Science.gov

Sample records for reactor cycle scheme

  1. Hybrid reactors. [Fuel cycle

    SciTech Connect

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  2. Recycling scheme for twin BWRs reactors

    SciTech Connect

    Ramirez-Sanchez, J. R.; Perry, R. T.; Gustavo Alonso, V.; Javier Palacios, H.

    2006-07-01

    To asses the advantages of reprocess and recycle the spent fuel from nuclear power reactors, against a once through policy, a MOX fuel design is proposed to match a generic scenario for twin BWRs and establish a fuel management scheme. Calculations for the amount of fuel that the plants will use during 40 years of operation were done, and an evaluation of costs using constant money method for each option applying current prices for uranium and services were made. Finally a comparison between the options was made, resulting that even the current high prices of uranium, still the recycling option is more expensive that the once through alternative. But reprocessing could be an alternative to reduce the amount of spent fuel stored in the reactor pools. (authors)

  3. Thermonuclear inverse magnetic pumping power cycle for stellarator reactors

    NASA Astrophysics Data System (ADS)

    Ho, D. D. M.; Kulsrud, R. M.

    1985-09-01

    A novel power cycle for direct conversion of alpha-particle energy into electricity is proposed for an ignited plasma in a stellerator reactor. The plasma column is alternately compressed and expanded in minor radius by periodic variation of the toroidal magnetic field strength. As a result of the way a stellarator is expected to work, the plasma pressure during expansion is greater than the corresponding pressure during compression. Therefore, negative work is done on the plasma during a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils, and direct electrical energy is obtained from this voltage. For a typical reactor, the average power obtained from this cycle (with a minor radius compression factor on the order of 50%) can be as much as 50% of the electrical power obtained from the thermonuclear neutrons without compressing the plasma. Thus, if it is feasible to vary the toroidal field strength, the power cycle provides an alternative scheme of energy conversion for a deuterium-tritium fueled reactor. The cycle may become an important method of energy conversion for advanced neutron-lean fueled reactors. By operating two or more reactors in tandem, the cycle can be made self-sustaining.

  4. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    NASA Astrophysics Data System (ADS)

    Widiawati, Nina; Su'ud, Zaki

    2015-09-01

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from -0.6695443 % at BOC to -0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  5. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    SciTech Connect

    Widiawati, Nina Su’ud, Zaki

    2015-09-30

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  6. Transient getter scheme for the Tokamak Fusion Test Reactor

    SciTech Connect

    Cecchi, J.L.; Cohen, S.A.; Sredniawski, J.J.

    1980-01-01

    The ability of the Tokamak Fusion Test Reactor (TFTR) to attain the largest fusion power gain depends critically on minimizing plasma contamination and controlling the densities of the reacting deuterium and tritium. Experiments on a number of tokamaks have demonstrated that gettering over an appreciable surface area (greater than or equal to 10%) of the vacuum vessel greatly facilitates both of these objectives. One particular problem in implementing a surface pumping system in TFTR, however, is a restriction on the maximum allowable tritium content of the getter. This restriction could require regeneration of the absorbed tritium after as few as 50 machine pulses. We have developed a scheme utilizing SAES Zr/Al getter modules which obviates the need for such frequent interruptions of machine operation by taking advantage of the pulsed operation of TFTR. With the Zr/Al getter at temperatures between 500/sup 0/C to 600/sup 0/C it is possible to achieve a quasi-steady state in the tritium loading where the quantity of tritium desorbed between pulses is equal to the quantity which is absorbed during a pulse. Since frequent thermal cycling is not required, this scheme also reduces the possibility of Zr/Al getter material fatigue.

  7. Reactivity Control Schemes for Fast Spectrum Space Nuclear Reactors

    SciTech Connect

    Craft, Aaron E.; King, Jeffrey C.

    2008-01-21

    Several different reactivity control schemes are considered for future space nuclear reactor power systems. Each of these control schemes uses a combination of boron carbide absorbers and/or beryllium oxide reflectors to achieve sufficient reactivity swing to keep the reactor subcritical during launch and to provide sufficient excess reactivity to operate the reactor over its expected 7-15 year lifetime. The size and shape of the control system directly impacts the size and mass of the space reactor's reflector and shadow shield, leading to a tradeoff between reactivity swing and total system mass. This paper presents a trade study of drum, shutter, and petal control schemes based on reactivity swing and mass effects for a representative fast-spectrum, gas-cooled reactor. For each control scheme, the dimensions and composition of the core are constant, and the reflector is sized to provide $5 of cold-clean excess reactivity with each configuration in its most reactive state. The advantages and disadvantages of each configuration are discussed, along with optimization techniques and novel geometric approaches for each scheme.

  8. Coupling Schemes for Multiphysics Reactor Simulation

    SciTech Connect

    Vijay Mahadeven; Jean Ragusa

    2007-11-01

    This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of a BWR core.

  9. Steady-State Analysis Model for Advanced Fuel Cycle Schemes.

    2008-03-17

    Version 00 SMAFS was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 2003-2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down cost analysis results. All the fuel cycle schemes considered in the model aremore » represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high-level waste along time are included in the model and can be displayed. The user can easily modify values of mass flows and/or cost parameters and see corresponding changes in the results. The model calculates: front-end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs.« less

  10. Immobilization of Fast Reactor First Cycle Raffinate

    SciTech Connect

    Langley, K. F.; Partridge, B. A.; Wise, M.

    2003-02-26

    This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cycle raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.

  11. Conceptual Design study of Small Long-life Gas Cooled Fast Reactor With Modified CANDLE Burn-up Scheme

    NASA Astrophysics Data System (ADS)

    Nur Asiah, A.; Su'ud, Zaki; Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this paper, conceptual design study of Small Long-life Gas Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input has been performed. In this study Gas Cooled Fast Reactor is slightly modified by employing modified CANDLE burn-up scheme so that it can use Natural Uranium as fuel cycle input. Due to their hard spectrum, GCFR in this study showed very good performance in converting U-238 to plutonium in order to maintain the operation condition requirement of long-life reactors. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. With such condition we got an optimal design of 325 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input. The average discharge burn-up is about 290 GWd/ton HM.

  12. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  13. The dynamo basis of solar cycle precursor schemes

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul; Barlet, Guillaume

    2011-02-01

    We investigate the dynamo underpinning of solar cycle precursor schemes based on direct or indirect measures of the solar surface magnetic field. We do so for various types of mean-field-like kinematic axisymmetric dynamo models, where amplitude fluctuations are driven by zero-mean stochastic forcing of the dynamo number controlling the strength of the poloidal source term. In all stochastically forced models considered, the surface poloidal magnetic field is found to have precursor value only if it feeds back into the dynamo loop, which suggests that accurate determination of the magnetic flux budget of the solar polar fields may hold the key to dynamo model-based cycle forecasting.

  14. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    SciTech Connect

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  15. Impact of geoengineering schemes on the global hydrological cycle.

    PubMed

    Bala, G; Duffy, P B; Taylor, K E

    2008-06-01

    The rapidly rising CO(2) level in the atmosphere has led to proposals of climate stabilization by "geoengineering" schemes that would mitigate climate change by intentionally reducing solar radiation incident on Earth's surface. In this article we address the impact of these climate stabilization schemes on the global hydrological cycle. By using equilibrium climate simulations, we show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in global mean precipitation. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO(2) forcing of a similar magnitude. In the model used here, the hydrological sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% K(-1) for solar forcing, but only 1.5% K(-1) for CO(2) forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. For the same surface temperature change, insolation changes result in relatively larger changes in net radiative fluxes at the surface; these are compensated by larger changes in the sum of latent and sensible heat fluxes. Hence, the hydrological cycle is more sensitive to temperature adjustment by changes in insolation than by changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.

  16. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    SciTech Connect

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.

  17. Safeguards operations in the integral fast reactor fuel cycle

    SciTech Connect

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-08-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product.

  18. Multiple reheat helium Brayton cycles for sodium fast reactors

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2008-07-01

    Sodium fast reactors (SFR) traditionally adopt the steam Rankine cycle for power conversion. The resulting potential for water-sodium reaction remains a continuing concern which at least partly delays the SFR technology commercialization and is a contributor to higher capital cost. Supercritical CO2 provides an alternative, but is also capable of sustaining energetic chemical reactions with sodium. Recent development on advanced inert-gas Brayton cycles could potentially solve this compatibility issue, increase thermal efficiency, and bring down the capital cost close to light water reactors. In this paper, helium Brayton cycles with multiple reheat and intercooling states are presented for SFRs with reactor outlet temperatures in the range of 510°C to 650°C. The resulting thermal efficiencies range from 39% and 47%, which is comparable with supercritical recompression CO2 cycles (SCO2 cycle). A systematic comparison between multiple reheat helium Brayton cycle and the SCO2 cycle is given, considering compatibility issues, plant site cooling temperature effect on plant efficiency, full plant cost optimization, and other important factors. The study indicates that the multiple reheat helium cycle is the preferred choice over SCO2 cycle for sodium fast reactors.

  19. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-01

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  20. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  1. Code System for Reactor Physics and Fuel Cycle Simulation.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterativemore » processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.« less

  2. Code System for Reactor Physics and Fuel Cycle Simulation.

    SciTech Connect

    TEUCHERT, E.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.

  3. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    SciTech Connect

    Todosow M.; Todosow M.; Raitses, G. Galperin, A.

    2009-07-12

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  4. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  5. Brayton Cycle for High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Oh, Chang H.; Moore, Richard L.

    2005-03-15

    This paper describes research on improving the Brayton cycle efficiency for a high-temperature gas-cooled reactor (HTGR). In this study, we are investigating the efficiency of an indirect helium Brayton cycle for the power conversion side of an HTGR power plant. A reference case based on a 250-MW(thermal) pebble bed HTGR was developed using helium gas as a working fluid in both the primary and power conversion sides. The commercial computer code HYSYS was used for process optimization. A numerical model using the Visual-Basic (V-B) computer language was also developed to assist in the evaluation of the Brayton cycle efficiency. Results from both the HYSYS simulation and the V-B model were compared with Japanese calculations based on the 300-MW(electric) Gas Turbine High-Temperature Reactor (GTHTR) that was developed by the Japan Atomic Energy Research Institute. After benchmarking our models, parametric investigations were performed to see the effect of important parameters on the cycle efficiency. We also investigated single-shaft versus multiple-shaft arrangements for the turbomachinery. The results from this study are applicable to other reactor concepts such as fast gas-cooled reactors, supercritical water reactors, and others.The ultimate goal of this study is to use other fluids such as supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency over that of the helium Brayton cycle. This study is in progress, and the results will be published in a subsequent paper.

  6. Brayton Cycle for High Temperature Gas-Cooled Reactors

    SciTech Connect

    Chang Oh

    2005-03-01

    This paper describes research on improving the Brayton cycle efficiency for a high-temperature gas-cooled reactor (HTGR). In this study, we are investigating the efficiency of an indirect helium Brayton cycle for the power conversion side of an HTGR power plant. A reference case based on a 250-MW(thermal) pebble bed HTGR was developed using helium gas as a working fluid in both the primary and power conversion sides. The commercial computer code HYSYS was used for process optimization. A numerical model using the Visual-Basic (V-B) computer language was also developed to assist in the evaluation of the Brayton cycle efficiency. Results from both the HYSYS simulation and the V-B model were compared with Japanese calculations based on the 300-MW(electric) Gas Turbine High-Temperature Reactor (GTHTR) that was developed by the Japan Atomic Energy Research Institute. After benchmarking our models, parametric investigations were performed to see the effect of important parameters on the cycle efficiency. We also investigated single-shaft versus multiple-shaft arrangements for the turbomachinery. The results from this study are applicable to other reactor concepts such as fast gas-cooled reactors, supercritical water reactors, and others. The ultimate goal of this study is to use other fluids such as supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency over that of the helium Brayton cycle. This study is in progress, and the results will be published in a subsequent paper.

  7. Thermonuclear inverse magnetic pumping power cycle for stellarator reactor

    DOEpatents

    Ho, Darwin D.; Kulsrud, Russell M.

    1991-01-01

    The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

  8. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    NASA Astrophysics Data System (ADS)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  9. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  10. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products.

  11. The Framatome ANP Indirect-Cycle Very High Temperature Reactor

    SciTech Connect

    Copsey, Bernie; Lecomte, Michel; Brinkmann, Gerd; Capitaine, Alain; Deberne, Nicolas

    2004-07-01

    Framatome ANP is developing a Very High Temperature Reactor (VHTR) design, relying on its previous experience with high temperature reactor designs, from its participation in the MODUL and the GT-MHR designs. The Framatome ANP VHTR design is based on an indirect cycle coupled to an 'off-the-shelf' combined cycle gas turbine. Although direct cycle HTR's are being promoted for their high efficiency, preliminary evaluations show that the Framatome ANP design efficiency is on par with a direct cycle while avoiding PGS (Power Generation System) developments and keeping the PGS contamination free. This concept was independently evaluated with sensitivity analysis by EDF. Moreover, the nuclear heat source of the indirect cycle could also be used to qualify the direct cycle components without risk of contamination behind the IHX, thus assisting in the preparation for the later introduction of that technology. Relying to the maximum extent on available technology, the Framatome ANP VHTR plant can demonstrate high-efficiency electricity generation and carbon-free hydrogen production. (authors)

  12. Energetic closed-cycle gas core reactors for orbit raising

    NASA Technical Reports Server (NTRS)

    Rosa, R. J.; Myrabo, L. N.

    1983-01-01

    Closed-cycle gas core reactor power plants can be of two types. In the 'mixed flow' type, the gaseous nuclear fuel is intimately mixed with the working gas in the cavity. In the 'light bulb' type the fissioning plasma is enclosed in a transparent tube, and energy transfer to the separate working gas occurs by thermal radiation. The potentials of high temperature gas core reactors in terrestrial electric power generator applications have been considered, and a number of civilian power-beaming applications for gaseous fuel nuclear-MHD power plants in space have been suggested. Major conclusions of investigations related to the design of space power systems are discussed. Attention is given to options for conversion cycles, the power system specific mass, and research and technology issues.

  13. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  14. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  15. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  16. Detection of anomalous reactor activity using antineutrino count evolution over the course of a reactor cycle

    NASA Astrophysics Data System (ADS)

    Bulaevskaya, Vera; Bernstein, Adam

    2011-06-01

    This paper analyzes the sensitivity of antineutrino count rate measurements to changes in the fissile content of civil power reactors. Such measurements may be useful in IAEA reactor safeguards applications. We introduce a hypothesis testing procedure to identify statistically significant differences between the antineutrino count rate evolution of a standard "baseline" fuel cycle and that of an anomalous cycle, in which plutonium is removed and replaced with an equivalent fissile worth of uranium. The test would allow an inspector to detect anomalous reactor activity, or to positively confirm that the reactor is operating in a manner consistent with its declared fuel inventory and power level. We show that with a reasonable choice of detector parameters, the test can detect replacement of 82 kg of plutonium in 90 days with 95% probability, while controlling the false positive rate at 5%. We show that some improvement on this level of sensitivity may be obtained by various means, including use of the method in conjunction with existing reactor safeguards methods. We also identify a necessary and sufficient minimum daily antineutrino count rate and a maximum tolerable background rate to achieve the quoted sensitivity, and list examples of detectors in which such rates have been attained.

  17. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  18. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  19. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  20. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    SciTech Connect

    Meriyanti; Su'ud, Zaki; Rijal, K.; Zuhair; Ferhat, A.; Sekimoto, H.

    2010-06-22

    In this study a feasibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850 deg. C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticality was obtained for this reactor.

  1. The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes

    SciTech Connect

    Monti, S.; Toti, A.

    2013-07-01

    The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

  2. Supercritical CO2 direct cycle Gas Fast Reactor (SC-GFR) concept.

    SciTech Connect

    Wright, Steven Alan; Parma, Edward J., Jr.; Suo-Anttila, Ahti Jorma; Al Rashdan, Ahmad; Tsvetkov, Pavel Valeryevich; Vernon, Milton E.; Fleming, Darryn D.; Rochau, Gary Eugene

    2011-05-01

    This report describes the supercritical carbon dioxide (S-CO{sub 2}) direct cycle gas fast reactor (SC-GFR) concept. The SC-GFR reactor concept was developed to determine the feasibility of a right size reactor (RSR) type concept using S-CO{sub 2} as the working fluid in a direct cycle fast reactor. Scoping analyses were performed for a 200 to 400 MWth reactor and an S-CO{sub 2} Brayton cycle. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this report show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The concept is based largely on the Advanced Gas Reactor (AGR) commercial power plants operated in the United Kingdom and other GFR concepts.

  3. METHOD AND APPARATUS FOR CONTROLLING DIRECT-CYCLE NEUTRONIC REACTORS

    DOEpatents

    Reed, G.A.

    1961-01-10

    A control arrangement is offered for a boiling-water reactor. Boric acid is maintained in the water in the reactor and the amount in the reactor is controlled by continuously removing a portion of the water from the reactor, concentrating the boric acid by evaporating the water therefrom, returning a controlled amount of the acid to the reactor, and simultaneously controlling the water level by varying the rate of spent steam return to the reactor.

  4. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    SciTech Connect

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent of this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)

  5. (148g,m)Pm: evaluation of the decay schemes for two important reactor poisons.

    PubMed

    Kellett, M A; Bé, M-M

    2014-05-01

    During reactor operation (148g)Pm and (148m)Pm are formed in large quantities from thermal neutron capture on the fission product (147)Pm. Subsequent neutron capture reactions, on the (148)Pm ground state and isomer, have cross sections differing by a factor of 5 and so precise knowledge of their decay properties is vitally important. New decay scheme evaluations using the DDEP methodology for (148g)Pm and (148m)Pm are presented. The complete data tables and detailed evaluator comments are available through the DDEP website.

  6. Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    SciTech Connect

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  7. Thorium: Uranium fuel cycle in safe reactors, the time is now

    SciTech Connect

    Gat, Uri

    1995-12-31

    The thorium-uranium fuel cycle has several advantages that make it attractive. Some of these beneficial properties are of particular interest now as they help alleviate current concerns. The Th-U cycle has neutronic advantages when utilized in thermal or epithermal reactors. Some of these reactors enjoy extraordinary safety qualities. The combination of these traits suggest that now is an appropriate time to deploy and begin exploiting the Th-U fuel cycle.

  8. Closing nuclear fuel cycle with fast reactors: problems and prospects

    SciTech Connect

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V.

    2013-07-01

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  9. Analysis of supercritical CO{sub 2} cycle control strategies and dynamic response for Generation IV Reactors.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-12

    efficiency of 49.3 %. The other approach involves reducing the minimum cycle pressure significantly below the critical pressure such that the temperature drop in the turbine is increased while the minimum cycle temperature is maintained above the critical temperature to prevent the formation of a liquid phase. The latter approach also involves the addition of a precooler and a third compressor before the main compressor to retain the benefits of compression near the critical point with the main compressor. For a minimum cycle pressure of 1 MPa, a cycle efficiency of 49.5% is achieved. Either approach opens up the door to applying the SCO{sub 2} cycle to the VHTR. In contrast, the SFR system typically has a core outlet-inlet temperature difference of about 150 C such that the standard recompression cycle is ideally suited for direct application to the SFR. The ANL Plant Dynamics Code has been modified for application to the VHTR and SFR when the reactor side dynamic behavior is calculated with another system level computer code such as SAS4A/SYSSYS-1 in the SFR case. The key modification involves modeling heat exchange in the RHX, accepting time dependent tabular input from the reactor code, and generating time dependent tabular input to the reactor code such that both the reactor and S-CO{sub 2} cycle sides can be calculated in a convergent iterative scheme. This approach retains the modeling benefits provided by the detailed reactor system level code and can be applied to any reactor system type incorporating a S-CO{sub 2} cycle. This approach was applied to the particular calculation of a scram scenario for a SFR in which the main and intermediate sodium pumps are not tripped and the generator is not disconnected from the electrical grid in order to enhance heat removal from the reactor system thereby enhancing the cooldown rate of the Na-to-CO{sub 2} RHX. The reactor side is calculated with SAS4A/SASSYS-1 while the S-CO{sub 2} cycle is calculated with the Plant Dynamics

  10. Nuclear fuel cycle analysis of the SABR fusion-fission hybrid transmutation reactor

    NASA Astrophysics Data System (ADS)

    Sommer, Chris; Stacey, Weston; Petrovic, Bojan

    2009-11-01

    Various fuel cycles have been designed and analyzed for the Subcritical Advanced Burner Reactor (SABR). SABR is a sodium cooled fast reactor fueled with transuranics (TRU) from spent fuel of light water reactors and driven by a tokamak fusion neutron source based on ITER physics and technology. SABR employs a four batch fuel cycle using an out-to-in shuffling pattern, with the fuel being reprocessed at the end of each cycle. The reprocessing method assumes recovery rates of 99.9% of the actinides and 0.1% of the fission products remain in the recycled fuel. The reprocessing fuel cycles were analyzed to find an optimal cycle length in terms of burn up, power distribution, and materials limitations. Fuel cycles are analyzed using CEA's ERANOS2.0 code, with fuel residence times limited by radiation damage at 100, 150 and 200 dpa.

  11. Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors

    SciTech Connect

    Ponciroli, Roberto; Passerini, Stefano; Vilim, Richard B.

    2016-01-01

    In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based on the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.

  12. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    NASA Astrophysics Data System (ADS)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  13. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described.

  14. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. PMID:21399407

  15. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Aziz, Ferhat; Permana, Sidik; Sekimoto, Hiroshi

    2014-02-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  16. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  17. Metal hydrides reactors with improved dynamic characteristics for a fast cycling hydrogen compressor

    NASA Astrophysics Data System (ADS)

    Popeneciu, G.; Coldea, I.; Lupu, D.; Misan, I.; Ardelean, O.

    2009-08-01

    This paper presents an investigation of coupled heat and mass transfer process in metal hydrides hydrogen storage reactors. Hydrogen storage and compression performance of our designed and developed reactors are studied by varying the operating parameters and analyzing the effects of metal hydride bed parameters. The metal alloy selected to characterize the cycling behaviour of reactors is LaNi5, material synthesized and characterized by us in the range 20-80°C. Four types of metal hydride reactors were tested with the aim to provide a fast hydrogen absorption-desorption cycle, able to be thermally cycled at rapid rates. Some new technical solutions have been studied to make a step forward in reducing the duration of the reactors cycle, which combines the effective increase of the thermal conductivity and good permeability to hydrogen gas. Dynamic characteristic of developed fast metal hydride reactors is improved using our novel mixture metal hydride-CA conductive additive due to the increased effective thermal conductivity of the alloy bed. The advanced hydride bed design with high heat transfer capabilities can be thermally cycled at a rapid rate, under 120 seconds, in order to process high hydrogen flow rates.

  18. Dynamo-based scheme for forecasting the magnitude of solar activity cycles

    NASA Technical Reports Server (NTRS)

    Layden, A. C.; Fox, P. A.; Howard, J. M.; Sarajedini, A.; Schatten, K. H.

    1991-01-01

    This paper presents a general framework for forecasting the smoothed maximum level of solar activity in a given cycle, based on a simple understanding of the solar dynamo. This type of forecasting requires knowledge of the sun's polar magnetic field strength at the preceding activity minimum. Because direct measurements of this quantity are difficult to obtain, the quality of a number of proxy indicators already used by other authors is evaluated, which are physically related to the sun's polar field. These indicators are subjected to a rigorous statistical analysis, and the analysis technique for each indicator is specified in detail in order to simplify and systematize reanalysis for future use. It is found that several of these proxies are in fact poorly correlated or uncorrelated with solar activity, and thus are of little value for predicting activity maxima. Also presented is a scheme in which the predictions of the individual proxies are combined via an appropriately weighted mean to produce a compound prediction. The scheme is then applied to the current cycle 22, and a maximum smoothed international sunspot number of 171 + or - 26 is estimated.

