Comparative evaluation of solar, fission, fusion, and fossil energy resources, part 3
NASA Technical Reports Server (NTRS)
Clement, J. D.; Reupke, W. A.
1974-01-01
The role of nuclear fission reactors in becoming an important power source in the world is discussed. The supply of fissile nuclear fuel will be severely depleted by the year 2000. With breeder reactors the world supply of uranium could last thousands of years. However, breeder reactors have problems of a large radioactive inventory and an accident potential which could present an unacceptable hazard. Although breeder reactors afford a possible solution to the energy shortage, their ultimate role will depend on demonstrated safety and acceptable risks and environmental effects. Fusion power would also be a long range, essentially permanent, solution to the world's energy problem. Fusion appears to compare favorably with breeders in safety and environmental effects. Research comparing a controlled fusion reactor with the breeder reactor in solving our long range energy needs is discussed.
Solution of heat removal from nuclear reactors by natural convection
NASA Astrophysics Data System (ADS)
Zitek, Pavel; Valenta, Vaclav
2014-03-01
This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.
Status and problems of fusion reactor development.
Schumacher, U
2001-03-01
Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.
Light-Water-Reactor safety research program. Quarterly progress report, January--March 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The report summarizes the Argonne National Laboratory work performed during January, February, and March 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies.
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
NASA Astrophysics Data System (ADS)
Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-01
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-29
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclearmore » waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.« less
Implicit time-integration method for simultaneous solution of a coupled non-linear system
NASA Astrophysics Data System (ADS)
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2008-07-15
The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.
Final report, PT IP-535-C: Test of smaller VSR`s in DR reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, A.D.
1963-04-17
Because of rod-sticking problems at DR Reactor, a knuckle rod of B Reactor design was installed in vertical safety channel number 28. The substitute VSR, which has a smaller diameter than the original DR rod, has been tested for its operational feasibility including both drop time and reactivity effect. The reactivity effect of the rod was estimated by comparison of the reactivity transient caused by insertion of the specific B-type rod after scramming into the pile, with similar transients caused by normal vertical safety rod in an adjacent channel. This document lists the indicated relative control strength of the rodmore » as an empirical basis for future safety calculations. Results indicate that the B-type knuckel rod in DR reactor is about 80% as strong as a normal DR vertical safety rod if used in equivalent flux distribution and location; this makes it reasonable to assume that the local control strength of the B-type knuckel rod is 98 {mu}b.« less
On Study of Application of Micro-reactor in Chemistry and Chemical Field
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2018-02-01
Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.R.
1986-01-01
This report presents information on the Integral Fast Reactor and its role in the future. Information is presented in the areas of: inherent safety; other virtues of sodium-cooled breeder; and solving LWR fuel cycle problems with IFR technologies. (JDB)
French Regulatory practice and experience feedback on steam generator tube integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandon, G.
1997-02-01
This paper summarizes the way the French Safety Authority applies regulatory rules and practices to the problem of steam generator tube cracking in French PWR reactors. There are 54 reactors providing 80% of French electrical consumption. The Safety Authority closely monitors the performance of tubes in steam generators, and requires application of a program which deals with problems prior to the actual development of leakage. The actual rules regarding such performance are flexible, responding to the overall performance of operating steam generators. In addition there is an inservice inspection service to examine tubes during shutdown, and to monitor steam generatorsmore » for leakage during operation, with guidelines for when generators must be pulled off line.« less
Problems and Delays Overshadow NRC's Initial Success in Improving Reactor Operators' Capabilities.
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC.
The nuclear power plant accident at Three Mile Island raised many questions concerning the safety of nuclear power plant operations and the ability of nuclear plant reactor operators to respond to abnormal or accident conditions. In response, the Nuclear Regulatory Commission (NRC) developed a plan, which included short- and long-term actions to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Kokkinos
2005-04-28
The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollaway, W.R.
1991-08-01
If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less
NASA Astrophysics Data System (ADS)
Taranenko, L.; Janouch, F.; Owsiacki, L.
2001-06-01
This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").
NASA Astrophysics Data System (ADS)
Butler, Thomas S.
Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.
Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1974-01-01
An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.
NASA Astrophysics Data System (ADS)
Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua
2018-01-01
China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.
Safety and core design of large liquid-metal cooled fast breeder reactors
NASA Astrophysics Data System (ADS)
Qvist, Staffan Alexander
In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.
NASA Astrophysics Data System (ADS)
Khuwaileh, Bassam
High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).
NASA Astrophysics Data System (ADS)
Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku
2014-06-01
As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.
Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.
This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, L.T.; Johnson, J.D.; Blond, R.M.
The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems.
THE EXPERIENCE IN THE UNITED STATES WITH REACTOR OPERATION AND REACTOR SAFEGUARDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, C.R.
1958-10-31
Reactors are operating or planned at locations in the United States in cities, near cities, and at remote locations. There is a general pattern that the higher power reactors are not in, but fairly uear cities, and the testing reactors for more hazardous experiments are at remote locations. A great deal has been done on the theoretical and experimental study of importunt features of reactor design. The metal-water reaction is still a theoretical possibility but tests of fuel element burnout under conditions approaching reactor operation gave no reaction. It appears that nucleate boiling does not necessarily result in steam blanketingmore » and fuel melting. Much attention is being given to the calculation of core kinetics but it is being found that temperature, power, and void coefficients cannot be calculated with accuracy and experiments are required. Some surprises are found giving positive localized void coefficients. Possible oscillatory behavior of reactors is being given careful study. No dangerous oscillations have been found in operating reactors but osciliations hare appeared in experimeats. The design of control and safety systems varies wvith different constructors. The relation of control to the kinetic behavior of the reactor is being studied. The importance of sensing element locations in order to know actual local reactor power level is being recognized. The time constants of instrumentation as related to reactor kinetics are being studied. Pressure vessels for reactors are being designed and manufactured. Many of these are beyond any previous experience. The stress problem is being given careful study. The effect of radiation is being studied experimentally. The stress problems of piping and pressure vessels is a difficult design problem being met successfully in reactor plants. The proper organization and procedure for operation of reactors is being evolved for resourch, testing, and power reactors. The importance of written standards and instructions for both normal and abnormal operating conditions is recogmized. Corfinement of radioactive materials either by tight steel shells, tight buildings, or semi-tight structures vented through filters is considered necessary in the United States. A discussion will be given of specifications, construction, and testing of these structures. The need for emergency plans has been stressed by recent experiences in radioactive releases. The problems of such plans to cover all grades of accidents will be discussed. The theoretical consequences of releases of radioactive materials have been studied and these results will be compared with actual experience. The problem of exposures from normal and abnormal operetion of reactors is a problem of desiga and operation on one hand and the amount of damage to be expected on the other. The safeguard problem is closely related to the acceptable doses of radiouctivity which the ICRP recommend. The future of atomic energy depends upon adequate safeguards and economical design and operation. Accepted criteria are required to guide designers as to the proper balance of caution and boldness. (auth)« less
ERIC Educational Resources Information Center
Novick, Sheldon
1974-01-01
Problems facing the nuclear power industry include skyrocketing construction costs, technical failures, fuel scarcity, power plant safety, and the disposal of nuclear wastes. Possible solutions include: reductions in nuclear power plant construction, a complete moratorium on new plant construction, the construction of fast breeder reactors and the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
Physics of reactor safety. Quarterly report, January--March 1977. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-06-01
This report summarizes work done on reactor safety, Monte Carlo analysis of safety-related critical assembly experiments, and planning of DEMI safety-related critical experiments. Work on reactor core thermal-hydraulics is also included.
Thermal-hydraulic interfacing code modules for CANDU reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Gold, M.; Sills, H.
1997-07-01
The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.
Safety control circuit for a neutronic reactor
Ellsworth, Howard C.
2004-04-27
A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.
MODFLOW 2.0: A program for predicting moderator flow patterns
NASA Astrophysics Data System (ADS)
Peterson, P. F.; Paik, I. K.
1991-07-01
Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in the operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.
NASA Astrophysics Data System (ADS)
Muratov, V. G.; Lopatkin, A. V.
An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.
Fast-acting nuclear reactor control device
Kotlyar, Oleg M.; West, Phillip B.
1993-01-01
A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.
Preliminary study of fusion reactor: Solution of Grad Shapranov equation
NASA Astrophysics Data System (ADS)
Setiawan, Y.; Fermi, N.; Su'ud, Z.
2012-06-01
Nuclear fussion is prospective energy sources for the future due to the abundance of the fuel and can be categorized and clean energy sources. The problem is how to contain very hot plasma of temperature few hundreed million degrees safety and reliably. Tokamax type fussion reactors is considered as the most prospective concept. To analyze the plasma confining process and its movement Grad-Shavranov equation must be solved. This paper discuss about solution of Grad-Shavranov equation using Whittaker function. The formulation is then applied to the ITER design and example.
Safety approach to the selection of design criteria for the CRBRP reactor refueling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisl, C J; Berg, G E; Sharkey, N F
1979-01-01
The selection of safety design criteria for Liquid Metal Fast Breeder Reactor (LMFBR) refueling systems required the extrapolation of regulations and guidelines intended for Light Water Reactor refueling systems and was encumbered by the lack of benefit from a commercially licensed predecessor other than Fermi. The overall approach and underlying logic are described for developing safety design criteria for the reactor refueling system (RRS) of the Clinch River Breeder Reactor Plant (CRBRP). The complete selection process used to establish the criteria is presented, from the definition of safety functions to the finalization of safety design criteria in the appropriate documents.more » The process steps are illustrated by examples.« less
VVER Reactor Safety in Eastern Europe and Former Soviet Union
NASA Astrophysics Data System (ADS)
Papadopoulou, Demetra
2012-02-01
VVER Soviet-designed reactors that operate in Eastern Europe and former Soviet republics have heightened international concern for years due to major safety deficiencies. The governments of countries with VVER reactors have invested millions of dollars toward improving the safety of their nuclear power plants. Most of these reactors will continue to operate for the foreseeable future since they provide urgently-needed electrical power. Given this situation, this paper assesses the radiological consequences of a major nuclear accident in Eastern Europe. The paper also chronicles the efforts launched by the international nuclear community to improve the safety of the reactors and notes the progress made so far through extensive collaborative efforts in Armenia, Bulgaria, the Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine to reduce the risks of nuclear accidents. Western scientific and technical staff collaborated with these countries to improve the safety of their reactor operations by strengthening the ability of the regulator to perform its oversight function, installing safety equipment and technologies, investing time in safety training, and working diligently to establish an enduring safety culture. Still, continued safety improvement efforts are necessary to ensure safe operating practices and achieve timely phase-out of older plants.
From Confrontation to Cooperation: 8th International Seminar on Nuclear War
NASA Astrophysics Data System (ADS)
Zichichi, A.; Dardo, M.
1992-09-01
The Table of Contents for the full book PDF is as follows: * OPENING SESSION * A. Zichichi: Opening Statements * R. Nicolosi: Opening Statements * MESSAGES * CONTRIBUTIONS * "The Contribution of the Erice Seminars in East-West-North-South Scientific Relations" * 1. LASER TECHNOLOGY * "Progress in laser technology" * "Progress in laboratory high gain ICF: prospects for the future" * "Applications of laser in metallurgy" * "Laser tissue interactions in medicine and surgery" * "Laser fusion" * "Compact X-ray lasers in the laboratory" * "Alternative method for inertial confinement" * "Laser technology in China" * 2. NUCLEAR AND CHEMICAL SAFETY * "Reactor safety and reactor design" * "Thereotical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core" * "How really to attain reactor safely" * "The problem of chemical weapons" * "Long terms genetic effects of nuclear and chemical accidents" * "Features of the brain which are of importance in understanding the mode of operation of toxic substances and of radiation" * "CO2 and ultra safe reactors" * 3. USE OF MISSILES * "How to convert INF technology for peaceful scientific purposes" * "Beating words into plowshares: a proposal for the peaceful uses of retired nuclear warheads" * "Some thoughts on the peaceful use of retired nuclear warheads" * "Status of the HEFEST project" * 4. OZONE * "Status of the ozone layer problem" * 5. CONVENTIONAL AND NUCLEAR FORCE RESTRUCTURING IN EUROPE * 6. CONFLICT AVOIDANCE MODEL * 7. GENERAL DISCUSSION OF THE WORLD LAB PROJECTS * "East-West-North-South Collaboration in Subnuclear Physics" * "Status of the World Lab in the USSR" * CLOSING SESSION
Growth and characterization of III-V epitaxial films
NASA Astrophysics Data System (ADS)
Tripathi, A.; Adamski, J.
1991-11-01
Investigations were conducted on the growth of epitaxial layers using an Organo Metallic Chemical Vapor Deposition technique of selected III-V materials which are potentially useful for photonics and microwave devices. RL/ERX's MOCVD machine was leak checked for safety. The whole gas handling plumbing system has been leak checked and the problems were reported to the manufacturer, CVD Equipment Corporation of Dear Park, NY. CVD Equipment Corporation is making an effort to correct these problems and also supply the part according to our redesign specifications. One of the main emphasis during this contract period was understanding the operating procedure and writing an operating manual for this MOCVD machine. To study the dynamic fluid flow in the vertical reactor of this MOCVD machine, an experimental apparatus was designed, tested, and put together. This study gave very important information on the turbulent gas flow patterns in this vertical reactor. The turbulent flow affects the epitaxial growth adversely. This study will also help in redesigning a vertical reactor so that the turbulent gas flow can be eliminated.
Nuclear Reactor Safety--The APS Submits its Report
ERIC Educational Resources Information Center
Physics Today, 1975
1975-01-01
Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)
Top shield temperatures, C and K Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agar, J.D.
1964-12-28
A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less
An Innovative Hybrid Loop-Pool SFR Design and Safety Analysis Methods: Today and Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hongbin Zhang; Haihua Zhao; Vincent Mousseau
2008-04-01
Investment in commercial sodium cooled fast reactor (SFR) power plants will become possible only if SFRs achieve economic competitiveness as compared to light water reactors and other Generation IV reactors. Toward that end, we have launched efforts to improve the economics and safety of SFRs from the thermal design and safety analyses perspectives at Idaho National Laboratory. From the thermal design perspective, an innovative hybrid loop-pool SFR design has been proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to further improve economics and safety. From the safety analysesmore » perspective, we have initiated an effort to develop a high fidelity reactor system safety code.« less
Methods and strategies for future reactor safety goals
NASA Astrophysics Data System (ADS)
Arndt, Steven Andrew
There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk-informed analyses and discussions. This dissertation examines potential approaches to updating the safety goals that include the establishment of new quantitative safety goal associated with the comparative risk of generating electricity by viable competing technologies and modifications of the goals to account for multi-plant reactor sites, and issues associated with the use of safety goals in both initial licensing and operational decision making. This research develops a new quantitative health objective that uses a comparable benefit risk metric based on the life-cycle risk of the construction, operation and decommissioning of a comparable non-nuclear electric generation facility, as well as the risks associated with mining and transportation. This dissertation also evaluates the effects of using various methods for aggregating site risk as a safety metric, as opposed to using single plant safety goals. Additionally, a number of important assumptions inherent in the current safety goals, including the effect of other potential negative societal effects such as the generation of greenhouse gases (e.g., carbon dioxide) have on the risk of electric power production and their effects on the setting of safety goals, is explored. Finally, the role risk perception should play in establishing safety goals has been explored. To complete this evaluation, a new method to analytically compare alternative technologies of generating electricity was developed, including development of a new way to evaluate risk perception, and a new method was developed for evaluating the risk at multiple units on a single site. To test these modifications to the safety goals a number of possible reactor designs and configurations were evaluated using these new proposed safety goals to determine the goals' usefulness and utility. The results of the analysis showed that the modifications provide measures that more closely evaluate the potential risk to the public from the operation of nuclear power plants than the current safety goals, while still providing a straight-forward process for assessment of reactor design and operation.
