Dependency of the Reynolds number on the water flow through the perforated tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Závodný, Zdenko, E-mail: zdenko.zavodny@stuba.sk; Bereznai, Jozef, E-mail: jozef.bereznai@stuba.sk; Urban, František
Safe and effective loading of nuclear reactor fuel assemblies demands qualitative and quantitative analysis of the relationship between the coolant temperature in the fuel assembly outlet, measured by the thermocouple, and the mean coolant temperature profile in the thermocouple plane position. It is not possible to perform the analysis directly in the reactor, so it is carried out using measurements on the physical model, and the CFD fuel assembly coolant flow models. The CFD models have to be verified and validated in line with the temperature and velocity profile obtained from the measurements of the cooling water flowing in themore » physical model of the fuel assembly. Simplified physical model with perforated central tube and its validated CFD model serve to design of the second physical model of the fuel assembly of the nuclear reactor VVER 440. Physical model will be manufactured and installed in the laboratory of the Institute of Energy Machines, Faculty of Mechanical Engineering of the Slovak University of Technology in Bratislava.« less
REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, T.; Beals, D.; Sternat, M.
2011-07-18
Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, J. D.; Briggs, J. B.; Gulliford, J.
Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energymore » Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning is the critical experiments with fast reactor fuel rods in water, interesting in terms of justification of nuclear safety during transportation and storage of fresh and spent fuel. These reports provide a detailed review of the experiment, designate the area of their application and include results of calculations on modern systems of constants in comparison with the estimated experimental data.« less
Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Shemon, E. R.; Yu, Y. Q.
This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models ofmore » a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.« less
NASA Astrophysics Data System (ADS)
Khuwaileh, Bassam
High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).
NASA Astrophysics Data System (ADS)
Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.
2017-01-01
In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).
Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor
NASA Technical Reports Server (NTRS)
Butler, C.; Albright, D.
2007-01-01
Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.
NASA Technical Reports Server (NTRS)
Sapyta, Joe; Reid, Hank; Walton, Lew
1993-01-01
The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-08-06
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-01-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250
Neutron flux and power in RTP core-15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis
PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less
Computer modeling and simulators as part of university training for NPP operating personnel
NASA Astrophysics Data System (ADS)
Volman, M.
2017-01-01
This paper considers aspects of a program for training future nuclear power plant personnel developed by the NPP Department of Ivanovo State Power Engineering University. Computer modeling is used for numerical experiments on the kinetics of nuclear reactors in Mathcad. Simulation modeling is carried out on the computer and full-scale simulator of water-cooled power reactor for the simulation of neutron-physical reactor measurements and the start-up - shutdown process.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...
2014-06-30
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan
2015-02-16
CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less
Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Jaradat, Safwan Qasim Mohammad
Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.
Physical models and primary design of reactor based slow positron source at CMRR
NASA Astrophysics Data System (ADS)
Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin
2018-07-01
Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109
RELAP-7 Software Verification and Validation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling
This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less
Virtual environments simulation in research reactor
NASA Astrophysics Data System (ADS)
Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin
2017-01-01
Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.
Temperature measuring analysis of the nuclear reactor fuel assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, F., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Kučák, L., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Bereznai, J., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk
2014-08-06
Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuelmore » assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.« less
Advances in modelling of condensation phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Zaltsgendler, E.; Hanna, B.
1997-07-01
The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUFmore » are described.« less
The Virtual Environment for Reactor Applications (VERA): Design and architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A., E-mail: turnerja@ornl.gov; Clarno, Kevin; Sieger, Matt
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goalsmore » and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryukhin, V. V., E-mail: bryuhin@yandex.ru; Kurakin, K. Yu.; Uvakin, M. A.
The article covers the uncertainty analysis of the physical calculations of the VVER reactor core for different meshes of the reference values of the feedback parameters (FBP). Various numbers of nodes of the parametric axes of FBPs and different ranges between them are investigated. The uncertainties of the dynamic calculations are analyzed using RTS RCCA ejection as an example within the framework of the model with the boundary conditions at the core inlet and outlet.
NASA Astrophysics Data System (ADS)
Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim
2018-02-01
Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.
A multi-physics analysis for the actuation of the SSS in opal reactor
NASA Astrophysics Data System (ADS)
Ferraro, Diego; Alberto, Patricio; Villarino, Eduardo; Doval, Alicia
2018-05-01
OPAL is a 20 MWth multi-purpose open-pool type Research Reactor located at Lucas Heights, Australia. It was designed, built and commissioned by INVAP between 2000 and 2006 and it has been operated by the Australia Nuclear Science and Technology Organization (ANSTO) showing a very good overall performance. On November 2016, OPAL reached 10 years of continuous operation, becoming one of the most reliable and available in its kind worldwide, with an unbeaten record of being fully operational 307 days a year. One of the enhanced safety features present in this state-of-art reactor is the availability of an independent, diverse and redundant Second Shutdown System (SSS), which consists in the drainage of the heavy water reflector contained in the Reflector Vessel. As far as high quality experimental data is available from reactor commissioning and operation stages and even from early component design validation stages, several models both regarding neutronic and thermo-hydraulic approaches have been developed during recent years using advanced calculations tools and the novel capabilities to couple them. These advanced models were developed in order to assess the capability of such codes to simulate and predict complex behaviours and develop highly detail analysis. In this framework, INVAP developed a three-dimensional CFD model that represents the detailed hydraulic behaviour of the Second Shutdown System for an actuation scenario, where the heavy water drainage 3D temporal profiles inside the Reflector Vessel can be obtained. This model was validated, comparing the computational results with experimental measurements performed in a real-size physical model built by INVAP during early OPAL design engineering stages. Furthermore, detailed 3D Serpent Monte Carlo models are also available, which have been already validated with experimental data from reactor commissioning and operating cycles. In the present work the neutronic and thermohydraulic models, available for OPAL reactor, are coupled by means of a shared unstructured mesh geometry definition of relevant zones inside the Reflector Vessel. Several scenarios, both regarding coupled and uncoupled neutronic & thermohydraulic behavior, are presented and analyzed, showing the capabilities to develop and manage advanced modelling that allows to predict multi-physics variables observed when an in-depth performance analysis of a Research Reactor like OPAL is carried out.
The Virtual Environment for Reactor Applications (VERA): Design and architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A.; Clarno, Kevin; Sieger, Matt
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less
The Virtual Environment for Reactor Applications (VERA): Design and architecture
Turner, John A.; Clarno, Kevin; Sieger, Matt; ...
2016-09-08
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less
NASA Astrophysics Data System (ADS)
Ha, Taesung
A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.
Experimental Anomalies in Neutrino Physics
NASA Astrophysics Data System (ADS)
Palamara, Ornella
2014-03-01
In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.
Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization
NASA Astrophysics Data System (ADS)
Blanchet, David; Fontaine, Bruno
2017-09-01
The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.
Implicit time-integration method for simultaneous solution of a coupled non-linear system
NASA Astrophysics Data System (ADS)
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).
Coupling Schemes for Multiphysics Reactor Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijay Mahadeven; Jean Ragusa
2007-11-01
This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, Gerhard; Bostelmann, F.
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...
Test case for VVER-1000 complex modeling using MCU and ATHLET
NASA Astrophysics Data System (ADS)
Bahdanovich, R. B.; Bogdanova, E. V.; Gamtsemlidze, I. D.; Nikonov, S. P.; Tikhomirov, G. V.
2017-01-01
The correct modeling of processes occurring in the fuel core of the reactor is very important. In the design and operation of nuclear reactors it is necessary to cover the entire range of reactor physics. Very often the calculations are carried out within the framework of only one domain, for example, in the framework of structural analysis, neutronics (NT) or thermal hydraulics (TH). However, this is not always correct, as the impact of related physical processes occurring simultaneously, could be significant. Therefore it is recommended to spend the coupled calculations. The paper provides test case for the coupled neutronics-thermal hydraulics calculation of VVER-1000 using the precise neutron code MCU and system engineering code ATHLET. The model is based on the fuel assembly (type 2M). Test case for calculation of power distribution, fuel and coolant temperature, coolant density, etc. has been developed. It is assumed that the test case will be used for simulation of VVER-1000 reactor and in the calculation using other programs, for example, for codes cross-verification. The detailed description of the codes (MCU, ATHLET), geometry and material composition of the model and an iterative calculation scheme is given in the paper. Script in PERL language was written to couple the codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, Javier; Baker, Benjamin Allen; Schunert, Sebastian
The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition,more » this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.« less
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2001-02-01
An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.
Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B
2014-01-01
The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highlymore » detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
KETTELL, S.; ET AL.
2006-10-16
This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90%more » confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.« less
Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.
Henry, R; Tiselj, I; Snoj, L
2015-03-01
New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guler Yigitoglu, Askin
In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.
Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor
NASA Astrophysics Data System (ADS)
Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz
2017-12-01
The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.
2017-01-01
The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.
Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
Modeling residence-time distribution in horizontal screw hydrolysis reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Stickel, Jonathan J.
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Modeling residence-time distribution in horizontal screw hydrolysis reactors
Sievers, David A.; Stickel, Jonathan J.
2017-10-12
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Investigation of materials for fusion power reactors
NASA Astrophysics Data System (ADS)
Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.
2014-06-01
The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRISC is a developmental prototype for a nextgeneration systems-level integrated performance and safety code (IPSC) for nuclear reactors. Its development served to demonstrate how a lightweight multi-physics coupling approach can be used to tightly couple the physics models in several different physics codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled burner nuclear reactor. For example, the RIO Fluid Flow and Heat transfer code developed at Sandia (SNL: Chris Moen, Dept. 08005) is used in BRISC to model fluid flow and heat transfer, as well as conduction heat transfermore » in solids. Because BRISC is a prototype, its most practical application is as a foundation or starting point for developing a true production code. The sub-codes and the associated models and correlations currently employed within BRISC were chosen to cover the required application space and demonstrate feasibility, but were not optimized or validated against experimental data within the context of their use in BRISC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Berry, R. A.; Martineau, R. C.
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and extends their analysis capabilities for all reactor system simulation scenarios. The RELAP-7 codemore » utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code has been reviewed and selected to reflect the progress made during the past decades and provide a basis for the colure correlations implemented in the RELAP-7 code. This document provides a summary on the closure correlations that are currently implemented in the RELAP-7 code. The closure correlations include sub-grid models that describe interactions between the fluids and the flow channel, and interactions between the two phases.« less
Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Mustafa Sacit; none,; Flanagan, George F.
2014-07-30
An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less
Modeling fixed and fluidized reactors for cassava starch Saccharification with immobilized enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanin, G.M.; De Moraes, F.F.
1997-12-31
Cassava starch saccharification in fixed-and fluidized-bed reactors using immobilized enzyme was modeled in a previous paper using a simple model in which all dextrins were grouped in a single substrate. In that case, although good fit of the model to experimental data was obtained, physical inconsistency appeared as negative kinetic constants. In this work, a multisubstrate model, developed earlier for saccharification with free enzyme, is adapted for immobilized enzyme. This latter model takes into account the formation of intermediate substrates, which are dextrins competing for the catalytic site of the enzyme, reversibility of some reactions, inhibition by substrate and product,more » and the formation of isomaltose. Kinetic parameters to be used with this model were obtained from initial velocity saccharification tests using the immobilized enzyme and different liquefied starch concentrations. The new model was found to be valid for modeling both fixed- and fluidized-bed reactors. It did not present inconsistencies as the earlier one had and has shown that apparent glucose inhibition is about seven times higher in the fixed-bed than in fluidized-bed reactor. 13 refs., 5 figs., 1 tab.« less
The search for sterile neutrinos at reactors and underground laboratories
NASA Astrophysics Data System (ADS)
Langford, Thomas
2017-01-01
From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.
Reactor Testing and Qualification: Prioritized High-level Criticality Testing Needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Bragg-Sitton; J. Bess; J. Werner
2011-09-01
Researchers at the Idaho National Laboratory (INL) were tasked with reviewing possible criticality testing needs to support development of the fission surface power system reactor design. Reactor physics testing can provide significant information to aid in development of technologies associated with small, fast spectrum reactors that could be applied for non-terrestrial power systems, leading to eventual system qualification. Several studies have been conducted in recent years to assess the data and analyses required to design and build a space fission power system with high confidence that the system will perform as designed [Marcille, 2004a, 2004b; Weaver, 2007; Parry et al.,more » 2008]. This report will provide a summary of previous critical tests and physics measurements that are potentially applicable to the current reactor design (both those that have been benchmarked and those not yet benchmarked), summarize recent studies of potential nuclear testing needs for space reactor development and their applicability to the current baseline fission surface power (FSP) system design, and provide an overview of a suite of tests (separate effects, sub-critical or critical) that could fill in the information database to improve the accuracy of physics modeling efforts as the FSP design is refined. Some recommendations for tasks that could be completed in the near term are also included. Specific recommendations on critical test configurations will be reserved until after the sensitivity analyses being conducted by Los Alamos National Laboratory (LANL) are completed (due August 2011).« less
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.
1999-09-01
A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.
The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less
A CFD model for biomass fast pyrolysis in fluidized-bed reactors
NASA Astrophysics Data System (ADS)
Xue, Qingluan; Heindel, T. J.; Fox, R. O.
2010-11-01
A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P
2017-09-01
We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.
EBR-II Reactor Physics Benchmark Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Chad L.; Lum, Edward S; Stewart, Ryan
This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.
Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
NASA Astrophysics Data System (ADS)
Arda, Samet Egemen
A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.
Integral Full Core Multi-Physics PWR Benchmark with Measured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forget, Benoit; Smith, Kord; Kumar, Shikhar
In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevantmore » multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Mahadevan, Vijay S.
SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three physics modules currently including neutronics, thermal hydraulics, and structural mechanics. SHARP empowers designers to produce accurate results for modeling physical phenomena that have been identified as important for nuclear reactor analysis. SHARP can use existing physics codes and take advantage of existing infrastructure capabilities in the MOAB framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the widely used, scalable PETSc library. This report aims at identifying the coupled-physicsmore » simulation capability of SHARP by introducing the demonstration example called sahex in advance of the SHARP release expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer duct wall that encloses all the other components. This example is carefully chosen to demonstrate the proof of concept for solving more complex demonstration examples such as EBR II assembly and ABTR full core. The workflow of preparing the input files, running the case and analyzing the results is demonstrated in this report. Moreover, an extension of the sahex model called sahex_core, which adds six homogenized neighboring assemblies to the full heterogeneous sahex model, is presented to test homogenization capabilities in both Nek5000 and PROTEUS. Some primary information on the configuration and build aspects for the SHARP toolkit, which includes capability to auto-download dependencies and configure/install with optimal flags in an architecture-aware fashion, is also covered by this report. A step-by-step instruction is provided to help users to create their cases. Details on these processes will be provided in the SHARP user manual that will accompany the first release.« less
New Reactor Physics Benchmark Data in the March 2012 Edition of the IRPhEP Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2012-11-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications. Numerous experiments that have been performed worldwide, represent a large investment of infrastructure, expertise, and cost, and are valuable resources of data for present and future research. These valuable assets provide the basis for recording, development, and validation of methods. If the experimental data are lost, the high cost to repeat many of these measurements may be prohibitive. The purpose of the IRPhEP is to provide an extensively peer-reviewed set ofmore » reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. Contributors from around the world collaborate in the evaluation and review of selected benchmark experiments for inclusion in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [1]. Several new evaluations have been prepared for inclusion in the March 2012 edition of the IRPhEP Handbook.« less
NASA Astrophysics Data System (ADS)
Karriem, Veronica V.
Nuclear reactor design incorporates the study and application of nuclear physics, nuclear thermal hydraulic and nuclear safety. Theoretical models and numerical methods implemented in computer programs are utilized to analyze and design nuclear reactors. The focus of this PhD study's is the development of an advanced high-fidelity multi-physics code system to perform reactor core analysis for design and safety evaluations of research TRIGA-type reactors. The fuel management and design code system TRIGSIMS was further developed to fulfill the function of a reactor design and analysis code system for the Pennsylvania State Breazeale Reactor (PSBR). TRIGSIMS, which is currently in use at the PSBR, is a fuel management tool, which incorporates the depletion code ORIGEN-S (part of SCALE system) and the Monte Carlo neutronics solver MCNP. The diffusion theory code ADMARC-H is used within TRIGSIMS to accelerate the MCNP calculations. It manages the data and fuel isotopic content and stores it for future burnup calculations. The contribution of this work is the development of an improved version of TRIGSIMS, named TRIGSIMS-TH. TRIGSIMS-TH incorporates a thermal hydraulic module based on the advanced sub-channel code COBRA-TF (CTF). CTF provides the temperature feedback needed in the multi-physics calculations as well as the thermal hydraulics modeling capability of the reactor core. The temperature feedback model is using the CTF-provided local moderator and fuel temperatures for the cross-section modeling for ADMARC-H and MCNP calculations. To perform efficient critical control rod calculations, a methodology for applying a control rod position was implemented in TRIGSIMS-TH, making this code system a modeling and design tool for future core loadings. The new TRIGSIMS-TH is a computer program that interlinks various other functional reactor analysis tools. It consists of the MCNP5, ADMARC-H, ORIGEN-S, and CTF. CTF was coupled with both MCNP and ADMARC-H to provide the heterogeneous temperature distribution throughout the core. Each of these codes is written in its own computer language performing its function and outputs a set of data. TRIGSIMS-TH provides an effective use and data manipulation and transfer between different codes. With the implementation of feedback and control- rod-position modeling methodologies, the TRIGSIMS-TH calculations are more accurate and in a better agreement with measured data. The PSBR is unique in many ways and there are no "off-the-shelf" codes, which can model this design in its entirety. In particular, PSBR has an open core design, which is cooled by natural convection. Combining several codes into a unique system brings many challenges. It also requires substantial knowledge of both operation and core design of the PSBR. This reactor is in operation decades and there is a fair amount of studies and developments in both PSBR thermal hydraulics and neutronics. Measured data is also available for various core loadings and can be used for validation activities. The previous studies and developments in PSBR modeling also aids as a guide to assess the findings of the work herein. In order to incorporate new methods and codes into exiting TRIGSIMS, a re-evaluation of various components of the code was performed to assure the accuracy and efficiency of the existing CTF/MCNP5/ADMARC-H multi-physics coupling. A new set of ADMARC-H diffusion coefficients and cross sections was generated using the SERPENT code. This was needed as the previous data was not generated with thermal hydraulic feedback and the ARO position was used as the critical rod position. The B4C was re-evaluated for this update. The data exchange between ADMARC-H and MCNP5 was modified. The basic core model is given a flexibility to allow for various changes within the core model, and this feature was implemented in TRIGSIMS-TH. The PSBR core in the new code model can be expanded and changed. This allows the new code to be used as a modeling tool for design and analyses of future code loadings.
Parallelization and automatic data distribution for nuclear reactor simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebrock, L.M.
1997-07-01
Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directlymore » affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongbin; Zhao, Haihua; Gleicher, Frederick Nathan
RELAP-7 is a nuclear systems safety analysis code being developed at the Idaho National Laboratory, and is the next generation tool in the RELAP reactor safety/systems analysis application series. RELAP-7 development began in 2011 to support the Risk Informed Safety Margins Characterization (RISMC) Pathway of the Light Water Reactor Sustainability (LWRS) program. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical methods, and physical models in order to provide capabilities needed for the RISMC methodology and to support nuclear power safety analysis. The code is beingmore » developed based on Idaho National Laboratory’s modern scientific software development framework – MOOSE (the Multi-Physics Object-Oriented Simulation Environment). The initial development goal of the RELAP-7 approach focused primarily on the development of an implicit algorithm capable of strong (nonlinear) coupling of the dependent hydrodynamic variables contained in the 1-D/2-D flow models with the various 0-D system reactor components that compose various boiling water reactor (BWR) and pressurized water reactor nuclear power plants (NPPs). During Fiscal Year (FY) 2015, the RELAP-7 code has been further improved with expanded capability to support boiling water reactor (BWR) and pressurized water reactor NPPs analysis. The accumulator model has been developed. The code has also been coupled with other MOOSE-based applications such as neutronics code RattleSnake and fuel performance code BISON to perform multiphysics analysis. A major design requirement for the implicit algorithm in RELAP-7 is that it is capable of second-order discretization accuracy in both space and time, which eliminates the traditional first-order approximation errors. The second-order temporal is achieved by a second-order backward temporal difference, and the one-dimensional second-order accurate spatial discretization is achieved with the Galerkin approximation of Lagrange finite elements. During FY-2015, we have done numerical verification work to verify that the RELAP-7 code indeed achieves 2nd-order accuracy in both time and space for single phase models at the system level.« less
a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor
NASA Astrophysics Data System (ADS)
Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.
2009-08-01
This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.
MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Gohar, Yousry
2015-11-01
In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less
Nuclear Data Needs for Generation IV Nuclear Energy Systems
NASA Astrophysics Data System (ADS)
Rullhusen, Peter
2006-04-01
Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].
DEVELOPMENT OF A RATIONALLY BASED DESIGN PROTOCOL FOR THE ULTRAVIOLET LIGHT DISINFECTION PROCESS
A protocol is demonstrated for the design and evaluation of ultraviolet (UV) disinfection systems based on a mathematical model. The disinfection model incorporates the system's physical dimensions, the residence time distribution of the reactor and dispersion characteristics, th...
REACTOR PHYSICS QUARTERLY REPORT JANUARY, FEBRUARY, MARCH 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, L. C.; Clayton, E. D.; Heineman, R. E.
1970-05-01
The objective of the Reactor Physics Quarterly Report is to inform the scientific community in a timely manner of the technical progress made on the many phases of reactor physics work within the laboratory. The report contains brief technical discussions of accomplishments in all areas where significant progress has been made during the quarter.
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-07-01
This second edition is based on data available on March 15, 1961. Sections on constants necessary for the interpretation of experimental data and on digital computer programs for reactor design and reactor physics have been added. 1344 references. (D.C.W.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messner, M. C.; Truster, T. J.; Cochran, K. B.
Advanced reactors designed to operate at higher temperatures than current light water reactors require structural materials with high creep strength and creep-fatigue resistance to achieve long design lives. Grade 91 is a ferritic/martensitic steel designed for long creep life at elevated temperatures. It has been selected as a candidate material for sodium fast reactor intermediate heat exchangers and other advanced reactor structural components. This report focuses on the creep deformation and rupture life of Grade 91 steel. The time required to complete an experiment limits the availability of long-life creep data for Grade 91 and other structural materials. Design methodsmore » often extrapolate the available shorter-term experimental data to longer design lives. However, extrapolation methods tacitly assume the underlying material mechanisms causing creep for long-life/low-stress conditions are the same as the mechanisms controlling creep in the short-life/high-stress experiments. A change in mechanism for long-term creep could cause design methods based on extrapolation to be non-conservative. The goal for physically-based microstructural models is to accurately predict material response in experimentally-inaccessible regions of design space. An accurate physically-based model for creep represents all the material mechanisms that contribute to creep deformation and damage and predicts the relative influence of each mechanism, which changes with loading conditions. Ideally, the individual mechanism models adhere to the material physics and not an empirical calibration to experimental data and so the model remains predictive for a wider range of loading conditions. This report describes such a physically-based microstructural model for Grade 91 at 600° C. The model explicitly represents competing dislocation and diffusional mechanisms in both the grain bulk and grain boundaries. The model accurately recovers the available experimental creep curves at higher stresses and the limited experimental data at lower stresses, predominately primary creep rates. The current model considers only one temperature. However, because the model parameters are, for the most part, directly related to the physics of fundamental material processes, the temperature dependence of the properties are known. Therefore, temperature dependence can be included in the model with limited additional effort. The model predicts a mechanism shift for 600° C at approximately 100 MPa from a dislocation- dominated regime at higher stress to a diffusion-dominated regime at lower stress. This mechanism shift impacts the creep life, notch-sensitivity, and, likely, creep ductility of Grade 91. In particular, the model predicts existing extrapolation methods for creep life may be non-conservative when attempting to extrapolate data for higher stress creep tests to low stress, long-life conditions. Furthermore, the model predicts a transition from notchstrengthening behavior at high stress to notch-weakening behavior at lower stresses. Both behaviors may affect the conservatism of existing design methods.« less
Recent improvements of reactor physics codes in MHI
NASA Astrophysics Data System (ADS)
Kosaka, Shinya; Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki
2015-12-01
This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO's Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.
