aerogels were compared by analyzing physical and chemical properties, including molecular weight, polydispersity, and reactivity with formaldehyde. Also, density, shrinkage, Brunauer-Emmett-Teller (BET) surface area and scanning electron microscope (SEM) images of the lignin-based aerogel were investigated. Kraft lignin consisting of coniferyl alcohol (G) and p-coumaryl alcohol (H) increased the reactivity of formaldehyde, formed a hydrogel well (porosity > 0.45), and specific surface area higher than organosolv lignin. In the case of kraft lignin, there were irregular changes such as oxidation and condensation in the pulping process. However, reaction sites with aromatic rings in lignin impacted the production of aerogel and required a long gelation period. The molecular weight of lignin influences the gelation time in producing lignin-based aerogel, and lignin composition affects the BET surface area and pore structures of the lignin-based carbon aerogels.

  17. Variability in goethite surface site density: evidence from proton and carbonate sorption.

    PubMed

    Villalobos, Mario; Trotz, Maya A; Leckie, James O

    2003-12-15

    Goethite is a representative iron oxide in natural environments due to its abundance and thermodynamic stability and may be responsible for many surface-mediated processes, including ion retention and mobility in aqueous settings. A large variability in morphologies and specific surface areas of goethite crystals exists but little work has been done to compare surface reactivity between them. The present work offers experimental evidence for the existence of an inverse relationship between sorption capacity for protons and carbonate ions and specific surface area of goethite for three synthetic goethite preparations spanning surface area differences by a factor of 2. An explanation for this was found by assuming a variable reactive site density between preparations in direct relationship to their sorption capacity based on congruency of carbonate sorption computed on a per-site basis. Previous evidence of maximum sorption capacities supports this explanation, and site density ratios between the goethites studied here were obtained. Triple layer surface complexation modeling was successful in describing adsorption data for all goethite preparations using equal stoichiometries. A new formulation of standard state for activities of surface species based on a 1.0 mole fraction of sites on the solid allowed transformation of the conventional molar concentration-based affinity constants to values based on site occupancy. In this fashion, by applying the appropriate site density ratios, a single set of affinity constant values was found that described accurately the adsorption data for all preparations.

  18. Rate of coal hydroliquefaction: correlation to coal structure. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties:more » volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.« less

  19. Reactive polymer coatings: A robust platform towards sophisticated surface engineering for biotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Yeh

    Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended storage time prior to bonding, and (iii) well-defined surface functionalities for subsequent surface modifications. Finally, we have also prepared surface microstructures and surface patterns using reactive coatings via photopatterning, projection lithography, supramolecular nanostamping (SuNS), and vapor-assisted micropatterning in replica structures (VAMPIR). These patterning techniques can be complimentarily used and provide access to precisely confined microenvironments on flat and curved geometries. Reactive coatings provide a technology platform that creates active, long-term control and may lead to improved mimicry of biological systems for effective bio-functional modifications.

  20. Consideration of grain packing in granular iron treatability studies

    NASA Astrophysics Data System (ADS)

    Firdous, R.; Devlin, J. F.

    2014-08-01

    Commercial granular iron (GI) is light steel that is used in Permeable Reactive Barriers (PRBs). Investigations into the reactivity of GI have focused on its chemical nature and relatively little direct work has been done to account for the effects of grain shape and packing. Both of these factors are expected to influence available grain surface area, which is known to correlate to reactivity. Commercial granular iron grains are platy and therefore pack in preferential orientations that could affect solution access to the surface. Three packing variations were investigated using Connelly Iron and trichloroethylene (TCE). Experimental kinetic data showed reaction rates 2-4 times higher when grains were packed with long axes preferentially parallel to flow (VP) compared to packings with long axes preferentially perpendicular to flow (HP) or randomly arranged (RP). The variations were found to be explainable by variations in reactive sorption capacities, i.e., sorption to sites where chemical transformations took place. The possibility that the different reactive sorption capacities were related to physical pore-scale differences was assessed by conducting an image analysis of the pore structure of sectioned columns. The analyses suggested that pore-scale factors - in particular the grain surface availability, reflected in the sorption capacity terms of the kinetic model used - could only account for a fraction of the observed reactivity differences between packing types. It is concluded that packing does affect observable reaction rates but that micro-scale features on the grain surfaces, rather than the pore scale characteristics, account for most of the apparent reactivity differences. This result suggests that treatability tests should consider the packing of columns carefully if they are to mimic field performance of PRBs to the greatest extent possible.

  1. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass: Effects of the cellulose.

    PubMed

    Wu, Zhiqiang; Wang, Shuzhong; Luo, Zhengyuan; Chen, Lin; Meng, Haiyu; Zhao, Jun

    2017-07-01

    In this paper, the influence of cellulose on the physicochemical properties and the gasification reactivity of co-pyrolysis char was investigated. A specific surface area analyzer and an X-ray diffraction system were used to characterize the pore structure and the micro-crystalline structure of char. Fractal theory and deconvolution method were applied to quantitatively investigate the influence of cellulose on the structure of co-pyrolysis char. The results indicate that the improvements in the pore structure due to the presence of cellulose are more pronounced in the case of anthracite char with respect to bituminous char. Cellulose promotes the ordering of micro-scale structure and the uniformity of both anthracite and bituminous char, while the negative synergetic effect was observed during gasification of co-pyrolysis char. The exponential relationships between fractal dimension and specific surface area were determined, along with the relations between the gasification reactivity index and the microcrystalline structure parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Surface area dependence of calcium isotopic reequilibration in carbonates: Implications for isotopic signatures in the weathering zone

    NASA Astrophysics Data System (ADS)

    Fernandez, N. M.; Druhan, J. L.; Potrel, A.; Jacobson, A. D.

    2016-12-01

    The concept of dynamic equilibrium carries the implicit assumption of continued isotopic exchange between a mineral and the surrounding fluid. While this effect has received much attention in the marine paleoproxy literature, it has been relatively overlooked in application to the terrestrial environment. In weathering systems, a potential consequence is that rapid reequilibration may alter or erase isotopic signatures generated during secondary mineral formation. The extent and timescale over which isotopic signatures are reset in these hydrologic systems is unknown. Using reactive transport modeling, we show isotopic reequilibration under conditions reflecting terrestrial hydrologic settings to be significant and dependent on the reactive surface area of the solid. In particular, we suggest that the non-traditional stable isotopes commonly used in application to carbonates (e.g., Ca, Mg, Sr) are sensitive to these effects due to their rapid reaction rates. We aim to characterize the dependence of Ca isotopic reequilibration on surface area during calcite precipitation via batch experiments conducted at ambient temperature over 48-hour time periods. Calcite precipitation was performed in a closed batch reactor utilizing a controlled free-drift method. The batch reactors contained mixed supersaturated solutions of CaCl2 and NaHCO3 at an initial pH of 8.54. Precipitation was initiated by seed inoculation of calcite crystals with two distinct, pre-constrained surface areas. All experiments achieved the same final state of chemical equilibrium, but as expected, the fastest approach to equilibrium occurred for experiments employing calcite seeds with the highest surface area. This implies that differences in equilibrated Ca isotope ratios (δ44/40Ca) should reflect differences in surface area. This prediction is upheld by models of the experiments, indicating a measureable difference in δ44Ca during calcite precipitation where the higher surface area corresponds to lower δ44Ca values and a faster approach to isotopic equilibrium. The dependence of δ44Ca resetting on calcite surface areas has broad ramifications for tracing carbonate weathering in the Critical Zone.

  3. Influence of reactive fillers on concrete corrosion resistance

    NASA Astrophysics Data System (ADS)

    Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.

    2018-03-01

    Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.

  4. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    PubMed

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Acrolein Microspheres Are Bonded To Large-Area Substrates

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Yen, Richard C. K.

    1988-01-01

    Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.

  6. Development of selective surfaces. Semiannual technical progress report, September 11, 1978-April 30, 1979. [Multilayer coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.A.

    1979-06-15

    Magnetron sputtering technology, which permits coatings to be deposited over large areas with significantly increased deposition rates, is reviewed with particular emphasis on cylindrical magnetrons and their application to reactive sputtering. Work is reported in which cylindrical-post magnetron sputtering sources have been used to deposit both graded and multi-layered cermet-type coatings by sputtering chromium and type 304 stainless steel in Ar and O/sub 2/ and Ar and CO gas mixtures under various conditions of reactive gas injection. The substrates are aluminum-coated glass and aluminum foil. The coatings are of an interference type, typically about 100 nm thick, with a metal-rich,more » highly absorbing layer adjacent to the substrate and a dielectric material at the surface. In some cases a reactively sputtered aluminum oxide anti-reflective surface layer has also been used. No advantages have been found for using chromium as opposed to the more readily available stainless steel. The reactive sputtering with CO is attractive because under many conditions the sputtering rates are relatively large compared to oxygen. Hemispherical absorptance and emittance data are reported. Typical absorptances are about 0.90 with emittances of 0.10.« less

  7. The acid-base titration of montmorillonite

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Sposito, G.; Bourg, A. C.

    2003-12-01

    Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental data illustrates the complementarity of molecular and macro-scale descriptions of the clay reactivity.

  8. Assessing reactivation of the Pourewa Landslide Zone, Auckland, New Zealand, using Structure-from-Motion, LiDAR, and geophysics

    NASA Astrophysics Data System (ADS)

    Brook, Martin; Liu, Shanshan; Richards, Nick; Bevan, David; Prebble, Warwick

    2017-04-01

    Landslides pose significant risks to communities and infrastructure particularly in urban areas, and mitigating these risks relies on understanding landslide triggering processes that may cause reactivation. Previous work has shown that landslides are often complex, multiphase processes where gradual deterioration of shear strength within the subsurface precedes slope failure and the appearance of surface morphological features. Here, we combine a suite of remote sensing and direct invasive testing techniques to assess reactivation of the Pourewa Landslide Zone (PLZ), located in Auckland, New Zealand. The PLZ is located on the inner wall of the north-eastern flank of the Orakei volcano, 4 km east of Auckland CBD. The landslide zone occupies slopes above the east bank of the tidal Pourewa Creek, which lies within a residential area. Four landslides are located within the PLZ (from west to east): Ngapipi Road Landslide, Kepa Road Landslide, St Josephs Landslide, and Pourewa Landslide. Inward collapse of the crater walls since the initial eruption (>85 ka) has enlarged the crater to c. 1000 m diameter, with some slopes prone to ongoing mass movements. Indeed, reactivation during the 20th century led to the realignment of Kepa Road, and surface cracking of roads in the vicinity is ongoing. LiDAR imagery was used to develop high resolution geomorphological maps, and this data was compared with more recent Structure-from-Motion (SfM) photogrammetry, obtained from an unmanned aerial vehicle (UAV). The digital surface models and derived cross-sections developed from these data allow both the initial failure, and subsequent reactivations to be assessed in detail. Geophysical surveys included Electromagnetic Induction (EMI), augmented by information relating to lithological, moisture and strength variation with depth, allowing initial interpretation of zones likely to be prone to reactivation. Ongoing slope deformation includes shallow, retrogressive failure on the upper slopes, and translation and flow toward the toe. Taken together, results indicate that reactivation is strongly controlled by lithology, as well as porewater pressure. The study highlights the value of a combined geophysical and direct testing approach for landslide hazard assessment in order to mitigate risk to infrastructure.

  9. Constitution of Drop-Tube-Generated Coal Chars from Vitrinite- and Inertinite-Rich South African Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louw, Enette B.; Mitchell, Gareth D.; Wang, Juan

    The structural transformations of coal and the resultant char morphologies are strongly dependent on the initial structure and degree of thermoplasticity achieved during coal-to-char transition. These are a function of petrographic composition, rank, particle size, and heating rate and strongly affect combustion behavior. This study compares the devolatilization and subsequent combustion behavior of an inertinite-rich (87.7% dmmf) and a vitrinite-rich (91.8% dmmf) South African coal, wet-screened to a narrow particle size distribution of 200 x 400 mesh. Pyrolysis chars were generated under rapid-heating conditions (104-105 °C/s) in a drop-tube reactor to closely resemble chars generated in pulverized combustion conditions. Themore » inertinite-rich coal took ~ 400 ms to devolatilize in the drop-tube, compared to only ~ 240 ms for the vitrinite-rich sample. The chemical and physical structure (the constitution) of the chars were investigated through a range of chemical, physical, and optical characteristics including the maceral differences, and high ash yields. To evaluate the combustion reactivity non-isothermal burn-out profiles were obtained through thermogravimetrical analyses (TGA) in air. The vitrinite-rich char had on average 20% higher reaction rates than the inertinite-rich char under the various combustion conditions. The char samples were de-ashed with HCl and HF acid which resulted in an increase in combustion reactivity. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased with 80% after de-ashing. While the vitrinite-rich char with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. The ash acted as a barrier, and the removal of ash most likely increased the access to reactive surface area. The chemical and physical structures of the chars were characterized through a range of different analytical techniques to quantify the factors contributing to reactivity differences. The morphologies of the chars were characterized with SEM and optical microscopy, while quantitative information on the ordered nature of chars was obtained through XRD on de-ashed chars. The inertinite-rich coal experienced limited fluidity during heat-treatment, resulting in slower devolatilization, limited growth in crystallite height (11.8 to 12.6Å), only rounding of particle edges, and producing > 40% of mixed-dense type chars. The vitrinite-char showed more significant structural transformations; producing mostly (80%) extensively swollen crassisphere, tenuisphere, and network-type chars, and XRD showed a large increase in crystallite height (4.3 to 11.7Å). Nitrogen adsorption and small-angle X-ray scattering (SAXS) were utilized to compare the nitrogen surface areas and pore size distributions. Both chars were mostly mesoporous but the inertinite-rich char had double the average pore size, which also resulted in a larger nitrogen surface area since nitrogen can only access surface areas in larger pores. The BET surface area was 3.9 and 2.7 m2/g for the inertinite- and vitrinite-rich chars respectively. SAXS data showed that the vitrinite-rich char had 60% higher frequencies of pores in the micropore range. Helium porosimetry indicated that the inertinite-rich coal and resultant char had higher densities than the vitrinite coal and char; 1.6 and 2.0 g/cm3, compared to 1.3 and 1.9 g/cm3 (dry basis). Non-isothermal TGA burnout profiles showed the inertinite-rich char had a burnout temperature of 680°C, slightly higher than the vitrinite-rich char’s 650 °C. This, along with the peak shape and position in the burnout profiles indicate that the vitrinite-rich char has a higher reactivity. The higher reactivity is due to a combination of factors likely including less organization, grater porosity and access to the reactive site, less ash blocking, and char morphology differences.« less

  10. Applications of metal nanoparticles in environmental cleanup

    EPA Science Inventory

    Iron nanoparticles (INPs) are one of the fastest-developing fields. INPs have a number of key physicochemical properties, such as high surface area, reactivity, optical and magnetic properties, and oxidation and reduction capacities, that make them attractive for water purificati...

  11. Skylab reactivation mission report

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1980-01-01

    On July 11, 1979, Skylab impacted the Earth's surface. The debris dispersion area stretched from the South Eastern Indian Ocean across a sparsely populated section of Western Australia. The events leading to the reentry of Skylab are discussed and a final assessment of the Skylab debris impact footprint is presented. Also included are detailed evaluations of the various Skylab systems that were reactivated when control of Skylab was regained in mid-1978 after having been powered down since February 4, 1974.

  12. Vessel Biofouling Prevention and Management Options Report

    DTIC Science & Technology

    2015-03-01

    Marine Reserve GNPD Galapagos National Park Directorate gpm Gallons per minute HST™ Hull Surface Treatment HullBUG Hull Bio -Mimetic Underwater...operators and hull cleaning equipment vendors. 2 VESSEL STRUCTURES SUBJECT TO BIOFOULING All submerged areas of the hull, including appendages and niche...categorized as proactive (preventative) and reactive (removal). Preventative measures include hull coatings that present bio -toxic surfaces to the immediate

  13. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids

    USGS Publications Warehouse

    Aiken, George R.; Hsu-Kim, Heileen; Ryan, Joseph N.

    2011-01-01

    We have known for decades that dissolved organic matter (DOM) plays a critical role in the biogeochemical cycling of trace metals and the mobility of colloidal particles in aquatic environments. In recent years, concerns about the ecological and human health effects of metal-based engineered nanoparticles released into natural waters have increased efforts to better define the nature of DOM interactions with metals and surfaces. Nanomaterials exhibit unique properties and enhanced reactivities that are not apparent in larger materials of the same composition1,2 or dissolved ions of metals that comprise the nanoparticles. These nanoparticle-specific properties generally result from the relatively large proportion of the atoms located at the surface, which leads to very high specific surface areas and a high proportion of crystal lattice imperfections relative to exposed surface area. Nanoscale colloids are ubiquitous in nature,2 and many engineered nanomaterials have analogs in the natural world. The properties of these materials, whether natural or manmade, are poorly understood, and new challenges have been presented in assessing their environmental fate. These challenges are particularly relevant in aquatic environments where interactions with DOM are key, albeit often overlooked, moderators of reactivity at the molecular and nanocolloidal scales.

  14. The Importance of Protons in Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of proton adsorption is of utmost importance to reactive transport modeling.

  15. Experimental determination of sorption in fractured flow systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  16. Removal of sulphur dioxide from flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ersoy-Mericboyu, A.

    1999-08-01

    Mixtures of Ca(OH){sub 2} and different siliceous materials such as fly ash, bentonite, silica fume, and diatomite were hydrated to produce reactive SO{sub 2} sorbents. It was observed that these sorbents showed a better reactivity toward SO{sub 2} than the Ca(OH){sub 2} itself. This behavior is closely related to the pozzolanic nature of the hydrated sorbents and to the greater surface area. The reactivity of the sorbents was strongly influenced by the source of siliceous material and the hydration conditions. The total sulphation capacities of the sorbents were determined at 338 K with a synthetic gaseous mixture containing 5,000 ppmmore » SO{sub 2} and 55% relative humidity. Depending on the chemical and physical properties of the sorbents, the SO{sub 2} captures ranged from 1.20 to 5.58 mmol SO{sub 2}/g sorbent. The amount of SO{sub 2} capture increased with the increasing surface area of the sorbent. The utilization of Ca(OH){sub 2} with SO{sub 2} improved significantly when Ca(OH){sub 2} was hydrated with siliceous materials first and later exposed to SO{sub 2}.« less

  17. Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model.

    PubMed

    Seeboonruang, Uma; Ginn, Timothy R

    2006-03-20

    Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.

  18. Design and Performance of an Enhanced Bioremediation Pilot Test in a Tidal Wetland Seep, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Majcher, Emily H.; Lorah, Michelle M.; Phelan, Daniel J.; McGinty, Angela L.

    2009-01-01

    Because of a lack of available in situ remediation methods for sensitive wetland environments where contaminated groundwater discharges, the U.S. Geological Survey, in cooperation with the U.S. Army Garrison, Aberdeen Proving Ground, Maryland, conceived, designed, and pilot tested a permeable reactive mat that can be placed horizontally at the groundwater/surface-water interface. Development of the reactive mat was part of an enhanced bioremediation study in a tidal wetland area along West Branch Canal Creek at Aberdeen Proving Ground, where localized areas of preferential discharge (seeps) transport groundwater contaminated with carbon tetrachloride, chloroform, tetrachloroethene, trichloroethene, and 1,1,2,2-tetrachloroethane from the Canal Creek aquifer to land surface. The reactive mat consisted of a mixture of commercially available organic- and nutrient-rich peat and compost that was bioaugmented with a dechlorinating microbial consortium, WBC-2, developed for this study. Due to elevated chlorinated methane concentrations in the pilot test site, a layer of zero-valent iron mixed with the peat and compost was added at the base of the reactive mat to promote simultaneous abiotic and biotic degradation. The reactive mat for the pilot test area was designed to optimize chlorinated volatile organic compound degradation efficiency without altering the geotechnical and hydraulic characteristics, or creating undesirable water quality in the surrounding wetland area, which is referred to in this report as achieving geotechnical, hydraulic, and water-quality compatibility. Optimization of degradation efficiency was achieved through the selection of a sustainable organic reactive matrix, electron donor, and bioaugmentation method. Consideration of geotechnical compatibility through design calculations of bearing capacity, settlement, and geotextile selection showed that a 2- to 3-feet tolerable thickness of the mat was possible, with 0.17 feet settlement predicted for unconsolidated sediments between 1.5 and 6 years following installation of the reactive mat. To ensure hydraulic compatibility in the mat design, mat materials that had a hydraulic conductivity greater than the surrounding wetland sediments were selected, and the mixture was optimized to consist of 1.5 parts compost, 1.5 parts peat and 1 part sand as a safeguard against fluidization. Sediment and matrix properties also indicated that a nonwoven geotextile with a cross-plane flow greater than that of the native sediments was suitable as the base of the reactive mat. Another nonwoven geotextile was selected for installation between the iron mix and organic zones of the mat to create more laminar flow conditions within the mat. Total metals and sequential extraction procedure analyses of mat materials, which were conducted to evaluate water-quality compatibility of the mat materials, showed that concentrations of metals in the compost ranged from one-half to one order of magnitude below consensus-based probable effect concentrations in sediment. A 22-inch-thick reactive mat, containing 0.5 percent WBC-2 by volume, was constructed at seep area 3-4W and monitored from October 2004 through October 2005 for the pilot test. No local, immediate failure of the mat or of wetland sediments was observed during mat installation, indicating that design estimates of bearing capacity and geotextile textile selection ensured the integrity of the mat and wetland sediments during and following installation. Measurements of surface elevation of the mat showed an average settlement of the mat surface of approximately 0.25 feet after 10 months, which was near the predicted settlement for unconsolidated sediment. Monitoring showed rapid establishment and sustainment throughout the year of methanogenic conditions conducive to anaerobic biodegradation and efficient dechlorination activity by WBC-2. The median mass removal of chloromethanes and total chloroethenes and ethane during the

  19. Prevention and suppression of metal packing fires.

    PubMed

    Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W

    2003-11-14

    Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.

  20. Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography

    NASA Astrophysics Data System (ADS)

    Godinho, jose; Gerke, kirill

    2016-04-01

    Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.

  1. Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media

    DOE PAGES

    Chen, Li; Zhang, Ruiyuan; Min, Ting; ...

    2018-05-19

    For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less

  2. Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; Zhang, Ruiyuan; Min, Ting

    For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less

  3. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Photonics and microarray technology

    NASA Astrophysics Data System (ADS)

    Skovsen, E.; Duroux, M.; Neves-Petersen, M. T.; Duroux, L.; Petersen, S. B.

    2007-05-01

    Photonic induced immobilization of biosensor molecules is a novel technology that results in spatially oriented and spatially localized covalent coupling of a large variety of biomolecules onto thiol reactive surfaces, e.g. thiolated glass, quartz, gold or silicon. The reaction mechanism behind the reported new technology involves light-induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids resulting in the formation of reactive molecules that will form covalent bonds with thiol reactive surfaces. This new technology has the potential of replacing present micro dispensing arraying technologies, where the size of the individual sensor spots are limited by the size of the dispensed droplets. Using light-induced immobilization the spatial resolution is defined by the area of the sensor surface that is illuminated by UV light and not by the physical size of the dispensed droplets of sensor molecules. This new technology allows for dense packing of different biomolecules on a surface, allowing the creation of multi-potent functionalized materials, such as biosensors with micrometer sized individual sensor spots. Thus, we have developed the necessary technology for preparing large protein arrays of enzymes and fragments of antibodies, with micrometer resolution, without the need for liquid micro dispensing.

  5. Near-surface Heating of Young Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter

    PubMed Central

    Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe

    2017-01-01

    Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life. PMID:28327661

  6. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    DOE PAGES

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; ...

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less

  7. The Relationship Between Facial Skin Surface Temperature Reactivity and Traditional Polygraph Measures Used in the Psychophysiological Detection of Deception: A Preliminary Investigation

    DTIC Science & Technology

    2002-03-01

    Surface Temperature and Polygraph Measures 19 References Cook , E. and Turpin , G. ( 1997 ). Differentiating orienting, startle, and defense responses... Turpin , 1997 ). The results of the present study also suggest that, in the forehead and periorbital region, the situation is complex. A multivariate...Facial Skin Surface Temperature and Polygraph Measures 3 areas would be differentially affected by participants’ fear-induced central and ANS responses to

  8. Simple route for nano-hydroxyapatite properties expansion.

    PubMed

    Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L

    2015-10-20

    Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.

  9. Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studiesmore » of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.« less

  10. The spectroscopy and chemical dynamics of microparticles explored using an ultrasonic trap.

    PubMed

    Mason, N J; Drage, E A; Webb, S M; Dawes, A; McPheat, R; Hayes, G

    2008-01-01

    Microsized particles play an important role in many diverse areas of science and technology, for example, surface reactions of micron-sized particles play a key role in astrochemistry, plasma reactors and atmospheric chemistry. To date much of our knowledge of such surface chemistry is derived from 'traditional' surface science-based research. However, the large surface area and morphology of surface material commonly used in such surface science techniques may not necessarily mimic that on the surface of micron/nano scale particles. Hence, a new generation of experiments in which the spectroscopy (e.g., albedo) and chemical reactivity of micron-sized particles can be studied directly must be developed. One, as yet underexploited, non-invasive technique is the use of ultrasonic levitation. In this article, we describe the operation of an 'ultrasonic trap' to store and study the physical and chemical properties of microparticles.

  11. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles.

    PubMed

    Manovic, Vasilije; Anthony, Edward J

    2007-06-15

    This paper examines the reactivation of spent sorbent, produced from multiple CO2 capture cycles, for use in SO2 capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, > 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when > 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO4 with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. This enables the development of a more suitable pore surface area and pore volume distribution for sulfation, and this has been confirmed by N2 adsorption-desorption isotherms and the Barrett-Joyner-Halenda (BJH) method. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH)2 crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. The improved characteristics of spent reactivated sorbent in comparison to the original and to the sorbent calcined under different conditions and hydrated indicate the beneficial effect of CO2 cycles on sorbent reactivation and subsequent sulfation. These results allow us to propose a new process for the use of CaO-based sorbent in fluidized bed combustion (FBC) systems, which incorporates CO2 capture, sorbent reactivation, and SO2 retention.

  12. Effective rate constants for nanostructured heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Hendy, Shaun; Gaston, Nicola; Zhang, Philip; Lund, Nat

    2012-02-01

    There is currently a high level of interest in the use of nanostructured materials for catalysis. For instance, gold, which is largely inert in the bulk, can exhibit strong catalytic activity when in nanoparticle form. With precious metal catalysts such as Pt and Pd in high demand, the use of these materials in nanoparticle form can also substantially reduce costs by exposure of more surface area for the same volume of material. When reactants are plentiful, the effective activity of a nanoparticulate catalyst will increase roughly with its surface area. However, under diffusion-limited conditions, the reactant must diffuse to active sites on the catalyst, so a high surface area and a high density of active sites may bring diminishing returns if reactant is consumed faster than it arrives. Here we apply a mathematical homogenisation approach to derive simple expressions for the effective reactivity of a nanostructured catalyst under diffusion limited conditions that relate the intrinsic rate constants of the surfaces presented by the catalyst to an effective rate constant. When highly active catalytic sites, such as step edges or other defects are present, we show that distinct limiting cases emerge depending on the degree of overlap of the reactant depletion zone about each site. In gases, the size of this depletion zone is approximately the mean free path, so the effective reactivity will depend on the structure of the catalyst on that scale. We discuss implications for the optimal design of nanoparticle catalysts.

  13. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang

    2011-03-01

    Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  14. The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.

    2009-01-01

    We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.

  15. Surface modification of calcium fluoro and hydroxyapatite by 1-octylphosphonic dichloride

    NASA Astrophysics Data System (ADS)

    Aissa, Abdallah; Agougui, Hassen; Debbabi, Mongi

    2011-08-01

    The reactivity of the surface of calcium hydroxyapatite (CaHAp) and fluorapatite (CaFAp) was tested and compared by grafting the 1-octylphosphonic dichloride (C 8H 17OPCl 2) using a molar ratio x = 2 or 4, x = n(organic)/ n(apatite). Successful synthesis was confirmed by different characterisation techniques such as X-ray powder diffraction patterns, IR spectroscopy, MAS-NMR ( 1H and 31P) and chemical analysis. The difference between their specific surface area (SSA: 57.46 for HAp and 12.09 m 2/g for FAp), the percentage of carbon measured after treatment with (C 8H 17OPCl 2) and the intensities of IR bands attributed to the grafted moiety suggests that the surface of hydroxyapatite is more reactive than that of fluorapatite. The 31P CP-MAS-NMR spectra of treated fluorapatite show a significant change in isotropic signal due to the protonation and deprotonation of superficial phosphate group. This can be explained by the difference in the nature of inorganic material.

  16. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  17. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    NASA Astrophysics Data System (ADS)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  18. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB-PC ashes, appeared to be important for the mercury adsorption. ?? 2007 American Chemical Society.

  19. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE PAGES

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...

    2018-01-08

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  20. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  1. Relaxation time: a proton NMR-based approach as a metric to measure reactivity of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Paruthi, Archini; Misra, Superb K.

    2017-08-01

    The toxicological impact of engineered nanoparticles in environmental or biological milieu is very difficult to predict and control because of the complexity of interactions of nanoparticles with the varied constituents in the suspended media. Nanoparticles are different from their bulk counterparts due to their high surface area-to-volume ratio per unit mass, which plays a vital role in bioavailability of these nanoparticles to its surroundings. This study explores how changes in the spin-spin nuclear relaxation time can be used to gauge the availability of surface area and suspension stability of selected nanoparticles (CuO, ZnO, and SiO2), in a range of simulated media. Spin-spin nuclear relaxation time can be mathematically correlated to wetted surface area, which is well backed up by the data of hydrodynamic size measurements and suspension stability. We monitored the change in spin-spin relaxation time for all the nanoparticles, over a range of concentrations (2.5 -100 ppm) in deionized water and artificial seawater. Selective concentrations of nanoparticle suspensions were subjected for temporal studies over a period of 48 hrs to understand the concept of spin-spin nuclear relaxation time-based reactivity of nanoparticle suspension. The nanoparticles showed high degree of agglomeration, when suspended in artificial seawater. This was captured by a decrease in spin-spin nuclear relaxation time and also an increment in the hydrodynamic size of the nanoparticles.

  2. Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines.

    PubMed

    Li, Baoyin; Fan, Kun; Ma, Xin; Liu, Yang; Chen, Teng; Cheng, Zheng; Wang, Xu; Jiang, Jiaxing; Liu, Xiangyang

    2016-09-15

    A mild, operationally simple and controllable protocol for preparing graphene-based porous materials is essential to achieve a good pore-design development. In this paper, graphene-based porous materials with tunable surface area were constructed by the intercalation of fluorinated graphene (FG) based on the reaction of reactive CF bonds attached to graphene sheets with various amine-terminated molecules. In the porous materials, graphene sheets are like building blocks, and the diamines covalently grafted onto graphene framework act as pillars. Various diamines are successfully grafted onto graphene sheets, but the grafting ratio of diamines and reduction degree of FG differ greatly and depend on the chemical reactivity of diamines. Pillared diamine molecules chemically anchor at one end and are capable of undergoing a different reaction on the other end, resulting in three different conformations of graphene derivatives. Nitrogen sorption isotherms revealed that the surface area and pore distribution of the obtained porous materials depend heavily on the size and structure of diamine pillars. CO2 uptake capacity characterization showed that ethylenediamine intercalated FG achieved a high CO2 uptake density of 18.0 CO2 molecules per nm(2) at 0°C and 1.1bars, and high adsorption heat, up to 46.1kJmol(-1) at zero coverage. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Multi-method characterization of a landslide in Champagne vineyards: the case study of the Jacotines landslide (Marne, France)

    NASA Astrophysics Data System (ADS)

    Nicolas, Bollot; Guillaume, Pierre; Gilles, Grandjean

    2014-05-01

    Key words : landslide, Champagne vineyards , geomorphology, geophysical data, superficial structure The Champagne region is strongly impacted by landslides. Usually inactive, these landslides suffer from partial reactivations leading to important damages, especially when they occur in the vineyards. In the Marne valley, and particularly in the center of Champagne vineyards area (Reuil), the Jacotines site is representative of such landslides since it presents typical surface characteristics widely observed in the region. However, its size, and especially its internal structure, can't be deduced from the surface analysis only. The aim of this work is to combine surface patterns analysis, geophysical data and borehole data to produce an interpretative model of the landslide. Preliminary geomorphological cartography was used for determining the influence of the landslide. From this information, geophysical investigations were carried out to image the internal structure of the landslide. Geophysical data fusion (combination of seismic and geoelectrical tomograms) was used to estimate the mechanical behavior and the fissuring pattern of the slope. Three transverse and longitudinal tomograms were used to define an heterogeneous area between 20 and 50 meters depth and a weathered zone from 0 to 10-20 meters depth. A 60 meters depth borehole on the main transverse tomogram found the shear plane and clarified the structure of the heterogeneous area as well as the uppermost weathered layer composed by debris flows resulting from partial reactivations processes.

  4. Microplasma array patterning of reactive oxygen and nitrogen species onto polystyrene

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Dedrick, James; Oh, Jun-Seok; Bradley, James W.; Boswell, Roderick W.; Charles, Christine; Short, Robert D.; Al-Bataineh, Sameer A.

    2017-02-01

    We investigate an approach for the patterning of reactive oxygen and nitrogen species (RONS) onto polystyrene using atmospheric-pressure microplasma arrays. The spectrally integrated and time-resolved optical emission from the array is characterised with respect to the applied voltage, applied-voltage frequency and pressure; and the array is used to achieve spatially resolved modification of polystyrene at three pressures: 500 Torr, 760 Torr and 1000 Torr. As determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS), regions over which surface modification occurs are clearly restricted to areas that are exposed to individual microplasma cavities. Analysis of the negative-ion ToF-SIMS mass spectra from the centre of the modified microspots shows that the level of oxidation is dependent on the operating pressure, and closely correlated with the spatial distribution of the optical emission. The functional groups that are generated by the microplasma array on the polystyrene surface are shown to readily participate in an oxidative reaction in phosphate buffered saline solution (pH 7.4). Patterns of oxidised and chemically reactive functionalities could potentially be applied to the future development of biomaterial surfaces, where spatial control over biomolecule or cell function is needed.

  5. Understanding the mechanisms of solid-water reactions through analysis of surface topography.

    PubMed

    Bandstra, Joel Z; Brantley, Susan L

    2015-12-01

    The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic information about the surface. Our results also indicate that root-mean-square roughness cannot be used to reliably characterize the surface topography of fractal surfaces because it is an inherently noisy parameter for such surfaces with the scale of the noise being independent of length scale.

  6. Mast cells contribute to alterations in vascular reactivity and exacerbation of ischemia reperfusion injury following ultrafine PM exposure

    EPA Science Inventory

    Increased ambient fine particulate matter (FPM) concentrations are associated with increased risk for short-term and long-term adverse cardiovascular events. Ultrafine PM (UFPM) due to its size and increased surface area might be particularly toxic. Mast cells are well recognized...

  7. Direct Carbon Fuel Cells: Converting Waste to Electricity

    DTIC Science & Technology

    2007-09-01

    Contained energy DCFC single cell ....................................................................................20 10 Direct Carbon...to convert the chemical energy in solid carbon particles directly to electricity in single cell systems with (an experimentally verified...at the polarized condition. The reactivity of carbon is affected by many properties, such as crystallization , electrical conductivity, surface area

  8. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    USGS Publications Warehouse

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  9. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    PubMed

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon nanotubes: properties, synthesis, purification, and medical applications

    PubMed Central

    2014-01-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering. PMID:25170330

  11. Carbon nanotubes: properties, synthesis, purification, and medical applications

    NASA Astrophysics Data System (ADS)

    Eatemadi, Ali; Daraee, Hadis; Karimkhanloo, Hamzeh; Kouhi, Mohammad; Zarghami, Nosratollah; Akbarzadeh, Abolfazl; Abasi, Mozhgan; Hanifehpour, Younes; Joo, Sang Woo

    2014-08-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.

  12. Carbon nanotubes: properties, synthesis, purification, and medical applications.

    PubMed

    Eatemadi, Ali; Daraee, Hadis; Karimkhanloo, Hamzeh; Kouhi, Mohammad; Zarghami, Nosratollah; Akbarzadeh, Abolfazl; Abasi, Mozhgan; Hanifehpour, Younes; Joo, Sang Woo

    2014-01-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.

  13. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  14. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.

    PubMed

    Velimirovic, Milica; Larsson, Per-Olof; Simons, Queenie; Bastiaens, Leen

    2013-11-01

    Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Can accurate kinetic laws be created to describe chemical weathering?

    NASA Astrophysics Data System (ADS)

    Schott, Jacques; Oelkers, Eric H.; Bénézeth, Pascale; Goddéris, Yves; François, Louis

    2012-11-01

    Knowledge of the mechanisms and rates of mineral dissolution and growth, especially close to equilibrium, is essential for describing the temporal and spatial evolution of natural processes like weathering and its impact on CO2 budget and climate. The Surface Complexation approach (SC) combined with Transition State Theory (TST) provides an efficient framework for describing mineral dissolution over wide ranges of solution composition, chemical affinity, and temperature. There has been a large debate for several years, however, about the comparative merits of SC/TS versus classical growth theories for describing mineral dissolution and growth at near-to-equilibrium conditions. This study considers recent results obtained in our laboratory on oxides, hydroxides, silicates, and carbonates on near-equilibrium dissolution and growth via the combination of complementary microscopic and macroscopic techniques including hydrothermal atomic force microscopy, hydrogen-electrode concentration cell, mixed flow and batch reactors. Results show that the dissolution and precipitation of hydroxides, kaolinite, and hydromagnesite powders of relatively high BET surface area closely follow SC/TST rate laws with a linear dependence of both dissolution and growth rates on fluid saturation state (Ω) even at very close to equilibrium conditions (|ΔG| < 500 J/mol). This occurs because sufficient reactive sites (e.g. at kink, steps, and edges) are available at the exposed faces for dissolution and/or growth, allowing reactions to proceed via the direct and reversible detachment/attachment of reactants at the surface. In contrast, for magnesite and quartz, which have low surface areas, fewer active sites are available for growth and dissolution. Such minerals exhibit rates dependencies on Ω at near equilibrium conditions ranging from linear to highly non-linear functions of Ω, depending on the treatment of the crystals before the reaction. It follows that the form of the f(ΔG) function describing the growth and dissolution of minerals with low surface areas depends on the availability of reactive sites at the exposed faces and thus on the history of the mineral-fluid interaction and the hydrodynamic conditions under which the crystals are reacted. It is advocated that the crystal surface roughness could serve as a proxy of the density of reactive sites. The consequences of the different rate laws on the quantification of loess weathering along the Mississippi valley for the next one hundred years are examined.

  16. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE PAGES

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; ...

    2006-01-01

    Nmore » anoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.« less

  17. Acellular assessments of engineered-manufactured nanoparticle biological surface reactivity

    EPA Science Inventory

    It is critical to assess the surface properties and reactivity of engineered-manufactured nanoparticles (NPs) as these will influence their interactions with biological systems, biokinetics and toxicity. We examined the physicochemical properties and surface reactivity of metal o...

  18. The nanosphere iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  19. Preliminary lithogeochemical map showing near-surface rock types in the Chesapeake Bay watershed, Virginia and Maryland

    USGS Publications Warehouse

    Peper, John D.; McCartan, Lucy; Horton, J. Wright; Reddy, James E.

    2001-01-01

    This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units and aspects of ground and surface water chemistry could help to refine the lithogeochemical classification, and this map. The testing could also improve the usefulness of the map for assessing aquifer reactivity and the transport properties of reactive contaminants such as acid rain, and nitrate from agricultural sources, in the Chesapeake Bay watershed.

  20. Long-term versus short-term deformation of the meizoseismal area of the 2008 Achaia-Elia (MW 6.4) earthquake in NW Peloponnese, Greece: Evidence from historical triangulation and morphotectonic data

    NASA Astrophysics Data System (ADS)

    Stiros, Stathis; Moschas, Fanis; Feng, Lujia; Newman, Andrew

    2013-04-01

    The deformation of the meizoseismal area of the 2008 Achaia-Elia (MW 6.4) earthquake in NW Peloponnese, of the first significant strike slip earthquake in continental Greece, was examined in two time scales; of 102 years, based on the analysis of high-accuracy historical triangulation data describing shear, and of 105-106 years, based on the analysis of the hydrographic network of the area for signs of streams offset by faulting. Our study revealed pre-seismic accumulation of shear strain of the order of 0.2 μrad/year in the study area, consistent with recent GPS evidence, but no signs of significant strike slip-induced offsets in the hydrographic network. These results confirm the hypothesis that the 2008 fault, which did not reached the surface and was not associated with significant seismic ground deformation, probably because of a surface flysch layer filtering high-strain events, was associated with an immature or a dormant, recently activated fault. This fault, about 150 km long and discordant to the morphotectonic trends of the area, seems first, to contain segments which have progressively reactivated in a specific direction in the last 20 years, reminiscent of the North Anatolian Fault, and second, to limit an 150 km wide (recent?) shear zone in the internal part of the arc, in a region mostly dominated by thrust faulting and strong destructive earthquakes. Deformation of the first main strike slip fault in continental Greece analyzed. Triangulation data show preseismic shear, hydrographic net no previous faulting. Surface shear deformation only in low strain rates. Immature or reactivated dormant strike slip fault, with gradual oriented rupturing. Interplay between shear and thrusting along the arc.

  1. Nanoporous Gold for Enzyme Immobilization.

    PubMed

    Stine, Keith J; Jefferson, Kenise; Shulga, Olga V

    2017-01-01

    Nanoporous gold (NPG) is a material of emerging interest for immobilization of biomolecules, especially enzymes. The material provides a high surface area form of gold that is suitable for physisorption or for covalent modification by self-assembled monolayers. The material can be used as a high surface area electrode and with immobilized enzymes can be used for amperometric detection schemes. NPG can be prepared in a variety of formats from alloys containing between 20 and 50 % atomic composition of gold and less noble element(s) by dealloying procedures. Materials resembling NPG can be prepared by hydrothermal and electrodeposition methods. Related high surface area gold structures have been prepared using templating approaches. Covalent enzyme immobilization can be achieved by first forming a self-assembled monolayer on NPG bearing a terminal reactive functional group followed by conjugation to the enzyme through amide linkages to lysine residues. Enzymes can also be entrapped by physisorption or immobilized by electrostatic interactions.

  2. Soft-Template Synthesis of Mesoporous Anatase TiO₂ Nanospheres and Its Enhanced Photoactivity.

    PubMed

    Li, Xiaojia; Zou, Mingming; Wang, Yang

    2017-11-10

    Highly crystalline mesoporous anatase TiO₂ nanospheres with high surface area (higher than P25 and anatase TiO₂) are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2%) than Degussa P25. The rate constant of the mesoporous anatase TiO₂ (0.024 min -1 ) reported here is 364% higher than that of P25 (0.0066 min -1 ), for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS) scavengers indicated that mesoporous anatase TiO₂ generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO₂ arises from the following synergistic effects in the reported sample: (i) high surface area; (ii) improved crystallinity; (iii) narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material); and (iv) greater ROS generation under UV-light.

  3. Biomass Pyrolysis Solids as Reducing Agents: Comparison with Commercial Reducing Agents.

    PubMed

    Adrados, Aitziber; De Marco, Isabel; López-Urionabarrenechea, Alexander; Solar, Jon; Caballero, Blanca M; Gastelu, Naia

    2015-12-23

    Biomass is one of the most suitable options to be used as renewable energy source due to its extensive availability and its contribution to reduce greenhouse gas emissions. Pyrolysis of lignocellulosic biomass under appropriate conditions (slow heating rate and high temperatures) can produce a quality solid product, which could be applicable to several metallurgical processes as reducing agent (biocoke or bioreducer). Two woody biomass samples (olives and eucalyptus) were pyrolyzed to produce biocoke. These biocokes were characterized by means of proximate and ultimate analysis, real density, specific surface area, and porosity and were compared with three commercial reducing agents. Finally, reactivity tests were performed both with the biocokes and with the commercial reducing agents. Bioreducers have lower ash and sulfur contents than commercial reducers, higher surface area and porosity, and consequently, much higher reactivity. Bioreducers are not appropriate to be used as top burden in blast furnaces, but they can be used as fuel and reducing agent either tuyére injected at the lower part of the blast furnace or in non-ferrous metallurgical processes where no mechanical strength is needed as, for example, in rotary kilns.

  4. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment.

    PubMed

    Zhong, Jie; Shen, Zhigang; Yang, Yan; Chen, Jianfeng

    2005-09-14

    In this work, a novel direct method, which was combined with reactive precipitation and liquid anti-solvent precipitation under high gravity environment, had been developed to prepare nanosized cephradine with narrow particle size distribution. Compared with commercial crude cephradine, the prepared cephradine showed a significant decrease in particle size, a significant increase in the specific surface area and shorter dissolving time when used for injection. The characteristic particle size was between 200-400 nm. The specific surface area increased from 2.95 to 10.87 m2/g after micronization. When the amount of L-arginin decreased from 0.25 to 0.18 g, the mixture of nanosized cephradine and L-arginine could still dissolve in 1 min. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that the physical characteristics and molecular states remained unchanged after the recrystallization process. This method had potential application in industrial fields because of its low cost, efficient processing and the ease of scaling-up.

