Sample records for reactor program annual

  1. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  2. The Atomic Energy Commission's Annual Report to Congress for 1962. Major Activities in the Atomic Energy Programs, January - December 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1963-01-31

    The document represents the 1962 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report opens with a section of Highlights of the Atomic Energy Programs of 1962, followed by five parts: Part One, Commission Activities; Part Two, Nuclear Reactor Programs; Part Three, Production and Weapons Programs; Part Four, Other Major Programs; and Part Five, The Regulatory Program. Sixteen appendices are also included.

  3. ATR National Scientific User Facility 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Julie A.; Robertson, Sarah

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  4. N Reactor Deactivation Program Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less

  5. Reduced enrichment for research and test reactors: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  6. Annual Report to Congress of the Atomic Energy Commission for 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less

  7. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...

  8. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...

  9. 10 CFR 171.21 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false [Reserved] 171.21 Section 171.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ANNUAL FEES FOR REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF COMPLIANCE, REGISTRATIONS, AND QUALITY ASSURANCE PROGRAM APPROVALS AND...

  10. Annual Report to Congress of the Atomic Energy Commission for 1969

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1970-01-31

    The document represents the 1969 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1969'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Byproduct Nuclear Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Space Nuclear Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less

  11. Annual Report to Congress of the Atomic Energy Commission for 1968

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1969-01-31

    The document represents the 1968 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1968'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Nuclear Byproduct Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less

  12. RERTR 2009 (Reduced Enrichment for Research and Test Reactors)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Totev, T.; Stevens, J.; Kim, Y. S.

    2010-03-01

    The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Testmore » Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graslund, C.; Hellstrand, E.

    Sweden benefits in many ways from the reactor safety research performed in other countries. Its own activity complements this effort, but a certain fraction is oriented toward safety issues that are intimately related to the special design of the ASEA-ATOM boiling-water reactor. Through the availability of the decommissioned Marviken reactor plant, Sweden has been able to play a leading role in integral containment experiments with international participation. Joint efforts with other countries are now devoted to defining new large-scale experiments to be performed in the unique Marviken facility. The largest portion of the safety research program in Sweden is performedmore » by Studsvik Energiteknik AB, but various universities, consultant firms, and research institutes are also involved. In addition, a substantial amount of work is done by the reactor vendor ASEA-ATOM. The overall annual budget is at present between $7 and $8 million, with three governmental authorities as the main financing bodies.« less

  14. 75 FR 34219 - Revision of Fee Schedules; Fee Recovery for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ....8 $6.3 $7.5 Spent Fuel Storage/Reactor Decommissioning..... -- -- 2.7 0.2 0.2 Test and Research... 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual Fees FY2009 Annual FY 2010... Decommissioning Test and Research Reactors (Non-power 87,600 81,700 Reactors) High Enriched Uranium Fuel Facility...

  15. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.

  16. Annual report on the AECB research and support program, 1997--1998. Report number INFO-0698

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The AECB-funded extramural Research and Support Program provides access to independent advice, expertise, and information via contracts placed in the private sector and with other agencies and organizations in Canada and elsewhere. This report presents information on the scope of activities in the Program during the year and describes how the Program was managed, organized, and carried out. Information on individual sub-programs is presented in such fields as nuclear reactors, fuel cycle facilities, uranium mines and mills, waste management, dosimetry, health physics, and regulatory process development. A list of individual projects and their expenditures is appended.

  17. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  18. Fusion Safety Program annual report, fiscal year 1994

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.

  19. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  20. Gas-cooled reactor programs. High-temperature gas-cooled reactor technology development program. Annual progress report, December 31, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1984-06-01

    ORNL continues to make significant contributions to the national program. In the HTR fuels area, we are providing detailed statistical information on the fission product retention performance of irradiated fuel. Our studies are also providing basic data on the mechanical, physical, and chemical behavior of HTR materials, including metals, ceramics, graphite, and concrete. The ORNL has an important role in the development of improved HTR graphites and in the specification of criteria that need to be met by commercial products. We are also developing improved reactor physics design methods. Our work in component development and testing centers in the Componentmore » Flow Test Loop (CFTL), which is being used to evaluate the performance of the HTR core support structure. Other work includes experimental evaluation of the shielding effectiveness of the lower portions of an HTR core. This evaluation is being performed at the ORNL Tower Shielding Facility. Researchers at ORNL are developing welding techniques for attaching steam generator tubing to the tubesheets and are testing ceramic pads on which the core posts rest. They are also performing extensive testing of aggregate materials obtained from potential HTR site areas for possible use in prestressed concrete reactor vessels. During the past year we continued to serve as a peer reviewer of small modular reactor designs being developed by GA and GE with balance-of-plant layouts being developed by Bechtel Group, Inc. We have also evaluated the national need for developing HTRs with emphasis on the longer term applications of the HTRs to fossil conversion processes.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, M.D.; Belles, R.J.; Cletcher, J.W.

    The Accident Sequence Precursor (ASP) Program involves the systematic review and evaluation of operational events that have occurred at light-water reactors to identify and categorize precursors to potential severe core damage accident sequences. The results of the ASP Program are published in an annual report. The most recent report, which contains the precursors for 1995, is NUREG/CR-4674, Volume 23, Precursors to Potential Severe Core Damage Accidents: 1995, A Status Report, published in April 1997. This article provides an overview of the ASP review and evaluation process and a summary of the results for 1995.

  2. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  3. Oregon State University TRIGA Reactor annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.V.; Johnson, A.G.; Bennett, S.L.

    1979-08-31

    The use of the Oregon State University TRIGA Reactor during the year ending June 30, 1979, is summarized. Environmental and radiation protection data related to reactor operation and effluents are included.

  4. Assessing the possible radiological impact of routine radiological discharges from proposed nuclear power stations in England and Wales.

    PubMed

    Jones, Alison; Jones, Kelly; Holmes, Sheila; Ewers, Leon; Cabianca, Tiberio

    2013-03-01

    The aim of this work is to assess the possible radiological impact on the population of the United Kingdom (UK) from new nuclear power stations proposed for up to eight sites in England and Wales. The radiological impact was measured in terms of collective dose to the UK, European and world populations from a single year's discharge integrated to 500 and 100 000 years and the annual dose to an average member of the UK population (known as the per-caput dose). The doses were calculated for two reactor types, UK EPR™ and AP1000™, using the annual expected discharges estimated by the designers of the reactors and assuming two reactors per site. In addition, typical individual doses to adults living close to the sites were calculated on the basis of continuous discharges for 60 years (the assumed lifetime of the reactors). The dose to a representative person (previously known as the critical group) was not calculated, as this has been done elsewhere. The assessments were carried out using the software program PC-CREAM 08(®) which implements the updated European Commission methodology for assessing the radiological impact of routine releases of radionuclides to the environment. The collective dose truncated to 500 years to the UK population was estimated to be 0.5 manSv assuming UK EPR reactors on all sites and 0.6 manSv assuming AP1000s on three sites with UK EPRs on the other sites. The most significant contribution to the collective dose to the UK population is due to the global circulation of carbon-14 released to the atmosphere. The annual dose to an average member of the UK population from all sites was calculated to be around 10 nSv y(-1) and would therefore contribute little to an individual's total radiation dose. All the calculated doses to a typical adult living near the sites assuming continuous discharges for 60 years were found to be below 1 μSv y(-1).

  5. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Rempe; D. Knudson; J. Daw

    2014-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation.more » To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.« less

  6. 1994 Accident sequence precursor program results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.

    1996-01-01

    The Accident Sequence Precursor (ASP) Program involves the systematic review and evaluation of operational events that have occurred at light-water reactors to identify and categorize precursors to potential severe core damage accident sequences. The results of the ASP Program are published in an annual report. The most recent report, which contains the analyses of the precursors for 1994, is NUREG/CR-4674, Vols. 21 and 22, Precursors to Potential Severe Core Damage Accidents: 1994, A Status Report, published in December 1995. This article provides an overview of the ASP review and evaluation process and a summary of the results for 1994. 12more » refs., 2 figs., 4 tabs.« less

  7. Environmental Impact Statement. Space Nuclear Thermal Propulsion Program. Particle Bed reactor Propulsion Technology Development and Validation

    DTIC Science & Technology

    1993-05-01

    further examination or disposal. 2.2.2.3 Non -Nucleer Engine Integration Tests. EITs would be designed to demonstrate proper function of the propellant...located 42 miles southwest of the CTF, is designated as a Class I air quality region. The nearest non -attainment area is Pocatello, Idaho, 75 miles south of...accelerate. combustiomn. Nintrogen and helnee are Staple CEnergy suggestsa design eail ofAt a em-le 500 aenIIirons 1 aoph,,,,ants ad non -reastive. ?annual

  8. Research reports (Annual reports). State: end of 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1975-05-01

    This compilation of research reports is the third one to be published once a year in the frame of a comprehensive reporting on current investigations with regard to reactor safety. There are three types of reports: RS Research Reports, LRA Research Reports, GFK Research Reports. The RS Research Reports and the LRA Research Reports give information on the investigations sponsored by the Bundesminister fuer Forschung und Technologie (BMFT) and partly by the Bundesminister des Innern (BMI [SR 100, At T 85 a]) as individual reactor safety research projects. The GFK Research Reports inform about theoretical and experimental investigations on reactormore » safety conducted by the Gesellschaft fuer Kernforschung mbH (GFK), Karlsruhe. The Laboratorium fuer Reaktorregelung und Anlagensicherung (LRA), Muenchen-Garching, executes nine individual research projects comprehended under number At T 85 a. The work carried out by the GFK is included in the main project 'Nuclear Safety' (PNS). The single reports are attached to the main parts and focal points of the Research Program Reactor Safety. Therefore, at the head of the reports, under 'Project Number', not only the RS-, LRA- or GFK-Number but also the number of the main part of the Research Program which the reported investigation contributes to is noted. (orig.)« less

  9. Site Environmental Report for Calendar Year 2008. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2009-09-01

    This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  10. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely themore » total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.« less

  11. 75 FR 11375 - Revision of Fee Schedules; Fee Recovery for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Spent Fuel Storage/Reactor Decommissioning..... 2.7 0.2 0.2 Test and Research Reactors 0.2 0.0 0.0 Fuel... categories of licenses. The FY 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual...) Spent Fuel Storage/Reactor 122,000 143,000 Decommissioning Test and Research Reactors (Non-power 87,600...

  12. A retrospective analysis of funding and focus in US advanced fission innovation

    NASA Astrophysics Data System (ADS)

    Abdulla, A.; Ford, M. J.; Morgan, M. G.; Victor, D. G.

    2017-08-01

    Deep decarbonization of the global energy system will require large investments in energy innovation and the deployment of new technologies. While many studies have focused on the expenditure that will be needed, here we focus on how government has spent public sector resources on innovation for a key carbon-free technology: advanced nuclear. We focus on nuclear power because it has been contributing almost 20% of total US electric generation, and because the US program in this area has historically been the world’s leading effort. Using extensive data acquired through the Freedom of Information Act, we reconstruct the budget history of the Department of Energy’s program to develop advanced, non-light water nuclear reactors. Our analysis shows that—despite spending 2 billion since the late 1990s—no advanced design is ready for deployment. Even if the program had been well designed, it still would have been insufficient to demonstrate even one non-light water technology. It has violated much of the wisdom about the effective execution of innovative programs: annual funding varies fourfold, priorities are ephemeral, incumbent technologies and fuels are prized over innovation, and infrastructure spending consumes half the budget. Absent substantial changes, the possibility of US-designed advanced reactors playing a role in decarbonization by mid-century is low.

  13. Health physics aspects of advanced reactor licensing reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinson, C.S.

    1995-03-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovativemore » design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.« less

  14. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER WM) operations at DOE sites to be safer,more » faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs.« less

  15. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  16. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  17. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  18. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  19. 40 CFR 98.353 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... anaerobic reactor and anaerobic lagoon from which biogas is not recovered, estimate annual CH4 emissions... wastewater treatment process n from which biogas is not recovered (metric tons). CH4Gn = Annual mass of CH4... biogas is recovered, estimate the annual mass of CH4 recovered according to the requirements in...

  20. Office for Analysis and Evaluation of Operational Data 1996 annual report. Volume 10, Number 1: Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    This annual report of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) describes activities conducted during 1996. The report is published in three parts. NUREG-1272, Vol. 10, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports and reports to the NRC`s Operations Center. NUREG-1272, Vol.more » 10, No. 2, covers nuclear materials and presents a review of the events and concerns during 1996 associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued from CY 1980 through 1996. NUREG-1272, Vol. 10, No. 3, covers technical training and presents the activities of the Technical Training Center in support of the NRC`s mission in 1996.« less

  1. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  2. 40 CFR 98.353 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... anaerobic reactor and anaerobic lagoon from which biogas is not recovered, estimate annual CH4 emissions... wastewater treatment process n from which biogas is not recovered (metric tons). CH4Gn = Annual mass of CH4... some biogas is recovered, estimate the annual mass of CH4 recovered according to the requirements in...

  3. 40 CFR 98.353 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... anaerobic reactor and anaerobic lagoon from which biogas is not recovered, estimate annual CH4 emissions... wastewater treatment process n from which biogas is not recovered (metric tons). CH4Gn = Annual mass of CH4... some biogas is recovered, estimate the annual mass of CH4 recovered according to the requirements in...

  4. 40 CFR 98.353 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... anaerobic reactor and anaerobic lagoon from which biogas is not recovered, estimate annual CH4 emissions... wastewater treatment process n from which biogas is not recovered (metric tons). CH4Gn = Annual mass of CH4... some biogas is recovered, estimate the annual mass of CH4 recovered according to the requirements in...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Tyson, S

    Vietnam's nuclear program began in the 1960s with the installation at Dalat of a 250 kW TRIGA Mk-II research reactor under the U.S. Atoms for Peace Program. The reactor was shut down and its core removed only a few years later, and the nuclear research program was suspended until after the end of the civil war in the late 1970s. The Soviet Union assisted Vietnam in restoring the Dalat reactor to an operational status in 1984, trained a cadre of scientific and technical staff in its operation, and contributed to the development of nuclear science for the medical and agriculturalmore » sectors. In the agricultural area in particular, Vietnamese experts have been very successful in developing mutant strains of rice, and continue to work with the IAEA to yield strains that have a shorter growing period, increased resistance to disease, and other desirable characteristics. Rice has always been the main crop in Vietnam, but technical cooperation with the IAEA and other states has enabled the country to become one of the top rice producers in the world, exporting much of its annual crop to over two dozen countries annually. More recently, Vietnam's government has shown increasing interest in developing a civil nuclear program to supplement its fossil fuel and other energy resources. Projections from a variety of open sources, ranging from the IAEA, the U.S. Department of Energy's Energy Information Administration (EIA), the Vietnamese government, energy corporations, and think tanks all predict a massive increase in energy consumption--especially electricity--within Vietnam and the region as a whole. This growth in consumption will require a corresponding increase in energy production, which in Vietnam is currently satisfied mainly by fossil fuels (coal) and renewable energy (hydropower and biomass); Vietnam has a refining capacity of about 800 barrels/day. Most of its crude oil is exported to generate export income, and is not used to generate electricity. Although Vietnam is able to meet most of its needs through its own resources, it consumes more electricity than it produces (approximately six billion KWh/a). Open sources indicate that increasing exports of manufactured goods and a corresponding growth in the industrial sector (16% since 2003) will lead to a greater energy shortfall beyond the next decade--between 35 and 65 billion KWh/year after 2020. As a signatory to the Kyoto Treaty and other regional environmental accords, and seeking an alternative to its stretched hydroelectric resources, Vietnam is looking for a means to increase energy production while minimizing emissions of greenhouse gases.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less

  7. 76 FR 14747 - Revision of Fee Schedules; Fee Recovery for Fiscal Year 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... Standards VI. Environmental Impact: Categorical Exclusion VII. Paperwork Reduction Act Statement VIII... nuclear reactors. The NRC has prepared a paper for the Commission's information in support of the Nuclear Energy Institute's position to calculate annual fees for each new licensed power reactor as a function of...

  8. SP-100 Program: space reactor system and subsystem investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harty, R.B.

    1983-09-30

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs.

  9. SP-100 program: Space reactor system and subsystem investigations

    NASA Astrophysics Data System (ADS)

    Harty, R. B.

    1983-09-01

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. The nuclear safety review/approval process that is required for a space reactor system is summarized. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that is expected and to provide information that could be usable in future programs.

  10. 77 FR 44291 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... is required: On occasion. 4. Who is required or asked to report: Nuclear power reactor licensees, non-power reactors, and materials applicants and licensees. 5. The number of annual respondents: 235. 6. The...://www.regulations.gov and search for Docket No. NRC-2012-0165. Mail comments to NRC Clearance Officer...

  11. 78 FR 71673 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ..., power reactors under construction, research and test reactors, agreement states, non-agreement states, as well as users of byproduct material (e.g. departments of health, medical centers, steel mills, well loggers, and radiographers.) 7. An estimate of the number of annual responses: 339. [[Page 71674...

  12. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program. Joint Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Don

    2014-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation’s electrical generation capability. By the end of 2014, about one-third of the existing domestic fleet will havemore » passed their 40th anniversary of power operations, and about one-half of the fleet will reach the same 40-year mark within this decade. Recognizing the challenges associated with pursuing extended service life of commercial nuclear power plants, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs (DOE-NE’s Light Water Reactor Sustainability [LWRS] Program and EPRI’s Long-Term Operations [LTO] Program) to address these challenges. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a memorandum of understanding in late 2010 to “establish guiding principles under which research activities (between LWRS and LTO) could be coordinated to the benefit of both parties.” This document represents the third annual revision to the initial version (March 2011) of the plan as called for in the memorandum of understanding.« less

  13. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  14. 78 FR 35056 - Effectiveness of the Reactor Oversight Process Baseline Inspection Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0125] Effectiveness of the Reactor Oversight Process... the effectiveness of the reactor oversight process (ROP) baseline inspection program with members of... Nuclear Reactor Regulations, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; telephone: 301...

  15. A Review of Gas-Cooled Reactor Concepts for SDI Applications

    DTIC Science & Technology

    1989-08-01

    710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests

  16. 78 FR 79501 - Tennessee Valley Authority, Exemption From the Requirement To Submit an Annual Update to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ..., Maryland 20852. FOR FURTHER INFORMATION CONTACT: Anthony Minarik, Office of New Reactors, U.S. Nuclear... advanced pressurized water reactors to be constructed and operated at the Bellefonte site, located near the... 052000-15). The NRC docketed the Bellefonte Nuclear Plant, Units 3 and 4 (BLN 3&4) COL application on...

  17. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  18. Nuclear reactors built, being built, or planned 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical datamore » that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly.« less

  19. ORNL Neutron Sciences Annual Report for 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ian S; Horak, Charlie M; Counce, Deborah Melinda

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with themore » reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.« less

  20. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R. U.; Benneche, P. E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these users institutions is enhanced by the use of the nuclear facilities.

  2. The in-depth safety assessment (ISA) pilot projects in Ukraine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, C. A.

    1998-02-10

    Ukraine operates pressurized water reactors of the Soviet-designed type, VVER. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs). After approval of the SARS by the Ukrainian Nuclear Regulatory Authority, the plants will be granted longer-term operating licenses. In September 1995, the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine issued a new contents requirement for the safety analysis reports of VVERs in Ukraine. It contains requirements in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. Themore » DBA requirements are an expanded version of the older SAR requirements. The last two requirements, on PRA and BDBA, are new. The US Department of Energy (USDOE), through the International Nuclear Safety Program (INSP), has initiated an assistance and technology transfer program to Ukraine to assist their nuclear power stations in developing a Western-type technical basis for the new SARS. USDOE sponsored In-Depth Safety Assessments (ISAs) have been initiated at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1. USDOE/INSP have structured the ISA program in such a way as to provide maximum assistance and technology transfer to Ukraine while encouraging and supporting the Ukrainian plants to take the responsibility and initiative and to perform the required assessments.« less

  3. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less

  4. A compilation of reports of the Advisory Committee on reactor safeguards. 1996 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    This compilation contains 47 ACRS reports submitted to the Commission, or to the Executive Director for Operations, during calendar year 1996. It also includes a report to the Congress on the NRC Safety Research Program. All reports have been made available to the public through the NRC Public Document Room, the U.S. Library of Congress, and the Internet at http://www.nrc.gov/ACRSACNW. The reports are divided into two groups: Part 1 contains ACRS reports by project name and by chronological order within project name. Part 2 categorizes the reports by the most appropriate generic subject area and by chronological order within subjectmore » area.« less

  5. Research Program of a Super Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less

  6. NASA-EPA automotive thermal reactor technology program

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Hibbard, R. R.

    1972-01-01

    The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.

  7. Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yacout, A. M.; Billone, M. C.

    2016-09-16

    The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of datamore » were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.« less

  8. Expanded scope of training and education programs at the UFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernetson, W.G.; Whaley, P.M.