Recent improvements of reactor physics codes in MHI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Shinya, E-mail: shinya-kosaka@mhi.co.jp; Yamaji, Kazuya; Kirimura, Kazuki
2015-12-31
This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO’s Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipatedmore » transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.« less
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
Bess, John D.; Fujimoto, Nozomu
2014-10-09
Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in themore » experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, Javier; Baker, Benjamin; Wang, Yaqi
This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/kmore » $. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$$_2$$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the control rod models in MAMMOTH and adding the BISON thermo-elastic models and thermal-fluids heat transfer.« less
Modeling for the optimal biodegradation of toxic wastewater in a discontinuous reactor.
Betancur, Manuel J; Moreno-Andrade, Iván; Moreno, Jaime A; Buitrón, Germán; Dochain, Denis
2008-06-01
The degradation of toxic compounds in Sequencing Batch Reactors (SBRs) poses inhibition problems. Time Optimal Control (TOC) methods may be used to avoid such inhibition thus exploiting the maximum capabilities of this class of reactors. Biomass and substrate online measurements, however, are usually unavailable for wastewater applications, so TOC must use only related variables as dissolved oxygen and volume. Although the standard mathematical model to describe the reaction phase of SBRs is good enough for explaining its general behavior in uncontrolled batch mode, better details are needed to model its dynamics when the reactor operates near the maximum degradation rate zone, as when TOC is used. In this paper two improvements to the model are suggested: to include the sensor delay effects and to modify the classical Haldane curve in a piecewise manner. These modifications offer a good solution for a reasonable complexification tradeoff. Additionally, a new way to look at the Haldane K-parameters (micro(o),K(I),K(S)) is described, the S-parameters (micro*,S*,S(m)). These parameters do have a clear physical meaning and, unlike the K-parameters, allow for the statistical treatment to find a single model to fit data from multiple experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, W.N.; Kellogg, L.S.; Matsumoto, W.Y.
1988-05-01
This report is in response to a request from Westinghouse Hanford Company (WHC) that the PNL National Dosimetry Center (NDC) perform physics-dosimetry analyses (E > MeV) for N Reactor Pressure Tubes 2954 and 3053. As a result of these analyses, and recommendations for additional studies, two physics-dosimetry re-evaluations for Pressure Tube 1165 were also accomplished. The primary objective of Pacific Northwest Laboratories' (PNL) National Dosimetry Center (NDC) physics-dosimetry work for N Reactor was to provide FERRET-SAND II physics-dosimetry results to assist in the assessment of neutron radiation-induced changes in the physical and mechanical properties of N Reactor pressure tubes. 15more » refs., 6 figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ronald W.; Collins, Benjamin S.; Godfrey, Andrew T.
2016-12-09
In order to support engineering analysis of Virtual Environment for Reactor Analysis (VERA) model results, the Consortium for Advanced Simulation of Light Water Reactors (CASL) needs a tool that provides visualizations of HDF5 files that adhere to the VERAOUT specification. VERAView provides an interactive graphical interface for the visualization and engineering analyses of output data from VERA. The Python-based software provides instantaneous 2D and 3D images, 1D plots, and alphanumeric data from VERA multi-physics simulations.
Vectorized Monte Carlo methods for reactor lattice analysis
NASA Technical Reports Server (NTRS)
Brown, F. B.
1984-01-01
Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.
Pointer, William David; Baglietto, Emilio
2016-05-01
Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertyurek, Ugur; Gauld, Ian C.
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
Mertyurek, Ugur; Gauld, Ian C.
2015-12-24
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, P. J.; Qu, J.; Lu, R.
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
Blau, P. J.; Qu, J.; Lu, R.
2016-09-21
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
A physical description of fission product behavior fuels for advanced power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaganas, G.; Rest, J.; Nuclear Engineering Division
2007-10-18
The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuelsmore » under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.
Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; ...
2017-09-11
Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…
Handbook explaining the fundamentals of nuclear and atomic physics
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1969-01-01
Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
The Ongoing Impact of the U.S. Fast Reactor Integral Experiments Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Michael A. Pope; Harold F. McFarlane
2012-11-01
The creation of a large database of integral fast reactor physics experiments advanced nuclear science and technology in ways that were unachievable by less capital intensive and operationally challenging approaches. They enabled the compilation of integral physics benchmark data, validated (or not) analytical methods, and provided assurance of future rector designs The integral experiments performed at Argonne National Laboratory (ANL) represent decades of research performed to support fast reactor design and our understanding of neutronics behavior and reactor physics measurements. Experiments began in 1955 with the Zero Power Reactor No. 3 (ZPR-3) and terminated with the Zero Power Physics Reactormore » (ZPPR, originally the Zero Power Plutonium Reactor) in 1990 at the former ANL-West site in Idaho, which is now part of the Idaho National Laboratory (INL). Two additional critical assemblies, ZPR-6 and ZPR-9, operated at the ANL-East site in Illinois. A total of 128 fast reactor assemblies were constructed with these facilities [1]. The infrastructure and measurement capabilities are too expensive to be replicated in the modern era, making the integral database invaluable as the world pushes ahead with development of liquid metal cooled reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, David W.; Nielsen, Joseph W.; Norman, Daren R.
The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be wellmore » outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.« less
Multi-phase model development to assess RCIC system capabilities under severe accident conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkland, Karen Vierow; Ross, Kyle; Beeny, Bradley
The Reactor Core Isolation Cooling (RCIC) System is a safety-related system that provides makeup water for core cooling of some Boiling Water Reactors (BWRs) with a Mark I containment. The RCIC System consists of a steam-driven Terry turbine that powers a centrifugal, multi-stage pump for providing water to the reactor pressure vessel. The Fukushima Dai-ichi accidents demonstrated that the RCIC System can play an important role under accident conditions in removing core decay heat. The unexpectedly sustained, good performance of the RCIC System in the Fukushima reactor demonstrates, firstly, that its capabilities are not well understood, and secondly, that themore » system has high potential for extended core cooling in accident scenarios. Better understanding and analysis tools would allow for more options to cope with a severe accident situation and to reduce the consequences. The objectives of this project were to develop physics-based models of the RCIC System, incorporate them into a multi-phase code and validate the models. This Final Technical Report details the progress throughout the project duration and the accomplishments.« less
NASA Astrophysics Data System (ADS)
Lebouvier, A.; Iwarere, S. A.; Ramjugernath, D.; Fulcheri, L.
2013-04-01
This paper deals with a three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) model under peculiar conditions of very high pressures (from 2 MPa up to 10 MPa) and low currents (<1 A). Studies on plasma arc working under these unusual conditions remain almost unexplored because of the technical and technological challenges to develop a reactor able to sustain a plasma at very high pressures. The combined effect of plasma reactivity and high pressure would probably open the way towards new promising applications in various fields: chemistry, lightning, materials or nanomaterial synthesis. A MHD model helps one to understand the complex and coupled phenomena surrounding the plasma which cannot be understood by simply experimentation. The model also provides data which are difficult to directly determine experimentally. The model simulates an experimental-based batch reactor working with helium. The particular reactor in question was used to investigate the Fischer-Tropsch application, fluorocarbon production and CO2 retro-conversion. However, as a first approach in terms of MHD, the model considers the case for helium as a non-reactive working gas. After a detailed presentation of the model, a reference case has been fully analysed (P = 8 MPa, I = 0.35 A) in terms of physical properties. The results show a bending of the arc and displacement of the anodic arc root towards the top of the reactor, due to the combined effects of convection, gravity and electromagnetic forces. A parametric study on the pressure (2-10 MPa) and current (0.25-0.4 A) was then investigated. The operating pressure does not show an influence on the contraction of the arc but higher pressures involve a higher natural convection in the reactor, driven by the density gradients between the cold and hot gas.
Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor
NASA Astrophysics Data System (ADS)
Natta, Saswathi; Aristova, Maria; Gentile, Charles
2008-11-01
A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.; Klann, R. T.; Nuclear Engineering Division
2007-08-03
An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferng, Y.M.; Liao, L.Y.
1996-01-01
During the operating history of the Maanshan nuclear power plant (MNPP), five reactor trips have occurred as a result of the moisture separator reheater (MSR) high-level signal. These MSR high-level reactor trips have been a very serious concern, especially during the startup period of MNPP. Consequently, studying the physical phenomena of this particular event is worthwhile, and analytical work is performed using the RELAP5/MOD3 code to investigate the thermal-hydraulic phenomena of two-phase behaviors occurring within the MSR high-level reactor trips. The analytical model is first assessed against the experimental data obtained from several test loops. The same model can thenmore » be applied with confidence to the study of this topic. According to the present calculated results, the phenomena of liquid droplet accumulation ad residual liquid blowing in the horizontal section of cross-under-lines can be modeled. In addition, the present model can also predict the different increasing rates of inlet steam flow rate affecting the liquid accumulation within the cross-under-lines. The calculated conclusion is confirmed by the revised startup procedure of MNPP.« less
Modelling the activity of 129I in the primary coolant of a CANDU reactor
NASA Astrophysics Data System (ADS)
Lewis, Brent J.; Husain, Aamir
2003-01-01
A mathematical treatment has been developed to describe the activity levels of 129I as a function of time in the primary heat transport system during constant power operation and for a reactor shutdown situation. The model accounts for a release of fission-product iodine from defective fuel rods and tramp uranium contamination on in-core surfaces. The physical transport constants of the model are derived from a coolant activity analysis of the short-lived radioiodine species. An estimate of 3×10 -9 has been determined for the coolant activity ratio of 129I/ 131I in a CANDU Nuclear Generating Station (NGS), which is in reasonable agreement with that observed in the primary coolant and for plant test resin columns from pressurized and boiling water reactor plants. The model has been further applied to a CANDU NGS, by fitting it to the observed short-lived iodine and long-lived cesium data, to yield a coolant activity ratio of ˜2×10 -8 for 129I/ 137Cs. This ratio can be used to estimate the levels of 129I in reactor waste based on a measurement of the activity of 137Cs.
Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...
2015-05-21
This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less
Deterministic Modeling of the High Temperature Test Reactor with DRAGON-HEXPEDITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; M.A. Pope; R.M. Ferrer
2010-10-01
The Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine the INL’s current prismatic reactor analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 fuel column thin annular core, and the fully loaded core critical condition with 30 fuel columns. Special emphasis is devoted to physical phenomena and artifacts in HTTR that are similar to phenomena and artifacts in themore » NGNP base design. The DRAGON code is used in this study since it offers significant ease and versatility in modeling prismatic designs. DRAGON can generate transport solutions via Collision Probability (CP), Method of Characteristics (MOC) and Discrete Ordinates (Sn). A fine group cross-section library based on the SHEM 281 energy structure is used in the DRAGON calculations. The results from this study show reasonable agreement in the calculation of the core multiplication factor with the MC methods, but a consistent bias of 2–3% with the experimental values is obtained. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement partially stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
Advances in the physics basis for the European DEMO design
NASA Astrophysics Data System (ADS)
Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.
2015-06-01
In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.
To simulate the staged availability of transient high surface area CaO observed in high-temperature flow-reactor data, the rate of calcination of CaCO3 or Ca(OH)2 is described by an empirical modification of the shrinking-core model. The physical model depicts particle decomposi...
High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Wirth, Brian; Motta, Athur
The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraloua, B.; Hennad, A.
The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.
Preparation macroconstants to simulate the core of VVER-1000 reactor
NASA Astrophysics Data System (ADS)
Seleznev, V. Y.
2017-01-01
Dynamic model is used in simulators of VVER-1000 reactor for training of operating staff and students. As a code for the simulation of neutron-physical characteristics is used DYNCO code that allows you to perform calculations of stationary, transient and emergency processes in real time to a different geometry of the reactor lattices [1]. To perform calculations using this code, you need to prepare macroconstants for each FA. One way of getting macroconstants is to use the WIMS code, which is based on the use of its own 69-group macroconstants library. This paper presents the results of calculations of FA obtained by the WIMS code for VVER-1000 reactor with different parameters of fuel and coolant, as well as the method of selection of energy groups for further calculation macroconstants.
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lap Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less
Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's
NASA Astrophysics Data System (ADS)
Hernandez-Solis, Augusto; Sjöstrand, Henrik; Helgesson, Petter
2017-09-01
The novel design of the renewable boiling water reactor (RBWR) allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC) method is used to propagate the different neutron-reactions (as well as angular distributions) covariances that are part of the TENDL-2014 nuclear data (ND) library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.
Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.
Yang, Yiming; Li, Jian; He, Hong
2017-08-24
The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.
Thermal Stratification Analysis for Sodium Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, James; Anderson, Mark; Baglietto, Emilio
The sodium fast reactor (SFR) is the most mature reactor concept of all the generation-IV nuclear systems and is a promising reactor design that is currently under development by several organizations. The majority of sodium fast reactor designs utilize a pool type arrangement which incorporates the primary coolant pumps and intermediate heat exchangers within the sodium pool. These components typically protrude into the pool thus reducing the risk and severity of a loss of coolant accidents. To further ensure safe operation under even the most severe transients a more comprehensive understanding of key thermal hydraulic phenomena in this pool ismore » desired. One of the key technology gaps identified for SFR safety is determining the extent and the effects of thermal stratification developing in the pool during postulated accident scenarios such as a protected or unprotected loss of flow incident. In an effort to address these issues, detailed flow models of transient stratification in the pool during an accident can be developed. However, to develop the calculation models, and ensure they can reproduce the underlying physics, highly spatially resolved data is needed. This data can be used in conjunction with advanced computational fluid dynamic calculations to aid in the development of simple reduced dimensional models for systems codes such as SAM and SAS4A/SASSYS-1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Yuan, Haomin; Kraus, A.
The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less
75 FR 67636 - Physical Protection of Shipments of Irradiated Reactor Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
...-2010-0340; Draft NUREG-0561, Revision 2] RIN 3150-AI64 Physical Protection of Shipments of Irradiated...- 0561, ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This document provides guidance to a licensee or applicant for implementation of proposed 10 CFR 73.37, ``Requirements for Physical...
78 FR 31821 - Physical Protection of Shipments of Irradiated Reactor Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 [NRC-2010-0340; NRC-2009-0163] RIN 3150-AI64 Physical..., ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This revised document sets forth means... physical protection of spent nuclear fuel (SNF) during transportation by road, rail, and water; and for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.; Yu, G.; Wang, K.
The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecturemore » achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)« less
Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors
NASA Astrophysics Data System (ADS)
Carré, Frank
2014-09-01
Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Sterbentz, James W.; Snoj, Luka
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Neutrino Physics with Nuclear Reactors: An Overview
NASA Astrophysics Data System (ADS)
Ochoa-Ricoux, J. P.
Nuclear reactors provide an excellent environment for studying neutrinos and continue to play a critical role in unveiling the secrets of these elusive particles. A rich experimental program with reactor antineutrinos is currently ongoing, and leads the way in precision measurements of several oscillation parameters and in searching for new physics, such as the existence of light sterile neutrinos. Ongoing experiments have also been able to measure the flux and spectral shape of reactor antineutrinos with unprecedented statistics and as a function of core fuel evolution, uncovering anomalies that will lead to new physics and/or to an improved understanding of antineutrino emission from nuclear reactors. The future looks bright, with an aggressive program of next generation reactor neutrino experiments that will go after some of the biggest open questions in the field. This includes the JUNO experiment, the largest liquid scintillator detector ever constructed which will push the limits of this detection technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0228] Office of New Reactors; Proposed Revision to Standard Review Plan Section 13.6.1, Revision 1 on Physical Security--Combined License and Operating...), Section 13.6.1 on ``Physical Security--Combined License and Operating Reactors,'' (Agencywide Documents...
Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, K. K.; Scarlat, R. O.; Hu, R.
Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties ofmore » Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.« less
Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, Emily R.
2016-10-10
Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... 3150-AI64 [NRC-2010-0340] Draft NUREG-0561, Revision 2; Physical Protection of Shipments of Irradiated...-0561, ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This document provides guidance on implementing the provisions of proposed 10 CFR Part 73.37, ``Requirements for Physical Protection...
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2014-10-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.
Determine Operating Reactor to Use for the 2016 PCI Level 1 Milestone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarno, Kevin T.
2016-01-30
The Consortium for Advanced Simulation of Light Water Reactors (LWRs) (CASL) Level 1 milestone to “Assess the analysis capability for core-wide [pressurized water reactor] PWR Pellet- Clad Interaction (PCI) screening and demonstrate detailed 3-D analysis on selected sub-region” (L1:CASL.P13.03) requires a particular type of nuclear power plant for the assessment. This report documents the operating reactor and cycles chosen for this assessment in completion of the physics integration (PHI) milestone to “Determine Operating Reactor to use for PCI L1 Milestone” (L3:PHI.CMD.P12.02). Watts Bar Unit 1 experienced (at least) one fuel rod failure in each of cycles 6 and 7, andmore » at least one was deemed to be duty related rather than being primarily related to a manufacturing defect or grid effects. This brief report documents that the data required to model cycles 1–12 of Watts Bar Unit 1 using VERA-CS contains sufficient data to model the PHI portion of the PCI challenge problem. A list of additional data needs is also provided that will be important for verification and validation of the BISON results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R. S.
The following are specific topics of this paper: 1.There is much creativity in the manner in which Dimensional Generator can be applied to a specific programming task [2]. This paper tells how Dimensional Generator was applied to a reactor-physics task. 2. In this first practical use, Dimensional Generator itself proved not to need change, but a better user interface was found necessary, essentially because the relevance of Dimensional Generator to reactor physics was initially underestimated. It is briefly described. 3. The use of Dimensional Generator helps make reactor-physics source code somewhat simpler. That is explained here with brief examples frommore » BURFEL-PC and WIMSBURF. 4. Most importantly, with the help of Dimensional Generator, all erroneous physical expressions were automatically detected. The errors are detailed here (in spite of the author's embarrassment) because they show clearly, both in theory and in practice, how Dimensional Generator offers quality enhancement of reactor-physics programming. (authors)« less
Computational Modeling as a Design Tool in Microelectronics Manufacturing
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Plans to introduce pilot lines or fabs for 300 mm processing are in progress. The IC technology is simultaneously moving towards 0.25/0.18 micron. The convergence of these two trends places unprecedented stringent demands on processes and equipments. More than ever, computational modeling is called upon to play a complementary role in equipment and process design. The pace in hardware/process development needs a matching pace in software development: an aggressive move towards developing "virtual reactors" is desirable and essential to reduce design cycle and costs. This goal has three elements: reactor scale model, feature level model, and database of physical/chemical properties. With these elements coupled, the complete model should function as a design aid in a CAD environment. This talk would aim at the description of various elements. At the reactor level, continuum, DSMC(or particle) and hybrid models will be discussed and compared using examples of plasma and thermal process simulations. In microtopography evolution, approaches such as level set methods compete with conventional geometric models. Regardless of the approach, the reliance on empricism is to be eliminated through coupling to reactor model and computational surface science. This coupling poses challenging issues of orders of magnitude variation in length and time scales. Finally, database development has fallen behind; current situation is rapidly aggravated by the ever newer chemistries emerging to meet process metrics. The virtual reactor would be a useless concept without an accompanying reliable database that consists of: thermal reaction pathways and rate constants, electron-molecule cross sections, thermochemical properties, transport properties, and finally, surface data on the interaction of radicals, atoms and ions with various surfaces. Large scale computational chemistry efforts are critical as experiments alone cannot meet database needs due to the difficulties associated with such controlled experiments and costs.
A Numerical Model for Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
Deterministic Modeling of the High Temperature Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, J.; Cogliati, J. J.; Pope, M. A.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is usedmore » in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rim, Jung H.; Kuhn, Kevin J.; Tandon, Lav
Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials’ properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modelling feedback andmore » trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. In conclusion, based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.« less
NASA Astrophysics Data System (ADS)
Sergeev, D. A.; Kandaurov, A. A.; Troitskaya, Yu I.
2017-11-01
In this paper we describe PIV-system specially designed for the study of the hydrophysical processes in large-scale benchmark setup of promising fast reactor. The system allows the PIV-measurements for the conditions of complicated configuration of the reactor benchmark, reflections and distortions section of the laser sheet, blackout, in the closed volume. The use of filtering techniques and method of masks images enabled us to reduce the number of incorrect measurement of flow velocity vectors by an order. The method of conversion of image coordinates and velocity field in the reference model of the reactor using a virtual 3D simulation targets, without loss of accuracy in comparison with a method of using physical objects in filming area was released. The results of measurements of velocity fields in various modes, both stationary (workers), as well as in non-stationary (emergency).
Modelling of the anti-neutrino production and spectra from a Magnox reactor
NASA Astrophysics Data System (ADS)
Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie
2018-01-01
The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor operation was calculated. The results of the preliminary calculations are shown and limitations in the methods and data discussed.
Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor
NASA Astrophysics Data System (ADS)
Mkhabela, Peter Tshepo
The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis methodology for the PBMR to provide reference solutions. Investigation of different aspects of the coupled methodology and development of efficient kinetics treatment for the PBMR were carried out, which accounts for all feedback phenomena in an efficient manner. The OECD/NEA PBMR-400 coupled code benchmark was used as a test matrix for the proposed investigations. The integrated thermal-hydraulics and neutronics (multi-physics) methods were extended to enable modeling of a wider range of transients pertinent to the PBMR. First, the effect of the spatial mapping schemes (spatial coupling) was studied and quantified for different types of transients, which resulted in implementation of improved mapping methodology based on user defined criteria. The second aspect that was studied and optimized is the temporal coupling and meshing schemes between the neutronics and thermal-hydraulics time step selection algorithms. The coupled code convergence was achieved supplemented by application of methods to accelerate it. Finally, the modeling of all feedback phenomena in PBMRs was investigated and a novel treatment of cross-section dependencies was introduced for improving the representation of cross-section variations. The added benefit was that in the process of studying and improving the coupled multi-physics methodology more insight was gained into the physics and dynamics of PBMR, which will help also to optimize the PBMR design and improve its safety. One unique contribution of the PhD research is the investigation of the importance of the correct representation of the three-dimensional (3-D) effects in the PBMR analysis. The performed studies demonstrated that explicit 3-D modeling of control rod movement is superior and removes the errors associated with the grey curtain (2-D homogenized) approximation.