Application of CFX-10 to the Investigation of RPV Coolant Mixing in VVER Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, Fabio; Melideo, Daniele; Terzuoli, Fulvio
2006-07-01
Coolant mixing phenomena occurring in the pressure vessel of a nuclear reactor constitute one of the main objectives of investigation by researchers concerned with nuclear reactor safety. For instance, mixing plays a relevant role in reactivity-induced accidents initiated by de-boration or boron dilution events, followed by transport of a de-borated slug into the vessel of a pressurized water reactor. Another example is constituted by temperature mixing, which may sensitively affect the consequences of a pressurized thermal shock scenario. Predictive analysis of mixing phenomena is strongly improved by the availability of computational tools able to cope with the inherent three-dimensionality ofmore » such problem, like system codes with three-dimensional capabilities, and Computational Fluid Dynamics (CFD) codes. The present paper deals with numerical analyses of coolant mixing in the reactor pressure vessel of a VVER-1000 reactor, performed by the ANSYS CFX-10 CFD code. In particular, the 'swirl' effect that has been observed to take place in the downcomer of such kind of reactor has been addressed, with the aim of assessing the capability of the codes to predict that effect, and to understand the reasons for its occurrence. Results have been compared against experimental data from V1000CT-2 Benchmark. Moreover, a boron mixing problem has been investigated, in the hypothesis that a de-borated slug, transported by natural circulation, enters the vessel. Sensitivity analyses have been conducted on some geometrical features, model parameters and boundary conditions. (authors)« less
MYRRHA: A multipurpose nuclear research facility
NASA Astrophysics Data System (ADS)
Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert
2014-12-01
MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.
ERIC Educational Resources Information Center
Primack, Joel
1975-01-01
The reactor safety controversy is reviewed in light of the United States Atomic Energy Commission's Reactor Safety Study and the Report to the American Physical Society by the Study Group on Light Water Reactor Safety. Areas of agreement and disagreement are identified and implications for national policy are explored. (BT)
Vachon, Lawrence J.
1980-03-11
This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.
Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Reich, W.J.
1991-09-01
The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less
Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview
NASA Astrophysics Data System (ADS)
Doshi, Bharat; Reddy, D. Chenna
2017-04-01
Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.
Pressurized-water reactor internals aging degradation study. Phase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, K.H.
1993-09-01
This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pinsmore » and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.« less
Three dimensional contact/impact methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulak, R.F.
1987-01-01
The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crashmore » on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.« less
Generation III reactors safety requirements and the design solutions
NASA Astrophysics Data System (ADS)
Felten, P.
2009-03-01
Nuclear energy's public acceptance, and hence its development, depends on its safety. As a reactor designer, we will first briefly remind the basic safety principles of nuclear reactors' design. We will then show how the industry, and in particular Areva with its EPR, made design evolution in the wake of the Three Miles Island accident in 1979. In particular, for this new generation of reactors, severe accidents are taken into account beyond the standard design basis accidents. Today, Areva's EPR meets all so-called "generation III" safety requirements and was licensed by several nuclear safety authorities in the world. Many innovative solutions are integrated in the EPR, some of which will be introduced here.
NASA Astrophysics Data System (ADS)
Artisyuk, V.; Ignatyuk, A.; Korovin, Yu.; Lopatkin, A.; Matveenko, I.; Stankovskiy, A.; Titarenko, Yu.
2005-05-01
Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates some of the serious safety penalties unavoidable in critical reactors. Specific requirements to nuclear data necessary for ADS transmutation analysis is the main subject of the ISTC Project ♯2578 which started in 2004 to identify the areas of research priorities in the future. The present paper gives a summary of ongoing project stressing the importance of nuclear data for blanket performance (reactivity behavior with associated safety characteristics) and uncertainties that affect characteristics of neutron producing target.
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
Safety features of subcritical fluid fueled systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, C.R.
1995-10-01
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitativemore » in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.« less
Safety Issues at the Defense Production Reactors. A Report to the U.S. Department of Energy.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.
This report provides an assessment of safety management, safety review, and safety methodology employed by the Department of Energy (DOE) and private contractors. Chapter 1, "The DOE Safety Framework," examines safety objectives for production reactors and processes to implement the objectives. Chapter 2, "Technical Issues,"…
Interface design of VSOP'94 computer code for safety analysis
NASA Astrophysics Data System (ADS)
Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi
2014-09-01
Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pind, C.
The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives formore » heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories.« less
Double-clad nuclear fuel safety rod
McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan
1984-01-01
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
Double-clad nuclear-fuel safety rod
McCarthy, W.H.; Atcheson, D.B.
1981-12-30
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.K.; Mohr, D.; Planchon, H.P.
This article discusses a series of successful loss-of-flow-without-scram tests conducted in Experimental Breeder Reactor-II (EBR-II), a metal-fueled, sodium-cooled fast reactor. These May 1985 tests demonstrated the capability of the EBR to reduce reactor power passively during a loss of flow and to maintain reactor temperatures within bounds without any reliance on an active safety system. The tests were run from reduced power to ensure that temperatures could be maintained well below the fuel-clad eutectic temperature. Good agreement was found between selected test data and pretest predictions made with the EBR-II system analysis code NATDEMO and the hot channel analysis codemore » HOTCHAN. The article also discusses safety assessments of the tests as well as modifications required on the EBR-II reactor safety system for conducting required on the EBR-II reactor safety system for the conducting the tests.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...
Nuclear reactor fuel containment safety structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewell, M.P.
A nuclear reactor fuel containment safety structure is disclosed and is shown to include an atomic reactor fuel shield with a fuel containment chamber and exhaust passage means, and a deactivating containment base attached beneath the fuel reactor shield and having exhaust passages, manifold, and fluxing and control material and vessels. 1 claim, 8 figures.
Advanced Fuel Cycles for Fusion Reactors: Passive Safety and Zero-Waste Options
NASA Astrophysics Data System (ADS)
Zucchetti, Massimo; Sugiyama, Linda E.
2006-05-01
Nuclear fusion is seen as a much ''cleaner'' energy source than fission. Most of the studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium (DT) fuel cycle, since it is the easiest way to reach ignition. The recent stress on safety by the world's community has stimulated the research on other fuel cycles than the DT one, based on 'advanced' reactions, such as the Deuterium-Helium-3 (DHe) one. These reactions pose problems, such as the availability of 3He and the attainment of the higher plasma parameters that are required for burning. However, they have many advantages, like for instance the very low neutron activation, while it is unnecessary to breed and fuel tritium. The extrapolation of Ignitor technologies towards a larger and more powerful experiment using advanced fuel cycles (Candor) has been studied. Results show that Candor does reach the passive safety and zero-waste option. A fusion power reactor based on the DHe cycle could be the ultimate response to the environmental requirements for future nuclear power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
Monitoring circuit for reactor safety systems
Keefe, Donald J.
1976-01-01
The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.
1995-12-31
In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
Hu, Rui
2016-11-19
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, Gerhard; Bostelmann, F.
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less
Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code
NASA Astrophysics Data System (ADS)
Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.
2018-02-01
The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has been fulfilled. From the result analysis, it can be concluded that the model of calculation result of neutron dose rate for HTGR-10 core has met the required radiation safety standards.
Assessment of nuclear reactor concepts for low power space applications
NASA Technical Reports Server (NTRS)
Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.
1988-01-01
The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. McEligot; K. G. Condie; G. E. McCreery
2005-10-01
Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less
Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, L. B.; Kolb, J. O.
1970-01-01
Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.
Significance of breeding in fast nuclear reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, S.M.; Abidi, S.B.M.
1983-12-01
Only breeder reactors--nuclear power plants that produce more fuel than they consume--are capable in principle of extracting the maximum amount of fission energy contained in uranium ore, thus offering a practical long-term solution to uranium supply problems. Uranium would then constitute a virtually inexhaustible fuel reserve for the world's future energy needs. The ultimate argument for breeding is to conserve the energy resources available to mankind. A long-term role for nuclear power with fast reactors is proven to be economically viable, environmentally acceptable and capable of wide scale exploitation in many countries. In this paper, various suggestions pertaining to themore » fuel fabrication route, fuel cycle economics, studies of the physics of fast nuclear reactors and of engineering design simplifications are presented. Fast reactors contain no moderator and inherently require enriched fuel. In general, the main aim is to suggest an improvement in the understanding of the safety and control characteristics of fast breeder power reactors. Development work is also being devoted to new carbide and nitride fuels, which are likely to exhibit breeding characteristics superior to those of the oxides of plutonium and uranium.« less
A new safety channel based on ¹⁷N detection in research reactors.
Seyfi, Somayye; Gharib, Morteza
2015-10-01
Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Knight, John C.
1995-01-01
We are engaged in a research program in safety-critical computing that is based on two case studies. We use these case studies to provide application-specific details of the various research issues, and as targets for evaluation of research ideas. The first case study is the Magnetic Stereotaxis System (MSS), an investigational device for performing human neurosurgery being developed in a joint effort between the Department of Physics at the University of Virginia and the Department of Neurosurgery at the University of Iowa. The system operates by manipulating a small permanent magnet (known as a 'seed') within the brain using an externally applied magnetic field. By varying the magnitude and gradient of the external magnetic field, the seed can be moved along a non-linear path and positioned at a site requiring therapy, e.g., a tumor. The magnetic field required for movement through brain tissue is extremely high, and is generated by a set of six superconducting magnets located in a housing surrounding the patient's head. The system uses two X-ray cameras positioned at right angles to detect in real time the locations of the seed and of X-ray opaque markers affixed to the patient's skull. the X-ray images are used to locate the objects of interest in a canonical frame of reference. the second case study is the University of Virginia Research Nuclear Reactor (UVAR). It is a 2 MW thermal, concrete-walled pool reactor. The system operates using 20 to 25 plate-type fuel assemblies placed on a rectangular grid plate. There are three scramable safety rods, and one non-scramable regulating rod that can be put in automatic mode. It was originally constructed in 1959 as a 1 MW system, and it was upgraded to 2 MW in 1973. Though only a research reactor rather than a power reactor, the issues raised are significant and can be related to the problems faced by full-scale reactor systems.
SP-100 Program: space reactor system and subsystem investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, R.B.
1983-09-30
For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs.
SP-100 program: Space reactor system and subsystem investigations
NASA Astrophysics Data System (ADS)
Harty, R. B.
1983-09-01
For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. The nuclear safety review/approval process that is required for a space reactor system is summarized. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that is expected and to provide information that could be usable in future programs.
The MSFR as a flexible CR reactor: the viewpoint of safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiorina, C.; Cammi, A.; Franceschini, F.
2013-07-01
In this paper, the possibility has first been discussed of using the liquid-fuelled Molten Salt Fast Reactor (MSFR) as a flexible conversion ratio (CR) reactor without design modification. By tuning the reprocessing rate it is possible to determine the content of fission products in the core, which in turn can significantly affect the neutron economy without incurring in solubility problems. The MSFR can thus be operated as U-233 breeder (CR>1), iso-breeder (CR=1) and burner reactor (CR<1). In particular a 40 year doubling time can be achieved, as well as a considerable Transuranics and MA (minor actinide) burning rate equal tomore » about 150 kg{sub HN}/GWE-yr. The safety parameters of the MSFR have then been evaluated for different fuel cycle strategies. Th use and a softer spectrum combine to give a strong Doppler coefficient, one order of magnitude higher compared to traditional fast reactors (FRs). The fuel expansion coefficient is comparable to the Doppler coefficient and is only mildly affected by core compositions, thus assisting the fuel cycle flexibility of the MSFR. βeff and generation time are comparable to the case of traditional FRs, if a static fuel is assumed. A notable reduction of βeff is caused by salt circulation, but a low value of this parameter is a limited concern in the MSFR thanks to the lack of a burnup reactivity swing and of positive feedbacks. A simple approach has also been developed to evaluate the MSFR capabilities to withstand all typical double-fault accidents, for different fuel cycle options.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A.C.; Sanders, C.; Tennet, M.G.
""Jason"" reactors are described in which the power level is increased from the original 10 kw to 100 kw. The problems encountered in making this ten- fold increase in power arise not only in connection with the removal of the extra heat produced but also with a number of effects which, although negligible at 10 kw, become significant at 100 kw. These effects are examined and the steps taken, where necessary, to prevent them from becoming troublesome are described. Attention is paid to the safety of the system. A program of work carried out on the Langley ""Jason,"" which throwsmore » considerable light on the behavior of a 100 kw reactor under severe fault conditions, is described here for the first time. (auth)« less
NASA Astrophysics Data System (ADS)
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichman, K.; Tsao, J.; Mayfield, M.
The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less
Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
Hunsbedt, Anstein; Boardman, Charles E.
1993-01-01
A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, E.W.
This report reviews and evaluates the performance of the compressed-air and pressurized-nitrogen gas systems in commercial nuclear power units. The information was collected from readily available operating experiences, licensee event reports, system designs in safety analysis reports, and regulatory documents. The results are collated and analyzed for significance and impact on power plant safety performance. Under certain circumstances, the fail-safe philosophy for a piece of equipment or subsystem of the compressed-air systems initiated a series of actions culminating in reactor transient or unit scram. However, based on this study of prevailing operating experiences, reclassifying the compressed-gas systems to a highermore » safety level will neither prevent (nor mitigate) the reoccurrences of such happenings nor alleviate nuclear power plant problems caused by inadequate maintenance, operating procedures, and/or practices. Conversely, because most of the problems were derived from the sources listed previously, upgrading of both maintenance and operating procedures will not only result in substantial improvement in the performance and availability of the compressed-air (and backup nitrogen) systems but in improved overall plant performance.« less
Computed tomography of radioactive objects and materials
NASA Astrophysics Data System (ADS)
Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.
1990-12-01
Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.
Safety philosophy of gas turbine high temperature reactor (GTHTR300)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa
2002-07-01
Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Majormore » features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Hajime; Kukita; Ohnuki, Akira
1997-07-01
The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.
Nuclear safety for the space exploration initiative
NASA Technical Reports Server (NTRS)
Dix, Terry E.
1991-01-01
The results of a study to identify potential hazards arising from nuclear reactor power systems for use on the lunar and Martian surfaces, related safety issues, and resolutions of such issues by system design changes, operating procedures, and other means are presented. All safety aspects of nuclear reactor power systems from prelaunch ground handling to eventual disposal were examined consistent with the level of detail for SP-100 reactor design at the 1988 System Design Review and for launch vehicle and space transport vehicle designs and mission descriptions as defined in the 90-day Space Exploration Initiative (SEI) study. Information from previous aerospace nuclear safety studies was used where appropriate. Safety requirements for the SP-100 space nuclear reactor system were compiled. Mission profiles were defined with emphasis on activities after low earth orbit insertion. Accident scenarios were then qualitatively defined for each mission phase. Safety issues were identified for all mission phases with the aid of simplified event trees. Safety issue resolution approaches of the SP-100 program were compiled. Resolution approaches for those safety issues not covered by the SP-100 program were identified. Additionally, the resolution approaches of the SP-100 program were examined in light of the moon and Mars missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia
2015-04-26
Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less
NASA Astrophysics Data System (ADS)
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki
Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. L. Sharp; R. T. McCracken
The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzedmore » in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.« less
NASA Astrophysics Data System (ADS)
Dautray, Robert
2011-06-01
The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation, etc., radioprotection measures and treatment for the "transuranic" elements. For a long period of time, France was in the forefront of nuclear breeder power generation science, technological research and also in the knowledge base related to breeder reactors. It is in the country's interest to pursue these efforts and this could per se constitute one of the national priorities. Nous sommes naturellement bien conscients de l'énorme problème qui se pose au Japon actuellement comme suite au tremblement de terre et au tsunami de mars 2011 et leurs conséquences, notamment sur des installations électronucléaires. Le texte que nous présentons concerne des conditions totalement générales, indépendantes des problèmes spécifiques de sûreté qu'il faudra, de toute façon, traiter dans le cadre d'un développement éventuel de l'énergie nucléaire.We are aware, of course, of the huge problem that Japan has to deal with the aftermath of the quake and tsunami of March 2011 and their consequences on electronuclear power plants. The text that we present here concerns general physical topics independent of the specific safety problems, general physical topics which will have to be solved in the case of a contingent development of electronuclear power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soubies, B.; Henry, J.Y.; Le Meur, M.