  19. The global significance of omitting soil erosion from soil organic carbon cycling schemes

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Baldock, Jeffrey; Sanderman, Jonathan

    2016-02-01

    Soil organic carbon (SOC) cycling schemes used in land surface models (LSMs) typically account only for the effects of net primary production and heterotrophic respiration. To demonstrate the significance of omitting soil redistribution in SOC accounting, sequestration and emissions, we modified the SOC cycling scheme RothC (ref. ) to include soil erosion. Net SOC fluxes with and without soil erosion for Australian long-term trial sites were established and estimates made across Australia and other global regions based on a validated relation with catchment-scale soil erosion. Assuming that soil erosion is omitted from previous estimates of net C flux, we found that SOC erosion is incorrectly attributed to respiration. On this basis, the Australian National Greenhouse Gas inventory overestimated the net C flux from cropland by up to 40% and the potential (100 year) C sink is overestimated by up to 17%. We estimated global terrestrial SOC erosion to be 0.3-1.0 Pg C yr-1 indicating an uncertainty of -18 to -27% globally and +35 to -82% regionally relative to the long-term (2000-2010) terrestrial C flux of several LSMs. Including soil erosion in LSMs should reduce uncertainty in SOC flux estimates with implications for CO2 emissions, mitigation and adaptation strategies and interpretations of trends and variability in global ecosystems.

  20. Modular high temperature gas-cooled reactor plant design duty cycle. Revision 3

    SciTech Connect

    Chan, T.

    1989-12-31

    This document defines the Plant Design Duty Cycle (PCDC) for the Modular High Temperature Gas-cooled Reactor (MHTGR). The duty cycle is a set of events and their design number of occurrences over the life of the plant for which the MHTGR plant shall be designed to ensure that the plant meets all the top-level requirements. The duty cycle is representative of the types of events to be expected in multiple reactor module-turbine plant configurations of the MHTGR. A synopsis of each PDDC event is presented to provide an overview of the plant response and consequence. 8 refs., 1 fig., 4 tabs.

  1. Design and Cold Mode Experiment of Dual Bubbling Fluidized Bed Reactors for Multiple CCR Cycles

    NASA Astrophysics Data System (ADS)

    Fang, F.; Li, Z. S.; Cai, N. S.

    The dual fluidized bed reactors are the key technology to fulfill the multiple CCR (calcination/carbonation reactions) cycles for CO2 capture from the flue gases. Firstly, the dual bubbling fluidized bed reactors were selected in this work based on analyzing different types of dual fluidized bed reactors. Secondly, the design method of dual fluidized bed reactors for CO2 capture with CCR concept was proposed. Thirdly, with the designed results, a cold mode of the dual bubbling fluidized bed reactors was built. The long-term stable operation and the continuous solid circulation between two reactors could be achieved successfully. The experimental results indicated that the solid circulation rate was increased with an increase of bed height, diameter of solid injection nozzle, and diameter of holes on the solid injection nozzle.

  2. Influence of data collection schemes on the Life Cycle Assessment of a municipal wastewater treatment plant.

    PubMed

    Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte; Christensen, Thomas H

    2014-06-01

    A Life Cycle Assessment (LCA) of a municipal wastewater treatment plant (WWTP) was conducted to illustrate the effect of an emission inventory data collection scheme on the outcomes of an environmental impact assessment. Due to their burden in respect to data collection, LCAs often rely heavily on existing emission and operational data, which are gathered under either compulsory monitoring or reporting requirements under law. In this study, an LCA was conducted using three input data sources: Information compiled under compulsory disclosure requirements (the European Pollutant Release and Transfer Registry), compliance with national discharge limits, and a state-of-the-art emission data collection scheme conducted at the same WWTP. Parameter uncertainty for each collection scheme was assessed through Monte Carlo simulation. The comparison of the results confirmed that LCA results depend heavily on input data coverage. Due to the threshold on reporting value, the E-PRTR did not capture the impact for particulate matter emission, terrestrial acidification, or terrestrial eutrophication. While the current practice can capture more than 90% of non-carcinogenic human toxicity and marine eutrophication, an LCA based on the data collection scheme underestimates impact potential due to limitations of substance coverage. Besides differences between data collection schemes, the results showed that 3-13,500% of the impacts came from background systems, such as from the provisioning of fuel, electricity, and chemicals, which do not need to be disclosed currently under E-PRTR. The incidental release of pollutants was also assessed by employing a scenario-based approach, the results of which demonstrated that these non-routine emissions could increase overall WWTP greenhouse gas emissions by between 113 and 210%. Overall, current data collection schemes have the potential to provide standardized data collection and form the basis for a sound environmental impact assessment, but

  3. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi

    2012-06-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  4. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  5. Development potential for thermal reactors and their fuel cycles

    SciTech Connect

    Dodds, H.L.; Gat, U.

    1997-08-01

    The advantages of molten salt reactors (MSRs) for power production are very briefly described in this paper. The MSRs considered are those with on-line fuel processing, external cooling, and fluoride salt separation. Characteristics noted include lack of meltdown potential, small radioactive source terms, and complete burnup of fissile material. The burnup capability of MSRs would allow them to be used to dispose of plutonium while producing energy. 8 refs.

  6. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  7. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    SciTech Connect

    Shmelev, A. N. Kulikov, G. G. Kurnaev, V. A. Salahutdinov, G. H. Kulikov, E. G. Apse, V. A.

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  8. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  9. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    NASA Astrophysics Data System (ADS)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  10. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    SciTech Connect

    Afifah, Maryam Su’ud, Zaki; Miura, Ryosuke; Takaki, Naoyuki; Sekimoto, H.

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  11. Configuration of a molten chloride fast reactor on a thorium fuel cycle to current nuclear fuel cycle concerns

    SciTech Connect

    Ottewitte, E.H.

    1982-01-01

    Current concerns about the nuclear fuel cycle seem to center on waste management, non-proliferation, and optimum fuel utilization (including use of thorium). This thesis attempts to design a fast molten-salt reactor on the thorium fuel cycle to address these concerns and then analyzes its potential performance. The result features (1) A simplified easy-to-replace skewed-tube geometry for the core. (2) A very hard neutron spectrum which allows the useful consumption of all the actinides (no actinide waste). (3) Reduced proliferation risks on the equilibrium cycle compared to conventional fuel cycles because of the absence of carcinogenic, chemically-separable plutonium and the presence of /sup 232/U which gives a tell-tale signal and is hazardous to work with. (4) A breeding gain in the neighborhood of 0.3.

  12. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    SciTech Connect

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  13. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis D.; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer

    2005-02-01

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  14. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    SciTech Connect

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Williamson, Joshua; Peters, Curtis D.; Brown, Nicholas; Jablonski, Jennifer

    2005-02-06

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  15. Neutronics and Depletion Methods for Parametric Studies of Fluoride Salt Cooled High Temperature Reactors with Slab Fuel Geometry and Multi-Batch Fuel Management Schemes

    SciTech Connect

    Cisneros, Anselmo T.; Ilas, Dan

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a 3400 MWth fluoride salt cooled high temperature reactor (FHR) that uses TRISO particle fuel compacted into slabs rather than spherical fuel pebbles or cylindrical fuel compacts. Simplified methods are required for parametric design studies such that analyzing the entire feasible design space for an AHTR is tractable. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations in depletion analysis and equilibrium depletion analysis methods to analyze systems with multi-batch fuel management schemes. This paper presents three elements of significant novelty. First, the reactivity-equivalent physical transformation (RPT) methodology usually applied in systems with coated particle fuel in cylindrical and spherical geometries was extended to slab geometries. Secondly, based on this newly developed RPT method for slab geometries, a methodology that uses Monte Carlo depletion approaches was further developed to search for the maximum discharge burnup in a multi-batch system by iteratively estimating the beginning of equilibrium cycle composition and sampling different discharge burnups. This iterative equilibrium depletion search (IEDS) method fully defines an equilibrium fuel cycle (keff, power, flux and composition evolutions across space and time), but is computationally demanding, although feasible on single-processor workstations. Finally, an analytical method, the non-linear reactivity model, was developed by expanding the linear reactivity model to include an arbitrary number of higher order terms to extrapolate single-batch depletion results to estimate the maximum discharge burnup and BOEC keff in systems with multi-batch fuel management schemes. Results from this method were benchmarked against equilibrium depletion analysis results using the IEDS.

  16. Neutronics and Depletion Methods for Parametric Studies of Fluoride Salt Cooled High Temperature Reactors with Slab Fuel Geometry and Multi-Batch Fuel Management Schemes

    SciTech Connect

    Cisneros, Anselmo T.; Ilas, Dan

    2013-01-01

    The Advanced High-Temperature Reactor (AHTR) is a 3400 MWth fluoride-salt-cooled high-temperature reactor (FHR) that uses TRISO particle fuel compacted into slabs rather than spherical or cylindrical fuel compacts. Simplified methods are required for parametric design studies such that analyzing the entire feasible design space for an AHTR is tractable. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations in depletion analysis and equilibrium depletion analysis methods to analyze systems with multi-batch fuel management schemes. This paper presents three elements of significant novelty. First, the Reactivity-Equivalent Physical Transformation (RPT) methodology usually applied in systems with coated-particle fuel in cylindrical and spherical geometries has been extended to slab geometries. Secondly, based on this newly developed RPT method for slab geometries, a methodology that uses Monte Carlo depletion approaches was further developed to search for the maximum discharge burnup in a multi-batch system by iteratively estimating the beginning of equilibrium cycle (BOEC) composition and sampling different discharge burnups. This Iterative Equilibrium Depletion Search (IEDS) method fully defines an equilibrium fuel cycle (keff, power, flux, and composition evolutions) but is computationally demanding, although feasible on single-processor workstations. Finally, an analytical method, the Non-Linear Reactivity Model, was developed by expanding the linear reactivity model to include an arbitrary number of higher order terms so that single-batch depletion results could be extrapolated to estimate the maximum discharge burnup and BOEC keff in systems with multi-batch fuel management schemes. Results from this method were benchmarked against equilibrium depletion analysis results using the IEDS.

  17. Proliferation resistance for fast reactors and related fuel cycles: issues and impacts

    SciTech Connect

    Pilat, Joseph F

    2010-01-01

    The prospects for a dramatic growth in nuclear power may depend to a significant degree on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance and nuclear materials accountability. The challenges for fast reactors and related fuel cycles are especially critical. They are being explored in the Generation IV Tnternational Forum (GIF) and the Tnternational Atomic Energy Agency's (IAEA's) International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative, as well as by many states that are looking to these systems for the efficient lise of uranium resources and long-term energy security. How do any proliferation risks they may pose compare to other reactors, both existing and under development, and their fuel cycles? Can they be designed with intrinsic (technological) features to make these systems more proliferation resistant? What roles can extrinsic (institutional) features play in proliferation resistance? What are the anticipated safeguards requirements, and will new technologies and approaches need to be developed? How can safeguards be facilitated by the design process? These and other questions require a rethinking of proliferation resistance and the prospects for new technologies and other intrinsic and extrinsic features being developed that are responsive to specific issues for fast reactors and related fuel cycles and to the broader threat environment in which these systems will have to operate. There are no technologies that can wholly eliminate the risk of proliferation by a determined state, but technology and design can playa role in reducing state threats and perhaps in eliminating non-state threats. There will be a significant role for extrinsic factors, especially the various measures - from safeguards and physical protection to export controls - embodied in the international nuclear nonproliferation regime. This paper will offer

  18. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    DOEpatents

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  19. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    SciTech Connect

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael; Walker, Matthew

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  20. Reactor applications of the Compact Fusion Advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Hoffman, H. A.; Logan, B. G.; Campbell, R. B.

    1988-03-01

    A preliminary design of a D-T fusion reactor blanket and MHD power conversion system is made based on the CFAR concept, and it was found that performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boiling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection temperatures, and only a relatively small natural-draft heat exchanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although a cost analysis has not yet been performed, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity.

  1. 75 FR 36648 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Office of Nuclear Energy, DOE. ACTION: Notice of open meeting correction. On June 21, 2010,...

  2. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGESBeta

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  3. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    SciTech Connect

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  4. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  5. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  6. A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors

    SciTech Connect

    Jeong, C. J.; Park, C. J.; Choi, H.

    2006-07-01

    A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

  7. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    SciTech Connect

    Ribe, F.L.; Werner, R.W.

    1981-01-21

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li/sub 2/O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H/sub 2/ and O/sub 2/.

  8. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates

  9. Wastes from selected activities in two light-water reactor fuel cycles

    SciTech Connect

    Palmer, C.R.; Hill, O.F.

    1980-07-01

    This report presents projected volumes and radioactivities of wastes from the production of electrical energy using light-water reactors (LWR). The projections are based upon data developed for a recent environmental impact statement in which the transuranic wastes (i.e., those wastes containing certain long-lived alpha emitters at concentrations of at least 370 becquerels, or 10 nCi, per gram of waste) from fuel cycle activities were characterized. In addition, since the WG.7 assumed that all fuel cycle wastes except mill tailings are placed in a mined geologic repository, the nontransuranic wastes from several activities are included in the projections reported. The LWR fuel cycles considered are the LWR, once-through fuel cycle (Strategy 1), in which spent fuel is packaged in metal canisters and then isolated in geologic formations; and the LWR U/Pu recycle fuel cycle (Strategy 2), wherein spent fuel is reprocessed for recovery and recycle of uranium and plutonium in LWRs. The wastes projected for the two LWR fuel cycles are summarized. The reactor operations and decommissioning were found to dominate the rate of waste generation in each cycle. These activities account for at least 85% of the fuel cycle waste volume (not including head-end wastes) when normalized to per unit electrical energy generated. At 10 years out of reactor, however, spent fuel elements in Strategy 1 represent 98% of the fuel cycle activity but only 4% of the volume. Similarly, the packaged high-level waste, fuel hulls and hardware in Strategy 2 concentrate greater than 95% of the activity in 2% of the waste volume.

  10. Determination of the steady-state behavior of immobilized. beta. -galactosidase utilizing an integral reactor scheme

    SciTech Connect

    Scott, T.C.; Hill, C.G. Jr.; Amundson, C.H.

    1985-01-01

    Analysis of the steady-state behavior of immobilized ..beta..-galactosidase by integral reactor techniques has yielded a model which allows one to predict reactor performance under normal operating conditions. Values of the mechanistic rate constants for enzymatic hydrolysis of lactose were determined as a function of temperature by fitting the reactor model to experimental lactose conversion profiles. Use of this model along with the activity decay characteristics of the immobilized enzyme which have been presented in a previous publication could prove to be a useful tool in determining appropriate operating strategies for industrial applications of the immobilized enzyme catalyst. 18 refs., 5 figs., 6 tabs.

  11. Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria

    SciTech Connect

    Bader, R; Chandran, RB; Venstrom, LJ; Sedler, SJ; Krenzke, PT; De Smith, RM; Banerjee, A; Chase, TR; Davidson, JH; Lipinski, W

    2014-12-23

    The design procedure for a 3 kWth prototype solar thermochemical reactor to implement isothermal redox cycling of ceria for CO2 splitting is presented. The reactor uses beds of mm-sized porous ceria particles contained in the annulus of concentric alumina tube assemblies that line the cylindrical wall of a solar cavity receiver. The porous particle beds provide high surface area for the heterogeneous reactions, rapid heat and mass transfer, and low pressure drop. Redox cycling is accomplished by alternating flows of inert sweep gas and CO2 through the bed. The gas flow rates and cycle step durations are selected by scaling the results from small-scale experiments. Thermal and thermo-mechanical models of the reactor and reactive element tubes are developed to predict the steady-state temperature and stress distributions for nominal operating conditions. The simulation results indicate that the target temperature of 1773K will be reached in the prototype reactor and that the Mohr-Coulomb static factor of safety is above two everywhere in the tubes, indicating that thermo-mechanical stresses in the tubes remain acceptably low.

  12. Comparative study of pulsed and steady-state tokamak reactor burn cycles

    SciTech Connect

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1984-05-01

    Four distinct operating modes have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue in pulsed poloidal field coils; out-of-plant fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics and engineering which will help achieve these goals for different burn cycles.

  13. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  14. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  15. The benefits of a fast reactor closed fuel cycle in the UK

    SciTech Connect

    Gregg, R.; Hesketh, K.

    2013-07-01

    The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size, so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the

  16. Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Jaradat, Safwan Qasim Mohammad

    Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.

  17. Apparatus and process to eliminate diffusional limitations in a membrane biological reactor by pressure cycling

    DOEpatents

    Efthymiou, George S.; Shuler, Michael L.

    1989-08-29

    An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.

  18. Impacts of Heterogeneous Recycle in Fast Reactors on Overall Fuel Cycle

    SciTech Connect

    Temitope A. Taiwo; Samuel E. Bays; Abdullatif M. Yacout; Edward M. Hoffman; Michael Todosow; Taek K. Kim; Massimo Salvatores

    2011-03-01

    A study in the United States has evaluated the attributes of the heterogeneous recycle approach for plutonium and minor actinide transmutation in fast reactor fuel cycles, with comparison to the homogeneous recycle approach, where pertinent. The work investigated the characteristics, advantages, and disadvantages of the approach in the overall fuel cycle, including reactor transmutation, systems and safety impacts, fuel separation and fabrication issues, and proliferation risk and transportation impacts. For this evaluation, data from previous and ongoing national studies on heterogeneous recycle were reviewed and synthesized. Where useful, information from international sources was included in the findings. The intent of the work was to provide a comprehensive assessment of the heterogeneous recycle approach at the current time.

  19. Geometric and blast effects of thin film cavity protection schemes for IFE reactors

    SciTech Connect

    Morley, N.B.; Ying, A.A.

    1995-12-31

    The flow of thin liquid films of liquids in geometric orientations and under blast conditions of an IFE reactor chamber is investigated. A inertial jet on an inverted hemispherical surface, indicative of the PROMETHEUS design, is modeled with a 1-D analysis. The behavior of the film and the conditions for adhesion of the jet are explored. Also, vertical film flow is modeled with a 2-D fluid code that tracts the free surface. A test case is presented where the development of a wavy surface is seen. This surface is subjected to pressure pulses typical of reactor cavity gas fluctuations and the surface is seen to be disrupted.

  20. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  1. An evaluation of waste radiotoxicity reduction for a fast burner reactor closed fuel cycle: NEA benchmark results

    SciTech Connect

    Grimm, K.N.; Hill, R.N.; Wase, D.C.

    1995-12-01

    As part of a program proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed. In this paper, the fuel cycle performance of the metal-fueled benchmark is evaluated in detail. Benchmark results assess the reactor performance and toxicity behavior in a closed nuclear fuel cycle for a parametric variation of the conversion ratio between 0.5 and 1.0. Results indicate that a fast burner reactor closed fuel cycle can be utilized to significantly reduce the radiotoxicity destined for ultimate disposal.

  2. Maintenance Cycle Extension in the IRIS Advanced Light Water Reactor Plant Design

    SciTech Connect

    Galvin, Mark R.; Todreas, Neil E.; Conway, Larry E.

    2003-09-15

    New nuclear power generation in the United States will be realized only if the economic performance can be made competitive with other methods of electrical power generation. The economic performance of a nuclear power plant can be significantly improved by increasing the time spent on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described that can be used to resolve, in the design phase, maintenance-related operating cycle length barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the International Reactor, Innovative and Secure (IRIS) design. IRIS is an advanced light water nuclear power plant that is being designed to maximize this on-line generating time by increasing the operating cycle length. This is consequently a maintenance strategy paper using the IRIS plant as the example.Potential IRIS operating cycle length maintenance-related barriers, determined by modification of an earlier operating pressurized water reactor (PWR) plant cycle length analysis to account for differences between the design of IRIS and this operating PWR, are presented. The proposed methodology to resolve these maintenance-related barriers by the design process is described. The results of applying the methodology to two potential IRIS cycle length barriers, relief valve testing and emergency heat removal system testing, are presented.

  3. POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR

    SciTech Connect

    Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

    2007-05-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to

  4. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Satya, Octavianus Cakra; Monado, Fiber; Su'ud, Zaki; Sekimoto, Hiroshi

    2016-03-01

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on "Region-8" and "Region-10" core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  5. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2

    SciTech Connect

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using selected critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations in this report is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and to provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of two reactor critical configurations for Surry Unit 1 Cycle 2. This unit and cycle were chosen for a previous analysis using a different methodology because detailed isotopics from multidimensional reactor calculations were available from the Virginia Power Company. These data permitted a direct comparison of criticality calculations using the utility-calculated isotopics with those using the isotopics generated by the SCALE-4

  6. Development and experimental validation of a calculation scheme for nuclear heating evaluation in the core of the OSIRIS material testing reactor

    SciTech Connect

    Malouch, F.

    2011-07-01

    The control of the temperature in material samples irradiated in a material testing reactor requires the knowledge of the nuclear heating caused by the energy deposition by neutrons and photons interacting in the irradiation device structures. Thus, a neutron-photonic three-dimensional calculation scheme has been developed to evaluate the nuclear heating in experimental devices irradiated in the core of the OSIRIS MTR reactor (CEA/Saclay Center). The aim is to obtain a predictive tool for the nuclear heating estimation in irradiation devices. This calculation scheme is mainly based on the TRIPOLI-4 three-dimensional continuous-energy Monte Carlo transport code, developed by CEA (Saclay Center). An experimental validation has been carried out on the basis of nuclear heating measurements performed in the OSIRIS core. After an overview of the experimental devices irradiated in the OSIRIS reactor, we present the calculation scheme and the first results of the experimental validation. (authors)

  7. Once-through thorium fuel cycle evaluation for TVA's Browns Ferry-3 Boiling Water Reactor

    SciTech Connect

    Hopkins, G.C.

    1982-05-01

    This report documents benchmark evaluations to test thorium lattice predictive methods and neutron cross sections against available data and summarizes specific evaluations of the once-through thorium cycle when applied to the Browns Ferry-3 BWR. It was concluded that appreciable uncertainties in thorium cycle nuclear data cloud the ability to reliably predict the fuel cycle performance and that power reactor irradiations of ThO/sub 2/ rods in BWRs are desirable to resolve uncertainties. Benchmark evaluations indicated that the ENDF/B-IV data used in the evaluations should cause an underprediction of U-233/ThO/sub 2/ fuel reactivity, and, therefore, the results of the preliminary evaluations completed under the program should be conservative.

  8. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    SciTech Connect

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J.; Petrovic, B.

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

  9. The benefits of an advanced fast reactor fuel cycle for plutonium management

    SciTech Connect

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.; Hill, R.N.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium and long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.

  10. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    SciTech Connect

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  11. A Parametric Study of the DUPIC Fuel Cycle to Reflect Pressurized Water Reactor Fuel Management Strategy

    SciTech Connect

    Rozon, Daniel; Shen Wei

    2001-05-15

    For both pressurized water reactor (PWR) and Canada deuterium uranium (CANDU) tandem analysis, the Direct Use of spent PWR fuel In CANDU reactor (DUPIC) fuel cycle in a CANDU 6 reactor is studied using the DRAGON/DONJON chain of codes with the ENDF/B-V and ENDF/B-VI libraries. The reference feed material is a 17 x 17 French standard 900-MW(electric) PWR fuel. The PWR spent-fuel composition is obtained from two-dimensional DRAGON assembly transport and depletion calculations. After a number of years of cooling, this defines the initial fuel nuclide field in the CANDU unit cell calculations in DRAGON, where it is further depleted with the same neutron group structure. The resulting macroscopic cross sections are condensed and tabulated to be used in a full-core model of a CANDU 6 reactor to find an optimized channel fueling rate distribution on a time-average basis. Assuming equilibrium refueling conditions and a particular refueling sequence, instantaneous full-core diffusion calculations are finally performed with the DONJON code, from which both the channel power peaking factors and local parameter effects are estimated. A generic study of the DUPIC fuel cycle is carried out using the linear reactivity model for initial enrichments ranging from 3.2 to 4.5 wt% in a PWR. Because of the uneven power histories of the spent PWR assemblies, the spent PWR fuel composition is expected to differ from one assembly to the next. Uneven mixing of the powder during DUPIC fuel fabrication may lead to uncertainties in the composition of the fuel bundle and larger peaking factors in CANDU. A mixing method for reducing composition uncertainties is discussed.

  12. Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor.

    PubMed

    Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M

    2011-05-01

    The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.