Hamm, V; Collon-Drouaillet, P; Fabriol, R
2008-02-19
The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more detailed information on flow and chemical behaviour (dissolved sulphate concentrations, remaining mass of solid sulphate) in the network. Nevertheless, both modelling methods require hydrological and chemical parameters (recharge flow rate, outflows, volume of mine voids, mass of solids, kinetic constants of the dissolution-precipitation reactions), which are commonly not available for a mine and therefore call for calibration data.
Monte Carlo modelling of TRIGA research reactor
NASA Astrophysics Data System (ADS)
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, T.W.
1965-06-04
Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, J.N.; Holderness, J.H.; James, D.W.
1992-12-01
Waste stream scaling factors based on sampling programs are vulnerable to one or more of the following factors: sample representativeness, analytic accuracy, and measurement sensitivity. As an alternative to sample analyses or as a verification of the sampling results, this project proposes the use of the RADSOURCE code, which accounts for the release of fuel-source radionuclides. Once the release rates of these nuclides from fuel are known, the code develops scaling factors for waste streams based on easily measured Cobalt-60 (Co-60) and Cesium-137 (Cs-137). The project team developed mathematical models to account for the appearance rate of 10CFR61 radionuclides inmore » reactor coolant. They based these models on the chemistry and nuclear physics of the radionuclides involved. Next, they incorporated the models into a computer code that calculates plant waste stream scaling factors based on reactor coolant gamma- isotopic data. Finally, the team performed special sampling at 17 reactors to validate the models in the RADSOURCE code.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... fuel (100 grams or less) in transit. 73.35 Section 73.35 Energy NUCLEAR REGULATORY COMMISSION... Transit § 73.35 Requirements for physical protection of irradiated reactor fuel (100 grams or less) in... quantity of irradiated reactor fuel weighing 100 grams (0.22 pounds) or less in net weight of irradiated...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.
2014-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos N; Caro, J A; Lebensohn, R A
2010-01-01
Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radulovic, Vladimir; Barbot, Loic; Fourmentel, Damien
Significant efforts have been made over the last few years in the French Alternative Energies and Atomic Energy Commission (CEA) to adopt multi-step Monte Carlo calculation schemes in the investigation and interpretation of the response of nuclear reactor instrumentation detectors (e.g. miniature ionization chambers - MICs and self-powered neutron or gamma detectors - SPNDs and SPGDs). The first step consists of the calculation of the primary data, i.e. evaluation of the neutron and gamma flux levels and spectra in the environment where the detector is located, using a computational model of the complete nuclear reactor core and its surroundings. Thesemore » data are subsequently used to define sources for the following calculation steps, in which only a model of the detector under investigation is used. This approach enables calculations with satisfactory statistical uncertainties (of the order of a few %) within regions which are very small in size (the typical volume of which is of the order of 1 mm{sup 3}). The main drawback of a calculation scheme as described above is that perturbation effects on the radiation conditions caused by the detectors themselves are not taken into account. Depending on the detector, the nuclear reactor and the irradiation position, the perturbation in the neutron flux as primary data may reach 10 to 20%. A further issue is whether the model used in the second step calculations yields physically representative results. This is generally not the case, as significant deviations may arise, depending on the source definition. In particular, as presented in the paper, the injudicious use of special options aimed at increasing the computation efficiency (e.g. reflective boundary conditions) may introduce unphysical bias in the calculated flux levels and distortions in the spectral shapes. This paper presents examples of the issues described above related to a case study on the interpretation of the signal from different types of SPNDs, which were recently irradiated in the Jozef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia, and provides recommendations on how they can be overcome. The paper concludes with a discussion on the renormalization of the results from the second step calculations, to obtain accurate physical values. (authors)« less
New results from RENO and prospects with RENO-50
NASA Astrophysics Data System (ADS)
Kim, Soo-Bong
2015-08-01
RENO (Reactor Experiment for Neutrino Oscillation) has made a definitive measurement of the smallest mixing angle θ13 in 2012, based on the disappearance of electron antineutrinos. More precise measurements have been obtained and presented on the mixing angle and the reactor neutrino spectrum, using ˜800 days of data. We have observed an excess of inverse-beta-decay (IBD) prompt spectrum near 5 MeV with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. We have also successfully measured the reactor neutrino flux with a delayed signal of neutron capture on hydrogen. A future reactor neutrino experiment of RENO-50 is proposed to determine the neutrino mass hierarchy and to make highly precise measurements of θ12, Δm212, and Δ m312. Physics goals and sensitivities of RENO-50 are presented with a strategy of obtaining an extremely good energy resolution toward the neutrino mass hierarchy.
NASA Astrophysics Data System (ADS)
Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.
2000-01-01
In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .
Steam jacket dynamics in underground coal gasification
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas
2017-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.
NASA Astrophysics Data System (ADS)
Mohamed, Hassan; Lindley, Benjamin; Parks, Geoffrey
2017-01-01
Nuclear data consists of measured or evaluated probabilities of various fundamental physical interactions involving the nuclei of atoms and their properties. Most fluoride salt-cooled high-temperature reactor (FHR) studies that were reviewed do not give detailed information on the data libraries used in their assessments. Therefore, the main objective of this data libraries comparison study is to investigate whether there are any significant discrepancies between main data libraries, namely ENDF/B-VII, JEFF-3.1 and JEF-2.2. Knowing the discrepancies, especially its magnitude, is important and relevant for readers as to whether further cautions are necessary for any future verification or validation processes when modelling an FHR. The study is performed using AMEC's reactor physics software tool, WIMS. The WIMS calculation is simply a 2-D infinite lattice of fuel assembly calculation. The comparison between the data libraries in terms of infinite multiplication factor, kinf and pin power map are presented. Results show that the discrepancy between JEFF-3.1 and ENDF/B-VII libraries is reasonably small but increases as the fuel depletes due to the data libraries uncertainties that are accumulated at each burnup step. Additionally, there are large discrepancies between JEF-2.2 and ENDF/B-VII because of the inadequacy of the JEF-2.2 library.
NASA Astrophysics Data System (ADS)
Mitrofanova, O. V.; Ivlev, O. A.; Urtenov, D. S.
2018-03-01
Hydrodynamics and heat exchange in the elements of thermal hydraulic tracts of ship nuclear reactors of the new generation were numerically simulated in this work. Parts of the coolant circuit in the collector and piping systems with geometries that may lead to generation of stable large-scale vortexes, causing a wide range of acoustic oscillations of the coolant, were selected as modeling objects. The purpose of the research is to develop principles of physical and mathematical modeling for scientific substantiation of optimal layout solutions that ensure enhanced operational life of icebreaker’s nuclear power installations of new generation with reactors of integral type.
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less
Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations
Palmiotti, Giuseppe; Salvatores, Massimo
2012-01-01
The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...
Neutron fluxes in test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles Jean-Michel
Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.
Studies in organic and physical photochemistry - an interdisciplinary approach.
Oelgemöller, Michael; Hoffmann, Norbert
2016-08-21
Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.
Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Hao; Li, Z.; Levin, D.
2011-05-20
Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Opticalmore » and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar results, the dominant species in the reactor, produced by the DSMC-HPEM coupled simulation will be shown in comparison with the original HPEM results. The effects of the DSMC calculations for ion/neutral species on HPEM plasma simulation will be further analyzed.« less
3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems
NASA Astrophysics Data System (ADS)
Rauf, Shahid
2008-10-01
Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.
Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors
NASA Technical Reports Server (NTRS)
Roth, R. J.
1976-01-01
The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.
Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danon, Yaron; Nazarewicz, Witold; Talou, Patrick
2013-02-18
This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Andrs; Ray Berry; Derek Gaston
The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7more » is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.« less
Experimental investigation of a new method for advanced fast reactor shutdown cooling
NASA Astrophysics Data System (ADS)
Pakholkov, V. V.; Kandaurov, A. A.; Potseluev, A. I.; Rogozhkin, S. A.; Sergeev, D. A.; Troitskaya, Yu. I.; Shepelev, S. F.
2017-07-01
We consider a new method for fast reactor shutdown cooling using a decay heat removal system (DHRS) with a check valve. In this method, a coolant from the decay heat exchanger (DHX) immersed into the reactor upper plenum is supplied to the high-pressure plenum and, then, inside the fuel subassemblies (SAs). A check valve installed at the DHX outlet opens by the force of gravity after primary pumps (PP-1) are shut down. Experimental studies of the new and alternative methods of shutdown cooling were performed at the TISEY test facility at OKBM. The velocity fields in the upper plenum of the reactor model were obtained using the optical particle image velocimetry developed at the Institute of Applied Physics (Russian Academy of Sciences). The study considers the process of development of natural circulation in the reactor and the DHRS models and the corresponding evolution of the temperature and velocity fields. A considerable influence of the valve position in the displacer of the primary pump on the natural circulation of water in the reactor through the DHX was discovered (in some modes, circulation reversal through the DHX was obtained). Alternative DHRS designs without a shell at the DHX outlet with open and closed check valve are also studied. For an open check valve, in spite of the absence of a shell, part of the flow is supplied through the DHX pipeline and then inside the SA simulators. When simulating power modes of the reactor operation, temperature stratification of the liquid was observed, which increased in the cooling mode via the DHRS. These data qualitatively agree with the results of tests at BN-600 and BN-800 reactors.
Reactor Application for Coaching Newbies
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-06-17
RACCOON is a Moose based reactor physics application designed to engage undergraduate and first-year graduate students. The code contains capabilities to solve the multi group Neutron Diffusion equation in eigenvalue and fixed source form and will soon have a provision to provide simple thermal feedback. These capabilities are sufficient to solve example problems found in Duderstadt & Hamilton (the typical textbook of senior level reactor physics classes). RACCOON does not contain any advanced capabilities as found in YAK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aly, A.; Avramova, Maria; Ivanov, Kostadin
To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed bymore » data from hydrogen experiments and PIE data.« less
Reactor safeguards system assessment and design. Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varnado, G.B.; Ericson, D.M. Jr.; Daniel, S.L.
1978-06-01
This report describes the development and application of a methodology for evaluating the effectiveness of nuclear power reactor safeguards systems. Analytic techniques are used to identify the sabotage acts which could lead to release of radioactive material from a nuclear power plant, to determine the areas of a plant which must be protected to assure that significant release does not occur, to model the physical plant layout, and to evaluate the effectiveness of various safeguards systems. The methodology was used to identify those aspects of reactor safeguards systems which have the greatest effect on overall system performance and which, therefore,more » should be emphasized in the licensing process. With further refinements, the methodology can be used by the licensing reviewer to aid in assessing proposed or existing safeguards systems.« less
78 FR 69139 - Physical Security-Design Certification and Operating Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... scheduled to close on October 30, 2013. The Nuclear Energy Institute (NEI) submitted a letter on October 9... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Physical Security--Design Certification and Operating Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan--draft section...
Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob
2018-01-02
Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.
Determination of origin and intended use of plutonium metal using nuclear forensic techniques.
Rim, Jung H; Kuhn, Kevin J; Tandon, Lav; Xu, Ning; Porterfield, Donivan R; Worley, Christopher G; Thomas, Mariam R; Spencer, Khalil J; Stanley, Floyd E; Lujan, Elmer J; Garduno, Katherine; Trellue, Holly R
2017-04-01
Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials' properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240 Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modeling feedback and trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. Based on this investigation, the most likely intended use for these plutonium foils was 239 Pu fission foil targets for physics experiments, such as cross-section measurements, etc. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination of origin and intended use of plutonium metal using nuclear forensic techniques
Rim, Jung H.; Kuhn, Kevin J.; Tandon, Lav; ...
2017-04-01
Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials’ properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modelling feedback andmore » trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. In conclusion, based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.« less
ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skutnik, Steven E.
The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared tomore » a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.« less
NASA Astrophysics Data System (ADS)
Gicheva, Natalia I.
2017-11-01
The subject of this research is a chemical reactor for producing tungsten. A physical and mathematical model of fluid motion and heat and mass transfer in a vortex chamber of the chemical reactor under forced and free convection has been described and simulated using two methods. The numerical simulation was carried out in «vortex - stream functions and «velocity - pressure» variables. The velocity field, the mass and the temperature distributions in the reactor were obtained. The influence of a rotation effect upon the hydrodynamics and heat and mass transport was showed. The rotation is important for more uniform distribution of temperature and matter in the vortex chamber. Parametric studies on effects of the Reynolds, Prandtl and Rossbi criteria on the flow characteristics were also performed. Reliability of the calculations was verified by comparing the results obtained by the methods mentioned above. Also, the created model was applied for numerically solving of the classical test problem of the velocity distribution in an annular channel and that of a rotating infinite disk in a stationary liquid. The study findings showed a good agreement with the exact solutions.
Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements
Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; ...
2014-11-04
Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental k eff come from uncertainties in the manganese content and impurities in the stainless steel fuel claddingmore » as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.
Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental k eff come from uncertainties in the manganese content and impurities in the stainless steel fuel claddingmore » as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Thermal-hydraulic interfacing code modules for CANDU reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Gold, M.; Sills, H.
1997-07-01
The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.
Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo
2017-11-01
In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.
Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.
2009-10-09
The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected tomore » come from increasingly diverse educational and experiential backgrounds.« less
DE-NE0008277_PROTEUS final technical report 2018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas
This project details re-evaluations of experiments of gas-cooled fast reactor (GCFR) core designs performed in the 1970s at the PROTEUS reactor and create a series of International Reactor Physics Experiment Evaluation Project (IRPhEP) benchmarks. Currently there are no gas-cooled fast reactor (GCFR) experiments available in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). These experiments are excellent candidates for reanalysis and development of multiple benchmarks because these experiments provide high-quality integral nuclear data relevant to the validation and refinement of thorium, neptunium, uranium, plutonium, iron, and graphite cross sections. It would be cost prohibitive to reproduce suchmore » a comprehensive suite of experimental data to support any future GCFR endeavors.« less
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
NASA Astrophysics Data System (ADS)
Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira
2015-07-01
At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tentner, A.M.
1994-03-01
A detailed hydrodynamic fuel relocation model has been developed for the analysis of severe accidents in Heavy Water Reactors with multiple-tube Assemblies. This model describes the Fuel Disruption and Relocation inside a nuclear fuel assembly and is designated by the acronym DIANA. DIANA solves the transient hydrodynamic equations for all the moving materials in the core and treats all the relevant flow regimes. The numerical solution techniques and some of the physical models included in DIANA have been developed taking advantage of the extensive experience accumulated in the development and validation of the LEVITATE (1) fuel relocation model of SAS4Amore » [2, 3]. The model is designed to handle the fuel and cladding relocation in both voided and partially voided channels. It is able to treat a wide range of thermal/ hydraulic/neutronic conditions and the presence of various flow regimes at different axial locations within the same hydrodynamic channel.« less
Physics of reactor safety. Quarterly report, January--March 1977. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-06-01
This report summarizes work done on reactor safety, Monte Carlo analysis of safety-related critical assembly experiments, and planning of DEMI safety-related critical experiments. Work on reactor core thermal-hydraulics is also included.
A Multi-Methods Approach to HRA and Human Performance Modeling: A Field Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; David I Gertman
2012-06-01
The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory is primarily designed and used to test materials to be used in other, larger-scale and prototype reactors. The reactor offers various specialized systems and allows certain experiments to be run at their own temperature and pressure. The ATR Canal temporarily stores completed experiments and used fuel. It also has facilities to conduct underwater operations such as experiment examination or removal. In reviewing the ATR safety basis, a number of concerns were identified involving the ATR canal. A brief study identified ergonomic issues involving the manual handlingmore » of fuel elements in the canal that may increase the probability of human error and possible unwanted acute physical outcomes to the operator. In response to this concern, that refined the previous HRA scoping analysis by determining the probability of the inadvertent exposure of a fuel element to the air during fuel movement and inspection was conducted. The HRA analysis employed the SPAR-H method and was supplemented by information gained from a detailed analysis of the fuel inspection and transfer tasks. This latter analysis included ergonomics, work cycles, task duration, and workload imposed by tool and workplace characteristics, personal protective clothing, and operational practices that have the potential to increase physical and mental workload. Part of this analysis consisted of NASA-TLX analyses, combined with operational sequence analysis, computational human performance analysis (CHPA), and 3D graphical modeling to determine task failures and precursors to such failures that have safety implications. Experience in applying multiple analysis techniques in support of HRA methods is discussed.« less
Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations
NASA Astrophysics Data System (ADS)
Bang, Youngsuk
Reduced order modeling (ROM) has been recognized as an indispensable approach when the engineering analysis requires many executions of high fidelity simulation codes. Examples of such engineering analyses in nuclear reactor core calculations, representing the focus of this dissertation, include the functionalization of the homogenized few-group cross-sections in terms of the various core conditions, e.g. burn-up, fuel enrichment, temperature, etc. This is done via assembly calculations which are executed many times to generate the required functionalization for use in the downstream core calculations. Other examples are sensitivity analysis used to determine important core attribute variations due to input parameter variations, and uncertainty quantification employed to estimate core attribute uncertainties originating from input parameter uncertainties. ROM constructs a surrogate model with quantifiable accuracy which can replace the original code for subsequent engineering analysis calculations. This is achieved by reducing the effective dimensionality of the input parameter, the state variable, or the output response spaces, by projection onto the so-called active subspaces. Confining the variations to the active subspace allows one to construct an ROM model of reduced complexity which can be solved more efficiently. This dissertation introduces a new algorithm to render reduction with the reduction errors bounded based on a user-defined error tolerance which represents the main challenge of existing ROM techniques. Bounding the error is the key to ensuring that the constructed ROM models are robust for all possible applications. Providing such error bounds represents one of the algorithmic contributions of this dissertation to the ROM state-of-the-art. Recognizing that ROM techniques have been developed to render reduction at different levels, e.g. the input parameter space, the state space, and the response space, this dissertation offers a set of novel hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.
Game theoretic analysis of physical protection system design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canion, B.; Schneider, E.; Bickel, E.
The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefitmore » analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget.« less
Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels
NASA Astrophysics Data System (ADS)
Fekete, Balazs; Trampus, Peter
2015-09-01
The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J; Gehl, S M
1979-01-01
GRASS-SST and FASTGRASS are mechanistic computer codes for predicting fission-gas behavior in UO/sub 2/-base fuels during steady-state and transient conditions. FASTGRASS was developed in order to satisfy the need for a fast-running alternative to GRASS-SST. Althrough based on GRASS-SST, FASTGRASS is approximately an order of magnitude quicker in execution. The GRASS-SST transient analysis has evolved through comparisons of code predictions with the fission-gas release and physical phenomena that occur during reactor operation and transient direct-electrical-heating (DEH) testing of irradiated light-water reactor fuel. The FASTGRASS calculational procedure is described in this paper, along with models of key physical processes included inmore » both FASTGRASS and GRASS-SST. Predictions of fission-gas release obtained from GRASS-SST and FASTGRASS analyses are compared with experimental observations from a series of DEH tests. The major conclusions is that the computer codes should include an improved model for the evolution of the grain-edge porosity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turinsky, Paul J., E-mail: turinsky@ncsu.edu; Kothe, Douglas B., E-mail: kothe@ornl.gov
The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear powermore » industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry. - Highlights: • Complexity of physics based modeling of light water reactor cores being addressed. • Capability developed to help address problems that have challenged the nuclear power industry. • Simulation capabilities that take advantage of high performance computing developed.« less
Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.-T.
2006-11-17
A laboratory has been constructed by the TEXONO Collaboration at the Kuo-Sheng Reactor Power Plant in Taiwan to study low energy neutrino physics. A limit on the neutrino magnetic moment of {mu}{nu}({nu}-bare) < 7.2 x 10-11 {mu}B at 90% confidence level has been achieved from measurements with a high-purity germanium detector, as well as the electron neutrinos ({nu}{sub e}) produced from nuclear power reactors has been studied. Other research program at Kuo-Sheng are surveyed.
An assessment of coupling algorithms for nuclear reactor core physics simulations
Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...
2016-04-01
This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less
An assessment of coupling algorithms for nuclear reactor core physics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Steven; Berrill, Mark; Clarno, Kevin
This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less
An assessment of coupling algorithms for nuclear reactor core physics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Steven, E-mail: hamiltonsp@ornl.gov; Berrill, Mark, E-mail: berrillma@ornl.gov; Clarno, Kevin, E-mail: clarnokt@ornl.gov
This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNKmore » and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less
Multi-Physics Simulation of TREAT Kinetics using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Gleicher, Frederick; Ortensi, Javier
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in amore » graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.« less
Comparative simulation of a fluidised bed reformer using industrial process simulators
NASA Astrophysics Data System (ADS)
Bashiri, Hamed; Sotudeh-Gharebagh, Rahmat; Sarvar-Amini, Amin; Haghtalab, Ali; Mostoufi, Navid
2016-08-01
A simulation model is developed by commercial simulators in order to predict the performance of a fluidised bed reformer. As many physical and chemical phenomena take place in the reformer, two sub-models (hydrodynamic and reaction sub-models) are needed. The hydrodynamic sub-model is based on the dynamic two-phase model and the reaction sub-model is derived from the literature. In the overall model, the bed is divided into several sections. In each section, the flow of the gas is considered as plug flow through the bubble phase and perfectly mixed through the emulsion phase. Experimental data from the literature were used to validate the model. Close agreement was found between the model of both ASPEN Plus (ASPEN PLUS 2004 ©) and HYSYS (ASPEN HYSYS 2004 ©) and the experimental data using various sectioning of the reactor ranged from one to four. The experimental conversion lies between one and four sections as expected. The model proposed in this work can be used as a framework in developing the complicated models for non-ideal reactors inside of the process simulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anh Bui; Nam Dinh; Brian Williams
In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Suchmore » sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.
2016-08-31
Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. Themore » objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.« less
Towards a supported common NEAMS software stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormac Garvey
2012-04-01
The NEAMS IPSC's are developing multidimensional, multiphysics, multiscale simulation codes based on first principles that will be capable of predicting all aspects of current and future nuclear reactor systems. These new breeds of simulation codes will include rigorous verification, validation and uncertainty quantification checks to quantify the accuracy and quality of the simulation results. The resulting NEAMS IPSC simulation codes will be an invaluable tool in designing the next generation of Nuclear Reactors and also contribute to a more speedy process in the acquisition of licenses from the NRC for new Reactor designs. Due to the high resolution of themore » models, the complexity of the physics and the added computational resources to quantify the accuracy/quality of the results, the NEAMS IPSC codes will require large HPC resources to carry out the production simulation runs.« less
Integrated Tokamak modeling: When physics informs engineering and research planning
NASA Astrophysics Data System (ADS)
Poli, Francesca Maria
2018-05-01
Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. It discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.