    1985-01-01

    Historically, the University of Florida Training Reactor (UFTR) has been used to train both hot and cold license reactor operator candidates in intensive two- and three-week training programs consisting of a correlated set of classroom lectures, hands-on reactor operations, and laboratory exercises. These training programs provide nuclear plant operating staff with fundamental operational experience in understanding, controlling, and evaluating subcritical multiplication, reactivity effects, reactivity manipulations, and reactor operations; a sufficient number of startups and shutdowns is also assured. The UDTR is also used in a nuclear engineering course entitled ''Principles of Nuclear Reactor Operations.'' The purpose of this paper ismore » to report the results of efforts to redirect and refine tractor operations educational and training programs at the UFTR.« less

  9. The RERTR Program status and progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1995-12-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1995 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1994. The revelation that Iraq was on the verge of developing a nuclear weapon at the time of the Gulf War, and that it was planning to do so by extracting HEU from the fuel of its research reactors, has given new impetus and urgency to the RERTR commitment of eliminating HEU use in research and test reactors worldwide.more » Development of advanced LEU research reactor fuels is scheduled to begin in October 1995. The Russian RERTR program, which aims to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels, is now in operation. A Statement of Intent was signed by high US and Chinese officials, endorsing cooperative activities between the RERTR program and Chinese laboratories involved in similar activities. Joint studies of LEU technical feasibility were completed for the SAFARI-I reactor in South Africa and for the ANS reactor in the US. A new study has been initiated for the FRM-II reactor in Germany. Significant progress was made on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU. A cooperation agreements is in place with the Indonesian BATAN. The first prototypical irradiation of an LEU metal-foil target for {sup 99}Mo production was accomplished in Indonesia. The TR-2 reactor, in Turkey, began conversion. SAPHIR, in Switzerland, was shut down. LEU fuel fabrication has begun for the conversion of two more US reactors. Twelve foreign reactors and nine domestic reactors have been fully converted. Approximately 60 % of the work required to eliminate the use of HEU in US-supplied research reactors has been accomplished.« less

  10. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...

  11. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...

  12. SNAP (Space Nuclear Auxiliary Power) reactor overview. Final report, June 1982-December 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, S.S.

    1984-08-01

    The SNAP reactor programs are outlined in this report. A summary of the program is included along with a technical outline of the SER, S2DR, SNAP 10A/SNAPSHOT, S8ER, and S8DR reactor systems. Specifications of the designs, the design logic and a conclusion outlining some of the program weaknesses are given.

  13. Radiological effluents released and public doses from nuclear power plants in Korea.

    PubMed

    Son, Jung Kwon; Kim, Hee Geun; Kong, Tae Young; Ko, Jong Hyun; Lee, Goung Jin

    2013-08-01

    As of the end of 2010, there were 20 commercially operating nuclear reactors in Korea. Releases of radioactive effluents from nuclear power plants (NPPs) have increased continuously; the total radioactivity of effluent amount released in 2010 was 547.12 TBq. From 2001 to 2010, the annual average radioactivity of gaseous and liquid effluents per reactor was 11.61 TBq for pressurised water reactors and 118.12 TBq for pressurised heavy water reactors. Most of the radioactivity from gaseous and liquid effluents came from tritium. Based on the results of release trends and analyses, the characteristics of effluents have been investigated to improve the management of radioactive effluents from NPPs.

  14. 16TH Annual Review of Progress in Applied Computational Electromagnetics of the Naval Postgraduate School, Monterey, CA. Volume I

    DTIC Science & Technology

    2000-03-24

    Element Method for Designing Plasma Reactors" Leo Kempel, Paul Rummel, Tim Grotjohn and John Amrhein ............................................ 28...34Finite Element Method for Designing Plasma Reactors" Leo Kempel, Paul Rummel, Tim Grotjohn and John Amrhein...548 "lime-Domain Simulation of Electromagnetic Wave Propagation in a Magnetized Plasma" J. Paul , C. Christopoulos, and

  15. Strengthening IAEA Safeguards for Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Bruce D.; Anzelon, George A.; Budlong-Sylvester, Kory

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half amore » dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To broaden the IAEA safeguards toolbox, the study recommends that the Agency consider closing potential gaps in safeguards coverage by, among other things: 1) adapting its safeguards measures based on a case-by-case assessment; 2) using more frequent and expanded/enhanced mailbox declarations (ideally with remote transmission of the data to IAEA Headquarters in Vienna) coupled with short-notice or unannounced inspections; 3) putting more emphasis on the collection and analysis of environmental samples at hot cells and waste storage tanks; 4) taking Safeguards by Design into account for the construction of new research reactors and best practices for existing research reactors; 5) utilizing fully all legal authorities to enhance inspection access (including a strengthened and continuing DIV process); and 6) utilizing new approaches to improve auditing activities, verify reactor operating data history, and track/monitor the movement and storage of spent fuel.« less

  16. Nuclear reactors built, being built, or planned 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables ofmore » the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.« less

  17. 40 CFR 256.05 - Annual work program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Annual work program. 256.05 Section..., Definitions § 256.05 Annual work program. (a) The annual work program submitted for financial assistance under... Administrator and the State shall agree on the contents of the annual work program. The Administrator will...

  18. 40 CFR 256.05 - Annual work program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Annual work program. 256.05 Section..., Definitions § 256.05 Annual work program. (a) The annual work program submitted for financial assistance under... Administrator and the State shall agree on the contents of the annual work program. The Administrator will...

  19. ANALYTICAL CHEMISTRY DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING DECEMBER 31, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-02-01

    Research and development progress is reported on analytlcal instrumentation, dlssolver-solution analyses, special research problems, reactor projects analyses, x-ray and spectrochemical analyses, mass spectrometry, optical and electron microscopy, radiochemical analyses, nuclear analyses, inorganic preparations, organic preparations, ionic analyses, infrared spectral studies, anodization of sector coils for the Analog II Cyclotron, quality control, process analyses, and the Thermal Breeder Reactor Projects Analytical Chemistry Laboratory. (M.C.G.)

  20. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  1. ALARA radiation considerations for the AP600 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, F.L.

    1995-03-01

    The radiation design of the AP600 reactor plant is based on an average annual occupational radiation exposure (ORE) of 100 man-rem. As a design goal we have established a lower value of 70 man-rem per year. And, with our current design process, we expect to achieve annual exposures which are well below this goal. To accomplish our goal we have established a process that provides criteria, guidelines and customer involvement to achieve the desired result. The criteria and guidelines provide the shield designer, as well as the systems and plant layout designers with information that will lead to an integratedmore » plant design that minimizes personnel exposure and yet is not burdened with complicated shielding or unnecessary component access limitations. Customer involvement is provided in the form of utility input, design reviews and information exchange. Cooperative programs with utilities in the development of specific systems or processes also provides for an ALARA design. The results are features which include ALARA radiation considerations as an integral part of the plant design and a lower plant ORE. It is anticipated that a further reduction in plant personnel exposures will result through good radiological practices by the plant operators. The information in place to support and direct the plant designers includes the Utility Requirements Document (URD), Federal Regulations, ALARA guidelines, radiation design information and radiation and shielding design criteria. This information, along with the utility input, design reviews and information feedback, will contribute to the reduction of plant radiation exposure levels such that they will be less than the stated goals.« less

  2. A liquid-metal filling system for pumped primary loop space reactors

    NASA Astrophysics Data System (ADS)

    Crandall, D. L.; Reed, W. C.

    Some concepts for the SP-100 space nuclear power reactor use liquid metal as the primary coolant in a pumped loop. Prior to filling ground engineering test articles or reactor systems, the liquid metal must be purified and circulated through the reactor primary system to remove contaminants. If not removed, these contaminants enhance corrosion and reduce reliability. A facility was designed and built to support Department of Energy Liquid Metal Fast Breeder Reactor tests conducted at the Idaho National Engineering Laboratory. This test program used liquid sodium to cool nuclear fuel in in-pile experiments; thus, a system was needed to store and purify sodium inventories and fill the experiment assemblies. This same system, with modifications and potential changeover to lithium or sodium-potassium (NaK), can be used in the Space Nuclear Power Reactor Program. This paper addresses the requirements, description, modifications, operation, and appropriateness of using this liquid-metal system to support the SP-100 space reactor program.

  3. F Reactor Inspection

    ScienceCinema

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2018-01-16

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  4. F Reactor Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosuremore » and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."« less

  5. Office for Analysis and Evaluation of Operational Data. Annual report, 1994-FY 95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-07-01

    The United States Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) has published reports of its activities since 1984. The first report covered January through June of 1984, and the second report covered July through December 1984. Since those first two semiannual reports, AEOD has published annual reports of its activities from 1985 through 1993. Beginning with the report for 1986, AEOD Annual Reports have been published as NUREG-1272. Beginning with the report for 1987, NUREG-1272 has been published in two parts, No. 1 covering power reactors and No. 2 covering nonreactors (changed to {open_quotes}nuclear materials{close_quotes}more » with the 1993 report). The 1993 AEOD Annual Report was NUREG-1272, Volume 8. AEOD has changed its annual report from a calendar year to a fiscal year report to be consistent with the NRC Annual Report and to conserve staff resources. NUREG-1272, Volume 9, No. 1 and No. 2, therefore, are combined calendar year 1994 (1994) and fiscal year 1995 (FY 95) reports which describe activities conducted between January 1, 1994, and September 30, 1995. Certain data which have historically been reported on a calendar year basis, however, are complete through calendar year 1995. Throughout this report, whenever information is presented for fiscal year 1995, it is designated as FY 95 data. Calendar year information is always designated by the four digits of the calendar year. This report, NUREG-1272, Volume 9, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective. NUREG-1272, Vol. 9, No. 2, covers nuclear materials and presents a review of the events and concerns associated with the use of licensed material in non-power reactor applications. A new part has been added, NUREG-1272, Volume 9, No. 3, which covers technical training and presents the activities of the Technical Training Center in FY 95 in support of the NRC`s mission.« less

  6. 2015 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014–October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.

  7. Nuclear Proliferation in the Middle East: Implications for the Superpowers,

    DTIC Science & Technology

    1982-01-01

    when Israeli nuclear scientists began extracting low grade uranium from phosphate deposits in the Negev Desert. With the encouragement of Chaim... Negev -and concomitantly assisted in de- signing the research facilities associated with the reactor. By the time the reactor went critical in 1964, a...deposits in the Negev . Since the early 1970s, an esti- mated 40-50 tons of uranium oxide has been produced annually.1 6 In addition, unconfirmed

  8. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  9. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  10. Investigation of Natural and Man-Made Radiation Effects on Crews on Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Parlos, Alexander

    1996-01-01

    Over the past several years, NASA has studied a variety of mission scenarios designed to establish a permanent human presence on the surface of Mars. Nuclear electric propulsion (NEP) is one of the possible elements in this program. During the initial stages of vehicle design work, careful consideration must be given to not only the shielding requirements of natural space radiation, but to the shielding and configuration requirements of the on-board reactors. In this work, the radiation transport code MCNP has been used to make initial estimates of crew exposures to reactor radiation fields for a specific manned NEP vehicle design. In this design, three 25 MW(sub th), scaled SP-100-class reactors are shielded by three identical shields. Each shield has layers of beryllium, tungsten, and lithium hydride between the reactor and the crew compartment. Separate calculations are made of both the exiting neutron and gamma fluxes from the reactors during beginning-of-life, full-power operation. This data is then used as the source terms for particle transport in MCNP. The total gamma and neutron fluxes exiting the reactor shields are recorded and separate transport calculations are then performed for a 10 g/sq cm crew compartment aluminum thickness. Estimates of crew exposures have been assessed for various thicknesses of the shield tungsten and lithium hydride layers. A minimal tungsten thickness of 20 cm is required to shield the reactor photons below the 0.05 Sv/y man-made radiation limit. In addition to a 20-cm thick tungsten layer, a 40-cm thick lithium hydride layer is required to shield the reactor neutrons below the annual limit. If the tungsten layer is 30-cm thick, the lithium hydride layer should be at least 30-cm thick. These estimates do not take into account the photons generated by neutron interactions inside the shield because the MCNP neutron cross sections did not allow reliable estimates of photon production in these materials. These results, along with natural space radiation shielding estimates calculated by NASA Langley Research Center, have been used to provide preliminary input data into a new Macintosh-based software tool. A skeletal version of this tool being developed will allow rapid radiation exposure and risk analyses to be performed on a variety of Lunar and Mars missions utilizing nuclear-powered vehicles.

  11. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has beenmore » restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed a Readiness Assessment in November 2009. The HSIS is a key component of the ATR National Scientific User Facility (NSUF) operated by Battelle Energy Alliance, LLC and is available to a wide variety of university researchers for nuclear fuels and materials experiments as well as medical isotope research and production.« less

  12. Rotating Fluidized Bed Reactor for Space Nuclear Propulsion. Annual Report; Design Studies and Experimental Results

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.

  13. Automatic reactor model synthesis with genetic programming.

    PubMed

    Dürrenmatt, David J; Gujer, Willi

    2012-01-01

    Successful modeling of wastewater treatment plant (WWTP) processes requires an accurate description of the plant hydraulics. Common methods such as tracer experiments are difficult and costly and thus have limited applicability in practice; engineers are often forced to rely on their experience only. An implementation of grammar-based genetic programming with an encoding to represent hydraulic reactor models as program trees should fill this gap: The encoding enables the algorithm to construct arbitrary reactor models compatible with common software used for WWTP modeling by linking building blocks, such as continuous stirred-tank reactors. Discharge measurements and influent and effluent concentrations are the only required inputs. As shown in a synthetic example, the technique can be used to identify a set of reactor models that perform equally well. Instead of being guided by experience, the most suitable model can now be chosen by the engineer from the set. In a second example, temperature measurements at the influent and effluent of a primary clarifier are used to generate a reactor model. A virtual tracer experiment performed on the reactor model has good agreement with a tracer experiment performed on-site.

  14. INEEL Cultural Resource Management Program Annual Report - 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton F. Marler

    2005-01-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The Idaho National Engineering and Environmental Laboratory Site is located in southeastern Idaho, and is home to vast numbersmore » and a wide variety of important cultural resources representing at least 13,000-year span of human occupation in the region. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these resources with the management and ongoing operation of an active scientific laboratory, while also cleaning up the waste left by past programs and processes. The Department of Energy Idaho Operations Office has administrative responsibility for most of the Site, excluding lands and resources managed by the Naval Reactors Facility and (in 2004) Argonne National Laboratory-West. The Department of Energy is committed to a cultural resource program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative requirements. This annual report is an overview of Cultural Resource Management Program activities conducted during Fiscal Year 2004 and is intended to be both informative to external stakeholders and to serve as a planning tool for future cultural resource management work to be conducted on the Site.« less

  15. Radioactive materials released from nuclear power plants. Annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  16. Radioactive materials released from nuclear power plants: Annual report, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  17. Radioactive materials released from nuclear power plants: Annual report, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  18. Production assurance program strategy for N Reactor balance of plant systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.D.; Bitten, E.J.; Keenan, J.P.

    1986-03-18

    A production assurance program has been established for N Reactor, a dual purpose reactor plant, operated to produce special nuclear materials and steam for electricity. N Reactor, which began operation in December 1963, is now approaching the end of its design life. This paper describes the two phase program for Balance of Plant (BOP) systems. The Phase I evaluation has been completed and indications are that the lifetime of systems and components could be extended by implementing appropriate surveillance, operations and maintenance strategies. In Phase II, a thorough evaluation of components and systems is underway and action items are beingmore » identified which will allow component and system extended operation.« less

  19. Quarterly Progress Report (January 1 to March 31, 1950)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookhaven National Laboratory

    This is the first of a series of Quarterly Reports. These reports will deal primarily with the progress made in our scientific program during a three months period. Those interested in matters pertaining to organization, administration, complete scientific program, personnel and other matters not directly involved in current scientific progress are referred to our Annual Progress Report which is issued in January. We have attempted to describe new information that appears significant, or of interest, to other scientists within the Atomic Energy Commission Laboratories. No effort has been made, however, to detail progress in each and every research project. Littlemore » or no reference will therefore be found to the projects in which progress during the current period is considered too inconclusive. Since our organizational structure is departmental, the work described herein is arranged in the following sequence: (1) Accelerator Project; (2) Biology Department; (3) Chemistry Department; (4) Instrumentation and Health Physic8 Department; (5) Medical Department; (6) Physics Department; and (7) Reactor Science and Engineering Department.« less

  20. Proceedings of the 1994 international meeting on reduced enrichment for research and test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    This meeting brought together participants in the international effort to minimize and eventually eliminate the use of highly enriched uranium in civilian nuclear programs. Papers cover the following topics: National programs; fuel cycle; nuclear fuels; analyses; advanced reactors; and reactor conversions. Selected papers have been indexed separately for inclusion to the Energy Science and Technology Database.

  1. Site Environmental Report for Calendar Year 2004. DOE Operations at The Boeing Company Santa Susana Field Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lee, Majelle

    2005-09-01

    This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  2. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  3. Site Environmental Report for Calendar Year 2003 DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Samuels, Sandy

    2004-09-30

    This Annual Site Environmental Report (ASER) for 2003 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing Rocketdyne’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2003 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  4. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  5. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  6. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  7. INEL BNCT Research Program annual report, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potentialmore » toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.« less

  8. 1170 MW/sub t/ HTGR steamer cogeneration plant: design and cost study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A conceptual design and cost study is presented for intermediate size high temperature gas-cooled reactor (HTGR) for industrial energy applications performed by United Engineers and Constructors Inc., (UE and C) and The General Atomic Company (GAC). The study is part of a program at ORNL and has the objective to provide support in the evaluation of the technical and economic feasibility of a single unit 1170 MW/sub t/ HTGR steam cycle cogeneration plant (referred to as the Steamer plant) for the production of industrial process energy. Inherent in the achievement of this objective, it was essential to perform a numbermore » of basic tasks such as the development of plant concept, capital cost estimate, project schedule and annual operation and maintenance (O and M) cost.« less

  9. Light Water Reactor Sustainability Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80%more » below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you have any questions about the information in the report, or about the LWRS Program, please contact me, Richard A. Reister (the Federal Program Manager), or the respective research pathway leader (noted on pages 26 and 27), or visit the LWRS Program website (www.inl.gov/lwrs). The annually updated Integrated Program Plan and Pathway Technical Program Plans are also available for those seeking more detailed technical Information.« less

  10. Nuclear reactors built, being built, or planned, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristicmore » and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less

  11. Nuclear reactors built, being built, or planned: 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristicmore » and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less

  12. 77 FR 69663 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... required or asked to report: Holders of and applicants for facility (i.e., nuclear power, non-power research and test reactor) operating licenses and individual operators; licenses. 5. The number of annual...

  13. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less

  14. CY2013 Annual Report for DOE-ITU INERI 2010-006-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J. Rory; Rondinella, Vincenzo V.

    2014-12-01

    New concepts for nuclear energy development are considered in both the USA and Europe within the framework of the Generation-IV International Forum (GIF) as well as in various US-DOE programs (e.g. the Fuel Cycle Research and Development - FCRD) and as part of the European Sustainable Nuclear Energy Technology Platform (SNE-TP). Since most new fuel cycle concepts envisage the adoption of a closed nuclear fuel cycle employing fast reactors, the fuel behavior characteristics of the various proposed advanced fuel forms must be effectively investigated using state of the art experimental techniques before implementation. More rapid progress can be achieved ifmore » effective synergy with advanced (multi-scale) modeling efforts can be achieved. The fuel systems to be considered include minor actinide (MA) transmutation fuel types such as advanced MOX, advanced metal alloy, inert matrix fuel (IMF), and other ceramic fuels like nitrides, carbides, etc., for fast neutronic spectrum conditions. Most of the advanced fuel compounds have already been the object of past examination programs, which included irradiations in research reactors. The knowledge derived from previous experience constitutes a significant, albeit incomplete body of data. New or upgraded experimental tools are available today that can extend the scientific and technological knowledge towards achieving the objectives associated with the new generation of nuclear reactors and fuels. The objectives of this project will be three-fold: (1) to extend the available knowledge on properties and irradiation behavior of high burnup and minor actinide bearing advanced fuel systems; (2) to establish a synergy with multi-scale and code development efforts in which experimental data and expertise on the irradiation behavior of nuclear fuels is properly conveyed for the upgrade/development of advanced modeling tools; (3) to promote the effective use of international resources to the characterization of irradiated fuel through exchange of expertise and information among leading experimental facilities. The priorities in this project will be set according to the down selection procedure of U.S. and European development programs.« less

  15. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  16. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  17. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-10-28

    global efforts to prevent nuclear proliferation” and, “the establishment of reliable sources of nuclear fuel for future civilian light water reactors ...nuclear reactor or on handling spent reactor fuel. (...continued) May 4, 2008; and, Chris...related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power Ltd. signed two consulting and

  18. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-07-17

    global efforts to prevent nuclear proliferation” and, “the establishment of reliable sources of nuclear fuel for future civilian light water reactors ...planned nuclear reactor or on handling spent reactor fuel. (...continued) May 4, 2008...contracting between U.S. firms and the UAE related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power

  19. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-12-23

    reactors deployed” in the UAE. Some Members of Congress had welcomed the UAE government’s stated commitments not to pursue proliferation-sensitive...for the planned nuclear reactor or on handling spent reactor fuel. (...continued) May...firms and the UAE related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power Ltd. signed two

  20. Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.

  1. Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  2. Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  3. Radioactive materials released from nuclear power plants. Annual report 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  4. Radioactive materials released from nuclear power plants. Annual report 1981. Vol. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1981 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1981 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  5. Radioactive materials released from nuclear power plants. Annual report, 1983. Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1983 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1983 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecker, Siegfried S.