  13. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3

    SciTech Connect

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations reported herein is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of three reactor critical configurations for the Sequoyah Unit 2 Cycle 3. This unit and cycle were chosen because of the relevance in spent fuel benchmark applications: (1) the unit had a significantly long downtime of 2.7 years during the middle of cycle (MOC) 3, and (2) the core consisted entirely of burned fuel at the MOC restart. The first benchmark critical calculation was the MOC restart at hot, full-power (HFP) critical conditions. The

  14. Scale-4 analysis of pressurized water reactor critical configurations: Volume 5, North Anna Unit 1 Cycle 5

    SciTech Connect

    Bowman, S.M.; Suto, T. |

    1996-10-01

    ANSI/ANS 8.1 requires that calculational methods for away-from- reactor (AFR) criticality safety analyses be validated against experiment. This report summarizes part of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial PWRs. Codes and data in the SCALE-4 code system were used. This volume documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. The KENO V.a criticality calculations for the North Anna 1 Cycle 5 beginning-of-cycle model yielded a value for k{sub eff} of 1. 0040{+-}0.0005.

  15. Measurement control design and performance assessment in the Integral Fast Reactor fuel cycle

    SciTech Connect

    Orechwa, Y.; Bucher, R.G.

    1994-08-01

    The Integral Fast Reactor (IFR)--consisting of a metal fueled and liquid metal cooled reactor together with an attendant fuel cycle facility (FCF)--is currently undergoing a phased demonstration of the closed fuel cycle at Argonne National Laboratory. The recycle technology is pyrometalurgical based with incomplete fission product separation and all transuranics following plutonium for recycle. The equipment operates in batch mode at 500 to 1,300 C. The materials are highly radioactive and pyrophoric, thus the FCF requires remote operation. Central to the material control and accounting system for the FCF are the balances for mass measurements. The remote operation of the balances limits direct adjustment. The radiation environment requires that removal and replacement of the balances be minimized. The uniqueness of the facility precludes historical data for design and performance assessment. To assure efficient operation of the facility, the design of the measurement control system has called for procedures which assess the performance of the balances in great detail and will support capabilities for the correction of systematic changes in the performance of the balances through software.

  16. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles.

    PubMed

    Collivignarelli, Maria Cristina; Castagnola, Federico; Sordi, Marco; Bertanza, Giorgio

    2015-10-01

    The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h.

  17. Feasibility Study on Thermal-Hydraulic Performance of Innovative Water Reactor for Flexible Fuel Cycle (FLWR)

    SciTech Connect

    Akira, Ohnuki; Kazuyuki, Takase; Masatoshi, Kureta; Hiroyuki, Yoshida; Hidesada, Tamai; Wei, Liu; Toru, Nakatsuka; Takeharu, Misawa; Hajime, Akimoto

    2006-07-01

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is started at Japan Atomic Energy Agency (JAEA) in collaboration with power company, reactor vendors, universities since 2002. The FLWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured LWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R and D items for the FLWR because of the tight lattice configuration. In this paper, we will show the R and D plan and summarize experimental studies. The experimental study is performed mainly using large-scale (37-rod bundle) test facility. Most important objective of the large-scale test is to resolve a fundamental subject whether the core cooling under a tight-lattice configuration is feasible. The characteristics of critical power and flow behavior are investigated under different geometrical configuration and boundary conditions. The configuration parameter is the gap between rods (FY2004) and the rod bowing (FY2005). We have confirmed the thermal-hydraulic feasibility from the experimental results. (authors)

  18. Nutrient removal in a sequencing batch reactor operated with short anaerobic/aerobic cycles.

    PubMed

    Freitas, F; Temudo, M; Almeida, J S; Reis, M A M

    2003-01-01

    A single sequencing batch reactor operated with short intermittent aeration cycles was used to simultaneously remove carbon, nitrogen and phosphorus. The complete cycle, comprising feeding, anaerobiosis, aerobiosis, settling and decanting, was only 36 minutes long. The system has shown high and stable nutrient removal at 30 degrees C with acetate as carbon source and it has proved to be rather robust and dynamic, efficiently adapting to most of the changes in operating parameters tested: presence of nitrate in the feeding medium, different substrates (propionate and butyrate), temperature and nutrient shock loads. For the optimum conditions used, a removal efficiency of over 90% was obtained for each nutrient. Description of the population kinetics was obtained for each operating condition, by performing batch tests. Kinetic and stoichiometric parameters were used to infer the relative contribution of each group of microorganisms on SBR performance. Compared to the traditional SBR operated with cycles of 6 hours, the use of short intermittent aeration cycles of 36 minutes corresponds to a 40% reduction on aeration time.

  19. Phase Cycling Schemes for finite-pulse-RFDR MAS Solid State NMR Experiments

    PubMed Central

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-01-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field in homogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  20. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-03-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY4(1)4, for the fp-RFDR pulse sequence employed in 2D (1)H/(1)H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY4(1)2, XY4(1)3, XY4(1)4, and XY8(1)4 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T(10)T(2,±2), T(1,±1)T(2,±1), etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY4(1)4 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp

  1. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  2. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    SciTech Connect

    Ilas, Germina; Chandler, David; Ade, Brian J; Sunny, Eva E; Betzler, Benjamin R; Pinkston, Daniel

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the design of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.

  3. Investigation of plant control strategies for the supercritical C0{sub 2}Brayton cycle for a sodium-cooled fast reactor using the plant dynamics code.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J.

    2011-04-12

    The development of a control strategy for the supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle has been extended to the investigation of alternate control strategies for a Sodium-Cooled Fast Reactor (SFR) nuclear power plant incorporating a S-CO{sub 2} Brayton cycle power converter. The SFR assumed is the 400 MWe (1000 MWt) ABR-1000 preconceptual design incorporating metallic fuel. Three alternative idealized schemes for controlling the reactor side of the plant in combination with the existing automatic control strategy for the S-CO{sub 2} Brayton cycle are explored using the ANL Plant Dynamics Code together with the SAS4A/SASSYS-1 Liquid Metal Reactor (LMR) Analysis Code System coupled together using the iterative coupling formulation previously developed and implemented into the Plant Dynamics Code. The first option assumes that the reactor side can be ideally controlled through movement of control rods and changing the speeds of both the primary and intermediate coolant system sodium pumps such that the intermediate sodium flow rate and inlet temperature to the sodium-to-CO{sub 2} heat exchanger (RHX) remain unvarying while the intermediate sodium outlet temperature changes as the load demand from the electric grid changes and the S-CO{sub 2} cycle conditions adjust according to the S-CO{sub 2} cycle control strategy. For this option, the reactor plant follows an assumed change in load demand from 100 to 0 % nominal at 5 % reduction per minute in a suitable fashion. The second option allows the reactor core power and primary and intermediate coolant system sodium pump flow rates to change autonomously in response to the strong reactivity feedbacks of the metallic fueled core and assumed constant pump torques representing unchanging output from the pump electric motors. The plant behavior to the assumed load demand reduction is surprising close to that calculated for the first option. The only negative result observed is a slight increase in the intermediate

  4. Dynamic neutronic and stability analysis of a burst mode, single cavity gas core reactor Brayton cycle space power system

    NASA Astrophysics Data System (ADS)

    Dugan, Edward T.; Kutikkad, Kiratadas

    The conceptual, burst-mode gaseous-core reactor (GCR) space nuclear power system presently subjected to reactor-dynamics and system stability studies operates on a closed Brayton cycle, via disk MHD generator for energy conversion. While the gaseous fuel density power coefficient of reactivity is found to be capable of rapidly stabilizing the GCR system, the power of this feedback renders standard external reactivity insertions inadequate for significant power-level changes during normal operation.

  5. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  6. Feasibility study on ultralong-cycle operation and material performance for compact liquid metal-cooled fast reactors: a review work

    SciTech Connect

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung; Kim, T. K.; Hong, Ser Gi

    2015-11-01

    This paper reviews the feasibility of ultralong-cycle operation on a compact liquid metal-cooled fast reactor (LMR) firstly by assessing the operation of a long-life fast reactor core and secondly by evaluating material performance in respect to both long-cycle operation and compact-size fast reactor. Many kinds of reactor concepts have been proposed, and LMR and small modular reactor (SMR) are the issued leading technologies for generation four (Gen-IV) reactor system development. The breed-and-burn strategy was proposed as a core burning strategy to operate a long cycle, and it has been evaluated in this paper with two reactor concepts: constant axial shape of neutron flux, nuclide densities, and power shape during life of energy and ultralong cycle fast reactor. In addition, Super-Safe, Small, and Simple and small modular fast reactor, compact LMR concepts, have been simulated to evaluate their long-life operation strategies. For the other practical issues, the materials for fuel, coolant, and structure have been identified and some of them are selected to have their performance optimized specifically for compact LMR with a long-cycle operation. It is believed that this comprehensive review will propose a proper direction for future reactor development and will be followed by the next step research for a complete reactor model with the other reactor components.

  7. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  8. Development of a Scale Model for High Flux Isotope Reactor Cycle 400

    SciTech Connect

    Ilas, Dan

    2012-03-01

    The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

  9. Preliminary design of ultra-long cycle fast reactor employing breed-and-burn strategy

    SciTech Connect

    Tak, T. W.; Yu, H.; Kim, J. H.; Lee, D.; Kim, T. K.

    2012-07-01

    A new design of ultra-long cycle fast reactor with power rate of 1000 MWe (UCFR) has been developed based on the strategy of breed-and burn. The bottom region of the core with low enriched uranium (LEU) plays a role of igniter of the core burning and the upper natural uranium (NU) region acts as blanket for breeding. Fissile materials are bred in the blanket and the active core moves upward at a speed of 5.4 cm/year. Through the core depletion calculation using Monte Carlo code, McCARD, it is confirmed that a full power operation of 60 years without refueling is feasible. Core performance characteristics have been evaluated in terms of axial/radial power shapes, reactivity feedback coefficients, etc. This design will serve as a base model for further design study of UCFRs using LWR spent fuels in the blanket region. (authors)

  10. Design of a Simplified Closed Brayton Cycle for a Space Reactor Application

    SciTech Connect

    Guimaraes, Lamartine N. F.; Camillo, Giannino Ponchio; Placco, Guilherme Moreira

    2009-03-16

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are: 1) to establish a starting concept for the CBCL components specifications, and 2) to build a demonstrative simulator of CBCL. This preliminary design study is been developed around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes details of the CBCL mechanical design and the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. However, for this first application pure helium will be used as working fluid. Simplified models of heat and mass transfer were developed to simulate thermal components. A new graphical interface was developed for the simulator to display the thermal process variables in steady state and to keep track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. A set of new results are being produced. These new results help to establish the hot and cold source geometry allowing for price estimating costs for building the actual device. These fresh new results will be presented and discussed.

  11. Flexible Fuel Cycle Initiative for the Harmonized Deployment of Gen-IV Reactors

    NASA Astrophysics Data System (ADS)

    Fukasawa, Tetsuo; Yamashita, Junichi; Hoshino, Kuniyoshi; Fujimura, Koji; Sasahira, Akira

    Generation IV type fast reactors (FR) are expected to be commercially deployed instead of light water reactors (LWR) from around 2050. Replacement of LWR to FR needs flexibility due to uncertain factors such as FR deployment rate which affects the FR fuel (Pu) supply amount from LWR spent fuel reprocessing and the capacity of related facilities. If the FR deployment rate is as currently planned, more Pu must be prepared by expanding LWR reprocessing. If the FR deployment rate decreases, LWR reprocessing must be reduced to avoid excess Pu. To cope with this issue we proposed the innovative system called Flexible Fuel Cycle Initiative (FFCI) that has integral reprocessing for LWR and FR spent fuels. LWR reprocessing in FFCI only carries out about 90% U recovery and residual material with Pu, U (˜5%), minor actinides (MA) and fission products (FP) goes to FR reprocessing for the planned FR deployment rate. For any decrease in the FR deployment rate temporary storage will be used. Coexistence of Pu/U with MA and FP until just before Pu/U usage in the FR provides high proliferation resistance. Preliminary evaluation revealed that FFCI can reduce the LWR reprocessing capacity and LWR spent fuel storage amount compared with current plan (reference system) if the FR deployment rate decreases. Several FR deployment scenarios and countermeasures such as FFCI were investigated.

  12. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    SciTech Connect

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-07-01

    The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  13. Feasibility study of fuel cladding performance for application in ultra-long cycle fast reactor

    NASA Astrophysics Data System (ADS)

    Jung, Ju Ang; Kim, Seung Hyun; Shin, Sang Hun; Bang, In Cheol; Kim, Ji Hyun

    2013-09-01

    As a part of the research and development activities for long-life core sodium-cooled fast reactors, the cladding performance of the ultra-long cycle fast reactor (UCFR) is evaluated with two design power levels (1000 MWe and 100 MWe) and cladding peak temperatures (873 K and 923 K). The key design concept of the UCFR is that it is non-refueling during its 30-60 years of operation. This concept may require a maximum peak cladding temperature of 923 K and a cladding radiation damage of over 200 dpa (displacements per atom). Therefore, for the design of the UCFR, deformation due to thermal creep, irradiation creep, and swelling must be taken into consideration through quantitative evaluations. As candidate cladding materials for use in UCFRs, ferritic-martensitic (FM) steels, oxide dispersion strengthened (ODS) steels, and SiC-based composite materials are studied using deformation behavior modeling for a feasibility evaluation. The results of this study indicate that SiC is a potential UCFR cladding material, with the exception of irradiation creep due to high neutron fluence stemming from its long operating time of about 30-60 years.

  14. Effect of cycle changes on simultaneous biological nutrient removal in a sequencing batch reactor (SBR).

    PubMed

    Coma, M; Puig, S; Monclús, H; Balaguer, M D; Colprim, J

    2010-03-01

    The destabilization of a microbial population is sometimes hard to solve when different biological reactions are coupled in the same reactor as in sequencing batch reactors (SBRs). This paper will try to guide through practical experiences the recovery of simultaneous nitrogen and phosphorus removal in an SBR after increasing the demand of wastewater treatment by taking advantage of its flexibility. The results demonstrate that the length of phases and the optimization of influent distribution are key factors in stabilizing the system for long-term periods with high nutrient removal (88%, 93% and 99% of carbon, nitrogen and phosphorus, respectively). In order to recover a biological nutrient removal (BNR) system, different interactions such as simultaneous nitrification and denitrification and also phosphorus removal must be taken into account. As a general conclusion, it can be stated there is no such thing as a perfect SBR operation, and that much will depend on the state of the BNR system. Hence, the SBR operating strategy must be based on a dynamic cycle definition in line with process efficiency. PMID:20426270

  15. A Preliminary and Simplified Closed Brayton Cycle Modeling for a Space Reactor Application

    SciTech Connect

    Guimaraes, Lamartine Nogueira Frutuoso; Camillo, Giannino Ponchio

    2008-01-21

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are: 1) to establish a starting concept for the CBCL components specifications, and 2) to build a demonstrative simulator of CBCL. This preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO{sub 2} and gas mixtures such as helium and xenon. However, for this first application pure helium will be used as working fluid. Simplified models of heat and mass transfer were developed to simulate thermal components. Future efforts will focus on implementing a graphical interface to display the thermal process variables in steady state and to keep track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL.

  16. MESMO 2: a mechanistic marine silica cycle and coupling to a simple terrestrial scheme

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Tokos, K.; Huston, A.; Joy-Warren, H.

    2013-04-01

    Here we describe the second version of Minnesota Earth System Model for Ocean biogeochemistry (MESMO 2), an earth system model of intermediate complexity, which consists of a dynamical ocean, dynamic-thermodynamic sea ice, and energy moisture balanced atmosphere. The new version has more realistic land ice masks and is driven by seasonal winds. A major aim in version 2 is representing the marine silica cycle mechanistically in order to investigate climate-carbon feedbacks involving diatoms, a critically important class of phytoplankton in terms of carbon export production. This is achieved in part by including iron, on which phytoplankton uptake of silicic acid depends. Also, MESMO 2 is coupled to an existing terrestrial model, which allows for the exchange of carbon, water and energy between land and the atmosphere. The coupled model, called MESMO 2E, is appropriate for more complete earth system simulations. The new version was calibrated, with the goal of preserving reasonable interior ocean ventilation and various biological production rates in the ocean and land, while simulating key features of the marine silica cycle.

  17. MESMO 2: a mechanistic marine silica cycle and coupling to a simple terrestrial scheme

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Tokos, K. S.; Huston, A.; Joy-Warren, H.

    2012-09-01

    Here we describe the second version of Minnesota Earth System Model for Ocean biogeochemistry (MESMO 2), an earth system model of intermediate complexity, which consists of a dynamical ocean, dynamic-thermodynamic sea ice, and energy moisture balanced atmosphere. The new version has more realistic land ice masks and is driven by seasonal winds. A major aim in version 2 is representing the marine silica cycle mechanistically in order to investigate climate-carbon feedbacks involving diatoms, a critically important class of phytoplankton in terms of carbon export production. This is achieved in part by including iron, on which phytoplankton uptake of silicic acid depends. Also, MESMO 2 is coupled to an existing terrestrial model, which allows for the exchange of carbon, water, and energy between land and the atmosphere. The coupled model, called MESMO 2E, is appropriate for more complete earth system simulations. The new version was calibrated with the goal of preserving reasonable interior ocean ventilation and various biological production rates in the ocean and land, while simulating key features of the marine silica cycle.

  18. Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)

    NASA Astrophysics Data System (ADS)

    Lizon-A-Lugrin, Laure

    The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a

  19. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  20. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    SciTech Connect

    Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E.

    2013-07-01

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  1. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution. PMID:27441855

  2. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming. PMID:26932053

  3. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  4. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    NASA Astrophysics Data System (ADS)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  5. Visceral Leishmaniasis on the Indian Subcontinent: Modelling the Dynamic Relationship between Vector Control Schemes and Vector Life Cycles

    PubMed Central

    2016-01-01

    Background Visceral leishmaniasis (VL) is a disease caused by two known vector-borne parasite species (Leishmania donovani, L. infantum), transmitted to man by phlebotomine sand flies (species: Phlebotomus and Lutzomyia), resulting in ≈50,000 human fatalities annually, ≈67% occurring on the Indian subcontinent. Indoor residual spraying is the current method of sand fly control in India, but alternative means of vector control, such as the treatment of livestock with systemic insecticide-based drugs, are being evaluated. We describe an individual-based, stochastic, life-stage-structured model that represents a sand fly vector population within a village in India and simulates the effects of vector control via fipronil-based drugs orally administered to cattle, which target both blood-feeding adults and larvae that feed on host feces. Principle findings Simulation results indicated efficacy of fipronil-based control schemes in reducing sand fly abundance depended on timing of drug applications relative to seasonality of the sand fly life cycle. Taking into account cost-effectiveness and logistical feasibility, two of the most efficacious treatment schemes reduced population peaks occurring from April through August by ≈90% (applications 3 times per year at 2-month intervals initiated in March) and >95% (applications 6 times per year at 2-month intervals initiated in January) relative to no control, with the cumulative number of sand fly days occurring April-August reduced by ≈83% and ≈97%, respectively, and more specifically during the summer months of peak human exposure (June-August) by ≈85% and ≈97%, respectively. Conclusions Our model should prove useful in a priori evaluation of the efficacy of fipronil-based drugs in controlling leishmaniasis on the Indian subcontinent and beyond. PMID:27537774

  6. Data Reconciliation in the Steam-Turbine Cycle of a Boiling Water Reactor

    SciTech Connect

    Sunde, Svein; Berg, Oivind; Dahlberg, Lennart; Fridqvist, Nils-Olof

    2003-08-15

    A mathematical model for a boiling water reactor steam-turbine cycle was assembled by means of a configurable, steady-state modeling tool TEMPO. The model was connected to live plant data and intermittently fitted to these by minimization of a weighted least-squares object function. The improvement in precision achieved by this reconciliation was assessed from quantities calculated from the model equations linearized around the minimum and from Monte Carlo simulations. It was found that the inclusion of the flow-passing characteristics of the turbines in the model equations significantly improved the precision as compared to simple mass and energy balances, whereas heat transfer calculations in feedwater heaters did not. Under the assumption of linear model equations, the quality of the fit can also be expressed as a goodness-of-fit Q. Typical values for Q were in the order of 0.9. For a validated model Q may be used as a fault detection indicator, and Q dropped to very low values in known cases of disagreement between the model and the plant state. The sensitivity of Q toward measurement faults is discussed in relation to redundancy. The results of the linearized theory and Monte Carlo simulations differed somewhat, and if a more accurate analysis is required, this is better based on the latter. In practical application of the presently employed techniques, however, assessment of uncertainties in raw data is an important prerequisite.

  7. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    SciTech Connect

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.

  8. Use of RELAP5-3D for Dynamic Analysis of a Closed-Loop Brayton Cycle Coupled To a Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    McCann, Larry D.

    2007-01-01

    This paper describes results of a dynamic system model for a pair of closed Brayton-cycle (CBC) loops running in parallel that are connected to a nuclear gas reactor. The model assumes direct coupling between the reactor and the Brayton-cycle loops. The RELAP5-3D (version 2.4.1) computer program was used to perform the analysis. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. The model described in this paper represents the reactor, turbine, compressor, recuperator, heat rejection system and alternator. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system. However, for analysts with mostly pressurized water reactor experience, the Brayton cycle loops coupled to a gas-cooled reactor also indicate some counter-intuitive behavior for the complete coupled system. This model has provided crucial information in evaluating the reactor design and would have been further developed for use in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes had the plant development cycle been completed.

  9. Use of RELAP5-3D for Dynamic Analysis of a Closed-Loop Brayton Cycle Coupled To a Nuclear Reactor

    SciTech Connect

    McCann, Larry D.

    2007-01-30

    This paper describes results of a dynamic system model for a pair of closed Brayton-cycle (CBC) loops running in parallel that are connected to a nuclear gas reactor. The model assumes direct coupling between the reactor and the Brayton-cycle loops. The RELAP5-3D (version 2.4.1) computer program was used to perform the analysis. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. The model described in this paper represents the reactor, turbine, compressor, recuperator, heat rejection system and alternator. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system. However, for analysts with mostly pressurized water reactor experience, the Brayton cycle loops coupled to a gas-cooled reactor also indicate some counter-intuitive behavior for the complete coupled system. This model has provided crucial information in evaluating the reactor design and would have been further developed for use in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes had the plant development cycle been completed.

  10. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-10-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  11. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  12. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  13. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  14. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs).

  15. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    SciTech Connect

    Schneider, K.J.

    1982-09-01

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  16. Importance of the (n,gamma) Cm-247 Evaluation on Neutron Emission in Fast Reactor Fuel Cycle Analysis

    SciTech Connect

    Benoit Forget; Mehdi Asgari; Rodolfo M. Ferrer

    2007-11-01

    As part of the GNEP program, it is envisioned to build a fast reactor for the transmutation of minor actinides. The spent nuclear fuel from the current fleet of light water reactors would be recycled, the current baseline is the UREX+1a process, and would act as a feed for the fast reactor. As the fuel is irradiated in a fast reactor a certain quantity of minor actinides would thus build up in the fuel stream creating possible concerns with the neutron emission of these minor actinides for fuel transportation, handling and fabrication. Past neutronic analyses had not tracked minor actinides above Cm-246 in the transmutation chain, because of the small influence on the overall reactor performance and cycle parameters. However, when trying to quantify the neutron emission from the recycled fuel with high minor actinide content, these higher isotopes play an essential role and should be included in the analysis. In this paper, the influence of tracking these minor actinides on the calculated neutron emission is presented. Also presented is the particular influence of choosing a different evaluated cross section data set to represent the minor actinides above Cm-246. The first representation uses the cross-sections provided by MC2-2 for all isotopes, while the second representation uses infinitely diluted ENDF/BVII.0 cross-sections for Cm-247 to Cf-252 and MC2-2 for all other isotopes.

  17. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  18. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    SciTech Connect

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  19. Engine-cycle analysis for a particle-bed reactor nuclear rocket. Final report, May-Jul 90

    SciTech Connect

    Suzuki, D.E.