  5. New Methods of Esterification of Nanodiamonds in Fighting Breast Cancer-A Density Functional Theory Approach.

    PubMed

    Landeros-Martinez, Linda-Lucila; Glossman-Mitnik, Daniel; Orrantia-Borunda, Erasmo; Flores-Holguín, Norma

    2017-10-19

    The use of nanodiamonds as anticancer drug delivery vehicles has received much attention in recent years. In this theoretical paper, we propose using different esterification methods for nanodiamonds. The monomers proposed are 2-hydroxypropanal, polyethylene glycol, and polyglicolic acid. Specifically, the hydrogen bonds, infrared (IR) spectra, molecular polar surface area, and reactivity parameters are analyzed. The monomers proposed for use in esterification follow Lipinski's rule of five, meaning permeability is good, they have good permeation, and their bioactivity is high. The results show that the complex formed between tamoxifen and nanodiamond esterified with polyglicolic acid presents the greatest number of hydrogen bonds and a good amount of molecular polar surface area. Calculations concerning the esterified nanodiamond and reactivity parameters were performed using Density Functional Theory with the M06 functional and the basis set 6-31G (d); for the esterified nanodiamond-Tamoxifen complexes, the semi-empirical method PM6 was used. The solvent effect has been taken into account by using implicit modelling and the conductor-like polarizable continuum model.

  6. Large-eddy simulation of pollutant dispersion from a ground-level area source over urban street canyons with irreversible chemical reactions

    NASA Astrophysics Data System (ADS)

    Du, T. Z.; Liu, C.-H.; Zhao, Y. B.

    2014-10-01

    In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry produces nitrogen dioxide (NO2), developing a reactive plume over the rough urban surface. A range of timescales of turbulence and chemistry are utilized to examine the mechanism of turbulent mixing and chemical reactions in the UCL. The Damköhler number (Da) and the reaction rate (r) are analyzed along the vertical direction on the plane normal to the prevailing flow at 10 m after the source. The maximum reaction rate peaks at an elevation where Damköhler number Da is equal or close to unity. Hence, comparable timescales of turbulence and reaction could enhance the chemical reactions in the plume.

  7. Influence of LaFeO 3 Surface Termination on Water Reactivity

    DOE PAGES

    Stoerzinger, Kelsey A.; Comes, Ryan; Spurgeon, Steven R.; ...

    2017-02-16

    The polarity of oxide surfaces can dramatically impact their surface reactivity, in particular, with polar molecules such as water. The surface species that result from this interaction change the oxide electronic structure and chemical reactivity in applications such as photoelectrochemistry but are challenging to probe experimentally. Here, we report a detailed study of the surface chemistry and electronic structure of the perovskite LaFeO 3 in humid conditions using ambient-pressure X-ray photoelectron spectroscopy. In comparing the two possible terminations of the polar (001)-oriented surface, we find that the LaO-terminated surface is more reactive toward water, forming hydroxyl species and adsorbing molecularmore » water at lower relative humidity than its FeO 2-terminated counterpart. But, the FeO 2-terminated surface forms more hydroxyl species during water adsorption at higher humidity, suggesting that adsorbate–adsorbate interactions may impact reactivity. These results demonstrate how the termination of a complex oxide can dramatically impact its reactivity, providing insight that can aid in the design of catalyst materials.« less

  8. Influence of LaFeO 3 Surface Termination on Water Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Comes, Ryan; Spurgeon, Steven R.

    The polarity of oxide surfaces can dramatically impact their surface reactivity, in particular, with polar molecules such as water. The surface species that result from this interaction change the oxide electronic structure and chemical reactivity in applications such as photoelectrochemistry but are challenging to probe experimentally. Here, we report a detailed study of the surface chemistry and electronic structure of the perovskite LaFeO 3 in humid conditions using ambient-pressure X-ray photoelectron spectroscopy. In comparing the two possible terminations of the polar (001)-oriented surface, we find that the LaO-terminated surface is more reactive toward water, forming hydroxyl species and adsorbing molecularmore » water at lower relative humidity than its FeO 2-terminated counterpart. But, the FeO 2-terminated surface forms more hydroxyl species during water adsorption at higher humidity, suggesting that adsorbate–adsorbate interactions may impact reactivity. These results demonstrate how the termination of a complex oxide can dramatically impact its reactivity, providing insight that can aid in the design of catalyst materials.« less

  9. Goethite surface reactivity: a macroscopic investigation unifying proton, chromate, carbonate, and lead(II) adsorption.

    PubMed

    Villalobos, Mario; Pérez-Gallegos, Ayax

    2008-10-15

    The goethite surface structure has been extensively studied, but no convincing quantitative description of its highly variable surface reactivity as inversely related to its specific surface area (SSA) has been found. The present study adds experimental evidence and provides a unified macroscopic explanation to this anomalous behavior from differences in average adsorption capacities, and not in average adsorption affinities. We investigated the chromate anion and lead(II) cation adsorption behavior onto three different goethites with SSA varying from 50 to 94 m(2)/g, and analyzed an extensive set of published anion adsorption and proton charging data for variable SSA goethites. Maximum chromate adsorption was found to occupy on average from 3.1 to 9.7 sites/nm(2), inversely related to SSA. Congruency of oxyanion and Pb(II) adsorption behavior based on fractional site occupancy using these values, and a site density analysis suggest that: (i) ion binding occurs to singly and doubly coordinated sites, (ii) proton binding occurs to singly and triply coordinated sites (ranging from 6.2 to 8 total sites/nm(2), in most cases), and (iii) a predominance of (210) and/or (010) faces explains the high reactivity of low SSA goethites. The results imply that the macroscopic goethite adsorption behavior may be predicted without a need to investigate extensive structural details of each specific goethite of interest.

  10. The Effects of Secondary Oxides on Copper-Based Catalysts for Green Methanol Synthesis.

    PubMed

    Hayward, James S; Smith, Paul J; Kondrat, Simon A; Bowker, Michael; Hutchings, Graham J

    2017-05-10

    Catalysts for methanol synthesis from CO 2 and H 2 have been produced by two main methods: co-precipitation and supercritical anti-solvent (SAS) precipitation. These two methods are compared, along with the behaviour of copper supported on Zn, Mg, Mn, and Ce oxides. Although the SAS method produces initially active material with high Cu specific surface area, they appear to be unstable during reaction losing significant amounts of surface area and hence activity. The CuZn catalysts prepared by co-precipitation, however, showed much greater thermal and reactive stability than the other materials. There appeared to be the usual near-linear dependence of activity upon Cu specific area, though the initial performance relationship was different from that post-reaction, after some loss of surface area. The formation of the malachite precursor, as reported before, is important for good activity and stability, whereas if copper oxides are formed during the synthesis and ageing process, then a detrimental effect on these properties is seen.

  11. The Effects of Secondary Oxides on Copper‐Based Catalysts for Green Methanol Synthesis

    PubMed Central

    Hayward, James S.; Smith, Paul J.; Kondrat, Simon A.; Bowker, Michael

    2017-01-01

    Abstract Catalysts for methanol synthesis from CO2 and H2 have been produced by two main methods: co‐precipitation and supercritical anti‐solvent (SAS) precipitation. These two methods are compared, along with the behaviour of copper supported on Zn, Mg, Mn, and Ce oxides. Although the SAS method produces initially active material with high Cu specific surface area, they appear to be unstable during reaction losing significant amounts of surface area and hence activity. The CuZn catalysts prepared by co‐precipitation, however, showed much greater thermal and reactive stability than the other materials. There appeared to be the usual near‐linear dependence of activity upon Cu specific area, though the initial performance relationship was different from that post‐reaction, after some loss of surface area. The formation of the malachite precursor, as reported before, is important for good activity and stability, whereas if copper oxides are formed during the synthesis and ageing process, then a detrimental effect on these properties is seen. PMID:28706570

  12. Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.

    2011-12-01

    The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at pH < 5.0. These results suggested that the contaminated sediments might either contain other more reactive clay minerals such as smectite, or that the long-term acid-leaching process might have altered the surface reactivity of the original sediments. Further studies are needed to identify more reactive mineral facies and understand the effects of acid leaching on the surface reactivity of the sediments.

  13. Influence of LaFeO 3 Surface Termination on Water Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Comes, Ryan; Spurgeon, Steven R.

    2017-02-17

    The polarity of oxide surfaces can dramatically impact their surface reactivity, in particular with polar molecules such as water. The surface species that result from this interaction change the oxide electronic structure and chemical reactivity in applications such as photoelectrochemistry, but are challenging to probe experimentally with atomic-scale understanding. Here we report a detailed study of the surface chemistry and electronic structure of the perovskite LaFeO3 in humid conditions using ambient pressure X-ray photoelectron spectroscopy. Comparing the two possible terminations of the polar (001)-oriented surface, we find that the LaO surface is more reactive toward water, forming hydroxyl species andmore » adsorbing molecular water at lower relative humidity than its FeO2-terminated counterpart. Our results demonstrate how the termination of a complex oxide can dramatically impact its reactivity, providing insight into the design of catalyst materials.« less

  14. Preliminary Geotechnical Investigation of Two Basaltic Landslide Sites in Mauritius, Offshore Africa

    NASA Astrophysics Data System (ADS)

    Bhoopendra, D.; Fukuoka, H.; Kuwano, T.; Ichikawa, K.

    2016-12-01

    Landslide hazards in developing areas in Mauritius became a great challenge as well as a fundamental concern for the government and the citizen of the country. In recent years, landslide disasters have caused losses of both public and private properties. In 2005, a large-scale landslide at Chitrakoot affected 54 houses and infrastructures, and it was reactivated in 2006, damaging another 14 houses. Vallee Pitot landslide is frequently reactivated in these years and threatening several houses in the densely-populated zone. Being of volcanic origin, Mauritius has observed dramatic and quick weathering of the soil which may partly contribute to creating landslide-prone geo-environment. This study focuses on the preliminary geotechnical investigation of the two basaltic landslide areas in Mauritius. A recent investigation was conducted jointly by JICA (Japan International Cooperation Agency) and Ministry of Public Infrastructure and Land Transport of Government of Mauritius on both sites from 2012 to 2015 to survey the landslide surface and to implement countermeasures works.Both sites are located in the highly populated area in the capital city of Mauritius.The geological features of the sites were studied with the borehole core logging data obtained from 6 boreholes and it was found that possible sliding surface was observed in the colluvium layer consisting of gravels and stiff silty-clays, at depths from 6 to 10 m below the ground surface. The rate of landslide movement during heavy rainfall amount exceeding 100 mm/hr was elaborated with past records of extensometers installed on these sites. Colluvium samples from both sites of the same characteristics with the sliding surface were tested in the ring shear apparatus in Japan under different normal stresses reducing from 300 kPa to 50 kPa step-wise at a shear velocity of 0.02 mm/min under drained condition to obtain the residual friction angle (φ) and the cohesion (c). Obtained residual friction angle and cohesion of the Chitrakoot sample can explain why the landslide has been reactivated at extreme rainfall events. The shear strength values of the colluvium have been carefully evaluated to assess the critical ground water level and precipitation on those two basaltic areas in Mauritius as well as a method of issuing the early warning for evacuation of the citizens.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less

  16. Reactivity of Zerovalent Metals in Aquatic Media: Effects of Organic Surface Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tratnyek, Paul G.; Salter-Blanc, Alexandra; Nurmi, James

    2011-09-02

    Granular, reactive zerovalent metals (ZVMs)—especially iron (ZVI)—form the basis for model systems that have been used in fundamental and applied studies of a wide variety of environmental processes. This has resulted in notable advances in many areas, including the kinetics and mechanisms of contaminant reduction reactions, theory of filtration and transport of colloids in porous media, and modeling of complex reactive-transport scenarios. Recent emphasis on nano-sized ZVI has created a new opportunity: to advance the understanding of how coatings of organic polyelectrolytes—like natural organic matter (NOM)—influence the reactivity of environmental surfaces. Depending on many factors, organic coatings can be activatingmore » or passivating with respect to redox reactions at particle-solution interfaces. In this study, we show the effects of organic coatings on nZVI vary with a number of factors including: (i) time (i.e., “aging” is evident not only in the structure and composition of the nZVI but also in the interactions between nZVI and NOM) and (ii) the type of organic matter (i.e., suspensions of nZVI are stabilized by NOM and the model polyelectrolyte carboxymethylcellulose (CMC), but NOM stimulates redox reactions involving nZVI while CMC inhibits them).« less

  17. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    PubMed

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  18. Surface Reactivity Enhancement on a Pd/Bi2Te3 Heterostructure through Robust Topological Surface States

    PubMed Central

    He, Qing Lin; Lai, Ying Hoi; Lu, Yao; Law, Kam Tuen; Sou, Iam Keong

    2013-01-01

    We present a study of the surface reactivity of a Pd/Bi2Te3 thin film heterostructure. The topological surface states from Bi2Te3, being delocalized and robust owing to their topological natures, were found to act as an effective electron bath that significantly enhances the surface reactivity of palladium in the presence of two oxidizing agents, oxygen and tellurium respectively, which is consistent with a theoretical calculation. The surface reactivity of the adsorbed tellurium on this heterostructure is also intensified possibly benefitted from the effective transfer of the bath electrons. A partially inserted iron ferromagnetic layer at the interface of this heterostructure was found to play two competing roles arising from the higher-lying d-band center of the Pd/Fe bilayer and the interaction between the ferromagnetism and the surface spin texture of Bi2Te3 on the surface reactivity and their characteristics also demonstrate that the electron bath effect is long-lasting against accumulated thickness of adsorbates. PMID:23970163

  19. XPS analysis of 440C steel surfaces lubricated with perfluoropolyethers under sliding conditions in high vacuum

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Masuko, Masabumi; Jones, William R., Jr.; Pepper, Stephen V.

    1994-01-01

    This work presents the results of the X-Ray Photoelectron Spectroscopy (XPS) analysis of AISI 440C ball surfaces lubricated with perfluoropolyether (PFPE) oils after friction experiments under sliding conditions at high load in air and vacuum environments. The PFPE lubricants tested were Demnum S100, Fomblin Z-25, and Krytox 143AB. It was found that all the PFPE lubricants were degraded by sliding contact causing the formation of inorganic fluorides on the metallic surfaces and a layer of organic decomposition products. KRYTOX 143AB was the least reactive of the three lubricants tested. It was also found that metal fluoride formed at off-scar areas. This suggests the formation of reactive species, such as COF2 or R(sub f)COF, during sliding experiments, which can diffuse through the lubricant film and react with the metallic surfaces away from the contact region. Comparison of reference specimens before sliding with those that had undergone the sliding tests showed that the amount of non-degraded PFPE remaining on the surface of the balls after the sliding experiments was greater than that of the balls without sliding.

  20. The hydrophilic-to-hydrophobic transition in glassy silica is driven by the atomic topology of its surface

    NASA Astrophysics Data System (ADS)

    Yu, Yingtian; Krishnan, N. M. Anoop; Smedskjaer, Morten M.; Sant, Gaurav; Bauchy, Mathieu

    2018-02-01

    The surface reactivity and hydrophilicity of silicate materials are key properties for various industrial applications. However, the structural origin of their affinity for water remains unclear. Here, based on reactive molecular dynamics simulations of a series of artificial glassy silica surfaces annealed at various temperatures and subsequently exposed to water, we show that silica exhibits a hydrophilic-to-hydrophobic transition driven by its silanol surface density. By applying topological constraint theory, we show that the surface reactivity and hydrophilic/hydrophobic character of silica are controlled by the atomic topology of its surface. This suggests that novel silicate materials with tailored reactivity and hydrophilicity could be developed through the topological nanoengineering of their surface.

  1. Hot Moments in Cold Spots - Investigating Reactive Transport Patterns at Aquifer-River Interfaces by Heat Tracers and Distributed Sensor Networks

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Angermann, Lisa; Naden, Emma; Cassidy, Nigel; Blume, Theresa

    2010-05-01

    The mixing of groundwater and surface water in hyporheic zones often coincides with high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecological conditions. This study investigates the reactive transport of nitrate and a chlorinated solvent (Trichloroethylene - TCE) at the aquifer-river interface of a UK lowland river. In this study, distributed temperature sensor networks and hydro-geophysical methods, which have been applied for identifying structural streambed heterogeneity and tracing aquifer river exchange, were combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography has been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable "hyporheic super-reactors" of great importance for river restoration, water quality and ecology status.

  2. Hot Moments in Cold Spots - Using Heat Tracers and Distributed Sensor Networks to Investigate Reactive Transport Patterns at Aquifer-River Interfaces

    NASA Astrophysics Data System (ADS)

    Krause, S.; Angermann, L.; Naden, E.; Cassidy, N. J.

    2009-12-01

    The mixing of groundwater and surface water in hyporheic zones often coincides high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecology. This study investigates the reactive transport of nitrate and the chlorinated solvent Trichloroethylene (TCE) at the aquifer-river interface of a UK lowland river. The investigations are based on novel distributed sensor networks and hydro-geophysical methods for the identification of structural streambed heterogeneity and the tracing of aquifer river exchange combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography and Ground Penetrating Radar have been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable “hyporheic super-reactors” of great importance for river restoration, water quality and ecology status.

  3. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.

    PubMed

    Schmid, Doris; Micić, Vesna; Laumann, Susanne; Hofmann, Thilo

    2015-10-01

    The high specific surface area and high reactivity of nanoscale zero-valent iron (nZVI) particles have led to much research on their application to environmental remediation. The reactivity of nZVI is affected by both the water chemistry and the properties of the particular type of nZVI particle used. We have investigated the reactivity of three types of commercially available Nanofer particles (from Nanoiron, s.r.o., Czech Republic) that are currently either used in, or proposed for use in full scale environmental remediation projects. The performance of one of these, the air-stable and thus easy-to-handle Nanofer Star particle, has not previously been reported. Experiments were carried out first in batch shaking reactors in order to derive maximum reactivity rates and provide a rapid estimate of the Nanofer particle's reactivity. The experiments were performed under near-natural environmental conditions with respect to the pH value of water and solute concentrations, and results were compared with those obtained using synthetic water. Thereafter, the polyelectrolyte-coated Nanofer 25S particles (having the highest potential for transport within porous media) were chosen for the experiments in column reactors, in order to elucidate nanoparticle reactivity under a more field-site realistic setting. Iopromide was rapidly dehalogenated by the investigated nZVI particles, following pseudo-first-order reaction kinetics that was independent of the experimental conditions. The specific surface area normalized reaction rate constant (kSA) value in the batch reactors ranged between 0.12 and 0.53Lm(-2)h(-1); it was highest for the uncoated Nanofer 25 particles, followed by the polyacrylic acid-coated Nanofer 25S and air-stable Nanofer Star particles. In the batch reactors all particles were less reactive in natural water than in synthetic water. The kSA values derived from the column reactor experiments were about 1000 times lower than those from the batch reactors, ranging between 2.6×10(-4) and 5.7×10(-4)Lm(-2)h(-1). Our results revealed that the easy-to-handle and air-stable Nanofer Star particles are the least reactive of all the Nanofer products tested. The reaction kinetics predicted by column experiments were more realistic than those predicted by batch experiments and these should therefore be used when designing a full-scale field application of nanomaterials for environmental remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Controlling Heterogeneous Catalysis of Water Dissociation Using Cu-Ni Bimetallic Alloy Surfaces: A Quantum Dynamics Study.

    PubMed

    Ray, Dhiman; Ghosh, Smita; Tiwari, Ashwani Kumar

    2018-06-07

    Copper-Nickel bimetallic alloys are emerging heterogeneous catalysts for water dissociation which is the rate determining step of industrially important Water Gas Shift (WGS) reaction. Yet, the detailed quantum dynamics studies of water-surface scattering in literature are limited to pure metal surfaces. We present here, a three dimensional wave-packet dynamics study of water dissociation on Cu-Ni alloy surfaces, using a pseudo diatomic model of water on a London-Eyring-Polanyi-Sato (LEPS) potential energy surface in order to study the effect of initial vibration, rotation and orientation of water molecule on reactivity. For all the chosen surfaces reactivity increases significantly with vibrational excitation. In general, for lower vibrational states the reactivity increases with increasing rotational excitation but it decreases in higher vibrational states. Molecular orientation strongly affects reactivity by helping the molecule to align along the reaction path at higher vibrational states. For different alloys, the reaction probability follows the trend of barrier heights and the surfaces having all Ni atoms in the uppermost layer are much more reactive than the ones with Cu atoms. Hence the nature of the alloy surface and initial quantum state of the incoming molecule significantly influence the reactivity in surface catalyzed water dissociation.

  5. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine

    NASA Astrophysics Data System (ADS)

    Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.

    2017-03-01

    Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.

  6. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    PubMed Central

    2012-01-01

    Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt. PMID:22697910

  7. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  8. Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air-ice interface at low temperatures.

    PubMed

    Ray, Debajyoti; Malongwe, Joseph K'Ekuboni; Klán, Petr

    2013-07-02

    The kinetics of the ozonation reaction of 1,1-diphenylethylene (DPE) on the surface of ice grains (also called "artificial snow"), produced by shock-freezing of DPE aqueous solutions or DPE vapor-deposition on pure ice grains, was studied in the temperature range of 268 to 188 K. A remarkable and unexpected increase in the apparent ozonation rates with decreasing temperature was evaluated using the Langmuir-Hinshelwood and Eley-Rideal kinetic models, and by estimating the apparent specific surface area of the ice grains. We suggest that an increase of the number of surface reactive sites, and possibly higher ozone uptake coefficients are responsible for the apparent rate acceleration of DPE ozonation at the air-ice interface at lower temperatures. The increasing number of reactive sites is probably related to the fact that organic molecules are displaced more to the top of a disordered interface (or quasi-liquid) layer on the ice surface, which makes them more accessible to the gas-phase reactants. The effect of NaCl as a cocontaminant on ozonation rates was also investigated. The environmental implications of this phenomenon for natural ice/snow are discussed. DPE was selected as an example of environmentally relevant species which can react with ozone. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that its half-life on the ice surface would decrease from ∼5 days at 258 K to ∼13 h at 188 K at submonolayer DPE loadings.

  9. Fabrication and characterization of crushed titanium-beryllium intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2018-01-01

    To develop a technique for the mass production of beryllide pebbles, a crushing method for the granulation of beryllides was used in this study. Two types of crushed Be12Ti pebbles were prepared using mortar-ground (MG) and planetary-ball-milled (PM) powders. A granulation yield of approximately 50 wt.% with sizes in the range of 0.85-1.18 mm was achieved. Scanning electron microscopy (SEM) images revealed that the MG pebbles exhibited larger porosity because the larger size of the powder resulted in lower density with higher porosity. However, the considerably larger fraction of fine pores in the PM pebbles resulted in an increased Brunauer-Emmett-Teller (BET) specific surface area, as clearly demonstrated by high-magnification SEM images. To evaluate the reactivity with water vapor, the weight gain and H2 generation rate were also investigated. The results suggested that the PM pebbles exhibited notably lower reactivity, weight gain, and H2 generation rate, which may be due to the dramatically decreased BET specific surface. The fine pores were filled with stable oxides followed by a significant decrease of the surface area during oxidation. Optimization was performed to improve the circularity of the crushed pebbles. Grinding tests using planetary milling without balls for different times clearly demonstrated that the circularity improved (with an estimated value of 0.8) by cutting and polishing the sharp edges; however, long-duration milling for 99 h resulted in attachment of the polished powders to the pebble surface, leading to surface color variation of the crushed pebbles.

  10. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, M.B.; Stoliker, D.L.; Davis, J.A.; Zachara, J.M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ???1% of the solid volume and intragranular surface areas of ???20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity. Copyright 2011 by the American Geophysical Union.

  11. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  12. Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces.

    PubMed

    Aizawa, Masato; Buriak, Jillian M

    2005-06-29

    Patterning of semiconductor surfaces is an area of intense interest, not only for technological applications, such as molecular electronics, sensing, cellular recognition, and others, but also for fundamental understanding of surface reactivity, general control over surface properties, and development of new surface reactivity. In this communication, we describe the use of self-assembling block copolymers to direct semiconductor surface chemistry in a spatially defined manner, on the nanoscale. The proof-of-principle class of reactions evaluated here is galvanic displacement, in which a metal ion, M+, is reduced to M0 by the semiconductor, including Si, Ge, InP, and GaAs. The block copolymer chosen has a polypyridine block which binds to the metal ions and brings them into close proximity with the surface, at which point they undergo reaction; the pattern of resulting surface chemistry, therefore, mirrors the nanoscale structure of the parent block copolymer. This chemistry has the added advantage of forming metal nanostructures that result in an alloy or intermetallic at the interface, leading to strongly bound metal nanoparticles that may have interesting electronic properties. This approach has been shown to be very general, functioning on a variety of semiconductor substrates for both silver and gold deposition, and is being extended to organic and inorganic reactions on a variety of conducting, semiconducting, and insulating substrates.

  13. An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

    USGS Publications Warehouse

    Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric

    2011-01-01

    Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.

  14. Impact of electrode geometry on an atmospheric pressure surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Hasan, M. I.; Morabit, Y.; Dickenson, A.; Walsh, J. L.

    2017-06-01

    Several of the key characteristics of an atmospheric pressure surface barrier discharge (SBD) are heavily dependent on the geometrical configuration of the plasma generating electrodes. This paper reveals that increasing the surface area of an SBD device by reducing the gaps within the electrodes can have major and unforeseen consequence on the discharge properties. It is experimentally demonstrated that a critical limit exists when reducing the diameter of a circular electrode gap below 5 mm, beyond which the required breakdown voltage increases exponentially and the power deposited in the discharge is impeded. Using a numerical model, it is shown that a reduced electrode gap diameter yields a decrease in the voltage difference between the electrode and dielectric surface, thus lowering the maximum electric field. This study indicates a link between the electrode geometry and the nature of the reactive chemistry produced in the plasma, findings which have wide-reaching implications for many applications where multiple closely packed surface barrier discharges are employed to achieve uniform and large area plasma processing.

  15. The reactivity of Fe(II) associated with goethite formed during short redox cycles toward Cr(VI) reduction under oxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared

    Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethitemore » or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially localizes on the (100) face of goethite, independent of the number of redox cycles goethite undergoes. This work demonstrates that under oxic conditions, solid Fe(II) associated with goethite resulting from rapid redox cycling is reactive and available for electron transfer to Cr(VI), suggesting Fe(III) (hydr)oxides may act as reservoirs of reactive electron density, even in oxygen saturated environments.« less

  16. Streambed peat lenses as redox-reactivity hotspots in lowland river hyporheic zones

    NASA Astrophysics Data System (ADS)

    Naden, Emma; Krause, Stefan; Cassidy, Nigel

    2010-05-01

    Hyporheic zones, as the direct interfaces between aquifers and rivers, are often characterised by increased redox reactivity and chemical transformation capacity. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for in-stream and aquifer hydro-ecological status. This study combines geophysical methods with distributed temperature sensor networks and nested multi-level sampling and analysis of hyporheic redox conditions and nutrient concentrations to investigate the reactive transport of nitrate at the aquifer-river interface of a UK lowland river. In stream Electric Resistivity Tomography and Ground Penetrating Radar (including core based ground truthing) have been applied to map the complex spatial patterns of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses which have been found to be characteristic for most lowland rivers. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optical Distributed Temperature Sensing techniques combined with vertical thermocouple-arrays for tracing hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen (DO) and organic carbon (DOC) content as well as concentrations of major anions have been monitored in 48 nested multi-level mini-piezometers. Our investigations indicate that streambed temperature patterns were dominantly controlled by groundwater up-welling, causing cold spots in sandy and gravely sediments with high up-welling rates and low hyporheic residence times and warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by streambed peat lenses. The flow-inhibiting peat structures have been found to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. The investigations lead to the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable hyporheic reactivity hotspots with high denitrification potential. The results for this exemplary field site highlight the substantial nutrient attenuation capacity of hyporheic zones at lowland rivers and emphasize the great importance of their consideration for river restoration programs and the assessment of water quality and ecological status.

  17. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: The role of surface area.

    PubMed

    Li, Hongying; Guo, Xisheng; Ye, Xinxin

    2017-02-01

    Hydroxyapatite (HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium (Cd) uptake, but has no effect on lead (Pb) uptake, is not clear. The aim of this study was to determine the factors causing the differences in sorption behavior between Cd and Pb by evaluating HAPs with different surface areas. We synthesized HAPs with two different surface areas, which were characterized by X-ray diffraction, N 2 adsorption, and scanning electron microscopy, and then evaluated them as sorbents for Cd and Pb removal by testing in single and binary systems. The sorption capacity of large surface area HAP (1.85mmol/g) for Cd in the single-metal system was higher than that of small surface area HAP (0.64mmol/g), but there were no differences between single- and binary-metal solutions containing Pb. After the Cd experiments, the HAP retained a stable structure and intact morphology, which promotes the accessibility of reactive sites for Cd. However, a newly formed precipitate covered the surface and blocked the channels in the presence of Pb, which reduced the number of potential adsorption sites on HAP for Cd and Pb. Remediation experiments using Cd- and Pb-contaminated soil produced similar results to the solution tests. These results indicate that alterations of the structure and morphology during the reaction is an important factor influencing metal sorption to HAP. Copyright © 2016. Published by Elsevier B.V.

  18. Reactivity of iron-rich phyllosilicates with uranium and chromium through redox transition zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgos, William D.

    This project performed thermodynamic, kinetic, and mineral structural studies on the reactivity of phyllosilicate Fe(II/III) with metal-reducing bacteria, and with two important poly-valent DOE contaminants (chromium and uranium) that show high mobility in their oxidized state. We focused on Fe-bearing phyllosilicates because these are important components of the reactive, fines fraction of Hanford, Oak Ridge, and Idaho National Laboratory sediments. Iron-bearing phyllosilicates strongly influence the redox state and mobility of Cr and U because of their limited hydraulic conductivity, high specific surface area, and redox reactivity. This was a collaborative project between Penn State (W.D. Burgos – PI), Miami Universitymore » (H. Dong – Co-PI), and Argonne National Laboratory (K. Kemner and M. Boyanov – Co-PIs). Penn State and Miami University were funded together but separately from ANL. This report summarizes research findings and publications produced by Penn State and Miami University.« less

  19. Biomass Pyrolysis Solids as Reducing Agents: Comparison with Commercial Reducing Agents

    PubMed Central

    Adrados, Aitziber; De Marco, Isabel; López-Urionabarrenechea, Alexander; Solar, Jon; Caballero, Blanca M.; Gastelu, Naia

    2015-01-01

    Biomass is one of the most suitable options to be used as renewable energy source due to its extensive availability and its contribution to reduce greenhouse gas emissions. Pyrolysis of lignocellulosic biomass under appropriate conditions (slow heating rate and high temperatures) can produce a quality solid product, which could be applicable to several metallurgical processes as reducing agent (biocoke or bioreducer). Two woody biomass samples (olives and eucalyptus) were pyrolyzed to produce biocoke. These biocokes were characterized by means of proximate and ultimate analysis, real density, specific surface area, and porosity and were compared with three commercial reducing agents. Finally, reactivity tests were performed both with the biocokes and with the commercial reducing agents. Bioreducers have lower ash and sulfur contents than commercial reducers, higher surface area and porosity, and consequently, much higher reactivity. Bioreducers are not appropriate to be used as top burden in blast furnaces, but they can be used as fuel and reducing agent either tuyére injected at the lower part of the blast furnace or in non-ferrous metallurgical processes where no mechanical strength is needed as, for example, in rotary kilns. PMID:28787805

  20. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    PubMed

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  1. Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.

    PubMed

    Estrada-Salas, Rubén E; Valladares, Ariel A

    2009-09-24

    Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.

  2. ENERGETICS AND CHEMICAL KINETICS OF POLYSTYRENE SURFACE DEGRADATION IN INERT AND CHEMICALLY REACTIVE ENVIRONMENTS.

    DTIC Science & Technology

    gases were passed to emerge at the heated surface, permitted these data to be gathered in chemically reactive environments. Correlation of all these data...in both inert and chemically reactive environments, was possible both on the basis of an energy balance struck at the regressing surface and an...Arrhenius type of chemical kinetic description of the surface degradation process. Although expected, this represents the first demonstration that both

  3. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  4. Advanced inorganic separators for alkaline batteries and method of making the same

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1983-01-01

    A flexible, porous battery separator includes a coating applied to a porous, flexible substrate. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte, (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group, and (3) a mixture of polar particulate filler materials which are unreactive with the electrode. The mixture comprises at least one first filler material having a surface area of greater than 25 sq meters/gram, at last one second filler material having a surface area of 10 to 25 sq meters/gram. The volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder. The filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle.

  5. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  6. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  7. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA

    USGS Publications Warehouse

    Morton, R.A.; Bernier, J.C.; Barras, J.A.

    2006-01-01

    Analysis of remote images, elevation surveys, stratigraphic cross-sections, and hydrocarbon production data demonstrates that extensive areas of wetland loss in the northern Gulf Coast region of the United States were associated with large-volume fluid production from mature petroleum fields. Interior wetland losses at many sites in coastal Louisiana and Texas are attributed largely to accelerated land subsidence and fault reactivation induced by decreased reservoir pressures as a result of rapid or prolonged extraction of gas, oil, and associated brines. Evidence that moderately-deep hydrocarbon production has induced land-surface subsidence and reactivated faults that intersect the surface include: (1) close temporal and spatial correlation of fluid production with surficial changes including rapid subsidence of wetland sediments near producing fields, (2) measurable offsets of shallow strata across the zones of wetland loss, (3) large reductions in subsurface pressures where subsidence rates are high, (4) coincidence of orientation and direction of displacement between surface fault traces and faults that bound the reservoirs, and (5) accelerated subsidence rates near producing fields compared to subsidence rates in surrounding areas or compared to geological rates of subsidence. Based on historical trends, subsidence rates in the Gulf Coast region near producing fields most likely will decrease in the future because most petroleum fields are nearly depleted. Alternatively, continued extraction of conventional energy resources as well as potential production of alternative energy resources (geopressured-geothermal fluids) in the Gulf Coast region could increase subsidence and land losses and also contribute to inundation of areas of higher elevation. ?? Springer-Verlag 2006.

  8. Effect of Coatings on the Uptake Rate and HONO Yield in Heterogeneous Reaction of Soot with NO2

    NASA Astrophysics Data System (ADS)

    Cruz-Quiñones, M.; Khalizov, A. F.; Zhang, R.

    2009-12-01

    Heterogeneous reaction of nitrogen dioxide on carbon soot aerosols has been suggested as a possible source of nighttime nitrous acid (HONO) in atmosphere boundary layer. Available laboratory data show significant variability in the measured reaction probabilities and HONO yields, making it difficult to asses the atmospheric significance of this process. Moreover, little is known of how aging of soot aerosol through internal mixing with other atmospheric trace constituents will affect the heterogeneous reactivity and HONO production. In this work, the heterogeneous reaction of NO2 on fresh and aged soot films leading to HONO formation was studied through a series of kinetic uptake experiments and HONO yield measurements. Soot samples were prepared by incomplete combustion of propane and kerosene fuels under lean and rich flame conditions. Experiments were performed in a low-pressure, fast-flow reactor coupled to a chemical ionization mass spectrometer (CIMS), using atmospheric-level NO2 concentrations. Heterogeneous uptake coefficients, γ(geom) and γ(BET), were calculated using geometric and internal BET soot surface areas, respectively. The uptake coefficient and the HONO yield depend on the type of fuel and combustion regime and are the highest for soot samples prepared using rich kerosene flame. Although, the internal surface area of soot measured by BET method is a factor of 50 to 500 larger than the geometric surface area, only the top soot layers are involved in heterogeneous reaction with NO2 as follows from the observed weak dependence of γ(geom) and decrease in γ(BET) with increasing sample mass. Heating the soot samples before exposure to NO2 increases the BET surface area, the HONO yield, and the NO2 uptake coefficient due to the removal of the organic fraction from the soot backbone that unblocks active sites and makes them accessible for physical adsorption and chemical reactions. Our results support the oxidation-reduction mechanism involving adsorptive and reactive centers on soot surface where NO2 is converted into HONO and other products. Coating the soot surface by different materials to simulate atmospheric aging has a strong impact on the reactivity of soot toward NO2. Sulfuric acid coating reduces the uptake coefficient and HONO production by physically blocking the soot active sites and initiating decomposition of HONO in the aqueous acid layer. Furthermore, the HONO yield can be reduced to zero after exposure to elevated relative humidity or partially restored when sulfuric acid is removed by heating. Coatings made of glutaric and succinic acids increase HONO yields and NO2 uptake coefficients, similarly as in the case of pre-heated soot samples. We propose that the organic acids change the top layer morphology, opening up the pores and making the internal soot surface more accessible for heterogeneous interaction with NO2. The implications of our study regarding the contribution of freshly emitted and aged soot aerosols to nighttime HONO production will be discussed.

  9. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4.

    PubMed

    Epolito, William J; Yang, Hanbae; Bottomley, Lawrence A; Pavlostathis, Spyros G

    2008-12-30

    The effect of operational conditions and initial dye concentration on the reductive transformation (decolorization) of the textile dye Reactive Blue 4 (RB4) using zero-valent iron (ZVI) filings was evaluated in batch assays. The decolorization rate increased with decreasing pH and increasing temperature, mixing intensity, and addition of salt (100gL(-1) NaCl) and base (3gL(-1) Na2CO3 and 1gL(-1) NaOH), conditions typical of textile reactive dyebaths. ZVI RB4 decolorization kinetics at a single initial dye concentration were evaluated using a pseudo first-order model. Under dyebath conditions and at an initial RB4 concentration of 1000mgL(-1), the pseudo first-order rate constant (kobs) was 0.029+/-0.006h(-1), corresponding to a half-life of 24.2h and a ZVI surface area-normalized rate constant (kSA) of 2.9x10(-4)Lm(-2)h(-1). However, as the initial dye concentration increased, the kobs decreased, suggesting saturation of ZVI surface reactive sites. Non-linear regression of initial decolorization rate values as a function of initial dye concentration, based on a reactive sites saturation model, resulted in a maximum decolorization rate (Vm) of 720+/-88mgL(-1)h(-1) and a half-saturation constant (K) of 1299+/-273mgL(-1). Decolorization of RB4 via a reductive transformation, which was essentially irreversible (2-5% re-oxidation), is believed to be the dominant decolorization mechanism. However, some degree of RB4 irreversible sorption cannot be completely discounted. The results of this study show that ZVI treatment is a promising technology for the decolorization of commercial, anthraquinone-bearing, spent reactive dyebaths.

  10. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor

    PubMed Central

    Hammond, Jules L.; Rosamond, Mark C.; Sivaraya, Siva; Marken, Frank; Estrela, Pedro

    2016-01-01

    Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL) to pattern an 11 mm long serpentine nanogap (215 nm) between two electrodes. For the second method we use inductively-coupled plasma (ICP) reactive ion etching (RIE) to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA)−DNA binding events using dielectric spectroscopy with the horizontal coplanar device. PMID:27983655

  11. In vitro toxicology of respirable Montserrat volcanic ash

    PubMed Central

    Wilson, M.; Stone, V.; Cullen, R.; Searl, A.; Maynard, R.; Donaldson, K.

    2000-01-01

    OBJECTIVES—In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO2 and the known toxic quartz dust, DQ12.
METHODS—Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity.
RESULTS—Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO2. All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO2. Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events.
CONCLUSIONS—Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the bioreactivity of MVA samples in vitro is low compared with pure quartz, but that the bioreactivity and mechanisms of biological interaction may vary according to the ash source.


Keywords: volcanic ash; cristobalite; surface reactivity PMID:11024195

  12. The May 20 (MW 6.1) and 29 (MW 6.0), 2012, Emilia (Po Plain, northern Italy) earthquakes: New seismotectonic implications from subsurface geology and high-quality hypocenter location

    NASA Astrophysics Data System (ADS)

    Carannante, Simona; Argnani, Andrea; Massa, Marco; D'Alema, Ezio; Lovati, Sara; Moretti, Milena; Cattaneo, Marco; Augliera, Paolo

    2015-08-01

    This study presents new geological and seismological data that are used to assess the seismic hazard of a sector of the Po Plain (northern Italy), a large alluvial basin hit by two strong earthquakes on May 20 (MW 6.1) and May 29 (MW 6.0), 2012. The proposed interpretation is based on high-quality relocation of 5369 earthquakes ('Emilia sequence') and a dense grid of seismic profiles and exploration wells. The analyzed seismicity was recorded by 44 seismic stations, and initially used to calibrate new one-dimensional and three-dimensional local Vp and Vs velocity models for the area. Considering these new models, the initial sparse hypocenters were then relocated in absolute mode and adjusted using the double-difference relative location algorithm. These data define a seismicity that is elongated in the W-NW to E-SE directions. The aftershocks of the May 20 mainshock appear to be distributed on a rupture surface that dips ~ 45° SSW, and the surface projection indicates an area ~ 10 km wide and 23 km long. The aftershocks of the May 29 mainshock followed a steep rupture surface that is well constrained within the investigated volume, whereby the surface projection of the blind source indicates an area ~ 6 km wide and 33 km long. Multichannel seismic profiles highlight the presence of relevant lateral variations in the structural style of the Ferrara folds that developed during the Pliocene and Pleistocene. There is also evidence of a Mesozoic extensional fault system in the Ferrara arc, with faults that in places have been seismically reactivated. These geological and seismological observations suggest that the 2012 Emilia earthquakes were related to ruptures along blind fault surfaces that are not part of the Pliocene-Pleistocene structural system, but are instead related to a deeper system that is itself closely related to re-activation of a Mesozoic extensional fault system.

  13. Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(ii) and Pb(ii) sorption by δ-MnO2 and ferrihydrite.

    PubMed

    van Genuchten, Case M; Peña, Jasquelin

    2016-08-10

    Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(ii) and Pb(ii) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that of the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(ii) and Pb(ii) both bind to birnessite layer vacancies, only Pb(ii) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(ii) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(ii) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(ii) < Cd(ii) < Ni(ii) < Zn(ii) < Cu(ii) < Pb(ii).

  14. Molecular-level chemistry of model single-crystal oxide surfaces with model halogenated compounds

    NASA Astrophysics Data System (ADS)

    Adib, Kaveh

    Synchrotron-based X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD) and low energy electron diffraction (LEED) have been used to investigate, at a molecular level, the chemistry of different terminations of single crystal iron-oxide surfaces with probe molecules (CCl4 and D2O). Comparisons of the reactivity of these surfaces towards CCl4, indicate that the presence of an uncapped surface Fe cation (strong Lewis acid site) and an adjacent oxygen site capped by that cation can effect the C-Cl bond cleavage in CCl4, resulting in dissociatively adsorbed Cl-adatoms and carbon-containing fragments. If in addition to these sites, an uncapped surface oxygen (Lewis base) site is also available, the carbon-containing moiety can then move that site, coordinate itself with that uncapped oxygen, and stabilize itself. At a later step, the carbon-containing fragment may form a strong covalent bond with the uncapped oxygen and may even abstract that surface oxygen. On the other hand, if an uncapped oxygen is not available to stabilize the carbon-containing fragment, the surface coordination will not occur and upon the subsequent thermal annealing of the surface the Cl-adatoms and the carbon-containing fragments will recombine and desorb as CCl4. Finally, the presence of surface deuteroxyls blocking the strong Lewis acid and base sites of the reactive surface, passivates this surface. Such a deuteroxylated surface will be unreactive towards CCl 4. Such a molecular level understanding of the surface chemistry of metal-oxides will have applications in the areas of selective catalysis, including environmental catalysis, and chemical sensor technology.

  15. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  16. Muscovite dissolution kinetics as a function of pH at elevated temperature

    DOE PAGES

    Lammers, Kristin; Smith, Megan M.; Carroll, Susan A.

    2017-06-07

    We report that mineral reactivity can play an important role in fracture-controlled fluid networks where maintaining or increasing permeability is a goal, such as enhanced geothermal systems. In these systems, dissolution generates new void space, removes cement and physically transports less reactive mineral grains, while secondary precipitation acts to narrow or seal off fluid pathways. Sheet silicate mineral reactivity is likely to affect permeability evolution at the elevated temperatures of geothermal reservoirs because of the high reactive surface area and prevalence of these minerals in hydrothermal zones. To better describe the reactivity of one common sheet silicate, muscovite, we conducted kinetic dissolution experiments using flow-through reactors at temperatures of 100–280 °C and a pH range of 2–9. Surface area-normalized muscovite dissolution rates ranged from 0.17–155 · 10 - 11 mol m - 2 s - 1 over this temperature range, but showed little variation with pH above 150 °C. Aluminum was released to solution nonstoichiometrically with respect to dissolved silica, most likely resulting from secondary precipitation of an aluminum oxy-hydroxide identified as boehmite (γ-AlO(OH)( s)) by X-ray diffraction in reaction products from experiments conducted at pH ≤ 6. Surface area-normalized muscovite dissolution rates, Rate mus (mol m - 2 s - 1), can be described from 25 to 280 °C with the following kinetic rate equation: Rate mus = ([3∙10 -3∙e -44 /R∙T∙amore » $$0.8\\atop{H+}$$] + [9∙10 -6∙e- 45/R∙T] + [5∙10 -1∙ e-61/R∙T ∙a$$0.6\\atop{OH-}$$] ∙ (1-e -ΔGr/RT) where the rate and pre-exponential factors are in mol m - 2 s - 1; the activation energies, E, are in kJ mol - 1; a H+ and a OH- represent the activities of H + and OH -, respectively; R (kJ mol - 1 K - 1) is the gas constant; T is the temperature in Kelvins; and ΔG r (kJ mol - 1) is a measure of how close the aqueous solution is to muscovite equilibrium. The rate equation is constrained by our new data literature rates and has been evaluated against previous formulations with varying dependence on reaction affinity. Although 150 °C muscovite rates from Oelkers et al. (2008) show a systematic dependence on reaction affinity, incorporating this dependence did not accurately reproduce the higher-temperature rates. In conclusion, we recommend the rate equation shown above, with an affinity term that slows reaction rates only when solutions are close to equilibrium, for simulating the dissolution of muscovite under geothermal conditions.« less

  17. Muscovite dissolution kinetics as a function of pH at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammers, Kristin; Smith, Megan M.; Carroll, Susan A.