1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de Francemore » (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.« less
Overview of the Westinghouse Small Modular Reactor building layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of themore » plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)« less
Current and prospective safety issues at the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.R.
The Brookhaven high-flux beam reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated, and reflected by heavy water and uses materials test reactor and engineering test reactor type of fuel elements containing enriched uranium. The reactor power when operation began in 1965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time, safety questions have been raised that resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper discusses the principalmore » safety issues and plans for their resolution and return to 60-MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its effect on the life of the facility are briefly discussed.« less
Automated power control system for reactor TRIGA PUSPATI
NASA Astrophysics Data System (ADS)
Ghazali, Anith Khairunnisa; Minhat, Mohd Sabri; Hassan, Mohd Khair
2017-01-01
Reactor TRIGA PUSPATI (RTP) Mark II type undergoes safe operation for more than 30 years and the only research reactor exists in Malaysia. The main safety feature of Instrumentation and Control (I&C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. The existed controller using feedback approach to control the reactor power. This paper introduces proposed controllers such as Model Reference Adaptive Control (MRAC) and Proportional Integral Derivatives (PID) controller for the RTP simulation. In RTP, the most important considered parameter is the reactor power and act as nervous system. To design a controller for complex plant like RTP is quite difficult due to high cost and safety factors cause by the failure of the controller. Furthermore, to overcome these problems, a simulator can be used to replace functions the hardware and test could then be simulated using this simulator. In order to find the best controller, several controllers were proposed and the result will be analysed for study the performances of the controller. The output result will be used to find out the best RTP power controller using MATLAB/Simulink and gives result as close as the real RTP performances. Currently, the structures of RTP was design using MATLAB/Simulink tool that consist of fission chamber, controller, control rod position, height-to-worth of control rods and a RTP model. The controller will control the control rod position to make sure that the reactivity still under the limitation parameter. The results given from each controller will be analysed and validated through experiment data collected from RTP.
Reliability and safety of the electrical power supply complex of the Hanford production reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, F.D.
Safety has been and must continue to be the inviolable modulus by which the operation of a nuclear reactor must be judged. A malfunction in any reactor may well result in a release of fission products which may dissipate over a wide geographical area. Such dissipation may place the health, happiness and even the lives of the people in the region in serious jeopardy. As a result, the property damage and liability cost may reach astronomical values in the order of magnitude of billions of dollars. Reliability of the electrical network is an indispensable factor in attaining a high ordermore » of safety assurance. Progress in the peaceful use of atomic energy may take the form of electrical power generation using the nuclear reactor as a source of thermal energy. In view of these factors it seems appropriate and profitable that a critical engineering study be made of the safety and reliability of the Hanford reactors without regard to cost economics. This individual and independent technical engineering analysis was made without regard to Hanford traditional engineering and administration assignments. The main objective has been to focus attention on areas which seem to merit further detailed study on conditions which seem to need adjustment but most of all on those changes which will improve reactor safety. This report is the result of such a study.« less
New reactor technology: safety improvements in nuclear power systems.
Corradini, M L
2007-11-01
Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.
Strong, G.H.; Faught, M.L.
1963-12-24
A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)
On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.
2017-01-01
It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.
Study Gives Good Odds on Nuclear Reactor Safety
ERIC Educational Resources Information Center
Russell, Cristine
1974-01-01
Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
National Environmental Policy Act Hazards Assessment for the TREAT Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd D. Christensen; Annette L. Schafer
2013-11-01
This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less
National Environmental Policy Act Hazards Assessment for the TREAT Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Boyd D.; Schafer, Annette L.
2014-02-01
This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less
Transactions of the Twenty-First Water Reactor Safety Information Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteleone, S.
1993-10-01
This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningfulmore » discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-04-01
The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less
Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Per; Greenspan, Ehud
2015-02-09
This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designsmore » are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellesen, C.; Grape, S.; Haakanson, A.
2013-07-01
Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less
Parents of two-phase flow and theory of "gas-lift"
NASA Astrophysics Data System (ADS)
Zitek, Pavel; Valenta, Vaclav
2014-03-01
This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.
Reactor Operations Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M.M.
1989-01-01
The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less
Safety and environmental aspects of organic coolants for fusion facilities
NASA Astrophysics Data System (ADS)
Natalizio, A.; Hollies, R. E.; Gierszewski, P.
1993-06-01
Organic coolants, such as OS-84, offer unique advantages for fusion reactor applications. These advantages are with respect to both reactor operation and safety. The key operational advantage is a coolant that can provide high temperature (350-400°C) at modest pressure (2-4 MPa). These temperatures are needed for conditioning the plasma-facing components and, in reactors, for achieving high thermodynamic conversion efficiencies (>40%). The key safety advantage of organic coolants is the low vapor pressure, which significantly reduces the containment pressurization transient (relative to water) following a loss of coolant event. Also, from an occupational dose viewpoint, organic coolants significantly reduce corrosion and erosion inside the cooling system and consequently reduce the quantity of activation products deposited in cooling system equipment. On the negative side, organic coolants undergo both pyrolytic and radiolytic decomposition, and are flammable. While the decomposition rate can be minimized by coolant system design (by reducing coolant inventories exposed to neutron flux and to high temperatures), decomposition products are formed and these degrade the coolant properties. Both heavy compounds and light gases are produced from the decomposition process, and both must be removed to maintain adequate coolant properties. As these hydrocarbons may become tritiated by permeation, or activated through impurities, their disposal could create an environmental concern. Because of this potential waste disposal problem, consideration has been given to the recycling of both the light and heavy products, thereby reducing the quantity of waste to be disposed. Preliminary assessments made for various fusion reactor designs, including ITER, suggest that it is feasible to use organic coolants for several applications. These applications range from first wall and blanket coolant (the most demanding with respect to decomposition), to shield and vacuum vessel cooling, to an intermediate cooling loop removing heat from a liquid metal loop and transferring it to a steam generator or heat exchanger.
Babcock and Wilcox assessment of the Pratt and Whitney XNR2000
NASA Technical Reports Server (NTRS)
Westerman, Kurt O.; Scoles, Stephen W.; Jensen, R. R.; Rodes, J. R.; Ales, M. W.
1993-01-01
Babcock & Wilcox performed four subtasks related to the assessment of the Pratt & Whitney XNR2000 nuclear reactor as follows: (1) cermet fuel element fabricability assessment; (2) mechanical design review of the reactor system; (3) neutronic analysis review; and (4) safety assessment. The results of the mechanical and physics reviews have been integrated into the reactor design. The results of the fuel and safety assessments are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunbar, K.A.
1972-01-10
A safety survey covering the disciplines of Reactor Safety, Nuclear Criticality Safety, Health Protection and Industrial Safety and Fire Protection was conducted at the ANL-West EBR-II FEF Complex during the period January 10-18, 1972. In addition, the entire ANL-West site was surveyed for Health Protection and Industrial Safety and Fire Protection. The survey was conducted by members of the AEC Chicago Operations Office, a member of RDT-HQ and a member of the RDT-ID site office. Eighteen recommendations resulted from the survey, eleven in the area of Industrial Safety and Fire Protection, five in the area of Reactor Safety and twomore » in the area of Nuclear Criticality Safety.« less
Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei
NASA Astrophysics Data System (ADS)
Tel, E.; Yiğit, M.; Tanır, G.
2012-04-01
The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.
Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Mitchell T.; Bunt, R.; Corradini, M.
The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affectmore » reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).« less
Temperature actuated automatic safety rod release
Hutter, E.; Pardini, J.A.; Walker, D.E.
1984-03-13
A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.
Temperature actuated automatic safety rod release
Hutter, Ernest; Pardini, John A.; Walker, David E.
1987-01-01
A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.
SPLASH program for three dimensional fluid dynamics with free surface boundaries
NASA Astrophysics Data System (ADS)
Yamaguchi, A.
1996-05-01
This paper describes a three dimensional computer program SPLASH that solves Navier-Stokes equations based on the Arbitrary Lagrangian Eulerian (ALE) finite element method. SPLASH has been developed for application to the fluid dynamics problems including the moving boundary of a liquid metal cooled Fast Breeder Reactor (FBR). To apply SPLASH code to the free surface behavior analysis, a capillary model using a cubic Spline function has been developed. Several sample problems, e.g., free surface oscillation, vortex shedding development, and capillary tube phenomena, are solved to verify the computer program. In the analyses, the numerical results are in good agreement with the theoretical value or experimental observance. Also SPLASH code has been applied to an analysis of a free surface sloshing experiment coupled with forced circulation flow in a rectangular tank. This is a simplified situation of the flow field in a reactor vessel of the FBR. The computational simulation well predicts the general behavior of the fluid flow inside and the free surface behavior. Analytical capability of the SPLASH code has been verified in this study and the application to more practical problems such as FBR design and safety analysis is under way.
Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.
Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E
2012-08-01
The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor... would result in a major inconvenience. Dated: September 17, 2010. Antonio Dias, Chief, Reactor Safety...
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...
The concerted calculation of the BN-600 reactor for the deterministic and stochastic codes
NASA Astrophysics Data System (ADS)
Bogdanova, E. V.; Kuznetsov, A. N.
2017-01-01
The solution of the problem of increasing the safety of nuclear power plants implies the existence of complete and reliable information about the processes occurring in the core of a working reactor. Nowadays the Monte-Carlo method is the most general-purpose method used to calculate the neutron-physical characteristic of the reactor. But it is characterized by large time of calculation. Therefore, it may be useful to carry out coupled calculations with stochastic and deterministic codes. This article presents the results of research for possibility of combining stochastic and deterministic algorithms in calculation the reactor BN-600. This is only one part of the work, which was carried out in the framework of the graduation project at the NRC “Kurchatov Institute” in cooperation with S. S. Gorodkov and M. A. Kalugin. It is considering the 2-D layer of the BN-600 reactor core from the international benchmark test, published in the report IAEA-TECDOC-1623. Calculations of the reactor were performed with MCU code and then with a standard operative diffusion algorithm with constants taken from the Monte - Carlo computation. Macro cross-section, diffusion coefficients, the effective multiplication factor and the distribution of neutron flux and power were obtained in 15 energy groups. The reasonable agreement between stochastic and deterministic calculations of the BN-600 is observed.
FFTF Passive Safety Test Data for Benchmarks for New LMR Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.
Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less
JEN-1 Reactor Control System; SISTEMA DE CONTROL DEL REACTOR JEN-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantillo, M.F.; Nuno, C.M.; Andreu, J.L.M.
1963-01-01
ABS>The JEN-1 3Mw power swimming pool reactor electrical control circuits are described. Start-up, power generation in the core, and shutdown are controlled by the reactor control system. This control system guarantees in each moment the safety conditions during reactor operation. Each circuit was represented by a scheme, complemented with a description of its function, components, and operation theory. Components described include: scram circuit; fission counter control circuit; servo control circuit; control circuit of safety sheets; control circuits of primary, secondary, and clean-up pump motors and tower fan motor; primary valve motor circuit; center cubicle alarm circuit; and process alarm circuit.more » (auth)« less
Miller, H.I.; Smith, R.C.
1958-01-21
This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.
The assembly and use of continuous flow systems for chemical synthesis.
Britton, Joshua; Jamison, Timothy F
2017-11-01
The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.
Fusion energy: Status and prospects
NASA Astrophysics Data System (ADS)
Salomaa, Rainer
A review of the present state of the international fusion research is given. In the largest tokamak devices (JET, TFTR, JT-60) fusion relevant temperatures are routinely obtained and the scientific feasibility of plasma confinement has been demonstrated. Plans concerning the next step are described. A critical view is presented on questions as to what extent the generic advantages of fusion (availability, sufficiency, safety, environmental acceptability, etc.) can be exploited in a practical power reactor where the formidable technological problems call for compromises.
The Simulator Development for RDE Reactor
NASA Astrophysics Data System (ADS)
Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.
27. The top of a typical pile, F Reactor in ...
27. The top of a typical pile, F Reactor in February 1945 in this case, showing the vertical safety rods (VSRs) and the cables that support them. The rods could be dropped into the pile to effect a rapid shutdown. The four silvered-colored drums on the left contained boron solution and are part of the last ditch safety system. Should the VSRs channels become blocked by an occurrence such as an earthquake, the solution could be dumped into the VSR channels to help shut down the reactor. D-8334 - B Reactor, Richland, Benton County, WA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, B.E.
The PIUS reactor utilizes simplified, inherent, passive, or other innovative means to accomplish safety functions. Accordingly, the PIUS reactor is subject to the requirements of 10CFR52.47(b)(2)(i)(A). This regulation requires that the applicant adequately demonstrate the performance of each safety feature, interdependent effects among the safety features, and a sufficient data base on the safety features of the design to assess the analytical tools used for safety analysis. Los Alamos has assessed the quality and completeness of the existing and planned data bases used by Asea Brown Boveri to validate its safety analysis codes and other relevant data bases. Only amore » limited data base of separate effect and integral tests exist at present. This data base is not adequate to fulfill the requirements of 10CFR52.47(b)(2)(i)(A). Asea Brown Boveri has stated that it plans to conduct more separate effect and integral test programs. If appropriately designed and conducted, these test programs have the potential to satisfy most of the data base requirements of 10CFR52.47(b)(2)(i)(A) and remedy most of the deficiencies of the currently existing combined data base. However, the most important physical processes in PIUS are related to reactor shutdown because the PIUS reactor does not contain rodded shutdown and control systems. For safety-related reactor shutdown, PIUS relies on negative reactivity insertions from the moderator temperature coefficient and from boron entering the core from the reactor pool. Asea Brown Boveri has neither developed a direct experimental data base for these important processes nor provided a rationale for indirect testing of these key PIUS processes. This is assessed as a significant shortcoming. In preparing the conclusions of this report, test documentation and results have been reviewed for only one integral test program, the small-scale integral tests conducted in the ATLE facility.« less
75 FR 57302 - Advisory Committee on Reactor Safeguards; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... Monday, October 14, 2009, (74 FR 52829-52830). Thursday, October 7, 2010, Conference Room T2-B1, Two....: Final Safety Evaluation Report Associated with the Economic Simplified Boiling Water Reactor (ESBWR..., Inc. regarding the final Safety Evaluation Report associated with the ESBWR design certification...
SAFETY AND SECURITY BUILDING, TRA614. ELEVATIONS. SECTIONS. TWO ROOF LEVELS. ...
SAFETY AND SECURITY BUILDING, TRA-614. ELEVATIONS. SECTIONS. TWO ROOF LEVELS. BLAW-KNOX 3150-814-2, 3/1950. INL INDEX NO. 531-0614-00-098-100703, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
SAFETY AND SECURITY BUILDING, TRA614. SIMPLIFIED FLOOR LAYOUT AND WEST ...
SAFETY AND SECURITY BUILDING, TRA-614. SIMPLIFIED FLOOR LAYOUT AND WEST ELEVATION. BLAW-KNOX 3150-14-1, 1/1950. INL INDEX NO. 531-0614-00-098-100024, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
10 CFR 2.106 - Notice of issuance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... previously published. (d) The Director of Nuclear Material Safety and Safeguards will also cause to be... Application-How Initiated § 2.106 Notice of issuance. (a) The Director, Office of New Reactors, Director, Office of Nuclear Reactor Regulation, or Director, Office of Nuclear Material Safety and Safeguards, as...
Automatic safety rod for reactors. [LMFBR
Germer, J.H.
1982-03-23
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
Automatic safety rod for reactors
Germer, John H.
1988-01-01
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
Passive cooling system for top entry liquid metal cooled nuclear reactors
Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.
1992-01-01
A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.
World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)
NASA Astrophysics Data System (ADS)
Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas
2018-05-01
The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field
Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percher, Catherine
2012-06-19
The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limits on its operation, and presents a safety analysis of the structures, systems, and components and of... products. The description shall be sufficient to permit understanding of the system designs and their relationship to the safety evaluations. Items such as the reactor core, reactor coolant system, instrumentation...