    Actions of the Government of the Democratic People's Republic of Korea have precipitated two nuclear crises in the past 10 years. The 1994 crisis was resolved through the 'Agreed Framework.' North Korea agreed to 'freeze' and eventually dismantle its nuclear program (with U.S. help to store spent fuel safely and under IAEA inspection). In return, the United States agreed (with the KEDO international consortium) to build two light-water reactors and supply North Korea with heavy-fuel oil until the reactors come on line. In addition, both sides agreed to move towards full normalization of relations, work for peace and security onmore » a nuclear-free Korean Peninsula, and work on strengthening the international nonproliferation regime. The second nuclear crisis erupted when North Korean Government officials allegedly admitted to having a clandestine uranium enrichment program when confronted with this accusation by U.S. officials in October 2002. The United States (through KEDO) suspended heavy-fuel oil shipments and North Korea responded by expelling the IAEA inspectors, withdrawing from the Nuclear Nonproliferation Treaty, and restarting its nuclear program in January 2003. The North Korean Government has invited Professor John Lewis of Stanford University, a China and North Korea scholar, for Track I1 discussions of nuclear and other key issues since 1987. In August 2003, Professor Lewis visited North Korea just before the first six-party talks, which were designed by the United States to solve the current nuclear crisis. Professor Lewis was invited back for the January 2004 visit. He asked Jack Pritchard, former U.S. special envoy for DRPK negotiations, and me to accompany him. Two Asian affairs staff specialists from the U.S. Senate Foreign Relations Committee also joined us. I will report on the visit to the Yongbyon Nuclear Scientific Research Center on January 8,2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. We were not shown any facilities or had the opportunity to talk to technical or military experts who were able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. On the matter of uranium enrichment programs, Vice Minister Kim Gye Gwan categorically denied that North Korea has a uranium enrichment program - he said, 'we have no program, no equipment, and no technical expertise for uranium enrichment.' Upon return to the United States, I shared my observations and analysis with U.S. Government officials in Washington, DC, including congressional testimony to the Senate Foreign Relations Committee and briefings to two House of Representative Committees.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Sterbentz, James W.; Snoj, Luka

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  8. Testimony of Fred R. Mynatt before the Energy Research and Development Subcommittee of the Committee on Science, Space, and Technology, US House of Representatives. [Advanced fuel technology, gas-cooled reactor technology, and liquid metal-cooled reactor technology programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mynatt, F.R.

    1987-03-18

    This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)

  9. Modifications to the NRAD Reactor, 1977 to present

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, A.A.; Pruett, D.P.; Heidel, C.C.

    1986-01-01

    Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems.« less

  10. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  11. Summary of the Forty-Fifth NCRP annual meeting on "the future of nuclear power worldwide: safety, health and the environment".

    PubMed

    Corradini, Michael

    2011-01-01

    The role of nuclear power as a major resource in meeting the projected growth of electric power requirements in the United States and worldwide during the 21st century is a subject of great contemporary interest. The goal of the 2009 NCRP Annual Meeting was to provide a forum for an in-depth discussion of issues related to the safety, health and environmental protection aspects of new nuclear power reactor systems and related fuel-cycle facilities such as fuel production and reprocessing strategies. The meeting was an international conference with participation of almost 400 representatives from many nations, scientific organizations, nuclear industries, and governmental agencies engaged in the development and regulatory control of advanced nuclear reactor systems and fuel-cycle operations. Highlights of the meeting are summarized in this report. Copyright © 2010 Health Physics Society

  12. Site Environmental Report for Calendar Year 2013. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-06-30

    This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.« less

  13. The RERTR Program : a status report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1998-10-19

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners since its inception in 1978. A brief summary of the results that the program had attained by the end of 1997 is followed by a detailed review of the major events, findings, and activities that took place in 1998. The past year was characterized by exceptionally important accomplishments and events for the RERTR program. Four additional shipments of spent fuel from foreign research reactors were accepted by the U.S. Altogether, 2,231 spent fuel assemblies from foreignmore » research reactors have been received by the U.S. under the acceptance policy. Fuel development activities began to yield solid results. Irradiations of the first two batches of microplates were completed. Preliminary postirradiation examinations of these microplates indicate excellent irradiation behavior of some of the fuel materials that were tested. These materials hold the promise of achieving the pro am goal of developing LEU research reactor fuels with uranium density in the 8-9 g /cm{sup 3} range. Progress was made in the Russian RERTR program, which aims to develop and demonstrate the technical means needed to convert Russian-supplied research reactors to LEU fuels. Feasibility studies for converting to LEU fuel four Russian-designed research reactors (IR-8 in Russia, Budapest research reactor in Hungary, MARIA in Poland, and WWR-SM in Uzbekistan) were completed. A new program activity began to study the feasibility of converting three Russian plutonium production reactors to the use of low-enriched U0{sub 2}-Al dispersion fuel, so that they can continue to produce heat and electricity without producing significant amounts of plutonium. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, the transient performance of the core under hypothetical accident conditions. A major milestone was accomplished in the development of a process to produce molybdenum-99 from fission targets utilizing LEU instead of HEU. Targets containing LEU metal foils were irradiated in the RAS-GAS reactor at BATAN, Indonesia, and molybdenum-99 was successfully extracted through the ensuing process. These are exciting times for the program and for all those involved in it, and last year's successes augur well for the future. However, as in the past, the success of the RERTR program will depend on the international friendship and cooperation that have always been its trademark.« less

  14. The U.S. RERTR program status and progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1998-01-21

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program since its inception in 1978 is described. A brief summary of the results which the RERTR Program had achieved by the end of 1996 in collaboration with its many international partners is followed by a detailed review of the major events, findings, and activities of 1997. Significant progress has been made during the past year. In the area of U.S. acceptance of spent fuel from foreign research reactors, several shipments have taken place and additional are being planned. Intense fuel development activities are in progress, including procurement ofmore » equipment, screening of candidate materials, and production of microplates. Irradiation of the first series of microplates began in August 1997 in the Advanced Test Reactor, in Idaho. Progress has been made in the Russian RERTR program, which aims to develop and demonstrate within five years the technical means needed to convert Russian-supplied research reactors to LEU fuels. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, controversial performance issues which were raised at last year's meeting. Progress was also made on several aspects of producing molybdenum-99 from fission targets utilizing LEU instead of HEU. Various types of targets and processes are being pursued, with FDA approval of an LEU process projected to occur within two years. The feasibility of LEU Fuel conversion for three important DOE research reactors (BMRR, HFBR, and HFIR) has been evaluated by the RERTR program. In spite of the many momentous events which have occurred during the intervening years, and the excellent progress achieved, the most important challenges that the RERTR program faces today are not very different in type from those that were faced during the first RERTR meeting. Now, as then, the most important task is to develop new LEU fuels satisfying requirements which cannot be satisfied by any existing fuel. These new advanced fuels will enable conversion of the reactors which cannot be converted today, ensure better efficiency and performance for all research reactors, and allow the design of more powerful new advanced LEU reactors. As in the past, the success of the RERTR program will depend on free exchange of ideas and information, and on the international friendship and cooperation that have been a trademark of the RERTR program since its inception.« less

  15. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, C.; Wachs, D.; Carmack, J.

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less

  16. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R.E.

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.

  17. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  18. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  19. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  20. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  1. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  2. 14 CFR 120.119 - Annual reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.119 Annual reports. (a) Annual reports of testing results must... holder shall submit an annual report each year. (2) Each entity conducting a drug testing program under...

  3. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  4. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  5. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  6. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  7. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  8. The Economic and Workforce Development Program (ED>Net) Annual Report, 2001-02 [and] Addendum to FY 01-02 Annual Report.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Economic Development Coordination Network (EDNet).

    This document contains an annual report and its addendum from the Economic and Workforce Development Program of California Community Colleges. The annual report provides an overview of the Program's evaluation processes, regional centers, short-term projects, legislation, strategic plan, etc. It also provides vital facts about the program such as…

  9. Function of university reactors in operator licensing training for nuclear utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, F.

    1985-11-01

    The director of the Division of the US Nuclear Regulatory Commission in generic letter 84-10, dated April 26, 1984, spoke the requirement that applicants for senior reactor operator licenses for power reactors shall have performed then reactor startups. Simulator startups were not acknowledged. Startups performed on a university reactor are acceptable. The content and results of a five-day program combining instruction and experiments with the Rensselaer reactor are summarized.

  10. Down-selection of candidate alloys for further testing of advanced replacement materials for LWR core internals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary; Leonard, Keith J.; Tan, Lizhen

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superiormore » degradation resistance in light water reactor (LWR)-relevant environments by 2024.« less

  11. Office for Analysis and Evaluation of Operational Data. 1992 annual report: Nonreactors: Volume 7, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    The annual report of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during 1992. The report is published in two separate parts. NUREG-1272, Vol. 7, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports, diagnostic evaluations, and reportsmore » to the NRC`s Operations Center. NUREG-1272, Vol. 7, No. 2, covers nonreactors and presents a review of the events and concerns during 1992 associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued for 1981--1992.« less

  12. Nuclear materials 1993 annual report. Volume 8, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    This annual report of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) describes activities conducted during 1993. The report is published in two parts. NUREG-1272, Vol. 8, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports, diagnostic evaluations, and reports to the NRC`s Operationsmore » Center. NUREG-1272, Vol. 8, No. 2, covers nuclear materials and presents a review of the events and concerns during 1993 associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Note that the subtitle of No. 2 has been changed from ``Nonreactors`` to ``Nuclear Materials.`` Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued from 1980 through 1993.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, J. A.; Feldman, E. E.; Wilson, E. H.

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains themore » results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo (U-10Mo).« less

  14. Alternate Tritium Production Methods Using A Liquid Lithium Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, J.

    For over 60 years, the Savannah River Site’s primary mission has been the production of tritium. From the beginning, the Savannah River National Laboratory (SRNL) has provided the technical foundation to ensure the successful execution of this critical defense mission. SRNL has developed most of the processes used in the tritium mission and provides the research and development necessary to supply this critical component. This project was executed by first developing reactor models that could be used as a neutron source. In parallel to this development calculations were carried out testing the feasibility of accelerator technologies that could also bemore » used for tritium production. Targets were designed with internal moderating material and optimized target was calculated to be capable of 3000 grams using a 1400 MWt sodium fast reactor, 850 grams using a 400 MWt sodium fast reactor, and 100 grams using a 62 MWt reactor, annually.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stencel, J.R.; Finley, V.L.

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research sincemore » 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.« less

  16. REACTOR PHYSICS CONSTANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-07-01

    This second edition is based on data available on March 15, 1961. Sections on constants necessary for the interpretation of experimental data and on digital computer programs for reactor design and reactor physics have been added. 1344 references. (D.C.W.)

  17. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliancemore » with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.« less

  18. Neutrino Physics with Nuclear Reactors: An Overview

    NASA Astrophysics Data System (ADS)

    Ochoa-Ricoux, J. P.

    Nuclear reactors provide an excellent environment for studying neutrinos and continue to play a critical role in unveiling the secrets of these elusive particles. A rich experimental program with reactor antineutrinos is currently ongoing, and leads the way in precision measurements of several oscillation parameters and in searching for new physics, such as the existence of light sterile neutrinos. Ongoing experiments have also been able to measure the flux and spectral shape of reactor antineutrinos with unprecedented statistics and as a function of core fuel evolution, uncovering anomalies that will lead to new physics and/or to an improved understanding of antineutrino emission from nuclear reactors. The future looks bright, with an aggressive program of next generation reactor neutrino experiments that will go after some of the biggest open questions in the field. This includes the JUNO experiment, the largest liquid scintillator detector ever constructed which will push the limits of this detection technology.

  19. R and D program for French sodium fast reactor: On the description and detection of sodium boiling phenomena during sub-assembly blockages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderhaegen, M.; Laboratory of Waves and Acoustic, Institut Langevin, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris; Paumel, K.

    2011-07-01

    In support of the French ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor program, which aims to demonstrate the industrial applicability of sodium fast reactors with an increased level of safety demonstration and availability compared to the past French sodium fast reactors, emphasis is placed on reactor instrumentation. It is in this framework that CEA studies continuous core monitoring to detect as early as possible the onset of sodium boiling. Such a detection system is of particular interest due to the rapid progress and the consequences of a Total Instantaneous Blockage (TIB) at a subassembly inlet, where sodium boilingmore » intervenes in an early phase. In this paper, the authors describe all the particularities which intervene during the different boiling stages and explore possibilities for their detection. (authors)« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA from use at their institutions. These areas are discussed in this report.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed here.« less

  3. Radioactive materials released from nuclear power plants. Volume 13, Annual report 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Lucadamo, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1992 have been compiled and reported. The summary data for the years 1973 through 1991 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1992 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  4. Radioactive materials released from nuclear power plants. Annual report 1989: Volume 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1989 have been compiled and reported. The summary data for the years 1970 through 1988 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1989 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  5. Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Lucadamo, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  6. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  7. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  8. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  9. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  10. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  11. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  12. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  13. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  14. 40 CFR 97.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.120 General CAIR NOX Annual Trading Program permit requirements. (a) For...

  15. 40 CFR 96.120 - General CAIR NOX Annual Trading Program permit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false General CAIR NOX Annual Trading... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.120 General CAIR NOX Annual Trading Program permit...

  16. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  17. Turbulence coefficients and stability studies for the coaxial flow or dissimiliar fluids. [gaseous core nuclear reactors

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Lavan, Z.

    1975-01-01

    Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.

  18. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by themore » Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.« less

  19. Development of advanced strain diagnostic techniques for reactor environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less

  20. 76 FR 71559 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9494-6] Acid Rain Program: Notice of Annual Adjustment... annual adjustment factors for excess emissions penalty. SUMMARY: The Acid Rain Program under title IV of... emissions for sources that do not meet their annual Acid Rain emissions limitations. This notice states the...

  1. 78 FR 64496 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9902-14-OAR] Acid Rain Program: Notice of Annual Adjustment... annual adjustment factors for excess emissions penalty. SUMMARY: The Acid Rain Program under title IV of... emissions for sources that do not meet their annual Acid Rain emissions limitations. This notice states the...

  2. Chemical Technology Division annual technical report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less

  3. Site Environmental Report for Calendar Year 2007. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lenox, Art

    2008-09-30

    This Annual Site Environmental Report (ASER) for 2007 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequentmore » radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended until DOE completes the SSFL Area IV Environmental Impact Statement (EIS). The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2007 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2007.« less

  4. A Neutronic Program for Critical and Nonequilibrium Study of Mobile Fuel Reactors: The Cinsf1D Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecarpentier, David; Carpentier, Vincent

    2003-01-15

    Molten salt reactors (MSRs) have the distinction of having a liquid fuel that is also the coolant. The transport of delayed-neutron precursors by the fuel modifies the precursors' equation. As a consequence, it is necessary to adapt the methods currently used for solid fuel reactors to achieve critical or kinetics calculations for an MSR. A program is presented for which this adaptation has been carried out within the framework of the two-energy-group diffusion theory with one dimension of space. This program has been called Cinsf1D (Cinetique pour reacteur a sels fondus 1D)

  5. Tory II-A: a nuclear ramjet test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, J.W.

    Declassified 28 Nov 1973. The first test reactor in the Pluto program, leading to development of a nuclear ramjet engine, is called Tory II-A. While it is not an actual prototype engine, this reactor embodies a core design which is considered feasible for an engine, and operation of the reactor will provide a test of that core type as well as more generalized values in reactor design and testing. The design of Tory II-A and construction of the reactor and of its test facility are described. Operation of the Tory II-A core at a total power of 160 megawatts, withmore » 800 pounds of air per second passing through the core and emerging at a temperature of 2000 deg F, is the central objective of the test program. All other reactor and facility components exist to support operation of the core, and preliminary steps in the test program itself will be directed primarily toward ensuring attalnment of full-power operation and collection of meaningful data on core behavior during that operation. The core, 3 feet in diameter and 41/2 feet long, will be composed of bundled ceramic tubes whose central holes will provide continuous air passages from end to end of the reactor. These tubes are to be composed of a homogeneous mixture of UO/sub 2/ fuel and BeO moderator, compacted and sintered to achieve high strength and density. (30 references) (auth)« less

  6. Determination of the Arrhenius Activation Energy Using a Temperature-Programmed Flow Reactor.

    ERIC Educational Resources Information Center

    Chan, Kit-ha C.; Tse, R. S.

    1984-01-01

    Describes a novel method for the determination of the Arrhenius activation energy, without prejudging the validity of the Arrhenius equation or the concept of activation energy. The method involves use of a temperature-programed flow reactor connected to a concentration detector. (JN)

  7. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  8. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  9. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  10. KiloPower Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, Patrick Ray

    2016-08-04

    These are the slides for a phone interview with Aerospace America magazine of the AIAA. It goes over the KiloPower Program at Los Alamos National Laboratory (LANL), and covers the following: 1 kWe Kilopower, 10 kWe Kilopower, Kilopower Reactor Using Stirling Technology (KRUSTY) Integration Test (DAF), Reactor Configuration, and Platen Positions.

  11. INEL BNCT Research Program Annual Report 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.

    1994-08-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from all the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, boron drug analysis), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented. Results of 21 spontaneous-tumor-bearing dogsmore » that have been treated with boron neutron capture therapy at the Brookhaven National Laboratory are updated. Boron-containing drug purity verification is discussed in some detail. Advances in magnetic resonance imaging of boron in vivo are discussed. Several boron-carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Measurement of the epithermal-neutron flux of the Petten (The Netherlands) High Flux Reactor beam (HFB11B), and comparison to predictions are shown.« less

  12. Sandia National Laboratories California Waste Management Program Annual Report February 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynildson, Mark E.

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  13. Service and methods demonstration program annual report - executive summary.

    DOT National Transportation Integrated Search

    1979-08-01

    This report contains a summary of the contents of the Service and Methods Demonstration Program Annual Report for Fiscal Year 1978. Program activities and accomplishments discussed in the Annual Report are reviewed including findings and insights fro...

  14. Development of a three-dimensional core dynamics analysis program for commercial boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro

    1997-03-01

    Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less

  15. 40 CFR 97.534 - Recordkeeping and reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Acid Rain Program or a TR NOX Annual emissions limitation or if the owner or operator of such unit... not subject to the Acid Rain Program or a TR NOX Annual emissions limitation, then the designated... Ozone Season units that are also subject to the Acid Rain Program, TR NOX Annual Trading Program, TR SO2...

  16. 40 CFR 97.534 - Recordkeeping and reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Acid Rain Program or a TR NOX Annual emissions limitation or if the owner or operator of such unit... not subject to the Acid Rain Program or a TR NOX Annual emissions limitation, then the designated... Ozone Season units that are also subject to the Acid Rain Program, TR NOX Annual Trading Program, TR SO2...

  17. 40 CFR 97.534 - Recordkeeping and reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Acid Rain Program or a TR NOX Annual emissions limitation or if the owner or operator of such unit... not subject to the Acid Rain Program or a TR NOX Annual emissions limitation, then the designated... Ozone Season units that are also subject to the Acid Rain Program, TR NOX Annual Trading Program, TR SO2...

  18. 10 CFR 171.9 - Communications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Communications. 171.9 Section 171.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ANNUAL FEES FOR REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS... APPROVALS AND GOVERNMENT AGENCIES LICENSED BY THE NRC § 171.9 Communications. All communications concerning...

  19. 10 CFR 171.9 - Communications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Communications. 171.9 Section 171.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ANNUAL FEES FOR REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS... APPROVALS AND GOVERNMENT AGENCIES LICENSED BY THE NRC § 171.9 Communications. All communications concerning...

  20. 10 CFR 171.9 - Communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Communications. 171.9 Section 171.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ANNUAL FEES FOR REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS... APPROVALS AND GOVERNMENT AGENCIES LICENSED BY THE NRC § 171.9 Communications. All communications concerning...

  1. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis.

    PubMed

    Han, Wei; Hu, Yun Yi; Li, Shi Yi; Li, Fei Fei; Tang, Jun Hong

    2016-12-01

    Biohydrogen production from waste bread in a continuous stirred tank reactor (CSTR) was techno-economically assessed. The treating capacity of the H 2 -producing plant was assumed to be 2 ton waste bread per day with lifetime of 10years. Aspen Plus was used to simulate the mass and energy balance of the plant. The total capital investment (TCI), total annual production cost (TAPC) and annual revenue of the plant were USD931020, USD299746/year and USD639920/year, respectively. The unit hydrogen production cost was USD1.34/m 3 H 2 (or USD14.89/kg H 2 ). The payback period and net present value (NPV) of the plant were 4.8years and USD1266654, respectively. Hydrogen price and operators cost were the most important variables on the NPV. It was concluded that biohydrogen production from waste bread in the CSTR was feasible for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Brian; Miller, Michele

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain onmore » the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.« less

  3. Characterization of fast neutron spectrum in the TRIGA for hardness testing of electronic components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, George W.

    1986-07-01

    Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering Laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems. (author)« less

  4. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin nextmore » year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.« less

  5. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  6. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    NASA Astrophysics Data System (ADS)

    Aldea, C.-M.; Shenton, B.; Demerchant, M. M.; Gendron, T.

    2011-04-01

    In order for New Brunswick Power Nuclear (NBPN) to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS) the development of an aging management plan (AMP) was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  7. Development of New Transportation/Storage Cask System for Use by DOE Russian Research Reactor Fuel Return Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tyacke; Frantisek Svitak; Jiri Rychecky

    2010-04-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian supplied high-enriched uranium (HEU) fuel currently stored at Russian-designed research reactors throughout the world to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions for these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design,more » licensing, testing, and delivery of this new cask system are the results of a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: (1) Introduction/Background; (2) VPVR/M Cask Description; (3) Ancillary Equipment, (4) Cask Licensing; (5) Cask Demonstration and Operations; (6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, (7) Summary and Conclusions.« less

  8. Development of a New Transportation/Storage Cask System for Use by the DOE Russian Research Reactor Fuel Return Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael J. Tyacke; Frantisek Svitak; Jiri Rychecky

    2007-10-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions at these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design, licensing,more » testing, and delivery of this new cask system result from a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: 1) Introduction; 2) VPVR/M Cask Description; 3) Ancillary Equipment, 4) Cask Licensing; 5) Cask Demonstration and Operations; 6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, 7) Conclusions.« less

  9. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program

    NASA Astrophysics Data System (ADS)

    Deswandri; Subekti, M.; Sunaryo, Geni Rina

    2018-02-01

    Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.