    1991-03-01

    This report addresses three candidate engine cycles for a particle bed nuclear rocket; bleed cycle with uncooled carbon - carbon composite nozzle; bleed cycle with regeneratively cooled Aluminum nozzle; expander cycle with regeneratively cooled Aluminum nozzle. The analysis was performed using the SALT System Analysis Language Translator code with the following amendments; particle bed reactor was modeled as a simple heater; a regeneratively cooled nozzle model was added which includes the heating of the coolant due to hot exhaust gases and nuclear heating of nozzle. The conclusion of the analysis were the topping cycle should be pursued for Mars missions and the bleed cycle should be pursued for OTV (Orbital Transfer Vehicle) missions. This study indicates that a regeneratively cooled aluminum nozzle can be sufficiently cooled to allow its use with a PBR rocket engine. This result is based on nozzle heating due to hot exhaust gases at a maximum chamber temperature and nuclear heating effects. The highest temperatures occur at the nozzle throat, where a composite or alloy coating could protect the aluminum. Further investigation of nozzle cooling should include modeling the nozzle with more nodes, and including more accurate dimensions for the nozzle wall thicknesses and coolant flow passages. The study also indicates that an expander cycle with a cooled aluminum nozzle can operate with a high pressure PBR at realistic TPA efficiencies. Further investigation should include the improvements to the regeneratively cooled nozzle model and more accurate performance maps for the TPA components.

  20. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  1. Role of fast reactor and its cycle to reduce nuclear waste burden

    SciTech Connect

    Arie, Kazuo; Oomori, Takashi; Okita, Takeshi; Kawashima, Masatoshi; Kotake, Shoji; Fuji-ie, Yoichi

    2013-07-01

    The role of the metal fuel fast reactor with recycling of actinides and the five long-lived fission products based on the concept of the Self-Consistent Nuclear Energy System has been examined by evaluating the reduction of nuclear wastes during the transition period to this reactor system. The evaluation was done in comparison to an LWR once-through case and a conventional actinide recycling oxide fast reactor. As a result, it is quantitatively clarified that a metal fuel fast reactor with actinide and the five long-lived fission products (I{sup 129}, Tc{sup 99}, Zr{sup 93}, Cs{sup 135} and Sn{sup 126}) recycling could play a significant role in reducing the nuclear waste burden including the current LWR wastes. This can be achieved by using a fast neutron spectrum reactor enhanced with metal fuel that brings high capability as a 'waste burner'. (authors)

  2. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  3. Increasing the reliability of the shutdown of 500 - 750-kV overhead lines equipped with shunt reactors in an unsuccessful three-phase automatic repeated closure cycle

    SciTech Connect

    Kuz'micheva, K. I.; Merzlyakov, A. S.; Fokin, G. G.

    2013-05-15

    The reasons for circuit-breaker failures during repeated disconnection of 500 - 750 kV overhead lines with shunt reactors in a cycle of unsuccessful three-phase automatic reconnection (TARC) are analyzed. Recommendations are made for increasing the operating reliability of power transmission lines with shunt reactors when there is unsuccessful reconnection.

  4. Core design of long life-cycle fast reactors operating without reactivity margin

    SciTech Connect

    Aristova, E. N.; Baydin, D. F.; Gol'din, V. Y.; Pestryakova, G. A.; Stoynov, M. I.

    2012-07-01

    In this paper we consider a possibility of designing a fast reactor core that operates without reactivity margin for a long time. This study is based on the physical principle of fast reactor operating in a self-adjustable neutron-nuclear regime (SANNR-1) introduced by L.P. Feoktistov (1988-1993) and improved by V. Ya. Gol'din SANNR-2 (1995). The mathematical modeling of active zones of fast reactors in SANNR modes is held by authors since 1992. The numerical simulation is based on solving the neutron transport equation coupled with quasi-diffusion equations. The calculations have been performed using standard 26 energy groups. We use a hierarchy of spatial models of 1D, 1.5D, 2D, and 3D geometries. The spatial models of higher dimensionality are used for verification of results. The calculations showed that operation of the reactor in this mode increases its efficiency, safety and simplifies management. It is possible to achieve continuous work of the reactor in SANNR-2 during 7-10 years without fuel overloads by means of further optimization of the mode. Small reactivity margin is used only for the reactor start up. After first 10-15 days the reactor in SANNR-2 operates without reactivity margin. (authors)

  5. Fuel Cycle System Analysis Implications of Sodium-Cooled Metal-Fueled Fast Reactor Transuranic Conversion Ratio

    SciTech Connect

    Steven J. Piet; Edward A. Hoffman; Samuel E. Bays; Gretchen E. Matthern; Jacob J. Jacobson; Ryan Clement; David W. Gerts

    2013-03-01

    If advanced fuel cycles are to include a large number of fast reactors (FRs), what should be the transuranic (TRU) conversion ratio (CR)? The nuclear energy era started with the assumption that they should be breeder reactors (CR > 1), but the full range of possible CRs eventually received attention. For example, during the recent U.S. Global Nuclear Energy Partnership program, the proposal was burner reactors (CR < 1). Yet, more recently, Massachusetts Institute of Technology's "Future of the Nuclear Fuel Cycle" proposed CR [approximately] 1. Meanwhile, the French company EDF remains focused on breeders. At least one of the reasons for the differences of approach is different fuel cycle objectives. To clarify matters, this paper analyzes the impact of TRU CR on many parameters relevant to fuel cycle systems and therefore spans a broad range of topic areas. The analyses are based on a FR physics parameter scan of TRU CR from 0 to [approximately]1.8 in a sodium-cooled metal-fueled FR (SMFR), in which the fuel from uranium-oxide-fueled light water reactors (LWRs) is recycled directly to FRs and FRs displace LWRs in the fleet. In this instance, the FRs are sodium cooled and metal fueled. Generally, it is assumed that all TRU elements are recycled, which maximizes uranium ore utilization for a given TRU CR and waste radiotoxicity reduction and is consistent with the assumption of used metal fuel separated by electrochemical means. In these analyses, the fuel burnup was constrained by imposing a neutron fluence limit to fuel cladding to the same constant value. This paper first presents static, time-independent measures of performance for the LWR [right arrow] FR fuel cycle, including mass, heat, gamma emission, radiotoxicity, and the two figures of merit for materials for weapon attractiveness developed by C. Bathke et al. No new fuel cycle will achieve a static equilibrium in the foreseeable future. Therefore, additional analyses are shown with dynamic, time

  6. Fuel cycles and envisioned roles of fast neutron reactors and hybrids

    NASA Astrophysics Data System (ADS)

    Salvatores, Massimo

    2012-06-01

    Future innovative nuclear fuel cycles will require insuring sustainability in terms of safe operation, optimal use of resources, radioactive waste minimization and reduced risk of proliferation. The present paper introduces some basic notions and fundamental fuel cycle strategies. The simulation approach needed to evaluate the impact of the different fuel cycle alternatives will also be shortly discussed.

  7. Fuel cycles and envisioned roles of fast neutron reactors and hybrids

    SciTech Connect

    Salvatores, Massimo

    2012-06-19

    Future innovative nuclear fuel cycles will require insuring sustainability in terms of safe operation, optimal use of resources, radioactive waste minimization and reduced risk of proliferation. The present paper introduces some basic notions and fundamental fuel cycle strategies. The simulation approach needed to evaluate the impact of the different fuel cycle alternatives will also be shortly discussed.

  8. Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon

    NASA Astrophysics Data System (ADS)

    Meshik, A. P.; Hohenberg, C. M.; Pravdivtseva, O. V.

    2004-10-01

    Using selective laser extraction technique combined with sensitive ion-counting mass spectrometry, we have analyzed the isotopic structure of fission noble gases in U-free La-Ce-Sr-Ca aluminous hydroxy phosphate associated with the 2 billion yr old Oklo natural nuclear reactor. In addition to elevated abundances of fission-produced Zr, Ce, and Sr, we discovered high (up to 0.03 cm3 STP/g) concentrations of fission Xe and Kr, the largest ever observed in any natural material. The specific isotopic structure of xenon in this mineral defines a cycling operation for the reactor with 30-min active pulses separated by 2.5h dormant periods. Thus, nature not only created conditions for self-sustained nuclear chain reactions, but also provided clues on how to retain nuclear wastes, including fission Xe and Kr, and prevent uncontrolled runaway chain reaction.

  9. Record of cycling operation of the natural nuclear reactor in the Oklo/Okelobondo area in Gabon.

    PubMed

    Meshik, A P; Hohenberg, C M; Pravdivtseva, O V

    2004-10-29

    Using selective laser extraction technique combined with sensitive ion-counting mass spectrometry, we have analyzed the isotopic structure of fission noble gases in U-free La-Ce-Sr-Ca aluminous hydroxy phosphate associated with the 2 billion yr old Oklo natural nuclear reactor. In addition to elevated abundances of fission-produced Zr, Ce, and Sr, we discovered high (up to 0.03 cm(3) STP/g) concentrations of fission Xe and Kr, the largest ever observed in any natural material. The specific isotopic structure of xenon in this mineral defines a cycling operation for the reactor with 30-min active pulses separated by 2.5 h dormant periods. Thus, nature not only created conditions for self-sustained nuclear chain reactions, but also provided clues on how to retain nuclear wastes, including fission Xe and Kr, and prevent uncontrolled runaway chain reaction.

  10. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water

  11. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5

    SciTech Connect

    Bowman, S.M.

    1993-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor (AFR) criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial pressurized-water reactors (PWR). The analysis methodology selected for all calculations reported herein was the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and to provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. This unit and cycle were chosen for a previous analysis using a different methodology because detailed isotopics from multidimensional reactor calculations were available from the Virginia Power Company. These data permitted comparison of criticality calculations directly using the utility-calculated isotopics to those using the isotopics generated by the SCALE-4 SAS2H

  12. Safeguards and Non-proliferation Issues as Related to Advanced Fuel Cycle and Advanced Fast Reactor Development with Processing of Reactor Fuel

    SciTech Connect

    Rahmat Aryaeinejad; Jerry D. Cole; Mark W. Drigert; Dee E. Vaden

    2006-10-01

    The goal of this work is to establish basic data and techniques to enable safeguards appropriate to a new generation of nuclear power systems that will be based on fast spectrum reactors and mixed actinide fuels containing significant quantities of "minor" actinides, possibly due to reprocessing, and determination of what new radiation signatures and parameters need to be considered. The research effort focuses on several problems associated with the use of fuel having significantly different actinide inventories that current practice and on the development of innovative techniques using new radiation signatures and other parameters useful for safeguards and monitoring. In addition, the development of new distinctive radiation signatures as an aid in controlling proliferation of nuclear materials has parallel applications to support Gen-IV and current advanced fuel cycle initiative (AFCI) goals as well as the anticipated Global Nuclear Energy Partnership (GNEP).

  13. Surveillance strategy for an extended operating cycle in commercial nuclear reactors

    SciTech Connect

    McHenry, R.S.; Moore, T.J.; Maurer, J.H.; Todreas, N.E.

    1997-05-01

    The impetus for improved economic performance of commercial nuclear power plants can be partially satisfied by increasing plant capacity factors through operating cycle extension. One aspect of an operating cycle extension effort is the modification of plant surveillance programs to complete required regulatory and investment protection surveillance activities within the extended planned outage schedule. The goal of this paper is to introduce a general strategy for existing power plants to transition their surveillance programs to an extended operating cycle up to 48 months in length, and to test the feasibility of this strategy through the complete analysis of the surveillance programs at operating BWR and PWR case study plants. The reconciliation of surveillances at these plants demonstrates that surveillance performance will not preclude 48 month operating cycles. Those surveillance activities that could not be resolved to an extended cycle are identified for further study. Finally, a number of general issues are presented that should be considered before implementing a cycle extension effort.

  14. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? EXTENDING CYCLE BURNUP

    SciTech Connect

    Primm, Trent; Chandler, David

    2009-01-01

    Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting HFIR from high enriched to low enriched uranium (20 wt % 235U) fuel requires extending the end-of-life burnup value for HFIR fuel from the current nominal value of 2200 MWD to 2600 MWD. The current fuel fabrication procedure is discussed and changes that would be required to this procedure are identified. Design and safety related analyses that are required for the certification of a new fuel are identified. Qualification tests and comments regarding the regulatory approval process are provided along with a conceptual schedule.

  15. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5

    SciTech Connect

    DeHart, M.D.

    1995-01-01

    The requirements of ANSI/ANS-8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original ''fresh'' composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using relevant and well-documented critical configurations from commercial pressurized water reactors. The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Isotopic densities for spent fuel assemblies in the core were calculated using the SCALE-4 SAS2H analytical sequence. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code family was used to extract the necessary isotopic densities from SAS2H results and to provide the data in the format required for SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) for the critical configuration. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all calculations. This volume of the report documents a reactor critical calculation for GPU Nuclear Corporation's Three Mile Island Unit 1 (TMI-1) during hot, zero-power startup testing for the beginning of cycle 5. This unit and cycle were selected because of their relevance in spent fuel benchmark applications: (1) cycle 5 startup occurred after an especially long downtime of 6.6 years; and (2) the core consisted primarily (75%) of burned fuel, with

  16. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  17. Effects of cycle-frequency and temperature on the performance of anaerobic sequencing batch reactors (ASBRs) treating swine waste.

    PubMed

    Ndegwa, P M; Hamilton, D W; Lalman, J A; Cumba, H J

    2008-04-01

    Anaerobic digestion of animal waste is a technically viable process for the abatement of adverse environmental impacts caused by animal wastes; however, widespread acceptance has been plagued by poor economics. This situation is dismal if the technology is adapted for treating low strength animal slurries because of large digester-volume requirements and a corresponding high energy input. A possible technology to address these constraints is the anaerobic sequencing batch reactor (ASBR). The ASBR technology has demonstrated remarkable potential to improve the economics of treating dilute animal waste effluents. This paper presents preliminary data on the effects of temperature and frequency-cycle on the operation of an ASBR at a fixed hydraulic retention time (HRT). The results suggest that within the parameter range under consideration, temperature did not affect the biogas yield significantly, however, higher cycle-frequency had a negative effect. The biogas quality (%CH(4)) was not significantly affected by temperature nor by the cycle-frequency. The operating principle of the ASBR follows four phases: feed, react, settle, and decant in a cyclic mode. To improve the biogas production in an ASBR, one long react-phase was preferable compared to three shorter react-phases. Treatment of dilute manure slurries in an ASBR at 20 degrees C was more effective than at 35 degrees C; similarly more bio-stable effluents were obtained at low cycle-frequency. The treatment of dilute swine slurries in an ASBR at the lower temperature (20 degrees C) and lower cycle-frequency is, therefore, recommended for the bio-stabilization of dilute swine wastewaters. The results also indicate that significantly higher VFA degradation occurred at 20 degrees C than at 35 degrees C, suggesting that the treatment of dilute swine slurries in ASBRs for odor control might be more favorable at the lower than at the higher temperatures examined in this study. Volatile fatty acid reduction at the two

  18. Space reactor/Stirling cycle systems for high power Lunar applications

    SciTech Connect

    Schmitz, P.D.; Mason, L.S.

    1994-09-01

    NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

  19. Space reactor/Stirling cycle systems for high power lunar application

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.

    1991-01-01

    An analysis is performed to mathematically model a 550 kWe lunar base power supply which uses a SP-100 reactor coupled with Stirling converters. The reactor is placed in an excavation to keep activated coolant in the hole and to allow maintenance of the components outside the hole. Two technology levels are considered. They are 1050 and 1300 K heater head Stirling converts. It is found that for a 1050 K converter the total mass which provided 1000 volts DC at 250 m is 14,366 kg while the 1300 K system mass is 12,104 kg. The radiation area of the 1050 and 1300 K systems are 641 and 356 sq m respectively. Comparisons are made with Brayton and thermionic systems with both near term and advanced technology considered.

  20. Space reactor/Stirling cycle systems for high power lunar applications

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.

    1991-01-01

    An analysis is performed to mathematically model a 550 kWe lunar base power supply which uses a SP-100 reactor coupled with Stirling converters. The reactor is placed in an excavation to keep activated coolant in the hole and to allow maintance of the components outside the hole. Two technology levels are considered. They are 1050 and 1300 K heater head Stirling converts. It is found that for a 1050 K converter the total mass which provided 1000 volts dc at 250 m is 14,366 kg while the 1300 K system mass is 12,104 kg. The radiation area of the 1050 and 1300 K systems are 641 and 356 sq m respectively. Comparisons are made with Brayton and thermionic systems with both near term and advanced technology considered.

  1. Neutronics analysis of an open-cycle high-impulse gas core reactor concept

    NASA Technical Reports Server (NTRS)

    Whitmarsh, C. L., Jr.

    1972-01-01

    A procedure was developed to calculate the critical fuel mass, including the effects of propellant pressure, for coaxial-flow gas-core reactors operating at 196,600 newtons thrust and 4400 seconds specific impulse. Data were generated for a range of cavity diameter, reflector-moderator thickness, and quantity of structural material. Also presented are such core characteristics as upper limits on cavity pressure, spectral hardening in very-high-temperature hydrogen, and reactivity coefficients.

  2. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    SciTech Connect

    Krikorian, O.H.

    1980-10-10

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface.

  3. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    PubMed

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  4. Heuristic optimization of pressurized water reactor fuel cycle design under general constraints

    SciTech Connect

    Moon, H.; Levine, S.H. ); Mahgerefteh, M. )

    1989-12-01

    Optimization techniques in fuel management have directed modern fuel cycle designs to use low-leakage loading patterns. Future optimization calculations involving low-leakage patterns must utilize nucleonic models that are both fast operationally and rigorous. A two-dimensional two-group diffusion theory code is developed and lattice homogenization constants are generated using a modified LEOPARD code to fulfill these criteria. Based on these two codes, a heuristic optimization study is performed that considers the general constraints (e.g., spent-fuel storage limit and mechanical burnup limit) given to a utility fuel cycle designer. The optimum cycle length that minimizes the fuel cost is {approximately} 600 effective full-power days for the conditions assumed.

  5. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description

    SciTech Connect

    Not Available

    1980-06-01

    The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

  6. High cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment

    SciTech Connect

    Soo, P.; Sabatini, R.L.; Epel, L.G.; Hare, J.R. Sr.

    1980-01-01

    The current study was an attempt to evaluate the high cycle fatigue strength of Incoloy 800H in a High-Temperature Gas-Cooled Reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally-aged materials were tested to determine the effects of long term corrosion in the helium test gas. Results from in-helium tests were compared to those from a standard air environment. It was found that the mechanisms of fatigue failure were very complex and involved recovery/recrystallization of the surface ground layer on the specimens, sensitization, hardness changes, oxide scale integrity, and oxidation at the tips of propagation cracks. For certain situations a corrosion-fatigue process seems to be controlling. However, for the helium environment studied, there was usually no aging or test condition for which air gave a higher fatigue strength.

  7. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  8. Work Breakdown Structure and Plant/Equipment Designation System Numbering Scheme for the High Temperature Gas- Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect

    Jeffrey D Bryan

    2009-09-01

    This white paper investigates the potential integration of the CTC work breakdown structure numbering scheme with a plant/equipment numbering system (PNS), or alternatively referred to in industry as a reference designation system (RDS). Ideally, the goal of such integration would be a single, common referencing system for the life cycle of the CTC that supports all the various processes (e.g., information, execution, and control) that necessitate plant and equipment numbers be assigned. This white paper focuses on discovering the full scope of Idaho National Laboratory (INL) processes to which this goal might be applied as well as the factors likely to affect decisions about implementation. Later, a procedure for assigning these numbers will be developed using this white paper as a starting point and that reflects the resolved scope and outcome of associated decisions.

  9. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19

    SciTech Connect

    Schneider, K.J.

    1982-09-01

    Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

  10. A description of the demonstration Integral Fast Reactor fuel cycle facility.

    PubMed

    Courtney, J C; Carnes, M D; Dwight, C C; Forrester, R J

    1991-10-01

    A fuel examination facility at the Idaho National Engineering Laboratory is being converted into a facility that will electrochemically process spent fuel. This is an important step in the demonstration of the Integral Fast Reactor concept being developed by Argonne National Laboratory. Renovations are designed to bring the facility up to current health and safety and environmental standards and to support its new mission. Improvements include the addition of high-reliability earthquake hardened off-gas and electrical power systems, the upgrading of radiological instrumentation, and the incorporation of advances in contamination control. A major task is the construction of a new equipment repair and decontamination facility in the basement of the building to support operations.

  11. Fuel cycle facility control system for the Integral Fast Reactor Program

    SciTech Connect

    Benedict, R.W.; Tate, D.A.

    1993-09-01

    As part of the Integral Fast Reactor (IFR) Fuel Demonstration, a new distributed control system designed, implemented and installed. The Fuel processes are a combination of chemical and machining processes operated remotely. To meet this special requirement, the new control system provides complete sequential logic control motion and positioning control and continuous PID loop control. Also, a centralized computer system provides near-real time nuclear material tracking, product quality control data archiving and a centralized reporting function. The control system was configured to use programmable logic controllers, small logic controllers, personal computers with touch screens, engineering work stations and interconnecting networks. By following a structured software development method the operator interface was standardized. The system has been installed and is presently being tested for operations.

  12. Review of the cost estimate and schedule for the 2240-MWt high-temperature gas-cooled reactor steam-cycle/cogeneration lead plant

    SciTech Connect

    Not Available

    1983-09-01

    This report documents Bechtel's review of the cost estimate and schedule for the 2240 MWt High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) Lead Plant. The overall objective of the review is to verify that the 1982 update of the cost estimate and schedule for the Lead Plant are reasonable and consistent with current power plant experience.

  13. Sensitivity of Advanced Reactor and Fuel Cycle Performance Parameters to Nuclear Data Uncertainties

    NASA Astrophysics Data System (ADS)

    Aliberti, G.; Palmiotti, G.; Salvatores, M.; Kim, T. K.; Taiwo, T. A.; Kodeli, I.; Sartori, E.; Bosq, J. C.; Tommasi, J.

    2006-04-01

    As a contribution to the feasibility assessment of Gen IV and AFCI relevant systems, a sensitivity and uncertainty study has been performed to evaluate the impact of neutron cross section uncertainty on the most significant integral parameters related to the core and fuel cycle. Results of an extensive analysis indicate only a limited number of relevant parameters and do not show any potential major problem due to nuclear data in the assessment of the systems considered. However, the results obtained depend on the uncertainty data used, and it is suggested to focus some future evaluation work on the production of consistent, as far as possible complete and user oriented covariance data.

  14. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  15. Contribution of Clinch River Breeder Reactor plant design and development to the LMFBR fuel cycle

    SciTech Connect

    Riley, D.R.; Dickson, P.W.

    1981-01-01

    This paper describes how the CRBRP development and CRBRP focus of the LMFBR base technology program have led to advances in the state of the art in physics, thermal-hydraulics, structural analysis, core restraint, seismic analysis, and analysis of hypothetical core-disruptive accident energetics, all of which have been incorporated through disciplined engineering into the final CRBRP design. The total development in the US of fuels and materials, the analytical advances made on CRBRP design, and the incorporation of the latest experimental results into that design have put the US technology in general and the CRBRP design in particular at the forefront of technology. This has placed the US in a position to develop the most favorable LMFBR fuel cycle.