    We report that mineral reactivity can play an important role in fracture-controlled fluid networks where maintaining or increasing permeability is a goal, such as enhanced geothermal systems. In these systems, dissolution generates new void space, removes cement and physically transports less reactive mineral grains, while secondary precipitation acts to narrow or seal off fluid pathways. Sheet silicate mineral reactivity is likely to affect permeability evolution at the elevated temperatures of geothermal reservoirs because of the high reactive surface area and prevalence of these minerals in hydrothermal zones. To better describe the reactivity of one common sheet silicate, muscovite, we conducted kinetic dissolution experiments using flow-through reactors at temperatures of 100–280 °C and a pH range of 2–9. Surface area-normalized muscovite dissolution rates ranged from 0.17–155 · 10 - 11 mol m - 2 s - 1 over this temperature range, but showed little variation with pH above 150 °C. Aluminum was released to solution nonstoichiometrically with respect to dissolved silica, most likely resulting from secondary precipitation of an aluminum oxy-hydroxide identified as boehmite (γ-AlO(OH)( s)) by X-ray diffraction in reaction products from experiments conducted at pH ≤ 6. Surface area-normalized muscovite dissolution rates, Rate mus (mol m - 2 s - 1), can be described from 25 to 280 °C with the following kinetic rate equation: Rate mus = ([3∙10 -3∙e -44 /R∙T∙amore » $$0.8\\atop{H+}$$] + [9∙10 -6∙e- 45/R∙T] + [5∙10 -1∙ e-61/R∙T ∙a$$0.6\\atop{OH-}$$] ∙ (1-e -ΔGr/RT) where the rate and pre-exponential factors are in mol m - 2 s - 1; the activation energies, E, are in kJ mol - 1; a H+ and a OH- represent the activities of H + and OH -, respectively; R (kJ mol - 1 K - 1) is the gas constant; T is the temperature in Kelvins; and ΔG r (kJ mol - 1) is a measure of how close the aqueous solution is to muscovite equilibrium. The rate equation is constrained by our new data literature rates and has been evaluated against previous formulations with varying dependence on reaction affinity. Although 150 °C muscovite rates from Oelkers et al. (2008) show a systematic dependence on reaction affinity, incorporating this dependence did not accurately reproduce the higher-temperature rates. In conclusion, we recommend the rate equation shown above, with an affinity term that slows reaction rates only when solutions are close to equilibrium, for simulating the dissolution of muscovite under geothermal conditions.« less

  18. Understanding the Reactivity of Lunar Dust for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Wallace, William; Taylor, L. A.; Jeevarajan, Antony

    2009-01-01

    During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused momentary health issues for some of the astronauts. Therefore, the plan to resume robotic and manned missions to the Moon in the next decade has led to a renewed interest in the properties of lunar dust, ranging from geological to chemical to toxicological. An important property to understand is the reactivity of the dust particles. Due to the lack of an atmosphere on the Moon, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. On the Moon, these species can be maintained for millennia without oxygen or water vapor present to satisfy the broken bonds. Unfortunately, the Apollo dust samples that were returned to Earth were inadvertently exposed to the atmosphere, causing them to lose their reactive characteristics. In order to aid in the preparation of mitigation techniques prior to returning to the Moon, we measured the ability of lunar dust, lunar dust simulant, and quartz samples to produce hydroxyl radicals in solution[1]. As a first approximation of meteorite impacts on the lunar surface, we ground samples using a mortar and pestle. Our initial studies showed that all three test materials (lunar dust (62241), lunar dust simulant (JSC-1Avf), and quartz) produced hydroxyl radicals after grinding and mixing with water. However, the radical production of the ground lunar dust was approximately 10-fold and 3-fold greater than quartz and JSC-1 Avf, respectively. These reactivity differences between the different samples did not correlate with differences in specific surface area. The increased reactivity produced for the quartz by grinding was attributed to the presence of silicon- or oxygen-based radicals on the surface, as had been seen previously[2]. These radicals may also play a part in the reactivity of the lunar dust and lunar simulant. However, other factors would seem to be required to account for the greatly increased reactivity of the lunar soil. It was proposed that nanometer-size Fe 0 (zero valent) particles in the lunar soil might play a role, as they are not present in quartz or lunar dust simulant. The present work has been performed with the aim of understanding the origin of the considerable reactivity of lunar dust[3]. We have ground 8 lunar soils of varying maturity and source (highland or mare) and measured the hydroxyl-radical production and decay of the reactivity. It was determined that there is a direct correlation between the reactivity and the amount of nanophase metallic iron particles (as a function of soil maturity, I s/FeO, in which Is is the amount of iron present as nanophase iron particles present and FeO is the total iron content) in the samples; thus, the highland soils, with their lesser total FeO content, are less reactive than ground mare soils. Additionally, grinding of nanophase iron simulant [4] showed reactivity in line with the lunar soils and much greater than lunar dust simulant or quartz. Studies aimed at determining the time required to deactivate the reactive soils in a habitable environment showed that the average time to reach 50% of the initial reactivity was approximately 3.5 hours. However, even after one week, none of the soils had returned completely to its unground level of reactivity. In contrast to the reactivity results, there was no obvious correlation between the maturity of the soil and its deactivation time. These results provide the first chemical reactivity and persistence values as an important property of lunar soils, data that is paramount as mankind prepares to return to the Moon.

  19. 2011 Dynamics at Surfaces Gordon Research Conference (August 7-12, 2011, Salve Regina University, Newport, Rhode Island)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greg Sitz

    2011-08-12

    The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics atmore » surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.« less

  20. Influence of the Palaeo-Landslides on the Project of Rehabilitation of a National Road in the Southern Carpathian Area

    NASA Astrophysics Data System (ADS)

    Mihailescu, Daniel; Milutinovici, Emilia

    2017-12-01

    The mountain Paduchiosu is a part of the Southern Carpathians, in the South-Eastern Bucegi National Park. Significant palaeo-landslides occur on the Eastern slope of the mountain Paduchiosu, affecting the DN 71 alignment, between Valea Dorului and Valea Carpinis, on a length of approx. 10 km [1]. The palaeo-landslides occur along the tectonic contacts of various cretaceous formations. The landslides occur both at the level of Quaternary deposits, forming the alteration layer of the old geological formations (alluvial, deluvial and colluvial soil deposits), and at the level of Pre-Quaternary geological formations, whose structure is clayey-marl, or within the harder rocky formations, with seams of clayey - marl nature also. Two large palaeo-landslides can be distinguished: landslide I, affecting the national road alignment between pk 96 and 101+500, with sliding orientation towards South and South-West and landslide II, affecting the analysed alignment between pk 102+500 and 106 (with sliding orientation towards East and North-East). The landslides are significant and very old. The main cause of occurrence of these landslides is the tectonic nature of the area. The two main landslides occur on large surfaces. Generally, the sliding plan is under the „fissure clay” level, so it tends to be 12 to15 m deep. Numerous reactivations occur within their congestion, on narrow or large surfaces. Many of the reactivations occur due to the malfunctions of the systems of rainfall draining and taking over from the national road that runs South to North on the Southern slope of the mountain Paduchiosu. There are no underground waters, but considering the change of the natural water drainage due to the existing road works, there are areas where the drainage is impeded or slowed, leading to the water infiltration and rocks moistening under the deluvial formation. The local reactivations may also be influenced by the unarranged torrential valleys. The project of rehabilitation of DN 71 is strongly influenced by existence of these significant landslides. Acknowledgement of the risk of landslide and allocation of funds for maintenance and remedial of the arisen damages following reactivations, as well as monitorization of the road areas affected by the landslides both during the works and after their completion, during operation, is the rightest solution, and actually, the least expensive one.

  1. Breakage mechanics for granular materials in surface-reactive environments

    NASA Astrophysics Data System (ADS)

    Zhang, Yida; Buscarnera, Giuseppe

    2018-03-01

    It is known that the crushing behaviour of granular materials is sensitive to the state of the fluids occupying the pore space. Here, a thermomechanical theory is developed to link such macroscopic observations with the physico-chemical processes operating at the microcracks of individual grains. The theory relies on the hypothesis that subcritical fracture propagation at intra-particle scale is the controlling mechanism for the rate-dependent, water-sensitive compression of granular specimens. First, the fracture of uniaxially compressed particles in surface-reactive environments is studied in light of irreversible thermodynamics. Such analysis recovers the Gibbs adsorption isotherm as a central component linking the reduction of the fracture toughness of a solid to the increase of vapour concentration. The same methodology is then extended to assemblies immersed in wet air, for which solid-fluid interfaces have been treated as a separate phase. It is shown that this choice brings the solid surface energy into the dissipation equations of the granular matrix, thus providing a pathway to (i) integrate the Gibbs isotherm with the continuum description of particle assemblies and (ii) reproduce the reduction of their yield strength in presence of high relative humidity. The rate-effects involved in the propagation of cracks and the evolution of breakage have been recovered by considering non-homogenous dissipation potentials associated with the creation of surface area at both scales. It is shown that the proposed model captures satisfactorily the compression response of different types of granular materials subjected to varying relative humidity. This result was achieved simply by using parameters based on the actual adsorption characteristics of the constituting minerals. The theory therefore provides a physically sound and thermodynamically consistent framework to study the behaviour of granular solids in surface-reactive environments.

  2. Marine and terrestrial sources of reactive volatile organic compounds and their impact on the tropospheric ozone chemistry of the earth

    NASA Astrophysics Data System (ADS)

    Riemer, Daniel David

    Two areas integral to the global cycle of tropospheric ozone were studied. The first segment of this investigation involved the study of marine ecosystems to define the sources of nonmethane hydrocarbons (NMHCs) in the surface ocean. This included laboratory and field investigations conducted to determine the function and importance of dissolved organic matter (DOM) in the abiotic photochemical production of nonmethane hydrocarbons (NMHCs) in surface seawater. Concurrently, phytoplankton were investigated as a biogenic source of NMHCs in the surface ocean. Low molecular weight alkenes, compounds observed in the greatest quantities in the surface ocean, are formed almost exclusively as a result of DOM-mediated photochemistry. Isoprene was found to be produced by all phytoplankton species investigated. The primary sink for NMHCs found in surface seawater was gas exchange. The second segment of this study focused on the prevalence of NMHCs and oxygenated volatile organic compounds (OVOCs) in the rural southeastern United States. To characterize the importance of NMHCs and OVOCs to the process of atmospheric reactivity and tropospheric ozone chemistry, mixing ratios for a number of NMHCs and OVOCs were determined. Isoprene and its primary oxidation products, methacrolein and methyl vinyl ketone, were observed to be the dominant hydroxyl radical (OH) sink in the rural atmosphere. Certain OVOCs, namely methanol, acetone and acetaldehyde-although not as important on a reactivity basis-were the most prevalent in terms of mass. Methanol was the dominant OVOC measured in the rural atmosphere and serves as an important source of formaldehyde in the rural atmosphere. On the basis of the mixing ratio patterns exhibited by many of the OVOCs present in the rural atmosphere, considerable biogenic sources are likely.

  3. Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties.

    PubMed

    Yin, Zhouping; Wang, Xiaomei; Sun, Fazhe; Tong, Xiaohu; Zhu, Chen; Lv, Qiying; Ye, Dong; Wang, Shuai; Luo, Wei; Huang, YongAn

    2017-09-22

    Gas sensing performance can be improved significantly by the increase in both the effective gas exposure area and the surface reactivitiy of ZnO nanorods. Here, we propose aligned hierarchical Ag/ZnO nano-heterostructure arrays (h-Ag/ZnO-NAs) via electrohydrodynamic nanowire template, together with a subsequent hydrothermal synthesis and photoreduction reaction. The h-Ag/ZnO-NAs scatter at top for higher specific surface areas with the air, simultaneously contact at root for the electrical conduction. Besides, the ZnO nanorods are uniformly coated with dispersed Ag nanoparticles, resulting in a tremendous enhancement of the surface reactivity. Compared with pure ZnO, such h-Ag/ZnO-NAs exhibit lower electrical resistance and faster responses. Moreover, they demonstrate enhanced NO 2 gas sensing properties. Self-assembly via electrohydrodynamic nanowire template paves a new way for the preparation of high performance gas sensors.

  4. Reactive ion etched substrates and methods of making and using

    DOEpatents

    Rucker, Victor C [San Francisco, CA; Shediac, Rene [Oakland, CA; Simmons, Blake A [San Francisco, CA; Havenstrite, Karen L [New York, NY

    2007-08-07

    Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

  5. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M.

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than themore » geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, III, Herbert Chidsey; Meschter, Peter Joel

    A turbomachine component includes a body having an exterior surface and an interior surface, an internal cavity defined by the interior surface, and a reactivity neutralizing member arranged within the internal cavity. The reactivity neutralizing member is configured and disposed to neutralize turbomachine combustion products on the interior surface of the body.

  7. Ultrahigh vacuum process for the deposition of nanotubes and nanowires

    DOEpatents

    Das, Biswajit; Lee, Myung B

    2015-02-03

    A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.

  8. Stability and reactivity of dimethylethoxysilane

    NASA Technical Reports Server (NTRS)

    Johnson, Richard E.; Ford, Douglas I.

    1992-01-01

    Dimethylethoxysilane (DMES) is currently used to treat the High-temperature Reusable Surface Insulation (HRSI) shuttle tiles in order to provide a hydrophobic surface on the silica. DMES is a volatile, reactive silane that incorporates two reactive sites, the ethoxy group and the silica-hydride group. The work reported in this paper focused on the reactivity of these two groups with silica, water, quantitative reagents, and within DMES itself.

  9. Theoretical investigation of the reactivity in the C-F bond activation of CH 3F by Lu + in the gas phase

    NASA Astrophysics Data System (ADS)

    Liu, Ze-Yu; Wang, Yong-Cheng; Geng, Zhi-Yuan; Yang, Xiao-Yan; Wang, Han-Qing

    2006-11-01

    The reaction of Lu + with CH 3F, which was selected as a representative system of the activation of C-F bond in fluorohydrocarbons by late lanthanide cations, has been examined using density functional theory (DFT). The potential energy surfaces (PESs) of [Lu, C, H 3, F] + were explored in detail in both singlet and triplet electronic states. The electron-transfer reactivity of the reaction was analyzed using the two-state model, and a strongly avoided crossing behaviour on the transition state (TS) area was shown. The theoretical results can act as a guide to further theoretical and experimental researches.

  10. Graphene-carbon nanotube composite aerogel for selective detection of uric acid

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Tang, Jie; Wang, Zonghua; Qin, Lu-Chang

    2013-12-01

    Graphene and single-walled carbon nanotube (SWNT) composite aerogel has been prepared by hydrothermal synthesis. The restacking of graphene is effectively reduced by SWNTs inserted in between graphene layers in order to make available more active sites and reactive surface area. Electrochemical experiments show that the graphene-SWNT composite electrode has superior catalytic performance in selective detection of uric acid (UA).

  11. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.

  12. Preliminary Geotechnical Investigation of Two Basaltic Landslide Sites in Mauritius, Offshore Africa

    NASA Astrophysics Data System (ADS)

    Dabycharun, Bhoopendra; Kuwano, Takeshi; Ichikawa, Kensuke; Fukuoka, Hiroshi

    2016-04-01

    Landslide hazards in developing areas in Mauritius became a great challenge as well as a fundamental concern for the government and the citizen of the country. In recent years, landslide disasters have caused losses of both public and private properties. In 2005, a large-scale landslide at Chitrakoot affected 54 houses and infrastructures, and it was reactivated in 2006, damaging another 14 houses. Vallee Pitot landslide is frequently reactivated in these years and threatening several houses in densely-populated zone. Although the long-term annual precipitation show slightly decreasing trend, number of tropical cyclone over Mauritius is clearly increasing at least in the past 3 decades. Being of volcanic origin, Mauritius has observed dramatic and quick weathering of the soil which may partly contributes to creating landslide-prone geo-environment. This study focuses on the preliminary geotechnical investigation of the above-mentioned two basaltic landslide areas in Mauritius. Recent investigation was conducted jointly by JICA (Japan International Cooperation Agency) and Ministry of Public Infrastructure and Land Transport of Government of Mauritius on both sites from 2012 to 2015 to survey the landslide surface and to implement countermeasures works. In the field investigation, aerial photo interpretation was used to investigate the zone of cracks and scarps for both sites. The landslide areas for Chitrakoot and Vallee Pitot were estimated to 1.8 km2 and 5,000 m2 respectively. Both sites are located in the highly populated area in the capital city of Mauritius. The geological features of the sites were studied with the borehole core logging data obtained from 6 boreholes and it was found that possible sliding surface was observed in the colluvium layer consisting of gravels and stiff silty-clays, at depths from 6 to 10 m below the ground surface. The rate of landslide movement during heavy rainfall amount exceeding 100 mm/hr was elaborated with past records of extensometers installed on these sites. Colluvium samples from both sites of the same characteristics with the sliding surface were tested in the ring shear apparatus in Japan under different normal stresses reducing from 300 kPa to 50 kPa step-wise at a shear velocity of 0.02 mm/min under drained condition to obtain the residual friction angle (φ) and the cohesion (c). Obtained residual friction angle and cohesion of the Chitrakoot sample can explain why the landslide has been reactivated at extreme rainfall events. The shear strength values of the colluvium have been carefully evaluated to assess the critical ground water level and precipitation on those two basaltic areas in Mauritius as well as a method of issuing early warning for evacuation of the citizens.

  13. Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada

    DOE PAGES

    Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue

    2017-04-02

    Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less

  14. Tuning the reactivity of semiconductor surfaces by functionalization with amines of different basicity

    PubMed Central

    Bent, Stacey F.; Kachian, Jessica S.; Rodríguez-Reyes, Juan Carlos F.; Teplyakov, Andrew V.

    2011-01-01

    Surface functionalization of semiconductors has been the backbone of the newest developments in microelectronics, energy conversion, sensing device design, and many other fields of science and technology. Over a decade ago, the notion of viewing the surface itself as a chemical reagent in surface reactions was introduced, and adding a variety of new functionalities to the semiconductor surface has become a target of research for many groups. The electronic effects on the substrate have been considered as an important consequence of chemical modification. In this work, we shift the focus to the electronic properties of the functional groups attached to the surface and their role on subsequent reactivity. We investigate surface functionalization of clean Si(100)-2 × 1 and Ge(100)-2 × 1 surfaces with amines as a way to modify their reactivity and to fine tune this reactivity by considering the basicity of the attached functionality. The reactivity of silicon and germanium surfaces modified with ethylamine (CH3CH2NH2) and aniline (C6H5NH2) is predicted using density functional theory calculations of proton attachment to the nitrogen of the adsorbed amine to differ with respect to a nucleophilic attack of the surface species. These predictions are then tested using a model metalorganic reagent, tetrakis(dimethylamido)titanium (((CH3)2N)4Ti, TDMAT), which undergoes a transamination reaction with sufficiently nucleophilic amines, and the reactivity tests confirm trends consistent with predicted basicities. The identity of the underlying semiconductor surface has a profound effect on the outcome of this reaction, and results comparing silicon and germanium are discussed. PMID:21068370

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue

    Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less

  16. Dynamics and reactivity of trapped electrons on supported ice crystallites.

    PubMed

    Stähler, Julia; Gahl, Cornelius; Wolf, Martin

    2012-01-17

    The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we estimated the electron surface density for DEA, yielding cross sections that are orders of magnitude higher than the electron density measured in the gas phase.

  17. Reactive composite compositions and mat barriers

    DOEpatents

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  18. Morphology and Surface Reactivity Relationship in the Li1+xMn2-xO4 Spinel with x = 0.05 and 0.10: A Combined First-Principle and Experimental Study.

    PubMed

    Quesne-Turin, Ambroise; Vallverdu, Germain; Flahaut, Delphine; Allouche, Joachim; Croguennec, Laurence; Ménétrier, Michel; Baraille, Isabelle

    2017-12-27

    This article focuses on the surface reactivity of two spinel samples with different stoichiometries and crystal morphologies, namely Li 1+x Mn 2-x O 4 with x = 0.05 and 0.10. LiMn 2 O 4 compounds are good candidates as positive electrode of high-power lithium-ion batteries for portable devices. The samples were investigated using both experimental and theoretical approaches. On the experimental point of view, they were characterized in depth from X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS) analyses. Then, the reactivity was investigated through the adsorption of (SO 2 ) gaseous probes, in controlled conditions, followed by XPS characterization. First-principle calculations were conducted simultaneously to investigate the electronic properties and the reactivity of relevant surfaces of an ideal LiMn 2 O 4 material. The results allow us to conclude that the reactivity of the samples is dominated by an acido-basic reactivity and the formation of sulfite species. Nonetheless, on the x = 0.05 sample, both sulfite and sulfate species are obtained, the later, in lesser extent, corresponding to a redox reactivity. Combining experimental and theoretical results, this redox reactivity could be associated with the presence of a larger quantity of Mn 4+ cations on the last surface layers of the material linked to a specific surface orientation.

  19. Analysis of reactive bromine production and ozone depletion in the Arctic boundary layer using 3-D simulations with GEM-AQ: inference from synoptic-scale patterns

    NASA Astrophysics Data System (ADS)

    Toyota, K.; McConnell, J. C.; Lupu, A.; Neary, L.; McLinden, C. A.; Richter, A.; Kwok, R.; Semeniuk, K.; Kaminski, J. W.; Gong, S.-L.; Jarosz, J.; Chipperfield, M. P.; Sioris, C. E.

    2011-04-01

    Episodes of high bromine levels and surface ozone depletion in the springtime Arctic are simulated by an online air-quality model, GEM-AQ, with gas-phase and heterogeneous reactions of inorganic bromine species and a simple scheme of air-snowpack chemical interactions implemented for this study. Snowpack on sea ice is assumed to be the only source of bromine to the atmosphere and to be capable of converting relatively stable bromine species to photolabile Br2 via air-snowpack interactions. A set of sensitivity model runs are performed for April 2001 at a horizontal resolution of approximately 100 km×100 km in the Arctic, to provide insights into the effects of temperature and the age (first-year, FY, versus multi-year, MY) of sea ice on the release of reactive bromine to the atmosphere. The model simulations capture much of the temporal variations in surface ozone mixing ratios as observed at stations in the high Arctic and the synoptic-scale evolution of areas with enhanced BrO column amount ("BrO clouds") as estimated from satellite observations. The simulated "BrO clouds" are in modestly better agreement with the satellite measurements when the FY sea ice is assumed to be more efficient at releasing reactive bromine to the atmosphere than on the MY sea ice. Surface ozone data from coastal stations used in this study are not sufficient to evaluate unambiguously the difference between the FY sea ice and the MY sea ice as a source of bromine. The results strongly suggest that reactive bromine is released ubiquitously from the snow on the sea ice during the Arctic spring while the timing and location of the bromine release are largely controlled by meteorological factors. It appears that a rapid advection and an enhanced turbulent diffusion associated with strong boundary-layer winds drive transport and dispersion of ozone to the near-surface air over the sea ice, increasing the oxidation rate of bromide (Br-) in the surface snow. Also, if indeed the surface snowpack does supply most of the reactive bromine in the Arctic boundary layer, it appears to be capable of releasing reactive bromine at temperatures as high as -10 °C, particularly on the sea ice in the central and eastern Arctic Ocean. Dynamically-induced BrO column variability in the lowermost stratosphere appears to interfere with the use of satellite BrO column measurements for interpreting BrO variability in the lower troposphere but probably not to the extent of totally obscuring "BrO clouds" that originate from the surface snow/ice source of bromine in the high Arctic. A budget analysis of the simulated air-surface exchange of bromine compounds suggests that a "bromine explosion" occurs in the interstitial air of the snowpack and/or is accelerated by heterogeneous reactions on the surface of wind-blown snow in ambient air, both of which are not represented explicitly in our simple model but could have been approximated by a parameter adjustment for the yield of Br2 from the trigger.

  20. Plasma treatment of polymers for improved adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer surfaces for improved adhesion are reviewed: noble and reactive gas treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changes are discussed, as are the mechanisms of adhesion to polymeric adhesives, particularly epoxy. Noble gas plasma etching of flouropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhesion to epoxy. Reactive gas plasmas also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble andmore » reactive gas (exept for hydrogen) etching of polyolefins results in surface oxidation and improved adhesion via hydrogen bonding of these oxygen containing groups across the interface. The introduction of amine groups to a polymer surface by amonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical groups surrounding the amine. 41 refs.« less

  1. Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith

    NASA Astrophysics Data System (ADS)

    Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.

    2012-09-01

    The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.

  2. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    NASA Astrophysics Data System (ADS)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  3. Recent Advances in the Area of Groundwater

    NASA Astrophysics Data System (ADS)

    Bahr, J. M.

    2017-12-01

    Groundwater related papers published in Water Resources Research in the last year range from experimental and modeling studies of pore scale flow and reactive transport to assessments of changes in water storage at the scale of regional aquifers enabled by satellite observations. Important societal needs motivating these studies include sustainability of groundwater resources of suitable quantity and quality for human use, protection of groundwater-dependent ecosystems in streams, wetlands, lakes and coastal areas, and assessment of the feasibility of subsurface sequestration of carbon dioxide and long-lived radioactive wastes. Eight general areas that generated ten or more papers within the period July 2016 to June 2017 are the following: aquifer heterogeneity (including geostatistical and inverse methods for parameter estimation), flow and transport in the unsaturated zone (including recharge to and evaporative losses from aquifers), multiphase flow and transport (including processes relevant to carbon sequestration), groundwater-surface water interactions (particularly hyporheic exchange), flow and transport in fractured media, novel remote sensing and geophysical techniques for aquifer characterization and assessment of groundwater dynamics, freshwater-saltwater interactions (particularly in coastal aquifers), and reactive solute transport. This presentation will highlight selected findings in each of these areas.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyola-Reynoso, S.; Tevis, I. D.; Chen, J.

    Here, chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolyzable moieties in the presence of physisorbed water. In this report, we demonstrated that using alkyltrichlorosilanes (trivalent [i.e., 3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound particles. We infer that the presencemore » of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2–201.4 g m –2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from ~70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student's t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, paper-based houses can be rendered self-cleaning or tolerant to surface running water. In another application, we demonstrated that the felicitous choice of architectural design allows for the hydrophobic paper to be used for water harvesting.« less

  5. Engineering tunable bio-inspired polymeric coatings for amphiphobic fibrous materials

    NASA Astrophysics Data System (ADS)

    Oyola-Reynoso, Stephanie

    Chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolysable moieties in the presence of physisorbed water. In the following chapters, we demonstrate that using alkyltrichlorosilanes (trivalent [3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound polymeric particles. We infer that the presence of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane, prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2-201.4 g/m2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from 70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, cardboard houses can be rendered self-cleaning or tolerant to surface running water. Each of the chapters below supports the mechanism via a series of applications, material characterization, and/or, smart engineering.

  6. Selected Topics on the Synthesis, Properties and Applications of Multiwalled Carbon Nanotubes

    PubMed Central

    Stoner, B.R.; Brown, B.; Glass, J.T.

    2014-01-01

    Summary In summary, MWCNTs have been examined for a variety of electronic applications due to their unique structure and chemistry. Electrodes for field emission, energy and sensor applications hold particular interest. MWCNTs provide a very high surface area, relatively easy methods of surface modification, controllable and high concentration of reactive surface sites, and high specific capacitance. Combining MWCNTs with graphene structures, oxide and metal nanoparticles and certain polymers extends their performance and functionality. Such hybrid structures have been produced in situ during CNT growth and in two-step processes. Excellent progress on understanding the mechanisms of CNT growth has enabled numerous growth methods to all yield MWCNT structures in a variety of morphologies. PMID:24910503

  7. Supramolecular architecture of 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole.3H2O: Synthesis, spectroscopic investigations, DFT computation, MD simulations and docking studies

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Smitha, M.; Sheena Mary, Y.; Armaković, Stevan; Armaković, Sanja J.; Rao, R. Sreenivasa; Suchetan, P. A.; Giri, L.; Pavithran, Rani; Van Alsenoy, C.

    2017-12-01

    Crystal and molecular structure of newly synthesized compound 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole (BMMBI) has been authenticated by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Visible spectroscopic techniques; compile both experimental and theoretical results which are performed by DFT/B3LYP/6-311++G(d,p) method at ground state in gas phase. Visualize nature and type of intermolecular interactions and crucial role of these interactions in supra-molecular architecture has been investigated by use of a set of graphical tools 3D-Hirshfeld surfaces and 2D-fingerprint plots analysis. The title compound stabilized by strong intermolecular hydrogen bonds N⋯Hsbnd O and O⋯Hsbnd O, which are envisaged by dark red spots on dnorm mapped surfaces and weak Br⋯Br contacts envisaged by red spot on dnorm mapped surface. The detailed fundamental vibrational assignments of wavenumbers were aid by with help of Potential Energy distribution (PED) analysis by using GAR2PED program and shows good agreement with experimental values. Besides frontier orbitals analysis, global reactivity descriptors, natural bond orbitals and Mullikan charges analysis were performed by same basic set at ground state in gas phase. Potential reactive sites of the title compound have been identified by ALIE, Fukui functions and MEP, which are mapped to the electron density surfaces. Stability of BMMBI have been investigated from autoxidation process and pronounced interaction with water (hydrolysis) by using bond dissociation energies (BDE) and radial distribution functions (RDF), respectively after MD simulations. In order to identify molecule's most important reactive spots we have used a combination of DFT calculations and MD simulations. Reactivity study encompassed calculations of a set of quantities such as: HOMO-LUMO gap, MEP and ALIE surfaces, Fukui functions, bond dissociation energies and radial distribution functions. To confirm the potential of title molecule in the area of pharmaceutics, we have also calculated a series of drug likeness parameters. Possibly important biological activity of BMMBI molecule was also confirmed by molecular docking study.

  8. Modeling the oxidative capacity of the atmosphere of the south coast air basin of California. 1. Ozone formation metrics.

    PubMed

    Griffin, Robert J; Revelle, Meghan K; Dabdub, Donald

    2004-02-01

    Metrics associated with ozone (O3) formation are investigated using the California Institute of Technology (CIT) three-dimensional air-quality model. Variables investigated include the O3 production rate (P(O3)), O3 production efficiency (OPE), and total reactivity (the sum of the reactivity of carbon monoxide (CO) and all organic gases that react with the hydroxyl radical). Calculations are spatially and temporally resolved; surface-level and vertically averaged results are shown for September 9, 1993 for three Southern California locations: Central Los Angeles, Azusa, and Riverside. Predictions indicate increasing surface-level O3 concentrations with distance downwind, in line with observations. Surface-level and vertically averaged P(O3) values peak during midday and are highest downwind; surface P(O3) values are greater than vertically averaged values. Surface OPEs generally are highest downwind and peak during midday in downwind locations. In contrast, peaks occur in early morning and late afternoon in the vertically averaged case. Vertically averaged OPEs tend to be greater than those for the surface. Total reactivities are highest in upwind surface locations and peak during rush hours; vertically averaged reactivities are smaller and tend to be more uniform temporally and spatially. Total reactivity has large contributions from CO, alkanes, alkenes, aldehydes, unsubstituted monoaromatics, and secondary organics. Calculations using estimated emissions for 2010 result in decreases in P(O3) values and reactivities but increases in OPEs.

  9. Implementation of Biofilm Permeability Models for Mineral Reactions in Saturated Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Saripalli, Kanaka P.; Bacon, Diana H.

    2005-02-22

    An approach based on continuous biofilm models is proposed for modeling permeability changes due to mineral precipitation and dissolution in saturated porous media. In contrast to the biofilm approach, implementation of the film depositional models within a reactive transport code requires a time-dependent calculation of the mineral films in the pore space. Two different methods for this calculation are investigated. The first method assumes a direct relationship between changes in mineral radii (i.e., surface area) and changes in the pore space. In the second method, an effective change in pore radii is calculated based on the relationship between permeability andmore » grain size. Porous media permeability is determined by coupling the film permeability models (Mualem and Childs and Collis-George) to a volumetric model that incorporates both mineral density and reactive surface area. Results from single mineral dissolution and single mineral precipitation simulations provide reasonable estimates of permeability, though they under predict the magnitude of permeability changes relative to the Kozeny and Carmen model. However, a comparison of experimental and simulated data show that the Mualem film model is the only one that can replicate the oscillations in permeability that occur as a result of simultaneous dissolution and precipitation reactions occurring within the porous media.« less

  10. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch; Bernard, Laetitia; Alahrache, Salaheddine

    2015-10-15

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO{sub 3} to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO{sub 3}. In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete andmore » mortar is only able to slow down SiO{sub 2} dissolution but not to alter morphology, structure and composition of the reaction products. LiNO{sub 3} can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO{sub 2} dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO{sub 3} depends on specific surface area of the aggregates.« less

  11. Reactive transport modelling of a high-pH infiltration test in concrete

    NASA Astrophysics Data System (ADS)

    Chaparro, M. Carme; Soler, Josep M.; Saaltink, Maarten W.; Mäder, Urs K.

    2017-06-01

    A laboratory-scale tracer test was carried out to characterize the transport properties of concrete from the Radioactive Waste Disposal Facility at El Cabril (Spain). A hyperalkaline solution (K-Ca-OH, pH = 13.2) was injected into a concrete sample under a high entry pressure in order to perform the experiment within a reasonable time span, obtaining a decrease of permeability by a factor of 1000. The concentrations of the tracers, major elements (Ca2+, SO4 2 - , K+ and Na+) and pH were measured at the outlet of the concrete sample. A reactive transport model was built based on a double porosity conceptual model, which considers diffusion between a mobile zone, where water can flow, and an immobile zone without any advective transport. The numerical model assumed that all reactions took place in the immobile zone. The cement paste consists of C-S-H gel, portlandite, ettringite, calcite and gypsum, together with residual alite and belite. Two different models were compared, one with portlandite in equilibrium (high initial surface area) and another one with portlandite reaction controlled by kinetics (low initial surface area). Overall the results show dissolution of alite, belite, gypsum, quartz, C-S-H gel and ettringite and precipitation of portlandite and calcite. Permeability could have decreased due to mineral precipitation.

  12. Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd( ii ) and Pb( ii ) sorption by δ-MnO 2 and ferrihydrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Genuchten, Case M.; Peña, Jasquelin

    2016-01-01

    Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(II) and Pb(II) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that ofmore » the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(II) and Pb(II) both bind to birnessite layer vacancies, only Pb(II) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(II) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(II) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(II) < Cd(II) < Ni(II) < Zn(II) < Cu(II) < Pb(II).« less

  13. Effect of dipolar fields, surface termination, and surface orientation on photochemical reactions on transition metal oxides

    NASA Astrophysics Data System (ADS)

    Giocondi, Jennifer Lynn

    Experiments have been conducted to determine the effects of dipolar fields, surface termination, and surface orientation on the photochemical reactivity of several transition metal oxides. These compounds include BaTiO3, SrTiO3, BaTi4O9, Sr2Nb2O 7, and Sr2Ta2O7 which were studied as polycrystalline ceramics, single crystals, micron-sized faceted particles, or some combination of these forms. The reduction of Ag+ from an aqueous AgNO3 solution (Ag0 product) and the oxidation of Pb2+ from an aqueous lead acetate solution (PbO 2 product) were selected as probe reactions because they leave insoluble products on the oxide surfaces. The reactivity of ferroelectric BaTiO3 was dominated by the effect of dipolar fields on the transport of photogenerated charge carriers. Silver was reduced on domains with a positive surface charge while lead was oxidized on domains with a negative surface charge. This reactivity implies that the dipolar field in individual domains drives photogenerated charge carriers to oppositely charged surfaces. This reaction mechanism results in a physical separation of the photogenerated charge carriers and the locations of the oxidation and reduction half reactions on the catalyst surface. Experiments performed on polycrystalline ceramics, single crystals, and micron-sized particles all showed this domain specific reactivity. SrTiO3 has the ideal cubic perovskite structure from which the tetragonally distorted ferroelectric BaTiO3 phase is derived. Polished and annealed surfaces of randomly oriented grain surfaces were bound by some combination of the following three planes: {110}, {111}, and a complex facet inclined approximately 24° from {100}. Surfaces with the complex {100} facet were found to be the most active for Ag reduction. Single crystal studies also showed that the nonpolar (100) surface is the most reactive and that the composition of the termination layer does not influence this reaction. However, the polar (111) and (110) surfaces had a non-uniform distribution of reaction products. For these orientations, the location of the reduction and oxidation reactions is determined by the chemical and charge terminations of the different terraces or facets. The reactivity for silver reduction on the faceted particles is ranked as (100) > (111) > (110) while the (100) surface was least reactive for lead oxidation. Overall, these results show that the photochemical reactivity of SrTiO3 is anisotropic and that on polar surfaces, dipolar fields arising from charged surface domains influence the transport of photogenerated charge carriers and promote spatially selective oxidation and reduction reactions. (Abstract shortened by UMI.)

  14. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.

    2006-09-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface.

  15. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface. ?? 2006 Elsevier Inc. All rights reserved.

  16. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dontsova, K.; Steefel, C.I.; Desilets, S.

    2009-07-15

    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled tomore » reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.« less

  17. Health effects of nanomaterials.

    PubMed

    Tetley, T D

    2007-06-01

    With the rapid growth of nanotechnology and future bulk manufacture of nanomaterials comes the need to determine, understand and counteract any adverse health effects of these materials that may occur during manufacture, during use, or accidentally. Nanotechnology is expanding rapidly and will affect many aspects of everyday life; there are already hundreds of products that utilize nanoparticles. Paradoxically, the unique properties that are being exploited (e.g. high surface reactivity and ability to cross cell membranes) might have negative health impacts. The rapid progress in development and use of nanomaterials is not yet matched by toxicological investigations. Epidemiological studies implicate the ultrafine (nano-sized) fraction of particulate air pollution in the exacerbation of cardiorespiratory disease and increased morbidity. Experimental animal studies suggest that the increased concentration of nanoparticles and higher reactive surface area per unit mass, alongside unique chemistry and functionality, is important in the acute inflammatory and chronic response. Some animal models have shown that nanoparticles which are deposited in one organ (e.g. lung and gut) may access the vasculature and target other organs (e.g. brain and liver). The exact relationship between the physicochemistry of a nanoparticle, its cellular reactivity, and its biological and systemic consequences cannot be predicted. It is important to understand such relationships to enjoy the benefits of nanotechnology without being exposed to the hazards.

  18. In situ FTIR spectroscopic assessment of methylbutynol catalytic conversion products in relation to the surface acid-base properties of systematically modified aluminas

    NASA Astrophysics Data System (ADS)

    Mekhemer, Gamal A. H.; Zaki, Mohamed I.

    2016-10-01

    The present investigation was designed to assess the credibility of methylbutynol (MBOH) as an infrared (IR) reactive probe molecule for surface acid-base properties of metal oxides. Accordingly, pure alumina was systematically modified with varied amounts (0.5-10 wt.%) of K+ or SO42 - additives. Then, the influence of nature and amount of the additive on the following alumina properties were examined: (i) bulk composition and structure by X-ray powder diffractometry and ex-situ IR spectroscopy, (ii) surface area and net charge by N2 sorptiometry and pH-metry, respectively, and (iii) nature and strength of exposed surface acid sites by in-situ IR spectroscopy of adsorbed pyridine at ambient and higher temperatures. Results obtained were correlated with IR-identified product distribution of MBOH catalytic decomposition/conversion at 200 °C. It is thereby concluded that MBOH is superior to conventional IR inactive probe molecules in gauging sensitively the prevailing acid or base character, availability of base sites, relative population of Bronsted to Lewis acid sites, and strength and reactivity of the sites exposed on metal oxide surfaces. Hence, all that is needed to get this information is to handle IR spectra taken from the gas phase, a task that is experimentally much more accessible than taking spectra from adsorbed species of irreactive probe molecules.

  19. Comparison of coal reactivityduring conversion into different oxidizing medium

    NASA Astrophysics Data System (ADS)

    Korotkikh, A. G.; Slyusarskiy, K. V.; Larionov, K. B.; Osipov, V. I.

    2016-10-01

    Acoal conversion process of different coal samples into three different types of oxidizing medium (argon, air and steam) were studied by means of thermogravimetry. Two coal types with different metamorphism degree (lignite and bituminous coal) were used. The experimental procedure was carried out in non-isothermal conditions in temperature range from 373 K to 1273 K with 20 K/min heating rate. Purge gas consisted of argon and oxidizer with volumetric ratio 1:24 and had 250 ml/min flow rate.The ignition and burnout indexes were calculated to evaluate sample reactivity at different oxidizing mediums. The highest reactivity coefficient values in same atmosphere were obtained for lignite. It was caused by higher particle special surface area and volatile matter content.

  20. Raman Spectral Band Oscillations in Large Graphene Bubbles

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.

    2018-05-01

    Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.

  1. Isotopic tracing for calculating the surface density of arginine-glycine-aspartic acid-containing peptide on allogeneic bone.

    PubMed

    Hou, Xiao-bin; Hu, Yong-cheng; He, Jin-quan

    2013-02-01

    To investigate the feasibility of determining the surface density of arginine-glycine-aspartic acid (RGD) peptides grafted onto allogeneic bone by an isotopic tracing method involving labeling these peptides with (125) I, evaluating the impact of the input concentration of RGD peptides on surface density and establishing the correlation between surface density and their input concentration. A synthetic RGD-containing polypeptide (EPRGDNYR) was labeled with (125) I and its specific radioactivity calculated. Reactive solutions of RGD peptide with radioactive (125) I-RGD as probe with input concentrations of 0.01 mg/mL, 0.10 mg/mL, 0.50 mg/mL, 1.00 mg/mL, 2.00 mg/mL and 4.00 mg/mL were prepared. Using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a cross-linking agent, reactions were induced by placing allogeneic bone fragments into reactive solutions of RGD peptide of different input concentrations. On completion of the reactions, the surface densities of RGD peptides grafted onto the allogeneic bone fragments were calculated by evaluating the radioactivity and surface areas of the bone fragments. The impact of input concentration of RGD peptides on surface density was measured and a curve constructed. Measurements by a radiodensity γ-counter showed that the RGD peptides had been labeled successfully with (125) I. The allogeneic bone fragments were radioactive after the reaction, demonstrating that the RGD peptides had been successfully grafted onto their surfaces. It was also found that with increasing input concentration, the surface density increased. It was concluded that the surface density of RGD peptides is quantitatively related to their input concentration. With increasing input concentration, the surface density gradually increases to saturation value. © 2013 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  2. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands on the surface of the particles using XPS and FTIR. The combination of ROS production and ligand degradation can affect the bioavailability of these particles in aqueous species.

  3. From fundamental studies of reactivity on single crystals to the design of catalysts

    NASA Astrophysics Data System (ADS)

    H. Larsen, Jane; Chorkendorff, Ib

    One of the prominent arguments for performing surface science studies have for many years been to improve and design new and better catalysts. Although surface science has provided the fundamental framework and tools for understanding heterogeneous catalysis until now there have been extremely few examples of actually designing new catalysts based solely on surface science studies. In this review, we shall demonstrate how a close collaboration between different fundamental disciplines like structural-, theoretical-and reactivity-studies of surfaces as well as a strong interaction with industry can have strong synergetic effects and how this was used to develop a new catalyst. As so often before the studies reviewed here were not initiated with the objective to solve a specific problem, but realizing that a new class of very stable two-dimensional alloys could be synthesized from otherwise immiscible metals made it possible to present a new solution to a specific problem in the industrial catalysis relating to methane activation in the steam reforming process. Methane is the main constituent of natural gas and it is an extremely important raw material for many large scale chemical processes such as production of hydrogen, ammonia, and methanol. In the steam reforming process methane and water are converted into a mixture of mainly hydrogen and carbon monoxide, the so-called synthesis gas. Industrially the steam reforming process usually takes place over a catalyst containing small nickel crystallites highly dispersed on a porous support material like aluminum/magnesium oxides in order to achieve a high active metal area. There is a general consensus that the rate limiting step of this process is the dissociative sticking of methane on the nickel surface. Driven by the desire to understand this step and hopefully be able to manipulate the reactivity, a large number of investigations of the methane/nickel interaction have been performed using nickel single crystals as model catalysts. The process has been investigated, both under thermal conditions and by using supersonic molecular beams elucidating the dynamical aspects of the interaction. The results obtained will be reviewed both with respect to the clean and modified nickel surfaces. Especially the two-dimensional gold-nickel alloy system will be considered since the fundamental results here have lead to the invention of a new nickel based catalyst, which is much more resistant to carbon formation than the conventional nickel catalysts. This may be one of the first examples of how fundamental research can lead to the invention of new catalysts. Other overlayer/alloy combinations, their stability, and reactivity are briefly discussed with respect to manipulation of the surface reactivity towards methane.

  4. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    NASA Astrophysics Data System (ADS)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  5. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  6. 2013 MOLECULAR ENERGY TRANSFER GORDON RESEARCH CONFERENCE (JANUARY 13-18, 2013 - VENTURA BEACH MARRIOTT, VENTURA CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Scott A.