Integrated Tokamak modeling: When physics informs engineering and research planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, Francesca Maria
Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. Itmore » discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.« less
Integrated Tokamak modeling: When physics informs engineering and research planning
Poli, Francesca Maria
2018-05-01
Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. Itmore » discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.« less
Predictive Modeling in Plasma Reactor and Process Design
NASA Technical Reports Server (NTRS)
Hash, D. B.; Bose, D.; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)
1997-01-01
Research continues toward the improvement and increased understanding of high-density plasma tools. Such reactor systems are lauded for their independent control of ion flux and energy enabling high etch rates with low ion damage and for their improved ion velocity anisotropy resulting from thin collisionless sheaths and low neutral pressures. Still, with the transition to 300 mm processing, achieving etch uniformity and high etch rates concurrently may be a formidable task for such large diameter wafers for which computational modeling can play an important role in successful reactor and process design. The inductively coupled plasma (ICP) reactor is the focus of the present investigation. The present work attempts to understand the fundamental physical phenomena of such systems through computational modeling. Simulations will be presented using both computational fluid dynamics (CFD) techniques and the direct simulation Monte Carlo (DSMC) method for argon and chlorine discharges. ICP reactors generally operate at pressures on the order of 1 to 10 mTorr. At such low pressures, rarefaction can be significant to the degree that the constitutive relations used in typical CFD techniques become invalid and a particle simulation must be employed. This work will assess the extent to which CFD can be applied and evaluate the degree to which accuracy is lost in prediction of the phenomenon of interest; i.e., etch rate. If the CFD approach is found reasonably accurate and bench-marked with DSMC and experimental results, it has the potential to serve as a design tool due to the rapid time relative to DSMC. The continuum CFD simulation solves the governing equations for plasma flow using a finite difference technique with an implicit Gauss-Seidel Line Relaxation method for time marching toward a converged solution. The equation set consists of mass conservation for each species, separate energy equations for the electrons and heavy species, and momentum equations for the gas. The sheath is modeled by imposing the Bohm velocity to the ions near the walls. The DSMC method simulates each constituent of the gas as a separate species which would be analogous in CFD to employing separate species mass, momentum, and energy equations. All particles including electrons are moved and allowed to collide with one another with the stipulation that the electrons remain tied to the ions consistent with the concept of ambipolar diffusion. The velocities of the electrons are allowed to be modified during collisions and are not confined to a Maxwellian distribution. These benefits come at a price in terms of computational time and memory. The DSMC and CFD are made as consistent as possible by using similar chemistry and power deposition models. Although the comparison of CFD and DSMC is interesting, the main goal of this work is the increased understanding of high-density plasma flowfields that can then direct improvements in both techniques. This work is unique in the level of the physical models employed in both the DSMC and CFD for high-density plasma reactor applications. For example, the electrons are simulated in the present DSMC work which has not been done before for low temperature plasma processing problems. In the CFD approach, for the first time, the charged particle transport (discharge physics) has been self-consistently coupled to the gas flow and heat transfer.
Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions
NASA Astrophysics Data System (ADS)
DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard
2018-04-01
A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.
Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeger, Karsten M.
2014-09-13
This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zeromore » $$\\theta_{13}$$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.« less
NASA Astrophysics Data System (ADS)
Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.
2014-05-01
Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.
Coupled reactors analysis: New needs and advances using Monte Carlo methodology
Aufiero, M.; Palmiotti, G.; Salvatores, M.; ...
2016-08-20
Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated with the Avery theory that allows a physics understanding of the main features of these systems. However, the complex geometries that are often encountered in association with coupled reactors, require a detailed geometry description that can be easily provided by modern Monte Carlo (MC) codes. This implies a MC calculation of the coupling parameters defined by Avery and of the sensitivity coefficients that allow further detailed physics analysis. The results presented in this paper show that the MC code SERPENT has been successfully modifed tomore » meet the required capabilities.« less
AGM2015: Antineutrino Global Map 2015
Usman, S.M.; Jocher, G.R.; Dye, S.T.; McDonough, W.F.; Learned, J.G.
2015-01-01
Every second greater than 1025 antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth’s surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth’s total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors. PMID:26323507
AGM2015: Antineutrino Global Map 2015.
Usman, S M; Jocher, G R; Dye, S T; McDonough, W F; Learned, J G
2015-09-01
Every second greater than 10(25) antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.
ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.
ERIC Educational Resources Information Center
DETERLINE, WILLIAM A.; KLAUS, DAVID J.
THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... nuclear reactor facility. PBAPS Unit 1 was a high-temperature, gas-cooled reactor that was operated from... the safeguards contingency plan.'' Part 73 of 10 CFR, ``Physical Protection of Plant and Materials... physical protection system which will have capabilities for the protection of special nuclear material at...
Plasma Physics Lab and the Tokamak Fusion Test Reactor, 1989
None
2018-01-16
From the Princeton University Archives: Promotional video about the Plasma Physics Lab and the new Tokamak Fusion Test Reactor (TFTR), with footage of the interior, machines, and scientists at work. This film is discussed in the audiovisual blog of the Seeley G. Mudd Manuscript Library, which holds the archives of Princeton University.
ERIC Educational Resources Information Center
Malkawi, Salaheddin; Al-Araidah, Omar
2013-01-01
Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…
CONVERTING FROM BATCH TO CONTINUOUS INTENSIFIED PROCESSING IN THE STT? REACTOR
The fluid dynamics, the physical dimensions and characteristics of the reaction zones of continuous process intensification reactors are often quite different from those of the batch reactors they replace. Understanding these differences is critical to the successful transit...
Neoclassical Theory and Its Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, Ker-Chung
2015-11-20
The grant entitled Neoclassical Theory and Its Applications started on January 15 2001 and ended on April 14 2015. The main goal of the project is to develop neoclassical theory to understand tokamak physics, and employ it to model current experimental observations and future thermonuclear fusion reactors. The PI had published more than 50 papers in refereed journals during the funding period.
Comprehensive Experiments on Subcritical Assemblies of Cascade Reactor Systems
NASA Astrophysics Data System (ADS)
Zavyalov, N. V.; Il'kaev, R. I.; Kolesov, V. F.; Ivanin, I. A.; Zhitnik, A. K.; Kuvshinov, M. I.; Nefedov, Yu. Ya.; Punin, V. T.; Tel'nov, A. V.; Khoruzhi, V. Kh.
2017-12-01
Cascade reactors attract particular attention because of their capability of improving the parameters of pulsed reactors and achieving the feasibility of electronuclear facilities. The paper presents the results of three series of experiments on uranium-neptunium cascade assemblies at the Institute of Nuclear and Radiation Physics of the All-Russian Research Institute of Experimental Physics conducted in 2003-2004. The experiments confirmed theoretical conclusions on positive properties of cascade blankets and effectiveness of using neptunium-237 as a means of creating a one-sided connection between the sections.
Analytical methods in the high conversion reactor core design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeggel, W.; Oldekop, W.; Axmann, J.K.
High conversion reactor (HCR) design methods have been used at the Technical University of Braunschweig (TUBS) with the technological support of Kraftwerk Union (KWU). The present state and objectives of this cooperation between KWU and TUBS in the field of HCRs have been described using existing design models and current activities aimed at further development and validation of the codes. The hard physical and thermal-hydraulic boundary conditions of pressurized water reactor (PWR) cores with a high degree of fuel utilization result from the tight packing of the HCR fuel rods and the high fissionable plutonium content of the fuel. Inmore » terms of design, the problem will be solved with rod bundles whose fuel rods are adjusted by helical spacers to the proposed small rod pitches. These HCR properties require novel computational models for neutron physics, thermal hydraulics, and fuel rod design. By means of a survey of the codes, the analytical procedure for present-day HCR core design is presented. The design programs are currently under intensive development, as design tools with a solid, scientific foundation and with essential parameters that are widely valid and are required for a promising optimization of the HCR core. Design results and a survey of future HCR development are given. In this connection, the reoptimization of the PWR core in the direction of an HCR is considered a fascinating scientific task, with respect to both economic and safety aspects.« less
Mixed Legendre moments and discrete scattering cross sections for anisotropy representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calloo, A.; Vidal, J. F.; Le Tellier, R.
2012-07-01
This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less
VERA Core Simulator Methodology for PWR Cycle Depletion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochunas, Brendan; Collins, Benjamin S; Jabaay, Daniel
2015-01-01
This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclearmore » reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.« less
Nuclear Reactor Safety--The APS Submits its Report
ERIC Educational Resources Information Center
Physics Today, 1975
1975-01-01
Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)
Liu, Jiawei; Zhou, Xingqiu; Wu, Jiangdong; Gao, Wen; Qian, Xu
2017-10-01
The temperature is the essential factor that influences the efficiency of anaerobic reactors. During the operation of the anaerobic reactor, the fluctuations of ambient temperature can cause a change in the internal temperature of the reactor. Therefore, insulation and heating measures are often used to maintain anaerobic reactor's internal temperature. In this paper, a simplified heat transfer model was developed to study heat transfer between cylindrical anaerobic reactors and their surroundings. Three cylindrical reactors of different sizes were studied, and the internal relations between ambient temperature, thickness of insulation, and temperature fluctuations of the reactors were obtained at different reactor sizes. The model was calibrated by a sensitivity analysis, and the calibrated model was well able to predict reactor temperature. The Nash-Sutcliffe model efficiency coefficient was used to assess the predictive power of heat transfer models. The Nash coefficients of the three reactors were 0.76, 0.60, and 0.45, respectively. The model can provide reference for the thermal insulation design of cylindrical anaerobic reactors.
VERA Core Simulator methodology for pressurized water reactor cycle depletion
Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane; ...
2017-01-12
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less
Standard interface files and procedures for reactor physics codes, version III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, B.M.
Standards and procedures for promoting the exchange of reactor physics codes are updated to Version-III status. Standards covering program structure, interface files, file handling subroutines, and card input format are included. The implementation status of the standards in codes and the extension of the standards to new code areas are summarized. (15 references) (auth)
Integrated simulations for fusion research in the 2030's time frame (white paper outline)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Alex; LoDestro, Lynda L.; Parker, Jeffrey B.
This white paper presents the rationale for developing a community-wide capability for whole-device modeling, and advocates for an effort with the expectation of persistence: a long-term programmatic commitment, and support for community efforts. Statement of 2030 goal (two suggestions): (a) Robust integrated simulation tools to aid real-time experimental discharges and reactor designs by employing a hierarchy in fidelity of physics models. (b) To produce by the early 2030s a capability for validated, predictive simulation via integration of a suite of physics models from moderate through high fidelity, to understand and plan full plasma discharges, aid in data interpretation, carry outmore » discovery science, and optimize future machine designs. We can achieve this goal via a focused effort to extend current scientific capabilities and rigorously integrate simulations of disparate physics into a comprehensive set of workflows.« less
A review of carbide fuel corrosion for nuclear thermal propulsion applications
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.
1993-10-01
At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.
A Review of Carbide Fuel Corrosion for Nuclear Thermal Propulsion Applications
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.
1994-07-01
At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.
Overview of the present progress and activities on the CFETR
NASA Astrophysics Data System (ADS)
Wan, Yuanxi; Li, Jiangang; Liu, Yong; Wang, Xiaolin; Chan, Vincent; Chen, Changan; Duan, Xuru; Fu, Peng; Gao, Xiang; Feng, Kaiming; Liu, Songlin; Song, Yuntao; Weng, Peide; Wan, Baonian; Wan, Farong; Wang, Heyi; Wu, Songtao; Ye, Minyou; Yang, Qingwei; Zheng, Guoyao; Zhuang, Ge; Li, Qiang; CFETR Team
2017-10-01
The China Fusion Engineering Test Reactor (CFETR) is the next device in the roadmap for the realization of fusion energy in China, which aims to bridge the gaps between the fusion experimental reactor ITER and the demonstration reactor (DEMO). CFETR will be operated in two phases. Steady-state operation and self-sufficiency will be the two key issues for Phase I with a modest fusion power of up to 200 MW. Phase II aims for DEMO validation with a fusion power over 1 GW. Advanced H-mode physics, high magnetic fields up to 7 T, high frequency electron cyclotron resonance heating and lower hybrid current drive together with off-axis negative-ion neutral beam injection will be developed for achieving steady-state advanced operation. The recent detailed design, research and development (R&D) activities including integrated modeling of operation scenarios, high field magnet, material, tritium plant, remote handling and future plans are introduced in this paper.
Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs
NASA Astrophysics Data System (ADS)
Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna
2018-02-01
The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.
Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander
2017-09-01
The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.
A Special Topic From Nuclear Reactor Dynamics for the Undergraduate Physics Curriculum
ERIC Educational Resources Information Center
Sevenich, R. A.
1977-01-01
Presents an intuitive derivation of the point reactor equations followed by formulation of equations for inverse and direct kinetics which are readily programmed on a digital computer. Suggests several computer simulations involving the effect of control rod motion on reactor power. (MLH)
ERIC Educational Resources Information Center
Primack, Joel
1975-01-01
The reactor safety controversy is reviewed in light of the United States Atomic Energy Commission's Reactor Safety Study and the Report to the American Physical Society by the Study Group on Light Water Reactor Safety. Areas of agreement and disagreement are identified and implications for national policy are explored. (BT)
Self isolating high frequency saturable reactor
Moore, James A.
1998-06-23
The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.
NASA Astrophysics Data System (ADS)
Mosunova, N. A.
2018-05-01
The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
NASA Astrophysics Data System (ADS)
Serebrov, A. P.
2018-03-01
The use of ultracold neutrons opens unique possibilities for studying fundamental interactions in particles physics. Searches for the neutron electric dipole moment are aimed at testing models of CP violation. A precise measurement of the neutron lifetime is of paramount importance for cosmology and astrophysics. Considerable advances in these realms can be made with the aid of a new ultracold-neutron (UCN) supersource presently under construction at Petersburg Nuclear Physics Institute. With this source, it would be possible to obtain an UCN density approximately 100 times as high as that at currently the best UCN source at the high-flux reactor of the Institute Laue-Langevin (ILL, Grenoble, France). To date, the design and basic elements of the source have been prepared, tests of a full-scale source model have been performed, and the research program has been developed. It is planned to improve accuracy in measuring the neutron electric dipole moment by one order of magnitude to a level of 10-27 to 10-28 e cm. This is of crucial importance for particle physics. The accuracy in measuring the neutron lifetime can also be improved by one order of magnitude. Finally, experiments that would seek neutron-antineutron oscillations by employing ultracold neutrons will become possible upon reaching an UCN density of 103 to 104 cm-3. The current status of the source and the proposed research program are discussed.
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blyth, Taylor S.; Avramova, Maria
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR)more » cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.« less
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
NASA Astrophysics Data System (ADS)
Blyth, Taylor S.
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
Design of a self-tuning regulator for temperature control of a polymerization reactor.
Vasanthi, D; Pranavamoorthy, B; Pappa, N
2012-01-01
The temperature control of a polymerization reactor described by Chylla and Haase, a control engineering benchmark problem, is used to illustrate the potential of adaptive control design by employing a self-tuning regulator concept. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. The conventional cascade control provides a robust operation, but often lacks in control performance concerning the required strict temperature tolerances. The self-tuning control concept presented in this contribution solves the problem. This design calculates a trajectory for the cooling jacket temperature in order to follow a predefined trajectory of the reactor temperature. The reaction heat and the heat transfer coefficient in the energy balance are estimated online by using an unscented Kalman filter (UKF). Two simple physically motivated relations are employed, which allow the non-delayed estimation of both quantities. Simulation results under model uncertainties show the effectiveness of the self-tuning control concept. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
None
2018-05-01
A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed "Ice Storm" this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.
NASA Astrophysics Data System (ADS)
Fomin, A. K.; Serebrov, A. P.; Zherebtsov, O. M.; Leonova, E. N.; Chaikovskii, M. E.
2017-01-01
We propose an experiment on search for neutron-antineutron oscillations based on the storage of ultracold neutrons (UCN) in a material trap. The sensitivity of the experiment mostly depends on the trap size and the amount of UCN in it. In Petersburg Nuclear Physics Institute (PNPI) a high-intensity UCN source is projected at the WWR-M reactor, which must provide UCN density 2-3 orders of magnitude higher than existing sources. The results of simulations of the designed experimental scheme show that the sensitivity can be increased by ˜ 10-40 times compared to sensitivity of previous experiment depending on the model of neutron reflection from walls.
Development and preliminary verification of the 3D core neutronic code: COCO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H.; Mo, K.; Li, W.
As the recent blooming economic growth and following environmental concerns (China)) is proactively pushing forward nuclear power development and encouraging the tapping of clean energy. Under this situation, CGNPC, as one of the largest energy enterprises in China, is planning to develop its own nuclear related technology in order to support more and more nuclear plants either under construction or being operation. This paper introduces the recent progress in software development for CGNPC. The focus is placed on the physical models and preliminary verification results during the recent development of the 3D Core Neutronic Code: COCO. In the COCO code,more » the non-linear Green's function method is employed to calculate the neutron flux. In order to use the discontinuity factor, the Neumann (second kind) boundary condition is utilized in the Green's function nodal method. Additionally, the COCO code also includes the necessary physical models, e.g. single-channel thermal-hydraulic module, burnup module, pin power reconstruction module and cross-section interpolation module. The preliminary verification result shows that the COCO code is sufficient for reactor core design and analysis for pressurized water reactor (PWR). (authors)« less
Coupled Physics Environment (CouPE) library - Design, Implementation, and Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.
Over several years, high fidelity, validated mono-physics solvers with proven scalability on peta-scale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a unified mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-Based Applications) toolkit.more » The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The design of CouPE along with motivations that led to implementation choices are also discussed. The first release of the library will be different from the current version of the code that integrates the components in SHARP and explanation on the need for forking the source base will also be provided. Enhancements in the functionality and improved user guides will be available as part of the release. CouPE v0.1 is scheduled for an open-source release in December 2014 along with SIGMA v1.1 components that provide support for language-agnostic mesh loading, traversal and query interfaces along with scalable solution transfer of fields between different physics codes. The coupling methodology and software interfaces of the library are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the CouPE library.« less
Hybrid parallel code acceleration methods in full-core reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courau, T.; Plagne, L.; Ponicot, A.
2012-07-01
When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less
Small Reactor for Deep Space Exploration
none,
2018-06-06
This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.
Improvement of COBRA-TF for modeling of PWR cold- and hot-legs during reactor transients
NASA Astrophysics Data System (ADS)
Salko, Robert K.
COBRA-TF is a two-phase, three-field (liquid, vapor, droplets) thermal-hydraulic modeling tool that has been developed by the Pacific Northwest Laboratory under sponsorship of the NRC. The code was developed for Light Water Reactor analysis starting in the 1980s; however, its development has continued to this current time. COBRA-TF still finds wide-spread use throughout the nuclear engineering field, including nuclear-power vendors, academia, and research institutions. It has been proposed that extension of the COBRA-TF code-modeling region from vessel-only components to Pressurized Water Reactor (PWR) coolant-line regions can lead to improved Loss-of-Coolant Accident (LOCA) analysis. Improved modeling is anticipated due to COBRA-TF's capability to independently model the entrained-droplet flow-field behavior, which has been observed to impact delivery to the core region[1]. Because COBRA-TF was originally developed for vertically-dominated, in-vessel, sub-channel flow, extension of the COBRA-TF modeling region to the horizontal-pipe geometries of the coolant-lines required several code modifications, including: • Inclusion of the stratified flow regime into the COBRA-TF flow regime map, along with associated interfacial drag, wall drag and interfacial heat transfer correlations, • Inclusion of a horizontal-stratification force between adjacent mesh cells having unequal levels of stratified flow, and • Generation of a new code-input interface for the modeling of coolant-lines. The sheer number of COBRA-TF modifications that were required to complete this work turned this project into a code-development project as much as it was a study of thermal-hydraulics in reactor coolant-lines. The means for achieving these tasks shifted along the way, ultimately leading the development of a separate, nearly completely independent one-dimensional, two-phase-flow modeling code geared toward reactor coolant-line analysis. This developed code has been named CLAP, for Coolant-Line-Analysis Package. Versions were created that were both coupled to COBRA-TF and standalone, with the most recent version being a standalone code. This code performs a separate, simplified, 1-D solution of the conservation equations while making special considerations for coolant-line geometry and flow phenomena. The end of this project saw a functional code package that demonstrates a stable numerical solution and that has gone through a series of Validation and Verification tests using the Two-Phase Testing Facility (TPTF) experimental data[2]. The results indicate that CLAP is under-performing RELAP5-MOD3 in predicting the experimental void of the TPTF facility in some cases. There is no apparent pattern, however, to point to a consistent type of case that the code fails to predict properly (e.g., low-flow, high-flow, discharging to full vessel, or discharging to empty vessel). Pressure-profile predictions are sometimes unrealistic, which indicates that there may be a problem with test-case boundary conditions or with the coupling of continuity and momentum equations in the solution algorithm. The code does predict the flow regime correctly for all cases with the stratification-force model off. Turning the stratification model on can cause the low-flow case void profiles to over-react to the force and the flow regime to transition out of stratified flow. The code would benefit from an increased amount of Validation & Verification testing. The development of CLAP was significant, as it is a cleanly written, logical representation of the reactor coolant-line geometry. It is stable and capable of modeling basic flow physics in the reactor coolant-line. Code development and debugging required the temporary removal of the energy equation and mass-transfer terms in governing equations. The reintroduction of these terms will allow future coupling to RELAP and re-coupling with COBRA-TF. Adding in more applicable entrainment and de-entrainment models would allow the capture of more advanced physics in the coolant-line that can be expected during Loss-of-Coolant Accident. One of the package's benefits is its ability to be used as a platform for future coolant-line model development and implementation, including capturing of the important de-entrainment behavior in reactor hot-legs (steam-binding effect) and flow convection in the upper-plenum region of the vessel.
SAFSIM theory manual: A computer program for the engineering simulation of flow systems
NASA Astrophysics Data System (ADS)
Dobranich, Dean
1993-12-01
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.
Reactor monitoring using antineutrino detectors
NASA Astrophysics Data System (ADS)
Bowden, N. S.
2011-08-01
Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.
Solar gasification of biomass: design and characterization of a molten salt gasification reactor
NASA Astrophysics Data System (ADS)
Hathaway, Brandon Jay
The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.
Physical and computational studies of slag behavior in an entrained flow gasifier
NASA Astrophysics Data System (ADS)
Pummill, Randy
This work details an investigation of how to modify slag flow so as to maintain a clear line of sight across the reaction section of an entrained-flow coal gasifier. Physical and computational models were developed to study methods of diverting the molten slag that flows vertically down the walls of the reactor. The physical models employed silicone oil of varying viscosity. The computational models were developed using the Fluent software package. Based on the insight gained from the results of the models, two devices were created and tested in a pilot scale gasifier located at the University of Utah. The first method of slag diversion studied employed a gas jet to impact the slag film and cause it to flow around a sight port in the gasifier wall. By studying the film and jet interactions, it was discovered that the resulting behavior of such a system can be described by a dimensionless ratio of the kinetic energy of the jet and the surface energy of the film. The development of the dimensionless number, called a Lotte number in this work, is presented in detail. Generally, viscous films will be broken by a jet when the Lotte number is greater than 5 and will reclose when the Lotte number falls below a value of 1.5. The second slag diversion method studied used a round alumina tube protruding horizontally into the reaction section to break up the film. As the film impacts the tube, it progresses horizontally along the length of the tube before resuming the downward flow. The models helped to establish how far the tube should protrude into the reactor in order to successfully break up the slag flow. Slag diversion devices were constructed and installed on a pilot scale gasifier. The jet diversion method was found to require an unreasonably large amount of purge gas to be successful and the metal jet suffered from the high temperature of the reactor despite the cooling effect of the gas. The tube diversion method worked very well for a series of experiments. However, erosion of the alumina tube in the reaction section remains an impediment to using such a device in an industrial setting. A design using a water-cooled tube is suggested.