  16. Mathematical modelling and reactor design for multi-cycle bioregeneration of nitrate exhausted ion exchange resin.

    PubMed

    Ebrahimi, Shelir; Roberts, Deborah J

    2016-01-01

    Nitrate contamination is one of the largest issues facing communities worldwide. One of the most common methods for nitrate removal from water is ion exchange using nitrate selective resin. Although these resins have a great capacity for nitrate removal, they are considered non regenerable. The sustainability of nitrate-contaminated water treatment processes can be achieved by regenerating the exhausted resin several times rather than replacing and incineration of exhausted resin. The use of multi-cycle exhaustion/bioregeneration of resin enclosed in a membrane has been shown to be an effective and innovative regeneration method. In this research, the mechanisms for bioregeneration of resin were studied and a mathematical model which incorporated physical desorption process with biological removal kinetics was developed. Regardless of the salt concentration of the solution, this specific resin is a pore-diffusion controlled process (XδD ¯CDr0(5+2α)<1). Also, Thiele modulus was calculated to be between 4 and 12 depending on the temperature and salt concentration. High Thiele modulus (>3) shows that the bioregeneration process is controlled by reaction kinetics and is governed by biological removal of nitrate. The model was validated by comparison to experimental data; the average of R-squared values for cycle 1 to 5 of regeneration was 0.94 ± 0.06 which shows that the developed model predicted the experimental results very well. The model sensitivity for different parameters was evaluated and a model bioreactor design for bioregeneration of highly selective resins was also presented. PMID:26595098

  17. Mathematical modelling and reactor design for multi-cycle bioregeneration of nitrate exhausted ion exchange resin.

    PubMed

    Ebrahimi, Shelir; Roberts, Deborah J

    2016-01-01

    Nitrate contamination is one of the largest issues facing communities worldwide. One of the most common methods for nitrate removal from water is ion exchange using nitrate selective resin. Although these resins have a great capacity for nitrate removal, they are considered non regenerable. The sustainability of nitrate-contaminated water treatment processes can be achieved by regenerating the exhausted resin several times rather than replacing and incineration of exhausted resin. The use of multi-cycle exhaustion/bioregeneration of resin enclosed in a membrane has been shown to be an effective and innovative regeneration method. In this research, the mechanisms for bioregeneration of resin were studied and a mathematical model which incorporated physical desorption process with biological removal kinetics was developed. Regardless of the salt concentration of the solution, this specific resin is a pore-diffusion controlled process (XδD ¯CDr0(5+2α)<1). Also, Thiele modulus was calculated to be between 4 and 12 depending on the temperature and salt concentration. High Thiele modulus (>3) shows that the bioregeneration process is controlled by reaction kinetics and is governed by biological removal of nitrate. The model was validated by comparison to experimental data; the average of R-squared values for cycle 1 to 5 of regeneration was 0.94 ± 0.06 which shows that the developed model predicted the experimental results very well. The model sensitivity for different parameters was evaluated and a model bioreactor design for bioregeneration of highly selective resins was also presented.

  18. High-Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration Lead Project strategy plan

    SciTech Connect

    1982-03-01

    The strategy for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. Project organization and management, vendor/supplier development, cost/risk sharing between the public and private sector, and Project financing. These problems are further exacerbated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project.

  19. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    SciTech Connect

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D.

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  20. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  1. The effectiveness of using the combined-cycle technology in a nuclear power plant unit equipped with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Gospodchenkov, I. V.

    2015-05-01

    The design of a modular SVBR-100 reactor with a lead-bismuth alloy liquid-metal coolant is described. The basic thermal circuit of a power unit built around the SVBR-100 reactor is presented together with the results of its calculation. The gross electrical efficiency of the turbine unit driven by saturated steam at a pressure of 6.7 MPa is estimated at η{el/gr} = 35.5%. Ways for improving the efficiency of this power unit and increasing its power output by applying gas-turbine and combined-cycle technologies are considered. With implementing a combined-cycle power-generating system comprising two GE-6101FA gas-turbine units with a total capacity of 140 MW, it becomes possible to obtain the efficiency of the combined-cycle plant equipped with the SVBR-100 reactor η{el/gr} = 45.39% and its electrical power output equal to 328 MW. The heat-recovery boiler used as part of this power installation generates superheated steam with a temperature of 560°C, due to which there is no need to use a moisture separator/steam reheater in the turbine unit thermal circuit.

  2. Efficient Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    High-purity silicon efficiently produced and transferred by continuous two-cycle reactor. New reactor operates in relatively-narrow temperature rate and uses large surfaces area to minimize heat expenditure and processing time in producing silicon by hydrogen reduction of trichlorosilane. Two cycles of reactor consists of silicon production and removal.

  3. Sensitivity analysis and optimization of the nuclear fuel cycle

    SciTech Connect

    Passerini, S.; Kazimi, M. S.; Shwageraus, E.

    2012-07-01

    A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

  4. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINK™

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Sanchez, Travis

    2005-02-01

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK™ (Simulink, 2004). SIMULINK™ is a development environment packaged with MatLab™ (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion components such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK™ models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK™ modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator).

  5. Standard- and extended-burnup PWR (pressurized-water reactor) and BWR (boiling-water reactor) reactor models for the ORIGEN2 computer code

    SciTech Connect

    Ludwig, S.B.; Renier, J.P.

    1989-12-01

    The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs.

  6. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2012-05-10

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the

  7. Breeding of {sup 233}U in the thorium–uranium fuel cycle in VVER reactors using heavy water

    SciTech Connect

    Marshalkin, V. E. Povyshev, V. M.

    2015-12-15

    A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the {sup 233}U–{sup 232}Th oxide fuel of water-moderated reactors with variable water composition (D{sub 2}O, H{sub 2}O) that ensures breeding of the {sup 233}U and {sup 235}U isotopes. The method is comparatively simple to implement.

  8. Breeding of 233U in the thorium-uranium fuel cycle in VVER reactors using heavy water

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the 233U-232Th oxide fuel of water-moderated reactors with variable water composition (D2O, H2O) that ensures breeding of the 233U and 235U isotopes. The method is comparatively simple to implement.

  9. Opportunities to reduce consumption of natural uranium in reactor SVBR-75/100 when changing over to the closed fuel cycle

    SciTech Connect

    Toshinsky, G.I.; Komlev, O.G.; Mel'nikov, K.G.; Novikova, N.N.

    2007-07-01

    The design of reactor SVBR-75/100 allows it to operate using different types of fuel and in different fuel cycles without changing its design and deteriorating its safety characteristics. Fuel-at-once refueling adopted in the design (lack of partial refueling) makes it possible to change the core content at each refueling by using the type of fuel that is the most economically effective at the current stage of nuclear power (NP) development. In the nearest future use of mastered oxide uranium fuel and operating in the opened fuel cycle with postponed reprocessing will be the most economically effective. Changeover to the mixed uranium-plutonium fuel and closed nuclear fuel cycle (NFC) will be economically effective in an event of increase of natural uranium costs when the expenditures for construction of the enterprises on reprocessing the spent nuclear fuel (SNF), re-fabrication of new fuel with plutonium and their operating are less than the corresponding costs of natural uranium, its enrichment costs, the costs of manufacturing fresh uranium fuel and long temporary storage of SNF. At this, it is possible to use both MOX fuel with weapon or reactor plutonium and mixed nitride fuel in case its usage is more profitable. As fast reactors (FR) using uranium fuel and operating in the opened NFC consume much more natural uranium in comparison with thermal reactors (TR), and at the expected high paces of NP development the cheap resources of natural uranium will be exhausted prior to the middle of the century that will cause increase in the uranium cost, the period of FRs operating in the opened NFC must be maximally reduced. However, it should be mentioned that it is difficult to forecast reliably the date when because of the increased cost of natural uranium the NP will lose its competitiveness with electric power using fossil fuel. This is conditioned by the fact that the cost of the NPP produced electricity is less sensitive to the cost of natural uranium in

  10. Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors.

    PubMed

    Moralejo-Gárate, Helena; Palmeiro-Sánchez, Tania; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; van Loosdrecht, Mark C M

    2013-12-01

    PHA, a naturally occurring biopolymer produced by a wide range of microorganisms, is known for its applications as bioplastic. In recent years the use of agro-industrial wastewater as substrate for PHA production by bacterial enrichments has attracted considerable research attention. Crude glycerol as generated during biodiesel production is a waste stream that due to its high organic matter content and low price could be an interesting substrate for PHA production. Previously we have demonstrated that when glycerol is used as substrate in a feast-famine regime, PHA and polyglucose are simultaneously produced as storage polymers. The work described in this paper aimed at understanding the effect of the cycle length on the bacterial enrichment process with emphasis on the distribution of glycerol towards PHA and polyglucose. Two sequencing batch reactors where operated with the same hydraulic and biomass retention time. A short cycle length (6 h) favored polyglucose production over PHA, whereas at long cycle length (24 h) PHA was more favored. In both communities the same microorganism appeared dominating, suggesting a metabolic rather than a microbial competition response. Moreover, the presence of ammonium during polymer accumulation did not influence the maximum amount of PHA that was attained.

  11. High-temperature, high-pressure testing of zinc titanate in a bench-scale fluidized-bed reactor for 100 cycles

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1993-06-01

    Integrated gasification combined cycle (IGCC) power plants are being advanced worldwide to produce electricity from coal owing to their potential for superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. A key component of these plants is a hot-gas desulfurization system employing efficient regenerable mixed-metal oxide sorbents. Leading sorbent candidates include zinc ferrite and zinc titanate. These sorbents can remove hydrogen sulfide (H{sub 2}S) in the fuel gas down to very low levels (typically <20 ppmv) at 500 to 750{degree}C and can be readily regenerated for multicycle operation with air. To this end, the Research Triangle Institute (RTI) has formulated and tested a series of zinc titanate sorbents in a high-temperature, high- pressure HTHP fluidized-bed bench-scale reactor. Multicycle HTHP bench-scale testing of these sorbents under a variety of conditions culminated in the development of a ZT-4 sorbent that exhibited the best overall performance in terms of chemical reactivity, sulfur capacity, regenerability, structural properties, and attrition resistance. Following this parametric study, a life-cycle test consisting of 100 sulfidation-regeneration cycles was carried out with ZT-4 in the bench unit.

  12. Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors.

    PubMed

    Moralejo-Gárate, Helena; Palmeiro-Sánchez, Tania; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; van Loosdrecht, Mark C M

    2013-12-01

    PHA, a naturally occurring biopolymer produced by a wide range of microorganisms, is known for its applications as bioplastic. In recent years the use of agro-industrial wastewater as substrate for PHA production by bacterial enrichments has attracted considerable research attention. Crude glycerol as generated during biodiesel production is a waste stream that due to its high organic matter content and low price could be an interesting substrate for PHA production. Previously we have demonstrated that when glycerol is used as substrate in a feast-famine regime, PHA and polyglucose are simultaneously produced as storage polymers. The work described in this paper aimed at understanding the effect of the cycle length on the bacterial enrichment process with emphasis on the distribution of glycerol towards PHA and polyglucose. Two sequencing batch reactors where operated with the same hydraulic and biomass retention time. A short cycle length (6 h) favored polyglucose production over PHA, whereas at long cycle length (24 h) PHA was more favored. In both communities the same microorganism appeared dominating, suggesting a metabolic rather than a microbial competition response. Moreover, the presence of ammonium during polymer accumulation did not influence the maximum amount of PHA that was attained. PMID:23835920

  13. ASSESSMENT OF POSSIBLE CYCLE LENGTHS FOR FULLY-CERAMIC MICRO-ENCAPSULATED FUEL-BASED LIGHT WATER REACTOR CONCEPTS

    SciTech Connect

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal Pasamehmetoglu; Francesco Venneri

    2012-04-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such a low enriched uranium fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel 'as-is' into existing LWRs while retaining their thermal-hydraulic characteristics. The feasibility of using this fuel is assessed by looking at cycle lengths and fuel failure rates. Other considerations (e.g., safety parameters, etc.) were not considered at this stage of the study. The study includes the examination of different TRISO kernel diameters without changing the coating layer thicknesses. The study shows that a naive use of UO{sub 2} results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. In this study, starting with the recognized highest packing fraction practically achievable (44%), higher enrichment, larger fuel kernel sizes, and the use of higher density fuels have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios. Finally, it is recognized that relaxing the geometry constraint will result in satisfactory cycle lengths even using UO{sub 2}-loaded TRISO particles-based fuel with enrichment at or below 20 w/o.

  14. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    SciTech Connect

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  15. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect

    Krikorian, O.H.

    1982-02-09

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  16. Effect of transient thermal cycles in a supercritical water-cooled reactor on the microstructure and properties of ferritic martensitic steels

    NASA Astrophysics Data System (ADS)

    Totemeier, T. C.; Clark, D. E.

    2006-09-01

    Microstructural and mechanical property changes in modified 9Cr-1Mo and HCM12A ferritic-martensitic steels resulting from short-duration thermal transients that occur during loss of feedwater flow events in a supercritical water reactor (SCWR) were studied. Specimen blanks were exposed to reference transients with 810 and 840 °C maximum temperatures using a thermal cycle simulator, and the subsequent microstructure, hardness, and creep-rupture strength were evaluated. Exposure to five consecutive cycles at either temperature resulted in no significant changes - only very slight indications of overtempering. Subsequent study of a wider variety of transient conditions showed that significant ferrite-to-austenite transformation occurred during thermal transients whose maximum temperature exceeded 860 °C, or during transients with holds exceeding 10 s at 840 °C maximum temperature. The subsequent presence of untempered martensite in the microstructure, coupled with severe overtempering, resulted in an order of magnitude decrease in creep-rupture strength at 600 °C. The findings were consistent with measured Ac1 temperatures for the two steels and the dependence of Ac1 on heating rate.

  17. Analysis of Angular V-Cycle Multigrid Formulation for Three-Dimensional Discrete Ordinates Shielding Problems

    SciTech Connect

    Kucukboyaci, Vefa; Haghighat, Alireza

    2001-06-17

    New angular multigrid formulations have been developed, including the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle schemes, which are compatible with the parallel environment and the adaptive differencing strategy of the PENTRAN three-dimensional parallel S{sub N} code. Through use of the Fourier analysis method for an infinite, homogeneous medium, the effectiveness of the V-Cycle scheme was investigated for different problem parameters including scattering ratio, spatial differencing weights, quadrature order, and mesh size. The theoretical analysis revealed that the V-Cycle scheme is effective for a large range of scattering ratios and is insensitive to mesh size. The effectiveness of the new schemes was also investigated for practical shielding applications such as the Kobayashi benchmark problem and the boiling water reactor core shroud problem.

  18. Investigation of the Performance of D2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations

    SciTech Connect

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    Th-U fueled cores are identified by evaluating the sensitivity coefficients of keff, mass balance, and void coefficient. The effect of advanced iron alloy cladding (i.e., FeCrAl) on the performance of Pu conversion in MOX fueled cores is studied instead of using standard stainless-steel cladding. Variations in clad thickness and coolant-to-fuel volume ratio are also exercised. The use of FeCrAl instead of SS as a cladding alloy reduces the required Pu enrichment and improves the Pu conversion rate primarily due to the absence of nickel in the cladding alloy that results in the reduction of the neutron absorption. Also the difference in void coefficients between SS and FeCrAl alloys is nearly 500 pcm over the entire burnup range. The report also shows sensitivity and uncertainty analyses in order to characterize D2O cooled HCPWRs from different aspects. The uncertainties of integral parameters (keff and void coefficient) for selected reactor cores are evaluated at different burnup points in order to find similarities and trends respect to D2O-HCPWR.

  19. Effect of intermittent aeration cycle on nutrient removal and microbial community in a fluidized bed reactor-membrane bioreactor combo system.

    PubMed

    Guadie, Awoke; Xia, Siqing; Zhang, Zhiqiang; Zeleke, Jemaneh; Guo, Wenshan; Ngo, Huu Hao; Hermanowicz, Slawomir W

    2014-03-01

    Effect of intermittent aeration cycle (IAC=15/45-60/60min) on nutrient removal and microbial community structure was investigated using a novel fluidized bed reactor-membrane bioreactor (FBR-MBR) combo system. FBR alone was found more efficient for removing PO4-P (>85%) than NH4-N (<40%) and chemical oxygen demand (COD<35%). However, in the combo system, COD and NH4-N removals were almost complete (>98%). Efficient nitrification, stable mixed liquor suspended solid and reduced transmembrane pressure was also achieved. Quantitative real-time polymerase chain reaction results of total bacteria 16S rRNA gene copies per mL of mixed-liquor varied from (2.48±0.42)×10(9) initial to (2.74±0.10)×10(8), (6.27±0.16)×10(9) and (9.17±1.78)×10(9) for 15/45, 45/15 and 60/60min of IACs, respectively. The results of clone library analysis revealed that Proteobacteria (59%), Firmicutes (12%) and Bacteroidetes (11%) were the dominant bacterial group in all samples. Overall, the combo system performs optimum nutrient removal and host stable microbial communities at 45/15min of IAC. PMID:24508900

  20. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    PubMed

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent

  1. Plant heat cycles, vessel internal arrangement, and auxiliary systems. Volume five

    SciTech Connect

    Not Available

    1986-01-01

    This volume covers nuclear power plant heat cycles (type of nuclear power cycles, power cycle refinements, BWR/PWR power cycle, BWR/PWR reactor coolant system), reactor vessel internal arrangement (reactor vessel features, BWR/PWR reactor vessel and internals, BWR/PWR reactor core), reactor auxiliary systems (purpose of reactor auxiliary systems, PWR and BWR reactor auxiliary systems, PWR and BWR control rod drive mechanisms).

  2. A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    SciTech Connect

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

  3. Perspectives on research reactor utilization

    NASA Astrophysics Data System (ADS)

    Dodd, Brian; Dolan, Thomas J.; Laraia, Michele; Ritchie, Iain

    2002-01-01

    The current state of research reactors around the world is summarized using information from the Research Reactor Database. Some current trends of research reactors in advanced and developing countries are described. The need for strategic planning is emphasized, and elements of a typical strategic plan are presented. The problems of reactor lifetime extension, nuclear fuel cycle issues, and decommissioning are briefly discussed. It is concluded that research reactors will continue to be vital elements of the nuclear infrastructures in many countries, and that the IAEA can help countries solve their problems of utilization, safety, lifetime extension, fuel cycle, and decommissioning.

  4. New LNG process scheme

    SciTech Connect

    Foglietta, J.H.

    1999-07-01

    A new LNG cycle has been developed for base load liquefaction facilities. This new design offers a different technical and economical solution comparing in efficiency with the classical technologies. The new LNG scheme could offer attractive business opportunities to oil and gas companies that are trying to find paths to monetize gas sources more effectively; particularly for remote or offshore locations where smaller scale LNG facilities might be applicable. This design offers also an alternative route to classic LNG projects, as well as alternative fuel sources. Conceived to offer simplicity and access to industry standard equipment, This design is a hybrid result of combining a standard refrigeration system and turboexpander technology.

  5. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  6. Compact Fusion Advanced Rankine (CFARII) power cycle

    SciTech Connect

    Logan, B.G.

    1991-08-23

    The Compact Fusion Advanced Rankine (CFARII) power cycle is a direct plasma energy conversion scheme for inertial fusion (ICF) and magnetically-insulated, inertially confined fusion (MICF) reactors utilizing: (1) conversion of plasma thermal ionization and thermal energy into kinetic energy of a supersonic plasma jet, (2) conversion of the plasma jet kinetic energy into DC electricity by slowing down in an ``impulse`` type of magnetohydrodynamic (MHD) generator, and (3) condensation and heat rejection of the exhaust plasma on droplets of recirculating condensate (``raindrop`` condensor). A preliminary evaluation of a particular reference case CFARII Balance-of-Plant (BoP) is found sufficiently attractive (52% gross cycle efficiency, 40 million 1991 $ BoP for 1 GWe gross electric) to warrant further work on several design issues.

  7. Compact Fusion Advanced Rankine (CFARII) power cycle

    SciTech Connect

    Logan, B.G.

    1991-08-23

    The Compact Fusion Advanced Rankine (CFARII) power cycle is a direct plasma energy conversion scheme for inertial fusion (ICF) and magnetically-insulated, inertially confined fusion (MICF) reactors utilizing: (1) conversion of plasma thermal ionization and thermal energy into kinetic energy of a supersonic plasma jet, (2) conversion of the plasma jet kinetic energy into DC electricity by slowing down in an impulse'' type of magnetohydrodynamic (MHD) generator, and (3) condensation and heat rejection of the exhaust plasma on droplets of recirculating condensate ( raindrop'' condensor). A preliminary evaluation of a particular reference case CFARII Balance-of-Plant (BoP) is found sufficiently attractive (52% gross cycle efficiency, 40 million 1991 $ BoP for 1 GWe gross electric) to warrant further work on several design issues.

  8. Status of French reactors

    SciTech Connect

    Ballagny, A.

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  9. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  10. Fast reactors and nuclear nonproliferation

    SciTech Connect

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  11. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  12. University Reactor Matching Grants Program

    SciTech Connect

    John Valentine; Farzad Rahnema; Said Abdel-Khalik

    2003-02-14

    During the 2002 Fiscal year, funds from the DOE matching grant program, along with matching funds from the industrial sponsors, have been used to support research in the area of thermal-hydraulics. Both experimental and numerical research projects have been performed. Experimental research focused on two areas: (1) Identification of the root cause mechanism for axial offset anomaly in pressurized water reactors under prototypical reactor conditions, and (2) Fluid dynamic aspects of thin liquid film protection schemes for inertial fusion reactor chambers. Numerical research focused on two areas: (1) Multi-fluid modeling of both two-phase and two-component flows for steam conditioning and mist cooling applications, and (2) Modeling of bounded Rayleigh-Taylor instability with interfacial mass transfer and fluid injection through a porous wall simulating the ''wetted wall'' protection scheme in inertial fusion reactor chambers. Details of activities in these areas are given.

  13. The problem of optimizing the water chemistry used in the primary coolant circuit of a nuclear power station equipped with VVER reactors under the conditions of longer fuel cycle campaigns and increased capacity of power units

    NASA Astrophysics Data System (ADS)

    Sharafutdinov, R. B.; Kharitonova, N. L.

    2011-05-01

    It is shown that the optimal water chemistry of the primary coolant circuit must be substantiated while introducing measures aimed at increasing the power output in operating power units and for the project called AES-2006/AES TOI (a typical optimized project of a nuclear power station with enhanced information support). The experience gained from operation of PWR reactors with an elongated fuel cycle at an increased level of power is analyzed. Conditions under which boron compounds are locally concentrated on the fuel rod surfaces (the hideout phenomenon) and axial offset anomaly occurs are enlisted, and the influence of lithium on the hideout in the pores of deposits on the surfaces of fuel assemblies is shown.

  14. A classification scheme for LWR fuel assemblies

    SciTech Connect

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs.

  15. Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach

    NASA Astrophysics Data System (ADS)

    Passerini, Stefano

    For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test

  16. Behavior of 241Am in fast reactor systems - a safeguards perspective

    SciTech Connect

    Beddingfield, David H; Lafleur, Adrienne M

    2009-01-01

    Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of {sup 241}Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased ({alpha},n) production in oxide fuels from the {sup 241}Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of {sup 241}Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of {sup 241}Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of {sup 241}Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

  17. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    SciTech Connect

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R; Sleaford, Brad W; Ebbinghaus, Bartley B; Collins, Brian W; Bradley, Keith S; Prichard, Andrew W; Smith, Brian W

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled until consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.

  18. Composite centered schemes for multidimensional conservation laws

    SciTech Connect

    Liska, R.; Wendroff, B.

    1998-05-08

    The oscillations of a centered second order finite difference scheme and the excessive diffusion of a first order centered scheme can be overcome by global composition of the two, that is by performing cycles consisting of several time steps of the second order method followed by one step of the diffusive method. The authors show the effectiveness of this approach on some test problems in two and three dimensions.

  19. Design Study of Small Pb-Bi Cooled Modified Candle Reactors

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Sekimoto, H.

    2010-06-01

    In this study application of modified CANDLE burnup scheme based long life Pb-Bi Cooled Fast Reactors for small long life reactors with natural Uranium as Fuel Cycle Input has been performed. The reactor cores are subdivided into several parts with the same volume in the axial directions. The natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2, and 10 years after that it is shifted to region 3. This concept is applied to all regions, i.e. shifted the core of I'th region into I+1 region after the end of 10 years burn-up cycle. The first region 1 is filled by fresh natural uranium fuel. Compared to the previous works, in a smaller reactor core the criticality need to be considered more carefully especially at the beginning of life. As an optimized design, a core of 85 cm radius and 150 cm height with 300 MWt power are selected. This core can be operated 10 years without refueling or fuel shuffling. The average discharge burn-up is 350 GWd/ton HM.

  20. Evaluating Environmental, Health and Safety Impacts from Two Nuclear Fuel Cycles: A Comparative Analysis of Once-Through Uranium Use and Plutonium Recycle in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Smith, Bethan L.