    2012-10-18

    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy Transfer  Energy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  7. Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B

    2014-01-01

    The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integratedmore » piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.« less

  8. On the fate of anthropogenic nitrogen

    PubMed Central

    Schlesinger, William H.

    2009-01-01

    This article provides a synthesis of literature values to trace the fate of 150 Tg/yr anthropogenic nitrogen applied by humans to the Earth's land surface. Approximately 9 TgN/yr may be accumulating in the terrestrial biosphere in pools with residence times of ten to several hundred years. Enhanced fluvial transport of nitrogen in rivers and percolation to groundwater accounts for ≈35 and 15 TgN/yr, respectively. Greater denitrification in terrestrial soils and wetlands may account for the loss of ≈17 TgN/yr from the land surface, calculated by a compilation of data on the fraction of N2O emitted to the atmosphere and the current global rise of this gas in the atmosphere. A recent estimate of atmospheric transport of reactive nitrogen from land to sea (NOx and NHx) accounts for 48 TgN/yr. The total of these enhanced sinks, 124 TgN/yr, is less than the human-enhanced inputs to the land surface, indicating areas of needed additional attention to global nitrogen biogeochemistry. Policy makers should focus on increasing nitrogen-use efficiency in fertilization, reducing transport of reactive N to rivers and groundwater, and maximizing denitrification to its N2 endproduct. PMID:19118195

  9. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  10. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE PAGES

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    2017-02-17

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  11. Antireflective glass nanoholes on optical lenses.

    PubMed

    Lee, Youngseop; Bae, Sang-In; Eom, Jaehyeon; Suh, Ho-Cheol; Jeong, Ki-Hun

    2018-05-28

    Antireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of ~4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications.

  12. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  13. Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany)

    NASA Astrophysics Data System (ADS)

    Nivière, B.; Bruestle, A.; Bertrand, G.; Carretier, S.; Behrmann, J.; Gourry, J.-C.

    2008-03-01

    The Upper Rhine Graben has two Plio-Quaternary depocentres usually interpreted as resulting from tectonic reactivation. The southern basin, near Freiburg im Breisgau (Germany), contains up to 250 m of sediments. Beneath the younger alluvial deposits related to the current drainage system, a former river network deeply entrenched in the substratum reveals a very low regional base level of early Pleistocene age. The offset of channels at faults allows us to infer a Pleistocene reactivation of the syn-rift fault pattern and the estimation of slip rates. Maximum vertical movements along the faults have not exceeded 0.1 mm/yr since the middle Pleistocene. Current activity is concentrated along the westernmost faults. Morphologic markers indicate late Pleistocene reactivation of the Rhine River fault, and geophysical prospecting suggests a near-surface offset of young sedimentary deposits. The size of the fault segments potentially reactivated suggests that earthquakes with magnitude larger than Mw=6.3 could be expected in the area with a return interval of about 8000 years. Extrapolated to the duration of the Plio-Pleistocene, the strain rate estimates reveal that the tectonic forcing may account for only one-third to one-half of the whole thickness of the Plio-Pleistocene sediments of the basin fill. Thus other processes must be invoked to understand the growth of the Plio-Pleistocene basin. Especially the piracy of the Rhine River to the north during the early Pleistocene could explain these effects.

  14. An interferometric study of the dissolution kinetics of anorthite: The role of reactive surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luettge, A.; Bolton, E.W.; Lasaga, A.C.

    1999-07-01

    An optical interferometry system has been used to study the dynamics of the dissolution of anorthite (010) cleavage surfaces. With this technique, it is possible to measure directly the surface retreat of alumino-silicates as a function of time and thereby the dissolution rate using a new application of interferometry. The dissolution experiments are carried out in a flow-through cell system with a near endmember anorthite (An{sub 98}) from Miyake-Jima, Tokyo, Japan, Perchloric acid solutions (pH 3) were used at a constant temperature of 25 C. After having measured the topography of the original pristine anorthite surface, measurements of the surfacemore » normal retreat were taken after 48,84,120, and 168 hrs of run duration at 15 different regions on the surface. An internal-reference technique allows absolute measurements of the changes in surface height for the very first time. From these measurements, an average bulk rate for dissolution of the (010) anorthite surface is calculated to be 5.7 x 10{sup {minus}13} [moles/cm{sub 2}/sec]. Finally, their directly determined bulk rate for the (010) face is compared with the bulk rates calculated from the rate law obtained from powder experiments and using the BET or total surface area.« less

  15. Preparation and Reactivity of Gasless Nanostructured Energetic Materials

    PubMed Central

    Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.

    2015-01-01

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065

  16. Tailored Mesoporous Silicas: From Confinement Effects to Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan III, A C; Kidder, Michelle

    2010-01-01

    Ordered mesoporous silicas continue to find widespread use as supports for diverse applications such as catalysis, separations, and sensors. They provide a versatile platform for these studies because of their high surface area and the ability to control pore size, topology, and surface properties over wide ranges. Furthermore, there is a diverse array of synthetic methodologies for tailoring the pore surface with organic, organometallic, and inorganic functional groups. In this paper, we will discuss two examples of tailored mesoporous silicas and the resultant impact on chemical reactivity. First, we explore the impact of pore confinement on the thermochemical reactivity ofmore » phenethyl phenyl ether (PhCH2CH2OPh, PPE), which is a model of the dominant {beta}-aryl ether linkage present in lignin derived from woody biomass. The influence of PPE surface immobilization, grafting density, silica pore diameter, and presence of a second surface-grafted inert 'spacer' molecule on the product selectivity has been examined. We will show that the product selectivity can be substantially altered compared with the inherent gas-phase selectivity. Second, we have recently initiated an investigation of mesoporous silica supported, heterobimetallic oxide materials for photocatalytic conversion of carbon dioxide. Through surface organometallic chemistry, isolated M-O-M species can be generated on mesoporous silicas that, upon irradiation, form metal to metal charge transfer bands capable of converting CO{sub 2} into CO. Initial results from studies of Ti(IV)-O-Sn(II) on SBA-15 will be presented.« less

  17. Performance Optimization of Metallic Iron and Iron Oxide Nanomaterials for Treatment of Impaired Water Supplies

    NASA Astrophysics Data System (ADS)

    Xie, Yang

    Iron nanomaterials including nanoscale zero valent iron (NZVI), NZVI-based bimetallic reductants (e.g., Pd/NZVI) and naturally occurring nanoscale iron mineral phases represent promising treatment tools for impaired water supplies. However, questions pertaining to fundamental and practical aspects of their reactivity may limit their performance during applications. For NZVI treatment of pollutant source zones, a major hurdle is its limited reactive lifetime. In Chapter 2, we report the longevity of NZVI towards 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) and hexavalent chromium [Cr(VI)] in oxygen-free systems with various anionic co-solutes (e.g., Cl-, SO4 2-, ClO4-, HCO3 -, NO3-). Trends in longevity provide evidence that surface-associated Fe(II) species are responsible for Cr(VI) reduction, whereas 1,1,1,2-TeCA reduction depends on the accessibility of Fe(0) at the NZVI particle surface. In Chapter 3, we show that dithionite, previously utilized for in situ redox manipulation, can restore the reducing capacity of passivated NZVI treatment systems. Air oxidation of NZVI at pH ≥ 8 quickly exhausted reactivity despite a significant fraction of Fe(0) persisting in the particle core. Reduction of this passive layer by low dithionite concentrations restored suspension reactivity to levels of unaged NZVI, with multiple dithionite additions further improving pollutant removal. In Chapter 4, measurements of solvent kinetic isotope effects reveals that optimal Pd/NZVI reactivity results from accumulation of atomic hydrogen, which only occurs in NZVI-based systems due to their higher rates of corrosion. However, atomic hydrogen formation only occurs in aged Pd/NZVI suspensions for ˜2 weeks, after which any reactivity enhancement likely results from galvanic corrosion of Fe(0). Finally, the activity of hybrid nanostructures consisting of multi-walled carbon nanotubes decorated with of hematite nanoparticles (alphaFe 2O3/MWCNT) is explored in Chapter 5. Sorption of Cu(II) and Cr(VI) is enhanced in hybrid nanostructure systems beyond what would be expected from simple additive sorption capacities of their building blocks. The enhanced sorption capacity is in part derived from the greater surface area of hematite nanoparticles immobilized on MWCNTs relative to aggregated hematite suspensions. The hybrid alphaFe2O3/MWCNT may also exhibit unique surface chemistry, as supported by the tunable values of zeta potential measured as a function of the mass of alphaFe2O 3 deposited on the MWCNTs.

  18. The respiratory health hazard of tephra from the 2010 Centennial eruption of Merapi with implications for occupational mining of deposits

    NASA Astrophysics Data System (ADS)

    Damby, D. E.; Horwell, C. J.; Baxter, P. J.; Delmelle, P.; Donaldson, K.; Dunster, C.; Fubini, B.; Murphy, F. A.; Nattrass, C.; Sweeney, S.; Tetley, T. D.; Tomatis, M.

    2013-07-01

    Ashfall into heavily populated areas during the October-November 2010 eruption of Merapi volcano, Indonesia created anxiety regarding the growing impacts to health as the eruption escalated and the hazard zone widened. We made a preliminary assessment of the respiratory hazards to human health of the tephra deposits (ashfall, lahar, and PDC surge) from the eruption using a laboratory protocol specifically developed to study the toxic potential of volcanic ash particles. Twenty samples collected from a range of locations were analysed for health-pertinent mineralogical parameters (grain size, crystalline silica content, morphology, surface area, bulk chemistry, and leachable elements) and bio-reactivity (hydroxyl radical generation, haemolytic potential, oxidative capacity, pro-inflammatory response). The grain size pertinent to respiratory health was variable, ranging from 1.4-15.6 vol.% sub-4 μm and 3.0-28.9 vol.% sub-10 μm diameter material. No fibre-like particles were observed. Cristobalite was present in all samples, ranging from 1.9-9.5 wt.%, but surface reactivity and in vitro toxicity assays showed low reactivity for all samples tested. The risk of direct exposure to ash from fallout was in any case low due to seasonal rains limiting its re-suspension and the immediate and effective clean-up of communities by local people who supplied the ash to the Indonesian construction industry for use as aggregate. However, mining of the lahar and thick PDC deposits in the valleys draining the volcano is performed on a vast, industrial scale, which could result in high occupational exposure to thousands of sand miners at Merapi during the dry seasons. Further study of the health hazard of the mined Merapi deposits is warranted.

  19. Acidization of shales with calcite cemented fractures

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between wormholes is the strongest when coating thickness is a few times larger than the initial aperture of the fracture. This leads to formation of favorable complex networks of wormholes which provide adequate transport of reactive fluids to fracture surfaces and - at the same time - are capable of supporting fracture surfaces. As a conclusion, acidization of the reactivated fractures with hydrochloric acid seems to be an attractive treatment to apply at fracking stage or later on as EGR. The results contribute to the discussion on the use of acidization to enhance the gas production in the shale reservoirs. This communication stresses the importance of the dissolution of calcite cement in natural fractures in shale formations, which are initially sealed and become reactivated during fracking. While this research is based on the analysis of fractures in the Pomeranian shale basin its results are general enough to be applicable to different formations worldwide.

  20. Computational Characterization of Impact Induced Multi-Scale Dissipation in Reactive Solid Composites

    DTIC Science & Technology

    2016-07-01

    Predicted variation in (a) hot-spot number density , (b) hot-spot volume fraction, and (c) hot-spot specific surface area for each ensemble with piston speed...packing density , characterized by its effective solid volume fraction φs,0, affects hot-spot statistics for pressure dominated waves corresponding to...distribution in solid volume fraction within each ensemble was nearly Gaussian, and its standard deviation decreased with increasing density . Analysis of

  1. Spectroscopic and volumetric characterization of a non-microporous amorphous ice

    NASA Astrophysics Data System (ADS)

    Manca, C.; Martin, C.; Roubin, P.

    2002-10-01

    The aim of this Letter is to re-investigate the characterization of ice porosity. N 2, CH 4 and Ar adsorption on amorphous ice has been compared to that on crystalline ice at low temperatures, using adsorption isotherm volumetry and infrared spectroscopy simultaneously. Here we show that amorphous ice can present a large specific surface area and nevertheless be non-microporous; this provides new ways for the understanding of interstellar reactivity.

  2. Visible light photocatalytic activities of template free porous graphitic carbon nitride-BiOBr composite catalysts towards the mineralization of reactive dyes

    NASA Astrophysics Data System (ADS)

    Kanagaraj, Thamaraiselvi; Thiripuranthagan, Sivakumar; Paskalis, Sahaya Murphin Kumar; Abe, Hideki

    2017-12-01

    Template free porous g-C3N4 (pGCN) and flower like bismuth oxybromide catalysts were synthesized by poly condensation and precipitation methods respectively. Various weight percentages of porous GCN-BiOBr composite catalysts (x% pGCN-BiOBr where x = 5, 10, 30, 50 & 70 wt% of pGCN) were synthesized by impregnation method. All the synthesized catalysts were characterized by X-Ray diffractometer, Fourier transform infrared spectrophotometer, BET surface area analyzer, UV Visible diffuse reflectance spectrophotometer, X-Ray photoelectron spectrophotometer, SEM with Energy dispersive X-ray analyzer (SEM/EDAX) and elemental mapping, Transmission electron microscope, Photoluminescence spectrophotometer and Electrochemical impedance. Photocatalytic degradation of all the synthesized catalysts were tested towards the harmful reactive dyes such as reactive blue 198 (RB 198), reactive black 5 (RB 5) and reactive yellow 145 (RY 145) in presence of visible irradiation. Among the catalysts 30% pGCN-BiOBr resulted in the highest photocatalytic activity towards the degradation of all the three dyes in presence of UV, visible and solar irradiations. Kinetics studies on the photocatalytic mineralization of dyes indicated that it followed pseudo first order. HPLC, TOC and COD studies confirm that the dyes are mineralized into CO2, water and mineral salts.

  3. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    DOE PAGES

    Zachara, John; Brantley, Sue; Chorover, Jon; ...

    2016-02-05

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a material’s porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. It is traditionally difficult to interrogate, advances in instrumentation and imaging methodsmore » are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. We discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Moreover, ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Finally, impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.« less

  4. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    PubMed

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  5. Landslides in the western Columbia Gorge, Skamania County, Washington

    USGS Publications Warehouse

    Pierson, Thomas C.; Evarts, Russell C.; Bard, Joseph A.

    2016-11-04

    SummaryRecent light detection and ranging (lidar) imagery has allowed us to identify and map a large number of previously unrecognized landslides, or slides, in heavily forested terrain in the western Columbia Gorge, Skamania County, Washington, and it has revealed that the few previously recognized areas of instability are actually composites of multiple smaller landslides. The high resolution of the imagery further reveals that landslides in the map area have complex movement histories and span a wide range of relative ages. Movement histories are inferred from relative landslide locations and crosscutting relations of surface features. Estimated age ranges are based on (1) limited absolute dating; (2) relative fineness of landscape surface textures, calibrated by comparison with surfaces of currently active and dated landslides as interpreted from interferometric synthetic aperture radar (InSAR), global positioning system (GPS), and historical records; (3) sharpness and steepness of larger-scale surface morphologic features, calibrated by comparison with similar dated features in other regions; (4) degree of surface erosion; and (5) evidence of erosion or deposition by late Pleistocene (15–22 ka) Missoula floods at or below 200 m altitude. The relative age categories are recent (0 to ~1,000 years old), intermediate-age (~1,000 to ~15,000 years old), and old (>~15,000 years old). Within the 221.5 km2 map area, we identified 215 discrete landslides, covering 140.9 km2 (64 percent of the map area). At least 12 of the recent landslides are currently moving or have moved within the last two decades. Mapping for this study expanded the area of previously recognized unstable terrain by 56 percent. Landslide geometries suggest that more than half (62 percent) of these slope failures are translational landslides or composite landslides with translational elements, with failure occurring along gently sloping bedding planes in zones of deeply weathered, locally clay rich volcaniclastic sedimentary units. Approximately two-thirds of the mapped landslide area comprises landslides that have remobilized parts of older slides, and 37 percent of these reactivated slides have involved reactivation of material from two or more older slides. The largest two recent landslides have volumes ≈1 km3 and runouts ≈6 km. One of these, the Bonneville landslide, temporarily dammed the Columbia River almost 600 years ago, and subsequent dam-break flooding inundated downstream areas. The other, the Red Bluffs landslide, slid into the river adjacent to the Bonneville landslide but apparently did not form a landslide dam. Another such landslide rapidly sliding into the Columbia River today could have a catastrophic impact on downstream communities and on the transportation and energy-distribution infrastructure of the Pacific Northwest.

  6. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment

    NASA Astrophysics Data System (ADS)

    De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana

    2018-03-01

    In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.

  7. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, J.; Williamson, M.; Urquhart, S.; Fleming, J.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium-and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. ?? 2011 MTS.

  8. Effects of Different Mineral Admixtures on the Properties of Fresh Concrete

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer. PMID:24701196

  9. Effects of different mineral admixtures on the properties of fresh concrete.

    PubMed

    Khan, Sadaqat Ullah; Nuruddin, Muhammad Fadhil; Ayub, Tehmina; Shafiq, Nasir

    2014-01-01

    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer.

  10. Continuum-based DFN-consistent numerical framework for the simulation of oxygen infiltration into fractured crystalline rocks

    NASA Astrophysics Data System (ADS)

    Trinchero, Paolo; Puigdomenech, Ignasi; Molinero, Jorge; Ebrahimi, Hedieh; Gylling, Björn; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-05-01

    We present an enhanced continuum-based approach for the modelling of groundwater flow coupled with reactive transport in crystalline fractured rocks. In the proposed formulation, flow, transport and geochemical parameters are represented onto a numerical grid using Discrete Fracture Network (DFN) derived parameters. The geochemical reactions are further constrained by field observations of mineral distribution. To illustrate how the approach can be used to include physical and geochemical complexities into reactive transport calculations, we have analysed the potential ingress of oxygenated glacial-meltwater in a heterogeneous fractured rock using the Forsmark site (Sweden) as an example. The results of high-performance reactive transport calculations show that, after a quick oxygen penetration, steady state conditions are attained where abiotic reactions (i.e. the dissolution of chlorite and the homogeneous oxidation of aqueous iron(II) ions) counterbalance advective oxygen fluxes. The results show that most of the chlorite becomes depleted in the highly conductive deformation zones where higher mineral surface areas are available for reactions.

  11. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study.

    PubMed

    Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo

    2014-09-15

    In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Adsorption Site of Gas Molecules on Defective Armchair Graphene Nanoribbon Formed Through Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Auzar, Zuriana; Johari, Zaharah; Sakina, S. H.; Alias, N. Ezaila

    2018-02-01

    High sensitivity and selectivity is desired in sensing devices. The aim of this study is to investigate the use of the ion bombardment process in creating a defect on graphene nanoribbons (GNR), which significantly affects sensing properties, in particular adsorption energy, charge transfer and sensitivity. A process has been developed to form the defect on the GNR surface using molecular dynamic (MD) with a reactive force field with nitrogen ion. The sensing properties were calculated using the extended Huckel theory when oxygen (O2) and ammonia (NH3) molecules are exposed to different areas on the defective site. Through simulation, it was found that the ion bombardment process formed various types of defects on the GNR surface. Most notably, molecules adsorbed on the ripple area considerably improve the sensitivity by more than 50%. This indicates that the defect on the armchair graphene nanoribbon (AGNR) surface can be a method to enhance graphene-based sensing performance.

  13. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    PubMed

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Kinetics of gibbsite dissolution under low ionic strength conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganor, J.; Mogollon, J.L.; Lasaga, A.C.

    1999-06-01

    Experiments measuring synthetic gibbsite dissolution rates were carried out using both a stirred-flow-through reactor and a column reactor at 25 C, and pH range of 2.5--4.1. All experiments were conducted under far from equilibrium conditions ({Delta}G < {minus}1.1 kcal/mole). The experiments were performed with perchloric acid under relatively low (and variable) ionic strength conditions. An excellent agreement was found between the results of the well-mixed flow-through experiments and those of the (nonmixed) column experiments. This agreement shows that the gibbsite dissolution rate is independent of the stirring rate and therefore supports the conclusion of Bloom and Erich (1987) that gibbsitemore » dissolution reaction is surface controlled and not diffusion controlled. The Brunauer-Emmett-Teller (BET) surface area of the gibbsite increased during the flow-through experiments, while in the column experiments no significant change in surface area was observed. The significant differences in the BET surface area between the column experiments and the flow-through experiments, and the excellent agreement between the rates obtained by both methods, enable the authors to justify the substitution of the BET surface area for the reactive surface area. The dissolution rate of gibbsite varied as a function of the perchloric acid concentration. The authors interpret the gibbsite dissolution rate as a result of a combined effect of proton catalysis and perchlorate inhibition. Following the theoretical study of Ganor and Lasaga (1998) they propose specific reaction mechanisms for the gibbsite dissolution in the presence of perchloric acid. The mathematical predictions of two of these reaction mechanisms adequately describe the experimental data.« less

  15. Facile synthesis of high surface area molybdenum nitride and carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Aaron; Serov, Alexey; Artyushkova, Kateryna

    2015-08-15

    The synthesis of high surface area γ-Mo{sub 2}N and α-Mo{sub 2}C is reported (116 and 120 m{sup 2}/g) without the temperature programmed reduction of MoO{sub 3}. γ-Mo{sub 2}N was prepared in an NH{sub 3}-free synthesis using forming gas (7 at% H{sub 2}, N{sub 2}-balance) as the reactive atmosphere. Three precursors were studied ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O, (NH{sub 4}){sub 2} Mg(MoO{sub 4}){sub 2}, and MgMoO{sub 4}) along with the sacrificial support method (SSM) as a means of reducing the particle size of Mo{sub 2}N and Mo{sub 2}C. In situ X-ray diffraction (XRD) studies were carried out to identify reactionmore » intermediates, the temperature at which various intermediates form, and the average domain size of the Mo{sub 2}N products. Materials were synthesized in bulk and further characterized by XRD, HRTEM, XPS, and BET. - Highlights: • Facile synthesis of γ-Mo2N and α-Mo2C with surface area exceeding 100 m{sup 2}/g. • Sacrificial support method was used to achieve these high surface areas. • Materials can serve as catalysts or supports in (electro)chemical processes.« less

  16. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  17. Measuring the reactivity of a silicon-terminated probe

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Stirling, Julian; Jarvis, Samuel Paul; Rahe, Philipp; Moriarty, Philip

    2016-09-01

    It is generally accepted that the exposed surfaces of silicon crystals are highly reactive due to the dangling bonds which protrude into the vacuum. However, surface reconstruction not only modifies the reactivity of bulk silicon crystals, but also plays a key role in determining the properties of silicon nanocrystals. In this study we probe the reactivity of silicon clusters at the end of a scanning probe tip by examining their interaction with closed-shell fullerene molecules. Counter to intuitive expectations, many silicon clusters do not react strongly with the fullerene cage, and we find that only specific highly oriented clusters have sufficient reactivity to break open the existing carbon-carbon bonds.

  18. Interaction Between CO2-Rich Sulfate Solutions and Carbonate Reservoir Rocks from Atmospheric to Supercritical CO2 Conditions: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Cama, J.; Garcia-Rios, M.; Luquot, L.; Soler Matamala, J. M.

    2014-12-01

    A test site for CO2 geological storage is situated in Hontomín (Spain) with a reservoir rock that is mainly composed of limestone. During and after CO2 injection, the resulting CO2-rich acid brine gives rise to the dissolution of carbonate minerals (calcite and dolomite) and gypsum (or anhydrite at depth) may precipitate since the reservoir brine contains sulfate. Experiments using columns filled with crushed limestone or dolostone were conducted under different P-pCO2 conditions (atmospheric: 1-10-3.5 bar; subcritical: 10-10 bar; and supercritical: 150-34 bar), T (25, 40 and 60 ºC) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). We evaluated the effect of these parameters on the coupled reactions of calcite/dolomite dissolution and gypsum/anhydrite precipitation. The CrunchFlow and PhreeqC (v.3) numerical codes were used to perform reactive transport simulations of the experiments. Under the P-pCO2-T conditions, the volume of precipitated gypsum was smaller than the volume of dissolved carbonate minerals, yielding an increase in porosity (Δporosity up to ≈ 4%). A decrease in T favored limestone dissolution regardless of pCO2 owing to increasing undersaturation with decreasing temperature. However, gypsum precipitation was favored at high T and under atmospheric pCO2 conditions but not at high T and under 10 bar of pCO2 conditions. The increase in limestone dissolution with pCO2 was directly attributed to pH, which was more acidic at higher pCO2. Increasing pCO2, carbonate dissolution occurred along the column whereas it was localized in the very inlet under atmospheric conditions. This was due to the buffer capacity of the carbonic acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to calcite and dolomite along the column. 1D reactive transport simulations reproduced the experimental data (carbonate dissolution and gypsum precipitation for different P-pCO2-T conditions). Drawing on reaction rate laws in the literature, we used the reactive surface area to fit the models to the experimental data. The values of the reactive surface area were much smaller than those calculated of the geometric areas.

  19. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  20. On the validity of specific rate constants (kSA) in Fe0/H2O systems.

    PubMed

    Noubactep, C

    2009-05-30

    The validity of the specific reaction rate constants (k(SA)) in modelling contaminant removal in Fe(0)/H(2)O systems is questioned. It is shown that the current k(SA)-model does not consider the large reactive surface area provided by the in-situ formed oxide film, and thus the adsorptive interactions between contaminants and film materials. Furthermore, neither the dynamic nature of film formation nor the fact that the Fe(0) surface is shielded by the film is considered. Suggestions are made how the k(SA)-model could be further developed to meet its original goal.

  1. Boost-phase discrimination research activities

    NASA Technical Reports Server (NTRS)

    Cooper, David M.; Deiwert, George S.

    1989-01-01

    Theoretical research in two areas was performed. The aerothermodynamics research focused on the hard-body and rocket plume flows. Analytical real gas models to describe finite rate chemistry were developed and incorporated into the three-dimensional flow codes. New numerical algorithms capable of treating multi-species reacting gas equations and treating flows with large gradients were also developed. The computational chemistry research focused on the determination of spectral radiative intensity factors, transport properties and reaction rates. Ab initio solutions to the Schrodinger equation provided potential energy curves transition moments (radiative probabilities and strengths) and potential energy surfaces. These surfaces were then coupled with classical particle reactive trajectories to compute reaction cross-sections and rates.

  2. Lunar Simulation in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Sechkar, Edward A.

    2007-01-01

    The Lunar Dust Adhesion Bell Jar has been assembled at the NASA Glenn Research Center to provide a high fidelity lunar simulation facility to test the interactions of lunar dust and lunar dust simulant with candidate aerospace materials and coatings. It has a sophisticated design which enables it to treat dust in a way that will remove adsorbed gases and create a chemically reactive surface. It can simulate the vacuum, thermal, and radiation environments of the Moon, including proximate areas of illuminated heat and extremely cold shadow. It is expected to be a valuable tool in the development of dust repellant and cleaning technologies for lunar surface systems.

  3. High performance N2O4/amine elements: Blowapart

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.

    1977-01-01

    The mechanisms controlling hypergolic propellant reactive stream separation (RRS) were studied and used to develop design criteria for injectors free from both steady state RSS and cyclic propellant stream separation. This was accomplished through the analysis of single element injectors using N204/MMH propellants; the injectors were representative of the space shuttle orbit maneuvering engine and space tug applications. A gas phase/surface reaction mechanism which controls RSS was identified. Injector design criteria were developed, which defined a critical chamber pressure for those operating conditions above which RSS occurs. It was found that the amount of interfacial surface area at impingement is controlled by injector hydraulics.

  4. Real-space characterization of reactivity towards water at the B i 2 T e 3 (111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai-Wen; Ding, Ding; Yang, Chao-Long

    2016-06-01

    Surface reactivity is important in modifying the physical and chemical properties of surface-sensitive materials, such as the topological insulators. Even though many studies addressing the reactivity of topological insulators towards external gases have been reported, it is still under heavy debate whether and how the topological insulators react with H2O. Here, we employ scanning tunneling microscopy to directly probe the surface reaction of Bi2Te3 towards H2O. Surprisingly, it is found that only the top quintuple layer is reactive to H2O, resulting in a hydrated Bi bilayer as well as some Bi islands, which passivate the surface and prevent subsequent reaction.more » A reaction mechanism is proposed with H2Te and hydrated Bi as the products. Unexpectedly, our study indicates that the reaction with water is intrinsic and not dependent on any surface defects. Since water inevitably exists, these findings provide key information when considering the reactions of Bi2Te3 with residual gases or atmosphere.« less

  5. Evaluating long-term patterns of decreasing groundwater discharge through a lake-bottom permeable reactive barrier.

    PubMed

    McCobb, Timothy D; Briggs, Martin A; LeBlanc, Denis R; Day-Lewis, Frederick D; Johnson, Carole D

    2018-05-18

    Identifying and quantifying groundwater exchange is critical when considering contaminant fate and transport at the groundwater/surface-water interface. In this paper, areally distributed temperature and point seepage measurements are used to efficiently assess spatial and temporal groundwater discharge patterns through a glacial-kettle lakebed area containing a zero-valent iron permeable reactive barrier (PRB). Concern was that the PRB was becoming less permeable with time owing to biogeochemical processes within the PRB. Patterns of groundwater discharge over an 8-year period were examined using fiber-optic distributed temperature sensing (FO-DTS) and snapshot-in-time point measurements of temperature. The resulting thermal maps show complex and uneven distributions of temperatures across the lakebed and highlight zones of rapid seepage near the shoreline and along the outer boundaries of the PRB. Repeated thermal mapping indicates an increase in lakebed temperatures over time at periods of similar stage and surface-water temperature. Flux rates in six seepage meters permanently installed on the lakebed in the PRB area decreased on average by 0.021 md -1 (or about 4.5 percent) annually between 2004 and 2015. Modeling of diurnal temperature signals from shallow vertical profiles yielded mean flux values ranging from 0.39 to 1.15 md -1 , with stronger fluxes generally related to colder lakebed temperatures. The combination of an increase in lakebed temperatures, declines in direct seepage, and observations of increased cementation of the lakebed surface provide in situ evidence that the permeability of the PRB is declining. The presence of temporally persistent rapid seepage zones is also discussed. Published by Elsevier Ltd.

  6. Spectromicroscopy measurements of surface morphology and band structure of exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Knox, Kevin; Locatelli, Andrea; Cvetko, Dean; Mentes, Tevfik; Nino, Miguel; Wang, Shancai; Yilmaz, Mehmet; Kim, Philip; Osgood, Richard; Morgante, Alberto

    2011-03-01

    Monolayer-thick crystals, such as graphene, are an area of intense interest in condensed matter research. ~However, crystal deformations in these 2D systems are known to adversely affect conductivity and increase local chemical reactivity. Additionally, surface roughness in graphene complicates band-mapping and limits resolution in techniques such as angle resolved photoemission spectroscopy (ARPES), the theory of which was developed for atomically flat surfaces. Thus, an understanding of the surface morphology of graphene is essential to making high quality devices and important for interpreting ARPES results. In this talk, we will describe a non-invasive approach to examining the corrugation in exfoliated graphene using a combination of low energy electron microscopy (LEEM) and micro-spot low energy electron diffraction (LEED). We will also describe how such knowledge of surface roughness can be used in the analysis of ARPES data to improve resolution and extract useful information about the band-structure.

  7. The role of mineral heterogeneity on the hydrogeochemical response of two fractured reservoir rocks in contact with dissolved CO2

    NASA Astrophysics Data System (ADS)

    Garcia Rios, Maria; Luquot, Linda; Soler, Josep M.; Cama, Jordi

    2017-04-01

    In this study we compare the hydrogeochemical response of two fractured reservoir rocks (limestone composed of 100 wt.% calcite and sandstone composed of 66 wt.% calcite, 28 wt.% quartz and 6 wt.% microcline) in contact with CO2-rich sulfate solutions. Flow-through percolation experiments were performed using artificially fractured limestone and sandstone cores and injecting a CO2-rich sulfate solution under a constant volumetric flow rate (from 0.2 to 60 mL/h) at P = 150 bar and T = 60 °C. Measurements of the pressure difference between the inlet and the outlet of the samples and of the aqueous chemistry enabled the determination of fracture permeability changes and net reaction rates. Additionally, X-ray computed microtomography (XCMT) was used to characterize and localized changes in fracture volume induced by dissolution and precipitation reactions. In all reacted cores an increase in fracture permeability and in fracture volume was always produced even when gypsum precipitation happened. The presence of inert silicate grains in sandstone samples favored the occurrence of largely distributed dissolution structures in contrast to localized dissolution in limestone samples. This phenomenon promoted greater dissolution and smaller precipitation in sandstone than in limestone experiments. As a result, in sandstone reservoirs, the larger increase in fracture volume as well as the more extended distribution of the created volume would favor the CO2 storage capacity. The different distribution of created volume between limestone and sandstone experiments led to a different variation in fracture permeability. The progressive stepped permeability increase for sandstone would be preferred to the sharp permeability increase for limestone to minimize risks related to CO2 injection, favor capillary trapping and reduce energetic storage costs. 2D reactive transport simulations that reproduce the variation in aqueous chemistry and the fracture geometry (dissolution pattern) were performed using CrunchFlow. The calcite reactive surface area had to be diminished with respect to the geometric surface area in order to account for the transport control of the calcite dissolution reaction at pH < 5. The fitted reactive surface area was higher under faster flow conditions, reflecting a decrease in transport control and a more distributed reaction in sandstone compared to limestone.

  8. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review

    PubMed Central

    Campbell, K.; Rawn, D.F.K.; Niedzwiadek, B.; Elliott, C.T.

    2011-01-01

    This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area. PMID:21623494

  9. Sorption and redox reactions of As(III) and As(V) within secondary mineral coatings on aquifer sediment grains.

    PubMed

    Singer, David M; Fox, Patricia M; Guo, Hua; Marcus, Matthew A; Davis, James A

    2013-10-15

    Important reactive phenomena that affect the transport and fate of many elements occur at the mineral-water interface (MWI), including sorption and redox reactions. Fundamental knowledge of these phenomena are often based on observations of ideal mineral-water systems, for example, studies of molecular scale reactions on single crystal faces or the surfaces of pure mineral powders. Much less is understood about MWI in natural environments, which typically have nanometer to micrometer scale secondary mineral coatings on the surfaces of primary mineral grains. We examined sediment grain coatings from a well-characterized field site to determine the causes of rate limitations for arsenic (As) sorption and redox processes within the coatings. Sediments were obtained from the USGS field research site on Cape Cod, MA, and exposed to synthetic contaminated groundwater solutions. Uptake of As(III) and As(V) into the coatings was studied with a combination of electron microscopy and synchrotron techniques to assess concentration gradients and reactive processes, including electron transfer reactions. Transmission electron microscopy (TEM) and X-ray microprobe (XMP) analyses indicated that As was primarily associated with micrometer- to submicrometer aggregates of Mn-bearing nanoparticulate goethite. As(III) oxidation by this phase was observed but limited by the extent of exposed surface area of the goethite grains to the exterior of the mineral coatings. Secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site, and may need to be included explicitly in reactive transport models.

  10. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review.

    PubMed

    Campbell, K; Rawn, D F K; Niedzwiadek, B; Elliott, C T

    2011-06-01

    This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.

  11. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.

    PubMed

    Zhu, Zhendong; Bai, Benfeng; Duan, Huigao; Zhang, Haosu; Zhang, Mingqian; You, Oubo; Li, Qunqing; Tan, Qiaofeng; Wang, Jia; Fan, Shoushan; Jin, Guofan

    2014-04-24

    Plasmonic nanostructures separated by nanogaps enable strong electromagnetic-field confinement on the nanoscale for enhancing light-matter interactions, which are in great demand in many applications such as surface-enhanced Raman scattering (SERS). A simple M-shaped nanograting with narrow V-shaped grooves is proposed. Both theoretical and experimental studies reveal that the electromagnetic field on the surface of the M grating can be pronouncedly enhanced over that of a grating without such grooves, due to field localization in the nanogaps formed by the narrow V grooves. A technique based on room-temperature nanoimprinting lithography and anisotropic reactive-ion etching is developed to fabricate this device, which is cost-effective, reliable, and suitable for fabricating large-area nanostructures. As a demonstration of the potential application of this device, the M grating is used as a SERS substrate for probing Rhodamine 6G molecules. Experimentally, an average SERS enhancement factor as high as 5×10⁸ has been achieved, which verifies the greatly enhanced light-matter interaction on the surface of the M grating over that of traditional SERS surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A quantum chemistry study on surface reactivity of pristine and carbon-substituted AlN nanotubes

    NASA Astrophysics Data System (ADS)

    Mahdaviani, Amir; Esrafili, Mehdi D.; Esrafili, Ali; Behzadi, Hadi

    2013-09-01

    A density functional theory investigation was performed to predict the surface reactivity of pristine and carbon-substituted (6,0) single-walled aluminum nitride nanotubes (AlNNTs). The properties determined include the electrostatic potentials VS(r) and average local ionization energies ĪS(r) on the surfaces of the investigated tubes. According to computed VS(r) results, the Al/N atoms in edge or cap regions show a different reactivity pattern than those at the middle portion of the tubes. Due to the carbon-substitution at the either Al or N sites of the tubes, the negative regions associated with nitrogen atoms are stronger than before. The prediction of surface reactivity and regioselectivity using average local ionization energies has been verified by atomic hydrogen chemisorption energies calculated for AlNNTs at the B3LYP/6-31 G* level. There is an acceptable correlation between the minima of ĪS(r) and the atomic hydrogen chemisorption energies, demonstrating that ĪS(r) provides an effective means for rapidly and economically assessing the relative reactivities of finite sized AlNNTs.

  13. Easy-to-Fabricate and High-Sensitivity LSPR Type Specific Protein Detection Sensor Using AAO Nano-Pore Size Control

    PubMed Central

    Kim, Sae-Wan; Lee, Jae-Sung; Lee, Sang-Won; Kang, Byoung-Ho; Kwon, Jin-Beom; Kim, Ok-Sik; Kim, Ju-Seong; Kim, Eung-Soo; Kwon, Dae-Hyuk; Kang, Shin-Won

    2017-01-01

    In this study, we developed a pore size/pore area-controlled optical biosensor-based anodic aluminum oxide (AAO) nanostructure. As the pore size of AAO increases, the unit cell of AAO increases, which also increases the non-pore area to which the antibody binds. The increase in the number of antibodies immobilized on the surface of the AAO enables effective detection of trace amounts of antigen, because increased antigen-antibody bonding results in a larger surface refractive index change. High sensitivity was thus achieved through amplification of the interference wave of two vertically-incident reflected waves through the localized surface plasmon resonance phenomenon. The sensitivity of the fabricated sensor was evaluated by measuring the change in wavelength with the change in the refractive index of the device surface, and sensitivity was increased with increasing pore-size and non-pore area. The sensitivity of the fabricated sensor was improved and up to 11.8 ag/mL serum amyloid A1 antigen was detected. In addition, the selectivity of the fabricated sensor was confirmed through a reaction with a heterogeneous substance, C-reactive protein antigen. By using hard anodization during fabrication of the AAO, the fabrication time of the device was reduced and the AAO chip was fabricated quickly and easily. PMID:28406469

  14. Spatial zonation limits magnesite dissolution in porous media

    NASA Astrophysics Data System (ADS)

    Li, Li; Salehikhoo, Fatemeh; Brantley, Susan L.; Heidari, Peyman

    2014-02-01

    We investigate how mineral spatial distribution in porous media affects their dissolution rates. Specifically, we measure the dissolution rate of magnesite interspersed in different patterns in packed columns of quartz sand where the magnesite concentration (v/v) was held constant. The largest difference was observed between a “Mixed column” containing uniformly distributed magnesite and a “One-zone column” containing magnesite packed into one cylindrical center zone aligned parallel to the main flow of acidic inlet fluid (flow-parallel One-zone column). The columns were flushed with acid water at a pH of 4.0 at flow velocities of 3.6 or 0.36 m/d. Breakthrough data show that the rate of magnesite dissolution is 1.6-2 times slower in the One-zone column compared to the Mixed column. This extent of rate limitation is much larger than what was observed in our previous work (14%) for a similar One-zone column where the magnesite was packed in a layer aligned perpendicular to flow (flow-transverse One-zone column). Two-dimensional reactive transport modeling with CrunchFlow revealed that ion activity product (IAP) and local dissolution rates at the grid block scale (0.1 cm) vary by orders of magnitude. Much of the central magnesite zone in the One-zone flow-parallel column is characterized by close or equal to equilibrium conditions with IAP/Keq > 0.1. Two important surface areas are defined to understand the observed rates: the effective surface area (Ae) reflects the magnesite that effectively dissolves under far from equilibrium conditions (IAP/Keq < 0.1), while the interface surface area (AI) reflects the effective magnesite surface that lies along the quartz-magnesite interface. Modeling results reveal that the transverse dispersivity at the interface of the quartz and magnesite zones controls mass transport and therefore the values of Ae and AI. Under the conditions examined in this work, the value of Ae varies from 2% to 67% of the total magnesite BET surface area. Column-scale bulk rates R,B (in units of mol/s) vary linearly with Ae and AI. Using Ae to normalize rates, we calculate a rate constant (10-9.56 mol/m2/s) that is very close to the value of 10-10.0 mol/m2/s under well-mixed conditions at the grid block scale. This implies that the laboratory-field rate discrepancy can potentially be caused by differences in the effective surface area. If we know the effective surface area of dissolution, we will be able to use the rate constant measured in laboratory systems to calculate field rates for some systems. In this work, approximately 60-70% of the Ae is at the magnesite-quartz interface. This implies that in some field systems where the detailed information that we have for our columns is not available, the effective mineral surface area may be approximated by the area of grains residing at the interface of reactive mineral zones. Although it has long been known that spatial heterogeneities play a significant role in determining physical processes such as flow and solute transport, our data are the first that systematically and experimentally quantifies the importance of mineral spatial distribution (chemical heterogeneity) on dissolution.

  15. Meso-scale investigation of anaerobic chemical reactivity of Ti-Al-B powder mixtures under impact loading

    NASA Astrophysics Data System (ADS)

    Gonzales, Manny; Gurumurthy, Ashok; Gokhale, Arun; Thadhani, Naresh N.

    2011-06-01

    Impact-initiated anaerobic chemical reactions in Ti-Al-B reactive powder mixtures under uniaxial stress conditions are investigated using a coupled experimental/computational approach. In particular, we characterize the effects of bulk composition on the threshold impact energy to initiate reaction using rod-on-anvil type tests performed on Ti-Al-B powder compacts. Statistical volume elements (SVEs) of different bulk compositions of the powder mixtures are analyzed using the continuum hydrocode CTH to quantify the effects of strain confinement and load configuration on the overall energy of the structure. These SVEs are also validated using one-point correlation functions to characterize the volume fraction and surface area of the constituents. Based on the deformation profiles from the continuum simulations, we investigate the effect of particle size distribution and clustering of Ti and B on the threshold energy required for observed reactivity. The deformation and threshold kinetic energy of the simulated system is compared with published values of the activation energy for Ti+B reactions and Al combustion in air to assess the extent of their impact-initiated reactivity. Funded by DTRA grant No. HDTRA1-10-1-0038

  16. Covalent Heterogenization of a Discrete Mn(II) Bis-Phen Complex by a Metal-Template/Metal-Exchange Method: An Epoxidation Catalyst with Enhanced Reactivity

    PubMed Central

    Terry, Tracy J.; Stack, T. Daniel P.

    2009-01-01

    Considerable attention has been devoted to the immobilization of discrete epoxidation catalysts onto solid supports due to the possible benefits of site isolation such as increased catalyst stability, catalyst recycling, and product separation. A synthetic metal-template/metal-exchange method to imprint a covalently attached bis-1,10-phenanthroline coordination environment onto high-surface area, mesoporous SBA-15 silica is reported herein along with the epoxidation reactivity once reloaded with manganese. Comparisons of this imprinted material with material synthesized by random grafting of the ligand show that the template method creates more reproducible, solution-like bis-1,10-phenanthroline coordination at a variety of ligand loadings. Olefin epoxidation with peracetic acid shows the imprinted manganese catalysts have improved product selectivity for epoxides, greater substrate scope, more efficient use of oxidant, and higher reactivity than their homogeneous or grafted analogues independent of ligand loading. The randomly grafted manganese catalysts, however, show reactivity that varies with ligand loading while the homogeneous analogue degrades trisubstituted olefins and produces trans-epoxide products from cis-olefins. Efficient recycling behavior of the templated catalysts is also possible. PMID:18351763

  17. Computational Identification and Analysis of the Key Biosorbent Characteristics for the Biosorption Process of Reactive Black 5 onto Fungal Biomass

    PubMed Central

    Yang, Yu-Yi; Li, Ze-Li; Wang, Guan; Zhao, Xiao-Ping; Crowley, David E.; Zhao, Yu-Hua

    2012-01-01

    The performances of nine biosorbents derived from dead fungal biomass were investigated for their ability to remove Reactive Black 5 from aqueous solution. The biosorption data for removal of Reactive Black 5 were readily modeled using the Langmuir adsorption isotherm. Kinetic analysis based on both pseudo-second-order and Weber-Morris models indicated intraparticle diffusion was the rate limiting step for biosorption of Reactive Black 5 on to the biosorbents. Sorption capacities of the biosorbents were not correlated with the initial biosorption rates. Sensitivity analysis of the factors affecting biosorption examined by an artificial neural network model showed that pH was the most important parameter, explaining 22%, followed by nitrogen content of biosorbents (16%), initial dye concentration (15%) and carbon content of biosorbents (10%). The biosorption capacities were not proportional to surface areas of the sorbents, but were instead influenced by their chemical element composition. The main functional groups contributing to dye sorption were amine, carboxylic, and alcohol moieties. The data further suggest that differences in carbon and nitrogen contents of biosorbents may be used as a selection index for identifying effective biosorbents from dead fungal biomass. PMID:22442697

  18. Influence of nanophase titania topography on bacterial attachment and metabolism

    PubMed Central

    Park, Margaret R; Banks, Michelle K; Applegate, Bruce; Webster, Thomas J

    2008-01-01

    Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection. PMID:19337418

  19. Modeling the Chemical Effect of Tropopause-penetrating Convection using NEXRAD Observations

    NASA Astrophysics Data System (ADS)

    Clapp, C.; Anderson, J. G.