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki; Anshari, Rio
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Su'ud, Zaki; Anshari, Rio
2012-06-01
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdren, J.P.
The need for fusion energy depends strongly on fusion's potential to achieve ambitious safety goals more completely or more economically than fission can. The history and present complexion of public opinion about environment and safety gives little basis for expecting either that these concerns will prove to be a passing fad or that the public will make demands for zero risk that no energy source can meet. Hazard indices based on ''worst case'' accidents and exposures should be used as design tools to promote combinations of fusion-reactor materials and configurations that bring the worst cases down to levels small comparedmore » to the hazards people tolerate from electricity at the point of end use. It may well be possible, by building such safety into fusion from the ground up, to accomplish this goal at costs competitive with other inexhaustible electricity sources. Indeed, the still rising and ultimately indeterminate costs of meeting safety and environmental requirements in nonbreeder fission reactors and coal-burning power plants mean that fusion reactors meeting ambitious safety goals may be able to compete economically with these ''interim'' electricity sources as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlenwein, P.; Frisch, W.; Kafka, P.
Nuclear reactors of 200- to 400-MW(thermal) power for district heating are the subject of increasing interest, and several specific designs are under discussion today. In the Federal Republic of Germany (FRG), the Kraftwerk Union AG has presented a 200-MW(thermal) heating reactor concept. The main safety issues of this design are assessed. In this design, the primary system is fully integrated into the reactor pressure vessel (RPV), which is tightly enclosed by the containment. The low process parameters like pressure, temperature, and power density and the high ratio of coolant volume to thermal power allow the design of simple safety features.more » This is supported by the preference of passive over active components. A special feature is a newly designed hydraulic control and rod drive mechanism, which is also integrated into the RPV. Within the safety assessment an overview of the relevant FRG safety rules and guidelines, developed mainly for large, electricity-generating power plants, is given. Included is a discussion of the extent to which these licensing rules can be applied to the concept of heating reactors.« less
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Yuan, Haomin; Kraus, A.
The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less
Analysis of UF6 breeder reactor power plants
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1976-01-01
Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...
Sensitivity to VSR failure: K pipe break accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meichle, R.H.
1969-09-12
Reactor effects of failure of a safety rod to scram can be considered in two major respects: The reduction in total safety system strength which will affect the amount of ``prompt drop`` and subsequent flux decay rate of the average neutron flux-level; and the change in local flux distribution due to the absence of the particular rod which fails to enter the reactor. The purpose of this memorandum is to describe the physical effects involved and to indicate the approximate magnitude of both reactor-wide and localized changes in event of failure of a VSR simultaneous with a K Reactor risermore » accident.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2014-10-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.
Hutter, Ernest
1986-01-01
A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett; Shannon Bragg-Sitton
The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system thatmore » would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.« less
HWCTR CONTROL ROD AND SAFETY ROD DRIVE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kale, S.H.
1963-07-01
The Heavy Water Components Test Reactor (HWCTR) is a pressurized, D/sub 2/O reactor designed for operation up to 70 Mw at 1500 psig and 3l5 deg C. It has 18 control rods and six safety rods, each driven by an electric motor through a rack and pinion gear train. Racks, pinions, and bearings are located inside individual pressure housings that are penetrated by means of floating ring labyrinth seals. The drives are mounted on the reactor vessel top head. Safety rods have electromagnetic clutches and fall into the reactor when scrammed. The reliability and performance of the rod drives aremore » very good. Seal leakage is well within design limits. Recent inspections of seals and control rod plants showed no evidence of crud buildup or stress corrosion cracking of type 17- 4PH'' stainless steel components. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com
2014-09-30
Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graslund, C.; Hellstrand, E.
Sweden benefits in many ways from the reactor safety research performed in other countries. Its own activity complements this effort, but a certain fraction is oriented toward safety issues that are intimately related to the special design of the ASEA-ATOM boiling-water reactor. Through the availability of the decommissioned Marviken reactor plant, Sweden has been able to play a leading role in integral containment experiments with international participation. Joint efforts with other countries are now devoted to defining new large-scale experiments to be performed in the unique Marviken facility. The largest portion of the safety research program in Sweden is performedmore » by Studsvik Energiteknik AB, but various universities, consultant firms, and research institutes are also involved. In addition, a substantial amount of work is done by the reactor vendor ASEA-ATOM. The overall annual budget is at present between $7 and $8 million, with three governmental authorities as the main financing bodies.« less
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devgun, Jas S.; Laraia, Michele; Pescatore, Claudio
Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimizemore » the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-line sharing of information and especially the creation of an on-line compendium of methods, tools, and techniques by which damaged fuel and other unique situations have been addressed can be addressed sooner and maintained as new problems and solutions arise and are resolved. The IAEA's new 'WEB 2.0 tool' CONNECT is expected to play a significant role in this and related information-sharing activities. The trend in some countries such as the United States has been to re-license the existing reactors for additional twenty years, beyond the original design life. Given the advances in technology over the past four decades, and considering that the newer designs incorporate significant improvements in safety systems, it may not be economical or technically feasible to retrofit enhancements into some of the older reactors. In such cases, the reactors may be retired from service and decommissioned. Overall, the energy demand in the world continues to rise, with sharp increases in the Asian countries, and nuclear power's role in the world's energy supply is expected to continue. Events at Fukushima have led to a re-examination on many fronts, including reactor design and regulatory requirements. Further changes may occur in these areas in the post-Fukushima era. These changes in turn will also impact the world-wide decommissioning scene and the decommissioning phase of the future reactors. (authors)« less
SAFETY AND SECURITY BUILDING, TRA614. FLOOR, ROOF, AND FOUNDATION PLANS. ...
SAFETY AND SECURITY BUILDING, TRA-614. FLOOR, ROOF, AND FOUNDATION PLANS. ROOM FUNCTIONS. DOOR AND ROOM FINISH SCHEDULE. BLAW-KNOX 3150-814-1, 3/1950. INL INDEX NO. 531-0614-00-098-100702, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Experimental study on the instability of Pressure Balance Injection System (PBIS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Koji; Teshima, Hideyuki; Madarame, Haruki
1996-06-01
The Passive Safety Reactor has been developed to reduce the construction cost and to improve the safety. Japan Atomic Energy Research institute (JAERI) proposed the System-Integrated Pressurized Water Reactor (SPWR) as a Passive Safety Reactor. In the SPWR design, the Pressure Balanced Injection System (PBIS) was introduced for the passive safety concept. The water with boron in a containment vessel were passively injected into the core by the pressure difference between the containment vessel and reactor vessel at a severe accidental condition. However there are few studies on the thermo-hydraulic characteristics of the PBIS. In this study, the thermal hydraulicsmore » of the PBIS are experimentally investigated using the small scale model. The instability of the injected flow was observed in the adiabatic experiment. The instability was caused by the pressure balance between the two vessels. The mechanism of the instability are discussed, resulting in the good agreement with the experimental results. In the steam experiment, another instability was observed, which was caused by the heat balance in the main tank.« less
FY2017 Updates to the SAS4A/SASSYS-1 Safety Analysis Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, T. H.
The SAS4A/SASSYS-1 safety analysis software is used to perform deterministic analysis of anticipated events as well as design-basis and beyond-design-basis accidents for advanced fast reactors. It plays a central role in the analysis of U.S. DOE conceptual designs, proposed test and demonstration reactors, and in domestic and international collaborations. This report summarizes the code development activities that have taken place during FY2017. Extensions to the void and cladding reactivity feedback models have been implemented, and Control System capabilities have been improved through a new virtual data acquisition system for plant state variables and an additional Block Signal for a variablemore » lag compensator to represent reactivity feedback for novel shutdown devices. Current code development and maintenance needs are also summarized in three key areas: software quality assurance, modeling improvements, and maintenance of related tools. With ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor safety analysis and help solidify DOE’s leadership role in fast reactor safety both domestically and in international collaborations.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November 13, 2012. Comments...
NUCLEAR REACTOR CONTROL SYSTEM
Epler, E.P.; Hanauer, S.H.; Oakes, L.C.
1959-11-01
A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.
A Roadmap of Innovative Nuclear Energy System
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2017-01-01
Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.
The use of experimental data in an MTR-type nuclear reactor safety analysis
NASA Astrophysics Data System (ADS)
Day, Simon E.
Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type ( i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.
2008-06-23
This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been mademore » at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics computer codes and methodologies applied to SSTAR. Another section of the report details the SSTAR safety design approach which is based upon defense-in-depth providing multiple levels of protection against the release of radioactive materials and how the inherent safety features of the lead coolant, nitride fuel, fast neutron spectrum core, pool vessel configuration, natural circulation, and containment meet or exceed the requirements for each level of protection. The report also includes recent results of a systematic analysis by LANL of data on corrosion of candidate cladding and structural material alloys of interest to SSTAR by LBE and Pb coolants; the data were taken from a new database on corrosion by liquid metal coolants created at LANL. The analysis methodology that considers penetration of an oxidation front into the alloy and dissolution of the trailing edge of the oxide into the coolant enables the long-term corrosion rate to be extracted from shorter-term corrosion data thereby enabling an evaluation of alloy performance over long core lifetimes (e.g., 30 years) that has heretofore not been possible. A number of candidate alloy specimens with special treatments or coatings which might enhance corrosion resistance at the temperatures at which SSTAR would operate were analyzed following testing in the DELTA loop at LANL including steels that were treated by laser peening at LLNL; laser peening is an approach that alters the oxide-metal bonds which could potentially improve corrosion resistance. LLNL is also carrying out Multi-Scale Modeling of the Fe-Cr system with the goal of assisting in the development of cladding and structural materials having greater resistance to irradiation.« less
Propellant actuated nuclear reactor steam depressurization valve
Ehrke, Alan C.; Knepp, John B.; Skoda, George I.
1992-01-01
A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.
Microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1984-01-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less
Assessment of SFR Wire Wrap Simulation Uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delchini, Marc-Olivier G.; Popov, Emilian L.; Pointer, William David
Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advancedmore » Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results for the 3-D pipe, the single pin THORS mesh, and the 7-pin bundle mesh, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.E. Craft; R. C. O'Brien; S. D. Howe
Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact,more » fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.« less
Analysis of radiation safety for Small Modular Reactor (SMR) on PWR-100 MWe type
NASA Astrophysics Data System (ADS)
Udiyani, P. M.; Husnayani, I.; Deswandri; Sunaryo, G. R.
2018-02-01
Indonesia as an archipelago country, including big, medium and small islands is suitable to construction of Small Medium/Modular reactors. Preliminary technology assessment on various SMR has been started, indeed the SMR is grouped into Light Water Reactor, Gas Cooled Reactor, and Solid Cooled Reactor and from its site it is group into Land Based reactor and Water Based Reactor. Fukushima accident made people doubt about the safety of Nuclear Power Plant (NPP), which impact on the public perception of the safety of nuclear power plants. The paper will describe the assessment of safety and radiation consequences on site for normal operation and Design Basis Accident postulation of SMR based on PWR-100 MWe in Bangka Island. Consequences of radiation for normal operation simulated for 3 units SMR. The source term was generated from an inventory by using ORIGEN-2 software and the consequence of routine calculated by PC-Cream and accident by PC Cosyma. The adopted methodology used was based on site-specific meteorological and spatial data. According to calculation by PC-CREAM 08 computer code, the highest individual dose in site area for adults is 5.34E-02 mSv/y in ESE direction within 1 km distance from stack. The result of calculation is that doses on public for normal operation below 1mSv/y. The calculation result from PC Cosyma, the highest individual dose is 1.92.E+00 mSv in ESE direction within 1km distance from stack. The total collective dose (all pathway) is 3.39E-01 manSv, with dominant supporting from cloud pathway. Results show that there are no evacuation countermeasure will be taken based on the regulation of emergency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... could communicate with a safety system. In this case, appropriate isolation devices would be required at..., feedwater flow, and reactor power; (2) Safety injection: Reactor core isolation cooling flow, high-pressure... data points identified in the ERDS Data Point Library 9 (site specific data base residing on the ERDS...
Code of Federal Regulations, 2010 CFR
2010-01-01
... could communicate with a safety system. In this case, appropriate isolation devices would be required at..., feedwater flow, and reactor power; (2) Safety injection: Reactor core isolation cooling flow, high-pressure... data points identified in the ERDS Data Point Library 9 (site specific data base residing on the ERDS...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
2017-06-21
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.B.; Pyatt, D.W.; Sholtis, J.A.
1993-01-10
The Interagency Nuclear Safety Review Panel (INSRP) has provided reviews of all nuclear powered spacecraft launched by the United States. The two most recent launches were Ulysses in 1990 and Galileo in 1989. One reactor was launched in 1965 (SNAP-10A). All other U.S. space missions have utilized radioisotopic thermoelectric generators (RTGs). There are several missions in the next few years that are to be nuclear powered, including one that would utilize the Topaz II reactor purchased from Russia. INSRP must realign itself to perform parallel safety assessments of a reactor powered space mission, which has not been done in aboutmore » thirty years, and RTG powered missions.« less
Mohammadi, A; Hassanzadeh, M; Gharib, M
2016-02-01
In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.
75 FR 66168 - Seeks Qualified Candidates for the Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... NUCLEAR REGULATORY COMMISSION Seeks Qualified Candidates for the Advisory Committee on Reactor... Reactor Safeguards (ACRS). Submit r[eacute]sum[eacute]s to Ms. Brandi Hamilton, ACRS, Mail Stop T2E-26, U... of existing and proposed nuclear power plants and on the adequacy of proposed reactor safety...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will... would result in major inconvenience. Dated: March 3, 2010. Antonio F. Dias, Chief, Reactor Safety Branch...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khuwaileh, Bassam; Turinsky, Paul; Williams, Brian J.
2016-10-04
ROMUSE (Reduced Order Modeling Based Uncertainty/Sensitivity Estimator) is an effort within the Consortium for Advanced Simulation of Light water reactors (CASL) to provide an analysis tool to be used in conjunction with reactor core simulators, especially the Virtual Environment for Reactor Applications (VERA). ROMUSE is written in C++ and is currently capable of performing various types of parameters perturbations, uncertainty quantification, surrogate models construction and subspace analysis. Version 2.0 has the capability to interface with DAKOTA which gives ROMUSE access to the various algorithms implemented within DAKOTA. ROMUSE is mainly designed to interface with VERA and the Comprehensive Modeling andmore » Simulation Suite for Nuclear Safety Analysis and Design (SCALE) [1,2,3], however, ROMUSE can interface with any general model (e.g. python and matlab) with Input/Output (I/O) format that follows the Hierarchical Data Format 5 (HDF5). In this brief user manual, the use of ROMUSE will be overviewed and example problems will be presented and briefly discussed. The algorithms provided here range from algorithms inspired by those discussed in Ref.[4] to nuclear-specific algorithms discussed in Ref. [3].« less
Reactor shutdown delays medical procedures
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-01-01
A longer-than-expected maintenance shutdown of the Canadian nuclear reactor that produces North America's entire supply of molybdenum-99 - from which the radioactive isotopes technetium-99 and iodine-131 are made - caused delays to the diagnosis and treatment of thousands of seriously ill patients last month. Technetium-99 is a key component of nuclear-medicine scans, while iodine-131 is used to treat cancer and other diseases of the thyroid. Production eventually resumed, but only after the Canadian government had overruled the Canadian Nuclear Safety Commission (CNSC), which was still concerned about the reactor's safety.
Fault tree applications within the safety program of Idaho Nuclear Corporation
NASA Technical Reports Server (NTRS)
Vesely, W. E.
1971-01-01
Computerized fault tree analyses are used to obtain both qualitative and quantitative information about the safety and reliability of an electrical control system that shuts the reactor down when certain safety criteria are exceeded, in the design of a nuclear plant protection system, and in an investigation of a backup emergency system for reactor shutdown. The fault tree yields the modes by which the system failure or accident will occur, the most critical failure or accident causing areas, detailed failure probabilities, and the response of safety or reliability to design modifications and maintenance schemes.