    The work presented in this dissertation represents a systems-level approach to investigate potential net impacts with respect to human health and the environment associated with transitioning to the MOC for the U.S. In Chapter 2, an updated systems-level conceptual model of the OTC is presented to more accurately portray the OTC as currently implemented in the U.S. The conceptual model is the basis for estimating the worker collective doses at each operational stage, and the first demonstration of a quantitative comparative radiological impact assessment from expected normal operations is presented. In the course of evaluating worker collective dose associated with modern OTC practices, it was found that the relative contributions from the two grouped operations (front-end operations for preparing reactor fuel and reactor operations) were substantially different from historical data and conventional wisdom. As a bookend to Chapter 2, a summary is provided that describes the nature of the differences and factors that led to these differences. Detailed information of the work as part of the published journal article based off of this corollary work is included as an Appendix (C). In Chapter 3, the study of worker collective doses from the phased introduction of reprocessing in the MOC scenario, and is presented similarly to the results in Chapter 2. MOC performance was also estimated by evaluating the radioactive waste generated that can be disposed and managed through known disposal practices in shallow-land burial. Relative to the OTC, MOC performance with respect to worker collective dose was not discernibly different; while the volume of radioactive waste generated decreased. It was found that although the sheer volume of radioactive waste avoided is large, the waste disposition pathway is known for the majority of this waste. The radioactive waste that requires disposal at a licensed off-site facility is examined in closer detail. The verification process for

  1. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  2. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  3. Utilisation of thorium in reactors

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Shivakumar, V.; Saha, D.

    2008-12-01

    India's nuclear programme envisages a large-scale utilisation of thorium, as it has limited deposits of uranium but vast deposits of thorium. The large-scale utilisation of thorium requires the adoption of closed fuel cycle. The stable nature of thoria and the radiological issues associated with thoria poses challenges in the adoption of a closed fuel cycle. A thorium fuel based Advanced Heavy Water Reactor (AHWR) is being planned to provide impetus to development of technologies for the closed thorium fuel cycle. Thoria fuel has been loaded in Indian reactors and test irradiations have been carried out with (Th-Pu) MOX fuel. Irradiated thorium assemblies have been reprocessed and the separated 233U fuel has been used for test reactor KAMINI. The paper highlights the Indian experience with the use of thorium and brings out various issues associated with the thorium cycle.

  4. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  5. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  6. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  7. Hydrolysis of CuCl{sub 2} in the Cu-Cl thermochemical cycle for hydrogen production : experimental studies using a spray reactor with an ultrasonic atomizer.

    SciTech Connect

    Ferrandon, M. S.; Lewis, M. A.; Alvarez, F.; Shafirovich, E.; Chemical Sciences and Engineering Division; Univ. of Texas at El Paso

    2010-03-01

    The Cu-Cl thermochemical cycle is being developed as a hydrogen production method. Prior proof-of-concept experimental work has shown that the chemistry is viable while preliminary modeling has shown that the efficiency and cost of hydrogen production have the potential to meet DOE's targets. However, the mechanisms of CuCl{sub 2} hydrolysis, an important step in the Cu-Cl cycle, are not fully understood. Although the stoichiometry of the hydrolysis reaction, 2CuCl{sub 2} + H{sub 2}O {leftrightarrow} Cu{sub 2}OCl{sub 2} + 2HCl, indicates a necessary steam-to-CuCl{sub 2} molar ratio of 0.5, a ratio as high as 23 has been typically required to obtain near 100% conversion of the CuCl{sub 2} to the desired products at atmospheric pressure. It is highly desirable to conduct this reaction with less excess steam to improve the process efficiency. Per Le Chatelier's Principle and according to the available equilibrium-based model, the needed amount of steam can be decreased by conducting the hydrolysis reaction at a reduced pressure. In the present work, the experimental setup was modified to allow CuCl{sub 2} hydrolysis in the pressure range of 0.4-1 atm. Chemical and XRD analyses of the product compositions revealed the optimal steam-to-CuCl{sub 2} molar ratio to be 20-23 at 1 atm pressure. The experiments at 0.4 atm and 0.7 atm showed that it is possible to lower the steam-to-CuCl{sub 2} molar ratio to 15, while still obtaining good yields of the desired products. An important effect of running the reaction at reduced pressure is the significant decrease of CuCl concentration in the solid products, which was not predicted by prior modeling. Possible explanations based on kinetics and residence times are suggested.

  8. Aperiodicity resulting from two-cycle coupling in the Belousov-Zhabotinskii reaction. III. Analysis of a model of the effect of spatial inhomogeneities at the input ports of a continuous-flow, stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Györgyi, László; Field, Richard J.

    1989-11-01

    Deterministic chaos is a well-established phenomenon in continuous-flow, stirred tank reactor (CSTR) experiments with the oscillatory Belousov-Zhabotinskii (BZ) reaction. However, it has not yet been possible to reproduce the experimentally observed, robust chaos in simulations using realistic models of the homogeneous chemical kinetics of the BZ reaction. That it may be necessary to consider spatial inhomogeneities in modeling the BZ chaos is suggested by the existence of strong stirring effects on the aperiodic behavior and by the difficulty of reproducing chaos under the same conditions in reactors of different physical configuration. Such inhomogeneity might result from a lack of perfect mixing in the CSTR, especially near the inlets, or from diffusion of species at low flow rates from the CSTR reaction mixture into the tips of the inlets. The presence of spatial inhomogeneities allows coupling between essentially independent oscillators, a well-known source of chaos. Such a model using a realistic representation of the BZ kinetics leads to an eight-variable set of ordinary differential equations. Numerical analysis of these equations by continuation methods and by numerical integration shows the existence of broad regions of chaos and various hysteresis effects involving limit cycles, a steady state and/or a strange attractor. Tristability was found in calculations in a narrow flow rate range. The computed behavior appears for parameter values closely related to the values used experimentally to obtain similar phenomena, and the visual similarity of the computed and experimental strange attractors is striking. The experimental routes to chaos, period doubling, intermittency, and secondary Hopf bifurcations are all reproduced in the simulations. The computed and experimental structures of periodic windows observed within chaotic regions also are very similar.

  9. Physics challenges for advanced fuel cycle assessment

    SciTech Connect

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  10. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  11. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  12. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  13. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  14. Automated Design and Optimization of Pebble-bed Reactor Cores

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2010-07-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  15. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  16. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  17. Reactor building

    SciTech Connect

    Hista, J. C.

    1984-09-18

    Reactor building comprising a vessel shaft anchored in a slab which is peripherally locked. This reactor building comprises a confinement enclosure within which are positioned internal structures constituted by an internal structure floor, a vessel shaft, a slab being positioned between the general floor and the internal structure floor, the vesse

  18. One pass core design of a super fast reactor

    SciTech Connect

    Liu, Qingjie; Oka, Yoshiaki

    2013-07-01

    One pass core design for Supercritical-pressure light water-cooled fast reactor (Super FR) is proposed. The whole core is cooled with upward flow in one through flow pattern like PWR. Compared with the previous two pass core design; this new flow pattern can significantly simplify the core concept. Upper core structure, coolant flow scheme as well as refueling procedure are as simple as in PWR. In one pass core design, supercritical-pressure water is at approximately 25.0 MPa and enters the core at 280 C. degrees and is heated up in one through flow pattern upwardly to the average outlet temperature of 500 C. degrees. Great density change in vertical direction can cause significant axial power offset during the cycle. Meanwhile, Pu accumulated in the UO{sub 2} fuel blanket assemblies also introduces great power increase during cycle, which requires large amount of flow for heat removal and makes the outlet temperature of blanket low at the beginning of equilibrium cycle (BOEC). To deal with these issues, some MOX fuel is applied in the bottom region of the blanket assembly. This can help to mitigate the power change in blanket due to Pu accumulation and to increase the outlet temperature of the blanket during cycle. Neutron transport and thermohydraulics coupled calculation shows that this design can satisfy the requirement in the Super FR principle for both 500 C. degrees outlet temperature and negative coolant void reactivity. (authors)

  19. Tabled Execution in Scheme

    SciTech Connect

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  20. The NEC Link Scheme

    ERIC Educational Resources Information Center

    Noakes, Peter

    1976-01-01

    Describes the operation of the National Electronics Council (NEC) Link Scheme for schools in Great Britain. The service is intended to provide technical assistance, information concerning surplus equipment, and guest speakers for school aspiring professional electronic counsel. (CP)

  1. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  2. PID Control Effectiveness for Surface Reactor Concepts

    SciTech Connect

    Dixon, David D.; Marsh, Christopher L.; Poston, David I.

    2007-01-30

    Control of space and surface fission reactors should be kept as simple as possible, because of the need for high reliability and the difficulty to diagnose and adapt to control system failures. Fortunately, compact, fast-spectrum, externally controlled reactors are very simple in operation. In fact, for some applications it may be possible to design low-power surface reactors without the need for any reactor control after startup; however, a simple proportional, integral, derivative (PID) controller can allow a higher performance concept and add more flexibility to system operation. This paper investigates the effectiveness of a PID control scheme for several anticipated transients that a surface reactor might experience. To perform these analyses, the surface reactor transient code FRINK was modified to simulate control drum movements based on bulk coolant temperature.

  3. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  4. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  5. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  6. Chemical Reactors.

    ERIC Educational Resources Information Center

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  7. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  8. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  9. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  10. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  11. A novel sorbent for transport reactors and fluidized bed reactors

    SciTech Connect

    Copeland, R.; Cesario, M.; Gershanovich, Y.; Sibold, J.; Windecker, B.

    1998-12-31

    Coal Fired Gasifier Combined Cycles (GCC) have both high efficiency and very low emissions. GCCs critically need a method of removing the H{sub 2}S produced from the sulfur in the coal from the hot gases. There has been extensive research on hot gas cleanup systems, focused on the use of a zinc oxide based sorbent (e.g., zinc titanate). TDA Research, Inc. (TDA) is developing a novel sorbent with improved attrition resistance for transport reactors and fluidized bed reactors. The authors are testing sorbents at conditions simulating the operating conditions of the Pinon Pine clean coal technology plant. TDA sulfided several different formulations at 538 C and found several that have high sulfur capacity when tested in a fluidized bed reactor. TDA initiated sorbent regeneration at 538 C. The sorbents retained chemical activity with multiple cycles. Additional tests will be conducted to evaluate the best sorbent formulation.

  12. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect

    Bonne, François; Bonnay, Patrick

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  13. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  14. A composite scheme for gas dynamics in Lagrangian coordinates

    SciTech Connect

    Shashkov, M.; Wendroff, B.

    1999-04-10

    One cycle of a composite finite difference scheme is defined as several time steps of an oscillatory scheme such as Lax-Wendroff followed by one step of a diffusive scheme such as Lax-Friedrichs. The authors apply this idea to gas dynamics in Lagrangian coordinates. They show numerical results in two dimensions for Noh`s infinite strength shock problem and the Sedov blast wave problem, and for several one-dimensional problems including a Riemann problem with a contact discontinuity. For Noh`s problem the composite scheme produces a better result than that obtained with a more conventional Lagrangian code.

  15. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  16. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  17. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  18. Performance improvement of robots using a learning control scheme

    NASA Technical Reports Server (NTRS)

    Krishna, Ramuhalli; Chiang, Pen-Tai; Yang, Jackson C. S.

    1987-01-01

    Many applications of robots require that the same task be repeated a number of times. In such applications, the errors associated with one cycle are also repeated every cycle of the operation. An off-line learning control scheme is used here to modify the command function which would result in smaller errors in the next operation. The learning scheme is based on a knowledge of the errors and error rates associated with each cycle. Necessary conditions for the iterative scheme to converge to zero errors are derived analytically considering a second order servosystem model. Computer simulations show that the errors are reduced at a faster rate if the error rate is included in the iteration scheme. The results also indicate that the scheme may increase the magnitude of errors if the rate information is not included in the iteration scheme. Modification of the command input using a phase and gain adjustment is also proposed to reduce the errors with one attempt. The scheme is then applied to a computer model of a robot system similar to PUMA 560. Improved performance of the robot is shown by considering various cases of trajectory tracing. The scheme can be successfully used to improve the performance of actual robots within the limitations of the repeatability and noise characteristics of the robot.

  19. Heterogeneous Transmutation Sodium Fast Reactor

    SciTech Connect

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  20. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  1. Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)

    SciTech Connect

    Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.

    2015-03-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.

  2. Principles and rationale of the Fusion-Fission Hybrid burner reactor

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2012-06-01

    The potential advantages of Fusion-Fission Hybrid (FFH) reactors (relative to critical fast reactors) for closing the back end of the nuclear fuel cycle are discussed. The choices of fission and fusion technologies for FFH burner reactors that would fission the transuranics remaining in spent fuel discharged from nuclear power reactors are summarized. The conceptual design and fuel cycle performance of the SABR FFH burner reactor are presented, and a fusion power development schedule with a symbiotic dual FFH path is outlined.

  3. Irradiation Facilities at the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-12-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

  4. Prometheus Reactor I&C Software Development Methodology, for Action

    SciTech Connect

    T. Hamilton

    2005-07-30

    The purpose of this letter is to submit the Reactor Instrumentation and Control (I&C) software life cycle, development methodology, and programming language selections and rationale for project Prometheus to NR for approval. This letter also provides the draft Reactor I&C Software Development Process Manual and Reactor Module Software Development Plan to NR for information.

  5. Time cycle analysis and simulation of material flow in MOX process layout

    SciTech Connect

    Chakraborty, S.; Saraswat, A.; Danny, K.M.; Somayajulu, P.S.; Kumar, A.

    2013-07-01

    The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the help of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.

  6. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  7. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  8. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  9. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  10. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  11. Core Optimization of a Deep-Burn Pebble Bed Reactor

    SciTech Connect

    Brian Boer; Abderrafi M. Ougouag

    2010-06-01

    Achieving a high fuel burnup in the Deep-Burn (DB) pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum as compared to a ’standard’ UO2 fueled core. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. The DB concept focuses on the destruction of spent fuel transuranics in TRISO coated particle fueled gas-cooled reactors with the aim of a fractional fuel burnup of 60-70% in fissions per initial metal atom (FIMA), using a single-pass, multi in-core fuel (re)cycling scheme. In principle, the DB pebble bed concept employs the same reactor designs as the present low enriched uranium core designs, i.e. the 400 MWth Pebble Bed Modular Reactor (PBMR-400). A Pu and Minor Actinide fueled PBMR-400 design serves as the starting point for a core optimization study. The fuel temperature, power peak, temperature reactivity coefficients, and burnup capabilities of the modified designs are analyzed with the PEBBED code. A code-to-code coupling with the PASTA code allows for the analysis of the TRISO fuel performance for both normal and Loss Of Forced Cooling conditions. An improved core design is sought, maximizing the fuel discharge burnup, while retaining negative temperature reactivity feedback coefficients for the entire temperature range and avoiding high fuel temperatures (fuel failure probabilities).

  12. Heterogeneous Recycling in Fast Reactors

    SciTech Connect

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  13. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  14. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.

    1957-10-01

    A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.

  15. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  16. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  17. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  18. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  19. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  20. Check-Digit Schemes.

    ERIC Educational Resources Information Center

    Wheeler, Mary L.

    1994-01-01

    Discusses the study of identification codes and check-digit schemes as a way to show students a practical application of mathematics and introduce them to coding theory. Examples include postal service money orders, parcel tracking numbers, ISBN codes, bank identification numbers, and UPC codes. (MKR)

  1. Study of hydrogen generation plant coupled to high temperature gas cooled reactor

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas Robert

    Hydrogen generation using a high temperature nuclear reactor as a thermal driving vector is a promising future option for energy carrier production. In this scheme, the heat from the nuclear reactor drives an endothermic water-splitting plant, via coupling, through an intermediate heat exchanger. While both high temperature nuclear reactors and hydrogen generation plants have high individual degrees of development, study of the coupled plant is lacking. Particularly absent are considerations of the transient behavior of the coupled plant, as well as studies of the safety of the overall plant. The aim of this document is to contribute knowledge to the effort of nuclear hydrogen generation. In particular, this study regards identification of safety issues in the coupled plant and the transient modeling of some leading candidates for implementation in the Nuclear Hydrogen Initiative (NHI). The Sulfur Iodine (SI) and Hybrid Sulfur (HyS) cycles are considered as candidate hydrogen generation schemes. Several thermodynamically derived chemical reaction chamber models are coupled to a well-known reference design of a high temperature nuclear reactor. These chemical reaction chamber models have several dimensions of validation, including detailed steady state flowsheets, integrated loop test data, and bench scale chemical kinetics. Eight unique case studies are performed based on a thorough literature review of possible events. The case studies are: (1) feed flow failure from one section of the chemical plant to another, (2) product flow failure (recycle) within the chemical plant, (3) rupture or explosion within the chemical plant, (4) nuclear reactor helium inlet overcooling due to a process holding tank failure, (5) helium inlet overcooling as an anticipated transient without SCRAM, (6) total failure of the chemical plant, (7) parametric study of the temperature in an individual reaction chamber, and (8) control rod insertion in the nuclear reactor. Various parametric

  2. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  3. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  4. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  5. Current Comparison of Advanced Nuclear Fuel Cycles

    SciTech Connect

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-04-01

    This paper compares potential nuclear fuel cycle strategies – once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectru

  6. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  7. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  8. NEUTRONIC REACTOR

    DOEpatents

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  9. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  10. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1962-12-25

    A reactor is described comprising a plurality of horizontal trays containing a solution of a fissionable material, the trays being sleeved on a vertical tube which contains a vertically-reciprocable control rod, a gas-tight chamber enclosing the trays, and means for conducting vaporized moderator from the chamber and for replacing vaporized moderator in the trays. (AEC)

  11. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  12. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation. PMID:27573503

  13. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  14. Solar Thermal Reactor Materials Characterization

    SciTech Connect

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  15. Beyond Scheme F

    SciTech Connect

    Elliott, C.J.; Fisher, H.; Pepin, J.; Gillmann, R.

    1996-07-01

    Traffic classification techniques were evaluated using data from a 1993 investigation of the traffic flow patterns on I-20 in Georgia. First we improved the data by sifting through the data base, checking against the original video for questionable events and removing and/or repairing questionable events. We used this data base to critique the performance quantitatively of a classification method known as Scheme F. As a context for improving the approach, we show in this paper that scheme F can be represented as a McCullogh-Pitts neural network, oar as an equivalent decomposition of the plane. We found that Scheme F, among other things, severely misrepresents the number of vehicles in Class 3 by labeling them as Class 2. After discussing the basic classification problem in terms of what is measured, and what is the desired prediction goal, we set forth desirable characteristics of the classification scheme and describe a recurrent neural network system that partitions the high dimensional space up into bins for each axle separation. the collection of bin numbers, one for each of the axle separations, specifies a region in the axle space called a hyper-bin. All the vehicles counted that have the same set of in numbers are in the same hyper-bin. The probability of the occurrence of a particular class in that hyper- bin is the relative frequency with which that class occurs in that set of bin numbers. This type of algorithm produces classification results that are much more balanced and uniform with respect to Classes 2 and 3 and Class 10. In particular, the cancellation of errors of classification that occurs is for many applications the ideal classification scenario. The neural network results are presented in the form of a primary classification network and a reclassification network, the performance matrices for which are presented.

  16. Fast Reactor Alternative Studies: Effects of Transuranic Groupings on Metal and Oxide Sodium Fast Reactor Designs

    SciTech Connect

    R. Ferrer; M. Asgari; S. Bays; B. Forget

    2007-09-01

    A 1000 MWth commercial-scale Sodium Fast Reactor (SFR) design with a conversion ratio (CR) of 0.50 was selected in this study to perform perturbations on the external feed coming from Light Water Reactor Spent Nuclear Fuel (LWR SNF) and separation groupings in the reprocessing scheme. A secondary SFR design with a higher conversion ratio (CR=0.75) was also analyzed as a possible alternative, although no perturbations were applied to this model.

  17. Inherent safety of minimum-burnup breed and burn reactors

    SciTech Connect

    Qvist, S.; Reenspan, E.

    2012-07-01

    Reactors that aim to sustain the breed and burn (B and B) mode of operation at minimum discharge burnup require excellent neutron economy, Minimum-burnup B and B cores are generally large and feature low neutron leakage probability and a hard neutron spectrum. While highly promising fuel cycles can be achieved with such designs, the very same features are pushing the limits of the core's ability to passively respond safely to unprotected accidents. Low leakage minimum-burnup sodium-cooled B and B cores have a large positive coolant void-worth and coolant temperature reactivity coefficient. In this study, the applicability of major approaches for fast reactor void-worth reduction is evaluated specifically for B and B cores. The design, shuffling scheme and performance of a new metallic-fueled, sodium-cooled minimum burnup B and B core, used as basis for the void-worth reduction analysis, is presented. The analysis shows that reactivity control systems based on passive {sup 6}Li injection during temperature excursions are the only option able to provide negative void-worth without significantly increasing the minimum burnup required for sustaining the B and B mode of operation. A new type of lithium expansion module (LEM) system was developed specifically for B and B cores and its effect on core performance is presented. (authors)

  18. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  19. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  20. REACTOR MONITORING

    DOEpatents

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  1. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  2. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  3. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  4. Neutronic reactor

    DOEpatents

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  5. NUCLEAR REACTORS

    DOEpatents

    Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

    1961-12-01

    An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

  6. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  7. NEUTRONIC REACTORS

    DOEpatents

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  8. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1961-01-24

    A core structure for neutronic reactors adapted for the propulsion of aircraft and rockets is offered. The core is designed for cooling by gaseous media, and comprises a plurality of hollow tapered tubular segments of a porous moderating material impregniated with fissionable fuel nested about a common axis. Alternate ends of the segments are joined. In operation a coolant gas passes through the porous structure and is heated.

  9. REACTOR CONTROL

    DOEpatents

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  10. ESCAP mobile training scheme.

    PubMed

    Yasas, F M

    1977-01-01

    In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries. PMID:12265562

  11. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  12. Menstrual Cycle

    MedlinePlus

    ... Pregnancy This information in Spanish ( en español ) The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  13. Biogeochemical Cycling

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  14. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  15. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  16. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  17. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  18. Multigroup Reactor Lattice Cell Calculation

    1990-03-01

    The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less

  19. REACTOR COMPONETN

    DOEpatents

    Creutz, E.C.

    1959-10-27

    A reactor fuel element comprised of a slug of fissionable material disposed in a sheath of corrosion resistantmaterial is described. The sheath is in the form of a tubular container closed at one end and is in tight-fitting engagement with the peripheral sunface of the slug. An inner cap is insented into the open end of the sheath against the slug, which end is then bent around the inner cap and welded thereto. An outer cap is then welded around its peripheny to the bent portion of the container.

  20. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  1. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  2. Electricity storage using a thermal storage scheme

    SciTech Connect

    White, Alexander

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  3. Electricity storage using a thermal storage scheme

    NASA Astrophysics Data System (ADS)

    White, Alexander

    2015-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  4. Nuclear and materials aspects of the thorium fuel cycle

    NASA Astrophysics Data System (ADS)

    Rodriguez, P.; Sundaram, C. V.

    1981-09-01

    This paper is an attempt to assess and review the materials aspects of the thorium fuel cycle. It starts with an examination of the nuclear aspects of the thorium fuel cycle, meant as an introduction for materials scientists and engineers who may not normally be familiar with the concepts and terms involved. After defining and describing the thorium and uranium fuel cycles, the reasons for the resurgence of interest in the thorium fuel cycle and the technical and economic considerations that support its early adoption are examined. The reactor physics and fissile economics aspects of the thorium and uranium cycles are then compared. The specific reactor types suitable for the adoption of the thorium cycle are briefly examined and described. Subsequent sections of the paper are devoted to a detailed discussion of the materials aspects of the thorium fuel cycle. Available information on fabrication, refabrication and irradiation performance of thorium-based fuels for light water reactors, heavy water reactors, high temperature gas-cooled reactors, molten salt breeder reactors and fast breeder reactors is critically reviewed and analysed. Materials problems related to cladding and structural materials are also discussed whenever these are unique to the thorium cycle.

  5. Development of a system model for advanced small modular reactors.

    SciTech Connect

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  6. FBR and RBR particle bed space reactors

    SciTech Connect

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10/sup 0/K), high coolant-outlet temperatures (1500 to 3000/sup 0/K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H/sub 2/-cooled mode. The RBR will operate only in the open-cycle H/sub 2/-cooled mode.

  7. Supply of enriched uranium for research reactors

    SciTech Connect

    Mueller, H.