    2017-12-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) from the tropics to the poles is important both radiatively and chemically. Chemically, water vapor is the dominant source of OH in the lower stratosphere, and increases in water vapor concentrations promote stratospheric ozone loss by raising the reactivity of several key heterogeneous reactions as well as by promoting the growth of reactive surface area. We examine the chemical impact of the convective contribution of boundary layer air to stratospheric chemistry over the mid-latitude United States. Using NEXRAD observations of tropopause penetrating events during the summers of 2004 through 2013 (with approximately 3300 events reaching 390K in potential temperature per year), we calculate the loss of stratospheric ozone due to an average event and the seasonal impact.

  20. Integrated modelling of nitrogen transport and turnover in lowland catchements of northern Germany

    NASA Astrophysics Data System (ADS)

    Wriedt, G.

    2003-04-01

    Nitrogen loads in surface water often do not reflect the actual input situation. This retention of nitrogen can be explained by chemical transformations in the soil and groundwater (e.g. denitrification) and hydrological factors (e.g. transition time, mixing) in soil and groundwater and depends strongly on the geological and chemical patterns within the catchment areas (e.g. reactive substances, conductivities). In order to facilitate modelling studies on the relation between nitrogen transport and catchment characteristics we developed a modelling approach, that allows simulation of the complete nitrogen transport path from the soil input until the exfiltration into the surface water system. This approach is based on the loose coupling of a soil water model and an analytical soil nitrogen model (mRISK-N) with a groundwater flow model (MODFLOW) and a multi-species reactive transport model (RT3D). Groundwater nitrogen turnover is represented by a closed reaction scheme that explicitly includes oxidation of organic matter and pyrite oxidation by several electron acceptors as the main reactive pathways, in order to link nitrogen turnover directly to the availability of the substances involved in the chemical reactions. This reaction module has been implemented into the modelling system as a user defined reaction module within the RT3D-environment. The soil submodel was tested against lysimeter data. It was found, that soil water balance was represented quite well. Nitrogen leaching rates however, can only be interpreted for larger time scales, whereas considerable deviations from measured values do occur in single years. Nevertheless, model performance is comparable to other, more complex soil water and nitrogen models currently available. It was found, that the high uncertainty of model parameters and input data as well as limited knowledge on processes limit the accuracy of soil nitrogen models in general. The next step of the project is the model application in the study area “Schaugraben catchment”. The study area is located near Osterburg/Altmark in the north of Sachsen-Anhalt, its size is about 25 km2. The geology is determined by pleistocene deposits, mainly glacial till in the plateau areas and glaciofluvial sandy deposits in the valleys. A dense drainage network, a high groundwater table and intensive agricultural use provide a high risk for both, groundwater and surface water quality. Model application focuses on the analysis of the interactions between catchment characteristics (hydrological and geological), spatial input patterns and the fate of nitrogen within the catchment. This is done by applying sensitivity analysis, uncertainty analysis and scenario simulation. A three dimensional groundwater flow model for the Schaugraben area has been set up and calibrated in order to analyse the regional flow paths, transition times and groundwater catchments. More detailed modelling studies including the reactive groundwater transport are performed on selected cutouts and transects, defining specific hydrogeological settings, e.g. riparian areas, buffer stripes, hydrological windows etc. Under special consideration is also the influence of spatial input patterns of nitrate and organic matter leaching to the groundwater. Results of the modelling studies are expect until March ‘03. The modelling approach developed here is a tool for the assessment of transport-turnover interaction and may help to improve experimental studies and measurement strategies and to provide useful information for managing purposes.

  1. Subsurface Tectonics and Pingos of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Skirvin, S.; Casavant, R.; Burr, D.

    2008-12-01

    We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary analysis shows that more than half the pingos occur within 150 m of the vertical projections of subsurface fault plane traces. In a previous, unpublished geostatistical study, comparison of pingo and random locations indicated a non-random NE-trending alignment of pingos. This trend in particular matches the dominant orientation of fault sets that are linked to the most recent tectonic deformation of the region. A concurrent Phase 2 of the study examines the potential role of near-surface stratigraphic units in regard to both pingos and faults. Both surface and subsurface coarse-grained deposits across the region are often controlled by fault structures; this study is the first to assess any relationship between reservoir rocks and pingo locations. Cross-sections were constructed from well log data to depths of 100 meters. Subsurface elements were compared with surface features. Although some studies have linked fine-grained surface sediments with pingo occurrence, our analysis hints that coarse-grained sediments underlie pingos and may be related to near-surface fluid transmissivity, as suggested by other researchers. We also investigated pingo occurrence in relationship to upthrown or downthrown fault blocks that vary in the degree of deformation and fluid transmission. Results will guide a proposed pingo drilling project to test linkages between pingos, subsurface geology, hydrology, and petroleum systems. Findings from this study could aid research and planning for field exploration of similar settings on Earth and Mars.

  2. Decontamination formulations for disinfection and sterilization

    DOEpatents

    Tucker, Mark D.; Engler, Daniel E.

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  3. Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association.

    PubMed Central

    Dazzo, F B; Hubbell, D H

    1975-01-01

    Cross-reactive antigens of clover roots and Rhizobium trifolii were detected on their cell surfaces by tube agglutination, immunofluorescent, and radioimmunoassay techniques. Anti-clover root antiserum had a higher agglutinating titer with infective strains of R. trifolii than with noninfective strains. The root antiserum previously adsorbed with noninfective R. trifolii cells remained reactive only with infective cells, including infective revertants. When adsorbed with infective cells, the root antiserum was reactive with neither infective nor noninfective cells. Other Rhizobium species incapable of infecting clover did not demonstrate surface antigens cross-reactive with clover. Radioimmunoassay indicated twice as much antigenic cross-reactivity of clover roots and R. trifolii 403 (infective) than R. trifolii Bart A (noninfective). Immunofluorescence with anti-R. trifolii (infective) antiserum was detected on the exposed surface of the root epidermal cells and diminished at the root meristem. The immunofluorescent crossreaction on clover roots was totally removed by adsorption of anti-R. trifolii (infective) antiserum with encapsulated infective cells but not with noninfective cells. The cross-reactive capsular antigens from R. trifolii strains were extracted and purified. The ability of these antigens to induce clover root hair deformation was much greater when they were obtained from the infective than noninfective strains. The cross-reactive capsular antigen of R. trifolii 403 was characterized as a high-molecular-weight (greater than 4.6 times 10(6) daltons), beta-linked, acidic heteropolysaccharide containing 2-deoxyglucose, galactose, glucose, and glucuronic acid. A soluble, nondialyzable, substance (clover lectin) capable of binding to the cross-reactive antigen and agglutinating only infective cells of R. trifolii was extracted from white clover seeds. This lectin was sensitive to heat, Pronase, and trypsin. inhibition studies indicated that 2-deoxyglucose was the most probable haptenic determinant of the cross-reactive capsular antigen capable of binding to the root antiserum and the clover lectin. A model is proposed suggesting the preferential adsorption of infective versus noninfective cells of R. trifolii on the surface of clover roots by a cross-bridging of their common surface antigens with a multivalent clover lectin. Images PMID:55100

  4. Recruiting physisorbed water in surface polymerization for bio-inspired materials of tunable hydrophobicity

    DOE PAGES

    Oyola-Reynoso, S.; Tevis, I. D.; Chen, J.; ...

    2016-08-18

    Here, chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolyzable moieties in the presence of physisorbed water. In this report, we demonstrated that using alkyltrichlorosilanes (trivalent [i.e., 3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound particles. We infer that the presencemore » of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2–201.4 g m –2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from ~70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student's t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, paper-based houses can be rendered self-cleaning or tolerant to surface running water. In another application, we demonstrated that the felicitous choice of architectural design allows for the hydrophobic paper to be used for water harvesting.« less

  5. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    PubMed Central

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  6. VARIABLE BOUND-SITE CHARGING CONTRIBUTIONS TO SURFACE COMPLEXATION MASS ACTION EXPRESSIONS

    EPA Science Inventory

    One and two pK models of surface complexation reactions between reactive surface sites (>SOH) and the proton (H+) use mass action expressions of the form: Ka={[>SOHn-1z-1]g>SOH(0-1)aH+EXP(-xeY/kT)}/{[>SOHnz]g>SOH(n)} where Ka=the acidity constant, [ ]=reactive species concentrati...

  7. Tuning Energetic Material Reactivity Using Surface Functionalization of Aluminum Fuels

    DTIC Science & Technology

    2012-10-30

    analysis of three different thermites consisting of aluminum (Al) particles with and without surface functionalization combined with molybdenum...of thermites , aluminum synthesis, aluminum fluoropolymer combustion, acid coatings Keerti S. Kappagantula, Cory Farley, Michelle L. Pantoya, Jillian...Reactivity Using Surface Functionalization of Aluminum Fuels Report Title ABSTRACT Combustion analysis of three different thermites consisting of aluminum (Al

  8. Crossing the dividing surface of transition state theory. III. Once and only once. Selecting reactive trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorquet, J. C., E-mail: jc.lorquet@ulg.ac.be

    2015-09-14

    The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever returning to it. Local analytical equations of motion valid in the neighborhood of this planar surface have been derived as an expansion in Poisson brackets. We show that the mere presence of a saddle point implies that reactivity criteria can be quite simply formulated in terms of elements of thismore » series, irrespective of the shape of the potential energy function. Some of these elements are demonstrated to be equal to a sum of squares and thus to be necessarily positive, which has a profound impact on the dynamics. The method is then applied to a three-dimensional model describing an atom-diatom interaction. A particular relation between initial conditions is shown to generate a bundle of reactive trajectories that form reactive cylinders (or conduits) in phase space. This relation considerably reduces the phase space volume of initial conditions that generate recrossing-free trajectories. Loci in phase space of reactive initial conditions are presented. Reactivity is influenced by symmetry, as shown by a comparative study of collinear and bent transition states. Finally, it is argued that the rules that have been derived to generate reactive trajectories in classical mechanics are also useful to build up a reactive wave packet.« less

  9. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbentsmore » was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.« less

  10. Coupling of carboxylic groups onto the surface of polystyrene parts during fused filament fabrication

    NASA Astrophysics Data System (ADS)

    Nagel, Jürgen; Zimmermann, Philipp; Schubert, Oliver; Simon, Frank; Schlenstedt, Kornelia

    2017-11-01

    A method for the fabrication of polystyrene parts, modified with carboxylic groups during Fused Filament Fabrication (FFF), is being introduced. This method is based on the application of a thin layer of a reactive polymer carrying carboxylic groups on a substrate surface. A polystyrene film is printed on top of this layer. During contact between the hot melt and the reactive layer, a Friedel-Crafts type acylation using a green catalyst takes place, which attaches the reactive polymer to the polystyrene surface. The modified surface is homogeneous, hydrophilic and able to bind copper ions. The method could be used to fabricate unique parts of polystyrene with tailored surface functionalisation. It could be applied for laboratory use, e.g. for the manufacture of lab-on-a-chip devices.

  11. Land and Land-use Change in the Climate Sensitive High Plains: An Automated Approach with Landsat

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F.; Williams, D. L. (Technical Monitor)

    2002-01-01

    The High Plains is an economically important and climatologically sensitive region of the United States and Canada. The High Plains contain 100,000 sq km of Holocene sand dunes and sand sheets that are currently stabilized by natural vegetation. Droughts and the larger threat of global warming are climate phenomena that could cause depletion of natural vegetation and make this region susceptible to sand dune reactivation. The original proposal was directed toward the use of Landsat TM data to establish the state and ongoing changes of the surface in the 1.2 million sq. km, semi-arid High Plains region of the central US, A key objective was to develop a model to predict the reactivation of the 100,000 sq. km of Holocene dunes found on the High Plains during an extended drought. At least one Landsat 5 image per year for 1985, 1988 and 1996 was obtained for 32 scenes on the High Plains to coincide with wet and dry years. Additional Landsat 7 data were acquired for 1999 and 2000 primarily for Colorado and Nebraska. As luck would have it, there was no severe drought during the study period 1985-2000. Attention was focused on developing methods for mapping dry vs. green vegetation on sparsely vegetated rangelands in sandy soils, since these were the areas most susceptible to surface reactivation during a drought.

  12. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  13. Self-organised synthesis of Rh nanostructures with tunable chemical reactivity

    PubMed Central

    2007-01-01

    Nonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110) are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.

  14. Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture

    NASA Astrophysics Data System (ADS)

    Zhao, Yunxia; Ding, Huiling; Zhong, Qin

    2013-11-01

    A kind of metal-organic frameworks (MOF-5) and aminated graphite oxide (AGO) composites were prepared for CO2 capture to mitigate global warming. MOF-5, MOF-5/GO (composite of MOF-5 and graphite oxide) and MOF-5/AGO samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscope (SEM), nitrogen adsorption as well as thermogravimetric analysis to figure out their chemistry and structure information. Three types of samples with suitable specific surface area and pore diameter were chosen to test CO2 adsorption performance and stability under humidity conditions. The results indicate that high surface area and pore volume, pore similar in size to the size of gas adsorbate, and extra reactive sites modified in the composites contributes to the high CO2 capacity. Besides, the composites involved by GO or AGO show better anti-moisture performance than the parent MOF.

  15. Chitosan bio-based organic-inorganic hybrid aerogel microspheres.

    PubMed

    El Kadib, Abdelkrim; Bousmina, Mosto

    2012-07-02

    Recently, organic-inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface-reactive organic-inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self-standing microspheres. Nanocasting of sol-gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO(2) supercritical drying provide high-surface-area organic-inorganic hybrid materials. Examples including chitosan-SiO(2), chitosan-TiO(2), chitosan-redox-clusters and chitosan-clay-aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evidence that the reactivity of the martian soil is due to superoxide ions

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.; Hecht, M. H.; Frant, M. S.; Murray, B.

    2000-01-01

    The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.

  17. Seeking to Improve Low Energy Neutral Atom Detection in Space

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  18. Curvature Dependent Reactivity of Fullerenes and Nanotubes

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Cho, Kyeongjae; Srivastava, Deepak

    2000-01-01

    Dependence of pyramidalization angle, examples of nanotube surfaces, internal and external reactivity, and binding energies are some of the topics discussed in this conference presentation preprint. Final conclusions include the relationship between the pyramidal angle of the surface and its associated external reaction energy.

  19. A novel surface modification approach for protein and cell microarrays

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Driever, Chantelle; Thissen, Helmut W.; Voelcker, Nicholas H.

    2007-01-01

    Tissue engineering and stem cell technologies have led to a rapidly increasing interest in the control of the behavior of mammalian cells growing on tissue culture substrates. Multifunctional polymer coatings can assist research in this area in many ways, for example, by providing low non-specific protein adsorption properties and reactive functional groups at the surface. The latter can be used for immobilization of specific biological factors that influence cell behavior. In this study, glass slides were coated with copolymers of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). The coatings were prepared by three different methods based on dip and spin coating as well as polymer grafting procedures. Coatings were characterized by X-ray photoelectron spectroscopy, surface sensitive infrared spectroscopy, ellipsometry and contact angle measurements. A fluorescently labelled protein was deposited onto reactive coatings using a contact microarrayer. Printing of a model protein (fluorescein labeled bovine serum albumin) was performed at different protein concentrations, pH, temperature, humidity and using different micropins. The arraying of proteins was studied with a microarray scanner. Arrays printed at a protein concentration above 50 μg/mL prepared in pH 5 phosphate buffer at 10°C and 65% relative humidity gave the most favourable results in terms of the homogeneity of the printed spots and the fluorescence intensity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William

    Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less

  1. Effect of soil parameters on the kinetics of the displacement of Fe from FeEDDHA chelates by Cu.

    PubMed

    Schenkeveld, Walter D C; Reichwein, Arjen M; Temminghoff, Erwin J M; van Riemsdijk, Willem H

    2012-06-28

    In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact of Cu competition is codetermined by the kinetics of the displacement reaction. In this study, the influence of soil parameters on the displacement kinetics has been examined in goethite suspensions. The displacement reaction predominantly takes place on the reactive surface rather than in solution. The rate at which the o,o-FeEDDHA concentration declined depended on the available reactive surface area, the Cu loading, and the FeEDDHA loading. Soil factors reducing FeEDDHA adsorption (high ionic strength, humic acid adsorption onto the goethite surface, and monovalent instead of divalent cations in the electrolyte) decreased the displacement rate. For meso o,o-FeEDDHA, the displacement rate equation was derived, which is first order in FeEDDHA loading and half order in Cu loading. For soil conditions, the equation can be simplified to an exponential decay function in meso o,o-FeEDDHA solution concentration.

  2. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSRmore » have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface and the creek and ponds in the HDSR. The first of the PRBs will be installed immediately up-gradient of the wet discharge area approximately 50 m from the creek, the other two will be installed across the area of shallow soil replacement, and all will extend from ground surface to the base of the water table aquifer through which the impacted groundwater flows. The PRBs have been designed to provide the removal of uranium and arsenic for decades, although the capacity of the treatment mixture for contaminant removal suggests that a longer period of treatment may be feasible. The environmental management plan includes an allowance for on-going monitoring, and replacement of a PRB(s) as might be required. (authors)« less

  3. In vitro toxicology of respirable Montserrat volcanic ash.

    PubMed

    Wilson, M R; Stone, V; Cullen, R T; Searl, A; Maynard, R L; Donaldson, K

    2000-11-01

    In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO(2) and the known toxic quartz dust, DQ12. Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity. Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO(2). All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO(2). Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events. Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the bioreactivity of MVA samples in vitro is low compared with pure quartz, but that the bioreactivity and mechanisms of biological interaction may vary according to the ash source.

  4. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    NASA Astrophysics Data System (ADS)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  5. Friction-induced surface activity of some hydrocarbons with clean and oxide-covered iron

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction studies were conducted on a clean and oxide-covered iron surface with exposure of that surface to various hydrocarbons. The hydrocarbons included ethane, ethylene ethyl chloride, methyl chloride, and vinyl chloride. Auger cylindrical mirror analysis was used to follow interactions of the hydrocarbon with the iron surface. Results with vinyl chloride indicate friction induced surface reactivity, adsorption to surface oxides, friction sensitivity to concentration and polymerization. Variation in the loads employed influence adsorption and accordingly friction. In contrast with ethyl and vinyl chloride, friction induced surface reactivity was not observed with ethane and ethylene.

  6. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    PubMed

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  7. Durable zinc oxide-containing sorbents for coal gas desulfurization

    DOEpatents

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  8. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    NASA Astrophysics Data System (ADS)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  9. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles

    PubMed Central

    Abdal Dayem, Ahmed; Hossain, Mohammed Kawser; Lee, Soo Bin; Kim, Kyeongseok; Saha, Subbroto Kumar; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2017-01-01

    Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices. PMID:28075405

  10. Wettability of Y2O3: A Relative Analysis of Thermally Oxidized, Reactively Sputtered and Template Assisted Nanostructured Coatings

    PubMed Central

    Barshilia, Harish C.; Chaudhary, Archana; Kumar, Praveen; Manikandanath, Natarajan T.

    2012-01-01

    The wettability of reactively sputtered Y2O3, thermally oxidized Y-Y2O3 and Cd-CdO template assisted Y2O3 coatings has been studied. The wettability of as-deposited Y2O3 coatings was determined by contact angle measurements. The water contact angles for reactively sputtered, thermally oxidized and template assisted Y2O3 nanostructured coatings were 99°, 117° and 155°, respectively. The average surface roughness values of reactively sputtered, thermally oxidized and template assisted Y2O3 coatings were determined by using atomic force microscopy and the corresponding values were 3, 11 and 180 nm, respectively. The low contact angle of the sputter deposited Y2O3 and thermally oxidized Y-Y2O3 coatings is attributed to a densely packed nano-grain like microstructure without any void space, leading to low surface roughness. A water droplet on such surfaces is mostly in contact with a solid surface relative to a void space, leading to a hydrophobic surface (low contact angle). Surface roughness is a crucial factor for the fabrication of a superhydrophobic surface. For Y2O3 coatings, the surface roughness was improved by depositing a thin film of Y2O3 on the Cd-CdO template (average roughness = 178 nm), which resulted in a contact angle greater than 150°. The work of adhesion of water was very high for the reactively sputtered Y2O3 (54 mJ/m2) and thermally oxidized Y-Y2O3 coatings (43 mJ/m2) compared to the Cd-CdO template assisted Y2O3 coating (7 mJ/m2). PMID:28348296

  11. Reactive, Safe Navigation for Lunar and Planetary Robots

    NASA Technical Reports Server (NTRS)

    Utz, Hans; Ruland, Thomas

    2008-01-01

    When humans return to the moon, Astronauts will be accompanied by robotic helpers. Enabling robots to safely operate near astronauts on the lunar surface has the potential to significantly improve the efficiency of crew surface operations. Safely operating robots in close proximity to astronauts on the lunar surface requires reactive obstacle avoidance capabilities not available on existing planetary robots. In this paper we present work on safe, reactive navigation using a stereo based high-speed terrain analysis and obstacle avoidance system. Advances in the design of the algorithms allow it to run terrain analysis and obstacle avoidance algorithms at full frame rate (30Hz) on off the shelf hardware. The results of this analysis are fed into a fast, reactive path selection module, enforcing the safety of the chosen actions. The key components of the system are discussed and test results are presented.

  12. Progress in the Analysis of Complex Atmospheric Particles.

    PubMed

    Laskin, Alexander; Gilles, Mary K; Knopf, Daniel A; Wang, Bingbing; China, Swarup

    2016-06-12

    This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.

  13. Density functional theory study of phase stability and defect thermodynamics in iron-oxyhydroxide mineral materials

    NASA Astrophysics Data System (ADS)

    Pinney, Nathan Douglas

    Due to their high surface area and reactivity toward a variety of heavy metal and oxyanion species of environmental concern, Fe-(oxyhydr)oxide materials play an important role in the geochemical fate of natural and anthropogenic contaminants in soils, aquifers and surface water environments worldwide. In this research, ab initio simulations describe the bulk structure, magnetic properties, and relative phase stability of major Fe-(oxyhydr)oxide materials, including hematite, goethite, lepidocrocite, and ferrihydrite.These bulk models are employed in further studies of point defect and alloy/dopant thermodynamics in these materials, allowing construction of a phase stability model that better replicates the structure and composition of real materials. Li + adsorption at the predominant goethite (101) surface is simulated using ab initio methods, offering energetic and structural insight into the binding mechanisms of metal cations over a range of surface protonation conditions.

  14. Electrofluidic gating of a chemically reactive surface.

    PubMed

    Jiang, Zhijun; Stein, Derek

    2010-06-01

    We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.

  15. Serpentinization as a reactive transport process: The brucite silicification reaction

    NASA Astrophysics Data System (ADS)

    Tutolo, B. M.; Luhmann, A. J.; Tosca, N. J.; Seyfried, W. E., Jr.

    2017-12-01

    Serpentinization plays a fundamental role in the biogeochemical and tectonic evolution of the Earth and perhaps many other rocky planetary bodies. Yet, geochemical models still fail to produce accurate predictions of the various modes of serpentinization, which limits our ability to predict a variety of related geological phenomena over many spatial and temporal scales. Here, we utilize kinetic and reactive transport experiments to parameterize the brucite silicification reaction and provide fundamental constraints on SiO2 transport during serpentinization. We show that, at temperatures characteristic of the sub-seafloor at the serpentinite-hosted Lost City Hydrothermal Field, the assembly of Si tetrahedra onto MgOH2 (i.e., brucite) surfaces is a rate-limiting elementary reaction in the production of serpentine and/or talc from olivine. Moreover, a kinetic rate law extracted from our laboratory experiments shows that this reaction is exponentially dependent on the activity of aqueous silica (aSiO2(aq)), such that its rate is orders of magnitude slower near-equilibrium than it is far-from-equilibrium. Calculations performed with this rate law demonstrate that both brucite and Si are surprisingly persistent in serpentinizing environments, leading to elevated Si concentrations in fluids that can be transported over comparatively large distances without equilibrating with brucite. Moreover, applying this rate law to an open-system reactive transport experiment indicates that advection, preferential flow pathways, and reactive surface area armoring can diminish the net rate of Si uptake resulting from this reaction even further. Because brucite silicification is a fundamentally rate-limiting elementary reaction for the production of both serpentine and talc from forsterite, our new constraints are applicable across the many environments where serpentinization occurs. The unexpected but highly consequential behavior of this simple reaction emphasizes the need for considering serpentinization and many other hydrothermal processes in a reactive transport framework whereby fluid, solute, and heat transport are intimately coupled to kinetically-controlled reactions.

  16. Electrostatic redesign of the [myoglobin, cytochrome b5] interface to create a well-defined docked complex with rapid interprotein electron transfer.

    PubMed

    Xiong, Peng; Nocek, Judith M; Griffin, Amanda K K; Wang, Jingyun; Hoffman, Brian M

    2009-05-27

    Cyt b(5) is the electron-carrier "repair" protein that reduces met-Mb and met-Hb to their O(2)-carrying ferroheme forms. Studies of electron transfer (ET) between Mb and cyt b(5) revealed that they react on a "Dynamic Docking" (DD) energy landscape on which binding and reactivity are uncoupled: binding is weak and involves an ensemble of nearly isoenergetic configurations, only a few of which are reactive; those few contribute negligibly to binding. We set the task of redesigning the surface of Mb so that its reaction with cyt b(5) instead would occur on a conventional "simple docking" (SD) energy landscape, on which a complex exhibits a well-defined (set of) reactive binding configuration(s), with binding and reactivity thus no longer being decoupled. We prepared a myoglobin (Mb) triple mutant (D44K/D60K/E85K; Mb(+6)) substituted with Zn-deuteroporphyrin and monitored cytochrome b(5) (cyt b(5)) binding and electron transfer (ET) quenching of the (3)ZnMb(+6) triplet state. In contrast, to Mb(WT), the three charge reversals around the "front-face" heme edge of Mb(+6) have directed cyt b(5) to a surface area of Mb adjacent to its heme, created a well-defined, most-stable structure that supports good ET pathways, and apparently coupled binding and ET: both K(a) and k(et) are increased by the same factor of approximately 2 x 10(2), creating a complex that exhibits a large ET rate constant, k(et) = 10(6 1) s(-1), and is in slow exchange (k(off) < k(et)). In short, these mutations indeed appear to have created the sought-for conversion from DD to simple docking (SD) energy landscapes.

  17. Reactive and dissolved meteoric 10Be/9Be ratios in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Wittmann, Hella; Dannhaus, Nadine; von Blanckenburg, Friedhelm; Bouchez, Julien; Suessenberger, Annette; Guyot, Jean-Loup; Maurice, Laurence; Filizola, Naziano; Gaillardet, Jerome; Christl, Marcus

    2014-05-01

    Recently, the ratio of the meteoric cosmogenic nuclide 10Be to stable 9Be has been established as a weathering and erosion proxy where meteoric 10Be/9Be ratios in reactive phases of secondary weathering products leached from detrital Amazonian river sediment were measured[1]. For this dataset, we derived a new 10Be-based mass balance, which compares the fluxes exported during erosion and weathering, Fout, calculated by the sum of [10Be]reac multiplied by gauging-derived sediment discharge and [10Be]dissmultiplied by water discharge, to the meteoric depositional flux Fin. This assessment allows evaluating the weathering state of the Amazon basin. Further, in order to assess equilibration of reactive phases in the water column, we measured (10Be/9Be)reac ratios leached from suspended sediments for two depth profiles of the Amazon (55m depth) and Madeira (12m depth) Rivers, their corresponding surface dissolved 10Be/9Be ratios, as well as dissolved ratios of smaller Amazon tributaries (Beni, Madre de Dios) to compare with published reactive ratios[1]. In these rivers, modest pH and salinity fluctuations help to constrain a 'simple' system that might however still be affected by seasonally changing isotopic compositions between water and suspended sediment[2] and seasonal fluctuations of TSS and TDS[3]. The 10Be-based mass balance shows that in Andean source areas Fout/Fin ≡1, indicating a balance between ingoing and exported flux, whereas in the Shield headwaters, Fout/Fin=0.3, indicating a combination of decay of 10Be during storage and little export of 10Be associated with particulate and dissolved loads. In central Amazonia, the export of 10Be decreases slightly relative to its atmospheric flux as evidenced by Fout/Fin=0.8 for the Amazon and Madeira Rivers. This value is interpreted as being close to steady state, but its modification could be due to additions of Shield-derived sediment to sediment carried in the main river[4]. Regarding the depth profiles, our preliminary findings stress that the (10Be/9Be)reac for the Amazon River (n=3, Avg.= 5.4x10-10with SD=3.7x10-11) and the Madeira River (n=3, Avg.= 4x10-10with SD=2.1x10-11) do not change significantly within the water column. These depth-dependent reactive ratios compare well with 10Be/9Be ratios of surface waters and sediments and with published data available for the Negro and Orinoco[5]: For all these large rivers, surface (10Be/9Be)reac vs. (10Be/9Be)dissagree very well (R2 ≡1). For smaller tributaries like the Apure, La Tigra, Beni and Madre de Dios, (10Be/9Be)reacare 2-3 times lower than (10Be/9Be)diss. As pH values are similar for all these rivers, one possibility is that in smaller river systems mixing of sediment and water between the channel and the floodplain is less thorough, potentially resulting in reactive and dissolved phases that are not fully equilibrated. For large rivers, however, our depth-invariant (10Be/9Be)reac data indicate consistent and probably early equilibration of Be with depth. We also do not observe potentially divergent 10Be/9Be ratios due to e.g. floodplain remobilization or different erosion rates in the source area. From this, we infer a thorough mixing of the clay/silt fraction within large rivers, with the different 10Be/9Be ratios of Madeira and Amazon Rivers fingerprinting the different prevailing denudation rates of the source areas (Andes and Brazilian Shield). The here presented results suggest that one surface sample, either reactive or dissolved, would be sufficient to determine denudation rates of an entire catchment. [1] F. von Blanckenburg et al., EPSL, 351-352 (2012) 295-305. [2] J. Viers, et al., EPSL, 274 (2008) 511-523. [3] J. Bouchez, et al., Geochem. Geophys. Geosys. 12 (2011) Q03008. [4] H. Wittmann et al., Geology 39 (2011) 467-470. [5] E. T. Brown et al., GCA 56 (1992) 1607-1624.

  18. Gas interaction effects on lunar bonded particles and their implications

    NASA Technical Reports Server (NTRS)

    Mukherjee, N. R.

    1976-01-01

    Results are reported for an experimental investigation of gas-interaction effects on different Apollo 11 and Apollo 12 lunar-soil samples containing bonded particles. In the experiments, lunar fines were exposed to pure O2, pure water vapor, HCl, NH3, N2, HCOOH, and CH3NH2, in order to observe whether bonded particles would separate. In addition, repeated gas adsorption/desorption measurements were performed to determine the nature and reactive properties of the particle surfaces, and surface areas were measured for comparison with analogous terrestrial samples to determine whether the surface areas of highly radiation-damaged particles were larger or smaller. It is found that N2 is apparently ineffective in separating bonded particles and that the ratio of Apollo 11 to Apollo 12 bonded particles separated by a particular gas exposure ranges from 2.5 to 3.0. Possible reasons for differences in material surface properties at the two Apollo sites are considered, and it is concluded that material from a certain depth at some other site was transported to the Apollo 12 site and mixed with the original material in recent years (considerably less than 2000 years ago).

  19. Influences on the H2-sorption properties of Mg of Co (with various sizes) and CoO addition by reactive grinding and their thermodynamic stabilities

    NASA Astrophysics Data System (ADS)

    Song, Myoung Youp; Lee, DongSub; Kwon, IkHyun

    2004-02-01

    We attempted to improve the H2-sorption properties of Mg by mechanical grinding under H2 (reactive grinding) with Co (with various particle sizes) and with CoO. The thermodynamic stabilities of the added Co and CoO were also investigated. CoO addition has the best influence and addition of smaller particles of Co (0.5-1.5 μm) has a better effect than the addition of larger particles of Co on the H2-sorption properties of Mg. The activated Mg+10 wt.% CoO sample has about 5.54 wt% hydrogen-storage capacity at 598 K and the highest hydriding rate, showing an Ha value of 2.39 wt.% after 60 min at 598 K, 11.2 bar H2. The order of the hydriding rates after activation is the same as that of the specific surface areas of the samples. The reactive grinding of Mg with Co or CoO and hydriding-dehydriding cycling increase the H2-sorption rates by facilitating nucleation of magnesium hydride or α solid solution of Mg and H (by creating defects on the surface of the Mg particles and by the additive), and by making cracks on the surface of Mg particles and reducing the particle size of Mg, thus shortening the diffusion distances of hydrogen atoms. The cobalt oxide is stable even after 14 hydriding cycles at 598 K under 11.2 bar H2. Discharge capacities are measured for the sampple Mg+10 wt.%CoO and Mg+10wt.%Co (0.5-1.5 μm) with good hydrogen-storage properties.

  20. Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods.

    PubMed

    Sun, Jie; Wang, Yuesi; Wu, Fangkun; Tang, Guiqian; Wang, Lili; Wang, Yinghong; Yang, Yuan

    2018-05-01

    In recent years, photochemical smog and gray haze-fog have frequently appeared over northern China. To determine the spatial distribution of volatile organic compounds (VOC) during a pollution period, tethered balloon flights were conducted over a suburban site on the North China Plain. Statistical analysis showed that the VOCs concentrations peaked at the surface, and decreased with altitude. A rapid decrease appeared from the surface to 400 m, with concnetrations of alkanes, alkenes, aromatics and halocarbons decreasing by 48.0%, 53.3%, 43.3% and 51.1%, respectively. At heights in the range of 500-1000 m, alkenes concnetrations decline by 40.2%; alkanes and halocarbons concnetrations only decreased by 24.8% and 6.4%, respectively; and aromatics increased slightly by 5.5%. High concentrations VOCs covered a higher range of height (400 m) on heavy pollution days due to lacking of diffusion power. The VOCs concentrations decreased by 50% at 200 m on light pollution days. The transport of air mass affected the composition and concentration of high-altitude VOCs, especially on lightly polluted days. These air masses originated in areas with abundant traffic and combustion sources. Reactive aromatics (k OH >20,000 ppm -1  min -1 and k OH <20,000 ppm -1  min -1 ) were the main contributor to the ozone formation, accounting for 37%, on the surface on light pollution days. The contribution increased to 52% with pollution aggravated, and increased to 64% with height. The contributions of reactive aromatics were influenced by the degree of air mass aging. Under the umbrella of aging air mass, the contribution of reactive aromatics increased with height. Copyright © 2017. Published by Elsevier Ltd.

  1. The role of bed-parallel slip in the development of complex normal fault zones

    NASA Astrophysics Data System (ADS)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  2. Fragmentation and reactivity in collisions of protonated diglycine with chemically modified perfluorinated alkylthiolate-self-assembled monolayer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, George L.; Yang Li; Hase, William L.

    2011-03-07

    Direct dynamics simulations are reported for quantum mechanical (QM)/molecular mechanical (MM) trajectories of N-protonated diglycine (gly{sub 2}-H{sup +}) colliding with chemically modified perfluorinated octanethiolate self-assembled monolayer (SAM) surfaces. The RM1 semiempirical theory is used for the QM component of the trajectories. RM1 activation and reaction energies were compared with those determined from higher-level ab initio theories. Two chemical modifications are considered in which a head group (-COCl or -CHO) is substituted on the terminal carbon of a single chain of the SAM. These surfaces are designated as the COCl-SAM and CHO-SAM, respectively. Fragmentation, peptide reaction with the SAM, and covalentmore » linkage of the peptide or its fragments with the SAM surface are observed. Peptide fragmentation via concerted CH{sub 2}-CO bond breakage is the dominant pathway for both surfaces. HCl formation is the dominant species produced by reaction with the COCl-SAM, while for the CHO-SAM a concerted H-atom transfer from the CHO-SAM to the peptide combined with either a H-atom or radical transfer from the peptide to the surface to form singlet reaction products is the dominant pathway. A strong collision energy dependence is found for the probability of peptide fragmentation, its reactivity, and linkage with the SAM. Surface deposition, i.e., covalent linkage between the surface and the peptide, is compared to recent experimental observations of such bonding by Laskin and co-workers [Phys. Chem. Chem. Phys. 10, 1512 (2008)]. Qualitative differences in reactivity are seen between the COCl-SAM and CHO-SAM showing that chemical identity is important for surface reactivity. The probability of reactive surface deposition, which is most closely analogous to experimental observables, peaks at a value of around 20% for a collision energy of 50 eV.« less

  3. Interaction of Boron Clusters with Oxygen: a DFT Study

    NASA Astrophysics Data System (ADS)

    Salavitabar, Kamron; Boggavarapu, Kiran; Kandalam, Anil

    A controlled combustion involving aluminum nanoparticles has often been the focus of studies in the field of solid fuel propellants. However very little focus has been given to the study of boron nanoparticles in controlled combustion. In contrast to aluminum nanoclusters, boron nanoclusters (Bn) are known to exhibit a planar geometries even at the size of n = 19 - 20, and thus offer a greater surface area for interaction with oxygen. Earlier experimental studies have shown that boron nanoclusters exhibit different reactivity with oxygen depending on their size and charge. In this poster, we present our recent density functional theory based results, focusing on the reactivity patterns of neutral and negatively charged B5 cluster with On, where n = 1 - 5; and B6 cluster with On (n = 1 - 2). The effect of charge on the reactivity of boron cluster, variation in the stability of product clusters, i e., neutral and negatively charged B5On (n = 1 - 5) and B6On (n = 1 - 2) are also examined. Financial Support from West Chester University Foundation under FaStR grant is acknowledged.

  4. Continuum-based DFN-consistent numerical framework for the simulation of oxygen infiltration into fractured crystalline rocks.

    PubMed

    Trinchero, Paolo; Puigdomenech, Ignasi; Molinero, Jorge; Ebrahimi, Hedieh; Gylling, Björn; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-05-01

    We present an enhanced continuum-based approach for the modelling of groundwater flow coupled with reactive transport in crystalline fractured rocks. In the proposed formulation, flow, transport and geochemical parameters are represented onto a numerical grid using Discrete Fracture Network (DFN) derived parameters. The geochemical reactions are further constrained by field observations of mineral distribution. To illustrate how the approach can be used to include physical and geochemical complexities into reactive transport calculations, we have analysed the potential ingress of oxygenated glacial-meltwater in a heterogeneous fractured rock using the Forsmark site (Sweden) as an example. The results of high-performance reactive transport calculations show that, after a quick oxygen penetration, steady state conditions are attained where abiotic reactions (i.e. the dissolution of chlorite and the homogeneous oxidation of aqueous iron(II) ions) counterbalance advective oxygen fluxes. The results show that most of the chlorite becomes depleted in the highly conductive deformation zones where higher mineral surface areas are available for reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition

    DTIC Science & Technology

    2017-09-30

    Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER...Number: W911NF-16-1-0438 Organization: University of Massachusetts - North Dartmouth Title: Young Investigator Proposal, Research Area 7.4 Reactive

  6. Organic chemistry on solid surfaces

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Zaera, Francisco

    2006-07-01

    Chemistry on solid surfaces is central to many areas of practical interest such as heterogeneous catalysis, tribology, electrochemistry, and materials processing. With the development of many surface-sensitive analytical techniques in the past decades, great advances have been possible in our understanding of such surface chemistry at the molecular level. Earlier studies with model systems, single crystals in particular, have provided rich information about the adsorption and reaction kinetics of simple inorganic molecules. More recently, the same approach has been expanded to the study of the surface chemistry of relatively complex organic molecules, in large measure in connection with the selective synthesis of fine chemicals and pharmaceuticals. In this report, the chemical reactions of organic molecules and fragments on solid surfaces, mainly on single crystals of metals but also on crystals of metal oxides, carbides, nitrides, phosphides, sulfides and semiconductors as well as on more complex models such as bimetallics, alloys, and supported particles, are reviewed. A scheme borrowed from the organometallic and organic chemistry literature is followed in which key examples of representative reactions are cited first, and general reactivity trends in terms of both the reactants and the nature of the surface are then identified to highlight important mechanistic details. An attempt has been made to emphasize recent advances, but key earlier examples are cited as needed. Finally, correlations between surface and organometallic and organic chemistry, the relevance of surface reactions to applied catalysis and materials functionalization, and some promising future directions in this area are briefly discussed.

  7. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis

    NASA Astrophysics Data System (ADS)

    Friesen, Alex; Horsthemke, Fabian; Mönnighoff, Xaver; Brunklaus, Gunther; Krafft, Roman; Börner, Markus; Risthaus, Tim; Winter, Martin; Schappacher, Falko M.

    2016-12-01

    The impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature.

  8. 40 CFR 52.253 - Metal surface coating thinner and reducer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.253 Metal surface... conform to paragraph (k) of § 52.254 so as to be defined as a nonphotochemically reactive solvent. (d...-photochemically reactive solvent. (e) If there is an inadequate supply of necessary solvent ingredients needed in...

  9. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    EPA Science Inventory

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  10. Communication: transition state theory for dissipative systems without a dividing surface.

    PubMed

    Revuelta, F; Bartsch, Thomas; Benito, R M; Borondo, F

    2012-03-07

    Transition state theory is a central cornerstone in reaction dynamics. Its key step is the identification of a dividing surface that is crossed only once by all reactive trajectories. This assumption is often badly violated, especially when the reactive system is coupled to an environment. The calculations made in this way then overestimate the reaction rate and the results depend critically on the choice of the dividing surface. In this Communication, we study the phase space of a stochastically driven system close to an energetic barrier in order to identify the geometric structure unambiguously determining the reactive trajectories, which is then incorporated in a simple rate formula for reactions in condensed phase that is both independent of the dividing surface and exact. © 2012 American Institute of Physics

  11. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  12. Analysis of Strong Wintertime Ozone Events in an Area of Extensive Oil and Gas Extraction

    NASA Astrophysics Data System (ADS)

    Rappenglück, Bernhard; Ackermann, Luis; Alvarez, Sergio; Golovko, Julia; Buhr, Martin; Field, Robert; Soltis, Jeff; Montague, Derek C.; Hauze, Bill; Scott, Adamson; Risch, Dan; Wilkerson, George; Bush, David; Stoeckenius, Till; Keslar, Cara

    2015-04-01

    During recent years, elevated ozone (O3) values have been observed repeatedly in the Upper Green River Basin (UGRB), Wyoming during wintertime. This paper presents an analysis of high ozone days in late winter 2011 (1-hour average up to 166 ppbv). Intensive Observational Periods (IOPs) were performed which included comprehensive surface and boundary layer measurements. Low windspeeds in combination with low mixing layer heights (~50 m agl) are essential for accumulation of pollutants. Air masses contain substantial amounts of reactive nitrogen (NOx) and non-methane hydrocarbons (NMHC) emitted from fossil fuel exploration activities in the Pinedale Anticline. On IOP days in the morning hours reactive nitrogen (up to 69%), then aromatics and alkanes (each ~10-15%; mostly ethane and propane) are major contributors to the hydroxyl (OH) reactivity. This time frame largely coincides with lowest NMHC/NOx ratios (~50), reflecting a relatively low NMHC mixture, and a change from a NOx-limited regime towards a NMHC limited regime. OH production on IOP days is mainly due to nitrous acid (HONO). On a 24-hr basis and as determined for a measurement height of 1.80 m above the surface HONO photolysis on IOP days can contribute ~83% to OH production on average, followed by alkene ozonolysis (~9%). Photolysis by ozone and HCHO photolysis contributes about 4% each to hydroxyl formation. High HONO levels (maximum hourly median on IOP days: 1,096 pptv) are favored by a combination of shallow boundary layer conditions and enhanced photolysis rates due to the high albedo of the snow surface. HONO is most likely formed through (i) abundant nitric acid (HNO3) produced in atmospheric oxidation of NOx, deposited onto the snow surface and undergoing photo-enhanced heterogeneous conversion to HONO and (ii) combustion related emission of HONO. HONO production is confined to the lowermost 10 m of the boundary layer. HONO, serves as the most important precursor for OH, strongly enhanced due to the high albedo of the snow cover.

  13. Stack configurations for tubular solid oxide fuel cells

    DOEpatents

    Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.

    2010-08-31

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  14. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    NASA Astrophysics Data System (ADS)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  15. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Brantley, Susan L.; Chorover, Jon D.