  10. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    NASA Technical Reports Server (NTRS)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  11. Comparison of Analysis Results Between 2D/1D Synthesis and RAPTOR-M3G in the Korea Standard Nuclear Plant (KSNP)

    NASA Astrophysics Data System (ADS)

    Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.

  12. FALCON reactor-pumped laser description and program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1989-12-01

    The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.

  13. A complete dosimetry experimental program in support to the core characterization and to the power calibration of the CABRI reactor. A complete dosimetry experimental program in support of the core characterization and of the power calibration of the CABRI reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodiac, F.; Hudelot, JP.; Lecerf, J.

    CABRI is an experimental pulse reactor operated by CEA at the Cadarache research center. Since 1978 the experimental programs have aimed at studying the fuel behavior under Reactivity Initiated Accident (RIA) conditions. Since 2003, it has been refurbished in order to be able to provide RIA and LOCA (Loss Of Coolant Accident) experiments in prototypical PWR conditions (155 bar, 300 deg. C). This project is part of a broader scope including an overall facility refurbishment and a safety review. The global modification is conducted by the CEA project team. It is funded by IRSN, which is conducting the CIP experimentalmore » program, in the framework of the OECD/NEA project CIP. It is financed in the framework of an international collaboration. During the reactor restart, commissioning tests are realized for all equipment, systems and circuits of the reactor. In particular neutronics and power commissioning tests will be performed respectively in 2015 and 2016. This paper focuses on the design of a complete and original dosimetry program that was built in support to the CABRI core characterization and to the power calibration. Each one of the above experimental goals will be fully described, as well as the target uncertainties and the forecasted experimental techniques and data treatment. (authors)« less

  14. A Special Topic From Nuclear Reactor Dynamics for the Undergraduate Physics Curriculum

    ERIC Educational Resources Information Center

    Sevenich, R. A.

    1977-01-01

    Presents an intuitive derivation of the point reactor equations followed by formulation of equations for inverse and direct kinetics which are readily programmed on a digital computer. Suggests several computer simulations involving the effect of control rod motion on reactor power. (MLH)

  15. Status of the US RERTR Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1995-02-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1994 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1993 in collaboration with its many international partners. The RERTR Program has moved aggressively to support President Clinton`s nonproliferation policy and his goal {open_quotes}to minimize the use of highly-enriched uranium in civil nuclear programs{close_quotes}. An Environmental Assessment which addresses the urgent-relief acceptance of 409 spent fuel elements was completed, and the first shipment of spent fuel elements is scheduledmore » for this month. An Environmental Impact Statement addressing the acceptance of spent research reactor fuel containing enriched uranium of U.S. origin is scheduled for completion by the end of June 1995. The U.S. administration has decided to resume development of high-density LEU research reactor fuels. DOE funding and guidance are expected to begin soon. A preliminary plan for the resumption of fuel development has been prepared and is ready for implementation. The scope and main technical activities of a plan to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels was agreed upon by the RERTR Program and four Russian institutes lead by RDIPE. Both Secretary O`Leary and Minister Michailov have expressed strong support for this initiative. Joint studies have made significant progress, especially in assessing the technical and economic feasibility of using reduced enrichment fuels in the SAFARI-I reactor in South Africa and in the Advanced Neutron Source reactor under design at ORNL. Significant progress was achieved on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU to the achievement of the common goal.« less

  16. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  17. 25 CFR 1000.122 - What non-BIA programs are eligible for inclusion in an annual funding agreement?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What non-BIA programs are eligible for inclusion in an... Funding Agreements Eligibility § 1000.122 What non-BIA programs are eligible for inclusion in an annual... inclusion in AFAs. The Secretary will publish annually a list of these programs in accordance with section...

  18. 25 CFR 1000.122 - What non-BIA programs are eligible for inclusion in an annual funding agreement?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What non-BIA programs are eligible for inclusion in an... Funding Agreements Eligibility § 1000.122 What non-BIA programs are eligible for inclusion in an annual... inclusion in AFAs. The Secretary will publish annually a list of these programs in accordance with section...

  19. 25 CFR 1000.122 - What non-BIA programs are eligible for inclusion in an annual funding agreement?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false What non-BIA programs are eligible for inclusion in an... Funding Agreements Eligibility § 1000.122 What non-BIA programs are eligible for inclusion in an annual... inclusion in AFAs. The Secretary will publish annually a list of these programs in accordance with section...

  20. 25 CFR 1000.122 - What non-BIA programs are eligible for inclusion in an annual funding agreement?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What non-BIA programs are eligible for inclusion in an... Funding Agreements Eligibility § 1000.122 What non-BIA programs are eligible for inclusion in an annual... inclusion in AFAs. The Secretary will publish annually a list of these programs in accordance with section...

  1. 25 CFR 1000.122 - What non-BIA programs are eligible for inclusion in an annual funding agreement?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false What non-BIA programs are eligible for inclusion in an... Funding Agreements Eligibility § 1000.122 What non-BIA programs are eligible for inclusion in an annual... inclusion in AFAs. The Secretary will publish annually a list of these programs in accordance with section...

  2. 77 FR 55877 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...-492- 3668; email: [email protected] . NRC's Agencywide Documents Access and Management System... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Systems for Boiling Water Reactor Power Plants.'' This regulatory guide is being revised to: (1) Expand...

  3. 78 FR 46597 - Agency Information Collection Activities: State Water Resources Research Institute Program Annual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Activities: State Water Resources Research Institute Program Annual Application and Reporting AGENCY: U.S....gov . SUPPLEMENTARY INFORMATION: Title: State Water Resources Research Institute Program Annual.... Abstract The Water Resources Research Act of 1984, as amended (42 U.S.C. 10301 et seq.), authorizes a water...

  4. Status of JUPITER Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, T.; Shirakata, K.; Kinjo, K.

    To obtain the data necessary for evaluating the nuclear design method of a large-scale fast breeder reactor, criticality tests with a large- scale homogeneous reactor were conducted as part of a joint research program by Japan and the U.S. Analyses of the tests are underway in both countries. The purpose of this paper is to describe the status of this project.

  5. Office for Analysis and Evaluation of Operational Data 1994-FY 95 annual report. Volume 9, Number 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This annual report of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) describes activities conducted during CY 1994 and FY 1995. The report is published in three parts. NUREG-1272, Vol. 9, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports, diagnostic evaluations, and reportsmore » to the NRC`s Operations Center. NUREG-1272, Vol. 9, No. 2, covers nuclear materials and presents a review of the events and concerns associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued from 1980 through FY 1995. NUREG-1272, Vol. 9, No. 3, covers technical training and presents the activities of the Technical Training Center in support of the NRC`s mission.« less

  6. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to themore » qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from measurements is of the order of 2.5 W/g at half of the possible MARIA power - 15 MW. The approach and the detailed program for experimental verification of calculations will be presented. The following points will be discussed: - Development of a gamma heating model of MARIA reactor with TRIPOLI 4 (coupled neutron-photon mode) and APOLLO2 model taking into account the key parameters like: configuration of the core, experimental loading, control rod location, reactor power, fuel depletion); - Design of specific measurement tools for MARIA experiments including for instance a new single-cell calorimeter called KAROLINA calorimeter; - MARIA experimental program description and a preliminary analysis of results; - Comparison of calculations for JHR and MARIA cores with experimental verification analysis, calculation behavior and n-γ 'environments'. (authors)« less

  7. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappiello, M.; Hobbins, R.; Penny, K.

    As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As partmore » of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.« less

  9. SP-100 program developments

    NASA Technical Reports Server (NTRS)

    Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.; Verga, R. L.; Wiley, R. L.

    1985-01-01

    An update is provided on the status of the Sp-100 Space Reactor Power Program. The historical background that led to the program is reviewed and the overall program objectives and development approach are discussed. The results of the mission studies identify applications for which space nuclear power is desirable and even essential. Results of a series of technology feasibility experiments are expected to significantly improve the earlier technology data base for engineering development. The conclusion is reached that a nuclear reactor space power system can be developed by the early 1990s to meet emerging mission performance requirements.

  10. Quality Assurance Program Plan for SFR Metallic Fuel Data Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, Timothy; Hlotke, John Daniel; Yacout, Abdellatif

    2017-07-05

    This document contains an evaluation of the applicability of the current Quality Assurance Standards from the American Society of Mechanical Engineers Standard NQA-1 (NQA-1) criteria and identifies and describes the quality assurance process(es) by which attributes of historical, analytical, and other data associated with sodium-cooled fast reactor [SFR] metallic fuel and/or related reactor fuel designs and constituency will be evaluated. This process is being instituted to facilitate validation of data to the extent that such data may be used to support future licensing efforts associated with advanced reactor designs. The initial data to be evaluated under this program were generatedmore » during the US Integral Fast Reactor program between 1984-1994, where the data includes, but is not limited to, research and development data and associated documents, test plans and associated protocols, operations and test data, technical reports, and information associated with past United States Nuclear Regulatory Commission reviews of SFR designs.« less

  11. Panel session on "how to meet the challenges for nuclear power".

    PubMed

    Tenforde, Thomas S

    2011-01-01

    This panel session at the 2009 Annual Meeting involved a discussion of views of government, industry, and national research laboratory members on the primary future goals in developing advanced nuclear reactor and nuclear fuel cycle designs, fuel management, and used fuel disposal options. The session at the 2009 NCRP Annual Meeting on "How to Meet the Challenges for Nuclear Power" was chaired by Mary E. Clark of the U.S. Environmental Protection Agency and focused on efforts in the United States and worldwide to expand nuclear capabilities for electric power production in a safe, secure, and environmentally acceptable manner. This paper briefly summarizes the key topics discussed in five presentations during this session of the NCRP Annual Meeting. Copyright © 2010 Health Physics Society

  12. 76 FR 23272 - FY 2011 Emergency Food Assistance Annual Program Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... Emergency Food Assistance Annual Program Statement Pursuant to the Food for Peace Act of 2008 and the Foreign Assistance Act of 1961 (FAA), notice is hereby given that the FY 2011 Emergency Food Assistance... to review, the FY 2011 Emergency Food Assistance Annual Program Statement is available via the Food...

  13. 31 CFR 50.92 - Determination of pro rata share.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INSURANCE PROGRAM Cap on Annual Liability § 50.92 Determination of pro rata share. (a) Pro rata loss... providing property and casualty insurance under the Program if there were no cap on annual liability under... estimates that aggregate insured losses may exceed the cap on annual liability for a Program Year, then...

  14. 76 FR 8804 - 30-Day Notice of Proposed Information Collection: Form DS-3097, Exchange Visitor Program Annual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... DS-3097, Exchange Visitor Program Annual Report, OMB Control Number 1405-0151 ACTION: Notice of... Department of State has submitted the following information collection request to the Office of Management... Information Collection: Exchange Visitor Program Annual Report. OMB Control Number: 1405-0151. Type of Request...

  15. Interim MELCOR Simulation of the Fukushima Daiichi Unit 2 Accident Reactor Core Isolation Cooling Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Kyle W.; Gauntt, Randall O.; Cardoni, Jeffrey N.

    2013-11-01

    Data, a brief description of key boundary conditions, and results of Sandia National Laboratories’ ongoing MELCOR analysis of the Fukushima Unit 2 accident are given for the reactor core isolation cooling (RCIC) system. Important assumptions and related boundary conditions in the current analysis additional to or different than what was assumed/imposed in the work of SAND2012-6173 are identified. This work is for the U.S. Department of Energy’s Nuclear Energy University Programs fiscal year 2014 Reactor Safety Technologies Research and Development Program RC-7: RCIC Performance under Severe Accident Conditions.

  16. Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    2005-01-01

    A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.

  17. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, J. B.; Austin, W. E.; Dukes, H. H.

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins.

  18. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, J.B.

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins

  19. Status and progress of the RERTR program in the year 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.; Technology Development

    2003-01-01

    Following the cancellation of the 2001 International RERTR Meeting, which had been planned to occur in Bali, Indonesia, this paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the years 2001 and 2002, and discusses the main activities planned for the year 2003. The past two years have been characterized by very important achievements of the RERTR program, but these technical achievements have been overshadowed by the terrible events of September 11, 2001. Those events have caused the U.S. Government to reevaluate the importance andmore » urgency of the RERTR program goals. A recommendation made at the highest levels of the government calls for an immediate acceleration of the program activities, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors.« less

  20. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  1. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvin, J.P.; Blaise, P.; Lyoussi, A.

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physicsmore » calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)« less

  2. Department of Defense Annual Report on Sexual Harassment and Violence at the Military Service Academies, Academic Program Year 2015-2016

    DTIC Science & Technology

    2017-01-18

    Annual Report on Sexual Harassment and Violence at the Military Service Academies Academic Program Year 2015-2016 The Department of Defense...SAPRO | ODMEO 1 DoD SAPRO | ODMEO Department of Defense Annual Report on Sexual Harassment and Violence at the Military Service Academies...2015-2016 DOD ANNUAL REPORT ON SEXUAL HARASSMENT AND VIOLENCE AT THE MILITARY SERVICE ACADEMIES, ACADEMIC PROGRAM YEAR 2015-2016 Executive Summary

  3. 10 CFR 72.218 - Termination of licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.218 Termination of licenses. (a) The notification regarding the program for the management of spent fuel at the reactor required by § 50.54(bb) of...

  4. 10 CFR 72.218 - Termination of licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.218 Termination of licenses. (a) The notification regarding the program for the management of spent fuel at the reactor required by § 50.54(bb) of...

  5. Early Program Development

    NASA Image and Video Library

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  6. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  7. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less

  8. Evaluation of Nuclear Facility Decommissioning Projects program: a reference research reactor. Project summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, B.L.; Miller, R.L.

    1983-10-01

    This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference research reactor (RRR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program.

  9. USAF Hearing Conservation Program, DOEHRS-HC Data Repository Annual Report: CY15

    DTIC Science & Technology

    2017-05-31

    AFRL-SA-WP-SR-2017-0014 USAF Hearing Conservation Program, DOEHRS-HC Data Repository Annual Report: CY15 Daniel A. Williams...Conservation Program, DOEHRS-HC Data Repository Annual Report: CY15 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...Health Readiness System-Hearing Conservation Data Repository (DOEHRS-HC DR). Major command- and installation-level reports are available quarterly

  10. Status of Wrought FeCrAl-UO 2 Capsules Irradiated in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Harp, J.; Core, G.

    2017-07-01

    Candidate cladding materials for accident tolerant fuel applications require extensive testing and validation prior to commercial deployment within the nuclear power industry. One class of cladding materials, FeCrAl alloys, is currently undergoing such effort. Within these activities is a series of irradiation programs within the Advanced Test Reactor. These programs are developed to aid in commercial maturation and understand the fundamental mechanisms controlling the cladding performance during normal operation of a typical light water reactor. Three different irradiation programs are on-going; one designed as a simple proof-of-principle concept, the other to evaluate the susceptibility of FeCrAl to fuel-cladding chemical interaction,more » and the last to fully simulate the conditions of a pressurized water reactor experimentally. To date, nondestructive post-irradiation examination has been completed on the rodlet deemed FCA-L3 from the simple proof-of-concept irradiation program. Initial results show possible breach of the rodlet under irradiation but further studies are needed to conclusively determine whether breach has occurred and the underlying reasons for such a possible failure. Further work includes characterizing additional rodlets following irradiation.« less

  11. Chemical Technology Division annual technical report, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  12. Site Environmental Report for Calendar Year 2000. DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Phil; Samuels, Sandy; Lee, Majelle

    2001-09-01

    This Annual Site Environmental Report (ASER) for 2000 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned company-operated, test facility within Area IV. All nuclear work was terminated in 1988, andmore » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2000 continue to indicate no significant releases of radioactive material from Rocketdyne sites. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway.« less

  13. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion.more » A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.« less

  14. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.

  15. 76 FR 77581 - 60-Day Notice of Proposed Information Collection: Form DS-3097, Exchange Visitor Program Annual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... DS-3097, Exchange Visitor Program Annual Report, and OMB Control Number 1405- 0151 ACTION: Notice of request for public comments. SUMMARY: The Department of State is seeking Office of Management and Budget...: Exchange Visitor Program Annual Report. OMB Control Number: 1405-0151. Type of Request: Extension of a...

  16. 75 FR 64775 - 60-Day Notice of Proposed Information Collection: Form DS-3097, Exchange Visitor Program Annual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DS-3097, Exchange Visitor Program Annual Report, and OMB Control Number 1405- 0151 ACTION: Notice of request for public comments. SUMMARY: The Department of State is seeking Office of Management and Budget...: Exchange Visitor Program Annual Report. OMB Control Number: 1405-0151. Type of Request: Extension of a...

  17. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.« less

  18. Returning HEU Fuel from the Czech Republic to Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tyacke; Dr. Igor Bolshinsky

    In December 1999, representatives from the United States, Russian Federation, and International Atomic Energy Agency began working on a program to return Russian supplied, highly enriched, uranium fuel stored at foreign research reactors to Russia. Now, under the Global Threat Reduction Initiative’s Russian Research Reactor Fuel Return Program, this effort has repatriated over 800 kg of highly enriched uranium to Russia from over 10 countries. In May 2004, the “Agreement Between the Government of the United States of America and the Government of the Russian Federation Concerning Cooperation for the Transfer of Russian Produced Research Reactor Nuclear Fuel to themore » Russian Federation” was signed. This agreement provides legal authority for the Russian Research Reactor Fuel Return Program and establishes parameters whereby eligible countries may return highly enriched uranium spent and fresh fuel assemblies and other fissile materials to Russia. On December 8, 2007, one of the largest shipments of highly enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together. In February 2003, Russian Research Reactor Fuel Return Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their highly enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This article discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.« less

  19. Status and progress of the RERTR program in the year 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.; Nuclear Engineering Division

    2003-01-01

    One of the most important events affecting the RERTR program during the past year was the decision by the U.S. Department of Energy to request the U.S. Congress to significantly increase RERTR program funding. This decision was prompted, at least in part, by the terrible events of September 11, 2001, and by a high-level U.S./Russian Joint Expert Group recommendation to immediately accelerate RERTR program activities in both countries, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors. The U.S. Congress is expectedmore » to approve this request very soon, and the RERTR program has prepared itself well for the intense activities that the 'Accelerated RERTR Program' will require. Promising results have been obtained in the development of a fabrication process for monolithic LEU U-Mo fuel. Most existing and future research reactors could be converted to LEU with this fuel, which has a uranium density between 15.4 and 16.4 g/cm{sup 3} and yielded promising irradiation results in 2002. The most promising method hinges on producing the monolithic meat by cold-rolling a thin ingot produced by casting. The aluminum clad and the meat are bonded by friction stir welding and the cladding surface is finished by a light cold roll. This method can be applied to the production of miniplates and appears to be extendable to the production of full-size plates, possibly with intermediate anneals. Other methods planned for investigation include high temperature bonding and hot isostatic pressing. The progress achieved within the Russian RERTR program, both for the traditional tube-type elements and for the new 'universal' LEU U-Mo pin-type elements, promises to enable soon the conversion of many Russian-designed research and test reactors. Irradiation testing of both fuel types with LEU U-Mo dispersion fuels has begun. Detailed studies are in progress to define the feasibility of converting each Russian-designed research and test reactor to either fuel type. The plan for the Accelerated RERTR Program is structured to achieve LEU conversion of all HEU research reactors supplied by the United States and Russia during the next nine years. This effort will address, in addition to the fuel development and qualification, the analyses and performance/economic/safety evaluations needed to implement the conversions. In combination with this over-arching goal, the RERTR program plans to achieve at the earliest possible date qualification of LEU U-Mo dispersion fuels with uranium densities of 6 g/cm{sup 3} and 7 g/cm{sup 3}. Reactors currently using or planning to use LEU silicide fuel will rely on this fuel after termination of the FRRSNFA program, because it is acceptable to COGEMA for reprocessing. Qualification of LEU U-Mo dispersion fuels has suffered some unavoidable delays but, to accelerate it as much as possible, the RERTR program, the French CEA, and the Australian ANSTO have agreed to jointly pursue a two-element qualification test of LEU U-Mo dispersion fuel with uranium density of 7.0 g/cm{sup 3} to be performed in the Osiris reactor during 2004. The RERTR program also intends to eliminate all obstacles to the utilization of LEU in targets for isotope production, so that this important function can be performed without the need for weapons-grade materials. All of us, working together as we have for many years, can ensure that all these goals will be achieved. By promoting the efficiency and safety of research reactors while eliminating the traffic in weapons-grade uranium, we can prevent the possibility that some of this material might fall in the wrong hands. Few causes can be more deserving of our joint efforts.« less

  20. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as provided...

  1. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as provided...

  2. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as provided...

  3. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as provided...

  4. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as provided...

  5. Exploratory development of a glass ceramic automobile thermal reactor. [anti-pollution devices

    NASA Technical Reports Server (NTRS)

    Gould, R. E.; Petticrew, R. W.

    1973-01-01

    This report summarizes the design, fabrication and test results obtained for glass-ceramic (CER-VIT) automotive thermal reactors. Several reactor designs were evaluated using both engine-dynamometer and vehicle road tests. A maximum reactor life of about 330 hours was achieved in engine-dynamometer tests with peak gas temperatures of about 1065 C (1950 F). Reactor failures were mechanically induced. No evidence of chemical degradation was observed. It was concluded that to be useful for longer times, the CER-VIT parts would require a mounting system that was an improvement over those tested in this program. A reactor employing such a system was designed and fabricated.

  6. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  7. Researcher Poses with a Nuclear Rocket Model

    NASA Image and Video Library

    1961-11-21

    A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.