Synchronized fusion development considering physics, materials and heat transfer
NASA Astrophysics Data System (ADS)
Wong, C. P. C.; Liu, Y.; Duan, X. R.; Xu, M.; Li, Q.; Feng, K. M.; Zheng, G. Y.; Li, Z. X.; Wang, X. Y.; Li, B.; Zhang, G. S.
2017-12-01
Significant achievements have been made in the last 60 years in the development of fusion energy with the tokamak configuration. Based on the accumulated knowledge, the world is embarking on the construction and operation of ITER (International Thermonuclear Experimental Reactor) with a production of 500 MWf fusion power and the demonstration of physics Q = 10. ITER will demonstrate D-T burn physics for a duration of a few hundred seconds to prepare for the next long-burn or steady state nuclear testing tokamak operating at much higher neutron fluence. With the evolution into a steady state nuclear device, such as the China Fusion Engineering Test Reactor (CFETR), it is necessary to examine the boundary conditions imposed by the combined development of tokamak physics, fusion materials and fusion technology for a reactor. The development of ferritic steel alloys as the structural material suitable for use at high neutron fluence leads to the use of helium as the most likely reactor coolant. This points to the fundamental technology limitation on the removal of chamber wall maximum heat flux at around 1 MW m-2 and an average heat flux of 0.1 MW m-2 for the next test reactor. Future reactor performance will then depend on the control of spatial and temporal edge heat flux peaking in order to increase the average heat flux to the chamber wall. With these severe material and technological limitations, system studies were used to scope out a few robust steady state synchronized fusion reactor (SFR) designs. As an example, a low fusion power design at 131.6 MWf, which can satisfy steady state design requirements, would have a major radius of 5.5 m and minor radius of 1.6 m. Such a design with even more advanced structural materials like W f/W composite could allow higher performance and provide a net electrical production of 62 MWe. These can be incorporated into the CFETR program.
2014-01-01
Background There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Results Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave® (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons’ staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Conclusions Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased enzyme accessibility. Pretreatment reactors using physical force to disrupt cell walls increase the effectiveness of the pretreatment process. PMID:24713111
NASA Astrophysics Data System (ADS)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.
2016-09-01
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos; Wen, Wei; Capolungo, Laurent
2017-08-01
This report focuses on the development of a physics-based thermal creep model aiming to predict the behavior of Zr alloy under reactor accident condition. The current models used for this kind of simulations are mostly empirical in nature, based generally on fits to the experimental steady-state creep rates under different temperature and stress conditions, which has the following limitations. First, reactor accident conditions, such as RIA and LOCA, usually take place in short times and involve only the primary, not the steady-state creep behavior stage. Moreover, the empirical models cannot cover the conditions from normal operation to accident environments. Formore » example, Kombaiah and Murty [1,2] recently reported a transition between the low (n~4) and high (n~9) power law creep regimes in Zr alloys depending on the applied stress. Capturing such a behavior requires an accurate description of the mechanisms involved in the process. Therefore, a mechanism-based model that accounts for the evolution with time of microstructure is more appropriate and reliable for this kind of simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, J.N., E-mail: jnshadi@sandia.gov; Department of Mathematics and Statistics, University of New Mexico; Smith, T.M.
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts tomore » apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...
2016-05-20
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident
NASA Astrophysics Data System (ADS)
Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.
2012-04-01
Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.
Inter-Disciplinary Collaboration in Support of the Post-Standby TREAT Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Baker, Benjamin; Ortensi, Javier
Although analysis methods have advanced significantly in the last two decades, high fidelity multi- physics methods for reactors systems have been under development for only a few years and are not presently mature nor deployed. Furthermore, very few methods provide the ability to simulate rapid transients in three dimensions. Data for validation of advanced time-dependent multi- physics is sparse; at TREAT, historical data were not collected for the purpose of validating three-dimensional methods, let alone multi-physics simulations. Existing data continues to be collected to attempt to simulate the behavior of experiments and calibration transients, but it will be insufficient formore » the complete validation of analysis methods used for TREAT transient simulations. Hence, a 2018 restart will most likely occur without the direct application of advanced modeling and simulation methods. At present, the current INL modeling and simulation team plans to work with TREAT operations staff in performing reactor simulations with MAMMOTH, in parallel with the software packages currently being used in preparation for core restart (e.g., MCNP5, RELAP5, ABAQUS). The TREAT team has also requested specific measurements to be performed during startup testing, currently scheduled to run from February to August of 2018. These startup measurements will be crucial in validating the new analysis methods in preparation for ultimate application for TREAT operations and experiment design. This document describes the collaboration between modeling and simulation staff and restart, operations, instrumentation and experiment development teams to be able to effectively interact and achieve successful validation work during restart testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Prescott, Steven R; Smith, Curtis L
2011-07-01
In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of amore » power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.« less
Simulating industrial plasma reactors - A fresh perspective
NASA Astrophysics Data System (ADS)
Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash
2016-09-01
A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less
High Temperature Gas-Cooled Test Reactor Point Design: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville
2016-01-01
A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.
High Temperature Gas-Cooled Test Reactor Point Design: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville
2016-03-01
A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.
Safety and control of accelerator-driven subcritical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rief, H.; Takahashi, H.
1995-10-01
To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut downmore » the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron
Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less
Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, K.K.; Williams, D.C.; Griffith, R.O.
1997-12-01
The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less
Physical-chemical treatment of wastes: a way to close turnover of elements in LSS
NASA Astrophysics Data System (ADS)
Kudenko, Yu A.; Gribovskaya, I. V.; Zolotukhin, I. G.
2000-05-01
"Man-plants-physical-chemical unit" system designed for space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O 2, N 2, CO 2, NH 3, H 2. At the reactor's output hydrogen and oxygen were catalyzed into water, NH 3 was converted in a water trap into NH 4 and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components.
NASA Astrophysics Data System (ADS)
Serebrov, A. P.
2015-11-01
Neutrons of very low energy ( ˜ 10-7 eV), commonly known as ultracold, are unique in that they can be stored in material and magnetic traps, thus enhancing methodical opportunities to conduct precision experiments and to probe the fundamentals of physics. One of the central problems of physics, of direct relevance to the formation of the Universe, is the violation of time invariance. Experiments searching for the nonzero neutron electric dipole moment serve as a time invariance test, and the use of ultracold neutrons provides very high measurement precision. Precision neutron lifetime measurements using ultracold neutrons are extremely important for checking ideas on the early formation of the Universe. This paper discusses problems that arise in studies using ultracold neutrons. Also discussed are the currently highly topical problem of sterile neutrinos and the search for reactor antineutrino oscillations at distances of 6-12 meters from the reactor core. The field reviewed is being investigated at multiple facilities globally. The present paper mainly concentrates on the results of PNPI-led studies at WWR-M PNPI (Gatchina), ILL (Grenoble), and SM-3 (Dimitrovgrad) reactors, and also covers the results obtained during preparation for research at the PIK reactor which is under construction.
Nuclear power industry: Tendencies in the world and Ukraine
NASA Astrophysics Data System (ADS)
Babenko, V. A.; Jenkovszky, L. L.; Pavlovych, V. N.
2007-11-01
This review deals with new trends in nuclear reactors physics. It opens by an easily understood introduction to nuclear fission energy physics, starting with some history, including the achievements of the Kharkov nuclear physics school. Attention has been given to the development of fission theory, the Strutinsky theory, and the possible use of "nonstandard" fissile elements. The evolution of the design of nuclear reactors, including the merits and demerits of various structures used worldwide, is given in detail. A detailed description of nuclear power plants operating in Ukraine and their (large!) contribution to Ukraine's total electricity production as compared with other countries is presented. A comparative evaluation of different energy sources influencing environment contamination and the pollution caused by the Chernobyl accident are presented. The lessons of the Chernobyl accident are summarized, including the features of the shelter ("Sarkofag") covering the remaining of the power plant fourth block and some examples of calculations of the radioactive evolution of the station's fuel-containing mass (by authors of the present review). The evolution of traditional nuclear reactors designs set forth under the separate heading of next-generation reactors including new projects such as subcritical assemblies controlled by an external beam of particles (neutrons and protons). The Feoktistov reactor operation and the possibility of its realization are discussed among the new ideas.
3D toroidal physics: testing the boundaries of symmetry breaking
NASA Astrophysics Data System (ADS)
Spong, Don
2014-10-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and under the US DOE SciDAC GSEP Center.
Fuel Thermo-physical Characterization Project. Fiscal Year 2014 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.
2015-03-15
The Office of Material Management and Minimization (M3) Reactor Conversion Fuel Thermo-Physical Characterization Project at Pacific Northwest National Laboratory (PNNL) was tasked with using PNNL facilities and processes to receive irradiated low enriched uranium–molybdenum (LEU-Mo) fuel plate samples and perform analysis in support of the M3 Reactor Conversion Program. This work is in support of the M3 Reactor Conversion Fuel Development Pillar that is managed by Idaho National Laboratory. The primary research scope was to determine the thermo-physical properties as a function of temperature and burnup. Work conducted in Fiscal Year (FY) 2014 complemented measurements performed in FY 2013 onmore » four additional irradiated LEU-Mo fuel plate samples. Specifically, the work in FY 2014 investigated the influence of different processing methods on thermal property behavior, the absence of aluminum alloy cladding on thermal property behavior for additional model validation, and the influence of higher operating surface heat flux / more aggressive irradiation conditions on thermal property behavior. The model developed in FY 2013 and refined in FY 2014 to extract thermal properties of the U-Mo alloy from the measurements conducted on an integral fuel plate sample (i.e., U-Mo alloy with a thin Zr coating and clad in AA6061) continues to perform very well. Measurements conducted in FY 2014 on samples irradiated under similar conditions compare well to measurements performed in FY 2013. In general, there is no gross influence of fabrication method on thermal property behavior, although the difference in LEU-Mo foil microstructure does have a noticeable influence on recrystallization of grains during irradiation. Samples irradiated under more aggressive irradiation conditions, e.g., higher surface heat flux, revealed lower thermal conductivity when compared to samples irradiated at moderate surface heat fluxes, with the exception of one sample. This report documents thermal property measurements conducted in FY 2014 and compares results to values obtained from literature and measurements performed in FY 2013, where applicable, along with appropriate discussion.« less
Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87).
Double Chooz and a history of reactor θ 13 experiments
Suekane, Fumihiko; Junqueira de Castro Bezerra, Thiago
2016-04-11
This is a contribution paper from the Double Chooz (DC) experiment to the special issue of Nuclear Physics B on the topics of neutrino oscillations, celebrating the recent Nobel prize to Profs. T. Kajita and A.B. McDonald. DC is a reactor neutrino experiment which measures the last neutrino mixing angle θ 13. In addition, the DC group presented an indication of disappearance of the reactor neutrinos at a baseline of similar to 1 km for the first time in 2011 and is improving the measurement of θ 13. DC is a pioneering experiment of this research field. In accordance withmore » the nature of this special issue, physics and history of the reactor-θ 13 experiments, as well as the Double Chooz experiment and its neutrino oscillation analyses, are reviewed.« less
Double Chooz and a history of reactor θ 13 experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suekane, Fumihiko; Junqueira de Castro Bezerra, Thiago
This is a contribution paper from the Double Chooz (DC) experiment to the special issue of Nuclear Physics B on the topics of neutrino oscillations, celebrating the recent Nobel prize to Profs. T. Kajita and A.B. McDonald. DC is a reactor neutrino experiment which measures the last neutrino mixing angle θ 13. In addition, the DC group presented an indication of disappearance of the reactor neutrinos at a baseline of similar to 1 km for the first time in 2011 and is improving the measurement of θ 13. DC is a pioneering experiment of this research field. In accordance withmore » the nature of this special issue, physics and history of the reactor-θ 13 experiments, as well as the Double Chooz experiment and its neutrino oscillation analyses, are reviewed.« less
Summary of ORSphere critical and reactor physics measurements
NASA Astrophysics Data System (ADS)
Marshall, Margaret A.; Bess, John D.
2017-09-01
In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung-Doo; Jeong, Jae-Jun; Lee, Seung-Wook
The Nuclear Steam Supply System (NSSS) thermal-hydraulic model adopted in the Korea Nuclear Plant Education Center (KNPEC)-2 simulator was provided in the early 1980s. The reference plant for KNPEC-2 is the Yong Gwang Nuclear Unit 1, which is a Westinghouse-type 3-loop, 950 MW(electric) pressurized water reactor. Because of the limited computational capability at that time, it uses overly simplified physical models and assumptions for a real-time simulation of NSSS thermal-hydraulic transients. This may entail inaccurate results and thus, the possibility of so-called ''negative training,'' especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developedmore » a realistic NSSS thermal-hydraulic program (named ARTS code) based on the best-estimate code RETRAN-3D. The systematic assessment of ARTS has been conducted by both a stand-alone test and an integrated test in the simulator environment. The non-integrated stand-alone test (NIST) results were reasonable in terms of accuracy, real-time simulation capability, and robustness. After successful completion of the NIST, ARTS was integrated with a 3-D reactor kinetics model and other system models. The site acceptance test (SAT) has been completed successively and confirmed to comply with the ANSI/ANS-3.5-1998 simulator software performance criteria. This paper presents our efforts for the ARTS development and some test results of the NIST and SAT.« less
Gas treatment in trickle-bed biofilters: biomass, how much is enough?
Alonso, C; Suidan, M T; Sorial, G A; Smith, F L; Biswas, P; Smith, P J; Brenner, R C
1997-06-20
The objective of this article is to define and validate a mathematical model that desribes the physical and biological processes occurring in a trickle-bed air biofilter for waste gas treatment. This model considers a two-phase system, quasi-steady-state processes, uniform bacterial population, and one limiting substrate. The variation of the specific surface area with bacterial growth is included in the model, and its effect on the biofilter performance is analyzed. This analysis leads to the conclusion that excessive accumulation of biomass in the reactor has a negative effect on contaminant removal efficiency. To solve this problem, excess biomass is removed via full media fluidization and backwashing of the biofilter. The backwashing technique is also incorporated in the model as a process variable. Experimental data from the biodegradation of toluene in a pilot system with four packed-bed reactors are used to validate the model. Once the model is calibrated with the estimation of the unknown parameters of the system, it is used to simulate the biofilter performance for different operating conditions. Model predictions are found to be in agreement with experimental data. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 583-594, 1997.
Extension of the TRANSURANUS burnup model to heavy water reactor conditions
NASA Astrophysics Data System (ADS)
Lassmann, K.; Walker, C. T.; van de Laar, J.
1998-06-01
The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.
K-TIF: a two-fluid computer program for downcomer flow dynamics. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsden, A.A.; Harlow, F.H.
1977-10-01
The K-TIF computer program has been developed for numerical solution of the time-varying dynamics of steam and water in a pressurized water reactor downcomer. The current status of physical and mathematical modeling is presented in detail. The report also contains a complete description of the numerical solution technique, a full description and listing of the computer program, instructions for its use, with a sample printout for a specific test problem. A series of calculations, performed with no change in the modeling parameters, shows consistent agreement with the experimental trends over a wide range of conditions, which gives confidence to themore » calculations as a basis for investigating the complicated physics of steam-water flows in the downcomer.« less
Status of thermalhydraulic modelling and assessment: Open issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bestion, D.; Barre, F.
1997-07-01
This paper presents the status of the physical modelling in present codes used for Nuclear Reactor Thermalhydraulics (TRAC, RELAP 5, CATHARE, ATHLET,...) and attempts to list the unresolved or partially resolved issues. First, the capabilities and limitations of present codes are presented. They are mainly known from a synthesis of the assessment calculations performed for both separate effect tests and integral effect tests. It is also interesting to list all the assumptions and simplifications which were made in the establishment of the system of equations and of the constitutive relations. Many of the present limitations are associated to physical situationsmore » where these assumptions are not valid. Then, recommendations are proposed to extend the capabilities of these codes.« less
NASA Astrophysics Data System (ADS)
Turinsky, Paul J.; Martin, William R.
2017-04-01
In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experiences in utilization of research reactors in Yugoslavia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.
1971-06-15
The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less
Hanford Atomic Products Operation monthly report for February 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-02-21
This is the monthly report for the Hanford Laboratories Operation, February, 1956. Metallurgy, reactors fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations are discussed.
Hanford Laboratories monthly activities report, March 1964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-04-15
The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.
Hanford Laboratories Operation monthly activities report, September 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1960-10-15
This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Laboratories monthly activities report, August 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1963-09-16
This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Laboratories Operation monthly activities report, November 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1962-12-14
This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Kokkinos
2005-04-28
The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less
Nuclear physics research operation. Monthly report, November 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, J.E.
1958-12-10
This report is a summary of projects worked on in support of the production reactors at Hanford. The projects include criticality studies, from tasks associated with fuel element reprocessing to shipments of slightly enriched uranium. They include studies of neutron cross sections for different reactions and neutron flux measurements in different reactor locations, as well as design studies for future reactor projects.
AGC 2 Irradiated Material Properties Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas
2017-05-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygaard, E. T.; Williams, M. M. R.; Angelo, P. L.
Babcock and Wilcox Technical Services Group (B and W) has identified aqueous homogeneous reactors (AHRs) as a technology well suited to produce the medical isotope molybdenum 99 (Mo-99). AHRs have never been specifically designed or built for this specialized purpose. However, AHRs have a proven history of being safe research reactors. In fact, in 1958, AHRs had 'a longer history of operation than any other type of research reactor using enriched fuel' and had 'experimentally demonstrated to be among the safest of all various type of research reactor now in use [1].' A 'Level 1' model representing B and W'smore » proposed Medical Isotope Production System (MIPS) reactor has been developed. The Level 1 model couples a series of differential equations representing neutronics, temperature, and voiding. Neutronics are represented by point reactor kinetics while temperature and voiding terms are axially varying (one-dimensional). While this model was developed specifically for the MIPS reactor, its applicability to the Japanese TRACY reactor was assessed. The results from the Level 1 model were in good agreement with TRACY experimental data and found to be conservative over most of the time domains considered. The Level 1 model was used to study the MIPS reactor. An analysis showed the Level 1 model agreed well with a more complex computational model of the MIPS reactor (a FETCH model). Finally, a significant reactivity insertion was simulated with the Level 1 model to study the MIPS reactor's time-dependent response. (authors)« less
Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.
1992-01-01
Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less
NASA Astrophysics Data System (ADS)
Mansur, L. K.; Grossbeck, M. L.
1988-07-01
Effects of helium on mechanical properties of irradiated structural materials are reviewed. In particular, variations in response to the ratio of helium to displacement damage serve as the focus. Ductility in creep and tensile tests is emphasized. A variety of early work has led to the current concentration on helium effects for fusion reactor materials applications. A battery of techniques has been developed by which the helium to displacement ratio can be varied. Our main discussion is devoted to the techniques of spectral tailoring and isotopic alloying currently of interest for mixed-spectrum reactors. Theoretical models of physical mechanisms by which helium interacts with displacement damage have been developed in terms of hardening to dislocation motion and grain boundary cavitation. Austenitic stainless steels, ferritic/martensitic steels and vanadium alloys are considered. In each case, work at low strain rates, where the main problems may lie, at the helium to displacement ratios appropriate to fusion reactor materials is lacking. Recent experimental evidence suggests that both in-reactor and high helium results may differ substantially from post-irradiation or low helium results. It is suggested that work in these areas is especially needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Y. S.; Joo, H. G.; Yoon, J. I.
The nTRACER direct whole core transport code employing the planar MOC solution based 3-D calculation method, the subgroup method for resonance treatment, the Krylov matrix exponential method for depletion, and a subchannel thermal/hydraulic calculation solver was developed for practical high-fidelity simulation of power reactors. Its accuracy and performance is verified by comparing with the measurement data obtained for three pressurized water reactor cores. It is demonstrated that accurate and detailed multi-physic simulation of power reactors is practically realizable without any prior calculations or adjustments. (authors)
Hanford Laboratories monthly activities report, February 1964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-03-16
This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.
Hanford Atomic Products Operation monthly report for June 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-07-28
This is the monthly report for the Hanford Atomic Products Operation, June, 1955. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Atomic Products Operation monthly report, January 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-02-24
This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Introduction to D-He(3) fusion reactors
NASA Technical Reports Server (NTRS)
Vlases, G. C.; Steinhauer, L. C.
1989-01-01
A review and evaluation of D-He(3) fusion reactor technology is presented. The advantages and disadvantages of the D-He(3) and D-T reactor cycles are outlined and compared. In addition, the general design features of D-He(3) tokamaks and field reversed configuration (FRC) reactors are described and the relative merits of each are compared. It is concluded that both tokamaks and FRC's offer certain advantages, and that the ultimate decision as to which to persue for terrestrial power generation will depend heavily on how the physics performance of each of them develops over the next few years. It is clear that the D-He(3) fuel cycle offers marked advantages over the D-T cycle. Although the physics requirements for D-He(3) are more demanding, the overwhelming advantages resulting from the two order of magnitude reduction of neutron flux are expected to lead to a shorter time to commercialization than for the D-T cycle.
Introduction to D-He(3) fusion reactors
NASA Astrophysics Data System (ADS)
Vlases, G. C.; Steinhauer, L. C.
1989-07-01
A review and evaluation of D-He(3) fusion reactor technology is presented. The advantages and disadvantages of the D-He(3) and D-T reactor cycles are outlined and compared. In addition, the general design features of D-He(3) tokamaks and field reversed configuration (FRC) reactors are described and the relative merits of each are compared. It is concluded that both tokamaks and FRC's offer certain advantages, and that the ultimate decision as to which to persue for terrestrial power generation will depend heavily on how the physics performance of each of them develops over the next few years. It is clear that the D-He(3) fuel cycle offers marked advantages over the D-T cycle. Although the physics requirements for D-He(3) are more demanding, the overwhelming advantages resulting from the two order of magnitude reduction of neutron flux are expected to lead to a shorter time to commercialization than for the D-T cycle.
3D toroidal physics: Testing the boundaries of symmetry breakinga)
NASA Astrophysics Data System (ADS)
Spong, Donald A.
2015-05-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
Recirculating Thermocatalytic Air Purifier for Collective Protection
2006-01-01
stearothermophilus (Bs) spores, which are generally accepted to be more heat resistant than anthrax spores. The results for the Bg and Bs spore...7 who performed thermal deactivation tests using Bg spores in a different reactor geometry. Shankle’s data imply complete sterilization of Bg...400 CFM Catalytic Air Purifier Model, Book 2: Effects of Heat Transfer and Flow on Thermal Sterilization . CB-67-2738-12.2, Physical Protection
LMFBR system-wide transient analysis: the state of the art and US validation needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatib-Rahbar, M.; Guppy, J.G.; Cerbone, R.J.