    2016-03-16

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments and soil aggregates. These domains, which we term internal domains in porous media (IDPM), contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse porous media types, and are important locations for chemical reactivity and hydrocarbon storage. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM. In this review we: discuss analytical methods to characterize IDPM, evaluate what has been learned about their size distributions, connectivity, and extended structures; determinemore » whether they exhibit unique chemical reactivity; and assess potential for their inclusion in reactive transport models. Three key findings are noteworthy. 1) A combination of methods now allows complete characterization of the porosity spectrum of natural materials and its connectivity; while imaging microscopies are providing three dimensional representations of the interconnected pore network. 2) Chemical reactivity in pores <10 nm is expected to be different from micro and macropores, yet research performed to date is inconclusive on the nature, direction, and magnitude of effect. 3) Existing continuum reactive transport models treat IDPM as a sub-grid feature with average, empirical, scale-dependent parameters; and are not formulated to include detailed information on pore networks. Overall we find that IDPM are key features controlling hydrocarbon release from shales in hydrofracking systems, organic matter stabilization and recalcitrance in soil, weathering and soil formation, and long term inorganic and organic contaminant behavior in the vadose zone and groundwater. We conclude with an assessment of impactful research opportunities to advance understanding of IDPM, and to incorporate their important effects in reactive transport models for improved environmental simulation and prediction.« less

  16. Influence of Si substitution on the reactivity of α-tricalcium phosphate.

    PubMed

    Motisuke, Mariana; Mestres, Gemma; Renó, Caroline O; Carrodeguas, Raúl G; Zavaglia, Cecília A C; Ginebra, Maria-Pau

    2017-06-01

    Silicon substituted calcium phosphates have been widely studied over the last ten years due to their enhanced osteogenic properties. Notwithstanding, the role of silicon on α-TCP reactivity is not clear yet. Therefore, the aim of this work was to evaluate the reactivity and the properties of Si-α-TCP in comparison to α-TCP. Precursor powders have similar properties regarding purity, particle size distribution and specific surface area, which allowed a better comparison of the Si effects on their reactivity and cements properties. Both Si-α-TCP and α-TCP hydrolyzed to a calcium-deficient hydroxyapatite when mixed with water but their conversion rates were different. Si-α-TCP exhibited a slower setting rate than α-TCP, i.e. k SSA for Si-TCP (0.021g·m -2 ·h -1 ) was almost four times lower than for α-TCP (0.072g·m -2 ·h -1 ). On the other hand, the compressive strength of the CPC resulting from fully reacted Si-α-TCP was significantly higher (12.80±0.38MPa) than that of α-TCP (11.44±0.54MPa), due to the smaller size of the entangled precipitated apatite crystals. Copyright © 2017. Published by Elsevier B.V.

  17. Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye.

    PubMed

    Geethakarthi, A; Phanikumar, B R

    2012-03-01

    The removal of azo Reactive Red 31(RR31) from synthetic dye solution using tannery sludge-developed activated carbon (TSC) was investigated. TSC was prepared from a combination of physical and chemical activation. The developed TSC was characterized by FT-IR, SEM, TG-DTA, specific surface area and zero point charge of pH (pH(zpc)). The isotherm models, kinetic models and thermodynamic parameters were also analysed to describe the adsorptive behaviour of TSC. The effect of contact time, initial dye concentration, carbon dosage, agitation speed, initial pH and temperature were carried out for batch adsorption studies. The isotherm plot of the dye RR31 on TSC fitted better with the Langmuir adsorption isotherm than the Freundlich model. The maximum monolayer adsorption capacity of TSC in the removal of RR31 ranged from 23.15 to 39.37 mg/g. The thermodynamic parameters showed the endothermic and physical nature of the Reactive Red 31 adsorption on TSC. The entropy and enthalpy values were 181.515 J/Kmol and 5.285 kJ/mol, respectively. The developed cationic tannery sludge carbon was found to be an effective adsorbent in the removal of the anionic azo reactive dye RR31.

  18. Reactive nitrogen partitioning and its relationship to winter ozone events in Utah

    NASA Astrophysics Data System (ADS)

    Wild, R. J.; Edwards, P. M.; Bates, T. S.; Cohen, R. C.; de Gouw, J. A.; Dubé, W. P.; Gilman, J. B.; Holloway, J.; Kercher, J.; Koss, A.; Lee, L.; Lerner, B.; McLaren, R.; Quinn, P. K.; Roberts, J. M.; Stutz, J.; Thornton, J. A.; Veres, P. R.; Warneke, C.; Williams, E.; Young, C. J.; Yuan, B.; Brown, S. S.

    2015-08-01

    High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013, and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx(NO+NO2), remained remarkably similar all three years. Roughly half of the more oxidized forms of nitrogen were composed of nitric acid in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor 2.6, and much of this is due to higher aerosol surface area in the high ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.

  19. Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: Relevance for molecular diagnosis.

    PubMed

    Mueller, Geoffrey A; Pedersen, Lars C; Glesner, Jill; Edwards, Lori L; Zakzuk, Josefina; London, Robert E; Arruda, Luisa Karla; Chapman, Martin D; Caraballo, Luis; Pomés, Anna

    2015-11-01

    It is not clear whether cross-reactivity or cosensitization to glutathione S-transferases (GSTs) occurs in tropical and subtropical environments. In the United States, Bla g 5 is the most important GST allergen and lack of coexposure to GSTs from certain species allows a better assessment of cross-reactivity. To examine the molecular structure of GST allergens from cockroach (Bla g 5), dust mites (Der p 8 and Blo t 8), and helminth (Asc s 13) for potential cross-reactive sites, and to assess the IgE cross-reactivity of sensitized patients from a temperate climate for these allergens for molecular diagnostic purposes. Four crystal structures were determined. Sera from patients allergic to cockroach and mite were tested for IgE reactivity to these GSTs. A panel of 6 murine anti-Bla g 5 mAb was assessed for cross-reactivity with the other 3 GSTs using antibody binding assays. Comparisons of the allergen structures, formed by 2-domain monomers that dimerize, revealed few contiguous regions of similar exposed residues, rendering cross-reactivity unlikely. Accordingly, anti-Bla g 5 or anti-Der p 8 IgE from North American patients did not recognize Der p 8 or Bla g 5, respectively, and neither showed binding to Blo t 8 or Asc s 13. A weaker binding of anti-Bla g 5 IgE to Der p 8 versus Bla g 5 (∼ 100-fold) was observed by inhibition assays, similar to a weak recognition of Der p 8 by anti-Bla g 5 mAb. Patients from tropical Colombia had IgE to all 4 GSTs. The lack of significant IgE cross-reactivity among the 4 GSTs is in agreement with the low shared amino acid identity at the molecular surface. Each GST is needed for accurate molecular diagnosis in different geographic areas. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  20. Convalescent Plasmodium falciparum-specific seroreactivity does not correlate with paediatric malaria severity or Plasmodium antigen exposure.

    PubMed

    Kessler, Anne; Campo, Joseph J; Harawa, Visopo; Mandala, Wilson L; Rogerson, Stephen J; Mowrey, Wenzhu B; Seydel, Karl B; Kim, Kami

    2018-04-25

    Antibody immunity is thought to be essential to prevent severe Plasmodium falciparum infection, but the exact correlates of protection are unknown. Over time, children in endemic areas acquire non-sterile immunity to malaria that correlates with development of antibodies to merozoite invasion proteins and parasite proteins expressed on the surface of infected erythrocytes. A 1000 feature P. falciparum 3D7 protein microarray was used to compare P. falciparum-specific seroreactivity during acute infection and 30 days after infection in 23 children with uncomplicated malaria (UM) and 25 children with retinopathy-positive cerebral malaria (CM). All children had broad P. falciparum antibody reactivity during acute disease. IgM reactivity decreased and IgG reactivity increased in convalescence. Antibody reactivity to CIDR domains of "virulent" PfEMP1 proteins was low with robust reactivity to the highly conserved, intracellular ATS domain of PfEMP1 in both groups. Although children with UM and CM differed markedly in parasite burden and PfEMP1 exposure during acute disease, neither acute nor convalescent PfEMP1 seroreactivity differed between groups. Greater seroprevalence to a conserved Group A-associated ICAM binding extracellular domain was observed relative to linked extracellular CIDRα1 domains in both case groups. Pooled immune IgG from Malawian adults revealed greater reactivity to PfEMP1 than observed in children. Children with uncomplicated and cerebral malaria have similar breadth and magnitude of P. falciparum antibody reactivity. The utility of protein microarrays to measure serological recognition of polymorphic PfEMP1 antigens needs to be studied further, but the study findings support the hypothesis that conserved domains of PfEMP1 are more prominent targets of cross reactive antibodies than variable domains in children with symptomatic malaria. Protein microarrays represent an additional tool to identify cross-reactive Plasmodium antigens including PfEMP1 domains that can be investigated as strain-transcendent vaccine candidates.

  1. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    NASA Astrophysics Data System (ADS)

    Mines, Paul D.; Kaarsholm, Kamilla M. S.; Droumpali, Ariadni; Andersen, Henrik R.; Lee, Wontae; Hwang, Yuhoon

    2017-09-01

    Remediation of contaminated groundwater by nanoscale zero-valent iron (nZVI) is widely becoming a leading environmentally friendly solution throughout the globe. Since a wide range of various nZVI-containing materials have been developed for effective remediation, it is necessary to determine an appropriate way to terminate the reactivity of any nZVI-containing material for a practical experimental procedure. In this study, bimetallic Ni/Fe-NPs were prepared to enhance overall reduction kinetics owing to the catalytic reactivity of nickel on the surface of nZVI. We have tested several chemical strategies in order to terminate nZVI reactivity without altering the concentration of volatile compounds in the solution. The strategies include surface passivation in alkaline conditions by addition of carbonate, and consumption of nZVI by a reaction competitor. Four halogenated chemicals, trichloroethylene, 1,1,1-trichloroethane, atrazine, and 4-chlorophenol, were selected and tested as model groundwater contaminants. Addition of carbonate to passivate the nZVI surface was not effective for trichloroethylene. Nitrate and then bromate were applied to competitively consume nZVI by their faster reduction kinetics. Bromate proved to be more effective than nitrate, subsequently terminating nZVI reactivity for all four of the tested halogenated compounds. Furthermore, the suggested termination method using bromate was successfully applied to obtain trichloroethylene reduction kinetics. Herein, we report the simple and effective method to terminate the reactivity of nZVI by addition of a reducing reactivity competitor.

  2. A model for the catalytic reduction of NO with CO and N desorption

    NASA Astrophysics Data System (ADS)

    Díaz, J. J.; Buendía, G. M.

    2018-02-01

    In this work we have investigated by Monte Carlo simulations the dynamical behavior of a modified Yaldram-Khan (YK) model for the catalytic reduction of NO on a surface. Our model is simulated on a square lattice and includes the individual desorption of CO molecules and N atoms, processes associated with temperature effects. When CO desorption is added, strong fluctuations appear, which are associated with the spreading of N checkerboard structures on the surface. These structures take a long time to coalesce, allowing the existence of a unsteady but long lasting reactive state. N desorption also favors the reactivity of the system, this time by diminishing the size of the N structures and impeding their coalescence. The combined desorption of CO and N produces a reactive state as well, where reactive zones among N structures can take place on the surface.

  3. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    NASA Astrophysics Data System (ADS)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  4. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    NASA Astrophysics Data System (ADS)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  5. Elementary surface processes during reactive magnetron sputtering of chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monje, Sascha; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidationmore » sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.« less

  6. Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Ilton, Eugene S.; Bowden, Mark E.

    Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg2+ and Fe2+ ranging from forsterite (Mg2SiO4) to fayalite (Fe2SiO4). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg2+ and Fe2+, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines. First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg2+, and Fe3+. Second, these precursors are calcined in air to burn carbon and create mixtures ofmore » Fe(III)-oxides, forsterite, and SiO2. Finally, calcination in reducing CO-CO2 gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m2/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.« less

  7. Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2014-02-15

    Long-term (> 4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge (IFRC) site at the US Department of Energy (DOE) Hanford 300 Area. The experimental results were used to evaluate alternative multi-rate surface complexation reaction (SCR) approaches to describe the short- and long-term kinetics of U(VI) desorption under flow conditions. The SCR stoichiometry, equilibrium constants, and multi-rate parameters were independently characterized in batch and stirred flow-cell reactors. Multi-rate SCR models that were either additively constructed using the SCRs for individual size fractions (e.g., Shang et al.,more » 2011), or composite in nature could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using a labile U concentration measured by carbonate extraction under-estimated desorbable U(VI) and the long-term rate of U(VI) desorption. An alternative modeling approach using total U as the desorbable U(VI) concentration was proposed to overcome this difficulty. This study also found that the gravel size fraction (2-8 mm), which is typically treated as non-reactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application, and identifies important parameters and uncertainties affecting model predictions.« less

  8. Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Gu; Shiyong Wu; Youqing Wu

    2008-11-15

    In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivitymore » than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.« less

  9. Antioxidant Chemistry of Graphene-Based Materials and its Role in Oxidation Protection Technology

    PubMed Central

    Qiu, Yang; Wang, Zhongying; Owens, Alisa C.E.; Kulaots, Indrek; Chen, Yantao; Kane, Agnes B.; Hurt, Robert H.

    2015-01-01

    Two-dimensional nanomaterials have potential as a new class of antioxidants that combine physical barrier function with ultrahigh surface area for free radical scavenging. This work presents the first measurements of the chemical reactivities of graphene-based materials toward a set of model free radicals and reactive oxygen species using electron paramagnetic resonance spectroscopy (EPR) and sacrificial dye protection assays. Graphene-based materials are shown to protect a variety of molecular targets from oxidation by these species, and to be highly effective as hydroxyl-radical scavengers. When hydroxyl radical is produced photolytically, the overall antioxidant effect is a combination of preventative antioxidant activity (UV absorption) and ·OH radical scavenging. Few-layer graphene is more active than monolayer graphene oxide, despite its lower surface area, which indicates that the primary scavenging sites are associated with the sp2-carbon network rather than oxygen-containing functional groups. To explain this trend, we propose that GO is a weak hydrogen donor, due to the non-phenolic nature of most OH groups on GO, which reside at basal sp3-carbon sites that do not allow for radical resonance stabilization following hydrogen donation. As an example application of graphene antioxidant behavior, we show that encapsulation of TiO2 nanoparticles in graphene nanosacks reduces undesired photo-oxidative damage to nearby organic target molecules, which suggests graphene encapsulation as a new approach to managing adverse environmental or health impacts of redox-active nanomaterials. PMID:25157875

  10. Lithogeochemical character of near-surface bedrock in the New England coastal basins

    USGS Publications Warehouse

    Robinson, Gilpin R.; Ayotte, Joseph D.; Montgomery, Denise L.; DeSimone, Leslie A.

    2002-01-01

    This geographic information system (GIS) data layer shows the generalized lithologic and geochemical, termed lithogeochemical, character of near-surface bedrock in the New England Coastal Basin (NECB) study area of the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program. The area encompasses 23,000 square miles in western and central Maine, eastern Massachusetts, most of Rhode Island, eastern New Hampshire and a small part of eastern Connecticut. The NECB study area includes the Kennebec, Androscoggin, Saco, Merrimack, Charles, and Blackstone River Basins, as well as all of Cape Cod. Bedrock units in the NECB study area are classified into lithogeochemical units based on the relative reactivity of their constituent minerals to dissolution and the presence of carbonate or sulfide minerals. The 38 lithogeochemical units are generalized into 7 major groups: (1) carbonate-bearing metasedimentary rocks; (2) primarily noncalcareous, clastic sedimentary rocks with restricted deposition in discrete fault-bounded sedimentary basins of Mississipian or younger age; (3) primarily noncalcareous, clastic sedimentary rocks at or above biotite-grade of regional metamorphism; (4) mafic igneous rocks and their metamorphic equivalents; (5) ultramafic rocks; (6) felsic igneous rocks and their metamorphic equivalents; and (7) unconsolidated and poorly consolidated sediments.

  11. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment.

    PubMed

    Hernandez, Rafael; Zappi, Mark; Kuo, Chiang-Hai

    2004-10-01

    Addition of corrosion promoters, such as sodium and potassium chloride, accelerated TNT degradation during water treatment using zerovalent zinc and iron. It was theorized that corrosion promoters could be used to accelerate electron generation from metallic species, create new reactive sites on the surface of metals during contaminated water treatment, and minimize passivating effects. The surface area normalized pseudo-first-order rate constant for the reaction of zerovalent zinc with TNT in the absence of KCl was 1.364 L x m(-2) x h(-1). In the presence of 0.3 mM and 3 mM KCI, the rate constant increased to 10.5 L x m(-2) x h(-1) and 51.0 L x m(-2) x h(-1), respectively. For the reaction with zerovalent iron and TNT, the rate constant increased from 6.5 (L/m2 x h) in the absence of KCl to 37 L x m(-2) x h(-1) using 3 mM KCl. The results demonstrate that chloride based corrosion promoters enhance the rate of TNT degradation. The in-situ breakage of the oxide layer using corrosion promoters was applied as a treatment to maintain the long-term activity of the metallic species. Zinc maintained a high reactivity toward TNT, and the reactivity of iron increased after 5 treatment cycles using 3 mM KCI. Zinc and iron scanning electron micrographs indicate that TNT degradation rate enhancement is caused by the pitting corrosion mechanism.

  12. Comparison of the combustion reactivity of TGA and drop tube furnace chars from a bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katherine Le Manquais; Colin Snape; Ian McRobbie

    This paper compares the reactivity of chars generated in a drop tube furnace (DTF) to those from TGA. The implications of devolatilization temperature, heating rate and residence time are considered. For the smaller particle size ranges of the bituminous coal investigated (ATC), optimized devolatilization procedures were used to generate corresponding TGA burnout rates between the two char types. However, with fractions of >75 {mu}m, the DTF chars showed an increased burnout propensity when moving from combustion regime II to combustion regime III. Scanning electron microscope (SEM) images and internal surface areas indicate that this is because of incompatible char morphologies.more » Thus, while chars produced under the conditions of TGA pyrolysis strongly resemble raw coal and display an undeveloped pore network; the DTF chars are highly porous, extensively swollen and possess considerably larger internal surface areas. Subsequently, char burnout variability was quantified, with the reactivity distribution for the DTF samples found to be up to an order of magnitude more significant than for the TGA chars. This is attributed to a fluctuating devolatilization environment on the DTF. Finally, a TGA study observed a robust particle size based compensation effect for the TGA chars, with the relative reaction rates and activation energies demonstrating the presence of internal diffusion control. However this phenomenon was partly alleviated for the DTF chars, since their higher porosities reduce mass transfer restrictions. Moreover, it should be realized that DTF char fractions of <38 {mu}m, including those required to ensure true intrinsic control under the investigated burnout conditions, cannot be produced directly. This is because of bridging and sloughing in the DTF's screw-feeder. Instead, such samples must be created by grinding larger particles, which destroys the char's existing porosity. 60 refs., 9 figs., 5 tabs.« less

  13. Exploiting the flexibility and the polarization of ferroelectric perovskite surfaces to achieve efficient photochemistry and enantiospecificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappe, Andrew

    This research project explored the catalytic properties of complex surfaces of functional materials. The PI used first-principles density functional theory (DFT) calculations to explore a tightly integrated set of properties. The physical properties of complex functional materials that influence surface chemistry were explored, including bulk and surface electric dipoles, and surface conductivity. The energetic, compositional, electronic, and chemical properties of the surfaces of these materials were explored in detail, and connections between material properties and chemical reactivity were established. This project led to 28 publications, including Nat. Comm., JACS, 3 PRL, 7 PRB, 2 ACS Nano, 2 Nano Lett., 4more » JPCL, 2 JCP, Chem. Mater., ACS Appl. Mater. Interfaces, Phys. Rev. Appl., and a U.S. Patent on surface catalysts. The key accomplishments in this project involved work in six coordinated areas: pioneering ways to control bulk dipoles in order to dynamically affect catalysis, exploring novel ways of bringing charge to the surface for redox catalysis, nonstoichiometric surfaces offering new sites for heterogeneous catalysis, illustrating how surface catalysis responds to applied pressure, catalytic growth of carbon-based materials, and new computational methods allowing more accurate exploration of molecule-surface interactions« less

  14. Kinematic behaviour of a large earthflow defined by surface displacement monitoring, DEM differencing, and ERT imaging

    NASA Astrophysics Data System (ADS)

    Prokešová, Roberta; Kardoš, Miroslav; Tábořík, Petr; Medveďová, Alžbeta; Stacke, Václav; Chudý, František

    2014-11-01

    Large earthflow-type landslides are destructive mass movement phenomena with highly unpredictable behaviour. Knowledge of earthflow kinematics is essential for understanding the mechanisms that control its movements. The present paper characterises the kinematic behaviour of a large earthflow near the village of Ľubietová in Central Slovakia over a period of 35 years following its most recent reactivation in 1977. For this purpose, multi-temporal spatial data acquired by point-based in-situ monitoring and optical remote sensing methods have been used. Quantitative data analyses including strain modelling and DEM differencing techniques have enabled us to: (i) calculate the annual landslide movement rates; (ii) detect the trend of surface displacements; (iii) characterise spatial variability of movement rates; (iv) measure changes in the surface topography on a decadal scale; and (v) define areas with distinct kinematic behaviour. The results also integrate the qualitative characteristics of surface topography, in particular the distribution of surface structures as defined by a high-resolution DEM, and the landslide subsurface structure, as revealed by 2D resistivity imaging. Then, the ground surface kinematics of the landslide is evaluated with respect to the specific conditions encountered in the study area including slope morphology, landslide subsurface structure, and local geological and hydrometeorological conditions. Finally, the broader implications of the presented research are discussed with particular focus on the role that strain-related structures play in landslide kinematic behaviour.

  15. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid.

    PubMed

    Lederer, Madeline R; Staniec, Allison R; Coates Fuentes, Zoe L; Van Ry, Daryl A; Hinrichs, Ryan Z

    2016-12-08

    Biogenic volatile organic compounds (BVOCs), including the monoterpene limonene, are a major source of secondary organic aerosol (SOA). While gas-phase oxidation initiates the dominant pathway for BVOC conversion to SOA, recent studies have demonstrated that biogenic hydrocarbons can also directly react with acidic droplets. To investigate whether mineral dust may facilitate similar reactive uptake of biogenic hydrocarbons, we studied the heterogeneous reaction of limonene with mineral substrates using condensed-phase infrared spectroscopy and identified the formation of irreversibly adsorbed organic products. For kaolinite, Arizona Test Dust, and silica at 30% relative humidity, GC-MS identified limonene-1,2-diol as the dominant product with total organic surface concentrations on the order of (3-5) × 10 18 molecules m -2 . Experiments with 18 O-labeled water support a mechanism initiated by oxidation of limonene by surface redox sites forming limonene oxide followed by water addition to the epoxide to form limonenediol. Limonene uptake on α-alumina, γ-alumina, and montmorillonite formed additional products in high yield, including carveol, carvone, limonene oxide, and α-terpineol. To model tropospheric processing of mineral aerosol, we also exposed each mineral substrate to gaseous nitric acid prior to limonene uptake and identified similar surface adsorbed products that were formed at rates 2 to 5 times faster than without nitrate coatings. The initial rate of reaction was linearly dependent on gaseous limonene concentration between 5 × 10 12 and 5 × 10 14 molecules cm -3 (0.22-20.5 ppm) consistent with an Eley-Rideal-type mechanism in which gaseous limonene reacts directly with reactive surface sites. Increasing relative humidity decreased the amount of surface adsorbed products indicating competitive adsorption of surface adsorbed water. Using a laminar flow tube reactor we measured the uptake coefficient for limonene on kaolinite at 25% RH to range from γ = 5.1 × 10 -6 to 9.7 × 10 -7 . After adjusting for reactive surface areas, we estimate uptake coefficients for limonene on HNO 3 -processed mineral aerosol on the order of (1-6) × 10 -6 . Although this heterogeneous reaction will not impact the atmospheric lifetime of gaseous limonene, it does provide a new pathway for mineral aerosol to acquire secondary organic matter from biogenic hydrocarbons, which in turn will alter the physical properties of mineral dust.

  16. Nanotextured PDMS Substrates for Enhanced Roughness and Aptamer Immobilization for Cancer Cell Capture

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Mahmood, Arif; Bellah, Md.; Kim, Young-Tae; Iqbal, Samir

    2014-03-01

    Detection of circulating tumor cells (CTCs) in the early stages of cancer is requires very sensitive approach. Nanotextured polydimethylsiloxane (PDMS) substrates were fabricated by micro reactive ion etching (Micro-RIE) to have better control on surface morphology and to improve the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers. The aptamers were specific to epidermal growth factor receptors (EGFR) present in cell membranes, and overexpressed in tumor cells. We also investigated the effect of nano-scale features on cell capturing by implementing various surfaces of different roughnesses. Three different recipes were used to prepare nanotextured PDMS by micro-RIE using oxygen (O2) and carbon tetrafluoride (CF4). The measured average roughness of three nanotextured PDMS surfaces were found to impact average densities of captured cells. In all cases, nanotextured PDMS facilitated cell capturing possibly due to increased effective surface area of roughened substrates at nanoscale. It was also observed that cell capture efficiency was higher for higher surface roughness. The nanotextured PDMS substrates are thus useful for cancer cytology devices.

  17. Cell-mediated immunity to herpes simplex virus: recognition of type-specific and type-common surface antigens by cytotoxic T cell populations.

    PubMed Central

    Eberle, R; Russell, R G; Rouse, B T

    1981-01-01

    In this communication, we examine the specificity of anti-herpes simplex virus (HSV) cytotoxic T lymphocytes (CTL). Serological studies of the two related HSV serotypes (HSV-1 and HSV-2) have revealed both type-specific and cross-reactive antigenic determinants in the viral envelope and on the surface of infected cells. By analysis of cytotoxicity of CTL, generated in vitro by restimulation of splenocytes from mice primed with one or the other HSV serotype, the recognition of both type-specific and cross-reactive determinants on infected target cells by anti-HSV CTL was detectable. Thus, effector cells generated by priming and restimulating with the same virus recognized both type-specific and cross-reactive determinants on target cells infected with the homologous virus, but only cross-reactive determinants on target cells infected with the heterologous HSV serotype. CTL generated by restimulation with the heterologous virus were capable of recognizing only the cross-reactive determinants on either HSV-1- or HSV-2-infected target cells. These results indicate that two subpopulations of CTL exist in a population of anti-HSV immune spleen cells--those which recognize type-specific determinants and those specific for cross-reactive antigenic determinants present on the surface of HSV infected cells. The type-specific subset of anti-HSV CTL was shown to recognize the gC glycoprotein of HSV-1 infected target cells. In addition to the gC glycoprotein, at least one other type-specific surface antigen was also recognized by anti-HSV CTL in addition to the cross-reactive determinants recognized by anti-HSV CTL. PMID:6277790

  18. Antimicrobial Peptides with Differential Bacterial Binding Characteristics

    DTIC Science & Technology

    2013-03-01

    Each well was incubated with 150 µL 0.2% non- fat dried milk in PBS (pH 7.2) for 30 min without agitation to block any remaining active sites...Conference [1], a book chapter in Microbial Surfaces: Structure, Interactions, and Reactivity [2], and two peer-review manuscripts, one in Protein & Peptide...book chapter in Microbial Surfaces: Structure, Interactions, and Reactivity [2], Protein and Peptide Letters [3], and Colloids and Surfaces B

  19. Method for producing high quality thin layer films on substrates

    DOEpatents

    Strongin, Myron; Ruckman, Mark; Strongin, Daniel

    1994-01-01

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

  20. The role of Zn2+ dopants in the acid-basic catalysis on MgO(001) surface: Ab initio simulations of the dissociative chemisorption of R-O-R‧ and R-S-R‧ (R, R ‧ = H , CH3, C2H5)

    NASA Astrophysics Data System (ADS)

    Fonseca, Carla G.; Tavares, Sérgio R.; Soares, Carla V.; daFonseca, Bruno G.; Henrique, Fábio J. F. S.; Vaiss, Viviane S.; Souza, Wladmir F.; Chiaro, Sandra S. X.; Diniz, Renata; Leitão, Alexandre A.

    2017-07-01

    Ab initio calculations were performed to study the effect of the Zn2+ dopant on the reactivity and the catalytic activity of the MgO(001) surface toward molecular adsorption and dissociation reactions of the H2O, H2S, CH3CH2OH, CH3CH2SH and CH3SCH3 molecules. The electronic analysis showed that Zn2+ cation increased the reactivity of the surface locally. All molecules dissociate on both surfaces except for water and ethanol which only dissociate on the MgO:Zn(001) surface, confirming the increased reactivity in this surface. The ΔG ° for the dissociation reactions of the CH3CH2SH and CH3SCH3 molecules on pure MgO(001) surface is positive in the entire temperature range. On the other hand, the ΔG ° for H2S molecule is negative until 148.7 °C. In the case of the MgO:Zn(001) surface, the CH3CH2SH molecule dissociates in the entire temperature range and, for H2S molecule, the dissociation is spontaneous until 349.7 °C. The rate constants obtained for the dissociation reactions were very large because the reaction barriers are very low in both surfaces for all the studied molecules, except for CH3SCH3 molecule. The Zn-doped MgO(001) surface, besides being more reactive, presented a better catalytic activity than the MgO(001) surface for the dissociation of this molecule.

  1. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, Gary L.

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  2. The pro‐inflammatory effects of low‐toxicity low‐solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area

    PubMed Central

    Monteiller, Claire; Tran, Lang; MacNee, William; Faux, Steve; Jones, Alan; Miller, Brian; Donaldson, Ken

    2007-01-01

    Objective Rats exposed to high airborne mass concentrations of low‐solubility low‐toxicity particles (LSLTP) have been reported to develop lung disease such as fibrosis and lung cancer. These particles are regulated on a mass basis in occupational settings, but mass might not be the appropriate metric as animal studies have shown that nanoparticles (ultrafine particles) produce a stronger adverse effect than fine particles when delivered on an equal mass basis. Methods This study investigated whether the surface area is a better descriptor than mass of LSLTP of their ability to stimulate pro‐inflammatory responses in vitro. In a human alveolar epithelial type II‐like cell line, A549, we measured interleukin (IL)‐8 mRNA, IL8 protein release and glutathione (GSH) depletion as markers of pro‐inflammatory effects and oxidative stress after treatment with a range of LSLTP (fine and nanoparticles) and DQ12 quartz, a particle with a highly reactive surface. Results In all the assays, nanoparticle preparations of titanium dioxide (TiO2‐np) and of carbon black (CB‐np) produced much stronger pro‐inflammatory responses than the same mass dose of fine TiO2 and CB. The results of the GSH assay confirmed that oxidative stress was involved in the response to all the particles, and two ultra‐fine metal dusts (cobalt and nickel) produced GSH depletion similar to TiO2‐np, for similar surface‐area dose. As expected, DQ12 quartz was more inflammatory than the low toxicity dusts, on both a mass and surface‐area basis. Conclusion Dose–response relationships observed in the in vitro assays appeared to be directly comparable with dose–response relationships in vivo when the doses were similarly standardised. Both sets of data suggested a threshold in dose measured as surface area of particles relative to the surface area of the exposed cells, at around 1–10 cm2/cm2. These findings are consistent with the hypothesis that surface area is a more appropriate dose metric than mass for the pro‐inflammatory effects of LSLTP in vitro and in vivo, and consequently that the high surface area of nanoparticles is a key factor in their inflammogenicity. PMID:17409182

  3. Impact of trace metals on the water structure at the calcite surface

    NASA Astrophysics Data System (ADS)

    Wolthers, Mariette; Di Tommaso, Devis; De Leeuw, Nora

    2014-05-01

    Carbonate minerals play an important role in regulating the chemistry of aquatic environments, including the oceans, aquifers, hydrothermal systems, soils and sediments. Through mineral surface processes such as dissolution, precipitation and sorption, carbonate minerals affect the biogeochemical cycles of not only the constituent elements of carbonates, such as Ca, Mg, Fe and C, but also H, P and trace elements. Surface charging of the calcite mineral-water interface, and its reactivity towards foreign ions can be quantified using a surface structural model that includes, among others, the water structure at the interface (i.e. hydrogen bridging) [1,2] in accordance with the CD-MUSIC formalism [3]. Here we will show the impact of foreign metals such as Mg and Sr on the water structure around different surface sites present in etch pits and on growth terraces at the calcite (10-14) surface. We have performed Molecular Dynamics simulations of metal-doped calcite surfaces, using different interatomic water potentials. Results show that the local environment around the structurally distinct sites differs depending on metal presence, suggesting that metal substitutions in calcite affect its reactivity. The information obtained in this study will help in improving existing macroscopic surface model for the reactivity of calcite [2] and give more general insight in mineral surface reactivity in relation to crystal composition. [1] Wolthers, Charlet, & Van Cappellen (2008). Am. J. Sci., 308, 905-941. [2] Wolthers, Di Tommaso, Du, & de Leeuw (2012). Phys. Chem. Chem. Phys. 14, 15145-15157. [3] Hiemstra and Van Riemsdijk (1996) J. Colloid Interf. Sci. 179, 488-508.

  4. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism for, the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxides and silicate phase surfaces. The reflectance spectrum of the clay-iron preparations in the visible range is generally similar to the reflectance curves of bright regions on Mars. This strengthens the evidence for the predominance of nanophase iron oxides/oxyhydroxides in Mars soil. The mode of formation of these nanophase iron oxides on Mars is still unknown. It is puzzling that despite the long period of time since aqueous weathering took place on Mars, they have not developed from their transitory stage to well-crystallized end-members. The possibility is suggested that these phases represent a continuously on-going, extremely slow weathering process.

  5. Role of nitrite in the photochemical formation of radicals in the snow.

    PubMed

    Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf

    2014-01-01

    Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.

  6. The potential pyrophoricity of BMI-SPEC and aluminum plate spent fuels retrieved from underwater storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebner, M.A.

    1996-08-01

    Physical/chemical factors in U metal and hydride combustion, particularly pyrophoricity in ambient environment, were evaluated for BMI-SPEC and UAl{sub x} plate fuels. Some metal fuels may be highly reactive (spontaneously igniting in air) due to high specific surface area, high decay heat, or a high U hydride content from corrosion during underwater storage. However, for the BMI-SPEC and the aluminum plate fuels, this reactivity is too low to present a realistic threat of uncontrolled spontaneous combustion at ambient conditions. While residual U hydride is expected in these corroded fuels, the hydride levels are expected to be too low and themore » configuration too unfavorable to ignite the fuel meat when the fuels are retrieved from the basin and dried. Furthermore the composition and microstructure of the UAl{sub x} fuels further mitigate that risk.« less

  7. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassia, Luigi; D'Amore, Alberto

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactivemore » systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.« less

  8. MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH2 for Chemical Protection and Decontamination.

    PubMed

    Lu, Annie Xi; McEntee, Monica; Browe, Matthew A; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W

    2017-04-19

    Textiles capable of capture and detoxification of toxic chemicals, such as chemical-warfare agents (CWAs), are of high interest. Some metal-organic frameworks (MOFs) exhibit superior reactivity toward CWAs. However, it remains a challenge to integrate powder MOFs into engineered materials like textiles, while retaining functionalities like crystallinity, adsorptivity, and reactivity. Here, we present a simple method of electrospinning UiO-66-NH 2 , a zirconium MOF, with polyvinylidene fluoride (PVDF). The electrospun composite, which we refer to as "MOFabric", exhibits comparable crystal patterns, surface area, chlorine uptake, and simulant hydrolysis to powder UiO-66-NH 2 . The MOFabric is also capable of breaking down GD (O-pinacolyl methylphosphonofluoridae) faster than powder UiO-66-NH 2. Half-life of GD monitored by solid-state NMR for MOFabric is 131 min versus 315 min on powder UiO-66-NH 2 .

  9. Evaluation of Type I cement sorbent slurries in the U.C. pilot spray dryer facility. Final report, November 1, 1994--February 28, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keener, T.C.; Khang, S.J.

    1996-07-31

    This research was focused on evaluating hydrated cement sorbents in the U. C. pilot spray dryer. The main goal of this work was to determine the hydration conditions resulting in reactive hydrated cement sorbents. Hydration of cement was achieved by stirring or by grinding in a ball mill at either room temperature or elevated temperatures. Also, the effects of several additives were studied. Additives investigated include calcium chloride, natural diatomite, calcined diatomaceous earth, and fumed silica. The performance of these sorbents was compared with conventional slaked lime. Further, the specific surface area and pore volume of the dried SDA sorbentsmore » were measured and compared to reactivity. Bench-scale tests were performed to obtain a more detailed picture of the development of the aforementioned physical properties as a function of hydration time.« less

  10. A Numerical Study on Characteristics of Flow and Reactive Pollutant Dispersion in Step‒up Street Canyons

    NASA Astrophysics Data System (ADS)

    Kim, E. R.; Kim, J.

    2014-12-01

    For decades, many metro‒ and/or mega‒cities have grown and densities of population and building have increased. Because pollutants released from sources near ground surface such as vehicles are not easy to escape from street canyons which are spaces between buildings standing along streets pedestrians, drivers and residents are likely to be exposed to high concentrations of hazardous pollutants. Therefore, it is important to understand characteristics of flow and pollutant dispersion in street canyons. In this study, step‒up street canyons with higher downwind buildings are considered for understanding flow and reactive pollutants' dispersion characteristics there as a basic step to understand the characteristics in wider urban areas. This study used a CFD model coupled to a chemistry module. Detailed flow and air pollutant concentration are analyzed in step‒up street canyons with different upwind building heights.

  11. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula [Livermore, CA; Zalk, David [San Jose, CA; Hoffman, D Mark [Livermore, CA

    2011-04-12

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  12. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula; Zalk, David; Hoffman, D. Mark

    2012-07-10

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  13. Towards the Development of Electrical Biosensors Based on Nanostructured Porous Silicon

    PubMed Central

    Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso, Miguel; Gallach, Darío; López-García, Juan; Martín-Palma, Raúl J.

    2010-01-01

    The typical large specific surface area and high reactivity of nanostructured porous silicon (nanoPS) make this material very suitable for the development of sensors. Moreover, its biocompatibility and biodegradability opens the way to the development of biosensors. As such, in this work the use of nanoPS in the field of electrical biosensing is explored. More specifically, nanoPS-based devices with Al/nanoPS/Al and Au-NiCr/nanoPS/Au-NiCr structures were fabricated for the electrical detection of glucose and Escherichia Coli bacteria at different concentrations. The experimental results show that the current-voltage characteristics of these symmetric metal/nanoPS/metal structures strongly depend on the presence/absence and concentration of species immobilized on the surface.

  14. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    PubMed Central

    Rianasari, Ina; de Jong, Michel P.; Huskens, Jurriaan; van der Wiel, Wilfred G.

    2013-01-01

    We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1–2 chemical bonds are formed between the particles and the substrate. PMID:23434666

  15. Flocculation, heavy metals (Cu, Pb, Zn) and the sand-mud transition on the Adriatic continental shelf, Italy

    USGS Publications Warehouse

    George, D.A.; Hill, P.S.; Milligan, T.G.

    2007-01-01

    Across a limited depth range (5-10 m) on many continental shelves, the dominant sediment size changes from sand to mud. This important boundary, called the sand-mud transition (SMT), separates distinct benthic habitats, causes a significant change in acoustic backscatter, represents a key facies change, and delimits more surface-reactive mud from less surface-reactive sand. With the goal of improving dynamical understanding of the SMT, surficial sediments were characterized across two SMTs on the Adriatic continental shelf of Italy. Geometric mean diameter, specific surface area (SSA), mud fraction (<63 ??m) and heavy metal concentrations were all measured. The SMT related to the Tronto River is identified between 15 and 20 m water depth while the SMT associated with the Pescara River varies between 15 and 25 m water depth. The sediment properties correlate with a new, process-based sedimentological parameter that quantifies the fraction of the sediment in the seabed that was delivered as flocs. These correlations suggest that floc dynamics exert strong influence over sediment textural properties and metal concentrations. Relative constancy in the depth of the SMT along this portion of the margin and its lack of evolution over a period during which sediment input to the margin has dramatically decreased suggest that on the Adriatic continental shelf energy is the dominant control on the depth of the SMT. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO 2 Flooding

    DOE PAGES

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; ...

    2016-12-13

    Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less

  17. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    DOE PAGES

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; ...

    2015-12-02

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. We prepared gold surfaces modified by pits, starting with a well-ordered Au(111) surface; we then used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Finally, pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with definedmore » defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.« less

  18. Morphology effect on photocatalytic activity in Bi3Fe0.5Nb1.5O9.

    PubMed

    Yin, Xiaofeng; Li, Xiaoning; Gu, Wen; Zou, Wei; Liu, Huan; Zhu, Liuyang; Fu, Zhengping; Lu, Yalin

    2018-06-29

    In this work, the Aurivillius-phase ferroelectric Bi 3 Fe 0.5 Nb 1.5 O 9 were synthesized by hydrothermal (BFNO-H) and solid state methods (BFNO-S), respectively. The BFNO-H shows a hierarchical morphology, which is stacked by intersecting single-crystal nanosheets with {001} and {110} exposed facets, while the BFNO-S shows disorganized micron-scale morphology. BFNO-H shows a much stronger photodegradation activity (10.4 times and 9.8 times) than BFNO-S in the visible-light photodegradation of rhodamine B (RhB) and salicylic acid. The higher photodegradation activity of BFNO-H was firstly ascribed to the hierarchical structure and the larger specific surface area (16.586 m 2 g -1 ) because a large specific surface area can increase reactive sites and shorten photogenerated carrier migration distance. However, after being normalized by the specific surface area, BFNO-H still performs better than BFNO-S, implying that the specific surface area is not the only factor that determines the photocatalytic activity. Considering that the built-in electric field originating from spontaneous polarization in Bi 3 Fe 0.5 Nb 1.5 O 9 has existed in both ab plane and c direction, it matches well with the {001} and {110} exposed facets of BFNO-H nanosheets. This appropriate matching in BFNO-H nanosheets may improve the separation and transmission of photogenerated electron-hole pairs and further enhance its photocatalytic activity. Moreover, the trapping experiments reveals that holes (h + ) are the main active species and hole-derived oxidation is the main redox reaction during photodegradation of organic pollutions.

  19. Morphology effect on photocatalytic activity in Bi3Fe0.5Nb1.5O9

    NASA Astrophysics Data System (ADS)

    Yin, Xiaofeng; Li, Xiaoning; Gu, Wen; Zou, Wei; Liu, Huan; Zhu, Liuyang; Fu, Zhengping; Lu, Yalin

    2018-06-01

    In this work, the Aurivillius-phase ferroelectric Bi3Fe0.5Nb1.5O9 were synthesized by hydrothermal (BFNO-H) and solid state methods (BFNO-S), respectively. The BFNO-H shows a hierarchical morphology, which is stacked by intersecting single-crystal nanosheets with {001} and {110} exposed facets, while the BFNO-S shows disorganized micron-scale morphology. BFNO-H shows a much stronger photodegradation activity (10.4 times and 9.8 times) than BFNO-S in the visible-light photodegradation of rhodamine B (RhB) and salicylic acid. The higher photodegradation activity of BFNO-H was firstly ascribed to the hierarchical structure and the larger specific surface area (16.586 m2 g‑1) because a large specific surface area can increase reactive sites and shorten photogenerated carrier migration distance. However, after being normalized by the specific surface area, BFNO-H still performs better than BFNO-S, implying that the specific surface area is not the only factor that determines the photocatalytic activity. Considering that the built-in electric field originating from spontaneous polarization in Bi3Fe0.5Nb1.5O9 has existed in both ab plane and c direction, it matches well with the {001} and {110} exposed facets of BFNO-H nanosheets. This appropriate matching in BFNO-H nanosheets may improve the separation and transmission of photogenerated electron–hole pairs and further enhance its photocatalytic activity. Moreover, the trapping experiments reveals that holes (h +) are the main active species and hole-derived oxidation is the main redox reaction during photodegradation of organic pollutions.

  20. Microcapsules with three orthogonal reactive sites

    PubMed Central

    Mason, Brian P.; Hira, Steven M.; Strouse, Geoffrey F.; McQuade, D. Tyler

    2009-01-01

    Polymeric microcapsules containing reactive sites on the shell surface and two orthogonally reactive polymers encapsulated within the interior are selectively labeled. The capsules provide three spatially separate and differentially reactive sites. Confocal fluorescence microscopy is used to characterize the distribution of labels. Polymers encapsulated are distributed homogeneously within the core and do not interact with the shell even when oppositely charged. PMID:19254010

  1. 40 CFR 264.229 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reactive waste. 264.229 Section 264.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.229 Special requirements for ignitable or reactive...

  2. Method for producing high quality thin layer films on substrates

    DOEpatents

    Strongin, M.; Ruckman, M.; Strongin, D.

    1994-04-26

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

  3. Surface reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards.

    PubMed

    Horwell, Claire J; Fenoglio, Ivana; Vala Ragnarsdottir, K; Sparks, R Steve J; Fubini, Bice

    2003-10-01

    The fine-grained character of volcanic ash generated in the long-lived eruption of the Soufrière Hills volcano, Montserrat, West Indies, raises the issue of its possible health hazards. Surface- and free-radical production has been closely linked to bioreactivity of dusts within the lung. In this study, electron paramagnetic resonance (EPR) techniques have been used, for the first time, on volcanic ash to measure the production of radicals from the surface of particles. Results show that concentrations of hydroxyl radicals (HO*) in respirable ash are two to three times higher than a toxic quartz standard. The dome-collapse ash contains cristobalite, a crystalline silica polymorph that may cause adverse health effects. EPR experiments indicate, however, that cristobalite in the ash does not contribute to HO* generation. Our results show that the main cause of reactivity is removable divalent iron (Fe2+), which is present in abundance on the surfaces of the particles and is very reactive in the lung. Our analyses show that fresh ash generates more HO* than weathered ash (which has undergone progressive oxidation and leaching of iron from exposed surfaces), an effect replicated experimentally by incubating fresh ash in dilute acid. HO* production experiments also indicate that iron-rich silicate minerals are responsible for surface reactivity in the Soufrière Hills ash.