  8. 1996 NRC annual report. Volume 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-01

    This 22nd annual report of the US Nuclear Regulatory Commission (NRC) describes accomplishments, activities, and plans made during Fiscal Year 1996 (FH 1996)--October 1, 1995, through September 30, 1996. Significant activities that occurred early in FY 1997 are also described, particularly changes in the Commission and organization of the NRC. The mission of the NRC is to ensure that civilian uses of nuclear materials in the US are carried out with adequate protection of public health and safety, the environment, and national security. These uses include the operation of nuclear power plants and fuel cycle plants and medical, industrial, andmore » research applications. Additionally, the NRC contributes to combating the proliferation of nuclear weapons material worldwide. The NRC licenses and regulates commercial nuclear reactor operations and research reactors and other activities involving the possession and use of nuclear materials and wastes. It also protects nuclear materials used in operation and facilities from theft or sabotage. To accomplish its statutorily mandated regulatory mission, the NRC issues rules and standards, inspects facilities and operations, and issues any required enforcement actions.« less

  9. HEDL FACILITIES CATALOG 400 AREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAYANCSIK BA

    1987-03-01

    The purpose of this project is to provide a sodium-cooled fast flux test reactor designed specifically for irradiation testing of fuels and materials and for long-term testing and evaluation of plant components and systems for the Liquid Metal Reactor (LMR) Program. The FFTF includes the reactor, heat removal equipment and structures, containment, core component handling and examination, instrumentation and control, and utilities and other essential services. The complex array of buildings and equipment are arranged around the Reactor Containment Building.

  10. Light-Water-Reactor safety research program. Quarterly progress report, January--March 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The report summarizes the Argonne National Laboratory work performed during January, February, and March 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies.

  11. N.S. SAVANNAH, DRAFT OF FINAL SAFEGUARDS REPORT TEST, START-UP AND TRIALS, NEW YORK SHIPBUILDING CORPORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-04-01

    The N. S. Savannah program for testing, start-up, and initial operation of all reactor and propulsion components and systems is discussed. Definitions of test phases are given and various stages of the test program are outlined. A list of tests for the various reactor, propulsion, and other system components is included. (C.J.G.)

  12. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors.more » The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)« less

  13. Higher Education Opportunity Program. Annual Report, 1983-84.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Higher Education Opportunity Programs.

    The 1983-1984 annual report of the Higher Education Opportunity Program (HEOP) at New York independent colleges and universities is presented. Information is provided on program administration, eligibility and student characteristics, campus programs, student achievement, and program financing. The state appropriated almost $11.5 million to serve…

  14. 78 FR 65705 - Request for Comments on the Annual Progress Report on the Outer Continental Shelf (OCS) Oil and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... (Five Year Program). The Annual Progress Report is available for review at: www.boem.gov/Five-Year-Program-Annual-Progress-Report/ . Information on the Five Year Program is available online at http://www... final on August 27, 2012, after the required 60-day congressional review period. Section 18(e) of the...

  15. A New Annual Forest Inventory System for the South

    Treesearch

    Noel D. Cost

    1999-01-01

    The author and director of the Southern Annual Forest Inventory System (SAFIS) details the Forest Service’s Forest Inventory and Analysis program and the demand for more timely and reliable forest inventory data that led to the new annual inventory program. Cost discusses the research and implementation of SAFIS and the benefits the program has already produced.

  16. Testing piezoelectric sensors in a nuclear reactor environment

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard

    2017-02-01

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.

  17. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, withmore » the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.« less

  18. Examining variation in treatment costs: a cost function for outpatient methadone treatment programs.

    PubMed

    Dunlap, Laura J; Zarkin, Gary A; Cowell, Alexander J

    2008-06-01

    To estimate a hybrid cost function of the relationship between total annual cost for outpatient methadone treatment and output (annual patient days and selected services), input prices (wages and building space costs), and selected program and patient case-mix characteristics. Data are from a multistate study of 159 methadone treatment programs that participated in the Center for Substance Abuse Treatment's Evaluation of the Methadone/LAAM Treatment Program Accreditation Project between 1998 and 2000. Using least squares regression for weighted data, we estimate the relationship between total annual costs and selected output measures, wages, building space costs, and selected program and patient case-mix characteristics. Findings indicate that total annual cost is positively associated with program's annual patient days, with a 10 percent increase in patient days associated with an 8.2 percent increase in total cost. Total annual cost also increases with counselor wages (p<.01), but no significant association is found for nurse wages or monthly building costs. Surprisingly, program characteristics and patient case mix variables do not appear to explain variations in methadone treatment costs. Similar results are found for a model with services as outputs. This study provides important new insights into the determinants of methadone treatment costs. Our findings concur with economic theory in that total annual cost is positively related to counselor wages. However, among our factor inputs, counselor wages are the only significant driver of these costs. Furthermore, our findings suggest that methadone programs may realize economies of scale; however, other important factors, such as patient access, should be considered.

  19. Using SAFRAN Software to Assess Radiological Hazards from Dismantling of Tammuz-2 Reactor Core at Al-tuwaitha Nuclear Site

    NASA Astrophysics Data System (ADS)

    Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas

    2018-05-01

    The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field

  20. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual Trading...

  1. 24 CFR 4001.203 - Calculation of upfront and annual mortgage insurance premiums for Program mortgages.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... mortgage insurance premiums for Program mortgages. 4001.203 Section 4001.203 Housing and Urban Development... HOMEOWNERS PROGRAM HOPE FOR HOMEOWNERS PROGRAM Rights and Obligations Under the Contract of Insurance § 4001.203 Calculation of upfront and annual mortgage insurance premiums for Program mortgages. (a...

  2. 24 CFR 4001.203 - Calculation of upfront and annual mortgage insurance premiums for Program mortgages.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mortgage insurance premiums for Program mortgages. 4001.203 Section 4001.203 Housing and Urban Development... HOMEOWNERS PROGRAM HOPE FOR HOMEOWNERS PROGRAM Rights and Obligations Under the Contract of Insurance § 4001.203 Calculation of upfront and annual mortgage insurance premiums for Program mortgages. (a...

  3. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual Trading...

  4. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual Trading...

  5. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual Trading...

  6. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual Trading...

  7. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  8. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  9. A program for the calculation of paraboloidal-dish solar thermal power plant performance

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M., Jr.

    1985-01-01

    A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.

  10. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  11. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  12. Reactor Statics Module, RS-9: Multigroup Diffusion Program Using an Exponential Acceleration Technique.

    ERIC Educational Resources Information Center

    Macek, Victor C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…

  13. Hanford Laboratories monthly activities report, March 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  14. PDRD (SR13046) TRITIUM PRODUCTION FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.; Sheetz, S.

    Utilizing the results of Texas A&M University (TAMU) senior design projects on tritium production in four different small modular reactors (SMR), the Savannah River National Laboratory’s (SRNL) developed an optimization model evaluating tritium production versus uranium utilization under a FY2013 plant directed research development (PDRD) project. The model is a tool that can evaluate varying scenarios and various reactor designs to maximize the production of tritium per unit of unobligated United States (US) origin uranium that is in limited supply. The primary module in the model compares the consumption of uranium for various production reactors against the base case ofmore » Watts Bar I running a nominal load of 1,696 tritium producing burnable absorber rods (TPBARs) with an average refueling of 41,000 kg low enriched uranium (LEU) on an 18 month cycle. After inputting an initial year, starting inventory of unobligated uranium and tritium production forecast, the model will compare and contrast the depletion rate of the LEU between the entered alternatives. This is an annual tritium production rate of approximately 0.059 grams of tritium per kilogram of LEU (g-T/kg-LEU). To date, the Nuclear Regulatory Commission (NRC) license has not been amended to accept a full load of TPBARs so the nominal tritium production has not yet been achieved. The alternatives currently loaded into the model include the three light water SMRs evaluated in TAMU senior projects including, mPower, Holtec and NuScale designs. Initial evaluations of tritium production in light water reactor (LWR) based SMRs using optimized loads TPBARs is on the order 0.02-0.06 grams of tritium per kilogram of LEU used. The TAMU students also chose to model tritium production in the GE-Hitachi SPRISM, a pooltype sodium fast reactor (SFR) utilizing a modified TPBAR type target. The team was unable to complete their project so no data is available. In order to include results from a fast reactor, the SRNL Technical Advisory Committee (TAC) ran a Monte Carlo N-Particle (MCNP) model of a basic SFR for comparison. A 600MWth core surrounded by a lithium blanket produced approximately 1,000 grams of tritium annually with a 13% enriched, 6 year core. This is similar results to a mid-1990’s study where the Fast Flux Test Facility (FFTF), a 400 MWth reactor at the Idaho National Laboratory (INL), could produce about 1,000 grams with an external lithium target. Normalized to the LWRs values, comparative tritium production for an SFR could be approximately 0.31 g-T/kg LEU.« less

  15. CERCA LEU fuel assemblies testing in Maria Reactor - safety analysis summary and testing program scope.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pytel, K.; Mieleszczenko, W.; Lechniak, J.

    2010-03-01

    The presented paper contains neutronic and thermal-hydraulic (for steady and unsteady states) calculation results prepared to support annex to Safety Analysis Report for MARIA reactor in order to obtain approval for program of testing low-enriched uranium (LEU) lead test fuel assemblies (LTFA) manufactured by CERCA. This includes presentation of the limits and operational constraints to be in effect during the fuel testing investigations. Also, the scope of testing program (which began in August 2009), including additional measurements and monitoring procedures, is described.

  16. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johanna Oxstrand; Katya Le Blanc

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  17. Radiation exposure of U.S. military individuals.

    PubMed

    Blake, Paul K; Komp, Gregory R

    2014-02-01

    The U.S. military consists of five armed services: the Army, Navy, Marine Corps, Air Force, and Coast Guard. It directly employs 1.4 million active duty military, 1.3 million National Guard and reserve military, and 700,000 civilian individuals. This paper describes the military guidance used to preserve and maintain the health of military personnel while they accomplish necessary and purposeful work in areas where they are exposed to radiation. It also discusses military exposure cohorts and associated radiogenic disease compensation programs administered by the U.S. Department of Veterans Affairs, the U.S. Department of Justice, and the U.S. Department of Labor. With a few exceptions, the U.S. military has effectively employed ionizing radiation since it was first introduced during the Spanish-American War in 1898. The U.S military annually monitors 70,000 individuals for occupational radiation exposure: ~2% of its workforce. In recent years, the Departments of the Navy (including the Marine Corps), the Army, and the Air Force all have a low collective dose that remains close to 1 person-Sv annually. Only a few Coast Guard individuals are now routinely monitored for radiation exposure. As with the nuclear industry as a whole, the Naval Reactors program has a higher collective dose than the remainder of the U.S. military. The U.S. military maintains occupational radiation exposure records on over two million individuals from 1945 through the present. These records are controlled in accordance with the Privacy Act of 1974 but are available to affected individuals or their designees and other groups performing sanctioned epidemiology studies.Introduction of Radiation Exposure of U.S. Military Individuals (Video 2:19, http://links.lww.com/HP/A30).

  18. Method for depleting BWRs using optimal control rod patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner, M.S.; Levine, S.H.; Hsiao, M.Y.

    1991-01-01

    Control rod (CR) programming is an essential core management activity for boiling water reactors (BWRs). After establishing a core reload design for a BWR, CR programming is performed to develop a sequence of exposure-dependent CR patterns that assure the safe and effective depletion of the core through a reactor cycle. A time-variant target power distribution approach has been assumed in this study. The authors have developed OCTOPUS to implement a new two-step method for designing semioptimal CR programs for BWRs. The optimization procedure of OCTOPUS is based on the method of approximation programming and uses the SIMULATE-E code for nucleonicsmore » calculations.« less

  19. Hanford Laboratories monthly activities report, February 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  20. 10 CFR 140.5 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and Environmental Management Programs, or..., Rockville, Maryland; or, where practicable, by electronic submission, for example, via Electronic...

  1. 10 CFR 140.5 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and Environmental Management Programs, or..., Rockville, Maryland; or, where practicable, by electronic submission, for example, via Electronic...

  2. Biaxial Creep Specimen Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JL Bump; RF Luther

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Navalmore » Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R. S.

    The following are specific topics of this paper: 1.There is much creativity in the manner in which Dimensional Generator can be applied to a specific programming task [2]. This paper tells how Dimensional Generator was applied to a reactor-physics task. 2. In this first practical use, Dimensional Generator itself proved not to need change, but a better user interface was found necessary, essentially because the relevance of Dimensional Generator to reactor physics was initially underestimated. It is briefly described. 3. The use of Dimensional Generator helps make reactor-physics source code somewhat simpler. That is explained here with brief examples frommore » BURFEL-PC and WIMSBURF. 4. Most importantly, with the help of Dimensional Generator, all erroneous physical expressions were automatically detected. The errors are detailed here (in spite of the author's embarrassment) because they show clearly, both in theory and in practice, how Dimensional Generator offers quality enhancement of reactor-physics programming. (authors)« less

  4. Final summary report for 1989 inservice inspection (ISI) of SRS (Savannah River Site) 100-P Reactor tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, J.M.; Loibl, M.W.

    1989-12-15

    The integrity of the SRS reactor tanks is a key factor affecting their suitability for continued service since, unlike the external piping system and components, the tanks are virtually irreplaceable. Cracking in various areas of the process water piping systems has occurred beginning in 1960 as a result of several degradation mechanisms, chiefly intergranular stress corrosion cracking (IGSCC) and chloride-induced transgranular cracking. IGSCC, currently the primary degradation mechanism, also occurred in the knuckle'' region (tank wall-to-bottom tube sheet transition piece) unique to C Reactor and was eventually responsible for that reactor being deactivated in 1985. A program of visual examinationsmore » of the SRS reactor tanks was initiated in 1968, which used a specially designed immersible periscope. Under that program the condition of the accessible tank welds and associated heat affected zones (HAZ) was evaluated on a five-year frequency. Prior to 1986, the scope of these inspections comprised approximately 20 percent of the accessible weld area. In late 1986 and early 1987 the scope of the inspections was expanded and a 100 percent visual inspection of accessible welds was performed of the P-, L-, and K-Reactor tanks. Supplemental dye penetrant examinations were performed in L Reactor on selected areas which showed visual indications. No evidence of cracking was detected in any of these inspections of the P-, L-, and K-Reactor tanks. 17 refs., 7 figs.« less

  5. Analysis of JKT01 Neutron Flux Detector Measurements In RSG-GAS Reactor Using LabVIEW

    NASA Astrophysics Data System (ADS)

    Rokhmadi; Nur Rachman, Agus; Sujarwono; Taryo, Taswanda; Sunaryo, Geni Rina

    2018-02-01

    The RSG-GAS Reactor, one of the Indonesia research reactors and located in Serpong, is owned by the National Nuclear Energy Agency (BATAN). The RSG-GAS reactor has operated since 1987 and some instrumentation and control systems are considered to be degraded and ageing. It is therefore, necessary to evaluate the safety of all instrumentation and controls and one of the component systems to be evaluated is the performance of JKT01 neutron flux detector. Neutron Flux Detector JKT01 basically detects neutron fluxes in the reactor core and converts it into electrical signals. The electrical signal is then forwarded to the amplifier (Amplifier) to become the input of the reactor protection system. One output of it is transferred to the Main Control Room (RKU) showing on the analog meter as an indicator used by the reactor operator. To simulate all of this matter, a program to simulate the output of the JKT01 Neutron Flux Detector using LabVIEW was developed. The simulated data is estimated using a lot of equations also formulated in LabVIEW. The calculation results are also displayed on the interface using LabVIEW available in the PC. By using this simulation program, it is successful to perform anomaly detection experiments on the JKT01 detector of RSG-GAS Reactor. The simulation results showed that the anomaly JKT01 neutron flux using electrical-current-base are respectively, 1.5×,1.7× and 2.0×.

  6. Methods and codes for neutronic calculations of the MARIA research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrzejewski, K.; Kulikowska, T.; Bretscher, M. M.

    2002-02-18

    The core of the MARIA high flux multipurpose research reactor is highly heterogeneous. It consists of beryllium blocks arranged in 6 x 8 matrix, tubular fuel assemblies, control rods and irradiation channels. The reflector is also heterogeneous and consists of graphite blocks clad with aluminum. Its structure is perturbed by the experimental beam tubes. This paper presents methods and codes used to calculate the MARIA reactor neutronics characteristics and experience gained thus far at IAE and ANL. At ANL the methods of MARIA calculations were developed in connection with the RERTR program. At IAE the package of programs was developedmore » to help its operator in optimization of fuel utilization.« less

  7. Lunar in-core thermionic nuclear reactor power system conceptual design

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  8. THE SM-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM, NOVEMBER 1954- DECEMBER 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pressman, M; Pruett, P B

    1961-08-31

    BS>An environmental radiological monitoring program was conducted. All data obtained during a period extending from l 1/2 years prior to SM-1 reactor start-up through more than 3 years of reactor operation are summarized. The period extended from November 1954 through December 1960. Samples assayed for radioactivity include river water and bottom silt, SM-1 condenser cooling water, subsurface ground water, rain and snow, atmospheric particles obtained by air filtration and fallout, and biota. The report concludes that after more than 3 years of SM-1 reactor operation, no significant increase has been noted in the radiological background level in the Fort Belvoirmore » area.« less

  9. The current state of the Russian reduced enrichment research reactors program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aden, V.G.; Kartashov, E.F.; Lukichev, V.A.

    1997-08-01

    During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% frommore » RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The technical and economic studies were performed to examine the possible installation of a small, integral pressurized water reactor as an industrial energy source in the Duval Corporation's Frasch Process sulfur mining operation located in Culberson County, Texas. Since this is the first industrial application study attempted for this type of reactor, it has been a learning process on the nuclear plant side as well as the industrial side, particularly in the area of economic analysis. The importance of considering inflationary effects, the significance of plant financing form, and the annualized, after-tax cash flow and incremental rate-of-return methods of comparisonmore » in determing energy costs have all been recognized during the course of the study.« less

  11. Eddy Current Flow Measurements in the FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.

    2017-02-02

    The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less

  12. Iowa's Community College Adult Literacy Annual Report. Program Year 2007, July 1, 2006-June 30, 2007

    ERIC Educational Resources Information Center

    Division of Community Colleges and Workforce Preparation, Iowa Department of Education, 2007

    2007-01-01

    This comprehensive document replaces the previously published Benchmark Report, Benchmark Report Executive Summary, Iowa's Community College Basic Literacy Skills Credential Report, Iowa GED Statistical Report, GED Annual Performance Report and Iowa's Adult Literacy Program National Reporting System Annual Performance Report (Graphic…

  13. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  14. PLASTIC-SASS--A COMPUTER PROGRAM FOR STRESSES AND DEFLECTIONS IN A REACTOR SUBASSEMBLY UNDER THERMAL, HYDRAULIC, AND FUEL EXPANSION LOADS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, C.M.

    1963-05-01

    PLASTlC-SASS, an ALTAC-3 computer program that determines stresses and deflections in a flat-plate, rectangular reactor subassembly is described. Elastic, plastic, and creep properties are used to calculate the results of temperature, pressure, and fuel expansion. Plate deflections increase or decrease local channel thicknesses and thus produce a hydraulic load which is a function of fuel plate deflection. (auth)

  15. Progress in the Production of JP-8 Based Hydrogen and Advanced Tactical Fuels for Military Applications

    DTIC Science & Technology

    2011-02-01

    of a multi- year program to develop, optimize, and demonstrate the military viability of a technology for on-demand production of high...continuous reactor system used for kinetic rate data experiment 86 52 Schematic of a differential reactor. The catalyst bed is kept small , and...program to develop, optimize, and demonstrate the military viability of a technology for on-demand production of high-pressure hydrogen for fuel

  16. Nonproliferation and Threat Reduction Assistance: U.S. Programs in the Former Soviet Union

    DTIC Science & Technology

    2011-04-26

    large - scale former BW-related facilities so that they can perform peaceful research issues such as infectious diseases. The Global Threat Reduction...indicated that it may not pursue the MOX program to eliminate its plutonium, opting instead for the construction of fast breeder reactors that could...burn plutonium directly for energy production. The United States might not fund this effort, as many in the United States argue that breeder reactors

  17. Progress of the RERTR program in 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2002-03-07

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of miniplates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualificationmore » of the U-Mo dispersion fuels has been delayed by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid-2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid-2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIINM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4,562 spent fuel assemblies from foreign research reactors had been received by that date by the U.S. under the FRR SNF acceptance policy. The RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling further conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the U.S. FRR SNF Acceptance Program. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  18. Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, David

    The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less

  19. Current Abstracts Nuclear Reactors and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`smore » Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.« less

  20. The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart

    NASA Astrophysics Data System (ADS)

    Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.

    2018-01-01

    The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.

  1. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1992-01-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  2. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1992-12-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  3. Hanford Laboratories Operation monthly activities report, September 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1961-10-16

    This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  4. 77 FR 68162 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Water Reactors,'' Revision 2, and Regulatory Guide 1.79.1, ``Initial Test Program of Emergency Core... White Flint North building, 11555 Rockville Pike, Rockville, MD. After registering with security, please...

  5. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mixmore » of innovative methods that support the general practice of risk assessments, and selected applications.« less

  6. Annual review of energy. Volume 6

    NASA Astrophysics Data System (ADS)

    Hollander, J. M.; Simmons, M. K.; Wood, D. O.

    Developments in the areas of energy resources and supply technologies, energy end use and conservation, energy policy, energy-related risks and the sociopolitical aspects of energy are reviewed. Progress in solar energy technologies over the last five years is discussed, along with the implications for reactor safety of the accident at Three Mile Island, the derivation of biomass fuels from agricultural products and the application of probabilistic risk assessment to energy technologies. Attention is also given to a program for national survival during an oil crisis, energy conservation in new buildings, the development of a United States synthetic fuel industry, the role of OPEC policies in world oil availability, the social impacts of soft and hard energy systems, and the energy implications of fixed rail mass transportation systems. Additional topics include the energy consumptions of industries, the relative economics of nuclear, coal and oil-fired electricity generation, and the role of petroleum price and allocation regulations in the management of energy shortages.