1982-01-01
This paper summarizes the computational capabilities in the area of liquid metal fast breeder reactor (LMFBR) system-wide transient analysis in the United States, identifies various numerical and physical approximations, the degree of empiricism, range of applicability, model verification and experimental needs for a wide class of protected transients, in particular, natural circulation shutdown heat removal for both loop- and pool-type plants.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick
2014-01-01
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Prescott, Steven; Coleman, Justin
This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communicationmore » and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Fiorina; N. E. Stauff; F. Franceschini
2013-12-01
The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associatedmore » with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.« less
Neutron Resonance Theory for Nuclear Reactor Applications: Modern Theory and Practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Richard N.; Blomquist, Roger N.; Leal, Luiz C.
2016-09-24
The neutron resonance phenomena constitute one of the most fundamental subjects in nuclear physics as well as in reactor physics. It is the area where the concepts of nuclear interaction and the treatment of the neutronic balance in reactor fuel lattices become intertwined. The latter requires the detailed knowledge of resonance structures of many nuclides of practical interest to the development of nuclear energy. The most essential element in reactor physics is to provide an accurate account of the intricate balance between the neutrons produced by the fission process and neutrons lost due to the absorption process as well asmore » those leaking out of the reactor system. The presence of resonance structures in many major nuclides obviously plays an important role in such processes. There has been a great deal of theoretical and practical interest in resonance reactions since Fermi’s discovery of resonance absorption of neutrons as they were slowed down in water. The resonance absorption became the center of attention when the question was raised as to the feasibility of the self-sustaining chain reaction in a natural uranium-fueled system. The threshold of the nuclear era was crossed almost eighty years ago when Fermi and Szilard observed that a substantial reduction in resonance absorption is possible if the uranium was made into the form of lumps instead of a homogeneous mixture with water. In the West, the first practical method for estimating the resonance escape probability in a reactor cell was pioneered by Wigner et al in early forties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua
2014-11-01
Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram
This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration
2017-01-01
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions. Supported in part by the Ministry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the MOST and MOE in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, the National Commission for Scientific and Technological Research of Chile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Sean; Dewan, Leslie; Massie, Mark
This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less
Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage
NASA Astrophysics Data System (ADS)
Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong
2013-04-01
Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could provide a significant optimisation of the UCG process by means of CO2 storage efficiency. The proposed coupled UCG-CCS scheme allows for meeting EU targets for greenhouse gas emissions and increases the coal yield otherwise impossible to exploit.
Hanford Laboratories Operation monthly activities report, August 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1959-09-15
This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.
Hanford Laboratories Operation monthly activities report, September 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1961-10-16
This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.
VIEW OF 77710A REACTOR WING, LOOKING NORTH, SHOWING DOOR TO ...
VIEW OF 777-10A REACTOR WING, LOOKING NORTH, SHOWING DOOR TO PROCESS DEVELOPMENT PILE ROOM AND LABORATORY WING ON RIGHT IN BACKGROUND - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruenwald, J., E-mail: johannes.gruenwald@inp-greifswald.de; Fröhlich, M.
A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of thismore » instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Schaefer, R. W.; McKnight, R. D.
Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehart, Mark; Mausolff, Zander; Goluoglu, Sedat
This report summarizes university research activities performed in support of TREAT modeling and simulation research. It is a compilation of annual research reports from four universities: University of Florida, Texas A&M University, Massachusetts Institute of Technology and Oregon State University. The general research topics are, respectively, (1) 3-D time-dependent transport with TDKENO/KENO-VI, (2) implementation of the Improved Quasi-Static method in Rattlesnake/MOOSE for time-dependent radiation transport approximations, (3) improved treatment of neutron physics representations within TREAT using OpenMC, and (4) steady state modeling of the minimum critical core of the Transient Reactor Test Facility (TREAT).
High-Temperature Gas-Cooled Test Reactor Point Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville
2016-04-01
A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
A report of Shippingport operation during Seed 2 lifetime is presented. The information is primarily confined to the nuclear portion of the operation. A general review of station performance is given along with details of reactor physics, reactor thermal and hydraulic performance, reactor plant performance and modifications, operational chemistry, and radioactive contamination experience. (J.R.D.)
Analysis of granular flow in a pebble-bed nuclear reactor.
Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z
2006-08-01
Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.
D-He-3 spherical torus fusion reactor system study
NASA Astrophysics Data System (ADS)
Macon, William A., Jr.
1992-04-01
This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.
Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, J. D.; Gauld, I. C.; Gulliford, J.
2017-01-01
Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Projectmore » (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.« less
Summary of ORSphere Critical and Reactor Physics Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Margaret A.; Bess, John D.
In the early 1970s Dr. John T. Mihalczo (team leader), J. J. Lynn, and J. R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVAmore » I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is summary summarize all the critical and reactor physics measurements evaluations and, when possible, to compare them to GODIVA experiment results.« less
A search for neutrino oscillations using the CHOOZ 1 km baseline reactor neutrino experiment
NASA Astrophysics Data System (ADS)
George, Jean
1999-10-01
Neutrino oscillation searches are an active field of research due to the implications their discovery may have for the solar neutrino anomaly as well as for the atmospheric neutrino anomaly. Their discovery may also have broad ramifications for the Standard Model of Particle Physics as a whole. Results from an oscillation search using the CHOOZ long baseline reactor neutrino experiment are presented in this thesis. These results are based on the data taken from June 1997 through April 1998 when the two reactors ran at combined thermal power levels ranging from zero power to their full power level of 8.5 GW. Electron flavored antineutrinos emanating from the reactors were detected through the inverse beta decay channel using a liquid scintillating calorimeter located at a distance of approximately 1 km from the reactor sources. The underground experimental site (300 MWE) provided natural shielding from the background of cosmic ray muons-leading to a background rate more than an order of magnitude lower than the full power signal rate. From the agreement between the detected and expected neutrino event rates no evidence for neutrino oscillations was found (at the 90% C.L.) for the oscillation parameter space governed by Δm 2 > 0.8 × 10-3 eV2 for maximal mixing and by sin2 2Θ > 0.18 for large values of Δm2.
Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.P.
2000-02-11
A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data upmore » through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.« less
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
Applications of nuclear physics
NASA Astrophysics Data System (ADS)
Hayes, A. C.
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
Hayes-Sterbenz, Anna Catherine
2017-01-10
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
Applications of nuclear physics.
Hayes, A C
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; ...
2015-12-30
Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent andmore » KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.« less
New core-reflector boundary conditions for transient nodal reactor calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.K.; Kim, C.H.; Joo, H.K.
1995-09-01
New core-reflector boundary conditions designed for the exclusion of the reflector region in transient nodal reactor calculations are formulated. Spatially flat frequency approximations for the temporal neutron behavior and two types of transverse leakage approximations in the reflector region are introduced to solve the transverse-integrated time-dependent one-dimensional diffusion equation and then to obtain relationships between net current and flux at the core-reflector interfaces. To examine the effectiveness of new core-reflector boundary conditions in transient nodal reactor computations, nodal expansion method (NEM) computations with and without explicit representation of the reflector are performed for Laboratorium fuer Reaktorregelung und Anlagen (LRA) boilingmore » water reactor (BWR) and Nuclear Energy Agency Committee on Reactor Physics (NEACRP) pressurized water reactor (PWR) rod ejection kinetics benchmark problems. Good agreement between two NEM computations is demonstrated in all the important transient parameters of two benchmark problems. A significant amount of CPU time saving is also demonstrated with the boundary condition model with transverse leakage (BCMTL) approximations in the reflector region. In the three-dimensional LRA BWR, the BCMTL and the explicit reflector model computations differ by {approximately}4% in transient peak power density while the BCMTL results in >40% of CPU time saving by excluding both the axial and the radial reflector regions from explicit computational nodes. In the NEACRP PWR problem, which includes six different transient cases, the largest difference is 24.4% in the transient maximum power in the one-node-per-assembly B1 transient results. This difference in the transient maximum power of the B1 case is shown to reduce to 11.7% in the four-node-per-assembly computations. As for the computing time, BCMTL is shown to reduce the CPU time >20% in all six transient cases of the NEACRP PWR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soldevilla, M.; Salmons, S.; Espinosa, B.
The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less
Hanford Atomic Products Operation monthly report for March 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-04-20
This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.
A Course in Chemical Reactor Design.
ERIC Educational Resources Information Center
Takoudis, Christos G.
1983-01-01
Presents course outline, topics covered, and final project (doubling as a take home final exam) for a one-semester, interdisciplinary course on the design and behavior of chemical reactors. Interplay of chemical and physical rate processes is stressed in the course. (JM)
Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-07-15
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. A meaningful adaption will result in high-fidelity and robust adapted core simulator models. To perform adaption, we propose an inverse theory approach in which the multitudes of input data to core simulators, i.e., reactor physics and thermal-hydraulic data, are to be adjusted to improve agreement withmore » measured observables while keeping core simulator models unadapted. At first glance, devising such adaption for typical core simulators with millions of input and observables data would spawn not only several prohibitive challenges but also numerous disparaging concerns. The challenges include the computational burdens of the sensitivity-type calculations required to construct Jacobian operators for the core simulator models. Also, the computational burdens of the uncertainty-type calculations required to estimate the uncertainty information of core simulator input data present a demanding challenge. The concerns however are mainly related to the reliability of the adjusted input data. The methodologies of adaptive simulation are well established in the literature of data adjustment. We adopt the same general framework for data adjustment; however, we refrain from solving the fundamental adjustment equations in a conventional manner. We demonstrate the use of our so-called Efficient Subspace Methods (ESMs) to overcome the computational and storage burdens associated with the core adaption problem. We illustrate the successful use of ESM-based adaptive techniques for a typical boiling water reactor core simulator adaption problem.« less
Reactor Pressure Vessel Integrity Assessments with the Grizzly Aging Simulation Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Hoffman, William
Grizzly is a simulation tool being developed at Idaho National Laboratory (INL) as part of the US Department of Energy’s Light Water Reactor Sustainability program to provide improved safety assessments of systems, components, and structures in nuclear power plants subjected to age-related degradation. Its goal is to provide an improved scientific basis for decisions surrounding license renewal, which would permit operation of commercial nuclear power plants beyond 60 years. Grizzly is based on INL’s MOOSE framework, which enables multiphysics simulations in a parallel computing environment. It will address a wide variety of aging issues in nuclear power plant systems, components,more » and structures, modelling both the aging processes and the ability of age-degraded components to perform safely. The reactor pressure vessel (RPV) was chosen as the initial application for Grizzly. Grizzly solves tightly coupled equations of heat conduction and solid mechanics to simulate the global response of the RPV to accident conditions, and uses submodels to represent regions with pre-existing flaws. Domain integrals are used to calculate stress intensity factors on those flaws. A physically based empirical model is used to evaluate material embrittlement, and is used to evaluate whether crack growth would occur. Grizzly can represent the RPV in 2D or 3D, allowing it to evaluate effects that require higher dimensionality models to capture. Work is underway to use lower length scale models of material evolution to inform engineering models of embrittlement. This paper demonstrates an application of Grizzly to RPV failure assessment, and summarizes on-going work.« less
Multi-phase CFD modeling of solid sorbent carbon capture system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, E. M.; DeCroix, D.; Breault, R.
2013-07-01
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Emily M.; DeCroix, David; Breault, Ronald W.
2013-07-30
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
Automatic reactor model synthesis with genetic programming.
Dürrenmatt, David J; Gujer, Willi
2012-01-01
Successful modeling of wastewater treatment plant (WWTP) processes requires an accurate description of the plant hydraulics. Common methods such as tracer experiments are difficult and costly and thus have limited applicability in practice; engineers are often forced to rely on their experience only. An implementation of grammar-based genetic programming with an encoding to represent hydraulic reactor models as program trees should fill this gap: The encoding enables the algorithm to construct arbitrary reactor models compatible with common software used for WWTP modeling by linking building blocks, such as continuous stirred-tank reactors. Discharge measurements and influent and effluent concentrations are the only required inputs. As shown in a synthetic example, the technique can be used to identify a set of reactor models that perform equally well. Instead of being guided by experience, the most suitable model can now be chosen by the engineer from the set. In a second example, temperature measurements at the influent and effluent of a primary clarifier are used to generate a reactor model. A virtual tracer experiment performed on the reactor model has good agreement with a tracer experiment performed on-site.
Christy, R.F.
1961-07-25
A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.
Babcock and Wilcox assessment of the Pratt and Whitney XNR2000
NASA Technical Reports Server (NTRS)
Westerman, Kurt O.; Scoles, Stephen W.; Jensen, R. R.; Rodes, J. R.; Ales, M. W.
1993-01-01
Babcock & Wilcox performed four subtasks related to the assessment of the Pratt & Whitney XNR2000 nuclear reactor as follows: (1) cermet fuel element fabricability assessment; (2) mechanical design review of the reactor system; (3) neutronic analysis review; and (4) safety assessment. The results of the mechanical and physics reviews have been integrated into the reactor design. The results of the fuel and safety assessments are presented.
Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor.
Cai, Chun-guang; Zhu, Nan-wen; Liu, Jun-shen; Wang, Zhen-peng; Cai, Wei-min
2004-01-01
Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor (SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.
VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...
VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Bates, Richard B.; Ghoniem, Ahmed F.; Jablonski, Whitney S.; ...
2017-02-02
During fluidized bed biomass gasification, complex gas-solid mixing patterns and numerous chemical and physical phenomena make identification of optimal operating conditions challenging. In this work, a parametric experimental campaign was carried out alongside the development of a coupled reactor network model which successfully integrates the individually validated sub-models to predict steady-state reactor performance metrics and outputs. The experiments utilized an integrated gasification system consisting of an externally-heated, bench-scale, 4-in., 5 kWth, fluidized bed steam/air blown gasifier fed with woody biomass equipped with a molecular beam mass spectrometer to directly measure tar species. The operating temperature (750-850°C) and air/fuel equivalence ratiomore » (ER = 0-0.157) were independently varied to isolate their effects. Elevating temperature is shown to improve the char gasification rate and reduce tar concentrations. In conclusion, air strongly impacts the composition of tar, accelerating the conversion of lighter polycyclic-aromatic hydrocarbons into soot precursors, while also improving the overall carbon conversion.« less
Development of fission-products transport model in severe-accident scenarios for Scdap/Relap5
NASA Astrophysics Data System (ADS)
Honaiser, Eduardo Henrique Rangel
The understanding and estimation of the release of fission products during a severe accident became one of the priorities of the nuclear community after 1980, with the events of the Three-mile Island unit 2 (TMI-2), in 1979, and Chernobyl accidents, in 1986. Since this time, theoretical developments and experiments have shown that the primary circuit systems of light water reactors (LWR) have the potential to attenuate the release of fission products, a fact that had been neglected before. An advanced tool, compatible with nuclear thermal-hydraulics integral codes, is developed to predict the retention and physical evolution of the fission products in the primary circuit of LWRs, without considering the chemistry effects. The tool embodies the state-of-the-art models for the involved phenomena as well as develops new models. The capabilities acquired after the implementation of this tool in the Scdap/Relap5 code can be used to increase the accuracy of probability safety assessment (PSA) level 2, enhance the reactor accident management procedures and design new emergency safety features.
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
2017-01-15
This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches andmore » time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.« less
Impact of Fission Neutron Energies on Reactor Antineutrino Spectra
NASA Astrophysics Data System (ADS)
Hermanek, Keith; Littlejohn, Bryce; Gustafson, Ian
2017-09-01
Recent measurements of the reactor antineutrino spectra (Double Chooz, Reno, and Daya Bay) have shown a discrepancy in the 5-7 MeV region when compared to current theoretical models (Vogel and Huber-Mueller). There are numerous theories pertaining to this antineutrino anomaly, including theories that point to new physics beyond the standard model. In the paper ``Possible Origins and Implications of the Shoulder in Reactor Neutrino Spectra'' by A. Hayes et al., explanations for this anomaly are suggested. One theory is that there are interactions from fast and epithermal incident neutrons which are significant enough to create more events in the 5-7 MeV by a noticeable amount. In our research, we used the Oklo software network created by Dan Dwyer. This generates ab initio antineutrino and beta decay spectra based on standard fission yield databases ENDF, JENDL, JEFF, and the beta decay transition database ENSDF-6. Utilizing these databases as inputs, we show with reasonable assumptions one can prove contributions of fast and epithermal neutrons is less than 3% in the 5-7 MeV region. We also discovered rare isotopes are present in beta decay chains but not well measured and have no corresponding database information, and studied its effect onto the spectrum.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... the Standard Review Plan (SRP), concerning the physical security reviews of design certification... NRC staff with the physical security review of applications for design certifications, incorporate... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Proposed Revision to Physical Security--Standard...
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.
VIEW OF 77710A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO ...
VIEW OF 777-10A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO THE PROCESS DEVELOPMENT PILE ROOM. BUILDING 305-A IN BACKGROUND ON LEFT - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.
ERIC Educational Resources Information Center
Russell, T. W. F.
1985-01-01
Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)
Computer model of catalytic combustion/Stirling engine heater head
NASA Technical Reports Server (NTRS)
Chu, E. K.; Chang, R. L.; Tong, H.
1981-01-01
The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.
New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructivemore » Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.« less
NASA Astrophysics Data System (ADS)
Capozzi, F.; Lisi, E.; Marrone, A.
2015-11-01
Nuclear reactors provide intense sources of electron antineutrinos, characterized by few-MeV energy E and unoscillated spectral shape Φ (E ). High-statistics observations of reactor neutrino oscillations over medium-baseline distances L ˜O (50 ) km would provide unprecedented opportunities to probe both the long-wavelength mass-mixing parameters (δ m2 and θ12) and the short-wavelength ones (Δ mee 2 and θ13), together with the subtle interference effects associated with the neutrino mass hierarchy (either normal or inverted). In a given experimental setting—here taken as in the JUNO project for definiteness—the achievable hierarchy sensitivity and parameter accuracy depend not only on the accumulated statistics but also on systematic uncertainties, which include (but are not limited to) the mass-mixing priors and the normalizations of signals and backgrounds. We examine, in addition, the effect of introducing smooth deformations of the detector energy scale, E →E'(E ), and of the reactor flux shape, Φ (E )→Φ'(E ), within reasonable error bands inspired by state-of-the-art estimates. It turns out that energy-scale and flux-shape systematics can noticeably affect the performance of a JUNO-like experiment, both on the hierarchy discrimination and on precision oscillation physics. It is shown that a significant reduction of the assumed energy-scale and flux-shape uncertainties (by, say, a factor of 2) would be highly beneficial to the physics program of medium-baseline reactor projects. Our results also shed some light on the role of the inverse-beta decay threshold, of geoneutrino backgrounds, and of matter effects in the analysis of future reactor oscillation data.
Investigation report: H Reactor mischarging incident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinther, A.P.
1964-05-01
All cold reactor start-up procedures require the vertical safety rods (VSR) to be withdrawn in pairs with specific waiting periods between each pair withdrawal. This rod withdrawal procedure will assure an early and safe detection of reactor criticality should reactor reactivity conditions be different than predicted so that proper corrective actions can be taken. During the paired VSR removal of H reactor on April 17, 1964, while preparing for reactor start-up, an extremely low level rising period was detected with six VSR's still in the reactor. The withdrawn VSR's were promptly re-inserted. During the next several days other process difficultiesmore » were encountered. H Processing personnel began investigating the possibility that a number of process tubes might have been mischarged; one shift's charging effort appeared to be suspect as longitudinal peaking appeared nearly twice as severe as normal in the distorted region. Following verification of a charging error in the suspect group of 171 tubes, that group of tubes was discharged and recharged with the proper charge make-up. On April 24, during VSR removal for start-up, low level criticality was detected with three VSR's still in the unit. The VSR's were re-inserted and Operational Physics analysis requested. Following installation of additional poisoning, the Operational Physics analysis uncovered a reactivity prediction error related to the prior operation with the skewed flux distribution. However, in this case, as on April 17, the procedural paired VSR withdrawal provided safe detection of the criticality condition in adequate time to take prompt corrective action. A successful reactor start-up was then achieved later on April 24, and reactor operation has been normal since that time. 4 figs.« less
Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.
Maugans, Clayton B; Akgerman, Aydin
2003-01-01
Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.
Nuclear fuel requirements for the American economy - A model
NASA Astrophysics Data System (ADS)
Curtis, Thomas Dexter
A model is provided to determine the amounts of various fuel streams required to supply energy from planned and projected nuclear plant operations, including new builds. Flexible, user-defined scenarios can be constructed with respect to energy requirements, choices of reactors and choices of fuels. The model includes interactive effects and extends through 2099. Outputs include energy provided by reactors, the number of reactors, and masses of natural Uranium and other fuels used. Energy demand, including electricity and hydrogen, is obtained from US DOE historical data and projections, along with other studies of potential hydrogen demand. An option to include other energy demand to nuclear power is included. Reactor types modeled include (thermal reactors) PWRs, BWRs and MHRs and (fast reactors) GFRs and SFRs. The MHRs (VHTRs), GFRs and SFRs are similar to those described in the 2002 DOE "Roadmap for Generation IV Nuclear Energy Systems." Fuel source choices include natural Uranium, self-recycled spent fuel, Plutonium from breeder reactors and existing stockpiles of surplus HEU, military Plutonium, LWR spent fuel and depleted Uranium. Other reactors and fuel sources can be added to the model. Fidelity checks of the model's results indicate good agreement with historical Uranium use and number of reactors, and with DOE projections. The model supports conclusions that substantial use of natural Uranium will likely continue to the end of the 21st century, though legacy spent fuel and depleted uranium could easily supply all nuclear energy demand by shifting to predominant use of fast reactors.
Status Report on NEAMS System Analysis Module Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.; Fanning, T. H.; Sumner, T.
2015-12-01
Under the Reactor Product Line (RPL) of DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, an advanced SFR System Analysis Module (SAM) is being developed at Argonne National Laboratory. The goal of the SAM development is to provide fast-running, improved-fidelity, whole-plant transient analyses capabilities. SAM utilizes an object-oriented application framework MOOSE), and its underlying meshing and finite-element library libMesh, as well as linear and non-linear solvers PETSc, to leverage modern advanced software environments and numerical methods. It also incorporates advances in physical and empirical models and seeks closure models based on information from high-fidelity simulations and experiments. This reportmore » provides an update on the SAM development, and summarizes the activities performed in FY15 and the first quarter of FY16. The tasks include: (1) implement the support of 2nd-order finite elements in SAM components for improved accuracy and computational efficiency; (2) improve the conjugate heat transfer modeling and develop pseudo 3-D full-core reactor heat transfer capabilities; (3) perform verification and validation tests as well as demonstration simulations; (4) develop the coupling requirements for SAS4A/SASSYS-1 and SAM integration.« less
Waste tyre pyrolysis: modelling of a moving bed reactor.
Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M
2010-12-01
This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. Copyright © 2010 Elsevier Ltd. All rights reserved.
Equipment for neutron measurements at VR-1 Sparrow training reactor.
Kolros, Antonin; Huml, Ondrej; Kríz, Martin; Kos, Josef
2010-01-01
The VR-1 sparrow reactor is an experimental nuclear facility for training, student education and teaching purposes. The sparrow reactor is an educational platform for the basic experiments at the reactor physic and dosimetry. The aim of this article is to describe the new experimental equipment EMK310 features and possibilities for neutron detection by different gas filled detectors at VR-1 reactor. Among the EMK310 equipment typical attributes belong precise set-up, simple control, resistance to electromagnetic interference, high throughput (counting rate), versatility and remote controllability. The methods for non-linearity correction of pulse neutron detection system and reactimeter application are presented. Copyright 2009. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. McEligot; K. G. Condie; G. E. McCreery
2005-10-01
Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less
Development and testing of a fast conceptual river water quality model.