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  8. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  9. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  10. Steady-state Analysis Model for Advanced Fuelcycle Schemes

    2006-05-12

    The model was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 2003—2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down the cost analysis results. All the fuel cycle schemes considered in the model aremore » represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high—level waste along time are included in the model and can be displayed. The user can modify easily the values of mass flows and/or cost parameters and see the corresponding changes in the results. The model calculates: front—end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs. It performs Monte Carlo simulations with changing the values of all unit costs within their respective ranges (from lower to upper bounds).« less

  11. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  12. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  13. Modeling of Reactor Kinetics and Dynamics

    SciTech Connect

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  14. Transport Reactor Facility

    SciTech Connect

    Berry, D.A.; Shoemaker, S.A.

    1996-12-31

    The Morgantown Energy Technology Center (METC) is currently evaluating hot gas desulfurization (HGD)in its on-site transport reactor facility (TRF). This facility was originally constructed in the early 1980s to explore advanced gasification processes with an entrained reactor, and has recently been modified to incorporate a transport riser reactor. The TRF supports Integrated Gasification Combined Cycle (IGCC) power systems, one of METC`s advanced power generation systems. The HGD subsystem is a key developmental item in reducing the cost and increasing the efficiency of the IGCC concept. The TRF is a unique facility with high-temperature, high-pressure, and multiple reactant gas composition capability. The TRF can be configured for reacting a single flow pass of gas and solids using a variety of gases. The gas input system allows six different gas inputs to be mixed and heated before entering the reaction zones. Current configurations allow the use of air, carbon dioxide, carbon monoxide, hydrogen, hydrogen sulfide, methane, nitrogen, oxygen, steam, or any mixture of these gases. Construction plans include the addition of a coal gas input line. This line will bring hot coal gas from the existing Fluidized-Bed Gasifier (FBG) via the Modular Gas Cleanup Rig (MGCR) after filtering out particulates with ceramic candle filters. Solids can be fed either by a rotary pocket feeder or a screw feeder. Particle sizes may range from 70 to 150 micrometers. Both feeders have a hopper that can hold enough solid for fairly lengthy tests at the higher feed rates, thus eliminating the need for lockhopper transfers during operation.

  15. FES cycling.

    PubMed

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  16. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  17. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1957-09-17

    A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.

  18. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  19. Nuclear reactor

    DOEpatents

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  20. Core design study of a supercritical light water reactor with double row fuel rods

    SciTech Connect

    Zhao, C.; Wu, H.; Cao, L.; Zheng, Y.; Yang, J.; Zhang, Y.

    2012-07-01

    An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

  1. Plotting and Scheming

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2 Click for larger view

    These two graphics are planning tools used by Mars Exploration Rover engineers to plot and scheme the perfect location to place the rock abrasion tool on the rock collection dubbed 'El Capitan' near Opportunity's landing site. 'El Capitan' is located within a larger outcrop nicknamed 'Opportunity Ledge.'

    The rover visualization team from NASA Ames Research Center, Moffett Field, Calif., initiated the graphics by putting two panoramic camera images of the 'El Capitan' area into their three-dimensional model. The rock abrasion tool team from Honeybee Robotics then used the visualization tool to help target and orient their instrument on the safest and most scientifically interesting locations. The blue circle represents one of two current targets of interest, chosen because of its size, lack of dust, and most of all its distinct and intriguing geologic features. To see the second target location, see the image titled 'Plotting and Scheming.'

    The rock abrasion tool is sensitive to the shape and texture of a rock, and must safely sit within the 'footprint' indicated by the blue circles. The rock area must be large enough to fit the contact sensor and grounding mechanism within the area of the outer blue circle, and the rock must be smooth enough to get an even grind within the abrasion area of the inner blue circle. If the rock abrasion tool were not grounded by its support mechanism or if the surface were uneven, it could 'run away' from its target. The rock abrasion tool is location on the rover's instrument deployment device, or arm.

    Over the next few martian days, or sols, the rover team will use these and newer, similar graphics created with more recent, higher-resolution panoramic camera images and super-spectral data from the miniature thermal emission spectrometer. These data will be used to pick the best

  2. Pebble Bed Reactor review update. Fiscal year 1979 annual report

    SciTech Connect

    Not Available

    1980-01-01

    Updated information is presented on the Pebble Bed Reactor (PBR) concept being developed in the Federal Republic of Germany for electricity generation and process heat applications. Information is presented concerning nuclear analysis and core performance, fuel cycle evaluation, reactor internals, and safety and availability.

  3. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  4. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  5. NEUTRONIC REACTOR MANIPULATING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1962-08-01

    A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

  6. Cycle Analysis

    SciTech Connect

    Wright, Steven A.

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop and provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.

  7. Cycle Analysis

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  8. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Leakage Testing for Water-Cooled Power Reactors This appendix includes two options, A and B, either of..., and systems and components which penetrate containment of water-cooled power reactors, and establish... and feedwater piping and other systems which penetrate containment of direct-cycle boiling water...

  9. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Leakage Testing for Water-Cooled Power Reactors This appendix includes two options, A and B, either of..., and systems and components which penetrate containment of water-cooled power reactors, and establish... and feedwater piping and other systems which penetrate containment of direct-cycle boiling water...

  10. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Leakage Testing for Water-Cooled Power Reactors This appendix includes two options, A and B, either of..., and systems and components which penetrate containment of water-cooled power reactors, and establish... and feedwater piping and other systems which penetrate containment of direct-cycle boiling water...

  11. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Leakage Testing for Water-Cooled Power Reactors This appendix includes two options, A and B, either of..., and systems and components which penetrate containment of water-cooled power reactors, and establish... and feedwater piping and other systems which penetrate containment of direct-cycle boiling water...

  12. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Leakage Testing for Water-Cooled Power Reactors This appendix includes two options, A and B, either of..., and systems and components which penetrate containment of water-cooled power reactors, and establish... and feedwater piping and other systems which penetrate containment of direct-cycle boiling water...

  13. Nuclear reactor

    DOEpatents

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  14. Multigrid method for the equilibrium equations of elasticity using a compact scheme

    NASA Technical Reports Server (NTRS)

    Taasan, S.

    1986-01-01

    A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.

  15. Dynamic Analysis of Fuel Cycle Transitioning

    SciTech Connect

    Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

    2009-09-01

    This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

  16. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    SciTech Connect

    Bahri, Che Nor Aniza Che Zainul Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  17. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    NASA Astrophysics Data System (ADS)

    Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-01

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  18. Classification schemes for arteriovenous malformations.

    PubMed

    Davies, Jason M; Kim, Helen; Young, William L; Lawton, Michael T

    2012-01-01

    The wide variety of arteriovenous malformation (AVM) anatomy, size, location, and clinical presentation makes patient selection for surgery a difficult process. Neurosurgeons have identified key factors that determine the risks of surgery and then devised classification schemes that integrate these factors, predict surgical results, and help select patients for surgery. These classification schemes have value because they transform complex decisions into simpler algorithms. In this review, the important grading schemes that have contributed to management of patients with brain AVMs are described, and our current approach to patient selection is outlined.

  19. Hot Gas Desulfurization Using Transport Reactors

    SciTech Connect

    Moorehead, E.L.

    1996-12-31

    Sierra Pacific Power Company is building a 100 MW, IGCC power plant based on KRW fluid bed gasifier technology that utilizes transport reactors for hot gas desulfurization and sorbent regeneration. Use of a transport absorber avoids the need for pre-filtration of dust-laden gasifier effluent, while a transport regenerator allows for the use of 100% air without the need for heat exchange equipment. Selection of transport reactors for hot gas desulfurization using a proprietary sorbent, based on testing performed in a transport reactor test unit (TRTU) at the M. W. Kellogg Technology Development Center and in a fixed bed reactor at Morgantown Energy Technology Center (METC), is outlined. The results obtained in these two test facilities and reasons for selecting transport reactors for the IGCC power plant in preference to either fixed bed or fluidized bed reactors are discussed. This paper reviews the evolution of the hot gas desulfurization system designs and includes selected results on H{sub 2}S absorption and regeneration of sulfided sorbent over several absorption/regeneration cycles conducted in the TRTU and the METC fixed bed reactor. The original design for the Sierra Pacific Project was based on fixed bed reactors with zinc ferrite as the sorbent. Owing to the high steam requirements of this sorbent, zinc titanate was selected and tested in a fixed bed reactor and was found unacceptable due to loss of strength on cyclic absorption/regeneration operation. Another sorbent evaluated was Z-Sorb{reg_sign}, a proprietary sorbent developed by Phillips Petroleum Company, was found to have excellent sulfur capacity, structural strength and regenerability. Steam was found unsuitable as fixed bed regenerator diluent, this results in a requirement for a large amount of inert gas, whereas a transport regenerator requires no diluent. The final Sierra design features transport reactors for both desulfurization and regeneration steps using neat air. 3 refs., 3 figs., 2 tabs.

  20. Safe new reactor for radionuclide production

    SciTech Connect

    Gray, P.L.

    1995-02-15

    In late 1995, DOE is schedule to announce a new tritium production unit. Near the end of the last NPR (New Production Reactors) program, work was directed towards eliminating risks in current designs and reducing effects of accidents. In the Heavy Water Reactor Program at Savannah River, the coolant was changed from heavy to light water. An alternative, passively safe concept uses a heavy-water-filled, zircaloy reactor calandria near the bottom of a swimming pool; the calandria is supported on a light-water-coolant inlet plenum and has upflow through assemblies in the calandria tubes. The reactor concept eliminates or reduces significantly most design basis and severe accidents that plague other deigns. The proven, current SRS tritium cycle remains intact; production within the US of medical isotopes such as Mo-99 would also be possible.

  1. Reactor Monitoring (near and far) with Neutrinos

    NASA Astrophysics Data System (ADS)

    Learned, John G.

    2005-06-01

    We are approaching a time when our understanding of neutrinos and the advance of technology will permit practical applications of neutrinos. The detection of electron anti-neutrinos (ν), permits monitoring of reactors and nuclear weapons tests which cannot be shielded or jammed, and gives unambiguous signals. Measurements close to reactor sites can determine the fuel content of even uncooperative facilities. Distant, but of necessity enormous detectors in a worldwide network can detect, locate and measure power output of reactors and of bomb tests in useful ranges. Close-in detectors are in test operation now. A world network will require development of new technology in photodetectors, now on the horizon and huge scaling up from present instruments. Under optimistic assumptions such a scheme may be affordable.

  2. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  3. SABR fusion-fission hybrid transmutation reactor design concept

    NASA Astrophysics Data System (ADS)

    Stacey, Weston

    2009-11-01

    A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which may be essential for significant reduction in high-level waste repository requirements. ITER will serve as the prototype for the fusion neutron source, which means SABRs could be implemented to help close the nuclear fuel cycle during the 2^nd quarter of the century.

  4. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  5. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  6. Fuel Cycle System Analysis Handbook

    SciTech Connect

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty

  7. Uncertainty of Microphysics Schemes in CRMs

    NASA Astrophysics Data System (ADS)

    Tao, W. K.; van den Heever, S. C.; Wu, D.; Saleeby, S. M.; Lang, S. E.

    2015-12-01

    Microphysics is the framework through which to understand the links between interactive aerosol, cloud and precipitation processes. These processes play a critical role in the water and energy cycle. CRMs with advanced microphysics schemes have been used to study the interaction between aerosol, cloud and precipitation processes at high resolution. But, there are still many uncertainties associated with these microphysics schemes. This has arisen, in part, from the fact microphysical processes cannot be measured directly; instead, cloud properties, which can be measured, are and have been used to validate model results. The utilization of current and future global high-resolution models is rapidly increasing and are at what has been traditional CRM resolutions and are using microphysics schemes that were developed in traditional CRMs. A potential NASA satellite mission called the Cloud and Precipitation Processes Mission (CaPPM) is currently being planned for submission to the NASA Earth Science Decadal Survey. This mission could provide the necessary global estimates of cloud and precipitation properties with which to evaluate and improve dynamical and microphysical parameterizations and the feedbacks. In order to facilitate the development of this mission, CRM simulations have been conducted to identify microphysical processes responsible for the greatest uncertainties in CRMs. In this talk, we will present results from numerical simulations conducted using two CRMs (NU-WRF and RAMS) with different dynamics, radiation, land surface and microphysics schemes. Specifically, we will conduct sensitivity tests to examine the uncertainty of the some of the key ice processes (i.e. riming, melting, freezing and shedding) in these two-microphysics schemes. The idea is to quantify how these two different models' respond (surface rainfall and its intensity, strength of cloud drafts, LWP/IWP, convective-stratiform-anvil area distribution) to changes of these key ice

  8. Vapor Compression Cycle Design Program (CYCLE_D)

    National Institute of Standards and Technology Data Gateway

    SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase)   The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.

  9. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  10. A multigrid algorithm for the cell-centered finite difference scheme

    NASA Technical Reports Server (NTRS)

    Ewing, Richard E.; Shen, Jian

    1993-01-01

    In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

  11. Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power

    SciTech Connect

    Holcomb, R.S.

    1992-07-01

    The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

  12. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    ERIC Educational Resources Information Center

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  13. REACTOR PHYSICS MODELING OF SPENT NUCLEAR RESEARCH REACTOR FUEL FOR SNM ATTRIBUTION AND NUCLEAR FORENSICS

    SciTech Connect

    Sternat, M.; Beals, D.; Webb, R.; Nichols, T.

    2010-06-09

    Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. The

  14. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    SciTech Connect

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo; Sartori, Alberto; Ricotti, Marco

    2012-07-01

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized

  15. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  16. 76 FR 5218 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... fuel cycle facilities and PRAs for reactors including a critical evaluation of how ISAs differ from.... 552b (c)(4). 1:30 p.m.--3:15 p.m.: Comparison of Integrated Safety Analyses (ISAs) for Fuel Cycle... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  17. Hybrid plasmachemical reactor

    SciTech Connect

    Lelevkin, V. M. Smirnova, Yu. G.; Tokarev, A. V.

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  18. Attrition reactor system

    SciTech Connect

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  19. Attrition reactor system

    SciTech Connect

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  20. RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation

    SciTech Connect

    Ransom, V.H.; Wagner, R.J.; Trapp, J.A.

    1981-01-01

    The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given.

  1. Menu Cycles.

    ERIC Educational Resources Information Center

    Clayton, Alfred; Almony, John

    The curriculum guide for commercial foods instruction is designed to aid the teacher in communicating the importance of menu cycles in commercial food production. It also provides information about the necessary steps in getting food from the raw form to the finished product, and then to the consumer. In addition to providing information on how to…

  2. Period meter for reactors

    DOEpatents

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  3. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  4. Reactor System Transient Code.

    1999-07-14

    RELAP3B describes the behavior of water-cooled nuclear reactors during postulated accidents or power transients, such as large reactivity excursions, coolant losses or pump failures. The program calculates flows, mass and energy inventories, pressures, temperatures, and steam qualities along with variables associated with reactor power, reactor heat transfer, or control systems. Its versatility allows one to describe simple hydraulic systems as well as complex reactor systems.

  5. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  6. Sequencing batch biofilm reactor: from support design to reactor operation.

    PubMed

    Matos, M; Alves, C; Campos, J L; Brito, A G; Nogueira, R

    2011-07-01

    The aim of this work was to improve the overall understanding of sequencing batch biofilm reactors (SBBRs) from support selection (biofilm formation) to reactor operation (carbon and nitrogen removal). Supports manufactured with different materials and geometries were tested in 2.5 L SBBRs and it was observed that biofilm accumulation was favoured on the supports that presented a higher internal surface area. The geometry of the supports and the hydrodynamic conditions established in the SBBRs seemed to play a more important role in biofilm formation than the thermodynamic interaction, expressed as free energy of adhesion (deltaG), between the support material and the biomass. The support that presented the highest biofilm accumulation per unit of surface area (DupUM) was used in a 28 L SBBR and it was observed that, along a typical SBBR cycle, time profiles of nitrogen compounds showed the typical behaviour of nitrification and denitrification reactions. During the fill phase (without aeration) acetate was simultaneously consumed in biomass growth and denitrification. Immediately after the beginning of the aeration phase (without influent addition), acetate was depleted from the liquid phase and stored as poly-beta-hydroxybutyrate that was later on used in the growth of biomass, owing to the high oxygen concentration in the reactor.

  7. Energy partitioning schemes: a dilemma.

    PubMed

    Mayer, I

    2007-01-01

    Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components.

  8. Nonlinear secret image sharing scheme.

    PubMed

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.

  9. Nonlinear secret image sharing scheme.

    PubMed

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively. PMID:25140334

  10. Energy partitioning schemes: a dilemma.

    PubMed

    Mayer, I

    2007-01-01

    Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components. PMID:17328441

  11. Nonlinear Secret Image Sharing Scheme

    PubMed Central

    Shin, Sang-Ho; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2⁡m⌉ bit-per-pixel (bpp), respectively. PMID:25140334

  12. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  13. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  14. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  15. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  16. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  17. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  18. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  19. Trade study for kWe class space reactors

    NASA Astrophysics Data System (ADS)

    Bost, Donald S.

    Recent interest by NASA and other government agencies in space reactor power systems with power levels in the 1 to 100 kWe range has prompted a review of earlier space reactor programs, as well as the ongoing SP-100 program, to identify a system that will best fulfill their needs. The candidate reactor types that were reviewed are listed. They are categorized according to the method of heat removal. The five types are: conduction cooled, heat pipe cooled, liquid metal cooled, in-core thermionic and gas cooled. The UZrH moderated reactor coupled with an organic Rankine cycle power conversion system provides an attractive system for multikilowatt, long lived missions. The reactor requires a minimum development because a similar reactor has already flown and the ORC is being developed for use in the Dynamic Isotope Power System (DIPS) and on the Space Station.

  20. Fuel provision for nonbreeding deuterium-tritium fusion reactors

    SciTech Connect

    Jassby, D.L.; Katsurai, M.

    1980-01-01

    Nonbreeding D-T reactors have decisive advantages in minimum size, unit cost, variety of applications, and ease of heat removal over reactors using any other fusion cycle, and significant advantages in environmental and safety characteristics over breeding D-T reactors. Considerations of relative energy production demonstrate that the most favorable source of tritium for a widely deployed system of nonbreeding D-T reactors is the very large (approx. 10 GW thermal) semi-catalyzed-deuterium (SCD), or sub-SCD reactor, where none of the escaping /sup 3/He (> 95%) or tritium (< 25%) is reinjected for burn-up. Feasibility of the ignited SCD tokamak reactor requires spatially averaged betas of 15 to 20% with a magnetic field at the TF coils of 12 to 13 Tesla.

  1. External quality assessment scheme and laboratory accreditation in Indonesia.

    PubMed

    Timan, Ina S; Aulia, Diana; Santoso, Witono

    2002-02-01

    The National Program on External Quality Assessment Scheme (NEQAS) in Indonesia was first started in 1979, organized by the Indonesian Ministry of Health collaborating with professional bodies. The first trial was for clinical chemistry test with 2 cycles per year, followed by the hematology NEQAS in 1986 in collaboration with WHO-Royal Post Graduate Medical School London. After that, the schemes for serology, microbiology and parasitology were also organized. Around 500-600 laboratories throughout Indonesia participated each year in these quality control schemes, 2-4 cycles per year. Samples would be sent to participants and results will be given back to each laboratory. Poor performers should participate in the workshop or training course conducted by the Central Health Laboratory to improve their results. Participation in this NEQAS is mandatory for obtaining the laboratory license, and the Ministry of Health uses these schemes as one of the means for monitoring and coordinating the performance of laboratories throughout Indonesia. There are also some other EQAS (External Quality Assessment Scheme) programs conducted by professional bodies, such as for hemostasis, clinical chemistry and serology. During the course of conducting these schemes, it could be observed that manual methods were gradually changed to the automatic methods, especially for the clinical chemistry and hematology laboratories, which counts also for improvements of their results. Since the last 6 years, the Ministry of Health also began to conduct the Accreditation System evaluation for hospitals, including the laboratory departments. There are 7 standards that were evaluated, such as the aspect of the organization, administration and management, staffing, facilities and equipment, standard operating procedures, research and developments and quality control. This accreditation program is still in progress for all public and private hospital laboratories.

  2. A Fast-Spectrum Test Reactor Concept

    SciTech Connect

    Shatilla, Youssef A.; Loewen, Eric P.

    2005-09-15

    The need for a new steady-state fast-neutron reactor has been the subject of numerous national meetings and discussions. This type of reactor will be able to open new frontiers of research for Generation IV reactors, the Space Propulsion Program, and the Advanced Fuel Cycle Initiative. With the confluence of these three programs' fast-spectrum testing needs, we set out to conceptualize a new system by looking at previous successful reactor concepts. This paper presents a new concept for a fast-spectrum test reactor that is horizontal in orientation, with individual pressure tubes running the entire length of the scattering-medium tank filled with a liquid heavy metal. This approach for a test reactor will provide more flexibility in refueling, sample removal, and ability to completely reconfigure the core to meet different users' requirements. Full core neutronic analysis of more than 14 combinations showed that a large hexagonal steam-cooled U-10Zr fuel, with a core power of 267 MW(thermal), produced a fast flux (>0.1 MeV) of 1.3 x 10{sup 15} n/cm{sup 2}.s averaged over the whole length of the irradiation channel. A depletion run with an initial enrichment of 20 wt% {sup 235}U had a flat reactivity curve for the first 180 days of cycle due to in-core breeding. Although considerable neutronic optimization and a thermal-hydraulic analysis remain to be performed, it appears that a reactor core with this innovative geometry could meet future fast flux testing needs.

  3. A Fast-Spectrum Test Reactor Concept

    SciTech Connect

    Youssef A Shatilla; Eric Loewen

    2005-09-01

    The need for a new steady-state fast-neutron reactor has been the subject of numerous national meetings and discussions. This type of reactor will be able to open new frontiers of research for Generation IV reactors, the Space Propulsion Program, and the Advanced Fuel Cycle Initiative. With the confluence of these three programs' fast-spectrum testing needs, we set out to conceptualize a new system by looking at previous successful reactor concepts. This paper presents a new concept for a fast-spectrum test reactor that is horizontal in orientation, with individual pressure tubes running the entire length of the scattering-medium tank filled with a liquid heavy metal. This approach for a test reactor will provide more flexibility in refueling, sample removal, and ability to completely reconfigure the core to meet different users' requirements. Full core neutronic analysis of more than 14 combinations showed that a large hexagonal steam-cooled U-10Zr fuel, with a core power of 267 MW(thermal), produced a fast flux (>0.1 MeV) of 1.3 × 1015 n/cm2s averaged over the whole length of the irradiation channel. A depletion run with an initial enrichment of 20 wt% 235U had a flat reactivity curve for the first 180 days of cycle due to in-core breeding. Although considerable neutronic optimization and a thermal-hydraulic analysis remain to be performed, it appears that a reactor core with this innovative geometry could meet future fast flux testing needs.

  4. The CANDU Reactor System: An Appropriate Technology.

    PubMed

    Robertson, J A

    1978-02-10

    CANDU power reactors are characterized by the combination of heavy water as moderator and pressure tubes to contain the fuel and coolant. Their excellent neutron economy provides the simplicity and low costs of once-through natural-uranium fueling. Future benefits include the prospect of a near-breeder thorium fuel cycle to provide security of fuel supply without the need to develop a new reactor such as the fast breeder. These and other features make the CANDU system an appropriate technology for countries, like Canada, of intermediate economic and industrial capacity. PMID:17788102

  5. The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  6. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect

    Not Available

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  7. Different options for noble gas categorization schemes

    NASA Astrophysics Data System (ADS)

    Kalinowski, Martin

    2010-05-01

    For noble gas monitoring it is crucial to support the decision makers who need to decide whether a decection may indicate a potential nuclear test. Several parameters are available that may help to distinguish a legitimate civilian source from a nuclear explosion. The most promising parameters are: (a) Anomaly observations with respect to the history of concentrations found at that site. (b) Isotopic activity ratios can be used to separate a nuclear reactor domain from the parameter space that is specific for nuclear explosions. (c) Correlation with source-receptor-sensitivities related to known civilian sources as determined by atmospheric transport simulations. A combination of these can be used to categorize an observation. So far, several initial ideas have been presented but the issue of noble gas categorisation has been postponed with the argument that further scientific studies and additional experience have to be awaited. This paper presents the principles of different options for noble gas categorisation and considers how they would meet the interests of different classes of member states. It discusses under different points of view what might be the best approach for the noble gas categorisation scheme.