  7. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  8. Naval Reactors Prime Contractor Team (NRPCT) Experiences and Considerations With Irradiation Test Performance in an International Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MH Lane

    2006-02-15

    This letter forwards a compilation of knowledge gained regarding international interactions and issues associated with Project Prometheus. The following topics are discussed herein: (1) Assessment of international fast reactor capability and availability; (2) Japanese fast reactor (JOYO) contracting strategy; (3) NRPCT/Program Office international contract follow; (4) Completion of the Japan Atomic Energy Agency (JAEA)/Pacific Northwest National Laboratory (PNNL) contract for manufacture of reactor test components; (5) US/Japanese Departmental interactions and required Treaties and Agreements; and (6) Non-technical details--interactions and considerations.

  9. The Rockwell SR-100G reactor turboelectric space power system

    NASA Technical Reports Server (NTRS)

    Anderson, R. V.

    1985-01-01

    During FY 1982 and 1983, Rockwell International performed system and subsystem studies for space reactor power systems. These studies drew on the expertise gained from the design and flight of the SNAP-10A space nuclear reactor system. These studies, performed for the SP-100 Program, culminated in the selection of a reactor-turboelectric (gas Brayton) system for the SP-100 application; this system is called the SR-100G. This paper describes the features of the system and provides references where more detailed information can be obtained.

  10. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  11. Annual Report to Congress: Federal Alternative Motor Fuels Programs (4th : 1995)

    DOT National Transportation Integrated Search

    1995-07-01

    This annual report to Congress presents the current status of the alternative : fuel programs being conducted across the country in accordance to the : Alternative Motor Fuels Act of 1988. These programs, which represent the most : comprehensive data...

  12. Eleventh international CODATA conference, scientific and technical data in a new era, Karlsruhe, Federal Republic of Germany, 26--29 September 1988: Foreign trip report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.L.

    Information on release of radioactive materials in airborne and liquid effluents, solid waste shipments and selected operating information from commercial nuclear power plants in the United States is maintained in a computer data base at Brookhaven National Laboratory (BNL) for the United States Nuclear Regulatory Commission (USNRC). The information entered into the data base is obtained from semiannual reports submitted by the operators of the plants to the USNRC in compliance with the USNRC Regulatory Guide 1.21, ''Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants.''more » The data on releases in the calendar year 1986 include information from 69 plants representing 87 reactors and contain approximately 19,000 entries. Since all the information is contained in a computer data base management system, entry and rapidly respond to inquiries about the data set and to generate computer readable subsets of the data. Such a subset is used as input to the computer program which generates the annual report, ''Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites,'' prepared by Pacific Northwest Laboratory for the USNRC. BNL began maintaining this data base for the USNRC with the 1978 information and has added information to the data base for each succeeding year. An annual report summarizing the information for each year, prepared by BNL, and published by the USNRC, is available to the general public. Prior to 1978, annual reports were prepared by the USNRC and are available for the years 1972--1977; however, the information for these years is not in a computer accessible data base.« less

  13. Next generation fuel irradiation capability in the High Flux Reactor Petten

    NASA Astrophysics Data System (ADS)

    Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo

    2009-07-01

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  14. The IRIS Spool-Type Reactor Coolant Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujawski, J.M.; Kitch, D.M.; Conway, L.E.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a light water cooled, 335 MWe power reactor which is being designed by an international consortium as part of the US DOE NERI Program. IRIS features an integral reactor vessel that contains all the major reactor coolant system components including the reactor core, the coolant pumps, the steam generators and the pressurizer. This integral design approach eliminates the large coolant loop piping, and thus eliminates large loss-of-coolant accidents (LOCAs) as well as the individual component pressure vessels and supports. In addition, IRIS is being designed with a long life core and enhanced safetymore » to address the requirements defined by the US DOE for Generation IV reactors. One of the innovative features of the IRIS design is the adoption of a reactor coolant pump (called 'spool' pump) which is completely contained inside the reactor vessel. Background, status and future developments of the IRIS spool pump are presented in this paper. (authors)« less

  15. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, G.

    1998-03-01

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including amore » bibliography of published work, patents, and awards arising from work supported by the program.« less

  16. Digital computer program for nuclear reactor design water properties (LWBR Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, L.L.

    1967-07-01

    An edit program MO899 for the tabulation of thermodynamic and transport properties of liquid and vapor water, frequently used in design calculations for pressurized water nuclear reactors, is described. The data tabulated are obtained from a FORTRAN IV subroutine named HOH. Values of enthalpy, specific volume, viscosity, and thermal conductivity are given for the following ranges: pressure from one bar (14.5 psia) to 175 bars (2538 psia) and temperature from as much as 320 deg C (608 deg F) below saturation up to 500 deg C (932 deg F) above saturation. (NSA 21: 38472)

  17. Space reactor power 1986 - A year of choices and transition

    NASA Technical Reports Server (NTRS)

    Wiley, R. L.; Verga, R. L.; Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.

    1986-01-01

    Both the SP-100 and Multimegawatt programs have made significant progress over the last year and that progress is the focus of this paper. In the SP-100 program the thermoelectric energy conversion concept powered by a compact, high-temperature, lithium-cooled, uranium-nitride-fueled fast spectrum reactor was selected for engineering development and ground demonstration testing at an electrical power level of 300 kilowatts. In the Multimegawatt program, activities moved from the planning phase into one of technology development and assessment with attendant preliminary definition and evaluation of power concepts against requirements of the Strategic Defense Initiative.

  18. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  19. Nuclear safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Dix, Terry E.

    1991-01-01

    The results of a study to identify potential hazards arising from nuclear reactor power systems for use on the lunar and Martian surfaces, related safety issues, and resolutions of such issues by system design changes, operating procedures, and other means are presented. All safety aspects of nuclear reactor power systems from prelaunch ground handling to eventual disposal were examined consistent with the level of detail for SP-100 reactor design at the 1988 System Design Review and for launch vehicle and space transport vehicle designs and mission descriptions as defined in the 90-day Space Exploration Initiative (SEI) study. Information from previous aerospace nuclear safety studies was used where appropriate. Safety requirements for the SP-100 space nuclear reactor system were compiled. Mission profiles were defined with emphasis on activities after low earth orbit insertion. Accident scenarios were then qualitatively defined for each mission phase. Safety issues were identified for all mission phases with the aid of simplified event trees. Safety issue resolution approaches of the SP-100 program were compiled. Resolution approaches for those safety issues not covered by the SP-100 program were identified. Additionally, the resolution approaches of the SP-100 program were examined in light of the moon and Mars missions.

  20. 77 FR 64148 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... Regulatory Guides (RG) RG 1.79, ````Preoperational Testing of Emergency Core Cooling Systems for Pressurized Water Reactors,'' Revision 2 and RG 1.79.1, ``Initial Test Program of Emergency Core Cooling Systems for...

  1. 77 FR 34367 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... reactors, and a research reactor, at the Post Irradiation Examination Facility (PIEF), the Irradiated.../2011, ``Post-Irradiation Examination and R&D Programs Using Irradiated Fuels at KAERI,'' dated June... fuel elements for post-irradiation examination and for research, development and manufacture of DUPIC...

  2. Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element

    DTIC Science & Technology

    1989-05-25

    Engineer and Master of Science in Nuclear Engineering. ABSTRACT A model of the behavior of a packed bed nuclear reactor fuel element is developed . It...RECOMMENDATIONS FOR FURTHER INVESTIGATION .................... 150 APPENDIX A FUEL ELEMENT MODEL PROGRAM DESIGN AND OPERA- T IO N...follow describe the details of the packed bed reactor and then discuss the development of the mathematical representations of the fuel element. These are

  3. COST FUNCTION STUDIES FOR POWER REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heestand, J.; Wos, L.T.

    1961-11-01

    A function to evaluate the cost of electricity produced by a nuclear power reactor was developed. The basic equation, revenue = capital charges + profit + operating expenses, was expanded in terms of various cost parameters to enable analysis of multiregion nuclear reactors with uranium and/or plutonium for fuel. A corresponding IBM 704 computer program, which will compute either the price of electricity or the value of plutonium, is presented in detail. (auth)

  4. Johnson-O'Malley Annual Report, Fiscal Year 1972.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Presenting narrative and tabular data re: American Indians and the Johnson-O'Malley Program, this 1972 annual report includes the following: an introduction to the JOM Program; 1972 program participation by states and districts; an historical synopsis of the JOM Program; a map of the JOM administrative areas; a flow chart depicting JOM…

  5. Annual Rural Manpower Report, 1975. State of Maine.

    ERIC Educational Resources Information Center

    Maine State Dept. of Manpower Affairs, Augusta.

    The Annual Rural Manpower Report is a summary of events and programs affecting rural communities during 1975. Intended as a general overview of activities in rural Maine, it is not an indepth study of all manpower programs serving the state. Part I provides the annual summary and discusses planning, economic development, employment and…

  6. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developedmore » to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.« less

  7. Non-Traditional and Interdisciplinary Programs. Selected Papers from the Annual Conference on Non-Traditional and Interdisciplinary Programs (4th, Arlington, Virginia, June 30-July 2, 1986).

    ERIC Educational Resources Information Center

    McGuinness, Kathleen, Comp.

    A total of 50 papers are presented from the George Mason University (Virginia) fourth annual conference on nontraditional and interdisciplinary programs. They are grouped in the following major categories: adjunct faculty, corporate/university linkages, experiential learning, graduate nontraditional programs, interdisciplinary program issues,…

  8. DIFFUSE: a FORTRAN program for design computation of tritium transport through thermonuclear reactor components by combined ordinary and thermal diffusion when the principal resistance to diffusion is the bulk metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendergrass, J.H.

    1977-10-01

    Based on the theory developed in an earlier report, a FORTRAN computer program, DIFFUSE, was written. It computes, for design purposes, rates of transport of hydrogen isotopes by temperature-dependent quasi-unidirectional, and quasi-static combined ordinary and thermal diffusion through thin, hot thermonuclear reactor components that can be represented by composites of plane, cylindrical-shell, and spherical-shell elements when the dominant resistance to transfer is that of the bulk metal. The program is described, directions for its use are given, and a listing of the program, together with sample problem results, is presented.

  9. Research Program Office of Statewide Planning and Research : State Fiscal Year 2011 Annual Report

    DOT National Transportation Integrated Search

    2011-01-01

    This annual report is designed to share program activities and results for Ohio Department of : Transportations research program. In addition to work on the projects shown in the body of : the report, 2011 accomplishments include: increasing engag...

  10. DOE Solar Energy Technologies Program FY 2005 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutula, Raymond A.

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  11. SP-100 design, safety, and testing

    NASA Technical Reports Server (NTRS)

    Cox, Carl. M.; Mahaffey, Michael M.; Smith, Gary L.

    1991-01-01

    The SP-100 Program is developing a nuclear reactor power system that can enhance and/or enable future civilian and military space missions. The program is directed to develop space reactor technology to provide electrical power in the range of tens to hundreds of kilowatts. The major nuclear assembly test is to be conducted at the Hanford Site near Richland, Washington, and is designed to validate the performance of the 2.4-MWt nuclear and heat transport assembly.

  12. Nonproliferation and Threat Reduction Assistance: U.S, Programs in the Former Soviet Union

    DTIC Science & Technology

    2008-03-26

    reconfigure its large - scale former BW-related facilities so that they can perform peaceful research issues such as infectious diseases. For FY2004, the Bush...program to eliminate its plutonium, opting instead for the construction of fast breeder reactors that could burn plutonium directly for energy production...The United States might not fund this effort, as many in the United States argue that breeder reactors , which produce more plutonium than they

  13. Site environmental report for calendar year 2002. DOE operations at the Boeing Company, Rocketdyne Propulsion and Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2003-09-30

    This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and,more » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.« less

  14. A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process

    NASA Astrophysics Data System (ADS)

    Hussain, Arif; Qyyum, Muhammad Abdul; Quang Minh, Le; Jimin, Hong; Lee, Moonyong

    2017-11-01

    The study aims to reveal the possibility of reactive distillation (RD) in the 2-methoxy-2-methylheptane (MMH) production process. MMH is getting more industrial and academic interests as a gasoline additive to replace methyl tert-butyl ether. Traditionally, MMH is obtained by carrying out the reaction in the reactor followed by three distillation columns. The high yield of MMH could be achieved by keeping the large reactor size or by using the large excess of 2-methyl-1-heptene (MH). Both former and latter strategies are associated with the high capital and operating costs. To solve these problems, this study proposed an innovative RD configuration to take synergistic benefits of reaction and separation involved. This innovative RD configuration allows the production of MMH with significantly lower capital, operating and total annual costs. For desired MMH yield, the result demonstrates that the proposed RD configuration can reduce energy, capital, and total annual costs up to 7.7, 31.3, and 17.1%, respectively, compared to a conventional process. Furthermore, the influence of some important design parameters on the RD column performance was also explored to overcome the temperature limitation of acid resin catalyst inside the reactive zone of the RD column.

  15. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. Thismore » is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.« less

  16. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Coldmore » Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  17. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This ismore » well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  18. A two-step method for developing a control rod program for boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner, M.S.; Levine, S.H.; Hsiao, M.Y.

    1992-01-01

    This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in amore » computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift.« less

  19. Modernization of existing VVER-1000 surveillance programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Erak, D.; Makhotin, D.

    2011-07-01

    According to generally accepted world practice, evaluation of the reactor pressure vessel (RPV) material behavior during operation is carried out using tests of surveillance specimens. The main objective of the surveillance program consists in insurance of safe RPV operation during the design lifetime and lifetime-extension period. At present, the approaches of pressure vessels residual life validation based on the test results of their surveillance specimens have been developed and introduced in Russia and are under consideration in other countries where vodo-vodyanoi energetichesky reactors- (VVER-) 1000 are in operation. In this case, it is necessary to ensure leading irradiation of surveillancemore » specimens (as compared to the pressure vessel wall) and to provide uniformly irradiated specimen groups for mechanical testing. Standard surveillance program of VVER-1000 has several significant shortcomings and does not meet these requirements. Taking into account program of lifetime extension of VVER-1000 operating in Russia, it is necessary to carry out upgrading of the VVER-1000 surveillance program. This paper studies the conditions of a surveillance specimen's irradiation and upgrading of existing sets to provide monitoring and prognosis of RPV material properties for extension of the reactor's lifetime up to 60 years or more. (authors)« less

  20. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less

  1. Status and progress of the RERTR program in the year 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2000-09-28

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the year 2000 and discusses the main activities planned for the year 2001. The past year was characterized by important accomplishments and events for the RERTR program. Four additional shipments containing 503 spent fuel assemblies from foreign research reactors were accepted by the U.S. Altogether, 3,740 spent fuel assemblies from foreign research reactors have been received by the U.S. under the acceptance policy. Postirradiation examinations of three batches of microplates have continued to reveal excellentmore » irradiation behavior of U-MO dispersion fuels in a variety of compositions and irradiating conditions. h-radiation of two new batches of miniplates of greater sizes is in progress in the ATR to investigate me swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g /cm{sup 3} range. Qualification of the U-MO dispersion fuels is proceeding on schedule. Test fuel elements with 6 gU/cm{sup 3} are being fabricated by BWXT and are scheduled to begin undergoing irradiation in the HFR-Petten in the spring of 2001, with a goal of qualifying this fuel by the end of 2003. U-Mo with 8-9 gU/cm{sup 3} is planned to be qualified by the end of 2005. Joint LEU conversion feasibility studies were completed for HFR-Petten and for SAFARI-1. Significant improvements were made in the design of LEU metal-foil annular targets that would allow efficient production of fission {sup 99}Mo. Irradiations in the RAS-GAS reactor showed that these targets can formed from aluminum tubes, and that the yield and purity of their product from the acidic process were at least as good as those from the HEU Cintichem targets. Progress was made on irradiation testing of LEU UO{sub 2} dispersion fuel and on LEU conversion feasibility studies in the Russian RERTR program. Conversion of the BER-11reactor in Berlin, Germany, was completed and conversion of the La Reins reactor in Santiago, Chile, began. These are exciting times for the program. In the fuel development area, the RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling fi.uther conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the FRR SNF Acceptance Program. The {sup 99}Mo effort has reached the point where it appears feasible for all the {sup 99}Mo producers of the world to agree jointly to a common course of action leading to the elimination of HEU use in their processes. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  2. KWU's high conversion reactor concept - An economical evolution of modern pressurized water reactor technology toward improved uranium ore utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markl, H.; Goetzmann, C.A.; Moldaschl, H.

    The Kraftwerk Union AG high conversion reactor represents a quasi-standard PWR with fuel assemblies of more or less uniformly enriched fuel rods, arranged in a tight hexagonal array with a pitch-to-diameter ratio p/d approx. = 1.12. High fuel enrichment as well as a high conversion ratio of --0.9 will provide the potential for high burnup values up to 70 000 MWd/tonne and a low fissile material consumption. The overall objective of the actual RandD program is to have the technical feasibility, including that for licensibility, established by the early 1990s as a prerequisite for deciding whether to enter a demonstrationmore » plant program.« less

  3. A facility for testing 10 to 100-kWe space power reactors

    NASA Astrophysics Data System (ADS)

    Carlson, William F.; Bitten, Ernest J.

    1993-01-01

    This paper describes an existing facility that could be used in a cost-effective manner to test space power reactors in the 10 to 100-kWe range before launch. The facility has been designed to conduct full power tests of 100-kWe SP-100 reactor systems and already has the structural features that would be required for lower power testing. The paper describes a reasonable scenario starting with the acceptance at the test site of the unfueled reactor assembly and the separately shipped nuclear fuel. After fueling the reactor and installing it in the facility, cold critical tests are performed, and the reactor is then shipped to the launch site. The availability of this facility represents a cost-effective means of performing the required prelaunch test program.

  4. Modeling Microalgae Productivity in Industrial-Scale Vertical Flat Panel Photobioreactors.

    PubMed

    Endres, Christian H; Roth, Arne; Brück, Thomas B

    2018-05-01

    Potentially achievable biomass yields are a decisive performance indicator for the economic viability of mass cultivation of microalgae. In this study, a computer model has been developed and applied to estimate the productivity of microalgae for large-scale outdoor cultivation in vertical flat panel photobioreactors. Algae growth is determined based on simulations of the reactor temperature and light distribution. Site-specific weather and irradiation data are used for annual yield estimations in six climate zones. Shading and reflections between opposing panels and between panels and the ground are dynamically computed based on the reactor geometry and the position of the sun. The results indicate that thin panels (≤0.05 m) are best suited for the assumed cell density of 2 g L -1 and that reactor panels should face in north-south direction. Panel spacings of 0.4-0.75 m at a panel height of 1 m appear most suitable for commercial applications. Under these preconditions, yields of around 10 kg m -2 a -1 are possible for most locations in the U.S. Only in hot climates significantly lower yields have to be expected, as extreme reactor temperatures limit overall productivity.

  5. Space station prototype Sabatier reactor design verification testing

    NASA Technical Reports Server (NTRS)

    Cusick, R. J.

    1974-01-01

    A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.

  6. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.M. McEligot; K. G. Condie; G. E. McCreery

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less

  7. Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Brian; Gutowska, Izabela; Chiger, Howard

    Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less

  8. 10 CFR 140.6 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and Environmental Management Programs, or Director, Office of Nuclear Material Safety and... 10 Energy 2 2012-01-01 2012-01-01 false Reports. 140.6 Section 140.6 Energy NUCLEAR REGULATORY...

  9. Alabama Commission on Higher Education. Annual Report, 1993-94.

    ERIC Educational Resources Information Center

    Alabama State Commission on Higher Education, Montgomery.

    This annual report of the Alabama Commission on Higher Education describes new academic programs approved, allied health programs, off-campus instruction, computer-based articulation, rising junior exam, the Academic Common Market, educational technologies, Governor's Conference on Higher Education, Eminent Scholars Program, Meharry Medical…

  10. Nonproliferation Graduate Fellowship Program, Annual Report, Class of 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, Andrea H.

    2013-09-23

    This 32-pp annual report/brochure describes the accomplishments of the Class of 2012 of the Nonproliferation Graduate Fellowship Program (the last class of this program), which PNNL administers for the National Nuclear Security Administration. The time period covers Sept 2011 through June 2013.

  11. 2009 DOE Vehicle Technologies Program Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  12. Contextual Information for the Potential Enhancement of Annual Radiation Protection Program Review Reports.

    PubMed

    Emery, Robert J; Gutiérrez, Janet M

    2017-08-01

    Organizations possessing sources of ionizing radiation are required to develop, document, and implement a "radiation protection program" that is commensurate with the scope and extent of permitted activities and sufficient to ensure compliance with basic radiation safety regulations. The radiation protection program must also be reviewed at least annually, assessing program content and implementation. A convenience sample assessment of web-accessible and voluntarily-submitted radiation protection program annual review reports revealed that while the reports consistently documented compliance with necessary regulatory elements, very few included any critical contextual information describing how important the ability to possess radiation sources was to the central mission of the organization. Information regarding how much radioactive material was currently possessed as compared to license limits was also missing. Summarized here are suggested contextual elements that can be considered for possible inclusion in annual radiation protection program reviews to enhance stakeholder understanding and appreciation of the importance of the ability to possess radiation sources and the importance of maintaining compliance with associated regulatory requirements.