  4. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  5. Pore-Scale Geochemical Reactivity Associated with CO2 Storage: New Frontiers at the Fluid-Solid Interface.

    PubMed

    Noiriel, Catherine; Daval, Damien

    2017-04-18

    The reactivity of carbonate and silicate minerals is at the heart of porosity and pore geometry changes in rocks injected with CO 2 , which ultimately control the evolution of flow and transport properties of fluids in porous and/or fractured geological reservoirs. Modeling the dynamics of CO 2 -water-rock interactions is challenging because of the resulting large geochemical disequilibrium, the reservoir heterogeneities, and the large space and time scales involved in the processes. In particular, there is a lack of information about how the macroscopic properties of a reservoir, e.g., the permeability, will evolve as a result of geochemical reactions at the molecular scale. Addressing this point requires a fundamental understanding of how the microstructures influence the macroscopic properties of rocks. The pore scale, which ranges from a few nanometers to centimeters, has stood out as an essential scale of observation of geochemical processes in rocks. Transport or surface reactivity limitations due to the pore space architecture, for instance, are best described at the pore scale itself. It can be also considered as a mesoscale for aggregating and increasing the gain of fundamental understanding of microscopic interfacial processes. Here we focus on the potential application of a combination of physicochemical measurements coupled with nanoscale and microscale imaging techniques during laboratory experiments to improve our understanding of the physicochemical mechanisms that occur at the fluid-solid interface and the dynamics of the coupling between the geochemical reactions and flow and transport modifications at the pore scale. Imaging techniques such as atomic force microscopy, vertical scanning interferometry, focused ion beam transmission electron microscopy, and X-ray microtomography, are ideal for investigating the reactivity dynamics of these complex materials. Minerals and mineral assemblages, i.e., rocks, exhibit heterogeneous and anisotropic reactivity, which challenges the continuum description of porous media and assumptions required for reactive transport modeling at larger scales. The conventional approach, which consists of developing dissolution rate laws normalized to the surface area, should be revisited to account for both the anisotropic crystallographic structure of minerals and the transport of chemical species near the interface, which are responsible for the intrinsic evolution of the mineral dissolution rate as the reaction progresses. In addition, the crystal morphology and the mineral assemblage composition, texture, and structural heterogeneities are crucial in determining whether the permeability and transport properties of the reservoir will be altered drastically or maintain the sealing properties required to ensure the safe sequestration of CO 2 for hundreds of years. Investigating the transport properties in nanometer- to micrometer-thick amorphous Si-rich surface layers (ASSLs), which develop at the fluid-mineral interface in silicates, provides future direction, as ASSLs may prevent contact between the dissolving solids and the pore fluid, potentially inhibiting the dissolution/carbonation process. Equally, at a larger scale, the growth of micrometer- to millimeter-thick alteration layers, which result from the difference in reactivity between silicates and carbonates, slows the transport in the vicinity of the fluid-solid interface in polymineralic rocks, thus limiting the global reactivity of the carbonate matrix. In contrast, in pure limestone, the global reactivity of the monomineralic rock decreases because the flow localization promotes the local reactivity within the forming channels, thus enhancing permeability changes compared with more homogeneous dissolution of the rock matrix. These results indicate that the transformation of the rock matrix should control the evolution of the transport properties in reservoirs injected with CO 2 to the same extent as the intrinsic chemical reactivity of the minerals and the reservoir hydrodynamics. This process, which is currently not captured by large-scale modeling of reactive transport, should benefit from the increasing capabilities of noninvasive and nondestructive characterization tools for pore-scale processes, ultimately constraining reactive transport modeling and improving the reliability of predictions.

  6. A Chemical Approach to Understanding Oxide Surface Structure and Reactivity

    NASA Astrophysics Data System (ADS)

    Enterkin, James Andrew

    Transmission electron microscopy and diffraction are powerful tools for solving complex structural problems. They complement other analytical techniques, such as x-ray diffraction, elucidating problems which cannot be solved by other techniques. One area where they are of particularly great value is in the determination of surface structures. The research presented herein uses electron microscopy and diffraction as the primary experimental techniques in the development of a chemistry of surface structures. High-resolution electron microscopy revealed that the La4Cu 3MoO12 structure has turbostratic disorder and a lower symmetry space group (Pm) than was previously found. The refinement of the x-ray data was significantly improved by using a disordered model and the Pm space group. A bond valence analysis confirmed that the disordered structure is the superior model. Strontium titanate, SrTiO3, single crystal surfaces were examined principally via transmission electron diffraction. A homologous series with intergrowths was discovered on the (110) surface of strontium titanate, marking the first time that these important concepts of solid state chemistry have been found at the surface. Atmospheric adsorbates, such as H2O and CO2, were found to help to stabilize undercoordinated surface structures on the (100) surface. It was shown that chemical bonding, bond valence, atomic coordination, and stoichiometry greatly influence the development of surface structures. Additionally, such chemistry based analysis was demonstrated to be able to predict surface structure stability and reactivity. Application of a modified Wulff construction to the observed shape of strontium titanate nanocuboids revealed that the surface structure and particle stoichiometry are interlinked, with control over one allowing equally precise control over the other. Platinum nanoparticles on the strontium titanate nanocuboids were shown via high resolution electron microscopy to have cube-on-cube epitaxy, with the shape of the platinum nanoparticles governed by the Winterbottom construction. Precise modification of the support surface will therefore allow engineering of supported metal particles with precise control over which facets are exposed. These results suggest that control over the support surface chemistry can be used to engineer thermodynamically stable, face selective catalysts.

  7. Fast ion transport at a gas-metal interface

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-11-06

    Fast ion transport and the resulting fusion yield reduction are computed at a gas-metal interface. The extent of fusion yield reduction is observed to depend sensitively on the charge state of the surrounding pusher material and the width of the atomically mixed region. These sensitivities suggest that idealized boundary conditions often implemented at the gas-pusher interface for the purpose of estimating fast ion loss will likely overestimate fusion reactivity reduction in several important limits. Additionally, the impact of a spatially complex material interface is investigated by considering a collection of droplets of the pusher material immersed in a DT plasma.more » It is found that for small Knudsen numbers, the extent of fusion yield reduction scales with the surface area of the material interface. As the Knudsen number is increased, but, the simple surface area scaling is broken, suggesting that hydrodynamic mix has a nontrivial impact on the extent of fast ion losses.« less

  8. Surface contamination to UV-curable acrylates in the furniture and parquet industry.

    PubMed

    Surakka, J; Lindh, T; Rosén, G; Fischer, T

    2001-03-01

    Surface contamination to ultraviolet radiation curable coatings (UV coatings), used increasingly in the parquet and furniture industry, is a matter of concern as a source for skin contamination. UV coatings contain chemically and biologically reactive acrylates, well known as skin contact irritants and sensitizers. Surface contamination may spread secondarily to equipment and other unexpected areas even outside the workplace. Yet, studies concerning this type of contamination are lacking due to lack of suitable sampling methods. Surface contamination of the work environment with risk for skin exposure to UV coating was measured employing a quantitative adhesive tape sampling method developed for this purpose. A pilot study was first performed at three workplaces to evaluate the contamination. In the main study, we wanted to locate and identify in detail the surface contamination of areas where problems exist, and to determine the extent of the problem. Measurements were performed at seven workplaces on two separate workdays (round 1 and 2) within a six-month period. Samples were collected from the workplaces based on the video monitoring of skin contact frequency with the surfaces and categorized into three groups to analyze risk. The pilot study indicated that surface contamination to TPGDA containing UV coatings was common, found in 76 percent of the surfaces, and varied with a maximum of 909 microg TPGDA 10 cm(-2) sampling area. In the main study TPGDA was found in 153 out of 196 collected samples (78.1%); for round one 78.1 percent (82 out of 105 samples) and for round two 78.0 percent (71 out of 91 samples). The average TPGDA mass on positive surface samples was on the first round 2,247 +/- 7,462 microg, and on the second round 2,960 +/- 4,590 microg. We conclude that surface contamination to uncured UV coatings at UV-curing lines is common and this involves a risk for harmful, unintentional skin exposure to acrylates.

  9. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.

    PubMed

    McCollum, Jena; Pantoya, Michelle L; Iacono, Scott T

    2015-08-26

    Aluminum (Al) particles are passivated by an aluminum oxide (Al2O3) shell. Energetic blends of nanometer-sized Al particles with liquid perfluorocarbon-based oxidizers such as perfluoropolyethers (PFPE) excite surface exothermic reaction between fluorine and the Al2O3 shell. The surface reaction promotes Al particle reactivity. Many Al-fueled composites use solid oxidizers that induce no Al2O3 surface exothermicity, such as molybdenum trioxide (MoO3) or copper oxide (CuO). This study investigates a perfluorinated polymer additive, PFPE, incorporated to activate Al reactivity in Al-CuO and Al-MoO3. Flame speeds, differential scanning calorimetry (DSC), and quadrupole mass spectrometry (QMS) were performed for varying percentages of PFPE blended with Al/MoO3 or Al/CuO to examine reaction kinetics and combustion performance. X-ray photoelectron spectroscopy (XPS) was performed to identify product species. Results show that the performance of the thermite-PFPE blends is highly dependent on the bond dissociation energy of the metal oxide. Fluorine-Al-based surface reaction with MoO3 produces an increase in reactivity, whereas the blends with CuO show a decline when the PFPE concentration is increased. These results provide new evidence that optimizing Al combustion can be achieved through activating exothermic Al surface reactions.

  10. Perfluorophenyl Azides: New Applications in Surface Functionalization and Nanomaterial Synthesis

    PubMed Central

    Liu, Li-Hong; Yan, Mingdi

    2010-01-01

    Conspectus A major challenge in materials science is the ongoing search for coupling agents that are readily synthesized, capable of versatile chemistry, able to easily functionalize materials and surfaces, and efficient in covalently linking organic and inorganic entities. A decade ago, we began a research program investigating perfluorophenylazides (PFPAs) as the coupling agents in surface functionalization and nanomaterial synthesis. The p-substituted PFPAs are attractive heterobifunctional coupling agents because of their two distinct and synthetically distinguishable reactive centers: (i) the fluorinated phenylazide, which is capable of forming stable covalent adducts, and (ii) the functional group R, which can be tailored through synthesis. Two approaches have been undertaken for material synthesis and surface functionalization. The first method involves synthesizing PFPA bearing the first molecule or material with a functional linker R, and then attaching the resulting PFPA to the second material by activating the azido group. In the second approach, the material surface is first functionalized with PFPA via functional center R, and coupling of the second molecule or material is achieved with the surface azido groups. In this Account, we review the design and protocols of the two approaches, providing examples in which PFPA derivatives were successfully used in material surface functionalization, ligand conjugation, and the synthesis of hybrid nanomaterials. The methods developed have proved to be general and versatile, and they are applicable to a wide range of materials (especially those that lack reactive functional groups or are difficult to derivatize) and to various substrates of polymers, oxides, carbon materials, and metal films. The coupling chemistry can be initiated by light, heat, and electrons. Patterned structures can be generated by selectively activating the areas of interest. Furthermore, the process is easy to perform, and light activation occurs in minutes, greatly facilitating the efficiency of the reaction. PFPAs indeed demonstrate many benefits as versatile surface coupling agents and offer opportunities for further exploration. PMID:20690606

  11. Reactive but not predictive locomotor adaptability is impaired in young Parkinson's disease patients.

    PubMed

    Moreno Catalá, María; Woitalla, Dirk; Arampatzis, Adamantios

    2016-07-01

    Gait and balance disorders are common in Parkinson's disease (PD) and major contributors to increased falling risk. Predictive and reactive adjustments can improve recovery performance after gait perturbations. However, these mechanisms have not been investigated in young-onset PD. We aimed to investigate the effect of gait perturbations on dynamic stability control as well as predictive and reactive adaptability to repeated gait perturbations in young PD patients. Fifteen healthy controls and twenty-five young patients (48±5yrs.) walked on a walkway. By means of a covered exchangeable element, the floor surface condition was altered to induce gait perturbations. The experimental protocol included a baseline on a hard surface, an unexpected trial on a soft surface and an adaptation phase with 5 soft trials to quantify the reactive adaptation. After the first and sixth soft trials, the surface was changed to hard, to examine after-effects and, thus, predictive motor control. Dynamic stability was assessed using the 'extrapolated center of mass' concept. Patients' unperturbed walking was less stable than controls' and this persisted in the perturbed trials. Both groups demonstrated after-effects directly after the first perturbation, showing similar predictive responses. However, PD patients did not improve their reactive behavior after repeated perturbations while controls showed clear locomotor adaptation. Our data suggest that more unstable gait patterns and a less effective reactive adaptation to perturbed walking may be a disease-related characteristic in young PD patients. These deficits were related to reduced ability to increase the base of support. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A comprehensive approach to reactive power scheduling in restructured power systems

    NASA Astrophysics Data System (ADS)

    Shukla, Meera

    Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.

  13. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    PubMed

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  14. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-03-01

    Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.

  15. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOEpatents

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  16. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    PubMed

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  17. Cross-hole radar scanning of two vertical, permeable, reactive-iron walls at the Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Lane, J.W.; Joesten, P.K.; Savoie, J.G.

    2001-01-01

    A pilot-scale study was conducted by the U.S. Army National Guard (USANG) at the Massachusetts Military Reservation (MMR) on Cape Cod, Massachusetts, to assess the use of a hydraulic-fracturing method to create vertical, permeable walls of zero-valent iron to passively remediate ground water contaminated with chlorinated solvents. The study was conducted near the source area of the Chemical Spill-10 (CS-10) plume, a plume containing chlorinated solvents that underlies the MMR. Ground-water contamination near the source area extends from about 24 m (meters) to 35 m below land surface. The USANG designed two reactive-iron walls to be 12 m long and positioned 24 to 37 m below land surface to intersect and remediate part of the CS-10 plume.Because iron, as an electrical conductor, absorbs electromagnetic energy, the US Geological Survey used a cross-hole common-depth, radar scanning method to assess the continuity and to estimate the lateral and vertical extent of the two reactive-iron walls. The cross-hole radar surveys were conducted in boreholes on opposite sides of the iron injection zones using electric-dipole antennas with dominant center frequencies of 100 and 250 MHz. Significant decreases in the radar-pulse amplitudes observed in scans that traversed the injection zones were interpreted by comparing field data to results of two-dimensional finite-difference time-domain numerical models and laboratory-scale physical models.The numerical and physical models simulate a wall of perfectly conducting material embedded in saturated sand. Results from the numerical and physical models show that the amplitude of the radar pulse transmitted across the edge of a conductive wall is about 43 percent of the amplitude of a radar pulse transmitted across background material. The amplitude of a radar pulse transmitted through a hole in a conductive wall increases as the aperture of the hole increases. The modeling results indicate that holes with an aperture of less than 40 percent of the dominant wavelength of the radar pulse are not likely to be detected.Based on the results of the numerical and physical modeling, the decreases in radar-pulse amplitudes observed in scans traversing the injection zones are interpreted as electrically conductive zones that outline the distribution of iron. The area interpreted as iron in the northern A-wall contains two zones -- an upper zone about 10 m wide, extending from about 25 to 31 m below land surface, and a lower zone about 8 m wide, extending from 31.5 to 34.5 m below land surface. The area interpreted as iron in the southern B-wall is about 9 m wide, extending from about 27 to 34.5 m below land surface. No discrete holes were interpreted in either the A- or B-wall zones.The interpretation of the field data suggests that (1) the hydraulic-fracturing method introduced iron into the subsurface, but not in the dimensions originally proposed; (2) the iron within the treatment zones is distributed in a generally continuous manner; and (3) excluding the discontinuity in the A-wall, holes within the iron treatment zone, if any, exist at scales smaller than about 10 cm, the resolution limit of the radar antennas and acquisition geometry used for this study. The cross-hole radar method appears to have been an effective method for delineating the distribution of iron in the two walls; however, the veracity of the results cannot be ascertained without excavation or drilling into the treatment zone.

  18. Roles of oxyanions in promoting the partial oxidation of styrene on Ag(110): nitrate, carbonate, sulfite, and sulfate.

    PubMed

    Zhou, Ling; Madix, Robert J

    2010-11-02

    The promotion roles of nitrate, carbonate, sulfite, and sulfate in oxidation of styrene on Ag(110) have been studied by means of temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS). While isolated nitrate leads only to the secondary oxidation of styrene, a surface co-covered by nitrate, oxygen, and 0.1 ML cesium promotes a low-temperature epoxidation pathway. XPS indicates that adsorbed surface oxygen is the oxidant in this selective reaction pathway, and, though it affects the reactivity of the surface oxygen, nitrate is a spectator. Carbonate acts as an oxygen transfer agent and exhibits similar reactivity and selectivity as an oxidant for styrene as does atomic oxygen on Ag(110). The reactivities of sulfite and sulfate are strongly dependent on their surface structures, the c(6 × 2) sulfite showing the capacity to transfer oxygen to styrene.

  19. Reactive Resonances in N+N2 Exchange Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Stallcop, James R.

    2003-01-01

    Rich reactive resonances are found in a 3D quantum dynamics study of the N + N2 exchange reaction using a recently developed ab initio potential energy surface. This surface is characterized by a feature in the interaction region called Lake Eyring , that is, two symmetric transition states with a shallow minimum between them. An L2 analysis of the quasibound states associated with the shallow minimum confirms that the quasibound states associated with oscillations in all three degrees of freedom in Lake Eyring are responsible for the reactive resonances in the state-to-state reaction probabilities. The quasibound states, mostly the bending motions, give rise to strong reasonance peaks, whereas other motions contribute to the bumps and shoulders in the resonance structure. The initial state reaction probability further proves that the bending motions are the dominating factors of the reaction probability and have longer life times than the stretching motions. This is the first observation of reactive resonances from a "Lake Eyring" feature in a potential energy surface.

  20. AB INITIO Simulations of Desorption and Reactivity of Glycine at a Water-Pyrite Interface at ``Iron-Sulfur World'' Prebiotic Conditions

    NASA Astrophysics Data System (ADS)

    Pollet, Rodolphe; Boehme, Christian; Marx, Dominik

    2006-08-01

    Glycine at the interface of a pyrite surface (001) FeS2, and bulk water at high pressure and temperature conditions relevant to the “iron-sulfur world” scenario of the origin of life is investigated by theoretical means. Car-Parrinello molecular dynamics is used in order to study the desorption process of the zwitterionic form of this amino acid using two different adsorption modes, where either only one or both oxygens of the carboxylate group are anchored to surface iron atoms. It is found that the formation of stabilizing hydrogen bonds plays a key role in the detachment process, leading to longer retention times for the bidentate adsorption mode. In addition, the chemical reactivity of this heterogeneous system is probed by calculating the Fukui functions as site-specific reactivity indices. The most prominent targets for both nucleophilic and electrophilic reactions to occur are surface atoms, whereas the reactivity of glycine is only slightly affected upon anchoring.

  1. Reaction of Si(100) with NH3: Rate-limiting steps and reactivity enhancement via electronic excitation

    NASA Astrophysics Data System (ADS)

    Bozso, F.; Avouris, Ph.

    1986-09-01

    We report on the low-temperature reaction of ammonia with Si(100)-(2×1). The dangling bonds in the clean Si surface promote NH3 dissociation even at temperatures as low as 90 K. The N atoms thus produced occupy subsurface sites, while the H atoms bind to surface Si atoms, tie up the dangling bonds, and inactivate the surface. Thermal or electronic-excitation-induced hydrogen desorption restores the dangling bonds and the reactivity of the surface. Silicon nitride film growth is achieved at 90 K by simultaneous exposure of the Si surface to NH3 and an electron beam.

  2. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    PubMed

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  3. Electrochemically enhanced antibody immobilization on polydopamine thin film for sensitive surface plasmon resonance immunoassay.

    PubMed

    Chen, Daqun; Mei, Yihong; Hu, Weihua; Li, Chang Ming

    2018-05-15

    For sensitive immunoassay, it is essentially important to immobilize antibody on a surface with high density and full retention of their recognition activity. Bio-inspired polydopamine (PDA) thin film has been widely utilized as a reactive coating to immobilize antibody on various surfaces. We herein report that the antibody immobilization capacity of PDA thin film is electrochemically enhanced by applying an oxidative potential to convert the surface catechol group to reactive quinone group. Quantitative surface plasmon resonance (SPR) investigation unveils that upon proper electrochemical oxidization, the antibody loading capacity of PDA film is significantly improved (up to 27%) and is very close to the theoretically maximal capacity of a planar surface if concentrated antibody solution is used. Using prostate-specific antigen (PSA) as a model target, it is further demonstrated that the SPR immunoassay sensitivity is greatly enhanced due to the improved antibody immobilization. This work offers an efficient strategy to enhance the reactivity of PDA film towards nucleophiles, and may also facilitate its immunoassay application among others. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Rosiwal Principle and the regolithic distributions of solar-wind elements

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.

    1975-01-01

    In situ accumulation of solar elements is studied for the purpose of determining the extent of applicability of the Rosiwal Principle. The Rosiwal Principle states that the grain exposure area is proportional to the fraction of the unit volume occupied by the grains, and the test involves measurement of the relative concentrations of inert gases and reactive elements across sets of lunar fines samples for which mean grain size, sorting, and minimum radius of surface correlation are known. In some cases, the quantity of an element implanted into the lunar fines from the solar wind is found to be surface correlated, and the implications of this relationship are considered. According to the Rosiwal Principle, coarse soils should retain less inert gas than fine soil. The Principle can also be applied to species volatized or sputtered from the lunar surface and redeposited locally.

  5. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    PubMed Central

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-01-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964

  6. Lights, Camera, Reaction! The Influence of Interfacial Chemistry on Nanoparticle Photoreactivity

    NASA Astrophysics Data System (ADS)

    Farner Budarz, Jeffrey Michael

    The ability of photocatalytic nanoparticles (NPs) to produce reactive oxygen species (ROS) has inspired research into several new applications and technologies, including water purification, contaminant remediation, and self-cleaning surface coatings. As a result, NPs continue to be incorporated into a wide variety of increasingly complex products. With the increased use of NPs and nano-enabled products and their subsequent disposal, NPs will make their way into the environment. Currently, many unanswered questions remain concerning how changes to the NP surface chemistry that occur in natural waters will impact reactivity. This work seeks to investigate potential influences on photoreactivity - specifically the impact of functionalization, the influence of anions, and interactions with biological objects - so that ROS generation in natural aquatic environments may be better understood. To this aim, titanium dioxide nanoparticles (TiO2) and fullerene nanoparticles (FNPs) were studied in terms of their reactive endpoints: ROS generation measured through the use of fluorescent or spectroscopic probe compounds, virus and bacterial inactivation, and contaminant degradation. Physical characterization of NPs included light scattering, electron microscopy and electrophoretic mobility. These systematic investigations into the effect of functionalization, sorption, and aggregation on NP aggregate structure, size, and reactivity improve our understanding of trends that impact nanoparticle reactivity. Engineered functionalization of FNPs was shown to impact NP aggregation, ROS generation, and viral affinity. Fullerene cage derivatization can lead to a greater affinity for the aqueous phase, smaller mean aggregate size, and a more open aggregate structure, favoring greater rates of ROS production. At the same time however, fullerene derivatization also decreases the 1O2 quantum yield and may either increase or decrease the affinity for a biological surface. These results suggest that the biological impact of fullerenes will be influenced by changes in the type of surface functionalization and extent of cage derivatization, potentially increasing the ROS generation rate and facilitating closer association with biological targets. Investigations into anion sorption onto the surface of TiO2 indicate that reactivity will be strongly influenced by the waters they are introduced into. The type and concentration of anion impacted both aggregate state and reactivity to varying degrees. Specific interactions due to inner sphere ligand exchange with phosphate and carbonate have been shown to stabilize NPs. As a result, waters containing chloride or nitrate may have little impact on inherent reactivity but will reduce NP transport via aggregation, while waters containing even low levels of phosphate and carbonate may decrease "acute" reactivity but stabilize NPs such that their lifetime in the water column is increased. Finally, ROS delivery in a multicomponent system was studied under the paradigm of pesticide degradation. The presence of bacteria or chlorpyrifos in solution significantly decreased bulk ROS measurements, with almost no •OH detected when both were present. However, the presence of bacteria had no observable impact on the rate of chlorpyrifos degradation, nor chlorpyrifos on bacterial inactivation. These results imply that investigating reactivity in simplified systems may significantly over or underestimate photocatalytic efficiency in realistic environments, depending on the surface affinity of a given target. This dissertation demonstrates that the reactivity of a system is largely determined by NP surface chemistry. Altering the NP surface, either intentionally or incidentally, produces significant changes in reactivity and aggregate characteristics. Additionally, the photocatalytic impact of the ROS generated by a NP depends on the characteristics of potential targets as well as on the characteristics of the NP itself. These are complicating factors, and the myriad potential exposure conditions, endpoints, and environmental systems to be considered for even a single NP highlight the need for functional assays that employ environmentally relevant conditions if risk assessments for engineered NPs are to be made in a timely fashion so as not to be outpaced by, or impede, technological advances.

  7. Neutron economic reactivity control system for light water reactors

    DOEpatents

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  8. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  9. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laursen, S.L.

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  10. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery

    NASA Astrophysics Data System (ADS)

    Girardi, James D.; Davis, Dan M.

    2010-02-01

    Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.

  11. THE EFFECT OF TUNGSTATE NANOPARTICLES ON REACTIVE OXYGEN SPECIES AND CYTOTOXICITY IN RAW 264.7 MOUSE MONOCYTE MACROPHAGE CELLS

    PubMed Central

    Dunnick, Katherine M.; Badding, Melissa A.; Schwegler-Berry, Diane; Patete, Jonathan M.; Koenigsmann, Christopher; Wong, Stanislaus S.; Leonard, Stephen S.

    2015-01-01

    Due to their unique size, surface area, and chemical characteristics, nanoparticles’ use in consumer products has increased. However, the toxicity of nanoparticle (NP) exposure during the manufacturing process has not been fully assessed. Tungstate NP are used in numerous products, including but not limited to scintillator detectors and fluorescent lighting. As with many NP, no apparent toxicity studies have been completed with tungstate NP. The hypothesis that tungstate NP in vitro exposure results in reactive oxygen species (ROS) formation and cytotoxicity was examined. Differences in toxicity based on tungstate NP size, shape (sphere vs. wire), and chemical characteristics were determined. RAW 264.7 mouse monocyte macrophages were exposed to tungstate NP, and ROS formation was assessed via electron spin resonance (ESR), and several assays including hydrogen peroxide, intracellular ROS, and Comet. Results showed ROS production induced by tungstate nanowire exposure, but this exposure did not result in oxidative DNA damage. Nanospheres showed neither ROS nor DNA damage following cellular exposure. Cells were exposed over 72 h to assess cytotoxicity using an MTT (tetrazolium compound) assay. Results showed that differences in cell death between wires and spheres occurred at 24 h but were minimal at both 48 and 72 h. The present results indicate that tungstate nanowires are more reactive and produce cell death within 24 h of exposure, whereas nanospheres are less reactive and did not produce cell death. Results suggest that differences in shape may affect reactivity. However, regardless of the differences in reactivity, in general both shapes produced mild ROS and resulted in minimal cell death at 48 and 72 h in RAW 264.7 cells. PMID:25208664

  12. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    PubMed

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  13. In situ pH within particle beds of bioactive glasses.

    PubMed

    Zhang, Di; Hupa, Mikko; Hupa, Leena

    2008-09-01

    The in vitro behavior of three bioactive glasses with seven particle size distributions was studied by measuring the in situ pH inside the particle beds for 48h in simulated body fluid (SBF). After immersion, the surface of the particles was characterized with a field emission scanning electron microscope equipped with an energy-dispersive X-ray analyzer. In addition, the results were compared with the reactions of the same glasses formed as plates. A similar trend in pH as a function of immersion time was observed for all systems. However, the pH inside the particle beds was markedly higher than that in the bulk SBF of the plates. The pH decreased as power functions with increasing particle size, i.e. with decreasing surface area. The in vitro reactivity expressed as layer formation strongly depended on the particle size and glass composition. The average thickness of the total reaction layer decreased with the increase in sample surface area. Well-developed silica and calcium phosphate layers typically observed on glass plates could be detected only on some particles freely exposed to the solution. No distinct reaction layers were observed on the finest particles, possibly because the layers spread out on the large surface area. Differences in the properties of the bulk SBF and the solution inside the particle bed were negligible for particles larger than 800microm. The results enhance our understanding of the in vitro reactions of bioactive glasses in various product forms and sizes.

  14. Geophysical and geochemical methods applied to investigate fissure-related hydrothermal systems on the summit area of Mt. Etna volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Maucourant, Samuel; Giammanco, Salvatore; Greco, Filippo; Dorizon, Sophie; Del Negro, Ciro

    2014-06-01

    A multidisciplinary approach integrating self-potential, soil temperature, heat flux, CO2 efflux and gravity gradiometry signals was used to investigate a relatively small fissure-related hydrothermal system near the summit of Mt. Etna volcano (Italy). Measurements were performed through two different surveys carried out at the beginning and at the end of July 2009, right after the end of the long-lived 2008-2009 flank eruption and in coincidence with an increase in diffuse flank degassing related to a reactivation of the volcano, leading to the opening of a new summit vent (NSEC). The main goal was to use a multidisciplinary approach to the detection of hidden fractures in an area of evident near-surface hydrothermal activity. Despite the different methodologies used and the different geometry of the sampling grid between the surveys, all parameters concurred in confirming that the study area is crossed by faults related with the main fracture systems of the south flank of the volcano, where a continuous hydrothermal circulation is established. Results also highlighted that hydrothermal activity in this area changed both in space and in time. These changes were a clear response to variations in the magmatic system, notably to migration of magma at various depth within the main feeder system of the volcano. The results suggest that this specific area, initially chosen as the optimal test-site for the proposed approach, can be useful in order to get information on the potential reactivation of the summit craters of Mt. Etna.

  15. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

    DOE PAGES

    Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; ...

    2015-09-22

    The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observationmore » is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4d xz and 4d yz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.« less

  16. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives

    PubMed Central

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease. PMID:25977746

  17. Absorbent Pads for Containment, neutralization, and clean-up of environmental spills containing chemically-reactive agents

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    1996-01-01

    A pad for cleaning up liquid spills is described which contains a porous surface covering, and an absorbent interior containing chemically reactive reagents for neutralizing noxious chemicals within the spilled liquid. The porous surface and the absorbent component would normally consist of chemically resistant materials allowing tentative spill to pass. The absorbent interior which contains the neutralizing reagents can but is not required to be chemically resilient and conducts the liquid chemically reactive reagents where the dangerous and undesirable chemicals within the chemical spill are then neutralized as well as removed from the premises.

  18. Progress in the Analysis of Complex Atmospheric Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.

    2016-06-16

    This manuscript presents an overview on recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surfaces interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multi-modal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, they provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore environmental effects of air-surface interactions.« less

  19. Progress in the analysis of complex atmospheric particles

    DOE PAGES

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; ...

    2016-06-01

    This study presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.« less

  20. Fabrication of Gold Nanoparticles for targeted therapy in pancreatic cancer**

    PubMed Central

    Patra, Chitta Ranjan; Bhattacharya, Resham; Mukhopadhyay, Debabrata; Mukherjee, Priyabrata

    2009-01-01

    The targeted delivery of a drug should result in enhanced therapeutic efficacy with low to minimal side effects. This is a widely accepted concept, but limited in application due to lack of available technologies and process of validation. Biomedical nanotechnology can play an important role in this respect. Biomedical nanotechnology is a burgeoning field with myriads of opportunities and possibilities for advancing medical science and disease treatment. Cancer nanotechnology (1–100 nm size range) is expected to change the very foundations of cancer treatment, diagnosis and detection. Nanomaterials, especially gold nanoparticles (AuNPs) have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high surface reactivity, presence of surface plasmon resonance (SPR) bands, biocompatibility and ease of surface functionalization. In this review, we will discuss how the unique physico-chemical properties of gold nanoparticles may be utilized for targeted drug delivery in pancreatic cancer leading to increased efficacy of traditional chemotherapeutics. PMID:19914317

  1. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    NASA Astrophysics Data System (ADS)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  2. Physicochemical properties and gasification reactivity of the ultrafine semi-char derived from a bench-scale fluidized bed gasifier

    NASA Astrophysics Data System (ADS)

    Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang

    2017-08-01

    Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.

  3. Reactive nitrogen partitioning and its relationship to winter ozone events in Utah

    NASA Astrophysics Data System (ADS)

    Wild, R. J.; Edwards, P. M.; Bates, T. S.; Cohen, R. C.; de Gouw, J. A.; Dubé, W. P.; Gilman, J. B.; Holloway, J.; Kercher, J.; Koss, A. R.; Lee, L.; Lerner, B. M.; McLaren, R.; Quinn, P. K.; Roberts, J. M.; Stutz, J.; Thornton, J. A.; Veres, P. R.; Warneke, C.; Williams, E.; Young, C. J.; Yuan, B.; Zarzana, K. J.; Brown, S. S.

    2016-01-01

    High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013 and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx (NO + NO2) remained remarkably similar all three years. Nitric acid comprised roughly half of NOz ( ≡ NOy - NOx) in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. In 2012, N2O5 and ClNO2 were larger components of NOz relative to HNO3. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor of 2.6, and much of this is due to higher aerosol surface area in the high-ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.

  4. Does the stepwave model predict mica dissolution kinetics?

    NASA Astrophysics Data System (ADS)

    Kurganskaya, Inna; Arvidson, Rolf S.; Fischer, Cornelius; Luttge, Andreas

    2012-11-01

    The micas are a unique class of minerals because of their layered structure. A frequent question arising in mica dissolution studies is whether this layered structure radically changes the dissolution mechanism. We address this question here, using data from VSI and AFM experiments involving muscovite to evaluate crystallographic controls on mica dissolution. These data provide insight into the dissolution process, and reveal important links to patterns of dissolution observed in framework minerals. Under our experimental conditions (pH 9.4, 155 °C), the minimal global rate of normal surface retreat observed in VSI data was 1.42 × 10-10 mol/m2/s (σ = 27%) while the local rate observed at deep etch pits reached 416 × 10-10 mol/m2/s (σ = 49%). Complementary AFM data clearly show crystallographic control of mica dissolution, both in terms of step advance and the geometric influence of interlayer rotation (stacking periodicity). These observations indicate that basal/edge surface area ratios are highly variable and change continuously over the course of reaction, thus obviating their utility as characteristic parameters defining mica reactivity. Instead, these observations of overall dissolution rate and the influence of screw dislocations illustrate the link between atomic step movement and overall dissolution rate defined by surface retreat normal to the mica surface. Considered in light of similar observations available elsewhere in the literature, these relationships provide support for application of the stepwave model to mica dissolution kinetics. This approach provides a basic mechanistic link between the dissolution kinetics of phyllosilicates, framework silicates, and related minerals, and suggests a resolution to the general problem of mica reactivity.

  5. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  6. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    NASA Astrophysics Data System (ADS)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2017-02-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  7. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides.

    PubMed

    Kulesza, Pawel J; Pieta, Izabela S; Rutkowska, Iwona A; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A

    2013-11-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO 3 , MoO 3 , TiO 2 , ZrO 2 , V 2 O 5 , and CeO 2 ) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems.

  8. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  9. Periodontal inflamed surface area and C-reactive protein as predictors of HbA1c: a study in Indonesia.

    PubMed

    Susanto, Hendri; Nesse, Willem; Dijkstra, Pieter U; Hoedemaker, Evelien; van Reenen, Yvonne Huijser; Agustina, Dewi; Vissink, Arjan; Abbas, Frank

    2012-08-01

    Periodontitis may exert an infectious and inflammatory burden, evidenced by increased C-reactive protein (CRP). This burden may impair blood glucose control (HbA1c). The aim of our study was to analyze whether periodontitis severity as measured with the periodontal inflamed surface area (PISA) and CRP predict HbA1c levels in a group of healthy Indonesians and a group of Indonesians treated for type 2 diabetes mellitus (DM2). A full-mouth periodontal examination, including probing pocket depth, gingival recession, clinical attachment loss, plaque index and bleeding on probing, was performed in 132 healthy Indonesians and 101 Indonesians treated for DM2. Using these data, PISA was calculated. In addition, HbA1c and CRP were analyzed. A validated questionnaire was used to assess smoking, body mass index (BMI), education and medical conditions. In regression analyses, it was assessed whether periodontitis severity and CRP predict HbA1c, controlling for confounding and effect modification (i.e., age, sex, BMI, pack years, and education). In healthy Indonesians, PISA and CRP predicted HbA1c as did age, sex, and smoking. In Indonesians treated for DM2, PISA did not predict HbA1c. Periodontitis may impair blood glucose regulation in healthy Indonesians in conjunction with elevated CRP levels. The potential effect of periodontitis on glucose control in DM2 patients may be masked by DM2 treatment. periodontitis may impair blood glucose control through exerting an inflammatory and infectious burden evidenced by increased levels of CRP.

  10. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  11. Controlling Material Reactivity Using Architecture

    DOE PAGES

    Sullivan, Kyle T.; Zhu, Cheng; Duoss, Eric B.; ...

    2015-12-16

    3D-printing methods are used to generate reactive material architectures. We observed several geometric parameters in order to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. Additionally, the architecture offers a route to control, at will, the energy release rate in reactive composite materials.

  12. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials.

    PubMed

    Liu, Haizhou; Bruton, Thomas A; Doyle, Fiona M; Sedlak, David L

    2014-09-02

    Persulfate (S2O8(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4(•-)) and hydroxyl radical (HO(•)) over time scales of several weeks at rates that were 2-20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants.

  13. In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(III)- and Mn(IV)-Containing Oxides and Aquifer Materials

    PubMed Central

    2015-01-01

    Persulfate (S2O82–) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4•–) and hydroxyl radical (HO•) over time scales of several weeks at rates that were 2–20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants. PMID:25133603

  14. Interactions between multiple filaments and bacterial biofilms on the surface of an apple

    NASA Astrophysics Data System (ADS)

    He, CHENG; Maoyuan, XU; Shuhui, PAN; Xinpei, LU; Dawei, LIU

    2018-04-01

    In this paper, the interactions between two dielectric barrier discharge (DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise. The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.

  15. Characterizing monoclonal antibody structure by carbodiimide/GEE footprinting

    PubMed Central

    Kaur, Parminder; Tomechko, Sara; Kiselar, Janna; Shi, Wuxian; Deperalta, Galahad; Wecksler, Aaron T; Gokulrangan, Giridharan; Ling, Victor; Chance, Mark R

    2014-01-01

    Amino acid-specific covalent labeling is well suited to probe protein structure and macromolecular interactions, especially for macromolecules and their complexes that are difficult to examine by alternative means, due to size, complexity, or instability. Here we present a detailed account of carbodiimide-based covalent labeling (with GEE tagging) applied to a glycosylated monoclonal antibody therapeutic, which represents an important class of biologic drugs. Characterization of such proteins and their antigen complexes is essential to development of new biologic-based medicines. In this study, the experiments were optimized to preserve the structural integrity of the protein, and experimental conditions were varied and replicated to establish the reproducibility and precision of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include D, E, and the C-terminus, against the experimental surface accessibility data in order to understand the accuracy of the approach in providing an unbiased assessment of structure. Data from the protein were also compared to reactivity measures of several model peptides to explain sequence or structure-based variations in reactivity. The results highlight several advantages of this approach. These include: the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling (indicating that the label does not significantly perturb the structure of the protein), the high reproducibility of replicate experiments (<2 % variation in modification extent), the similar reactivity of the 3 target probe residues (as suggested by analysis of model peptides), and the overall positive and significant correlation of reactivity and solvent accessible surface area (the latter values predicted by the homology modeling). Attenuation of reactivity, in otherwise solvent accessible probes, is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. The results are also compared with data from hydroxyl radical-mediated oxidative footprinting on the same protein, showing that complementary information is gained from the 2 approaches, although the number of target residues in carbodiimide/GEE labeling is fewer. Overall, this approach is an accurate and precise method for assessing protein structure of biologic drugs. PMID:25484052

  16. Apparatus for making environmentally stable reactive alloy powders

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1996-12-31

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  17. Reactive uptake of NO3 by liquid and frozen organics

    NASA Astrophysics Data System (ADS)

    Moise, T.; Talukdar, R. K.; Frost, G. J.; Fox, R. W.; Rudich, Y.

    2002-01-01

    The reactive uptake of the NO3 radical by liquid and frozen organics was studied in a rotating wall flow tube coupled to a White cell. The organic liquids used included alkanes, alkenes, an alcohol, and carboxylic acids with conjugated and nonconjugated unsaturated bonds.. The reactive uptake coefficients, γ, of NO3 on n-hexadecane, 1-octadecene, 1-hexadecene, cis + trans 7-tetradecene, n-octanoic acid, 2,2,4,4,6,8,8 heptamethyl nonane, 1-octanol, cis, trans 9,11 and 10,12 octadecadienoic acid, cis-9, cis-12 octadecadienoic acid were determined. The reactive uptake coefficients measured with the organic liquids varied from 1.4 × 10-3 to 1.5 × 10-2. The uptake coefficients of NO3 by n-hexadecane and n-octanoic acid decreased by a factor of ~5 upon freezing. This behavior is explained by reaction occurring in the bulk of the organic liquid as well as on the surface. For the rest of the compounds the change in values of γ upon freezing of the liquids was within the experimental uncertainty. This is attributed to predominant uptake of NO3 by the top few molecular surface layers of the organic substrate and continuous replenishment of the surface layer by evaporation and/or mobility of the surface. These conclusions are corroborated by estimation of the diffuso-reactive length and solubility constant of NO3 in these liquids. The reactivity of NO3 with the organic surfaces is shown to correlate well with the known gas-phase chemistry of NO3. The effect on the atmospheric chemistry of the NO3 radical due to its interaction with organic aerosols is studied using an atmospheric box model applying realistic atmospheric scenarios. The inclusion of NO3 uptake on organic aerosol can decrease the NO3 lifetime by 10% or more.

  18. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    PubMed

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  19. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    EPA Pesticide Factsheets

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  20. Crossing the dividing surface of transition state theory. IV. Dynamical regularity and dimensionality reduction as key features of reactive trajectories

    NASA Astrophysics Data System (ADS)

    Lorquet, J. C.

    2017-04-01

    The atom-diatom interaction is studied by classical mechanics using Jacobi coordinates (R, r, θ). Reactivity criteria that go beyond the simple requirement of transition state theory (i.e., PR* > 0) are derived in terms of specific initial conditions. Trajectories that exactly fulfill these conditions cross the conventional dividing surface used in transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) only once. Furthermore, they are observed to be strikingly similar and to form a tightly packed bundle of perfectly collimated trajectories in the two-dimensional (R, r) configuration space, although their angular motion is highly specific for each one. Particular attention is paid to symmetrical transition states (i.e., either collinear or T-shaped with C2v symmetry) for which decoupling between angular and radial coordinates is observed, as a result of selection rules that reduce to zero Coriolis couplings between modes that belong to different irreducible representations. Liapunov exponents are equal to zero and Hamilton's characteristic function is planar in that part of configuration space that is visited by reactive trajectories. Detailed consideration is given to the concept of average reactive trajectory, which starts right from the saddle point and which is shown to be free of curvature-induced Coriolis coupling. The reaction path Hamiltonian model, together with a symmetry-based separation of the angular degree of freedom, provides an appropriate framework that leads to the formulation of an effective two-dimensional Hamiltonian. The success of the adiabatic approximation in this model is due to the symmetry of the transition state, not to a separation of time scales. Adjacent trajectories, i.e., those that do not exactly fulfill the reactivity conditions have similar characteristics, but the quality of the approximation is lower. At higher energies, these characteristics persist, but to a lesser degree. Recrossings of the dividing surface then become much more frequent and the phase space volumes of initial conditions that generate recrossing-free trajectories decrease. Altogether, one ends up with an additional illustration of the concept of reactive cylinder (or conduit) in phase space that reactive trajectories must follow. Reactivity is associated with dynamical regularity and dimensionality reduction, whatever the shape of the potential energy surface, no matter how strong its anharmonicity, and whatever the curvature of its reaction path. Both simplifying features persist during the entire reactive process, up to complete separation of fragments. The ergodicity assumption commonly assumed in statistical theories is inappropriate for reactive trajectories.

  1. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  2. Mechanisms of deep benzene oxidation on the Pt(1 1 1) surface using temperature-programmed reaction methods

    NASA Astrophysics Data System (ADS)

    Marsh, Anderson L.; Gland, John L.

    2003-06-01

    The catalytic oxidation of benzene on the Pt(1 1 1) surface has been characterized using temperature-programmed reaction spectroscopy (TPRS) over a wide range of benzene and oxygen coverages. Coadsorbed atomic oxygen and benzene are the primary reactants on the surface during the initial oxidation step. Benzene is oxidized over the 300-500 K range to produce carbon dioxide and water. Carbon-hydrogen and carbon-carbon bond activation are clearly rate-limiting steps for these reactions. Preferential oxidation causes depletion of bridge-bonded benzene, suggesting enhanced reactivity in this bonding configuration. When oxygen is in excess on the surface, all of the surface carbon and hydrogen is oxidized. When benzene is in excess on the surface, hydrogen produced by dehydrogenation is desorbed after all of the surface oxygen has been consumed. Repulsive interactions between benzene and molecular oxygen dominate at low temperatures. Preadsorption of oxygen inhibits adsorption of less reactive benzene in threefold hollow sites. The desorption temperature of this non-reactive chemisorbed benzene decreases and overlaps with the multilayer desorption peak with increasing oxygen exposure. The results presented here provide a clear picture of rate-limiting steps during deep oxidation of benzene on the Pt(1 1 1) surface.