A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizwan-uddin; Nick Karancevic; Stefano Markidis
2008-04-23
many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important crterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals.
NASA Astrophysics Data System (ADS)
Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim
2018-02-01
Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.
An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow
Hu, Rui
2017-03-27
Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less
An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less
Sofu, Tanju
2015-04-01
The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel--coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sofu, Tanju
2015-04-01
The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain cool-able. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less
The role of accelerators in the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hiroshi.
1990-01-01
The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 {approximately} 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the usemore » of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs.« less
Heat transfer in laminar flow along circular rods in infinite square arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.H.; Li, W.H.
1988-02-01
The need to understand heat transfer characteristics over rods or tube bundles often arises in the design of compact heat exchangers and safety analysis of nuclear reactors. In particular, the fuel bundles of typical light water nuclear reactors are composed of a large number of circular rods arranged in square array pattern. The purpose of the present study is to analyze heat transfer characteristics of flow in such a multirod geometric configuration. The analysis given here will follow as closely as possible the method of Sparrow et al. who analyzed a similar problem for circular cylinders arranged in an equilateralmore » triangular array. The following major assumptions are made in the present analysis: (1) Flow is fully developed laminar flow paralleled to the axis of rods. (2) The axial profile of the surface heat flux to the fluid is uniform.(3) Thermodynamic properties are assumed constant.« less
Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)
Dismantlement of the TSF-SNAP Reactor Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peretz, Fred J
2009-01-01
This paper describes the dismantlement of the Tower Shielding Facility (TSF)?Systems for Nuclear Auxiliary Power (SNAP) reactor, a SNAP-10A reactor used to validate radiation source terms and shield performance models at Oak Ridge National Laboratory (ORNL) from 1967 through 1973. After shutdown, it was placed in storage at the Y-12 National Security Complex (Y-12), eventually falling under the auspices of the Highly Enriched Uranium (HEU) Disposition Program. To facilitate downblending of the HEU present in the fuel elements, the TSF-SNAP was moved to ORNL on June 24, 2006. The reactor assembly was removed from its packaging, inspected, and the sodium-potassiummore » (NaK) coolant was drained. A superheated steam process was used to chemically react the residual NaK inside the reactor assembly. The heat exchanger assembly was removed from the top of the reactor vessel, and the criticality safety sleeve was exchanged for a new safety sleeve that allowed for the removal of the vessel lid. A chain-mounted tubing cutter was used to separate the lid from the vessel, and the 36 fuel elements were removed and packaged in four U.S. Department of Transportation 2R/6M containers. The fuel elements were returned to Y-12 on July 13, 2006. The return of the fuel elements and disposal of all other reactor materials accomplished the formal objectives of the dismantlement project. In addition, a project model was established for the handling of a fully fueled liquid-metal?cooled reactor assembly. Current criticality safety codes have been benchmarked against experiments performed by Atomics International in the 1950s and 1960s. Execution of this project provides valuable experience applicable to future projects addressing space and liquid-metal-cooled reactors.« less
Conversion Preliminary Safety Analysis Report for the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Baek, J. S.; Hanson, A. L.
The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetsch, D.; Bieniussa, K.; Schulz, H.
This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branchingmore » pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.« less
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis
1986-01-01
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis
1986-07-01
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
NASA Technical Reports Server (NTRS)
Hsieh, T.-M.; Koenig, D. R.
1977-01-01
Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.
Operating manual for the Bulk Shielding Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-04-01
The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.
Operating manual for the Bulk Shielding Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.
Small space reactor power systems for unmanned solar system exploration missions
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.
NASA Astrophysics Data System (ADS)
Trifonenkov, A. V.; Trifonenkov, V. P.
2017-01-01
This article deals with a feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets. The operation of a nuclear reactor during threatened period is considered. The optimal control search problem is analysed. The xenon poisoning causes limitations on the variety of statements of the problem of calculating time-average characteristics of a set of optimal reactor power off controls. The level of xenon poisoning is limited. There is a problem of choosing an appropriate segment of the time axis to ensure that optimal control problem is consistent. Two procedures of estimation of the duration of this segment are considered. Two estimations as functions of the xenon limitation were plot. Boundaries of the interval of averaging are defined more precisely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Andrs; Ray Berry; Derek Gaston
The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7more » is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.« less
New Reactor Physics Benchmark Data in the March 2012 Edition of the IRPhEP Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2012-11-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications. Numerous experiments that have been performed worldwide, represent a large investment of infrastructure, expertise, and cost, and are valuable resources of data for present and future research. These valuable assets provide the basis for recording, development, and validation of methods. If the experimental data are lost, the high cost to repeat many of these measurements may be prohibitive. The purpose of the IRPhEP is to provide an extensively peer-reviewed set ofmore » reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. Contributors from around the world collaborate in the evaluation and review of selected benchmark experiments for inclusion in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [1]. Several new evaluations have been prepared for inclusion in the March 2012 edition of the IRPhEP Handbook.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel
This cleanup verification package documents completion of remedial action for the 118-F-3, Minor Construction Burial Ground waste site. This site was an open field covered with cobbles, with no vegetation growing on the surface. The site received irradiated reactor parts that were removed during conversion of the 105-F Reactor from the Liquid 3X to the Ball 3X Project safety systems and received mostly vertical safety rod thimbles and step plugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenkel, Roland
25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is anmore » example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R and D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.« less
NASA Astrophysics Data System (ADS)
Schenkel, Roland
2012-06-01
25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R&D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, M. L.; Peko, D.; Farmer, M.
In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, M. L.
In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Brucellosis-reactor goats. 309.14 Section 309.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Brucellosis-reactor goats. 309.14 Section 309.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have...
The Paucity Problem: Where Have All the Space Reactor Experiments Gone?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Marshall, Margaret A.
2016-10-01
The Handbooks of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) together contain a plethora of documented and evaluated experiments essential in the validation of nuclear data, neutronics codes, and modeling of various nuclear systems. Unfortunately, only a minute selection of handbook data (twelve evaluations) are of actual experimental facilities and mockups designed specifically for space nuclear research. There is a paucity problem, such that the multitude of space nuclear experimental activities performed in the past several decades have yet to be recovered and made available in such detail that themore » international community could benefit from these valuable historical research efforts. Those experiments represent extensive investments in infrastructure, expertise, and cost, as well as constitute significantly valuable resources of data supporting past, present, and future research activities. The ICSBEP and IRPhEP were established to identify and verify comprehensive sets of benchmark data; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data. See full abstract in attached document.« less
International Research Reactor Decommissioning Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopando, Leonardo; Warnecke, Ernst
2008-01-15
Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement tomore » the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.« less
Safety system augmentation at Russian nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.
1996-12-31
This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC powermore » supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.« less
Excore Modeling with VERAShift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Tara M.; Evans, Thomas M.
It is important to be able to accurately predict the neutron flux outside the immediate reactor core for a variety of safety and material analyses. Monte Carlo radiation transport calculations are required to produce the high fidelity excore responses. Under this milestone VERA (specifically the VERAShift package) has been extended to perform excore calculations by running radiation transport calculations with Shift. This package couples VERA-CS with Shift to perform excore tallies for multiple state points concurrently, with each component capable of parallel execution on independent domains. Specifically, this package performs fluence calculations in the core barrel and vessel, or, performsmore » the requested tallies in any user-defined excore regions. VERAShift takes advantage of the general geometry package in Shift. This gives VERAShift the flexibility to explicitly model features outside the core barrel, including detailed vessel models, detectors, and power plant details. A very limited set of experimental and numerical benchmarks is available for excore simulation comparison. The Consortium for the Advanced Simulation of Light Water Reactors (CASL) has developed a set of excore benchmark problems to include as part of the VERA-CS verification and validation (V&V) problems. The excore capability in VERAShift has been tested on small representative assembly problems, multiassembly problems, and quarter-core problems. VERAView has also been extended to visualize these vessel fluence results from VERAShift. Preliminary vessel fluence results for quarter-core multistate calculations look very promising. Further development is needed to determine the details relevant to excore simulations. Validation of VERA for fluence and excore detectors still needs to be performed against experimental and numerical results.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertyurek, Ugur; Gauld, Ian C.
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
Mertyurek, Ugur; Gauld, Ian C.
2015-12-24
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...
Current and prospective safety issues at the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.R.
The Brookhaven High Flux Beam Reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated and reflected by heavy water and uses MTR-ETR type fuel elements containing enriched uranium. The reactor power when operation began in 19965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time safety questions have been raised which resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper will discuss the principle safety issues, plans for theirmore » resolution and return to 60 MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its affect on the life of the facility will be briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis; Rabiti, Cristian; Martineau, Richard
Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degreemore » of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”« less
The shutdown reactor: Optimizing spent fuel storage cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennington, C.W.
1995-12-31
Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wetmore » and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec`s findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest.« less
Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok
2002-07-15
The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety andmore » Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bignan, G.; Gonnier, C.; Lyoussi, A.
2015-07-01
Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less
HEALTH AND SAFETY BUILDING, TRA667. SOUTH AND WEST ELEVATIONS. FLOOR ...
HEALTH AND SAFETY BUILDING, TRA-667. SOUTH AND WEST ELEVATIONS. FLOOR PLAN AND ROOM DESIGNATIONS. NOTE PAIR OF ENTRY DOORS IN WEST ELEVATION FOR MEN AND WOMEN. CONCRETE T-BEAMS. F.C. TORKELSON CO. 842-MTR-667-A1, 1/1963. INL INDEX NO. 531-0667-00-851-151143, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Proceedings of a Symposium on Advanced Compact Reactor Systems
NASA Technical Reports Server (NTRS)
1983-01-01
Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.
Passive cooling safety system for liquid metal cooled nuclear reactors
Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.
1991-01-01
A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.
Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop
NASA Technical Reports Server (NTRS)
Clark, John S. (Editor)
1991-01-01
Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, V.M.
1995-10-01
The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclearmore » energy systems.« less
LWRS ATR Irradiation Testing Readiness Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett
2012-09-01
The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Testmore » Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics« less
Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.
1993-01-01
The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamov, E.O.; Kuklin, A.N.; Mityaev, Yu.I.
The nuclear power plants with boiling water reactors of improved safety are being developed. There is 26 years of operating experience with the plant VK-50 in Dimitrovgrad. The design and operation of the BWR reactors are described.
Nuclear power: Siting and safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Openshaw, S.
1986-01-01
By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtainedmore » from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety.« less
Regulatory Risk Reduction for Advanced Reactor Technologies – FY2016 Status and Work Plan Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne Leland
2016-08-01
Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy’s (DOE) Advanced Reactor Technologiesmore » (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants« less
RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hongbin Zhang; Haihua Zhao; Cliff Davis
2008-06-01
An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heatmore » from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet temperature. The peak cladding, hot pool, cold pool and reactor inlet temperatures were calculated during LOFC. The results indicate that there are two phases during LOFC transient – the initial thermal equilibration phase and the long term decay heat removal phase. The initial thermal equilibration phase occurs over a few hundred seconds, as the system adjusts from forced circulation to natural circulation flow. Subsequently, during long-term heat removal phase all temperatures evolve very slowly due to the large thermal inertia of the primary and buffer pool systems. The results clearly show that passive safety PRACS can effectively transfer decay heat from the primary system to the buffer pool by natural circulation. The DRACS system in turn can effectively transfer the decay heat to the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Pointer, William David; Sieger, Matt
2016-04-01
The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.
Operator Support System Design forthe Operation of RSG-GAS Research Reactor
NASA Astrophysics Data System (ADS)
Santoso, S.; Situmorang, J.; Bakhri, S.; Subekti, M.; Sunaryo, G. R.
2018-02-01
The components of RSG-GAS main control room are facing the problem of material ageing and technology obsolescence as well, and therefore the need for modernization and refurbishment are essential. The modernization in control room can be applied on the operator support system which bears the function in providing information for assisting the operator in conducting diagnosis and actions. The research purpose is to design an operator support system for RSG-GAS control room. The design was developed based on the operator requirement in conducting task operation scenarios and the reactor operation characteristics. These scenarios include power operation, low power operation and shutdown/scram reactor. The operator support system design is presented in a single computer display which contains structure and support system elements e.g. operation procedure, status of safety related components and operational requirements, operation limit condition of parameters, alarm information, and prognosis function. The prototype was developed using LabView software and consisted of components structure and features of the operator support system. Information of each component in the operator support system need to be completed before it can be applied and integrated in the RSG-GAS main control room.
75 FR 13611 - Meeting of the ACRS Subcommittee on Reliability and PRA; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS... rescheduling would result in major inconvenience. Dated: March 15, 2010. Antonio F. Dias, Chief, Reactor Safety Branch B, Advisory Committee on Reactor Safeguards. [FR Doc. 2010-6203 Filed 3-19-10; 8:45 am] BILLING...
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, K.K.; Williams, D.C.; Griffith, R.O.
1997-12-01
The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less
Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code
Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc
2018-02-02
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less
Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Liao, Huafei
2014-12-01
United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constitutedmore » a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.« less
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
Autonomous Control of Space Nuclear Reactors
NASA Technical Reports Server (NTRS)
Merk, John
2013-01-01
Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.
Safety and licensing of a small modular gas-cooled reactor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.W.; Kelley, A.P. Jr.
A modular side-by-side high-temperature gas-cooled reactor (SBS-HTGR) is being developed by Interatom/Kraftwerk Union (KWU). The General Electric Company and Interatom/KWU entered into a proprietary working agreement to continue develop jointly of the SBS-HTGR. A study on adapting the SBS-HTGR for application in the US has been completed. The study investigated the safety characteristics and the use of this type of design in an innovative approach to licensing. The safety objective guiding the design of the modular SBS-HTGR is to control radionuclide release by the retention of fission products within the fuel particles with minimal reliance on active design features. Themore » philosophy on which this objective is predicated is that by providing a simple safety case, the safety criteria can be demonstrated as being met with high confidence through conduct of a full-scale module safety test.« less
Fusion Safety Program annual report, fiscal year 1994
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.
1995-03-01
This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.
Westinghouse Small Modular Reactor balance of plant and supporting systems design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memmott, M. J.; Stansbury, C.; Taylor, C.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operationmore » of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)« less
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Tsibul'skiy, V. F.
2017-12-01
At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.
Phenomena Important in Molten Salt Reactor Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David J.; Brown, Nicholas R.; Denning, Richard
The U.S. Nuclear Regulatory Commission (NRC) is preparing for the future licensing of advanced reactors that will be very different from current light water reactors. Part of the NRC preparation strategy is to identify the simulation tools that will be used for confirmatory safety analysis of normal operation and abnormal situations in those reactors. This report advances that strategy for reactors that will use molten salts (MSRs). This includes reactors with the fuel within the salt as well as reactors using solid fuel. Although both types are discussed in this report, the emphasis is on those reactors with liquid fuelmore » because of the perception that solid-fuel MSRs will be significantly easier to simulate. These liquid-fuel reactors include thermal and fast neutron spectrum alternatives. The specific designs discussed in the report are a subset of many designs being considered in the U.S. and elsewhere but they are considered the most likely to submit information to the NRC in the near future. The objective herein, is to understand the design of proposed molten salt reactors, how they will operate under normal or transient/accident conditions, and what will be the corresponding modeling needs of simulation tools that consider neutronics, heat transfer, fluid dynamics, and material composition changes in the molten salt. These tools will enable the NRC to eventually carry out confirmatory analyses that examine the validity and accuracy of applicant’s calculations and help determine the margin of safety in plant design.« less
An assessment and validation study of nuclear reactors for low power space applications
NASA Technical Reports Server (NTRS)
Klein, A. C.; Gedeon, S. R.; Morey, D. C.