  13. Assessment of Current Inservice Inspection and Leak Monitoring Practices for Detecting Materials Degradation in Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael T.; Simonen, Fredric A.; Muscara, Joseph

    2016-09-01

    An assessment was performed to determine the effectiveness of existing inservice inspection (ISI) and leak monitoring techniques, and recommend improvements, as necessary, to the programs as currently performed for light water reactor (LWR) components. Information from nuclear power plant (NPP) aging studies and from the U. S. Nuclear Regulatory Commission’s Generic Aging Lessons Learned (GALL) report (NUREG-1801) was used to identify components that have already experienced, or are expected to experience, degradation. This report provides a discussion of the key aspects and parameters that constitute an effective ISI program and a discussion of the basis and background against which themore » effectiveness of the ISI and leak monitoring programs for timely detection of degradation was evaluated. Tables based on the GALL components were used to systematically guide the process, and table columns were included that contained the ISI requirements and effectiveness assessment. The information in the tables was analyzed using histograms to reduce the data and help identify any trends. The analysis shows that the overall effectiveness of the ISI programs is very similar for both boiling water reactors (BWRs) and pressurized water reactors (PWRs). The evaluations conducted as part of this research showed that many ISI programs are not effective at detecting degradation before its extent reached 75% of the component wall thickness. This work should be considered as an assessment of NDE practices at this time; however, industry and regulatory activities are currently underway that will impact future effectiveness assessments. A number of actions have been identified to improve the current ISI programs so that degradation can be more reliably detected.« less

  14. Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1979-01-01

    The program aims at developing mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. The major interest is in collecting silicon as a liquid on the reactor walls and other collection surfaces. Two reactor systems are of major interest, a SiCl4/Na reactor in which Si(l) is collected on the flow tube reactor walls and a reactor in which Si(l) droplets formed by the SiCl4/Na reaction are collected by a jet impingement method. During this quarter the following tasks were accomplished: (1) particle deposition routines were added to the boundary layer code; and (2) Si droplet sizes in SiCl4/Na reactors at temperatures below the dew point of Si are being calculated.

  15. Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies

    NASA Astrophysics Data System (ADS)

    Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

    2006-01-01

    A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

  16. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listingmore » of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.« less

  17. DOE Solar Energy Technologies Program FY 2005 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  18. Sister Lab Program Prospective Partner Nuclear Profile: Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Tyson, S

    2006-12-14

    Indonesia has participated in cooperative technical programs with the IAEA since 1957, and has cooperated with regional partners in all of the traditional areas where nuclear science is employed: in medicine, public health (such as insect control and eradication programs), agriculture (e.g. development of improved varieties of rice), and the gas and oil industries. Recently, Indonesia has contributed significantly to the Reduced Enrichment Research and Training Reactor (RERTR) Program by conducting experiments to confirm the feasibility of Mo-99 production using high-density low enriched uranium (LEU) fuel, a primary goal of the RERTR Program. Indonesia's first research reactor, the TRIGA Markmore » II at Bandung, began operation in 1964 at 250 kW and was subsequently upgraded in 1971 to 1 MW and further upgraded in 2000 to 2 MW. This reactor was joined by another TRIGA Mark II, the 100-kW Kartini-PPNY at Yogyakarta, in 1979, and by the 30-MW G.A. Siwabessy multipurpose reactor in Serpong, which achieved criticality in July 1983. A 10-MW radioisotope production reactor, to be called the RPI-10, also was proposed for construction at Serpong in the late 1990s, but the project apparently was not carried out. In the five decades since its nuclear research program began, Indonesia has trained a cadre of scientific and technical staff who not only operate and conduct research with the current facilities, but also represent the nucleus of a skilled labor pool to support development of a nuclear power program. Although Indonesia's previous on-again, off-again consideration of nuclear power has not gotten very far in the past, it now appears that Indonesia again is giving serious consideration to beginning a national nuclear energy program. In June 2006, Research and Technology Minister Kusmayanto Kadiman said that his ministry was currently putting the necessary procedures in place to speed up the project to acquire a nuclear power plant, indicating that, ''We will need around five years to complete the project. If we can start the study, go to tender, and sign the contract for the project this year, the power plant could be on stream by 2011''. While this ambitious schedule may be a bit unrealistic, it suggests new momentum to move forward on the project. The favored site for the proposed plant is the Muria Peninsula, located on Java's north central coast.« less

  19. Colorado Rural Health Program. Annual Report, June 1, 1970-June 1, 1971.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Health, Denver.

    Narrative and statistical data on the Colorado Rural Health Program are presented in this 1970-71 annual report. Objectives of the program were to develop, augment, and improve health care services to rural (including migrant) agricultural workers and their families; to develop, expand, and improve existing programs; and to establish and maintain…

  20. How To Prepare Program Proposals for the American Psychological Association Annual Convention.

    ERIC Educational Resources Information Center

    Tentoni, Stuart C.

    The purpose of this paper is to dispel myths about preparing program proposals for the American Psychological Association's annual convention. The report's goal is to increase the number of student presenters at future annual conventions. It has been determined that, for a variety of reasons, psychology graduate students participate more in poster…

  1. 78 FR 13346 - Medicare Program; Changes to the Semi-Annual Meeting of the Advisory Panel on Hospital Outpatient...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... (HOP Panel)--March 11 and March 12, 2013 AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS... Program; Semi-Annual Meeting of the Advisory Panel on Hospital Outpatient Payment (HOP Panel)--March 11...-annual meeting of the Advisory Panel on Hospital Outpatient Payment (HOP, the Panel) for 2013. We note...

  2. Compilation of 1987 Annual Reports of the Navy ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program. Volume 2

    DTIC Science & Technology

    1988-08-01

    such as those in the vicinity of the ELF antenna because they are pollinators of flowering plants , and are therefore important to the reproductive...COPY r- Compilation of 1987 Annual Reports o of the Navy ELF Communications System C4 Ecological Monitoring Program Volume 2 of 3 Volumes: TABS D -G...Security Classification) Compilation of 1987 Annual Reports of the Navy ELF Communications System Ecological Monitoring Program (Volume 2 of 3 Volumes

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor.

  4. THE ARMOUR DUST FUELED REACTOR (ADFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krucoff, D.

    1958-01-01

    The A-DFR is based on the use of a fissionable dust carried in a gas. This fuel ferm offers promise of a major economic advance through the use of 2,000 to 3,000 F operating temperatures and a low cost fuel cycle. The development program is described that was initiated to investigate experimentally the proposed fuel and study analytically other reactor characteristics. A brief review of the reactor concept is presented. (W.D.M.)

  5. Alabama Commission on Higher Education 1986 Annual Report.

    ERIC Educational Resources Information Center

    Alabama State Commission on Higher Education, Montgomery.

    The 1986 annual report outlines planning and coordination activities and student financial aid programs. The following planning and coordination activities are considered: statewide planning and facilities planning, a new program approval procedure, approval of off-campus offerings, studies of the state's engineering programs and needs and allied…

  6. State Compensatory Education Annual Report, 1982-83.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of Instructional Services.

    This document compiles compensatory education program data submitted to the Georgia State Department by local school systems in their 1982-83 annual reports. The first section describes state administration of grant funds (i.e., appropriations bills, procedures for allocating funds, program plans, and program monitoring). Specifically mentioned…

  7. DOE Hydrogen Program 2004 Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document summarizes the project evaluations and comments from the DOE Hydrogen Program 2004 Annual Program Review. Hydrogen production, delivery and storage; fuel cells; technology validation; safety, codes and standards; and education R&D projects funded by DOE in FY2004 are reviewed.

  8. 1970-1971 Annual Report: Extension Service Program, Silliman University.

    ERIC Educational Resources Information Center

    Maturan, Eulalio G.

    The 1970-1971 annual report of the Extension Service Program of Silliman University, Dumaguete City, Philippines, treats the following projects: Mabinay Agricultural Extension, Mabinay Negrito Action-Research, Reforestation, and Livestock Dispersal. Also discussed are the Rural Publications Center and other extension services--a radio program,…

  9. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  10. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  11. FFTF Passive Safety Test Data for Benchmarks for New LMR Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.

    Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less

  12. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. J. Allen; I. Bolshinsky; L. L. Biro

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Returnmore » Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.« less

  13. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallbert, Bruce Perry; Thomas, Kenneth David

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  14. Computer modeling of a hot filament diamond deposition reactor

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Washlock, Paul A.; Angus, John C.

    1991-01-01

    A commercial fluid mechanics program, FLUENT, has been applied to the modeling of a hot-filament diamond deposition reactor. Streamlines and contours of constant temperature and species concentrations are obtained for practical reactor geometries and conditions. The modeling is presently restricted to two-dimensional simulations and to a chemical mechanism of ten independent homogeneous and surface reactions. Comparisons are made between predicted power consumption, substrate temperature, and concentrations of atomic hydrogen and methyl-radical with values taken from the literature. The results to date indicate that the modeling can aid in the rational design and analysis of practical reactor configurations.

  15. Pellets for fusion reactor refueling. Annual progress report, January 1, 1976--December 31, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnbull, R. J.; Kim, K.

    1977-01-01

    The purpose of this research is to test the feasibility of refueling fusion reactors using solid pellets composed of fuel elements. A solid hydrogen pellet generator has been constructed and experiments have been done to inject the pellets into the ORMAK Tokamak. A theory has been developed to describe the pellet ablation in the plasma, and an excellent agreement has been found between the theory and the experiment. Techniques for charging the pellets have been developed in order to accelerate and control them. Other works currently under way include the development of techniques for accelerating the pellets for refueling purpose.more » Evaluation of electrostatic acceleration has also been performed.« less

  16. Probabilistic evaluation of seismic isolation effect with respect to siting of a fusion reactor facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Masatoshi; Komura, Toshiyuki; Hirotani, Tsutomu

    1995-12-01

    Annual failure probabilities of buildings and equipment were roughly evaluated for two fusion-reactor-like buildings, with and without seismic base isolation, in order to examine the effectiveness of the base isolation system regarding siting issues. The probabilities are calculated considering nonlinearity and rupture of isolators. While the probability of building failure for both buildings on the same site was almost equal, the function failures for equipment showed that the base-isolated building had higher reliability than the non-isolated building. Even if the base-isolated building alone is located on a higher seismic hazard area, it could compete favorably with the ordinary one inmore » reliability of equipment.« less

  17. Schedule and status of irradiation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowcliffe, A.F.; Grossbeck, M.L.; Robertson, J.P.

    1998-09-01

    The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has one irradiation experiment in reactor and five experiments in the design or construction stages. Postirradiation examination and testing is in progress on ten experiments.

  18. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  19. A probabilistic safety analysis of incidents in nuclear research reactors.

    PubMed

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  20. 77 FR 16540 - Notice of Proposed Information Collection Requests; Office of Innovation and Improvement; School...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... and Improvement; School Leadership Program (SLP) Annual Performance Report SUMMARY: Information in the School Leadership Program (SLP) Annual Performance Report (APR) is collected in compliance with the... Leadership Program. DATES: Interested persons are invited to submit comments on or before May 21, 2012...

  1. 38 CFR 17.602 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accredited school located in a State; (2) Be pursuing a degree annually designated by the Secretary for participation in the Scholarship Program; (Authority: 38 U.S.C. 7602(a)(1), 7612(b)(1)) (3) Be in a discipline or program annually designated by the Secretary for participation in the Scholarship Program; (4) Be...

  2. Indian Education. Annual Report 1968-1969.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    Compensatory education programs funded by Johnson-O'Malley categorical aid monies are described in this annual report on American Indian education in the State of Washington. Funds were allocated to school districts on the basis of need and merit of proposed programs. Programs funded provided food services, home visitors and counselors, teacher…

  3. 75 FR 27649 - 2010 Annual Determination for Sea Turtle Observer Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... enable the design of an appropriate sampling program and to ensure collection of sufficient scientific... Observer Coverage in a Fishery Listed on the 2010 Annual Determination The design of any observer program.... During the program design, NMFS will be guided by the following standards for distributing and placing...

  4. A Subjective and Objective Process for Athletic Training Student Selection

    ERIC Educational Resources Information Center

    Hawkins, Jeremy R.; McLoda, Todd A.; Stanek, Justin M.

    2015-01-01

    Context: Admission decisions are made annually concerning whom to accept into athletic training programs. Objective: To present an approach used to make admissions decisions at an undergraduate athletic training program and to corroborate this information by comparing each aspect to nursing program admission processes. Background: Annually,…

  5. Intellectual Skills Development Program. Annual Report, 1986-1987.

    ERIC Educational Resources Information Center

    McCauley, Lynne

    The 1986-1987 annual report on the Intellectual Skills Development Program (ISDP) at Western Michigan University is presented. The program is designed to identify new students who do not meet entry-level competencies in reading, writing, and mathematics, and to provide academic support for these students. In reviewing assessment policies and…

  6. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  7. Advanced Technological Education Program Fact Sheet, June 2007

    ERIC Educational Resources Information Center

    Ritchie, Liesel A.; Gullickson, Arlen R.; Wygant, Barbara

    2007-01-01

    This fact sheet summarizes data gathered in the 2007 annual survey for the National Science Foundation's (NSF) Advanced Technological Education (ATE) program. This was the eighth annual survey of ATE projects and centers conducted by The Evaluation Center at Western Michigan University. Included here are statistics about the program's grantees and…

  8. Report to Congress fourteenth annual report of accomplishments under the Airport Improvement Program : fiscal year 1995

    DOT National Transportation Integrated Search

    1996-12-01

    This annual report of the Airport Improvement Program (AIP) for the fiscal year (FY) ending September 30, 1995, is the 14th report of activity required by Section 47131 of Title 49, United States Code. The current grant program, known as the Airport ...

  9. Annual Program: Library Services and Construction Act, 1987-1988.

    ERIC Educational Resources Information Center

    South Carolina State Library, Columbia.

    This report presents the 1978-1988 annual Library Services and Construction Act (LSCA) program for the South Carolina State Library. This program includes fiscal information and project descriptions for the following LCSA projects under Title I-Library Services: (1) Projects IA-General Administration; (2) IB-Library Interpretation; (3) IIA-General…

  10. TECHNICAL SCOPE OF GAS-COOLED REACTOR FUEL ELEMENT IRRADIATION PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A set of 55 experiments hss been outiined to provide a minimum irradiation program for selection of UO/sub 2/, pellet geometry and fabricntion techniques, and canning technology. These experiments fall into three catagories: prototype: untts in which radial dimension and heat fluxes sre close to proposed design values, but irradiation times are long; reduced-size prototype for accelerated tests in which most variables will be studied; and miniaurized pellet irradiation to obtain high burnup for fission gas release studies. Reactor space has been found generally available and several installations are now examining their capabilities to participate in the program. A tentativemore » schedule has been drawn to illustrate the feasibility of the program. (auth)« less

  11. Aerosol reactor production of uniform submicron powders

    NASA Technical Reports Server (NTRS)

    Flagan, Richard C. (Inventor); Wu, Jin J. (Inventor)

    1991-01-01

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  12. Control console replacement at the WPI Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  13. Aerosol reactor production of uniform submicron powders

    DOEpatents

    Flagan, Richard C.; Wu, Jin J.

    1991-02-19

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  14. Oxidative coupling of methane using inorganic membrane reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G.

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less

  15. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    NASA Astrophysics Data System (ADS)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  16. Non-Traditional and Interdisciplinary Programs. Selected Papers from the Annual Conference on Non-Traditional and Interdisciplinary Programs (3rd, Arlington, Virginia, July 1-3, 1985).

    ERIC Educational Resources Information Center

    Fonseca, James W., Comp.

    Sixty-one papers are presented from the George Mason University (Virginia) annual conference on nontraditional interdisciplinary programs. They are grouped in the following categories, with three to ten papers per category: adjunct faculty; corporate/university linkages; experiential learning; graduate non-traditional programs; interdisciplinary…

  17. Non-Traditional and Interdisciplinary Programs. Selected Papers from the Annual Conference on Non-Traditional & Interdisciplinary Programs (2nd, Arlington, Virginia, June 27-29, 1984).

    ERIC Educational Resources Information Center

    Fonseca, James W., Comp.

    A total of 47 papers are presented from the George Mason University (Virginia) second annual conference on nontraditional, interdisciplinary, and external degree programs. Among the papers are authors are: "A Learning Theory Account of Walden University's Doctoral Instructional Program" (B. M. Austin); "Hospital Based Interdisciplinary Education…

  18. Three Proposed Data Collection Models for Annual Inventories

    Treesearch

    Bill Bechtold; Ron McRoberts; Frank Spirek; Chuck Liff

    2005-01-01

    Three competing data collection models for the U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) program?s annual inventories are presented. We show that in the presence of panel creep, the model now in place does not meet requirements of an annual inventory system mandated by the 1998 Farm Bill. Two data-collection models that use...

  19. United States Nuclear Data Program (USNDP)

    Science.gov Websites

    Report FY 2016 Annual Report FY 2015 Annual Report FY 2014 Annual Report FY 2013 Annual Report FY 2012 Annual Report FY 2011 Annual Report FY 2010 Annual Report FY 2009 Annual Report FY 2008 Annual Report FY 2007 Annual Report FY 2006 Annual Report FY 2005 Annual Report FY 2004 Final Report FY 2003 Final

  20. Separations in the STATS report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choppin, G.R.

    1996-12-31

    The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less

  1. TRAC-P1: an advanced best estimate computer program for PWR LOCA analysis. I. Methods, models, user information, and programming details

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-05-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions.more » The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations.« less

  2. Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility

    DTIC Science & Technology

    1986-01-01

    Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and

  3. Chemical and biological nonproliferation program. FY99 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overviewmore » of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.« less

  4. Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87).

  5. Microstructural processes in irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie

    2016-04-01

    This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.

  6. Isomer Energy Source for Space Propulsion Systems

    DTIC Science & Technology

    2004-03-01

    1,590 Engine F/W (no shield) 3.4 5.0 20.0 A similar core design replacing the fission fuel with the isomer 178Hfm2 is the starting point for this...particles interact and collide with other atoms in the fuel material, reactor core , or coolant, their energy can be transferred to thermal energy...thrust (44). The program produced several reactors that made it all the way through the testing stages of development . The reactors used uranium-235

  7. Environmental Information Document: L-reactor reactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  8. Computer modeling and simulators as part of university training for NPP operating personnel

    NASA Astrophysics Data System (ADS)

    Volman, M.

    2017-01-01

    This paper considers aspects of a program for training future nuclear power plant personnel developed by the NPP Department of Ivanovo State Power Engineering University. Computer modeling is used for numerical experiments on the kinetics of nuclear reactors in Mathcad. Simulation modeling is carried out on the computer and full-scale simulator of water-cooled power reactor for the simulation of neutron-physical reactor measurements and the start-up - shutdown process.

  9. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  10. Environmental Effect on Evolutionary Cyclic Plasticity Material Parameters of 316 Stainless Steel: An Experimental & Material Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin

    2014-09-20

    This report provides an update on an earlier assessment of environmentally assisted fatigue for light water reactor (LWR) materials under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue in the Light Water Reactor Sustainability (LWRS) program. The overall objective of this LWRS project is to assess the degradation by environmentally assisted cracking/fatigue of LWR materials such as various alloy base metals and their welds used in reactor coolant system piping. This effort is to support the Department of Energy LWRS program for developing tools to understand the aging/failure mechanism and to predictmore » the remaining life of LWR components for anticipated 60-80 year operation.« less

  11. NGNP Data Management and Analysis System Modeling Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the thirdmore » NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.« less

  12. Tritium program at Chalk River Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.M.; Workman, W.J.; Kotzer, T.G.

    1993-01-01

    Control of tritium dispersal within and around the research and power stations of the Canadian nuclear program has always been recognized as particularly important because of the high production of tritium in heavy-water-moderated reactors. At the Chalk River Labs, (CRL), two major research reactors have operated for more than 30 yr. Over the years, emissions have been from 300 to 700 TBq/yr (8 to 19 kCi/yr) to the atmosphere and from 100 to 200 TBq/yr (3 to 5 kCi/yr) to local water systems. This results in concentrations in atmospheric moisture of [approximately]600 Bq/[ell] water in the immediate reactor area, 80more » Bq/[ell] at the exclusion area boundary (7 km distant), and 50 Bq/[ell] at the nearest downwind community (12 km).« less

  13. In service inspection and repair of sodium cooled ASTRID prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baque, F.; Jadot, F.; Marlier, R.

    2015-07-01

    In the frame of the large R and D work which is performed for the future ASTRID sodium cooled prototype, In Service Inspection and Repair (ISI and R) has been identified as a major issue to be taken into account in order to enlarge the plant safety, to consolidate its availability and to protect the associated investment. After the first part of pre-conceptual design phase (2008-2012), the running second part of pre-conceptual phase (2013-2015) allows to increase the ISI and R tool ability for immersed sodium structures of ASTRID, at about 200 deg. C, on the basis of consolidated specificationsmore » and thanks to their qualification through more and more realistic laboratory tests and simulation with CIVA code. ISI and R items are being developed and qualified during a pluri-annual program which mainly deals with the reactor block structures, the primary components and circuit, and the Power Conversion System. It ensures a strong connection between the reactor designers and inspection specialists, as the optimization of inspectability and repairability is looked at: this already induced specific rules for design, in order to shorten and ease the ISI and R operations, which have been merged into RCC-MRx rules. In the frame of increasing technology readiness level with corresponding performance demonstration, this paper presents R and D dealing with the ISI and R items: it highlights the sensor development (both ultrasonic and electromagnetic concepts, compatible with sodium at 200 deg. C), then their applications for ASTRID structure control (under sodium telemetry, imaging and NDE). Activity for repair is also presented (a single laser tool for sodium sweeping, machining and welding), and finally the effort for associated robotic (generic program for ASTRID applications, specific technological tools for sodium medium, tight immersed bell). The main results of testing and simulation are given for telemetry, vision, NDE applications, laser process repair and under sodium sealing. (authors)« less

  14. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  15. 2013/2014 Eco-Logical program annual report

    DOT National Transportation Integrated Search

    2014-12-01

    The Eco-Logical approach offers an ecosystem-based framework for integrated infrastructure and natural resource planning, project development, and delivery. The 2013/2014 Eco-Logical Program Annual Report provides updates on the Federal Highway Admin...