  3. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, John; Xiong, Haifeng; DelaRiva, Andrew

    2016-07-08

    Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/ aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoringmore » the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.« less

  4. Method for atmospheric pressure reactive atom plasma processing for surface modification

    DOEpatents

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  5. Reactivity of O2 on Pd/Ru(0001) and PdRu/Ru(0001) surface alloys

    NASA Astrophysics Data System (ADS)

    Farías, D.; Minniti, M.; Miranda, R.

    2017-05-01

    The reactivity of a Pd monolayer epitaxially grown on Ru(0001) toward O2 has been investigated by molecular beam techniques. O2 initial sticking coefficients were determined using the King and Wells method in the incident energy range of 40-450 meV and for sample temperatures of 100 K and 300 K, and compared to the corresponding values measured on the clean Ru(0001) and Pd(111) surfaces. In contrast to the high reactivity shown by Ru(0001) at 100 K, the Pd/Ru(0001) system exhibits a monotonic decrease in the sticking probability of O2 as a function of normal incident energy. At room temperature, the system was found to be inert. Thermal desorption measurements show that O2 is adsorbed molecularly at 100 K. A completely different behaviour has been measured for the Pd0.95Ru0.05/Ru(0001) surface alloy. On this surface, the O2 sticking probability increases with incident energy and resembles the one observed on the clean Ru(0001) surface, even at 300 K. Thermal desorption measurements point to dissociative adsorption of O2 in this system. Both the charge transfer from the Pd to the Ru substrate and the compressive strain on the Pd monolayer contribute to decrease in the reactivity of the Pd/Ru(0001) system well below those of both Ru(0001) and Pd(111).

  6. Sensitivity of mineral dissolution rates to physical weathering : A modeling approach

    NASA Astrophysics Data System (ADS)

    Opolot, Emmanuel; Finke, Peter

    2015-04-01

    There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area, solution composition, temperature, mineral composition) and the physical weathering module in the SoilGen model which calculates the evolution of particle size (used for surface area calculation) as influenced by temperature gradients. The solution composition in the SoilGen model is also influenced by other processes such as atmospheric inputs, organic matter decomposition, cation exchange, secondary mineral formation and leaching. We then apply this coupled mechanism on a case study involving 3 loess soil profiles to analyze the sensitivity of mineral weathering rates to physical weathering. Initial results show some sensitivity but not that dramatic. The less sensitivity was attributed to dominance of resistant primary minerals (> 70% quartz). Scenarios with different sets of mineralogy will be tested and sensitivity results in terms of silicate mineral dissolution rates and CO2-consumption will be presented in the conference. References Sverdrup H and Warfvinge P., 1993. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8:273-283. White, A.F., 2009. Natural weathering rates of silicate minerals. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering and Soils. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. vol. 5. Elsevier-Pergamon, Oxford, pp. 133-168.

  7. Kinetic and mechanistic reactivity. Isoprene impact on ozone levels in an urban area near Tijuca Forest, Rio de Janeiro.

    PubMed

    da Silva, Cleyton Martins; da Silva, Luane Lima; Corrêa, Sergio Machado; Arbilla, Graciela

    2016-12-01

    Volatile organic compounds (VOCs) play a central role in atmospheric chemistry. In this work, the kinetic and mechanistic reactivities of VOCs are analyzed, and the contribution of the organic compounds emitted by anthropogenic and natural sources is estimated. VOCs react with hydroxyl radicals and other photochemical oxidants, such as ozone and nitrate radicals, which cause the conversion of NO to NO 2 in various potential reaction paths, including photolysis, to form oxygen atoms, which generate ozone. The kinetic reactivity was evaluated based on the reaction coefficients for hydroxyl radicals with VOCs. The mechanistic reactivity was estimated using a detailed mechanism and the incremental reactivity scale that Carter proposed. Different scenarios were proposed and discussed, and a minimum set of compounds, which may describe the tropospheric reactivity in the studied area, was determined. The role of isoprene was analyzed in terms of its contribution to ozone formation.

  8. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution. The results from the static experiments will be used to model and predict the impacts of mineral sorption and biological activity on OM persistence in the context of dynamic saturation conditions and heterogeneous material properties.

  9. Detecting voids in a 0.6 m coal seam, 7 m deep, using seismic reflection

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.

    1991-01-01

    Surface collapse over abandoned subsurface coal mines is a problem in many parts of the world. High-resolution P-wave reflection seismology was successfully used to evaluate the risk of an active sinkhole to a main north-south railroad line in an undermined area of southeastern Kansas, USA. Water-filled cavities responsible for sinkholes in this area are in a 0.6 m thick coal seam, 7 m deep. Dominant reflection frequencies in excess of 200 Hz enabled reflections from the coal seam to be discerned from the direct wave, refractions, air wave, and ground roll on unprocessed field files. Repetitive void sequences within competent coal on three seismic profiles are consistent with the "room and pillar" mining technique practiced in this area near the turn of the century. The seismic survey showed that the apparent active sinkhole was not the result of reactivated subsidence but probably erosion. ?? 1991.

  10. Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta

    The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less

  11. Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films

    DOE PAGES

    Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta; ...

    2017-04-17

    The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less

  12. Fixation of CO 2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations

    NASA Astrophysics Data System (ADS)

    Larachi, Faïçal; Daldoul, Insaf; Beaudoin, Georges

    2010-06-01

    A detailed study of low-pressure gas-solid carbonation of chrysotile in dry and humid environments has been carried out. The evolving structure of chrysotile and its reactivity as a function of temperature (300-1200 °C), humidity (0-10 mol %) and CO 2 partial pressure (20-67 mol %), thermal preconditioning, and alkali metal doping (Li, Na, K, Cs) have been monitored through in-situ X-ray photoelectron spectroscopy, isothermal thermogravimetry/mass spectrometry, ex-situ X-ray powder diffraction, and water and nitrogen adsorption/desorption. Based on chrysotile crystalline structure and its nanofibrilar orderliness, a multistep carbonation mechanism was elaborated to explain the role of water during chrysotile partial amorphisation, formation of periclase, brucite, and hydromagnesite crystalline phases, and surface passivation thereof, during humid carbonation. The weak carbonation reactivity was rationalized in terms of incongruent CO 2 van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of chrysotile. This lack of reactivity appeared to be relatively indifferent to the facilitated water crisscrossing during chrysotile core dehydroxylation/pseudo-amorphisation and surface hydroxylation induced product stabilization during humid carbonation. Thermodynamic stability domains of the species observed at low pressure have been thoroughly discussed on the basis of X-ray powder diffraction patterns and X-ray photoelectron spectroscopy evidence. The highest carbon dioxide uptake occurred at 375 °C in moist atmospheres. On the basis of chrysotile fresh N 2 BET area, nearly 15 atoms out of 100 of the surface chrysotile brucitic Mg moiety have been carbonated at this temperature which was tantamount to the carbonation of about 2.5 at. % of the total brucitic Mg moiety in chrysotile. The carbonation of brucite (Mg(OH) 2) impurities coexisting in chrysotile was minor and estimated to contribute by less than 17.6 at. % of the total converted magnesium. The presence of cesium traces (3 Cs atoms per 100 Mg atoms) was found to boost chrysotile carbonation capacity by a factor 2.7.

  13. Plasma & reactive ion etching to prepare ohmic contacts

    DOEpatents

    Gessert, Timothy A.

    2002-01-01

    A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

  14. Absorbent pads for Containment, Neutralization, and Clean-Up of Environmental Spills Containing Chemically-Reactive Agents

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    1997-01-01

    A pad for cleaning up liquid spills is described which contains a porous surface covering, and an absorbent interior containing chemically reactive reagents for neutralizing noxious chemicals within the spilled liquid. The porous surface and the absorbent component would normally consist of chemically resistant materials allowing tentative spill to pass. The absorbent interior which contains the neutralizing reagents can but is not required to be chemically resilient and conducts the liquid chemical spill towards the absorbent interior containing the chemically reactive reagents where the dangerous and undesirable chemicals within the chemical spill are then neutralized as well as removed from the premises.

  15. Recent spectroscopic findings concerning clay/water interactions at low humidity: Possible applications to models of Martian surface reactivity

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Bishop, J.; Howard, L.; Scattergood, T. W.

    1991-01-01

    A feasibility study assessing the utility of the adaptation of near infrared correlation spectroscopy to quantifying iron and adsorbed water in some clay-based Mars soil analog materials (MarSAM's). The work was intended to constitute Phase 1 of an approach to identifying optical analytical wavelength regions, not only for important mineral classes, but for chemically active centers within them. Many of these centers are common to unrelated mineral classes and of disproportionate influence relative to the mineral structure as a whole in determining the surface reactivity of mineral surfaces. We previously reported linearity between reflectance and total iron and total moisture over a large range of both key variables. We also discovered interesting relationships between the intensity of iron bands and the relative humidity of the systems. These relationships were confirmed. We also show that, in the low humidity range, reflectance is linearly dependent on a different kind of water from that best representing the full humidity range (the kind of water associated, in clays, with surface acidity). These relationships and the sensitivity and capability of quantitation of near infrared data indicate high promise with the production of reactive surface intermediates of products of surface reactions.

  16. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less

  17. A facile and efficient method of enzyme immobilization on silica particles via Michael acceptor film coatings: immobilized catalase in a plug flow reactor.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Genc, Aysenur; Ozalp, V Cengiz; Ince, Ahmet; Bicak, Niyazi

    2016-06-01

    A novel method was developed for facile immobilization of enzymes on silica surfaces. Herein, we describe a single-step strategy for generating of reactive double bonds capable of Michael addition on the surfaces of silica particles. This method was based on reactive thin film generation on the surfaces by heating of impregnated self-curable polymer, alpha-morpholine substituted poly(vinyl methyl ketone) p(VMK). The generated double bonds were demonstrated to be an efficient way for rapid incorporation of enzymes via Michael addition. Catalase was used as model enzyme in order to test the effect of immobilization methodology by the reactive film surface through Michael addition reaction. Finally, a plug flow type immobilized enzyme reactor was employed to estimate decomposition rate of hydrogen peroxide. The highly stable enzyme reactor could operate continuously for 120 h at 30 °C with only a loss of about 36 % of its initial activity.

  18. Preliminary Analysis of Pyrite Reactivity Under Venusian Temperature and Atmosphere

    NASA Technical Reports Server (NTRS)

    Radoman-Shaw, B. G.; Harvey, R. P.; Jacobson, N. S.; Costa, G. C. C.

    2015-01-01

    Measurements of Venus surface chemistry suggest a basaltic composition with a predominantly CO2 atmosphere. In order to understand the reactivity of certain possible mineral species on the surface, previous simulation chambers conduct experiments at 1 atmosphere with a simplified CO2 atmosphere. Following this procedure, pyrite (FeS2) samples are used to estimate the reactivity of sulfide minerals under a Venusian atmosphere and climate. Sulfurous gas species have been identified and quantified in the Venusian atmosphere, and sulfurous gas and mineral species are known to be created through volcanism, which is suggested to still occur on the surface of Venus. This experimentation is necessary to constrain reactions that could occur between the surface and atmosphere of Venus to understand terrestrial geology in a thick and hot greenhouse atmosphere. Quantifying this reaction can lead to approximations necessary for further experimentation in more complex environments such as those in the GEER chamber at Glenn Research Center that can simulate pressure along with temperature and a more inclusive and representative Venusian atmosphere.

  19. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    DOEpatents

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  20. Predictive model for convective flows induced by surface reactivity contrast

    NASA Astrophysics Data System (ADS)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  1. Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2014-03-01

    The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.

  2. Vapor-Phase Nanopatterning of Aminosilanes with Electron Beam Lithography: Understanding and Minimizing Background Functionalization.

    PubMed

    Fetterly, Christopher R; Olsen, Brian C; Luber, Erik J; Buriak, Jillian M

    2018-04-24

    Electron beam lithography (EBL) is a highly precise, serial method for patterning surfaces. Positive tone EBL resists enable patterned exposure of the underlying surface, which can be subsequently functionalized for the application of interest. In the case of widely used native oxide-capped silicon surfaces, coupling an activated silane with electron beam lithography would enable nanoscale chemical patterning of the exposed regions. Aminoalkoxysilanes are extremely useful due to their reactive amino functionality but have seen little attention for nanopatterning silicon surfaces with an EBL resist due to background contamination. In this work, we investigated three commercial positive tone EBL resists, PMMA (950k and 495k) and ZEP520A (57k), as templates for vapor-phase patterning of two commonly used aminoalkoxysilanes, 3-aminopropyltrimethoxysilane (APTMS) and 3-aminopropyldiisopropylethoxysilane (APDIPES). The PMMA resists were susceptible to significant background reaction within unpatterned areas, a problem that was particularly acute with APTMS. On the other hand, with both APTMS and APDIPES exposure, unpatterned regions of silicon covered by the ZEP520A resist emerged pristine, as shown both with SEM images of the surfaces of the underlying silicon and through the lack of electrostatically driven binding of negatively charged gold nanoparticles. The ZEP520A resist allowed for the highly selective deposition of these alkoxyaminosilanes in the exposed areas, leaving the unpatterned areas clean, a claim also supported by contact angle measurements with four probe liquids and X-ray photoelectron spectroscopy (XPS). We investigated the mechanistic reasons for the stark contrast between the PMMA resists and ZEP520A, and it was found that the efficacy of resist removal appeared to be the critical factor in reducing the background functionalization. Differences in the molecular weight of the PMMA resists and the resulting influence on APTMS diffusion through the resist films are unlikely to have a significant impact. Area-selective nanopatterning of 15 nm gold nanoparticles using the ZEP520A resist was demonstrated, with no observable background conjugation noted in the unexposed areas on the silicon surface by SEM.

  3. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.

    PubMed

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T

    2002-12-15

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation.

  4. Assessment of nitrogen ceilings for Dutch agricultural soils to avoid adverse environmental impacts.

    PubMed

    de Vries, W; Kros, H; Oenema, O; Erisman, J W

    2001-11-09

    In the Netherlands, high traffic density and intensive animal husbandry have led to high emissions of reactive nitrogen (N) into the environment. This leads to a series of environmental impacts, including: (1) nitrate (NO3) contamination of drinking water, (2) eutrophication of freshwater lakes, (3) acidification and biodiversity impacts on terrestrial ecosystems, (4) ozone and particle formation affecting human health, and (5) global climate change induced by emissions of N2O. Measures to control reactive N emissions were, up to now, directed towards those different environmental themes. Here we summarize the results of a study to analyse the agricultural N problem in the Netherlands in an integrated way, which means that all relevant aspects are taken into account simultaneously. A simple N balance model was developed, representing all crucial processes in the N chain, to calculate acceptable N inputs to the farm (so-called N ceiling) and to the soil surface (application in the field) by feed concentrates, organic manure, fertiliser, deposition, and N fixation. The N ceilings were calculated on the basis of critical limits for NO 3 concentrations in groundwater, N concentrations in surface water, and ammonia (NH3) emission targets related to the protection of biodiversity of natural areas. Results show that in most parts of the Netherlands, except the western and the northern part, the N ceilings are limited by NH 3 emissions, which are derived from critical N loads for nature areas, rather than limits for both ground- and surface water. On the national scale, the N ceiling ranges between 372 and 858 kton year(-1) depending on the choice of critical limits. The current N import is 848 kton year(-1). A decrease of nearly 60% is needed to reach the ceilings that are necessary to protect the environment against all adverse impacts of N pollution from agriculture.

  5. How reactive fluids alter fracture walls and affect shale-matrix accessibility

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Deng, H.; Peters, C. A.

    2014-12-01

    Predictions of mass transfer across fracture boundaries and fluid flow in fracture networks provide fundamental inputs into risk and life cycle assessments of geologic energy technologies including oil and gas extraction, geothermal energy systems and geologic CO2 storage. However, major knowledge gaps exist due to the lack of experimental observations of how reactive fluids alter the pore structures and accessible surface area within fracture boundaries that control the mass transfer of organics, metals and salts, and influence fluid flow within the fracture. To investigate the fracture and rock matrix properties governing fracture boundary alteration, we developed a new flow-through cell that enables time-dependent 2D x-ray imaging of mineral dissolution and/or precipitation at a fracture surface. The parallel plate design provides an idealized fracture geometry to investigate the relationship between flow rate, reaction rate, and mineral spatial heterogeneity and variation. In the flow-cell, a carbonate-rich sample of Eagle Ford shale was reacted with acidified brine. The extent and rate of mineral dissolution were correlated with calcite abundance relative to less soluble silicate minerals. Three-dimensional x-ray tomography of the reacted fracture wall shows how calcite dissolution left behind a porous network of silicate minerals. And while this silicate network essentially preserved the location of the initial fracture wall, the pore network structures within the fracture boundary were dramatically altered, such that the accessible surface area of matrix components increased significantly. In a second set of experiments with a limestone specimen, however, the extent of dissolution and retreat of the fracture wall was not strictly correlated with the occurrence of calcite. Instead, the pattern and extent of dissolution suggested secondary causes such as calcite morphology, the presence of argillaceous minerals and other diagenetic features. Our experiments show that while calcite dissolution is the primary geochemical driver of fracture wall alterations, hydrodynamic properties and matrix accessibility within fracture boundaries evolve based on a complex relationship between mineral spatial heterogeneity and variation, fluid chemistry and flow rate.

  6. Environmentally stable reactive alloy powders and method of making same

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1998-09-22

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  7. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls

    NASA Astrophysics Data System (ADS)

    Kleinhammes, Alfred; Wagner, George W.; Kulkarni, Harsha; Jia, Yuanyuan; Zhang, Qi; Qin, Lu-Chang; Wu, Yue

    2005-08-01

    Titanate nanoscrolls, a recently discovered variant of TiO 2 nanocrystals, are tested as reactive sorbent for chemical warfare agent (CWA) decontamination. The large surface area of the uncapped tubules provides the desired rapid absorption of the contaminant while water molecules, intrinsic constituents of titanate nanoscrolls, provide the necessary chemistry for hydrolytic reaction. In this study the decomposition of 2-chloroethyl ethylsulfide (CEES), a simulant for the CWA mustard, was monitored using 13C NMR. The NMR spectra reveal reaction products as expected from the hydrolysis of CEES. This demonstrates that titanate nanoscrolls could potentially be employed as a decontaminant for CWAs.

  8. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  9. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  10. Hepatitis B reactivation and timing for prophylaxis

    PubMed Central

    Tuna, Nazan; Karabay, Oguz

    2015-01-01

    It is known that immunotherapy and cancer chemotherapy may cause hepatitis B virus (HBV) reactivation in hepatitis B surface antigen carriers and inactive chronic hepatitis B patients. Guidelines recommend antiviral prophylaxis regardless of HBV DNA levels to prevent reactivation. We read from the article written by Liu et al that Lamivudine was given inadequate time for antiviral prophylaxis. PMID:25717269

  11. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of ferrihydrite can be rationalized based on the estimated proton affinity constant for singly-coordinated surface groups. Nanoparticles have an enhanced surface charge. The charging behavior of Fh nanoparticles can be described satisfactory using the capacitance of a spherical Stern layer condenser in combination with a diffuse double layer for flat plates.

  12. Selective adsorption of toluene-3,4-dithiol on Si(553)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Suchkova, Svetlana; Hogan, Conor; Bechstedt, Friedhelm; Speiser, Eugen; Esser, Norbert

    2018-01-01

    The adsorption of small organic molecules onto vicinal Au-stabilized Si(111) surfaces is shown to be a versatile route towards controlled growth of ordered organic-metal hybrid one-dimensional nanostructures. Density functional theory is used to investigate the site-specific adsorption of toluene-3,4-dithiol (TDT) molecules onto the clean Si(553)-Au surface and onto a co-doped surface whose steps are passivated by hydrogen. We find that the most reactive sites involve bonding to silicon at the step edge or on the terraces, while gold sites are relatively unfavored. H passivation and TDT adsorption both induce a controlled charge redistribution within the surface layer, causing the surface metallicity, electronic structure, and chemical reactivity of individual adsorption sites to be substantially altered.

  13. Diffusion and surface alloying of gradient nanostructured metals

    PubMed Central

    Lu, Ke

    2017-01-01

    Gradient nanostructures (GNSs) have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed. PMID:28382244

  14. Controlling Material Reactivity Using Architecture.

    PubMed

    Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M

    2016-03-09

    3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Antelo, Juan; van Rotterdam, A. M. D.(Debby); van Riemsdijk, Willem H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples and its interaction with natural organic matter (NOM) is essential for the understanding bioavailability, toxicity, and transport of elements in the natural environment. In part I of this series ( Hiemstra et al., 2010), a method is presented that allows the determination of the effective reactive surface area ( A, m 2/g soil) of the oxide particles of natural samples which uses a native probe ion (phosphate) and a model oxide (goethite) as proxy. In soils, the natural oxide particles are generally embedded in a matrix of natural organic matter (NOM) and this will affect the ion binding properties of the oxide fraction. A remarkably high variation in the natural phosphate loading of the oxide surfaces ( Γ, μmol/m 2) is observed in our soils and the present paper shows that it is due to surface complexation of NOM, acting as a competitor via site competition and electrostatic interaction. The competitive interaction of NOM can be described with the charge distribution (CD) model by defining a ≡NOM surface species. The interfacial charge distribution of this ≡NOM surface species can be rationalized based on calculations done with an evolved surface complexation model, known as the ligand and charge distribution (LCD) model. An adequate choice is the presence of a charge of -1 v.u. at the 1-plane and -0.5 v.u. at the 2-plane of the electrical double layer used (Extended Stern layer model). The effective interfacial NOM adsorption can be quantified by comparing the experimental phosphate concentration, measured under standardized field conditions (e.g. 0.01 M CaCl 2), with a prediction that uses the experimentally derived surface area ( A) and the reversibly bound phosphate loading ( Γ, μmol/m 2) of the sample (part I) as input in the CD model. Ignoring the competitive action of adsorbed NOM leads to a severe under-prediction of the phosphate concentration by a factor ˜10 to 1000. The calculated effective loading of NOM is low at a high phosphate loading ( Γ) and vice versa, showing the mutual competition of both constituents. Both constituents in combination usually dominate the surface loading of natural oxide fraction of samples and form the backbone in modeling the fate of other (minor) ions in the natural environment. Empirically, the effective NOM adsorption is found to correlate well to the organic carbon content (OC) of the samples. The effective NOM adsorption can also be linked to DOC. For this, a Non-Ideal Competitive adsorption (NICA) model is used. DOC is found to be a major explaining factor for the interfacial loading of NOM as well as phosphate. The empirical NOM-OC relation or the parameterized NICA model can be used as an alternative for estimating the effective NOM adsorption to be implemented in the CD model for calculation of the surface complexation of field samples. The biogeochemical impact of the NOM-PO 4 interaction is discussed.

  16. Evolution of Active Sites in Pt-Based Nanoalloy Catalysts for the Oxidation of Carbonaceous Species by Combined in Situ Infrared Spectroscopy and Total X-ray Scattering.

    PubMed

    Petkov, Valeri; Maswadeh, Yazan; Lu, Aolin; Shan, Shiyao; Kareem, Haval; Zhao, Yinguang; Luo, Jin; Zhong, Chuan-Jian; Beyer, Kevin; Chapman, Karena

    2018-04-04

    We present results from combined in situ infrared spectroscopy and total X-ray scattering studies on the evolution of catalytically active sites in exemplary binary and ternary Pt-based nanoalloys during a sequence of CO oxidation-reactivation-CO oxidation reactions. We find that when within a particular compositional range, the fresh nanoalloys may exhibit high catalytic activity for low-temperature CO oxidation. Using surface-specific atomic pair distribution functions (PDFs) extracted from the in situ total X-ray scattering data, we find that, regardless of their chemical composition and initial catalytic activity, the fresh nanoalloys suffer a significant surface structural disorder during CO oxidation. Upon reactivation in oxygen atmosphere, the surface of used nanoalloy catalysts both partially oxidizes and orders. Remarkably, it largely retains its structural state when the nanoalloys are reused as CO oxidation catalysts. The seemingly inverse structural changes of studied nanoalloy catalysts occurring under CO oxidation and reactivation conditions affect the active sites on their surface significantly. In particular, through different mechanisms, both appear to reduce the CO binding strength to the nanoalloy's surface and thus increase the catalytic stability of the nanoalloys. The findings provide clues for further optimization of nanoalloy catalysts for the oxidation of carbonaceous species through optimizing their composition, activation, and reactivation. Besides, the findings demonstrate the usefulness of combined in situ infrared spectroscopy and total X-ray scattering coupled to surface-specific atomic PDF analysis to the ongoing effort to produce advanced catalysts for environmentally and technologically important applications.

  17. Surface profile changes of scuffed bearing surfaces. [before and after acid treatment

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Fung, S. S.; Jones, W. R., Jr.

    1982-01-01

    A phase locked interference microscope capable of resolving depth differences to 30 A and planar displacements of 6000 A was constructed for the examination of the profiles of bearing surfaces without physical contact. This instrument was used to determine surface chemical reactivity by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than unscuffed ones, but bearing surfaces which had been previously exposed to lubricants containing an organic chloride reacted much more slowly. In a separate series of experiments, a number of stainless steel plates were heated in a nitrogen atmosphere to different temperatures and their reactivity examined later at room temperature. The change of surface contour as a result of the probe reaction followed an Arrhenius type relation with respect to heat treatment temperature. This result could have implications on the scuffing mechanism.

  18. Controlling Surface Termination and Facet Orientation in Cu2O Nanoparticles for High Photocatalytic Activity: A Combined Experimental and Density Functional Theory Study.

    PubMed

    Su, Yang; Li, Hongfei; Ma, Hanbin; Robertson, John; Nathan, Arokia

    2017-03-08

    Cu 2 O nanoparticles with controllable facets are of great significance for photocatalysis. In this work, the surface termination and facet orientation of Cu 2 O nanoparticles are accurately tuned by adjusting the amount of hydroxylamine hydrochloride and surfactant. It is found that Cu 2 O nanoparticles with Cu-terminated (110) or (111) surfaces show high photocatalytic activity, while other exposed facets show poor reactivity. Density functional theory simulations confirm that sodium dodecyl sulfate surfactant can lower the surface free energy of Cu-terminated surfaces, increase the density of exposed Cu atoms at the surfaces and thus benefit the photocatalytic activity. It also shows that the poor reactivity of the Cu-terminated Cu 2 O (100) surface is due to the high energy barrier of holes at the surface region.

  19. Templating Routes to Supported Oxide Catalysts by Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notestein, Justin M.

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas.more » First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MO x-SiO 2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO 2-Al 2O 3 acid catalysts and to control reactant selectivity in Al 2O 3-TiO 2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported oxide catalysts for energy applications.« less

  20. Recovery of GaN surface after reactive ion etching

    NASA Astrophysics Data System (ADS)

    Fan, Qian; Chevtchenko, S.; Ni, Xianfeng; Cho, Sang-Jun; Morko, Hadis

    2006-02-01

    Surface properties of GaN subjected to reactive ion etching and the impact on device performance have been investigated by surface potential, optical and electrical measurements. Different etching conditions were studied and essentially high power levels and low chamber pressures resulted in higher etch rates accompanying with the roughening of the surface morphology. Surface potential for the as-grown c-plane GaN was found to be in the range of 0.5~0.7 V using Scanning Kevin Probe Microscopy. However, after reactive ion etching at a power level of 300 W, it decreased to 0.1~0.2 V. A nearly linear reduction was observed on c-plane GaN with increasing power. The nonpolar a-plane GaN samples also showed large surface band bending before and after etching. Additionally, the intensity of the near band-edge photoluminescence decreased and the free carrier density increased after etching. These results suggest that the changes in the surface potential may originate from the formation of possible nitrogen vacancies and other surface oriented defects and adsorbates. To recover the etched surface, N II plasma, rapid thermal annealing, and etching in wet KOH were performed. For each of these methods, the surface potential was found to increase by 0.1~0.3 V, also the reverse leakage current in Schottky diodes fabricated on treated samples was reduced considerably compared with as-etched samples, which implies a partial-to-complete recovery from the plasma-induced damage.

  1. Monitoring the degrafting of polyelectrolyte brushes by using surface gradients

    NASA Astrophysics Data System (ADS)

    Ko, Yeongun; Genzer, Jan

    Polymer brushes comprise densely grafted polymer chains on surfaces, which possess high stability and high concentration of reactive centers per unit area compared to physisorbed polymer film. Polymer brushes are employed in many applications, including anti-fouling surfaces, cell adhesive surfaces, responsive surfaces, low-friction surfaces, etc. Recently, researchers reported that charged (or chargeable) polymer brushes can be degrafted from substrate while incubated in buffer solutions. Based on previous experiments conducted in our group and by others, we assume that chain degrafting results from the hydrolysis of Si-O groups in head-group of the initiator and/or the ester groups in main body of the initiator. The kinetic of hydrolysis is affected by mechanical forces acting on the initiator. Those forces depend on the molecular weight and the grafting density of the brush, and the concentration and distribution of charges along the macromolecule (tuned by pH - for weak electrolytes - and concentration of external salt). In this work, we study the stability of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) brushes in two solvents (ethanol and water) at various pH values in water and under different levels of external salt concentration. National Science Foundation.

  2. A plastic flow model for the Acquara - Vadoncello landslide in Senerchia, Southern Italy

    USGS Publications Warehouse

    Savage, W.; Wasowski, J.

    2006-01-01

    A previously developed model for stress and velocity fields in two-dimensional Coulomb plastic materials under self-weight and pore pressure predicts that long, shallow landslides develop slip surfaces that manifest themselves as normal faults and normal fault scarps at the surface in areas of extending flow and as thrust faults and thrust fault scarps at the surface in areas of compressive flow. We have applied this model to describe the geometry of slip surfaces and ground stresses developed during the 1995 reactivation of the Acquara - Vadoncello landslide in Senerchia, southern Italy. This landslide is a long and shallow slide in which regions of compressive and extending flow are clearly identified. Slip surfaces in the main scarp region of the landslide have been reconstructed using surface surveys and subsurface borehole logging and inclinometer observations made during retrogression of the main scarp. Two of the four inferred main scarp slip surfaces are best constrained by field data. Slip surfaces in the toe region are reconstructed in the same way and three of the five inferred slip surfaces are similarly constrained. The location of the basal shear surface of the landslide is inferred from borehole logging and borehole inclinometry. Extensive data on material properties, landslide geometries, and pore pressures collected for the Acquara - Vadoncello landslide give values for cohesion, friction angle, and unit weight, plus average basal shear-surface slopes, and pore-pressures required for modelling slip surfaces and stress fields. Results obtained from the landslide-flow model and the field data show that predicted slip surface shapes are consistent with inferred slip surface shapes in both the extending flow main scarp region and in the compressive flow toe region of the Acquara - Vadoncello landslide. Also predicted stress distributions are found to explain deformation features seen in the toe and main scarp regions of the landslide. ?? 2005 Elsevier B.V. All rights reserved.

  3. Micrometer sized immobilization of protein molecules onto quartz, silicium and gold.

    NASA Astrophysics Data System (ADS)

    Petersen, Steffen B.; Neves-Petersen, Maria Teresa; Klitgaard, Søren; Duroux, Meg Crookshanks

    2006-02-01

    We demonstrate that ultraviolet light can be used to make sterically oriented covalent immobilization of a large variety of protein molecules onto either gold or thiolated quartz or silicium. The reaction mechanism behind the reported new technology involves light induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol reactive surfaces. The protein molecules in general retain their function. The size of the immobilization spot is determined by the dimension of the UV beam. In principle, the spot size may be as small as 1 micrometer or less. We have developed the necessary technology for preparing large protein arrays of enzymes and fragments of monoclonal antibodies. Dedicated Image Processing Software has been developed for making quality assessment of the protein arrays. A multitude of important application areas such as drug carriers and drug delivery, bioelectronics, carbon nanotubes, nanoparticles as well as protein glue are discussed.

  4. Experimental laboratory measurement of thermophysical properties of selected coal types

    NASA Technical Reports Server (NTRS)

    Lloyd, W. G.

    1979-01-01

    A number of bituminous coals of moderate to high plasticity were examined, along with portions of their extrudates from the JPL 1.5-inch 850 F screw extruder. Portions of the condensed pyrolysis liquids released during extrusion, and of the gaseous products formed during extrusion were also analyzed. In addition to the traditional determinations, the coals and extrudates were examined in terms of microstructure (especially extractable fractions), thermal analysis (especially that associated with the plastic state), and reactivity towards thermal and catalyzed hydroliquefaction. The process of extrusion increases the fixed carbon content of coals by about 5% and tends to increase the surface area. Coals contaning 25% or more DMF-extractable material show an increase in extractables as a result of extrusion; those initially containing less than 20% extractables show a decrease as a result of extrusion. Both the raw and extruded samples of Kentucky #9 coal are highly reactive towards hydroliquefaction, undergoing conversions of 75 to 80% in 15 min and 85-94% in 60 min in a stirred clave.

  5. Detailed kinetics of titanium nitride synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, H.; Hlavacek, V.

    1995-02-01

    A thermogravimetric analyzer is used to study the synthesis of TiN from Ti powder over a wide range of temperature, conversion and heating rate, and for two Ti precursor powders with different morphologies. Conversions to TiN up to 99% are obtained with negligible oxygen contamination. Nonisothermal initial rate and isothermal data are used in a nonlinear least-squares minimization to determine the most appropriate rate law. The logarithmic rate law offers an excellent agreement between the experimental and calculated conversions to TiN and can predict afterburning, which is an important experimentally observed phenomenon. Due to the form of the logarithmic ratemore » law, the observed activation energy is a function of effective particle size, extent of conversion, and temperature even when the intrinsic activation energy remains constant. This aspect explains discrepancies among activation energies obtained in previous studies. The frequently used sedimentation particle size is a poor measure of the powder reactivity. The BET surface area indicates the powder reactivity much better.« less

  6. Pozzolanic Characterization Of Waste Rice Husk Ash (RHA) From Muar, Malaysia

    NASA Astrophysics Data System (ADS)

    Hadipramana, J.; Riza, F. V.; Rahman, I. A.; Loon, L. Y.; Adnan, S. H.; Zaidi, A. M. A.

    2016-11-01

    Investigation of Rice Husk Ash (RHA) thoroughly under controlled burning is regular issue to obtain result to produce the amorphous silica that has high pozzolanic reactivity characteristic. This paper offered an observation about characteristic of ground and un-ground of un-controlled burning temperature RHA that were taken from rice millings in Muar, Johor Malaysia. Such tests as X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analysis and Specific Area Surface, Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron microscope (SEM) were conducted in this investigation to carry out the characteristic of RHA samples. The results show that the RHA was consist approximately 89.90% of silica and the RHA possessed the amorphous particle were dominant than its crystalline part. This proves that the RHA has a big potential as a pozzolanic material considering the silica content and porous structure. In addition, particle size analysis decides whether the pozzolanic reactivity can be increased by grinding process.

  7. Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Adel R.

    2014-05-01

    Large NE-SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline-syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.

  8. Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.

    PubMed

    Morgese, Giulia; Ramakrishna, Shivaprakash N; Simic, Rok; Zenobi-Wong, Marcy; Benetti, Edmondo M

    2018-02-12

    Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a "lying down" conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, "standing up" structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.

  9. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Eric I.

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractablemore » for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO 2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO 2 surfaces. Building on this work on anatase, the mechanism by which TiO 2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO 2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce catalytic properties not seen for the individual binary oxides and to the structure and properties of transition metal oxide clusters. For the latter, surprising results were found including the observation that small clusters can actually be orders of magnitude more difficult than bulk materials to oxidize and that even weak substrate interactions can dictate the structure and reactivity of the oxide clusters. It was shown that these results could be explained in terms of simple thermodynamic arguments that extend to materials beyond the Co oxide system studied.« less

  10. Using the 3D active fault model to estimate the surface deformation, a study on HsinChu area, Taiwan.

    NASA Astrophysics Data System (ADS)

    Lin, Y. K.; Ke, M. C.; Ke, S. S.

    2016-12-01

    An active fault is commonly considered to be active if they have moved one or more times in the last 10,000 years and likely to have another earthquake sometime in the future. The relationship between the fault reactivation and the surface deformation after the Chi-Chi earthquake (M=7.2) in 1999 has been concerned up to now. According to the investigations of well-known disastrous earthquakes in recent years, indicated that surface deformation is controlled by the 3D fault geometric shape. Because the surface deformation may cause dangerous damage to critical infrastructures, buildings, roads, power, water and gas lines etc. Therefore it's very important to make pre-disaster risk assessment via the 3D active fault model to decrease serious economic losses, people injuries and deaths caused by large earthquake. The approaches to build up the 3D active fault model can be categorized as (1) field investigation (2) digitized profile data and (3) build the 3D modeling. In this research, we tracked the location of the fault scarp in the field first, then combined the seismic profiles (had been balanced) and historical earthquake data to build the underground fault plane model by using SKUA-GOCAD program. Finally compared the results come from trishear model (written by Richard W. Allmendinger, 2012) and PFC-3D program (Itasca) and got the calculated range of the deformation area. By analysis of the surface deformation area made from Hsin-Chu Fault, we concluded the result the damage zone is approaching 68 286m, the magnitude is 6.43, the offset is 0.6m. base on that to estimate the population casualties, building damage by the M=6.43 earthquake in Hsin-Chu area, Taiwan. In the future, in order to be applied accurately on earthquake disaster prevention, we need to consider further the groundwater effect and the soil structure interaction inducing by faulting.

  11. NLL-Assisted Multilayer Graphene Patterning

    PubMed Central

    2018-01-01

    The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm2/15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics. PMID:29503971

  12. Application of non-equilibrium plasmas in treatment of wool fibers and seeds

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran

    2003-10-01

    While large effort is under way to achieve stable, large area, non-equilibrium plasma reactors operating at atmospheric pressure we should still consider application of low pressure reactors, which provide well defined, easily controlled reactive plasmas. Therefore, the application of low pressure rf plasmas for the treatment of wool and seed was investigated. The studies were aimed at establishing optimal procedure to achieve better wettability, dyeability and printability of wool. Plasma treatment led to a modification of wool fiber topography and formation of new polar functional groups inducing the increase of wool hydrophylicity. Plasma activation of fiber surface was also used to achieve better binding of biopolymer chitosan to wool in order to increase the content of favorable functional groups and thus improving sorption properties of recycled wool fibers for heavy metal ions and acid dyes. In another study, the increase of germination percentage of seeds induced by plasmas was investigated. We have selected dry (unimbibed) Empress tree seeds (Paulownia tomentosa Steud.). Empress tree seed has been studied extensively and its mechanism of germination is well documented. Germination of these seeds is triggered by light in a limited range of wavelengths. Interaction between activated plasma particles and seed, inside the plasma reactor, leads to changes in its surface topography, modifies the surface layer and increases the active surface area. Consequently, some bioactive nitrogeneous compounds could be bound to the activated surface layer causing the increment of germination percentage.

  13. NLL-Assisted Multilayer Graphene Patterning.

    PubMed

    Kovalska, Evgeniya; Pavlov, Ihor; Deminskyi, Petro; Baldycheva, Anna; Ilday, F Ömer; Kocabas, Coskun

    2018-02-28

    The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm 2 /15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics.

  14. Photoluminescent silicon nanocrystals with chlorosilane surfaces - synthesis and reactivity

    NASA Astrophysics Data System (ADS)

    Höhlein, Ignaz M. D.; Kehrle, Julian; Purkait, Tapas K.; Veinot, Jonathan G. C.; Rieger, Bernhard

    2014-12-01

    We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place.We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place. Electronic supplementary information (ESI) available: Detailed experimental procedures and additional NMR, PL, EDX, DLS and TEM data. See DOI: 10.1039/C4NR05888G

  15. Characterization of N,C-codoped TiO 2 films prepared by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Kee-Rong; Hung, Chung-Hsuang

    2009-12-01

    Titanium dioxide (TiO 2) films are deposited by codoping nitrogen and carbon on indium tin oxide-coated substrates as visible light (Vis)-enabled catalysts. The X-ray diffraction peak intensity of the preferential orientation in (2 1 1) plane declines when the topmost 1.0 μm layer of the film is ground off. The decrease in the crystallite size and the crystallinity of anatase TiO 2 film is also evidenced by a shift towards the high wave number and broadening of the Raman spectra. Low doping concentrations of N (1.3%) and C (1.8%) are estimated by X-ray photoelectron spectroscopy (XPS) which displays an N 1 s peak at 396.8 eV and a C 1 s peak at 282.1 eV, respectively. This is attributed to the substitution of the oxygen sites with nitrogen and carbon, which is believed to be responsible for the Vis photocatalytic activity into a wavelength of >500 nm. The cross-sectional transmission electron microscopy images show larger pores at the grain boundaries and in larger columnar crystals than in the undoped TiO 2 film. All of these results indicate that porosity, crystallinity and shift in the preferential orientation are more pronounced close to the surface than close to the bottom of the sample. Wettability upon measurement of the water contact angle, methylene blue degradation and radical formation tests under both ultraviolet and Vis irradiation demonstrate that the topmost surface renders not only a larger reactive surface area but also a better carrier transport route than the rest of the film, improving its photocatalytic activity. These results show that surface porosity of the film is dominant than the tailoring of the photocatalytic activities of N,C-codoped TiO 2 catalysts.

  16. Structural Analysis of Der p 1–Antibody Complexes and Comparison with Complexes of Proteins or Peptides with Monoclonal Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osinski, Tomasz; Pomés, Anna; Majorek, Karolina A.

    Der p 1 is a major allergen from the house dust mite, Dermatophagoides pteronyssinus, that belongs to the papain-like cysteine protease family. To investigate the antigenic determinants of Der p 1, we determined two crystal structures of Der p 1 in complex with the Fab fragments of mAbs 5H8 or 10B9. Epitopes for these two Der p 1–specific Abs are located in different, nonoverlapping parts of the Der p 1 molecule. Nevertheless, surface area and identity of the amino acid residues involved in hydrogen bonds between allergen and Ab are similar. The epitope for mAb 10B9 only showed a partialmore » overlap with the previously reported epitope for mAb 4C1, a cross-reactive mAb that binds Der p 1 and its homolog Der f 1 from Dermatophagoides farinae. Upon binding to Der p 1, the Fab fragment of mAb 10B9 was found to form a very rare α helix in its third CDR of the H chain. To provide an overview of the surface properties of the interfaces formed by the complexes of Der p 1–10B9 and Der p 1–5H8, along with the complexes of 4C1 with Der p 1 and Der f 1, a broad analysis of the surfaces and hydrogen bonds of all complexes of Fab–protein or Fab–peptide was performed. This work provides detailed insight into the cross-reactive and specific allergen–Ab interactions in group 1 mite allergens. The surface data of Fab–protein and Fab–peptide interfaces can be used in the design of conformational epitopes with reduced Ab binding for immunotherapy.« less

  17. Boundary layers at a dynamic interface: air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew

    2017-11-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.

  18. Tailoring Elastic Properties of Silica Aerogels Cross-Linked with Polystyrene

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann B.; Tousley, Marissa E.; Shonkwiler, Brian; McCorkle, Linda; Scheiman, Daniel A.; Palczer, Anna

    2009-01-01

    The effect of incorporating an organic linking group, 1,6-bis(trimethoxysilyl)hexane (BTMSH), into the underlying silica structure of a styrene cross-linked silica aerogel is examined. Vinyltrimethoxysilane (VTMS) is used to provide a reactive site on the silica backbone for styrene polymerization. Replacement of up to 88 mol 1 of the silicon from tetramethoxyorthosilicate with silicon derived from BTMSH and VTMS during the making of silica gels improves the elastic behavior in some formulations of the crosslinked aerogels, as evidenced by measurement of the recovered length after compression of samples to 251 strain. This is especially true for some higher density formulations, which recover nearly 100% of their length after compression to 251 strain twice. The compressive modulus of the more elastic monoliths ranged from 0.2 to 3 MPa. Although some of these monoliths had greatly reduced surface areas, changing the solvent used to produce the gels from methanol to ethanol increased the surface area in one instance from 6 to 220 sq m2/g with little affect on the modulus, elastic recovery, porosity, or density.

  19. The READY program: Building a global potential energy surface and reactive dynamic simulations for the hydrogen combustion.

    PubMed

    Mogo, César; Brandão, João

    2014-06-30

    READY (REActive DYnamics) is a program for studying reactive dynamic systems using a global potential energy surface (PES) built from previously existing PESs corresponding to each of the most important elementary reactions present in the system. We present an application to the combustion dynamics of a mixture of hydrogen and oxygen using accurate PESs for all the systems involving up to four oxygen and hydrogen atoms. Results at the temperature of 4000 K and pressure of 2 atm are presented and compared with model based on rate constants. Drawbacks and advantages of this approach are discussed and future directions of research are pointed out. Copyright © 2014 Wiley Periodicals, Inc.

  20. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle.

    PubMed

    Saptarshi, Shruti R; Duschl, Albert; Lopata, Andreas L

    2013-07-19

    Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.

Top