1987-01-01
The feasibility and safety of six conceptual small, low power nuclear reactor designs was evaluated. Feasibility evaluations included the determination of sufficient reactivity margins for seven years of full power operation and safe shutdown as well as handling during pre-launch assembly phases. Safety evaluations were concerned with the potential for maintaining subcritical conditions in the event of launch or transportation accidents. These included water immersion accident scenarios both with and without water flooding the core. Results show that most of the concepts can potentially meet the feasibility and safety requirements; however, due to the preliminary nature of the designs considered, more detailed designs will be necessary to enable these concepts to fully meet the safety requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turinsky, Paul J., E-mail: turinsky@ncsu.edu; Kothe, Douglas B., E-mail: kothe@ornl.gov
The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear powermore » industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry. - Highlights: • Complexity of physics based modeling of light water reactor cores being addressed. • Capability developed to help address problems that have challenged the nuclear power industry. • Simulation capabilities that take advantage of high performance computing developed.« less
NASA Technical Reports Server (NTRS)
Jahshan, S. N.; Singleterry, R. C.
2001-01-01
The effect of random fuel redistribution on the eigenvalue of a one-speed reactor is investigated. An ensemble of such reactors that are identical to a homogeneous reference critical reactor except for the fissile isotope density distribution is constructed such that it meets a set of well-posed redistribution requirements. The average eigenvalue,
Heuristic rules embedded genetic algorithm for in-core fuel management optimization
NASA Astrophysics Data System (ADS)
Alim, Fatih
The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. EPR... of the Safety Evaluation Report (SER) with open items associated with U.S. EPR Design Control...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-09-15
This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.
KINETICS OF LOW SOURCE REACTOR STARTUPS. PART I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurwitz, H. Jr.; MacMillan, D.B.; Smith, J.H.
1962-06-01
Statistical fluctuntions of neutron populations in reactors are analyzed by means of an approximate theoretical model. Development of the model is given in detail; also included are extensive numerical results derived from its application to systems with time-dependent reactivity, namely, a reactor during start-up. The special relationships of fluctuations to safety considerations are discussed. (auth)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee On US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on October 18... Subcommittee will review Chapter 4, ``Reactor,'' of the Safety Evaluation Reports associated with the US-APWR...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
Corletti, M.M.; Lau, L.K.; Schulz, T.L.
1993-12-14
The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, J.; Kucukboyaci, V. N.; Nguyen, L.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less
Safety and Regulatory Issues of the Thorium Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian; Worrall, Andrew; Powers, Jeffrey
2014-02-01
Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less
Development of Cross Section Library and Application Programming Interface (API)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Marin-Lafleche, A.; Smith, M. A.
2014-04-09
The goal of NEAMS neutronics is to develop a high-fidelity deterministic neutron transport code termed PROTEUS for use on all reactor types of interest, but focused primarily on sodium-cooled fast reactors. While PROTEUS-SN has demonstrated good accuracy for homogeneous fast reactor problems and partially heterogeneous fast reactor problems, the simulation results were not satisfactory when applied on fully heterogeneous thermal problems like the Advanced Test Reactor (ATR). This is mainly attributed to the quality of cross section data for heterogeneous geometries since the conventional cross section generation approach does not work accurately for such irregular and complex geometries. Therefore, onemore » of the NEAMS neutronics tasks since FY12 has been the development of a procedure to generate appropriate cross sections for a heterogeneous geometry core.« less
Review of heat transfer problems associated with magnetically-confined fusion reactor concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, M.A.; Werner, R.W.; Carlson, G.A.
1976-04-01
Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements.more » Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.« less
Parallel computation of multigroup reactivity coefficient using iterative method
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter
2013-09-01
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
NASA Astrophysics Data System (ADS)
Cole, Christopher J. P.
Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.
Fission-suppressed fusion breeder on the thorium cycle and nonproliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R. W.
2012-06-19
Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P{sub fusion}/P{sub input}=4. Fusion reactors could be designed to destroymore » fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing {sup 233}U with {sup 238}U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 {sup 232}U atoms for each {sup 233}U atom produced from thorium, about twice the IAEA standards of 'reduced protection' or 'self protection.' With 2.4%{sup 232}U, high explosive material is predicted to degrade owing to ionizing radiation after a little over 1/2 year and the heat rate is 77 W just after separation and climbs to over 600 W ten years later. The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) also called liquid fluoride thorium reactors (LFTR) because of the molten fuel does not need hands on fabrication and handling.« less
The Aviation Paradox: Why We Can 'Know' Jetliners But Not Reactors.
Downer, John
2017-01-01
Publics and policymakers increasingly have to contend with the risks of complex, safety-critical technologies, such as airframes and reactors. As such, 'technological risk' has become an important object of modern governance, with state regulators as core agents, and 'reliability assessment' as the most essential metric. The Science and Technology Studies (STS) literature casts doubt on whether or not we should place our faith in these assessments because predictively calculating the ultra-high reliability required of such systems poses seemingly insurmountable epistemological problems. This paper argues that these misgivings are warranted in the nuclear sphere, despite evidence from the aviation sphere suggesting that such calculations can be accurate. It explains why regulatory calculations that predict the reliability of new airframes cannot work in principle, and then it explains why those calculations work in practice. It then builds on this explanation to argue that the means by which engineers manage reliability in aviation is highly domain-specific, and to suggest how a more nuanced understanding of jetliners could inform debates about nuclear energy.
NEUTRONIC REACTOR FUEL ELEMENT
Horning, W.A.; Lanning, D.D.; Donahue, D.J.
1959-10-01
A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.
Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, D.; Brunett, A.; Passerini, S.
Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. Themore » mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.« less
Analysis of reactor trips originating in balance of plant systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetson, F.T.; Gallagher, D.W.; Le, P.T.
1990-09-01
This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of thesemore » events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs.« less
Virtual environments simulation in research reactor
NASA Astrophysics Data System (ADS)
Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin
2017-01-01
Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.
Neutronic calculation of fast reactors by the EUCLID/V1 integrated code
NASA Astrophysics Data System (ADS)
Koltashev, D. A.; Stakhanova, A. A.
2017-01-01
This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.
Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M
2017-12-01
The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel
2016-04-01
Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less
KERENA safety concept in the context of the Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, T.; Novotny, C.; Bielor, E.
Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less
Station Blackout Analysis of HTGR-Type Experimental Power Reactor
NASA Astrophysics Data System (ADS)
Syarip; Zuhdi, Aliq; Falah, Sabilul
2018-01-01
The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongbin; Zhao, Haihua; Gleicher, Frederick Nathan
RELAP-7 is a nuclear systems safety analysis code being developed at the Idaho National Laboratory, and is the next generation tool in the RELAP reactor safety/systems analysis application series. RELAP-7 development began in 2011 to support the Risk Informed Safety Margins Characterization (RISMC) Pathway of the Light Water Reactor Sustainability (LWRS) program. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical methods, and physical models in order to provide capabilities needed for the RISMC methodology and to support nuclear power safety analysis. The code is beingmore » developed based on Idaho National Laboratory’s modern scientific software development framework – MOOSE (the Multi-Physics Object-Oriented Simulation Environment). The initial development goal of the RELAP-7 approach focused primarily on the development of an implicit algorithm capable of strong (nonlinear) coupling of the dependent hydrodynamic variables contained in the 1-D/2-D flow models with the various 0-D system reactor components that compose various boiling water reactor (BWR) and pressurized water reactor nuclear power plants (NPPs). During Fiscal Year (FY) 2015, the RELAP-7 code has been further improved with expanded capability to support boiling water reactor (BWR) and pressurized water reactor NPPs analysis. The accumulator model has been developed. The code has also been coupled with other MOOSE-based applications such as neutronics code RattleSnake and fuel performance code BISON to perform multiphysics analysis. A major design requirement for the implicit algorithm in RELAP-7 is that it is capable of second-order discretization accuracy in both space and time, which eliminates the traditional first-order approximation errors. The second-order temporal is achieved by a second-order backward temporal difference, and the one-dimensional second-order accurate spatial discretization is achieved with the Galerkin approximation of Lagrange finite elements. During FY-2015, we have done numerical verification work to verify that the RELAP-7 code indeed achieves 2nd-order accuracy in both time and space for single phase models at the system level.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. EPR... 6 and Chapter 15 of the U.S. EPR Safety Evaluation Report (SER) with Open Items. The Subcommittee...
SP-100 reactor with Brayton conversion for lunar surface applications
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Rodriguez, Carlos D.; Mckissock, Barbara I.; Hanlon, James C.; Mansfield, Brian C.
1992-01-01
Examined here is the potential for integrating Brayton-cycle power conversion with the SP-100 reactor for lunar surface power system applications. Two designs were characterized and modeled. The first design integrates a 100-kWe SP-100 Brayton power system with a lunar lander. This system is intended to meet early lunar mission power needs while minimizing on-site installation requirements. Man-rated radiation protection is provided by an integral multilayer, cylindrical lithium hydride/tungsten (LiH/W) shield encircling the reactor vessel. Design emphasis is on ease of deployment, safety, and reliability, while utilizing relatively near-term technology. The second design combines Brayton conversion with the SP-100 reactor in a erectable 550-kWe powerplant concept intended to satisfy later-phase lunar base power requirements. This system capitalizes on experience gained from operating the initial 100-kWe module and incorporates some technology improvements. For this system, the reactor is emplaced in a lunar regolith excavation to provide man-rated shielding, and the Brayton engines and radiators are mounted on the lunar surface and extend radially from the central reactor. Design emphasis is on performance, safety, long life, and operational flexibility.
Small reactor power systems for manned planetary surface bases
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.
Flooding Experiments and Modeling for Improved Reactor Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solmos, M.; Hogan, K. J.; Vierow, K.
2008-09-14
Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge linemore » can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.« less
Containment Safety Of Super Phenix : Essai Mars
NASA Astrophysics Data System (ADS)
Falgayrettes, M. F.; Fiche, C.; Hamon, P.
1985-02-01
The protection of people and property must be assured by every situation around an industrial power plant. That is why the FRENCH Commissariat a l'Energie Atomique has defined the size of the confinement of Super Phenix to withstand the worst highly hypothetical accident. The study of the strength of the confinement has been carried out by two complementary means : - Calculation (Display poster # 491 188), - Experiment : reactor mock-up. The latter is presented in the film. The solution which have been adopted for the problems encountered are emphasied ; the work with high speed camera is presented. The film is illustrated with some fast movie sequences.
Focused technology: Nuclear propulsion
NASA Technical Reports Server (NTRS)
Miller, Thomas J.
1991-01-01
The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.
Nuclear Data Uncertainty Propagation to Reactivity Coefficients of a Sodium Fast Reactor
NASA Astrophysics Data System (ADS)
Herrero, J. J.; Ochoa, R.; Martínez, J. S.; Díez, C. J.; García-Herranz, N.; Cabellos, O.
2014-04-01
The assessment of the uncertainty levels on the design and safety parameters for the innovative European Sodium Fast Reactor (ESFR) is mandatory. Some of these relevant safety quantities are the Doppler and void reactivity coefficients, whose uncertainties are quantified. Besides, the nuclear reaction data where an improvement will certainly benefit the design accuracy are identified. This work has been performed with the SCALE 6.1 codes suite and its multigroups cross sections library based on ENDF/B-VII.0 evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2014-10-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less
Research reports (Annual reports). State: end of 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1975-05-01
This compilation of research reports is the third one to be published once a year in the frame of a comprehensive reporting on current investigations with regard to reactor safety. There are three types of reports: RS Research Reports, LRA Research Reports, GFK Research Reports. The RS Research Reports and the LRA Research Reports give information on the investigations sponsored by the Bundesminister fuer Forschung und Technologie (BMFT) and partly by the Bundesminister des Innern (BMI [SR 100, At T 85 a]) as individual reactor safety research projects. The GFK Research Reports inform about theoretical and experimental investigations on reactormore » safety conducted by the Gesellschaft fuer Kernforschung mbH (GFK), Karlsruhe. The Laboratorium fuer Reaktorregelung und Anlagensicherung (LRA), Muenchen-Garching, executes nine individual research projects comprehended under number At T 85 a. The work carried out by the GFK is included in the main project 'Nuclear Safety' (PNS). The single reports are attached to the main parts and focal points of the Research Program Reactor Safety. Therefore, at the head of the reports, under 'Project Number', not only the RS-, LRA- or GFK-Number but also the number of the main part of the Research Program which the reported investigation contributes to is noted. (orig.)« less
Generating unstructured nuclear reactor core meshes in parallel
Jain, Rajeev; Tautges, Timothy J.
2014-10-24
Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Schaefer, R. W.; McKnight, R. D.
Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSalle, F.R.; Golbeg, P.R.; Chenault, D.M.
For reactor and nuclear facilities, both Title 10, Code of Federal Regulations, Part 50, and US Department of Energy Order 6430.1A require assessments of the interaction of non-Safety Class 1 piping and equipment with Safety Class 1 piping and equipment during a seismic event to maintain the safety function. The safety class systems of nuclear reactors or nuclear facilities are designed to the applicable American Society of Mechanical Engineers standards and Seismic Category 1 criteria that require rigorous analysis, construction, and quality assurance. Because non-safety class systems are generally designed to lesser standards and seismic criteria, they may become missilesmore » during a safe shutdown earthquake. The resistance of piping, tubing, and equipment to seismically generated missiles is addressed in the paper. Gross plastic and local penetration failures are considered with applicable test verification. Missile types and seismic zones of influence are discussed. Field qualification data are also developed for missile evaluation.« less
Development concept for a small, split-core, heat-pipe-cooled nuclear reactor
NASA Technical Reports Server (NTRS)
Lantz, E.; Breitwieser, R.; Niederauer, G. F.
1974-01-01
There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.
2017-03-01
This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less
MTR, TRA603. FIRST FLOOR PLAN. REACTOR AT CENTER. TWENTYMETER CHOPPER ...
MTR, TRA-603. FIRST FLOOR PLAN. REACTOR AT CENTER. TWENTY-METER CHOPPER HOUSE. COFFIN TURNING ROLLS. REMOVABLE PANEL OVER CANAL ON EAST SIDE. NEW PLUG STORAGE ACCESS. DOOR SCHEDULE INDICATES STEEL (FOR VAULT), WIRE MESH, AND HOLLOW METAL TYPES. STORAGE AND ISSUE ROOM. SAFETY SHOWERS. DOORWAY TO WING, TRA-604. BLAW-KNOX 3150-803-2, 7/1950. INL INDEX NO. 531-0603-00-098-100561, REV. 10. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
1980-08-01
metal fast breeder reactor (LMFBR) design. It also re-examines the impact of the accident at Three Mile Island on the design basis concept, and how...Water Reactors : ImpZications for Liquid MetaZ Fast Breeder Reactors , by W. E. Kastenberg and K. A. Solomon, July 1979. v SUNMARY The 1979 accident...the liquid metal fast breeder reactor (LMFBR). This Note assesses the impact of the TMI-2 accident on the LMFBR. Specifically, it: o Reviews the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh
2008-07-15
The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configurationmore » with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)« less
NASA Technical Reports Server (NTRS)
1972-01-01
The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.
Earthquake effects at nuclear reactor facilities: San Fernando earthquake of February 9th, 1971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, G.; Ibanez, P.; Matthiesen, F.
1972-02-01
The effects of the San Fernando earthquake of February 9, 1971 on 26 reactor facilities located in California, Arizona, and Nevada are reported. The safety performance of the facilities during the earthquake is discussed. (JWR)
Hanford Atomic Products Operation monthly report for March 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-04-20
This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.
METHOD AND APPARATUS FOR REACTOR SAFETY CONTROL
Huston, N.E.
1961-06-01
A self-contained nuclear reactor fuse controlled device tron absorbing material, normally in a compact form but which can be expanded into an extended form presenting a large surface for neutron absorption when triggered by an increase in neutron flux, is described.
Multiphysics Object-Oriented Simulation Environment (MOOSE)
None
2017-12-09
Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.
Science and Safety: 'Acceptable' Risk
ERIC Educational Resources Information Center
Science News, 1976
1976-01-01
Stresses ways to answer questions related to widespread publicity - are nuclear reactors safe, will dangerous research in genetic manipulation be banned? - with emphasis on true meaning of safety as related to risks. (EB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labrousse, M.; Lerouge, B.; Dupuy, G.