Keupers, Ingrid; Willems, Patrick
2017-04-15
Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rebuilding the Brookhaven high flux beam reactor: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brynda, W.J.; Passell, L.; Rorer, D.C.
1995-01-01
After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a nationalmore » scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.« less
Radiogenic lead as coolant, reflector and moderator in advanced fast reactors
NASA Astrophysics Data System (ADS)
Kulikov, E. G.
2017-01-01
Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.
Update on the direct n-n scattering experiment at the reactor YAGUAR
NASA Astrophysics Data System (ADS)
Stephenson, S. L.; Crawford, B. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Sharapov, E. I.; Shvetsov, V. N.; Strelkov, A. V.; Levakov, B. G.; Lyzhin, A. E.; Chernukhin, Yu. I.; Howell, C. R.; Mitchell, G. E.; Tornow, W.; Showalter-Bucher, R. A.
2013-10-01
The first direct measurement of the 1S0 neutron-neutron scattering experiment using the YAGUAR aperiodic reactor at the Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics has preliminary results. Thermal neutrons are scattered from a thermal neutron ``gas'' within the scattering chamber of the reactor and measured via time-of-flight. These initial results show an unexpectedly large thermal neutron background now understood to be from radiation-induced desorption within the scattering chamber. Analysis of the neutron time-of-flight spectra suggests neutron scattering from H2 and possibly H2O molecules. An experimental value for the desorption yield ηγ of 0.02 molecules/gamma agrees with modeled results. Techniques to reduce the effect of the nonthermal desorption will be presented. This work was supported in part by ISTC project No. 2286, Russia Found. Grant 01-02-17181, the US DOE grants Nos. DE-FG02-97-ER41042 and DE-FG02-97-ER41033, and by the US NSF through Award Nos. 0107263 and 0555652.
Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormon, S.; Fallot, M., E-mail: fallot@subatech.in2p3.fr; Bui, V.-M.
This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {supmore » 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.« less
Low-pressure hydrogen plasmas explored using a global model
NASA Astrophysics Data System (ADS)
Samuell, Cameron M.; Corr, Cormac S.
2016-02-01
Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
Current Physics Research: Part I.
ERIC Educational Resources Information Center
Schewe, Phillip F.
1980-01-01
This article is a preview of the book, "Physics News in 1980." Five research areas are reviewed: high energy particle accelerators, fusion reactors, solar cells, astrophysics, and gauge theories. (Author/DS)
Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility
1986-01-01
Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and
From Confrontation to Cooperation: 8th International Seminar on Nuclear War
NASA Astrophysics Data System (ADS)
Zichichi, A.; Dardo, M.
1992-09-01
The Table of Contents for the full book PDF is as follows: * OPENING SESSION * A. Zichichi: Opening Statements * R. Nicolosi: Opening Statements * MESSAGES * CONTRIBUTIONS * "The Contribution of the Erice Seminars in East-West-North-South Scientific Relations" * 1. LASER TECHNOLOGY * "Progress in laser technology" * "Progress in laboratory high gain ICF: prospects for the future" * "Applications of laser in metallurgy" * "Laser tissue interactions in medicine and surgery" * "Laser fusion" * "Compact X-ray lasers in the laboratory" * "Alternative method for inertial confinement" * "Laser technology in China" * 2. NUCLEAR AND CHEMICAL SAFETY * "Reactor safety and reactor design" * "Thereotical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core" * "How really to attain reactor safely" * "The problem of chemical weapons" * "Long terms genetic effects of nuclear and chemical accidents" * "Features of the brain which are of importance in understanding the mode of operation of toxic substances and of radiation" * "CO2 and ultra safe reactors" * 3. USE OF MISSILES * "How to convert INF technology for peaceful scientific purposes" * "Beating words into plowshares: a proposal for the peaceful uses of retired nuclear warheads" * "Some thoughts on the peaceful use of retired nuclear warheads" * "Status of the HEFEST project" * 4. OZONE * "Status of the ozone layer problem" * 5. CONVENTIONAL AND NUCLEAR FORCE RESTRUCTURING IN EUROPE * 6. CONFLICT AVOIDANCE MODEL * 7. GENERAL DISCUSSION OF THE WORLD LAB PROJECTS * "East-West-North-South Collaboration in Subnuclear Physics" * "Status of the World Lab in the USSR" * CLOSING SESSION
NASA Astrophysics Data System (ADS)
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas; Burns, Joseph R.
The aftermath of the Tōhoku earthquake and the Fukushima accident has led to a global push to improve the safety of existing light water reactors. A key component of this initiative is the development of nuclear fuel and cladding materials with potentially enhanced accident tolerance, also known as accident-tolerant fuels (ATF). These materials are intended to improve core fuel and cladding integrity under beyond design basis accident conditions while maintaining or enhancing reactor performance and safety characteristics during normal operation. To complement research that has already been carried out to characterize ATF neutronics, the present study provides an initial investigationmore » of the sensitivity and uncertainty of ATF systems responses to nuclear cross section data. ATF concepts incorporate novel materials, including SiC and FeCrAl cladding and high density uranium silicide composite fuels, in turn introducing new cross section sensitivities and uncertainties which may behave differently from traditional fuel and cladding materials. In this paper, we conducted sensitivity and uncertainty analysis using the TSUNAMI-2D sequence of SCALE with infinite lattice models of ATF assemblies. Of all the ATF materials considered, it is found that radiative capture in 56Fe in FeCrAl cladding is the most significant contributor to eigenvalue uncertainty. 56Fe yields significant potential eigenvalue uncertainty associated with its radiative capture cross section; this is by far the largest ATF-specific uncertainty found in these cases, exceeding even those of uranium. We found that while significant new sensitivities indeed arise, the general sensitivity behavior of ATF assemblies does not markedly differ from traditional UO2/zirconium-based fuel/cladding systems, especially with regard to uncertainties associated with uranium. We assessed the similarity of the IPEN/MB-01 reactor benchmark model to application models with FeCrAl cladding. We used TSUNAMI-IP to calculate similarity indices of the application model and IPEN/MB-01 reactor benchmark model. This benchmark was selected for its use of SS304 as a cladding and structural material, with significant 56Fe content. The similarity indices suggest that while many differences in reactor physics arise from differences in design, sensitivity to and behavior of 56Fe absorption is comparable between systems, thus indicating the potential for this benchmark to reduce uncertainties in 56Fe radiative capture cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. L. Davis; D. L. Knudson; J. L. Rempe
New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less
Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline
2003-08-06
The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste inmore » a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.« less
Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
David W. Nigg; Devin A. Steuhm
2011-09-01
Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelitymore » computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system is being implemented and initial computational results have been obtained. This capability will have many applications in 2011 and beyond as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation. Finally we note that although full implementation of the new computational models and protocols will extend over a period 3-4 years as noted above, interim applications in the much nearer term have already been demonstrated. In particular, these demonstrations included an analysis that was useful for understanding the cause of some issues in December 2009 that were triggered by a larger than acceptable discrepancy between the measured excess core reactivity and a calculated value that was based on the legacy computational methods. As the Modeling Update project proceeds we anticipate further such interim, informal, applications in parallel with formal qualification of the system under the applicable INL Quality Assurance procedures and standards.« less
Reactor physics teaching and research in the Swiss nuclear engineering master
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI
Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)
Sultan, Tipu
2016-07-01
This article describes the assessment of a numerical procedure used to determine the UV lamp configuration and surface roughness effects on an open channel water disinfection UV reactor. The performance of the open channel water disinfection UV reactor was numerically analyzed on the basis of the performance indictor reduction equivalent dose (RED). The RED values were calculated as a function of the Reynolds number to monitor the performance. The flow through the open channel UV reactor was modelled using a k-ε model with scalable wall function, a discrete ordinate (DO) model for fluence rate calculation, a volume of fluid (VOF) model to locate the unknown free surface, a discrete phase model (DPM) to track the pathogen transport, and a modified law of the wall to incorporate the reactor wall roughness effects. The performance analysis was carried out using commercial CFD software (ANSYS Fluent 15.0). Four case studies were analyzed based on open channel UV reactor type (horizontal and vertical) and lamp configuration (parallel and staggered). The results show that lamp configuration can play an important role in the performance of an open channel water disinfection UV reactor. The effects of the reactor wall roughness were Reynolds number dependent. The proposed methodology is useful for performance optimization of an open channel water disinfection UV reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reactor monitoring with Neutrinos
NASA Astrophysics Data System (ADS)
Cribier, Michel
2011-12-01
The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.
VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WESTSOUTHWEST, BASEMENT ...
VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WEST-SOUTHWEST, BASEMENT LEVEL -15. EDGE O FRESONANCE TEST REACTOR (RTR), LATER KNOWN AS LATTICE TEST REACTOR (LTR), VISIBLE TO RIGHT OF PDP TANK - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Carleton, John T.
1977-01-25
A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.
Calculating the Responses of Self-Powered Radiation Detectors.
NASA Astrophysics Data System (ADS)
Thornton, D. A.
Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual response mechanisms.
Effects of imperfect mixing on low-density polyethylene reactor dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, C.M.; Dihora, J.O.; Ray, W.H.
1998-07-01
Earlier work considered the effect of feed conditions and controller configuration on the runaway behavior of LDPE autoclave reactors assuming a perfectly mixed reactor. This study provides additional insight on the dynamics of such reactors by using an imperfectly mixed reactor model and bifurcation analysis to show the changes in the stability region when there is imperfect macroscale mixing. The presence of imperfect mixing substantially increases the range of stable operation of the reactor and makes the process much easier to control than for a perfectly mixed reactor. The results of model analysis and simulations are used to identify somemore » of the conditions that lead to unstable reactor behavior and to suggest ways to avoid reactor runaway or reactor extinction during grade transitions and other process operation disturbances.« less
Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André
2009-01-01
The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.
A Study of Cavitation-Ignition Bubble Combustion
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Jacqmin, David A.
2005-01-01
We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, G.A.
For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitionedmore » the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)« less
Evaluation of coupling approaches for thermomechanical simulations
Novascone, S. R.; Spencer, B. W.; Hales, J. D.; ...
2015-08-10
Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics,more » while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.« less
Decommissioning the physics laboratory, building 777-10A, at the Savannah River Site (SRS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musall, John C.; Cope, Jeff L.
2008-01-15
SRS recently completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft{sup 2} laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers, who face similar decommissioning challenges. Building 777-10A, located at the south end of SRS's A/M-Area, was built in 1953 and had a gross area of {approx}48,000 ft{sup 2}. Building 777-10A had two main areas: a west wing, which housed four experimental reactors and associated equipment; and an east wing, which housed laboratories, and shops, offices. The reactors were located in two separate areas: one area housed the Process Development Pile (PDP) reactor and the Lattice Test Reactor (LTR), while the second area housed the Standard Pile (SP) and the Sub-critical Experiment (SE) reactors. The west wing had five levels: three below and three above grade (floor elevations of -37', -28', -15', 0', +13'/+16' and +27' (roof elevation of +62')), while the east wing had two levels: one below and one above grade (floor elevations of -15' and 0' (roof elevation of +16')). Below-grade exterior walls were constructed of reinforced concrete, {approx}1' thick. In general, above-grade exterior walls were steel frames covered by insulation and corrugated, asbestos-cement board. The two interior walls around the PDP/LTR were reinforced concrete {approx}5' thick and {approx}30' high, while the SP/SE reactors resided in a reinforced, concrete cell with 3.5'-6' thick walls/roof. All other interior walls were constructed of metal studs covered with either asbestos-cement or gypsum board. In general, the floors were constructed of reinforced concrete on cast-in-place concrete beams below-grade and concrete on metal beams above-grade. The roofs were flat concrete slabs on metal beams. Building 777-10A was an important SRS research and development location. The reactors helped determine safe operational limits and loading patterns for fuel used in the SRS production reactors, and supported various low power reactor physics studies. All four reactors were shut down and de-inventoried in the 1970's. The building was DD and R 2007, Chattanooga, Tennessee, September 16-19, 2007 169 subsequently used by various SRS organizations for office space, audio/visual studio, and computer network hub. SRS successfully decommissioned Building 777-10A over a thirty month period at a cost of {approx}more » $$14 M ({approx}$$290/ft{sup 2}). The decommissioning was a complex and difficult effort due to the building's radiological contamination, height, extensive basement, and thick concrete walls. Extensive planning and extensive hazard analysis (e.g. of structural loads/modifications leading to unplanned collapse) ensured the decommissioning was completed safely and without incident. The decommissioning met contract standards for residual contamination and physical/chemical hazards, and was the last in a series of decommissioning projects that prepared the lower A/M-Area for SRS's environmental restoration program.« less
MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR
A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...
Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel
2014-02-05
Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. Copyright © 2013 Elsevier Inc. All rights reserved.
Flow dynamics in bioreactors containing tissue engineering scaffolds.
Lawrence, Benjamin J; Devarapalli, Mamatha; Madihally, Sundararajan V
2009-02-15
Bioreactors are widely used in tissue engineering as a way to distribute nutrients within porous materials and provide physical stimulus required by many tissues. However, the fluid dynamics within the large porous structure are not well understood. In this study, we explored the effect of reactor geometry by using rectangular and circular reactors with three different inlet and outlet patterns. Geometries were simulated with and without the porous structure using the computational fluid dynamics software Comsol Multiphysics 3.4 and/or ANSYS CFX 11 respectively. Residence time distribution analysis using a step change of a tracer within the reactor revealed non-ideal fluid distribution characteristics within the reactors. The Brinkman equation was used to model the permeability characteristics with in the chitosan porous structure. Pore size was varied from 10 to 200 microm and the number of pores per unit area was varied from 15 to 1,500 pores/mm(2). Effect of cellular growth and tissue remodeling on flow distribution was also assessed by changing the pore size (85-10 microm) while keeping the number of pores per unit area constant. These results showed significant increase in pressure with reduction in pore size, which could limit the fluid flow and nutrient transport. However, measured pressure drop was marginally higher than the simulation results. Maximum shear stress was similar in both reactors and ranged approximately 0.2-0.3 dynes/cm(2). The simulations were validated experimentally using both a rectangular and circular bioreactor, constructed in-house. Porous structures for the experiments were formed using 0.5% chitosan solution freeze-dried at -80 degrees C, and the pressure drop across the reactor was monitored.
Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Leonard J.; Bowler, John R.
The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-servicemore » inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO 3-xPbTiO 3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.« less
NASA Astrophysics Data System (ADS)
Buttery, N. E.
2008-03-01
Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.
NASA Astrophysics Data System (ADS)
Asphahani, Aziz; Siegel, Sidney; Siegel, Edward
2010-03-01
Carbides solid-state chemistry domination of old/new nuclear- reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe-based(so miscalled)``super"alloys(182/82; Hastelloy-X,600,304/304L-SSs,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-diseas(WD)[J.Appl.Phys.17,857 (1946)]/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google:``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: Siegel[J.Mag.Mag.Mtls.7,312 (1978)]<<<``Fert"-"Gruenberg"(1988/89)2007-physics Nobel/Wolf/ Japan-prizes]necessitating NRC-inspections of 40+25 = 65 Westin- ``KLouse PWRs(12/2006)]-Lai[Met.Trans.AIME,9A,827(1978)]-Sabol- Stickler[Phys.Stat.Sol.(1970)]-Ashpahani[Intl.Conf. H in Metals, Paris(1977]-Russell[Prog.Mtls.Sci.(1983)]-Pollard[last UCS rept. (9/1995)]-Lofaro[BNL/DOE/NRC Repts.]-Pringle[Nuclear-Power:From Physics to Politics(1979)]-Hoffman[animatedsoftware.com], what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embritt- lement caused brittle-fracture cracking from early/ongoing AEC/ DOE-n"u"tional-la"v"atories sabotage!!!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, C.R.; Larsen, I.L.; Lowry, P.D.
Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout /sup 137/Cs; reactor-released /sup 137/Cs, /sup 134/Cs, /sup 65/Zn, /sup 60/Co, and /sup 58/Co; and naturally occurring /sup 7/Be and /sup 210/Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioningmore » among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs.« less
High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.
NASA Astrophysics Data System (ADS)
Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof
Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.
Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.
Merk, B; Litskevich, D; Gregg, R; Mount, A R
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.
Nielsen, Joseph; Tokuhiro, Akira; Hiromoto, Robert; ...
2015-11-13
Evaluation of the impacts of uncertainty and sensitivity in modeling presents a significant set of challenges in particular to high fidelity modeling. Computational costs and validation of models creates a need for cost effective decision making with regards to experiment design. Experiments designed to validate computation models can be used to reduce uncertainty in the physical model. In some cases, large uncertainty in a particular aspect of the model may or may not have a large impact on the final results. For example, modeling of a relief valve may result in large uncertainty, however, the actual effects on final peakmore » clad temperature in a reactor transient may be small and the large uncertainty with respect to valve modeling may be considered acceptable. Additionally, the ability to determine the adequacy of a model and the validation supporting it should be considered within a risk informed framework. Low fidelity modeling with large uncertainty may be considered adequate if the uncertainty is considered acceptable with respect to risk. In other words, models that are used to evaluate the probability of failure should be evaluated more rigorously with the intent of increasing safety margin. Probabilistic risk assessment (PRA) techniques have traditionally been used to identify accident conditions and transients. Traditional classical event tree methods utilize analysts’ knowledge and experience to identify the important timing of events in coordination with thermal-hydraulic modeling. These methods lack the capability to evaluate complex dynamic systems. In these systems, time and energy scales associated with transient events may vary as a function of transition times and energies to arrive at a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. This study presents a methodology to address combinatorial explosion using a Branch-and-Bound algorithm applied to Dynamic Event Trees (DET), which utilize LENDIT (L – Length, E – Energy, N – Number, D – Distribution, I – Information, and T – Time) as well as a set theory to describe system, state, resource, and response (S2R2) sets to create bounding functions for the DET. The optimization of the DET in identifying high probability failure branches is extended to create a Phenomenological Identification and Ranking Table (PIRT) methodology to evaluate modeling parameters important to safety of those failure branches that have a high probability of failure. The PIRT can then be used as a tool to identify and evaluate the need for experimental validation of models that have the potential to reduce risk. Finally, in order to demonstrate this methodology, a Boiling Water Reactor (BWR) Station Blackout (SBO) case study is presented.« less
Physics From the News -- Fukushima Daiichi: Radiation Doses and Dose Rates
NASA Astrophysics Data System (ADS)
Bartlett, A. A.
2011-09-01
The nuclear disaster that was triggered by the Japanese earthquake and the following tsunami of March 11, 2011, continues to be the subject of a great deal of news coverage. The tsunami caused severe damage to the nuclear power reactors at Fukushima Daiichi, and this led to the escape of unknown quantities of radioactive material from the damaged fuel rods in the reactors and from the associated storage facilities for the fuel rods that had been removed from the reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaspar, R.; Moll, O.; Hermelo, C.
1963-01-01
The methods used to measure the irradiation levels and the radiation exposure of personnel of the RA-1 reactor are described. The criteria used to evaluate the risks from this exposure are reported. Typical graphs are shown of the radiation levels measured in the control room. (J.S.R.)
Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power
NASA Technical Reports Server (NTRS)
Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.
1991-01-01
The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.
Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, R.W.
1982-11-01
This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)
Horizontal baffle for nuclear reactors
Rylatt, John A.
1978-01-01
A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.
Steady State Advanced Tokamak (SSAT): The mission and the machine
NASA Astrophysics Data System (ADS)
Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.
1992-03-01
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
Hardware accelerated high performance neutron transport computation based on AGENT methodology
NASA Astrophysics Data System (ADS)
Xiao, Shanjie
The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2008-07-15
The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.
Wide-range structurally optimized channel for monitoring the certified power of small-core reactors
NASA Astrophysics Data System (ADS)
Koshelev, A. S.; Kovshov, K. N.; Ovchinnikov, M. A.; Pikulina, G. N.; Sokolov, A. B.
2016-12-01
The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.
Sensitivity to VSR failure: K pipe break accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meichle, R.H.
1969-09-12
Reactor effects of failure of a safety rod to scram can be considered in two major respects: The reduction in total safety system strength which will affect the amount of ``prompt drop`` and subsequent flux decay rate of the average neutron flux-level; and the change in local flux distribution due to the absence of the particular rod which fails to enter the reactor. The purpose of this memorandum is to describe the physical effects involved and to indicate the approximate magnitude of both reactor-wide and localized changes in event of failure of a VSR simultaneous with a K Reactor risermore » accident.« less
Wide-range structurally optimized channel for monitoring the certified power of small-core reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Kovshov, K. N.; Ovchinnikov, M. A.
The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.
Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers
NASA Astrophysics Data System (ADS)
Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard
2015-03-01
Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two magnetostrictive transducers were fabricated with Remendur or Galfenol as the active elements. Pulse-echo ultrasonic measurements of these transducers are made in-situ. This paper will present an overview of the test design including selection criteria for candidate materials and optimization of test assembly parameters, data obtained from both out-of-pile and in-pile testing at elevated temperatures, and an assessment based on initial data of the expected performance of ultrasonic devices in irradiation conditions.
Who will save the tokamak - Harry Potter, Arnold Schwarzenegger, or Shaquille O'Neil?
NASA Astrophysics Data System (ADS)
Freidberg, J.; Mangiarotti, F.; Minervini, J.
2014-10-01
The tokamak is the current leading contender for a fusion power reactor. The reason for the preeminence of the tokamak is its high quality plasma physics performance relative to other concepts. Even so, it is well known that the tokamak must still overcome two basic physics challenges before becoming viable as a DEMO and ultimately a reactor: (1) the achievement of non-inductive steady state operation, and (2) the achievement of robust disruption free operation. These are in addition to the PMI problems faced by all concepts. The work presented here demonstrates by means of a simple but highly credible analytic calculation that a ``standard'' tokamak cannot lead to a reactor - it is just not possible to simultaneously satisfy all the plasma physics plus engineering constraints. Three possible solutions, some more well-known than others, to the problem are analyzed. These visual image generating solutions are defined as (1) the Harry Potter solution, (2) the Arnold Schwarzenegger solution, and (3) the Shaquille O'Neil solution. Each solution will be described both qualitatively and quantitatively at the meeting.
Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle
ERIC Educational Resources Information Center
Settle, Frank A.
2009-01-01
The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…
Metal fires and their implications for advanced reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean
This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in thesemore » areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety analysis capabilities of the advanced-reactor community for directly relevant scenarios. Beyond the focus on the thermally-interacting and smoldering sodium pool fires, experimental and analysis capabilities for sodium spray fires have also been developed in this project.« less
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Barry, U; Choubert, J-M; Canler, J-P; Héduit, A; Robin, L; Lessard, P
2012-01-01
This work suggests a procedure to correctly calibrate the parameters of a one-dimensional MBBR dynamic model in nitrification treatment. The study deals with the MBBR configuration with two reactors in series, one for carbon treatment and the other for nitrogen treatment. Because of the influence of the first reactor on the second one, the approach needs a specific calibration strategy. Firstly, a comparison between measured values and simulated ones obtained with default parameters has been carried out. Simulated values of filtered COD, NH(4)-N and dissolved oxygen are underestimated and nitrates are overestimated compared with observed data. Thus, nitrifying rate and oxygen transfer into the biofilm are overvalued. Secondly, a sensitivity analysis was carried out for parameters and for COD fractionation. It revealed three classes of sensitive parameters: physical, diffusional and kinetic. Then a calibration protocol of the MBBR dynamic model was proposed. It was successfully tested on data recorded at a pilot-scale plant and a calibrated set of values was obtained for four parameters: the maximum biofilm thickness, the detachment rate, the maximum autotrophic growth rate and the oxygen transfer rate.