  16. Light Water Reactor Sustainability Program, U.S. Efforts in Support of Examinations at Fukushima Daiichi-2017 Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Mitchell T.

    Although the accident signatures from each unit at the Fukushima Daiichi Nuclear Power Station (NPS) [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limited full scale prototypic data.more » Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company Holdings, Incorporated (TEPCO Holdings) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This document, which has been updated to include FY2017 information, summarizes results from U.S. efforts to use information obtained by TEPCO Holdings to enhance the safety of existing and future nuclear power plant designs. This effort, which was initiated in 2014 by the Reactor Safety Technologies Pathway of the Department of Energy Office of Nuclear Energy Light Water Reactor (LWR) Sustainability Program, consists of a group of U.S. experts in LWR safety and plant operations that have identified examination needs and are evaluating TEPCO Holdings information from Daiichi that address these needs. Each year, annual reports include examples demonstrating that significant safety insights are being obtained in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights are being used to update guidance for severe accident prevention, mitigation, and emergency planning. Furthermore, reduced uncertainties in modeling the events at Daiichi will improve the realism of reactor safety evaluations and inform future D&D activities by improving the capability for characterizing potential hazards to workers involved with cleanup activities. Highlights in this FY2017 report include new insights with respect to the forces required to produce the observed Daiichi Unit 1 (1F1) shield plug endstate, the observed leakage from 1F1 components, and the amount of combustible gas generation required to produce the observed explosions in Daiichi Units 3 and 4 (1F3 and 1F4). This report contains an appendix with a list of examination needs that was updated after U.S. experts reviewed recently obtained information from examinations at Daiichi. Additional details for higher priority, near-term, examination activities are also provided. This report also includes an appendix with a description of an updated website that has been reformatted to better assist U.S. experts by providing information in an archived retrievable location, as well as an appendix summarizing U.S. Forensics activities to host the TMI-2 Knowledge Transfer and Relevance to Fukushima Meeting that was held in Idaho Falls, ID, on October 10-14, 2016.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Qi; Saunders, Samuel E.; Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu

    Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortalitymore » burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.« less

  18. 2012 DOE Vehicle Technologies Program Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  19. A Discrepancy-Based Methodology for Nuclear Training Program Evaluation.

    ERIC Educational Resources Information Center

    Cantor, Jeffrey A.

    1991-01-01

    A three-phase comprehensive process for commercial nuclear power training program evaluation is presented. The discrepancy-based methodology was developed after the Three Mile Island nuclear reactor accident. It facilitates analysis of program components to identify discrepancies among program specifications, actual outcomes, and industry…

  20. Migrant Action Program. Annual Report, 1972.

    ERIC Educational Resources Information Center

    Migrant Action Program, Mason City, IA.

    The philosophy behind and the operations of the Iowa Migrant Action Program (MAP) are discussed in this 1972 annual report. In developing its programs, MAP emphasizes self-determination as a key factor in redirecting the migrant to a life style different from the one he has known. MAP's various projects are intended to economically upgrade the…

  1. Privacy Impact Assessment for the TRIO Programs Annual Performance Report (APR) System

    ERIC Educational Resources Information Center

    US Department of Education, 2008

    2008-01-01

    The TRIO Programs Annual Performance Report (APR) System collects individual student records on individuals served by the following Federal TRIO Programs: Upward Bound (which includes regular Upward Bound (UB), Upward Bound Math-Science (UBMS), and Veterans Upward Bound (VUB)); Student Support Services (SSS); and the Ronald E. McNair Post…

  2. 2008 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2008-06-13

    This report summarizes comments from the Peer Review Panel at the 2008 DOE Hydrogen Program Annual Merit Review, held on June 9-13, 2008, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes, and standards; education; systems analysis; and manufacturing.

  3. DOE Hydrogen Program: 2010 Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2010 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held June 7-11, 2010 in Washington, D.C.

  4. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  5. Harvard University Program on Technology and Society; Fifth Annual Report, 1968-1969.

    ERIC Educational Resources Information Center

    Mesthene, Emmanuel G.

    The fifth annual report of Harvard University's Program on Technology and Society describes current research in the Program's major areas of concentration--namely the effects of technological change on the life of the individual in society, social and individual values, the political organization of society, and the structure and processes of…

  6. Annual Program. Library Services and Construction Act, 1988-1989.

    ERIC Educational Resources Information Center

    South Carolina State Library, Columbia.

    This report presents the 1988-1989 annual Library Services and Construction Act (LSCA) program for the South Carolina State Library. This program includes fiscal information and project descriptions for the following LSCA projects under Title I Library Services: (1) I-A, General Administration; (2) I-B, Library Interpretation; (3) II-A, General…

  7. 75 FR 68790 - Medicare Program; Medicare Part B Monthly Actuarial Rates, Premium Rate, and Annual Deductible...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... 0938-AP81 Medicare Program; Medicare Part B Monthly Actuarial Rates, Premium Rate, and Annual... (SMI) program beginning January 1, 2011. In addition, this notice announces the monthly premium for... beneficiaries with modified adjusted gross income above certain threshold amounts. The monthly actuarial rates...

  8. 76 FR 67572 - Medicare Program; Medicare Part B Monthly Actuarial Rates, Premium Rate, and Annual Deductible...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... 0938-AQ16 Medicare Program; Medicare Part B Monthly Actuarial Rates, Premium Rate, and Annual... (SMI) program beginning January 1, 2012. In addition, this notice announces the monthly premium for... beneficiaries with modified adjusted gross income above certain threshold amounts. The monthly actuarial rates...

  9. 78 FR 64943 - Medicare Program; Medicare Part B Monthly Actuarial Rates, Premium Rate, and Annual Deductible...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... 0938-AR58 Medicare Program; Medicare Part B Monthly Actuarial Rates, Premium Rate, and Annual... (SMI) program beginning January 1, 2014. In addition, this notice announces the monthly premium for... beneficiaries with modified adjusted gross income above certain threshold amounts. The monthly actuarial rates...

  10. User's Manual for Program PeakFQ, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines

    USGS Publications Warehouse

    Flynn, Kathleen M.; Kirby, William H.; Hummel, Paul R.

    2006-01-01

    Estimates of flood flows having given recurrence intervals or probabilities of exceedance are needed for design of hydraulic structures and floodplain management. Program PeakFQ provides estimates of instantaneous annual-maximum peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (annual-exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively). As implemented in program PeakFQ, the Pearson Type III frequency distribution is fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the Interagency Advisory Committee on Water Data. The parameters of the Pearson Type III frequency curve are estimated by the logarithmic sample moments (mean, standard deviation, and coefficient of skewness), with adjustments for low outliers, high outliers, historic peaks, and generalized skew. This documentation provides an overview of the computational procedures in program PeakFQ, provides a description of the program menus, and provides an example of the output from the program.

  11. Thirteenth Annual Warren K. Sinclair Keynote Address: Where Are the Radiation Professionals (WARP)?

    PubMed

    Toohey, Richard E

    2017-02-01

    In July 2013, the National Council on Radiation Protection and Measurements convened a workshop for representatives from government, professional organizations, academia, and the private sector to discuss a potential shortage of radiation protection professionals in the not-too-distant future. This shortage manifests itself in declining membership of professional societies, decreasing enrollment in university programs in the radiological sciences, and perhaps most importantly, the imminent retirement of the largest birth cohort in American history, the so-called "baby boomer" generation. Consensus emerged that shortages already are, or soon will be, felt in government agencies (including state radiation control programs); membership in professional societies is declining precipitously; and student enrollments and university support for radiological disciplines are decreasing with no reversals expected. The supply of medical physicists appears to be adequate at least in the near term, although a shortage of available slots in accredited clinical training programs looms large. In general, the private sector appears stable, due in part to retirees joining the consultant ranks. However, it is clear that a severe problem exists with the lack of an adequate surge capacity to respond to a large-scale reactor accident or radiological terrorism attack in the United States. The workshop produced a number of recommendations, including increased funding of both fellowships and research in the radiological sciences, as well as creation of internships, practicums, and post-doctoral positions. A federal joint program support office that would more efficiently manage the careers of radiological professionals in the civil service would enhance recruiting and development, and increase the flexibility of the various agencies to manage their staffing needs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, V.L.; Wiezcorek, M.A.

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasmamore » Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.« less

  13. Evaluation of rotating-cylinder and piston-cylinder reactors for ground-based emulsion polymerization

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.

    1987-01-01

    The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.

  14. A PROGRAM OF RESEARCH ON MECHANICAL METALLURGY AS RELATED TO FUEL-ELEMENT FABRICATION. Summary Report, January 1-September 30, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trozera, T.A.; White, J.L.; Chambers, R.H.

    Research progress on mechanical metallurgy of reactor materials is reported in three sections: deformation characteristics of reactor materials, stored energy of cold work, and microplastic propenties and mechanical relaxation spectra of very pure refractory bcc metals. (M.C.G.)

  15. Hydrogen and water reactor safety: proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  16. TECHNOLOGY EVALUATION REPORT: SITE PROGRAM DEMON- STRATION TEST - HORSEHEAD RESOURCE DEVELOPMENT COMPANY, INC. - FLAME REACTOR TECHNOLOGY - MONACA, PENNSYLVANIA

    EPA Science Inventory

    A SITE demonstration of the Horsehead Resource Development (HRD) Company, Inc. Flame Reactor Technology was conducted in March 1991 at the HRD facility in Monaca, Pennsylvania. or this demonstration, secondary lead smelter soda slag was treated to produce a potentially recyclable...

  17. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... light water nuclear power reactors which result from exposure of these materials to neutron irradiation... the beltline region so that the specimen irradiation history duplicates, to the extent practicable... insertion of replacement capsules. Accelerated irradiation capsules may be used in addition to the required...

  18. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light water nuclear power reactors which result from exposure of these materials to neutron irradiation... the beltline region so that the specimen irradiation history duplicates, to the extent practicable... insertion of replacement capsules. Accelerated irradiation capsules may be used in addition to the required...

  19. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light water nuclear power reactors which result from exposure of these materials to neutron irradiation... the beltline region so that the specimen irradiation history duplicates, to the extent practicable... insertion of replacement capsules. Accelerated irradiation capsules may be used in addition to the required...

  20. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light water nuclear power reactors which result from exposure of these materials to neutron irradiation... the beltline region so that the specimen irradiation history duplicates, to the extent practicable... insertion of replacement capsules. Accelerated irradiation capsules may be used in addition to the required...

  1. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light water nuclear power reactors which result from exposure of these materials to neutron irradiation... the beltline region so that the specimen irradiation history duplicates, to the extent practicable... insertion of replacement capsules. Accelerated irradiation capsules may be used in addition to the required...

  2. 10 CFR 2.318 - Commencement and termination of jurisdiction of presiding officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., whichever is earliest. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, the Director, Office of Federal and State Materials and Environmental Management Programs, or the... officer. 2.318 Section 2.318 Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE...

  3. 10 CFR 2.318 - Commencement and termination of jurisdiction of presiding officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., whichever is earliest. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, the Director, Office of Federal and State Materials and Environmental Management Programs, or the... officer. 2.318 Section 2.318 Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE...

  4. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant tomore » produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the whole industry as a result of our technology demonstration, our production concept is expected to save >5 trillion Btu/year of steam usage and >3 trillion Btu/year in electric power consumption. Our analysis also indicates >50 % reduction in waste disposal cost and ~10% reduction in feedstock energy. These savings translate to ~30% reduction in overall production and transportation costs for the $1B annual H2O2 market.« less

  5. Current status of nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, N.J.

    1975-09-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less

  6. 40 CFR 60.4174 - Recordkeeping and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... unit is subject to an Acid Rain emission limitation or the CAIR NOX Annual Trading Program, CAIR SO2... are also subject to an Acid Rain emissions limitation or the CAIR NOX Annual Trading Program, CAIR SO2...

  7. 40 CFR 60.4174 - Recordkeeping and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... unit is subject to an Acid Rain emission limitation or the CAIR NOX Annual Trading Program, CAIR SO2... are also subject to an Acid Rain emissions limitation or the CAIR NOX Annual Trading Program, CAIR SO2...

  8. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  9. Evaluation of nuclear-facility decommissioning projects. Summary report: Ames Laboratory Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-07-01

    This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.

  10. Overview of the 2014 Edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; Jim Gulliford

    2014-10-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.

  11. The WSTIAC Quarterly. Volume 9, Number 3

    DTIC Science & Technology

    2010-01-25

    program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained

  12. Design Study of a Modular Gas-Cooled, Closed-Brayton Cycle Reactor for Marine Use

    DTIC Science & Technology

    1989-06-01

    materials in the core and surroundings. To investigate this design point in the marine variant I developed the program HEAT.BAS to perform a one-dimensional...helium as the working fluid. The core is a graphite moderated, epithermal spectrum reactor, using TRISO fuel particles in extruded graphite fuel elements...The fuel is highly enriched U2315 . The containment is shaped in an inverted ’T’ with two sections. The upper section contains the reactor core

  13. Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.-T.

    2006-11-17

    A laboratory has been constructed by the TEXONO Collaboration at the Kuo-Sheng Reactor Power Plant in Taiwan to study low energy neutrino physics. A limit on the neutrino magnetic moment of {mu}{nu}({nu}-bare) < 7.2 x 10-11 {mu}B at 90% confidence level has been achieved from measurements with a high-purity germanium detector, as well as the electron neutrinos ({nu}{sub e}) produced from nuclear power reactors has been studied. Other research program at Kuo-Sheng are surveyed.

  14. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  15. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  16. Next Generation Nuclear Plant Methods Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  17. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  18. Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine

    NASA Image and Video Library

    1964-05-21

    Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.

  19. Goals of thermionic program for space power

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1981-01-01

    The thermionic and Brayton reactor concepts were compared for application to space power. For a turbine inlet temperature of 15000 K the Brayton powerplant weighted 5 to 40% less than the thermionic concept. The out of core concept separates the thermionic converters from their reactor. Technical risks are diminished by: (1) moving the insolator out of the reactor; (2) allowing a higher thermal flux for the thermionic converters than is required of the reactor fuel; and (3) eliminating fuel swelling's threat against lifetime of the thermionic converters. Overall performance can be improved by including power processing in system optimization for design and technology on more efficient, higher temperature power processors. The thermionic reactors will be larger than those for competitive systems with higher conversion efficiency and lower reactor operating temperatures. It is concluded that although the effect of reactor size on shield weight will be modest for unmanned spacecraft, the penalty in shield weight will be large for manned or man-tended spacecraft.

  20. The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments

    NASA Astrophysics Data System (ADS)

    Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.

    The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.

  1. Space station program phase B definition: Nuclear reactor-powered space station cost and schedules

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Tabulated data are presented on the costs, schedules, and technical characteristics for the space station phases C and D program. The work breakdown structure, schedule data, program ground rules, program costs, cost-estimating rationale, funding schedules, and supporting data are included.

  2. Nuclear Education and Training Programs of Potential Interest to Utilities.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    This compilation of education and training programs related to nuclear applications in electric power generation covers programs conducted by nuclear reactor vendors, public utilities, universities, technical institutes, and community colleges, which were available in December 1968. Several training-program consultant services are also included.…

  3. Needs of Accurate Prompt and Delayed γ-spectrum and Multiplicity for Nuclear Reactor Designs

    NASA Astrophysics Data System (ADS)

    Rimpault, G.; Bernard, D.; Blanchet, D.; Vaglio-Gaudard, C.; Ravaux, S.; Santamarina, A.

    The local energy photon deposit must be accounted accurately for Gen-IV fast reactors, advanced light-water nuclear reactors (Gen-III+) and the new experimental Jules Horowitz Reactor (JHR). The γ energy accounts for about 10% of the total energy released in the core of a thermal or fast reactor. The γ-energy release is much greater in the core of the reactor than in its structural sub-assemblies (such as reflector, control rod followers, dummy sub-assemblies). However, because of the propagation of γ from the core regions to the neighboring fuel-free assemblies, the contribution of γ energy to the total heating can be dominant. For reasons related to their performance, power reactors require a 7.5% (1σ) uncertainty for the energy deposition in non-fuelled zones. For the JHR material-testing reactor, a 5% (1 s) uncertainty is required in experimental positions. In order to verify the adequacy of the calculation of γ-heating, TLD and γ-fission chambers were used to derive the experimental heating values. Experimental programs were and are still conducted in different Cadarache facilities such as MASURCA (for SFR), MINERVE and EOLE (for JHR and Gen-III+ reactors). The comparison of calculated and measured γ-heating values shows an underestimation in all experimental programs indicating that for the most γ-production data from 239Pu in current nuclear-data libraries is highly suspicious.The first evaluation priority is for prompt γ-multiplicity for U and Pu fission but similar values for otheractinides such as Pu and U are also required. The nuclear data library JEFF3.1.1 contains most of the photon production data. However, there are some nuclei for which there are missing or erroneous data which need to be completed or modified. A review of the data available shows a lack of measurements for conducting serious evaluation efforts. New measurements are needed to guide new evaluation efforts which benefit from consolidated modeling techniques.

  4. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  5. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  6. Reactor physics teaching and research in the Swiss nuclear engineering master

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  7. Program Components | Cancer Prevention Fellowship Program

    Cancer.gov

    Annual Cancer Prevention Fellows' Scientific Symposium The Annual Cancer Prevention Fellows’ Scientific Symposium is held each fall. The symposium brings together senior fellows, new fellows, and the CPFP staff for a day of scientific exchange in the area of cancer prevention.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Programmore » since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.« less

  9. Impact of a musculoskeletal disability management program on medical costs and productivity in a large manufacturing company.

    PubMed

    Bunn, William B; Baver, Robin S; Ehni, Thomas K; Stowers, Allan D; Taylor, David D; Holloway, Anita M; Duong, Duyen; Pikelny, Dan B; Sotolongo, David

    2006-12-01

    To evaluate a program to reduce musculoskeletal disability-related absenteeism at a North American manufacturing facility. Staged communication and educational interventions targeting physicians to improve care of musculoskeletal conditions and reduce related absenteeism. The program was implemented in three 1-year stages. The first stage required physicians to complete assessment forms for employees claiming disability because of musculoskeletal injuries. The second stage added physician education programs focusing on current clinical guidelines. The third stage incorporated local physician education about the facility's onsite physical therapy program. Annual number of work-related injuries, days lost per injury and per scheduled full-time-equivalent (FTE) employee, light-duty days per injury, average annual indemnity per FTE, indemnity per injury, medical costs per FTE, and medical costs per injury were examined to determine the program's effectiveness. Overall productivity improved by a mean of 12.5 days per injured employee. Mean days lost per work-related injury decreased from 35.1 to 27.6. Number of light-duty days increased from 6.1 to 11.1 per work-related injury. Mean annual indemnity per work-related injury decreased from $9327 to $4493; mean annual medical costs per work-related injury decreased from $4848 to $2679. The annual incidence of musculoskeletal injuries declined by up to 50%. This intervention was associated with reduced musculoskeletal disability-related absenteeism and increased productivity. The program reduced medical costs per work-related injury and improved the company's communications and relationship with local physicians.

  10. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  11. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  12. Indian Education; State of Idaho Johnson-O'Malley Program. Annual Report, 1971-1972.

    ERIC Educational Resources Information Center

    Snow, Max

    In compliance with Federal regulations, the State of Idaho submitted this 1971-72 annual report to the Bureau of Indian Affairs regarding their educational funds under the Johnson-O'Malley (JOM) program. Support for the education of public school students is provided by the State Foundation Program. JOM funds and the Indian Education Program…

  13. U.S. Department of Energy Hydrogen and Fuel Cells Program 2011 Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satypal, S.

    2011-09-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2011 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 9-13, 2011 in Arlington, Virginia

  14. 2010 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This report summarizes comments from the Peer Review Panel at the 2010 DOE Hydrogen Program Annual Merit Review, held on June 7-11, 2010, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; and systems analysis.

  15. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less

  16. Optimization of 200 MWth and 250 MWt Ship Based Small Long Life NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitriyani, Dian; Su'ud, Zaki

    2010-06-22

    Design optimization of ship-based 200 MWth and 250 MWt nuclear power reactors have been performed. The neutronic and thermo-hydraulic programs of the three-dimensional X-Y-Z geometry have been developed for the analysis of ship-based nuclear power plant. Quasi-static approach is adopted to treat seawater effect. The reactor are loop type lead bismuth cooled fast reactor with nitride fuel and with relatively large coolant pipe above reactor core, the heat from primary coolant system is directly transferred to watersteam loop through steam generators. Square core type are selected and optimized. As the optimization result, the core outlet temperature distribution is changing withmore » the elevation angle of the reactor system and the characteristics are discussed.« less

  17. Development of Cross Section Library and Application Programming Interface (API)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Marin-Lafleche, A.; Smith, M. A.

    2014-04-09

    The goal of NEAMS neutronics is to develop a high-fidelity deterministic neutron transport code termed PROTEUS for use on all reactor types of interest, but focused primarily on sodium-cooled fast reactors. While PROTEUS-SN has demonstrated good accuracy for homogeneous fast reactor problems and partially heterogeneous fast reactor problems, the simulation results were not satisfactory when applied on fully heterogeneous thermal problems like the Advanced Test Reactor (ATR). This is mainly attributed to the quality of cross section data for heterogeneous geometries since the conventional cross section generation approach does not work accurately for such irregular and complex geometries. Therefore, onemore » of the NEAMS neutronics tasks since FY12 has been the development of a procedure to generate appropriate cross sections for a heterogeneous geometry core.« less

  18. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less

  19. Control console replacement at the WPI Reactor. [Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  20. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

Top