  8. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  9. Reactor vessel support system

    DOEpatents

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  10. Neutronic assessment of stringer fuel assembly design for liquid-salt-cooledvery high temperature reactor (LS-VHTR).

    SciTech Connect

    Szakaly, F. J.; Kim, T. K.; Taiwo, T. A.

    2006-09-15

    Neutronic studies of 18-pin and 36-pin stringer fuel assemblies have been performed to ascertain that core design requirements for the Liquid-Salt Cooled Very High Temperature Reactor (LS-VHTR) can be met. Parametric studies were performed to determine core characteristics required to achieve a target core cycle length of 18 months and fuel discharge burnup greater than 100 GWd/t under the constraint that the uranium enrichment be less than 20% in order to support non-proliferation goals. The studies were done using the WIMS9 lattice code and the linear reactivity model to estimate the core reactivity balance, fuel composition, and discharge burnup. The results show that the design goals can be met using a 1-batch fuel management scheme, uranium enrichment of 15% and a fuel packing fraction of 30% or greater for the 36-pin stringer fuel assembly design.

  11. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    NASA Astrophysics Data System (ADS)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  12. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A. Emery, Jonathan D.; Martinson, Alex B. F.; Proslier, Thomas; Weimer, Matthew S.; Yanguas-Gil, Angel; Elam, Jeffrey W.; Seifert, Sönke; Schlepütz, Christian M.; Hock, Adam S.

    2015-11-15

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er{sub 2}O{sub 3} ALD on amorphous ALD alumina and single crystalline sapphire.

  13. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes.

    PubMed

    Klug, Jeffrey A; Weimer, Matthew S; Emery, Jonathan D; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M; Martinson, Alex B F; Elam, Jeffrey W; Hock, Adam S; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  14. A modular reactor design for in situ synchrotron X-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sonke; Schleputz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present \\textit{in situ} results for 1.) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, 2.) grazing-incidence small angle scattering of MnO nucleation on silicon, and 3.) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  15. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  16. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  17. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  18. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  19. A brief history of design studies on innovative nuclear reactors

    SciTech Connect

    Sekimoto, Hiroshi

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  20. A brief history of design studies on innovative nuclear reactors

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2014-09-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  1. Study of fueling requirements for the Engineering Test Reactor

    SciTech Connect

    Ho, S.K.; Perkins, L.J.

    1987-10-16

    An assessment of the fueling requirement for the TIBER Engineering Test Reactor is studied. The neutral shielding pellet ablation model with the inclusion of the effects of the alpha particles is used for our study. The high electron temperature in a reactor-grade plasma makes pellet penetration very difficult. The launch length has to be very large (several tens of meters) in order to avoid pellet breakage due to the low inertial strength of DT ''ice.'' The minimum repetition rate corresponding to the largest allowable pellet, is found to be about 1 Hz. A brief survey is done on the various operational and conceptual pellet injection schemes for plasma fueling. The underlying conclusion is that an alternative fueling scheme of coaxial compact-toroid plasma gun is very likely needed for effective central fueling of reactor-grade plasmas. 16 refs.

  2. VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics

    SciTech Connect

    Steven J. Piet; A. M. Yacout; J. J. Jacobson; C. Laws; G. E. Matthern; D. E. Shropshire

    2006-02-01

    The U.S. DOE Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential "exit" or "off ramp" approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool "DYMOND-US" functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies.

  3. Advanced fuel cycles for use in PHWRs

    NASA Astrophysics Data System (ADS)

    Gupta, H. P.; Menon, S. V. G.; Banerjee, S.

    2008-12-01

    Pressurized heavy water reactors (PHWRs) were originally designed for employing once through fuel cycles with natural uranium. The excellent neutron economy and on-line fueling due to limited excess reactivity are important characteristics of these reactors. However, PHWRs have the main drawback of low burn-up, approximately 7500 MWd/T, due to the use of natural uranium. Use of neutron absorbers for control and power flattening further deteriorates the burn-up. All these aspects, specific to PHWRs, also lead to management of large quantities of: (i) initial fuel (ii) irradiated fuel, and (iii) radioactive wastes. Some of these drawbacks can be alleviated with high burn-up fuel, which also improves fuel utilization. Slightly enriched uranium and plutonium have been under consideration for this purpose. In situ production of U 233, by using thorium along with appropriate fissile feed, is one possibility. Alternatively, U 233 can be generated externally in fast breeder reactors. It has been recognized that, when used along with thorium, PHWRs can also serve as efficient burners of excess plutonium accumulated over the years. Fuel cycles have been designed so as to completely reverse the isotopic composition (fissile to fertile ratio) which exists at the beginning of a cycle. These cycles also envisage producing proliferation resistant fuels containing high gamma-active decay products. Most of the reactor physics aspects of the various fuel cycles can be analyzed using simple methods of neutron physics and fuel burn-up. Multi-group techniques and explicit representations of the PHWR cluster geometry are essential. However, core physics and fuel management calculations can be simplified at an exploratory stage. Nevertheless, it is necessary to make sure, using core analyses, that the new fuel cycles do satisfy all the constraints of flux peaking, controllability, coolant void reactivity, etc. The main aim in this paper is to provide a comparative evaluation of the

  4. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    SciTech Connect

    Sleaford, B W; Collins, B A; Ebbinghaus, B B; Bathke, C G; Prichard, A W; Wallace, R K; Smith, B W; Hase, K R; Bradley, K S; Robel, M; Jarvinen, G D; Ireland, J R; Johnson, M W

    2010-04-26

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.

  5. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  6. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  7. Invisibly Sanitizable Digital Signature Scheme

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki

    A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.

  8. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  9. On symmetric and upwind TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.

  10. Short time cycles of purely quantum refrigerators

    NASA Astrophysics Data System (ADS)

    Feldmann, Tova; Kosloff, Ronnie

    2012-05-01

    Four stroke Otto refrigerator cycles with no classical analog are studied. Extremely short cycle times with respect to the internal timescale of the working medium characterize these refrigerators. Therefore, these cycles are termed sudden. The sudden cycles are characterized by the stable limit cycle, which is the invariant of the global cycle propagator. During their operation the states of the working medium possess significant coherence which is not erased in the equilibration segments due to the very short time allocated. This characteristic is reflected in a difference between the energy entropy and the Von Neumann entropy of the working medium. A classification scheme for sudden refrigerators is developed allowing simple approximations for the cooling power and coefficient of performance.

  11. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  12. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Chen, Qiying; Sun, Jian

    2015-10-01

    Cumulus convection is a key linkage between hydrological cycle and large-scale atmospheric circulation. Cumulus parameterization scheme is an important component in numerical weather and climate modeling studies. In the Global/Regional Assimilation and Prediction Enhanced System (GRAPES), turbulent mixing and diffusion approach is applied in its shallow convection scheme. This method overestimates the vertical transport of heat and moisture fluxes but underestimates cloud water mixing ratio over the region of stratocumulus clouds. As a result, the simulated low stratocumulus clouds are less than observations. To overcome this problem, a mass flux method is employed in the shallow convection scheme to replace the original one. Meanwhile, the deep convection scheme is adjusted correspondingly. This modification is similar to that in the US NCEP Global Forecast System (GFS), which uses the simplified Arakawa Schubert Scheme (SAS). The planetary boundary layer scheme (PBL) is also revised by considering the coupling between the PBL and stratocumulus clouds. With the modification of both the cumulus and PBL schemes, the GRAPES simulation of shallow convective heating rate becomes more reasonable; total amounts of stratocumulus clouds simulated over the eastern Pacific and their vertical structure are more consistent with observations; the underestimation of stratocumulus clouds simulated by original schemes is less severe with the revised schemes. Precipitation distribution in the tropics becomes more reasonable and spurious precipitation is effectively suppressed. The westward extension and northward movement of the western Pacific subtropical high simulated with the revised schemes are more consistent with Final Operational Global Analysis (FNL) than that simulated with the original schemes. The statistical scores for the global GRAPES forecast are generally improved with the revised schemes, especially for the simulation of geopotential height in the Northern

  13. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  14. Low power reactor for remote applications

    NASA Astrophysics Data System (ADS)

    Meier, K. L.; Palmer, R. G.; Kirchner, W. L.

    1985-05-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long term, virtually maintenance free, operation of this reactor for remote applications.

  15. Low power reactor for remote applications

    SciTech Connect

    Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

    1985-01-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs.

  16. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect

    D. E. Shropshire; W. H. West

    2005-11-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  17. Benchmarking NSP Reactors with CORETRAN-01

    SciTech Connect

    Hines, Donald D.; Grow, Rodney L.; Agee, Lance J

    2004-10-15

    As part of an overall verification and validation effort, the Electric Power Research Institute's (EPRIs) CORETRAN-01 has been benchmarked against Northern States Power's Prairie Island and Monticello reactors through 12 cycles of operation. The two Prairie Island reactors are Westinghouse 2-loop units with 121 asymmetric 14 x 14 lattice assemblies utilizing up to 8 wt% gadolinium while Monticello is a General Electric 484 bundle boiling water reactor. All reactor cases were executed in full core utilizing 24 axial nodes per assembly in the fuel with 1 additional reflector node above, below, and around the perimeter of the core. Cross-section sets used in this benchmark effort were generated by EPRI's CPM-3 as well as Studsvik's CASMO-3 and CASMO-4 to allow for separation of the lattice calculation effect from the nodal simulation method. These cases exercised the depletion-shuffle-depletion sequence through four cycles for each unit using plant data to follow actual operations. Flux map calculations were performed for comparison to corresponding measurement statepoints. Additionally, start-up physics testing cases were used to predict cycle physics parameters for comparison to existing plant methods and measurements.These benchmark results agreed well with both current analysis methods and plant measurements, indicating that CORETRAN-01 may be appropriate for steady-state physics calculations of both the Prairie Island and Monticello reactors. However, only the Prairie Island results are discussed in this paper since Monticello results were of similar quality and agreement. No attempt was made in this work to investigate CORETRAN-01 kinetics capability by analyzing plant transients, but these steady-state results form a good foundation for moving in that direction.

  18. Developments and Tendencies in Fission Reactor Concepts

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  19. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    NASA Astrophysics Data System (ADS)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  20. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  1. Modelling of biofilm reactors

    SciTech Connect

    Rodrigues, A.; Grasmick, A.; Elmaleh, S.

    1982-10-01

    Comprehensive models of biofilm reactors are developed. Model I assumes a zero-order reaction of a limiting substrate and a diffusional mass transport through the biofilm; in the diffusion-controlled regime the model is fully characterized by one parameter alpha. From this model the conversion of substrate or reactor efficiency can be calculated, for continuously stirred tank reactors (CSTRs) and plug flow reactors respectively, as follows: EA = )alpha(alpha + 2)) 1/2 - alpha; and Ep = (2 alpha) 1/2 - alpha/2: Validation of the model is tested for different experimental systems. Model II includes liquid film mass transfer resistance. The conversion gap between plug flow reactors and CSTRs is always lower than 25% and, as a first approximation, the biofilm reactor design does not then require accurate residence time distribution measurements. (Refs. 23).

  2. Thermionic space reactors overview

    SciTech Connect

    Wetch, J.R.; Britt, E.J.; Fitzpatrick, G.O.; Rasor, N.S.

    1983-08-01

    The multi-national development of thermionic reactor systems is summarized in the context of the past general space nuclear reactor program and the recent renewed interest in space nuclear power. Comparison of various alternate reactor space power systems indicates that only the in-core thermionic reactor approach has the performance and growth potential required to provide the power levels potentially needed for shuttle-launchable systems by the year 2000 at reactor coolant and system temperatures that are near the current state-of-the-art. It is concluded that all shuttle- launchable high power space reactor systems require high-temperature, long-endurance nuclear fuels, and that high priority characterization and development of such fuels is essential to successfully realize power systems that can enable the space missions presently being considered.

  3. High power density reactors based on direct cooled particle beds

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  4. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Dreffin, R.S.

    1959-12-15

    A control means for a nuclear reactor is described. Particularly a device extending into the active portion of the reactor consisting of two hollow elements coaxially disposed and forming a channel therebetween, the cross sectional area of the channel increasing from each extremity of the device towards the center thereof. An element of neutron absorbing material is slidably positionable within the inner hollow element and a fluid reactor poison is introduced into the channel defined by the two hollow elements.

  5. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Goett, J.J.

    1961-01-24

    A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.

  6. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  7. THERMAL NEUTRONIC REACTOR

    DOEpatents

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  8. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  9. Subranging scheme for SQUID sensors

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor)

    2008-01-01

    A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.

  10. Stable maps and Quot schemes

    NASA Astrophysics Data System (ADS)

    Popa, Mihnea; Roth, Mike

    2003-06-01

    In this paper we study the relationship between two different compactifications of the space of vector bundle quotients of an arbitrary vector bundle on a curve. One is Grothendieck's Quot scheme, while the other is a moduli space of stable maps to the relative Grassmannian. We establish an essentially optimal upper bound on the dimension of the two compactifications. Based on that, we prove that for an arbitrary vector bundle, the Quot schemes of quotients of large degree are irreducible and generically smooth. We precisely describe all the vector bundles for which the same thing holds in the case of the moduli spaces of stable maps. We show that there are in general no natural morphisms between the two compactifications. Finally, as an application, we obtain new cases of a conjecture on effective base point freeness for pluritheta linear series on moduli spaces of vector bundles.

  11. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  12. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  13. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  14. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  15. Preliminary neutronic studies for the liquid-salt-cooled very hightemperature reactor (LS-VHTR).

    SciTech Connect

    Kim, T. K.; Taiwo, T. A.; Yang, W. S.

    2005-10-05

    Preliminary neutronic studies have been performed in order to provide guidelines to the design of a liquid-salt cooled Very High Temperature Reactor (LS-VHTR) using Li{sub 2}BeF{sub 4} (FLiBe) as coolant and a solid cylindrical core. The studies were done using the lattice codes (WIMS8 and DRAGON) and the linear reactivity model to estimate the core reactivity balance, fuel composition, discharge burnup, and reactivity coefficients. An evaluation of the lattice codes revealed that they give very similar accuracy as the Monte Carlo MCNP4C code for the prediction of the fuel element multiplication factor (kinf) and the double heterogeneity effect of the coated fuel particles in the graphite matrix. The loss of coolant from the LS-VHTR core following coolant voiding was found to result in a positive reactivity addition, due primarily to the removal of the strong neutron absorber Li-6. To mitigate this positive reactivity addition and its impact on reactor design (positive void reactivity coefficient), the lithium in the coolant must be enriched to greater than 99.995% in its Li-7 content. For the reference LS-VHTR considered in this work, it was found that the magnitude of the coolant void reactivity coefficient (CVRC) is quite small (less than $1 for 100% voiding). The coefficient was found to become more negative or less positive with increase in the lithium enrichment (Li-7 content). It was also observed that the coefficient is positive at the beginning of cycle and becomes more negative with increasing burnup, indicating that by using more than one fuel batch, the coefficient could be made negative at the beginning of cycle. It might, however, still be necessary at the beginning of life to design for a negative CVRC value. The study shows that this can be done by using burnable poisons (erbium is a leading candidate) or by changing the reference assembly design (channel dimensions) in order to modify the neutron spectrum. Parametric studies have been performed to

  16. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  17. A biometric signcryption scheme without bilinear pairing

    NASA Astrophysics Data System (ADS)

    Wang, Mingwen; Ren, Zhiyuan; Cai, Jun; Zheng, Wentao

    2013-03-01

    How to apply the entropy in biometrics into the encryption and remote authentication schemes to simplify the management of keys is a hot research area. Utilizing Dodis's fuzzy extractor method and Liu's original signcryption scheme, a biometric identity based signcryption scheme is proposed in this paper. The proposed scheme is more efficient than most of the previous proposed biometric signcryption schemes for that it does not need bilinear pairing computation and modular exponentiation computation which is time consuming largely. The analysis results show that under the CDH and DL hard problem assumption, the proposed scheme has the features of confidentiality and unforgeability simultaneously.

  18. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    SciTech Connect

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature

  19. High-temperature gas-cooled reactors: preliminary safety and environmental information document. Volume IV

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning medium-enriched uranium/thorium once-through fuel cycle; medium-enrichment uranium-233/thorium recycle fuel; high-enrichment uranium-235/thorium recycle (spiked) fuel cycle; high-enrichment uranium-233/thorium recycle (spiked) fuel cycle; and gas-turbine high-temperature gas-cooled reactor.

  20. Sensitivity and Uncertainty Study for Thermal Molten Salt Reactors

    NASA Astrophysics Data System (ADS)

    Bidaud, Adrien; Ivanona, Tatiana; Mastrangelo, Victor; Kodeli, Ivo

    2006-04-01

    The Thermal Molten Salt Reactor (TMSR) using the thorium cycle can achieve the GEN IV objectives of economy, safety, non-proliferation and durability. Its low production of higher actinides, coupled with its breeding capabilities - even with a thermal spectrum - are very valuable characteristics for an innovative reactor. Furthermore, the thorium cycle is more flexible than the uranium cycle since only a small fissile inventory (<2 tons by GWe) is required to start one reactor. The potential of these reactors is currently being extensively studied at the CNRS and EdF /1,2/. A simplified chemical reprocessing is envisaged compared to that used for the former Molten Salt Breeder Reactor (MSBR). The MSBR concept was developed at Oak Ridge National Laboratory (ORNL) in the 1970's based on the Molten Salt Reactor Experiment (MSRE). The main goals of our current studies are to achieve a reactor concept that enables breeding, improved safety and having chemical reprocessing needs reduced and simplified as much as reasonably possible. The neutronic properties of the new TMSR concept are presented in this paper. As the temperature coefficient is close to zero, we will see that the moderation ratio cannot be chosen to simultaneously achieve a high breeding ratio, long graphite lifetime and low uranium inventory. It is clear that any safety margin taken due to uncertainty in the nuclear data will significantly reduce the capability of this concept, thus a sensitivity analysis is vital to propose measurements which would allow to reduce at present high uncertainties in the design parameters of this reactor. Two methodologies, one based on OECD/NEA deterministic codes and one on IPPE (Obninsk) stochastic code, are compared for keff sensitivity analysis. The uncertainty analysis of keff using covariance matrices available in evaluated files has been performed. Furthermore, a comparison of temperature coefficient sensitivity profiles is presented for the most important reactions

  1. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect

    Ilas, G.; Primm III, T.

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  2. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect

    Ilas, Germina; Primm, Trent

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  3. Multilevel transport solution of LWR reactor cores

    SciTech Connect

    Jose Ignacio Marquez Damian; Cassiano R.E. de Oliveira; HyeonKae Park

    2008-09-01

    This work presents a multilevel approach for the solution of the transport equation in typical LWR assemblies and core configurations. It is based on the second-order, even-parity formulation of the transport equation, which is solved within the framework provided by the finite element-spherical harmonics code EVENT. The performance of the new solver has been compared with that of the standard conjugate gradient solver for diffusion and transport problems on structured and unstruc-tured grids. Numerical results demonstrate the potential of the multilevel scheme for realistic reactor calculations.

  4. Thermionic reactors for space nuclear power

    NASA Astrophysics Data System (ADS)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  5. Compact reactor/ORC power source

    SciTech Connect

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500/sup 0/C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370/sup 0/C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs.

  6. Development of the cascade inertial-confinement-fusion reactor

    SciTech Connect

    Pitts, J.H.

    1985-04-15

    Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis and experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.

  7. Development of the cascade inertial-confinement-fusion reactor

    SciTech Connect

    Pitts, J.H.

    1985-07-01

    Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis and experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.

  8. Power ascension strategy following a reactor trip during EOC coastdown

    SciTech Connect

    Beard, C.L.; Heibel, M.D. ); Lesnick, D.C. )

    1992-01-01

    The difficulties associated with returning a reactor to the pretrip power level following a reactor trip during an end-of-cycle (EOC) power coastdown maneuver, and maintaining it once achieved, have caused utilities to abandon the restart and enter their refueling outages ahead of schedule. The Commonwealth Edison Company (CECo) Braidwood and Byron units have experienced reactor trips during EOC power coastdown maneuvers and have successfully performed restarts. The installation of the BEACON core monitoring system, which provides core monitoring, measurement reduction, core analysis and follow, and core prediction capability utilizing a very fast and accurate three-dimensional nodal code, at the CECo Byron, Braidwood, and Zion stations allows the reactor engineers at these units to accurately determine reactor response. The capabilities of the BEACON system allow an optimal return to power strategy to be developed and continuously updated. This paper presents a method for establishing the optimal return to power strategy utilizing the BEACON system.

  9. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  10. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  11. Fuel cycle for a fusion neutron source

    SciTech Connect

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  12. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  13. Development of a reference scheme for MOX lattice physics calculations

    SciTech Connect

    Finck, P.J.; Stenberg, C.G.; Roy, R.

    1998-12-31

    The US program to dispose of weapons-grade Pu could involve the irradiation of mixed-oxide (MOX) fuel assemblies in commercial light water reactors. This will require licensing acceptance because of the modifications to the core safety characteristics. In particular, core neutronics will be significantly modified, thus making it necessary to validate the standard suites of neutronics codes for that particular application. Validation criteria are still unclear, but it seems reasonable to expect that the same level of accuracy will be expected for MOX as that which has been achieved for UO{sub 2}. Commercial lattice physics codes are invariably claimed to be accurate for MOX analysis but often lack independent confirmation of their performance on a representative experimental database. Argonne National Laboratory (ANL) has started implementing a public domain suite of codes to provide for a capability to perform independent assessments of MOX core analyses. The DRAGON lattice code was chosen, and fine group ENDF/B-VI.04 and JEF-2.2 libraries have been developed. The objective of this work is to validate the DRAGON algorithms with respect to continuous-energy Monte Carlo for a suite of realistic UO{sub 2}-MOX benchmark cases, with the aim of establishing a reference DRAGON scheme with a demonstrated high level of accuracy and no computing resource constraints. Using this scheme as a reference, future work will be devoted to obtaining simpler and less costly schemes that preserve accuracy as much as possible.

  14. Safeguards Considerations for Thorium Fuel Cycles

    DOE PAGESBeta

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; Croft, Steven

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  15. Designing a Gas Test Loop for the Advanced Test Reactor

    SciTech Connect

    James R. Parry

    2005-11-01

    The Generation IV Reactor Program and the Advanced Fuel Cycle Initiative are investigating some new reactor concepts which require extensive materials and fuels testing in a fast neutron spectrum. The capability to test materials and fuels in a fast neutron flux in the United States is very limited to non-existent. It has been proposed to install a gas test loop (GTL) in one of the lobes of the Advanced Test Reactor (ATR) at the Idaho National Laboratory and harden the spectrum to provide some fast neutron flux testing capabilities in the United States. This paper describes the neutronics investigation into the design of the GTL for the ATR.

  16. TVD schemes for open channel flow

    NASA Astrophysics Data System (ADS)

    Delis, A. I.; Skeels, C. P.

    1998-04-01

    The Saint Venant equations for modelling flow in open channels are solved in this paper, using a variety of total variation diminishing (TVD) schemes. The performance of second- and third-order-accurate TVD schemes is investigated for the computation of free-surface flows, in predicting dam-breaks and extreme flow conditions created by the river bed topography. Convergence of the schemes is quantified by comparing error norms between subsequent iterations. Automatically calculated time steps and entropy corrections allow high CFL numbers and smooth transition between different conditions. In order to compare different approaches with TVD schemes, the most accurate of each type was chosen. All four schemes chosen proved acceptably accurate. However, there are important differences between the schemes in the occurrence of clipping, overshooting and oscillating behaviour and in the highest CFL numbers allowed by a scheme. These variations in behaviour stem from the different orders and inherent properties of the four schemes.

  17. Your Menstrual Cycle

    MedlinePlus

    ... during your menstrual cycle What happens during your menstrual cycle The menstrual cycle includes not just your period, but the rise ... tool is based on a sample 28-day menstrual cycle, but every woman is different in how long ...

  18. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  19. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  20. The Integral Fast Reactor

    SciTech Connect

    Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.