Series Bosch System Development
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Evans, Christopher; Mansell, Matt; Swickrath, Michael
2012-01-01
State-of-the-art (SOA) carbon dioxide (CO2) reduction technology for the International Space Station produces methane as a byproduct. This methane is subsequently vented overboard. The associated loss of hydrogen ultimately reduces the mass of oxygen that can be recovered from CO2 in a closed-loop life support system. As an alternative to SOA CO2 reduction technology, NASA is exploring a Series-Bosch system capable of reducing CO2 with hydrogen to form water and solid carbon. This results in 100% theoretical recovery of oxygen from metabolic CO2. In the past, Bosch-based technology did not trade favorably against SOA technology due to a high power demand, low reaction efficiencies, concerns with carbon containment, and large resupply requirements necessary to replace expended catalyst cartridges. An alternative approach to Bosch technology, labeled "Series-Bosch," employs a new system design with optimized multi-stage reactors and a membrane-based separation and recycle capability. Multi-physics modeling of the first stage reactor, along with chemical process modeling of the integrated system, has resulted in a design with potential to trade significantly better than previous Bosch technology. The modeling process and resulting system architecture selection are discussed.
NASA Astrophysics Data System (ADS)
Singh, Gyanender; Terrani, Kurt; Katoh, Yutai
2018-02-01
SiC/SiC composites are considered among leading candidates for accident tolerant fuel cladding in light water reactors. However, when SiC-based materials are exposed to neutron irradiation, they experience significant changes in dimensions and physical properties. Under a large heat flux application (i.e. fuel cladding), the non-uniform changes in the dimensions and physical properties will lead to build-up of stresses in the structure over the course of time. To ensure reliable and safe operation of such a structure it is important to assess its thermo-mechanical performance under in-reactor conditions of irradiation and elevated temperature. In this work, the foundation for 3D thermo-mechanical analysis of SiC/SiC cladding is put in place and a set of analyses with simplified boundary conditions has been performed. The analyses were carried out with two different codes that were benchmarked against one another and prior results in the literature. A constitutive model is constructed and solved numerically to predict the stress distribution and variation in the cladding under normal operating conditions. The dependence of dimensions and physical properties variation with irradiation and temperature has been incorporated. These robust models may now be modified to take into account the axial and circumferential variation in neutron and heat flux to fully account for 3D effects. The results from the simple analyses show the development of high tensile stresses especially in the circumferential and axial directions at the inner region of the cladding. Based on the results obtained, design guidelines are recommended. For lack of certainty in or tailor-ability for the physical and mechanical properties of SiC/SiC composite material a sensitivity analysis is conducted. The analysis results establish a precedence order of the properties based on the extent to which these properties influence the temperature and the stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, S.; Chowdhury, R.; Biswas, G.K.
A mathematical model based on the mechanistic approach to the reaction kinetics of pyrolysis reactions and the realistic analysis of the interaction between simultaneous heat and mass transfer along with the chemical reaction has been developed for the design of smoothly running pyrolyzers. The model of a fixed-bed pyrolysis reactor has been proposed on the basis of the dimensionless parameters with respect to time and radial position. The variation of physical parameters like bed voidage, heat capacity, diffusivity, density, thermal conductivity, etc., on temperature and conversion has been taken into account. A deactivation model has also been incorporated to explainmore » the behavior of pyrolysis reactions at temperatures above 673 K. The simulated results of the model have been explained by comparing them with the experimental results.« less
Metabolic modeling of synthesis gas fermentation in bubble column reactors.
Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A
2015-01-01
A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, R.U.; Benneche, P.E.; Hosticka, B.
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA from use at their institutions. These areas are discussed in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, R.U.; Benneche, P.E.; Hosticka, B.
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed here.« less
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.« less
Physics of the Tokamak Pedestal, and Implications for Magnetic Fusion Energy
NASA Astrophysics Data System (ADS)
Snyder, Philip
2017-10-01
High performance in tokamaks is achieved via the spontaneous formation of a transport barrier in the outer few percent of the confined plasma. This narrow insulating layer, referred to as a ``pedestal,'' typically results in a >30x increase in pressure across a 0.4-5cm layer. Predicted fusion power scales with the square of the pedestal top pressure (or ``pedestal height''), hence a fusion reactor strongly benefits from a high pedestal, provided this can be attained without large Edge Localized Modes (ELMs), which may erode plasma facing materials. The overlap of drift orbit, turbulence, and equilibrium scales across this narrow layer leads to rich and complex physics, and challenges traditional analytic and computational approaches. We review studies employing gyrokinetic, neoclassical, MHD, and other methods, which have explored how a range of instabilities, influenced by complex geometry, and strong ExB flows and bootstrap current, drive transport across the pedestal and guide its structure and dynamics. Development of high resolution diagnostics, and coordinated experiments on several tokamaks, have validated understanding of important aspects of the physics, while highlighting open issues. A predictive model (EPED) has proven capable of predicting the pedestal height and width to 20-25% accuracy in large statistical studies. This model was used to predict a new, high pedestal ``Super H-Mode'' regime, which was subsequently discovered on DIII-D, and motivated experiments on Alcator C-Mod which achieved world record, reactor relevant pedestal pressure. We review open issues including improved formalism, particle and momentum transport, the role of neutrals and impurities, ELM control, and pedestal formation. Finally we discuss coupling pedestal and core predictive models to enable more comprehensive optimization of the tokamak fusion concept. Supported by the US DOE under DE-FG02-95ER54309, FC02-06ER54873, DE-FC02-04ER54698, DE-FC02-99ER54512.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, W.N.
1985-08-01
This NRC physics-dosimetry compendium is a collation of information and data developed from available research and commercial light water reactor vessel surveillance program (RVSP) documents and related surveillance capsule reports. The data represents the results of the HEDL least-squares FERRET-SAND II Code re-evaluation of exposure units and values for 47 PWR and BWR surveillance capsules for W, B and W, CE, and GE power plants. Using a consistent set of auxiliary data and dosimetry-adjusted reactor physics results, the revised fluence values for E > 1 MeV averaged 25% higher than the originally reported values. The range of fluence values (new/old)more » was from a low of 0.80 to a high of 2.38. These HEDL-derived FERRET-SAND II exposure parameter values are being used for NRC-supported HEDL and other PWR and BWR trend curve data development and testing studies. These studies are providing results to support Revision 2 of Regulatory Guide 1.99. As stated by Randall (Ra84), the Guide is being updated to reflect recent studies of the physical basis for neutron radiation damage and efforts to correlate damage to chemical composition and fluence.« less
Long, E.; Ashley, J.W.
1958-12-16
A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.
NASA Astrophysics Data System (ADS)
Blokhin, D. A.; Chernov, V. M.; Blokhin, A. I.
2017-12-01
Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.
Alternate fusion fuels workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-06-01
The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached.
Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trambauer, K.
1997-07-01
The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonablemore » accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... shall: (i) Design, construct, install and maintain physical barriers as necessary to control access into.... (10) Vehicle control measures. Consistent with the physical protection program design requirements of... maintain vehicle control measures, as necessary, to protect against the design basis threat of radiological...
Code of Federal Regulations, 2012 CFR
2012-01-01
... shall: (i) Design, construct, install and maintain physical barriers as necessary to control access into.... (10) Vehicle control measures. Consistent with the physical protection program design requirements of... maintain vehicle control measures, as necessary, to protect against the design basis threat of radiological...
Code of Federal Regulations, 2014 CFR
2014-01-01
... shall: (i) Design, construct, install and maintain physical barriers as necessary to control access into.... (10) Vehicle control measures. Consistent with the physical protection program design requirements of... maintain vehicle control measures, as necessary, to protect against the design basis threat of radiological...
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
NASA Astrophysics Data System (ADS)
Zhou, Hao-Jun; Yin, Yan-Peng; Fan, Xiao-Qiang; Li, Zheng-Hong; Pu, Yi-Kang
2016-06-01
A perturbation method is proposed to obtain the effective delayed neutron fraction β eff of a cylindrical highly enriched uranium reactor. Based on reactivity measurements with and without a sample at a specified position using the positive period technique, the reactor reactivity perturbation Δρ of the sample in β eff units is measured. Simulations of the perturbation experiments are performed using the MCNP program. The PERT card is used to provide the difference dk of effective neutron multiplication factors with and without the sample inside the reactor. Based on the relationship between the effective multiplication factor and the reactivity, the equation β eff = dk/Δρ is derived. In this paper, the reactivity perturbations of 13 metal samples at the designable position of the reactor are measured and calculated. The average β eff value of the reactor is given as 0.00645, and the standard uncertainty is 3.0%. Additionally, the perturbation experiments for β eff can be used to evaluate the reliabilities of the delayed neutron parameters. This work shows that the delayed neutron data of 235U and 238U from G.R. Keepin’s publication are more reliable than those from ENDF-B6.0, ENDF-B7.0, JENDL3.3 and CENDL2.2. Supported by Foundation of Key Laboratory of Neutron Physics, China Academy of Engineering Physics (2012AA01, 2014AA01), National Natural Science Foundation (11375158, 91326104)
Nucifer: A small electron-antineutrino detector for fundamental and safeguard studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letourneau, A.; Bui, V. M.; Cribier, M.
The Nucifer detector will be deployed in the next few months at the Osiris research reactor in France. Nucifer is a 1-ton Gd-doped liquid scintillator detector devoted to reactor antineutrino studies. It will be installed 7 m away from the compact core of the Osiris reactor. The design of such small volume detector has been focused on high detection efficiency and good background rejection. Over the last decades, our understanding of the neutrino properties has been improved and allows today the possibility to apply the detection of antineutrinos to automatic and to non intrusively survey nuclear power plant. This hasmore » triggered the interest of the International Atomic Energy Agency (IAEA), which is interested by developing new safeguard techniques for next generation reactors. The sensitivity of such technique has to be proved and demonstrated. On the other hand there is still some issues in our understanding of the neutrino properties as the observed deficit in the antineutrino rate at short distances (< 100 m) that can not be explained by oscillations in the 3-flavors neutrino model. If a global systematic error is rejected, such anomaly opens the door to new physic that can be assessed with small detectors placed close to the core. Here we review the Nucifer detector in this context and the tests we are performing. (authors)« less
Engine System Model Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; Simpson, Steven P.
2006-01-01
In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
NASA Astrophysics Data System (ADS)
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-11-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...
2015-11-03
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, F.; Mason, D. R.; Eliason, J. K.
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-01-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099
Oscillations in the permanganate oxidation of glycine in a stirred flow reactor.
Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós
2013-09-19
Oscillatory behavior is reported in the permanganate oxidation of glycine in the presence of Na2HPO4 in a stirred flow reactor. In near-neutral solutions, long-period sustained oscillations were recorded in the potential of a Pt electrode and in the light absorbance measured at λ = 418 and 545 nm, characteristic wavelengths for following the evolution of the intermediate [Mn(IV)] and reagent [MnO4(-) ] during the course of the reaction. No evidence of bistability was found. The chemical and physical backgrounds of the oscillatory phenomenon are discussed. In the oscillatory cycle, the positive feedback is attributed to the autocatalytic formation of a soluble Mn(IV) species, whereas the negative feedback arises from its removal from the solution in the form of solid MnO2. A simple model is suggested that qualitatively simulates the experimental observations in batch runs and the dynamics that appears in the flow system.
Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko
2014-03-15
The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.
Catalytic wet oxidation: mathematical modeling of multicompound destruction.
Yang, J; Hand, D W; Hokanson, D R; Crittenden, J C; Oman, E J
2003-01-01
A mathematical model of a three-phase catalytic reactor, CatReac, was developed for analysis and optimization of a catalytic oxidation reactor that is used in the International Space Station potable water processor. The packed-bed catalytic reactor, known as the volatile reactor assembly (VRA), is operated as a three-phase reactor and contains a proprietary catalyst, a pure-oxygen gas phase, and the contaminated water. The contaminated water being fed to the VRA primarily consists of acetic acid, acetone, ethanol, 1-propanol, 2-propanol, and propionic acid ranging in concentration from 1 to 10 mg/L. The Langmuir-Hinshelwood Hougen-Watson (L-H) (Hougen, 1943) expression was used to describe the surface reaction rate for these compounds. Single and multicompound short-column experiments were used to determine the L-H rate parameters and calibrate the model. The model was able to predict steady-state multicomponent effluent profiles for short and full-scale reactor experiments.
Plasma Processes for Semiconductor Fabrication
NASA Astrophysics Data System (ADS)
Hitchon, W. N. G.
1999-01-01
Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.
Self-consistent modeling of CFETR baseline scenarios for steady-state operation
NASA Astrophysics Data System (ADS)
Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team
2017-07-01
Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Zhang, Qiong
2014-05-20
The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executedmore » in the order of 10 3 - 10 5 times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.« less
GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Blair Briggs; John D. Bess; Jim Gulliford
2011-09-01
Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical ormore » subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPhEP will be discussed in the full paper, selected benchmarks that have been added to the ICSBEP Handbook will be highlighted, and a preview of the new benchmarks that will appear in the September 2011 edition of the Handbook will be provided. Accomplishments of the IRPhEP will also be highlighted and the future of both projects will be discussed. REFERENCES (1) International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I-IX, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), September 2010 Edition, ISBN 978-92-64-99140-8. (2) International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC(2006)1, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), March 2011 Edition, ISBN 978-92-64-99141-5.« less
Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Turner, D.W.
1994-12-31
Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less
STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony L. Alberti; Todd S. Palmer; Javier Ortensi
2016-05-01
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately modelmore » the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.« less
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
The program aims at developing mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. The major interest is in collecting silicon as a liquid on the reactor walls and other collection surfaces. Two reactor systems are of major interest, a SiCl4/Na reactor in which Si(l) is collected on the flow tube reactor walls and a reactor in which Si(l) droplets formed by the SiCl4/Na reaction are collected by a jet impingement method. During this quarter the following tasks were accomplished: (1) particle deposition routines were added to the boundary layer code; and (2) Si droplet sizes in SiCl4/Na reactors at temperatures below the dew point of Si are being calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federici, G.; Skinner, C.H.; Brooks, J.N.
2001-01-10
The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of themore » important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.« less
Assessment of SFR Wire Wrap Simulation Uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delchini, Marc-Olivier G.; Popov, Emilian L.; Pointer, William David
Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advancedmore » Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results for the 3-D pipe, the single pin THORS mesh, and the 7-pin bundle mesh, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinh, Nam; Athe, Paridhi; Jones, Christopher
The Virtual Environment for Reactor Applications (VERA) code suite is assessed in terms of capability and credibility against the Consortium for Advanced Simulation of Light Water Reactors (CASL) Verification and Validation Plan (presented herein) in the context of three selected challenge problems: CRUD-Induced Power Shift (CIPS), Departure from Nucleate Boiling (DNB), and Pellet-Clad Interaction (PCI). Capability refers to evidence of required functionality for capturing phenomena of interest while capability refers to the evidence that provides confidence in the calculated results. For this assessment, each challenge problem defines a set of phenomenological requirements against which the VERA software is assessed. Thismore » approach, in turn, enables the focused assessment of only those capabilities relevant to the challenge problem. The evaluation of VERA against the challenge problem requirements represents a capability assessment. The mechanism for assessment is the Sandia-developed Predictive Capability Maturity Model (PCMM) that, for this assessment, evaluates VERA on 8 major criteria: (1) Representation and Geometric Fidelity, (2) Physics and Material Model Fidelity, (3) Software Quality Assurance and Engineering, (4) Code Verification, (5) Solution Verification, (6) Separate Effects Model Validation, (7) Integral Effects Model Validation, and (8) Uncertainty Quantification. For each attribute, a maturity score from zero to three is assigned in the context of each challenge problem. The evaluation of these eight elements constitutes the credibility assessment for VERA.« less
Modeling the Homogenization Kinetics of As-Cast U-10wt% Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Joshi, Vineet; Hu, Shenyang Y.
2016-01-15
Low-enriched U-22at% Mo (U-10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U-10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding ofmore » the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.« less
COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Essam A
2013-01-09
Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations tomore » study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.« less
Tay, J H; Liu, Q S; Liu, Y
2002-08-01
Aerobic granules were cultivated in two column-type sequential aerobic sludge blanket reactors fed with glucose and acetate, respectively. The characteristics of aerobic granules were investigated. Results indicated that the glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density, hydrophobicity, physical strength, microbial activity and storage stability. Substrate component does not seem to be a key factor on the formation of aerobic granules. However, microbial diversity of the granules is closely associated with the carbon sources supplied to the reactors. Compared with the conventional activated sludge flocs, aerobic granules exhibit excellent physical characteristics that would be essential for industrial application. This research provides a complete set of characteristics data of aerobic granules grown on glucose and acetate, which would be useful for further development of aerobic granules-based compact bioreactor for handling high strength organic wastewater.
American Nuclear Society 1994 student conference eastern region
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains abstracts from the 1994 American Nuclear Society Student Conference. The areas covered by these abstracts are: fusion and plasma physics; nuclear chemistry; radiation detection; reactor physics; thermal hydraulics; and corrosion science and waste issues.
Overview of the US Fusion Materials Sciences Program
NASA Astrophysics Data System (ADS)
Zinkle, Steven
2004-11-01
The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.
10 CFR 110.42 - Export licensing criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... research on or development of any nuclear explosive device. (3) Adequate physical security measures will be... to exports of high-enriched uranium to be used as a fuel or target in a nuclear research or test... can be used in the reactor. (iii) A fuel or target “can be used” in a nuclear research or test reactor...
Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.
1961-12-01
An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)
Energy from the Atom. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…
Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Alex; Kelley, C. T.; Slattery, Stuart R
ABSTRACT A standard method for solving coupled multiphysics problems in light water reactors is Picard iteration, which sequentially alternates between solving single physics applications. This solution approach is appealing due to simplicity of implementation and the ability to leverage existing software packages to accurately solve single physics applications. However, there are several drawbacks in the convergence behavior of this method; namely slow convergence and the necessity of heuristically chosen damping factors to achieve convergence in many cases. Anderson acceleration is a method that has been seen to be more robust and fast converging than Picard iteration for many problems, withoutmore » significantly higher cost per iteration or complexity of implementation, though its effectiveness in the context of multiphysics coupling is not well explored. In this work, we develop a one-dimensional model simulating the coupling between the neutron distribution and fuel and coolant properties in a single fuel pin. We show that this model generally captures the convergence issues noted in Picard iterations which couple high-fidelity physics codes. We then use this model to gauge potential improvements with regard to rate of convergence and robustness from utilizing Anderson acceleration as an alternative to Picard iteration.« less
Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list
Litskevich, D.; Gregg, R.; Mount, A. R.
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604
Influence of oil type on the amounts of acrylamide generated in a model system and in French fries.
Mestdagh, Frédéric J; De Meulenaer, Bruno; Van Poucke, Christof; Detavernier, Christ'l; Cromphout, Caroline; Van Peteghem, Carlos
2005-07-27
Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, Robert; Mata, Angelica; Dunzik-Gougar, Mary Lou
2016-06-01
As part of an overall effort to convert US research reactors to low-enriched uranium (LEU) fuel use, a LEU conversion fuel is being designed for the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory. TREAT fuel compacts are comprised of UO2 fuel particles in a graphitic matrix material. In order to refine heat transfer modeling, as well as determine other physical and nuclear characteristics of the fuel, the amount and type of graphite and non-graphite phases within the fuel matrix must be known. In this study, we performed a series of complementary analyses, designed to allow detailed characterizationmore » of the graphite and phenolic resin based fuel matrix. Methods included Scanning Electron and Transmission Electron Microscopies, Raman spectroscopy, X-ray Diffraction, and Dual-Beam Focused Ion Beam Tomography. Our results indicate that no single characterization technique will yield all of the desired information; however, through the use of statistical and empirical data analysis, such as curve fitting, partial least squares regression, volume extrapolation and spectra peak ratios, a degree of certainty for the quantity of each phase can be obtained.« less
Nuclear fuel management optimization using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-07-01
The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less
Latest progress from the Daya Bay reactor neutrino experiment
NASA Astrophysics Data System (ADS)
Wang, Zhe;
2016-05-01
Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.
Development of the reactor antineutrino detection technology within the iDream project
NASA Astrophysics Data System (ADS)
Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.
2017-12-01
The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.
Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.
2015-05-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
Computer modeling of a hot filament diamond deposition reactor
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.; Washlock, Paul A.; Angus, John C.
1991-01-01
A commercial fluid mechanics program, FLUENT, has been applied to the modeling of a hot-filament diamond deposition reactor. Streamlines and contours of constant temperature and species concentrations are obtained for practical reactor geometries and conditions. The modeling is presently restricted to two-dimensional simulations and to a chemical mechanism of ten independent homogeneous and surface reactions. Comparisons are made between predicted power consumption, substrate temperature, and concentrations of atomic hydrogen and methyl-radical with values taken from the literature. The results to date indicate that the modeling can aid in the rational design and analysis of practical reactor configurations.
NASA Astrophysics Data System (ADS)
Dautray, Robert
2011-06-01
The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation, etc., radioprotection measures and treatment for the "transuranic" elements. For a long period of time, France was in the forefront of nuclear breeder power generation science, technological research and also in the knowledge base related to breeder reactors. It is in the country's interest to pursue these efforts and this could per se constitute one of the national priorities. Nous sommes naturellement bien conscients de l'énorme problème qui se pose au Japon actuellement comme suite au tremblement de terre et au tsunami de mars 2011 et leurs conséquences, notamment sur des installations électronucléaires. Le texte que nous présentons concerne des conditions totalement générales, indépendantes des problèmes spécifiques de sûreté qu'il faudra, de toute façon, traiter dans le cadre d'un développement éventuel de l'énergie nucléaire.We are aware, of course, of the huge problem that Japan has to deal with the aftermath of the quake and tsunami of March 2011 and their consequences on electronuclear power plants. The text that we present here concerns general physical topics independent of the specific safety problems, general physical topics which will have to be solved in the case of a contingent development of electronuclear power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelenkov, Nikolai N
The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEsmore » (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).« less
Nuclear reactor for breeding U.sup.233
Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin
1976-01-01
A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.
Planetary surface reactor shielding using indigenous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, Michael G.; Poston, David I.; Trellue, Holly R.
The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials. {copyright} {ital 1999 American Institute of Physics.}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewe, W.E.; Krucoff, D.
1958-10-31
Work has begun on the ADFR, a reactor using a new fuel form -- fissionable dust carried in an inent gas. Temperatures in the range 2,000 to 3,000 deg F appear feasible in an all-ceramic system. Experimental study of the fuel form was initiated, and a loop to circulate the fuel dust was constructed. Initial operation is encouraging. Theoretical studies were carried on in the areas of reactor physics, heat transfer, and safety. (auth)