1978-04-01
THERMOS is a water reactor designed to provide hot water up to 120/sup 0/C for district heating or for desalination applications. It is a 100-MW reactor based on proven technology: oxide fuel plate elements, integrated primary circuit, and reactor vessel located in the bottom of a pool. As in swimming pool reactors, the pool is used for biological shielding, emergency core cooling, and fission product filtering (in case of an accident). Before economics, safety is the main characteristic of the concept: no fuel failure admitted, core under water in any accidental configuration, inspection of every ''nuclear'' component, and double-wall containment.
A RE-LOOK AT THE US NRC SAFETY GOALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
mubayi v.
2013-09-22
Since they were adopted in 1986, the US NRC’s Safety Goals have played a valuable role as a de facto risk acceptance criterion against which the predicted performance of a commercial nuclear power reactor can be evaluated and assessed. The current safety goals are cast in terms of risk metrics called quantitative health objectives (QHOs), limiting numerical values of the risks of the early and latent health effects of accidental releases of radioactivity to the offsite population. However, while demonstrating compliance with current safety goals has been an important step in assessing the acceptance of the risk posed by LWRs,more » new or somewhat different goals may be needed that go beyond the current early fatality and latent cancer fatality QHOs in assessing reactor risk. Natural phenomena such as hurricanes seem to be suitable candidates for establishing a background rate to derive a risk goal as their order of magnitude cost of damages is similar to those estimated in severe accident Level 3 PRAs done for nuclear power plants. This paper obtains a risk goal that could have a wider applicability, compared to the current QHOs, as a technology-neutral goal applicable to future reactors and multi-unit sites.« less
A Figure of Merit: Quantifying the Probability of a Nuclear Reactor Accident.
Wellock, Thomas R
In recent decades, probabilistic risk assessment (PRA) has become an essential tool in risk analysis and management in many industries and government agencies. The origins of PRA date to the 1975 publication of the U.S. Nuclear Regulatory Commission's (NRC) Reactor Safety Study led by MIT professor Norman Rasmussen. The "Rasmussen Report" inspired considerable political and scholarly disputes over the motives behind it and the value of its methods and numerical estimates of risk. The Report's controversies have overshadowed the deeper technical origins of risk assessment. Nuclear experts had long sought to express risk in a "figure of merit" to verify the safety of weapons and, later, civilian reactors. By the 1970s, technical advances in PRA gave the methodology the potential to serve political ends, too. The Report, it was hoped, would prove nuclear power's safety to a growing chorus of critics. Subsequent attacks on the Report's methods and numerical estimates damaged the NRC's credibility. PRA's fortunes revived when the 1979 Three Mile Island accident demonstrated PRA's potential for improving the safety of nuclear power and other technical systems. Nevertheless, the Report's controversies endure in mistrust of PRA and its experts.
GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Blair Briggs; John D. Bess; Jim Gulliford
2011-09-01
Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical ormore » subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPhEP will be discussed in the full paper, selected benchmarks that have been added to the ICSBEP Handbook will be highlighted, and a preview of the new benchmarks that will appear in the September 2011 edition of the Handbook will be provided. Accomplishments of the IRPhEP will also be highlighted and the future of both projects will be discussed. REFERENCES (1) International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I-IX, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), September 2010 Edition, ISBN 978-92-64-99140-8. (2) International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC(2006)1, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), March 2011 Edition, ISBN 978-92-64-99141-5.« less
Westinghouse Small Modular Reactor passive safety system response to postulated events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. C.; Wright, R. F.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. Themore » integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)« less
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Document Control Desk, Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or Director, Division of Security Policy... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 73.4 Section 73.4 Energy NUCLEAR...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and Environmental Management Programs, or Director, Office of Nuclear Material Safety and... 10 Energy 2 2012-01-01 2012-01-01 false Reports. 140.6 Section 140.6 Energy NUCLEAR REGULATORY...
Nuclear space power safety and facility guidelines study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehlman, W.F.
1995-09-11
This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system ismore » planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.« less
Scientist vs. Citizen: The Shoreham Controversy
ERIC Educational Resources Information Center
Carl, Ann; Sailor, Vance L.
1972-01-01
Two views on the issue of nuclear reactor safety with reference to the license application of a nuclear power plant on Long Island. Each side presents scientific arguments concerning the safety standards proposed. (AL)
The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.
1999-05-10
Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Departmentmore » of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments.« less
Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)
NASA Astrophysics Data System (ADS)
Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.
2014-06-01
Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
An approach to model reactor core nodalization for deterministic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less
Computer model of catalytic combustion/Stirling engine heater head
NASA Technical Reports Server (NTRS)
Chu, E. K.; Chang, R. L.; Tong, H.
1981-01-01
The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pytel, K.; Mieleszczenko, W.; Lechniak, J.
2010-03-01
The presented paper contains neutronic and thermal-hydraulic (for steady and unsteady states) calculation results prepared to support annex to Safety Analysis Report for MARIA reactor in order to obtain approval for program of testing low-enriched uranium (LEU) lead test fuel assemblies (LTFA) manufactured by CERCA. This includes presentation of the limits and operational constraints to be in effect during the fuel testing investigations. Also, the scope of testing program (which began in August 2009), including additional measurements and monitoring procedures, is described.
NASA Technical Reports Server (NTRS)
1972-01-01
The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.
NEUTRONIC REACTOR WITH ACCESSIBLE THIMBLE AND EMERGENCY COOLING FEATURES
McCorkle, W.H.
1960-02-23
BS>A safety system for a water-moderated reactor is described. The invention comprises a reservoir system for spraying the fuel elements within a fuel assembly with coolant and keeping them in a continuous bath even if the coolant moderator is lost from the reactor vessel. A reservoir gravity feeds one or more nozzels positioned within each fuel assembly which continually forces water past the fuel elements.
Helium-3 blankets for tritium breeding in fusion reactors
NASA Technical Reports Server (NTRS)
Steiner, Don; Embrechts, Mark; Varsamis, Georgios; Vesey, Roger; Gierszewski, Paul
1988-01-01
It is concluded that He-3 blankets offers considerable promise for tritium breeding in fusion reactors: good breeding potential, low operational risk, and attractive safety features. The availability of He-3 resources is the key issue for this concept. There is sufficient He-3 from decay of military stockpiles to meet the International Thermonuclear Experimental Reactor needs. Extraterrestrial sources of He-3 would be required for a fusion power economy.
U.S.-Russian Civilian Nuclear Cooperation Agreement: Issues for Congress
2010-07-09
for nuclear cooperation in 1973 to allow for cooperation in controlled thermonuclear fusion, fast breeder reactors , and fundamental research. The...that a 123 agreement is needed to implement this action plan—for example, full scale technical cooperation on fast reactors and demonstration of...superpowers convened a Joint Coordinating Committee for Civilian Reactor Safety starting in 1988.10 After the fall of the Soviet Union and prior to July
Integral Inherently Safe Light Water Reactor (I 2S-LWR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, Bojan; Memmott, Matthew; Boy, Guy
This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I 2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to addressmore » the preference of some utilities in the US power market for unit power level on the order of 1 GWe.« less
Effect of Neutron Absorbers Mixed in or Coating the Fuel of a 1-MWt Lithium-Cooled Space Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, Benjamin W.; Los Alamos National Laboratory, Los Alamos, NM 87545; Poston, David I.
2005-02-06
The goal of this study was to determine the effect of various neutron poisons (boron, dysprosium, erbium, and gadolinium) on a 1-MWt, lithium-cooled liquid-metal reactor. The isotopes were considered to be in-fuel poisons, as well as poisons coating the fuel. One way to quantify the effectiveness of a poison in meeting accident-condition requirements is by defining the safety margin as the difference between keff at the beginning of life and keff during the accident scenarios. The isotope that showed the most potential in increasing the safety margin for the wet-sand/water case was 157Gd. The safety margin was 10%-20% greater usingmore » 157Gd as an in-fuel poison as opposed to a coating, depending on the poison quantity. However, the most limiting condition (i.e., the accident scenario with the highest keff, thus the lowest safety margin) is when the reactor is submerged in wet sand. None of the isotopes considered significantly affected the safety margin for the dry-sand case. However, the poison isotopes considered may have applicability for meeting the wet-sand/water keff requirements or as burnable poisons in a moderated system. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.« less
Count-doubling time safety circuit
Rusch, Gordon K.; Keefe, Donald J.; McDowell, William P.
1981-01-01
There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary.
Decision-theoretic methodology for reliability and risk allocation in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.
1985-01-01
This paper describes a methodology for allocating reliability and risk to various reactor systems, subsystems, components, operations, and structures in a consistent manner, based on a set of global safety criteria which are not rigid. The problem is formulated as a multiattribute decision analysis paradigm; the multiobjective optimization, which is performed on a PRA model and reliability cost functions, serves as the guiding principle for reliability and risk allocation. The concept of noninferiority is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The assessment of the decision maker's preferencesmore » could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided and several outstanding issues such as generic allocation and preference assessment are discussed.« less
NASA Astrophysics Data System (ADS)
van Duysen, J. C.; Meric de Bellefon, G.
2017-02-01
The first light water nuclear reactor dedicated to electricity production was commissioned in Shippingport, Pennsylvania in the United States in 1957. Sixty years after the event, it is clear that this type of reactor will be a major source of electricity and one of the key solutions to limit climate change in the 21st century. This article pays homage to the teams that contributed to this achievement by their involvement in research and development and their determination to push back the frontiers of knowledge. Via a few examples of scientific or technological milestones, it describes the evolution of ideas, models, and techniques during the last 60 years, and gives the current state-of-the-art in areas related to the safety of the reactor pressure vessel. Among other topics, it focuses on vessel manufacturing, steel fracture mechanics analysis, and understanding of irradiation-induced damage.
A probabilistic safety analysis of incidents in nuclear research reactors.
Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi
2012-06-01
This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.
On some control problems of dynamic of reactor
NASA Astrophysics Data System (ADS)
Baskakov, A. V.; Volkov, N. P.
2017-12-01
The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....
Nuclear reactor control apparatus
Sridhar, Bettadapur N.
1983-10-25
Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.
US Efforts in Support of Examinations at Fukushima Daiichi – 2016 Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amway, P.; Andrews, N.; Bixby, Willis
Although it is clear that the accident signatures from each unit at the Fukushima Daiichi Nuclear Power Station (NPS) [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limitedmore » full scale prototypic data. Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company Holdings (TEPCO) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This document reports recent results from the US Forensics Effort to use information obtained by TEPCO to enhance the safety of existing and future nuclear power plant designs. This Forensics Effort, which is sponsored by the Reactor Safety Technologies Pathway of the Department of Energy Office of Nuclear Energy Light Water Reactor (LWR) Sustainability Program, consists of a group of US experts in LWR safety and plant operations that have identified examination needs and are evaluating TEPCO information from Daiichi that address these needs. Examples presented in this report demonstrate that significant safety insights are being obtained in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights are being used to update guidance for severe accident prevention, mitigation, and emergency planning. Furthermore, reduced uncertainties in modeling the events at Daiichi will improve the realism of reactor safety evaluations and inform future D&D activities by improving the capability for characterizing potential hazards to workers involved with cleanup activities.« less
Impact of Passive Safety on FHR Instrumentation Systems Design and Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, David Eugene
2015-01-01
Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, throughmore » an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.« less
Hanford Works monthly report, December 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1951-01-22
This is a progress report of the production reactors on the Hanford Reservation for the month of December 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, April 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1952-05-20
This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, August 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-09-18
This is a progress report of the production reactors on the Hanford Reservation for the month of August 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, May 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1951-06-21
This is a progress report of the production reactors on the Hanford Reservation for the month of May 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, December 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1952-01-22
This is a progress report of the production reactors on the Hanford Reservation for the month of December 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, March 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1951-04-20
This is a progress report of the production reactors on the Hanford Reservation for the month of March 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, July 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
This is a progress report of the production reactors on the Hanford Reservation for the month of July 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, March 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1952-04-18
This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, July 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1952-08-15
This is a progress report of the production reactors on the Hanford Reservation for the month of July 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford works monthly report, September 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
This is a progress report of the production reactors on the Hanford Reservation for the month of September 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, January 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
This is a progress report of the production reactors on the Hanford Reservation for the month of January 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
Hanford Works monthly report, August 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1951-09-24
This is a progress report of the production reactors on the Hanford Reservation for the month of August 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, July 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-08-18
This is a progress report of the production reactors on the Hanford Reservation for the month of July 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, November 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1951-12-21
This is a progress report of the production reactors on the Hanford Reservation for the month of November 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, October 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-11-20
This is a progress report of the production reactors on the Hanford Reservation for the month of October 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, September 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-10-20
This is a progress report of the production reactors on the Hanford Reservation for the month of September 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, November 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-12-20
This is a progress report of the production reactors on the Hanford Reservation for the month of November 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Transmutation of Isotopes --- Ecological and Energy Production Aspects
NASA Astrophysics Data System (ADS)
Gudowski, Waclaw
2000-01-01
This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional nuclear power. In this context a lot of hopes and expectations have been expressed for novel systems called Accelerator-Driven Systems, Accelerator-Driven Transmutation of Waste or just Hybrid Reactors. All these names are used for description of the same nuclear system combining a powerful particle accelerator with a subcritical reactor. A careful analysis of possible environmental impact of ATW together with limitation of this technology is presented also in this paper.
Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiberi, V.
2012-07-01
The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity ofmore » the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine core concentrations mesh for the calculation of the power distribution. (authors)« less
NASA Technical Reports Server (NTRS)
1972-01-01
Nuclear safety analysis as applied to a space base mission is presented. The nuclear safety analysis document summarizes the mission and the credible accidents/events which may lead to nuclear hazards to the general public. The radiological effects and associated consequences of the hazards are discussed in detail. The probability of occurrence is combined with the potential number of individuals exposed to or above guideline values to provide a measure of accident and total mission risk. The overall mission risk has been determined to be low with the potential exposure to or above 25 rem limited to less than 4 individuals per every 1000 missions performed. No radiological risk to the general public occurs during the prelaunch phase at KSC. The most significant risks occur from prolonged exposure to reactor debris following land impact generally associated with the disposal phase of the mission where fission product inventories can be high.
Manned space flight nuclear system safety. Volume 1: base nuclear system safety
NASA Technical Reports Server (NTRS)
1972-01-01
The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.
An Overview of INEL Fusion Safety R&D Facilities
NASA Astrophysics Data System (ADS)
McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.
1997-06-01
The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaesun, E-mail: jaesun@pusan.ac.kr, E-mail: jpp@pusan.ac.kr; Park, Junpil, E-mail: jaesun@pusan.ac.kr, E-mail: jpp@pusan.ac.kr; Cho, Younho, E-mail: mechcyh@pusan.ac.kr
The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundarymore » conditions and the experimental result shows a possibility of the defect detection on J-groove weld.« less
NASA Astrophysics Data System (ADS)
Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.
NASA Astrophysics Data System (ADS)
Syarip; Po, L. C. C.
2018-05-01
In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.
Impact induced response spectrum for the safety evaluation of the high flux isotope reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.J.
1997-05-01
The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism.more » An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.« less
Next Generation Nuclear Plant Defense-in-Depth Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward G. Wallace; Karl N. Fleming; Edward M. Burns
2009-12-01
The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This papermore » includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
Allan I. Mendelowitz of the General Accounting Office (GAO) and James R. Shea of the Nuclear Regulatory Commission were the principal witnesses at a hearing on international concerns about reactor safety. The hearing focused on the Soviet accident at Chernobyl as a demonstration that safety matters are a legitimate area of international concern. Among the issues under discussion were safety standards and inspection procedures of the International Atomic Energy Agency (IAEA). Estimates developed by the GAO show that developing countries, which lack a strong technical base or nuclear background to handle emergencies, will have half the reactors in the worldmore » by the year 2000. Mendelowitz and Shea, together with supporting testimony from others in their agencies described international efforts to improve safeguards.« less
Reactor design and integration into a nuclear electric spacecraft
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Koenig, D. R.
1978-01-01
One of the well-defined applications for nuclear power in space is nuclear electric propulsion (NEP). Mission studies have identified the optimum power level (400 kWe). A single Shuttle launch requirement and science-package integration have added additional constraints to the design. A reactor design which will meet these constraints has been studied. The reactor employs 90 fuel elements, each heat pipe cooled. Reactor control is obtained with BeO/B4C drums in a BeO reflector. The balance of the spacecraft is shielded from the reactor with LiH. Power conditioning and reactor control drum drives are located behind the LiH with the power conditioning. Launch safety, mechanical design and integration with the power conversion subsystem are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies
NASA Astrophysics Data System (ADS)
Campbell, E. Michael
2010-02-01
Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )
PIE on Safety-Tested AGR-1 Compact 5-1-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.
Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactormore » (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.« less
Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Dionne, B.; Sikik, E.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less
SLSF in-reactor local fault safety experiment P4. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D. H.; Holland, J. W.; Braid, T. H.
The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less
Hanford Atomic Products Operation monthly report, April 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCune, F.K.
1954-05-21
This is a progress report of the production reactors on the Hanford Reservation for the month of April 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Atomic Products Operation monthly report, March 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCune, F.K.
1953-04-22
This is a progress report of the production reactors on the Hanford Reservation for the month of March 1953. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
10 CFR 2.107 - Withdrawal of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... application does not authorize the removal of any document from the files of the Commission. (c) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, will cause to be published in the Federal Register a notice...
Autonomous Control of Space Reactor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo
2007-11-30
Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the proffered evidence. If the excluded evidence is in written form, a copy must be marked for... proceeding in compliance with section 182(b) of the Act, any safety evaluation prepared by the NRC staff, and... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or...
Safety in the Chemical Laboratory: Handling of Oxygen in Research Experiments.
ERIC Educational Resources Information Center
Burnett, R. J.; Cole, J. E., Jr.
1985-01-01
Examines some of the considerations involved in setting up a typical oxygen/organic reaction. These considerations (including protection for personnel/equipment, adequate ventilation, reactor design, maximum reactor charge, operating procedures, and others) influence how the reaction is to be conducted and what compromises the scientist must…
Hanford Atomic Products Operation monthly report, April 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCune, F.K.
1953-05-20
This is a progress report of the production reactors on the Hanford Reservation for the month of April 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Atomic Products Operation monthly report, January 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCune, F.K.
1954-02-25
This is a progress report of the production reactors on the Hanford Reservation for the month of January 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes the accomplishments and employee relations for that month.
Hydrogen and water reactor safety: proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.
Virtues and Limitations of Risk Analysis
ERIC Educational Resources Information Center
Weatherwax, Robert K.
1975-01-01
After summarizing the Rasmussion Report, the author reviews the probabilistic portion of the report from the perspectives of engineering utility and risk assessment uncertainty. The author shows that the report may represent a significant step forward in the assurance of reactor safety and an imperfect measure of actual reactor risk. (BT)
10 CFR 2.318 - Commencement and termination of jurisdiction of presiding officer.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., whichever is earliest. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or the Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may issue an... officer. 2.318 Section 2.318 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING...
10 CFR 2.318 - Commencement and termination of jurisdiction of presiding officer.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., whichever is earliest. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or the Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may issue an... officer. 2.318 Section 2.318 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING...
10 CFR 2.106 - Notice of issuance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... issuance. (a) The Director, Office of New Reactors, Director, Office of Nuclear Reactor Regulation... 10 Energy 1 2013-01-01 2013-01-01 false Notice of issuance. 2.106 Section 2.106 Energy NUCLEAR... of Nuclear Material Safety and Safeguards, as appropriate, will inform the State and local officials...
10 CFR 2.106 - Notice of issuance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Application-How Initiated § 2.106 Notice of issuance. (a) The Director, Office of New Reactors, Director, Office of Nuclear Reactor Regulation, or Director, Office of Nuclear Material Safety and Safeguards, as... 10 Energy 1 2011-01-01 2011-01-01 false Notice of issuance. 2.106 Section 2.106 Energy NUCLEAR...
10 CFR 2.318 - Commencement and termination of jurisdiction of presiding officer.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., whichever is earliest. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or the Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may issue an... officer. 2.318 Section 2.318 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING...
Improved Delayed-Neutron Spectroscopy Using Trapped Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, Eric B.
The neutrons emitted following the β decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the β-decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the time dependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticalitymore » calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved β-delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayed neutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality β-delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation« less
Eddy Current Flow Measurements in the FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.
2017-02-02
The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less
The ORNL Chemical Technology Division, 1950-1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, R.L.; Genung, R.K.; McNeese, L.E.
1994-10-01
This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment thatmore » had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.« less
Graphite distortion ``C`` Reactor. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, N.H.
1962-02-08
This report covers the efforts of the Laboratory in an investigation of the graphite distortion in the ``C`` reactor at Hanford. The particular aspects of the problem to be covered by the Laboratory were possible ``fixes`` to the control rod sticking problem caused by VSR channel distortion.
Key Assets for a Sustainable Low Carbon Energy Future
NASA Astrophysics Data System (ADS)
Carre, Frank
2011-10-01
Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, C.W.
1985-02-19
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, Charles W.
1987-01-01
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
ASME code considerations for the compact heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestell, James; Sham, Sam
2015-08-31
The mission of the U.S. Department of Energy (DOE), Office of Nuclear Energy is to advance nuclear power in order to meet the nation's energy, environmental, and energy security needs. Advanced high temperature reactor systems such as sodium fast reactors and high and very high temperature gas-cooled reactors are being considered for the next generation of nuclear reactor plant designs. The coolants for these high temperature reactor systems include liquid sodium and helium gas. Supercritical carbon dioxide (sCO₂), a fluid at a temperature and pressure above the supercritical point of CO₂, is currently being investigated by DOE as a workingmore » fluid for a nuclear or fossil-heated recompression closed Brayton cycle energy conversion system that operates at 550°C (1022°F) at 200 bar (2900 psi). Higher operating temperatures are envisioned in future developments. All of these design concepts require a highly effective heat exchanger that transfers heat from the nuclear or chemical reactor to the chemical process fluid or the to the power cycle. In the nuclear designs described above, heat is transferred from the primary to the secondary loop via an intermediate heat exchanger (IHX) and then from the intermediate loop to either a working process or a power cycle via a secondary heat exchanger (SHX). The IHX is a component in the primary coolant loop which will be classified as "safety related." The intermediate loop will likely be classified as "not safety related but important to safety." These safety classifications have a direct bearing on heat exchanger design approaches for the IHX and SHX. The very high temperatures being considered for the VHTR will require the use of very high temperature alloys for the IHX and SHX. Material cost considerations alone will dictate that the IHX and SHX be highly effective; that is, provide high heat transfer area in a small volume. This feature must be accompanied by low pressure drop and mechanical reliability and robustness. Classic shell and tube designs will be large and costly, and may only be appropriate in steam generator service in the SHX where boiling inside the tubes occurs. For other energy conversion systems, all of these features can be met in a compact heat exchanger design. This report will examine some of the ASME Code issues that will need to be addressed to allow use of a Code-qualified compact heat exchanger in IHX or SHX nuclear service. Most effort will focus on the IHX, since the safety-related (Class A) design rules are more extensive than those for important-to-safety (Class B) or commercial rules that are relevant to the SHX.« less
"What--me worry?" "Why so serious?": a personal view on the Fukushima nuclear reactor accidents.
Gallucci, Raymond
2012-09-01
Infrequently, it seems that a significant accident precursor or, worse, an actual accident, involving a commercial nuclear power reactor occurs to remind us of the need to reexamine the safety of this important electrical power technology from a risk perspective. Twenty-five years since the major core damage accident at Chernobyl in the Ukraine, the Fukushima reactor complex in Japan experienced multiple core damages as a result of an earthquake-induced tsunami beyond either the earthquake or tsunami design basis for the site. Although the tsunami itself killed tens of thousands of people and left the area devastated and virtually uninhabitable, much concern still arose from the potential radioactive releases from the damaged reactors, even though there was little population left in the area to be affected. As a lifelong probabilistic safety analyst in nuclear engineering, even I must admit to a recurrence of the doubt regarding nuclear power safety after Fukushima that I had experienced after Three Mile Island and Chernobyl. This article is my attempt to "recover" my personal perspective on acceptable risk by examining both the domestic and worldwide history of commercial nuclear power plant accidents and attempting to quantify the risk in terms of the frequency of core damage that one might glean from a review of operational history. © 2012 Society for Risk Analysis.
Physical particularities of nuclear reactors using heavy moderators of neutrons
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Shmelev, A. N.
2016-12-01
In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.
Design, Construction and Testing of an In-Pile Loop for PWR (Pressurized Water Reactor) Simulation.
1987-06-01
computer modeling remains at best semiempirical (C-i), this large variation in scaling factor makes extrapolation of data impossible. The DIDO Water...in a full scale PWR are not practical. The reactor plant is not controlled to tolerances necessary for research, and utilities are reluctant to vary...MIT Reactor Safeguards Committee, in revision 1 to the PCCL Safety Evaluation Report (SER), for final approval to begin in-pile testing and
Inherently Safe and Long-Life Fission Power System for Lunar Outposts
NASA Astrophysics Data System (ADS)
Schriener, T. M.; El-Genk, Mohamed S.
Power requirements for future lunar outposts, of 10's to 100's kWe, can be fulfilled using nuclear reactor power systems. In addition to the long life and operation reliability, safety is paramount in all phases, including fabrication and assembly, launch, emplacement below grade on the lunar surface, operation, post-operation decay heat removal and long-term storage and eventual retrieval. This paper introduces the Solid Core-Sectored Compact Reactor (SC-SCoRe) and power system with static components and no single point failures. They ensure reliable continuous operation for ~21 years and fulfill the safety requirements. The SC-SCoRe nominally generates 1.0 MWth at liquid NaK-56 coolant inlet and exit temperatures of 850 K and 900 K and the power system provides 38 kWe at high DC voltage using SiGe thermoelectric (TE) conversion assemblies. In case of a loss of coolant or cooling in a reactor core sector, the power system continues to operate; generating ~4 kWe to the outpost for emergency life support needs. The post-operation storage of the reactor below grade on the lunar surface is a safe and practical choice. The total radioactivity in the reactor drops from ~1 million Ci, immediately at shutdown, to below 164 Ci after 300 years of storage. At such time, the reactor is retrieved safely with no contamination or environmental concerns.
Grandin, Karl; Jagers, Peter; Kullander, Sven
2010-01-01
Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.
Comparative health and safety assessment of the SPS and alternative electrical generation systems
NASA Astrophysics Data System (ADS)
Habegger, L. J.; Gasper, J. R.; Brown, C. D.
1980-07-01
A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.
Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is validmore » until October 1, 1999. After this date, an update or upgrade to this document is required.« less
Comparative health and safety assessment of the SPS and alternative electrical generation systems
NASA Technical Reports Server (NTRS)
Habegger, L. J.; Gasper, J. R.; Brown, C. D.
1980-01-01
A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.
The Advanced Software Development and Commercialization Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallopoulos, E.; Canfield, T.R.; Minkoff, M.
1990-09-01
This is the first of a series of reports pertaining to progress in the Advanced Software Development and Commercialization Project, a joint collaborative effort between the Center for Supercomputing Research and Development of the University of Illinois and the Computing and Telecommunications Division of Argonne National Laboratory. The purpose of this work is to apply techniques of parallel computing that were pioneered by University of Illinois researchers to mature computational fluid dynamics (CFD) and structural dynamics (SD) computer codes developed at Argonne. The collaboration in this project will bring this unique combination of expertise to bear, for the first time,more » on industrially important problems. By so doing, it will expose the strengths and weaknesses of existing techniques for parallelizing programs and will identify those problems that need to be solved in order to enable wide spread production use of parallel computers. Secondly, the increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more accurate engineering models that involve fluid and structural dynamics. In order to realize the above two goals, we are considering two production codes that have been developed at ANL and are widely used by both industry and Universities. These are COMMIX and WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor design and safety and as a design tool for the casting industry. The second is a three-dimensional structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These codes are currently available for both sequential and vector computers only. Our main goal is to port and optimize these two codes on shared memory multiprocessors. In so doing, we shall establish a process that can be followed in optimizing other sequential or vector engineering codes for parallel processors.« less
Passive safety injection system using borated water
Conway, Lawrence E.; Schulz, Terry L.
1993-01-01
A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.
Pretest fracture evaluation of the NESC-1 spinning-cylinder experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeney, J.A.; Bass, B.R.; Williams, P.T.
This paper describes a pretest fracture analysis of the cylinder specimen being used in the Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). Organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards, the NESC is currently focusing on a research project funded by United Kingdom Health and Safety Executive (HSE) to study the total process of structural integrity assessments of aged reactor pressure vessels (RPVs) containing subclad cracks. The intent is to have the problem studied by a wide rangemore » of organizations involved in RPV safety assessment. In this project, important safety assessment issues are being investigated by inspection and analysis of a spinning cylinder test which was performed at the AEA Technology facility at Risley, UK. Thermoelastic-plastic analyses were carried out for a clad cylinder model with a 74-mm-deep through-clad inner-surface crack. For this loading, the analytical results indicate that cleavage initiation may be achieved. The intervention of warm prestressing and loss of constraint may make cleavage initiation difficult to achieve in the heat-affected zone (HAZ) and near-HAZ regions.« less
Status report on the fusion breeder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1980-12-12
The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW m/sup -2/, and the hybrid should cost lessmore » than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are unusually rapid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, B.W.; Miller, R.L.
1983-08-01
This document summarizes information from the decommissioning of the NCSUR-3 (R-3), a 10 KWt university research and training reactor. The decommissioning data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in pre-decommissioning activities with other university reactors of similar design. The information is presented both in some detail in its computer output form and also as a manually assembled summarization which highlights the more significant aspects of the decommissioning project. Decommissioning data from a generic study, NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, and the decommissioning ofmore » the Ames Laboratory Research Reactor (ALRR), a 5 MWt research reactor, is also included for comparison.« less
Integrated Response Time Evaluation Methodology for the Nuclear Safety Instrumentation System
NASA Astrophysics Data System (ADS)
Lee, Chang Jae; Yun, Jae Hee
2017-06-01
Safety analysis for a nuclear power plant establishes not only an analytical limit (AL) in terms of a measured or calculated variable but also an analytical response time (ART) required to complete protective action after the AL is reached. If the two constraints are met, the safety limit selected to maintain the integrity of physical barriers used for preventing uncontrolled radioactivity release will not be exceeded during anticipated operational occurrences and postulated accidents. Setpoint determination methodologies have actively been developed to ensure that the protective action is initiated before the process conditions reach the AL. However, regarding the ART for a nuclear safety instrumentation system, an integrated evaluation methodology considering the whole design process has not been systematically studied. In order to assure the safety of nuclear power plants, this paper proposes a systematic and integrated response time evaluation methodology that covers safety analyses, system designs, response time analyses, and response time tests. This methodology is applied to safety instrumentation systems for the advanced power reactor 1400 and the optimized power reactor 1000 nuclear power plants in South Korea. The quantitative evaluation results are provided herein. The evaluation results using the proposed methodology demonstrate that the nuclear safety instrumentation systems fully satisfy corresponding requirements of the ART.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.
The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less
Wende, Charles W. J.
1976-08-17
A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.
SOUTH WING, MTR661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA ...
SOUTH WING, MTR-661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA FACING NORTHEAST. NOTE CONCRETE BLOCK WALLS. SAFETY SHOWER AND EYE WASHER AT REAR WALL. INL NEGATIVE NO. HD46-7-2. Mike Crane, Photographer, 2/2005. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... from the date of the request, or within such other time as may be specified. (b) The Director, Office...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0284; Docket No. 50-247; License No. DPR-26] Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point Unit 2, LLC, Issuance of Director's Decision Notice is hereby given that the Deputy Director, Reactor Safety Programs, Office of Nuclear Reactor...
Autonomous Control of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, H.
2003-10-20
A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less
Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretscher, M. M.; Hanan, N. A.; Matos, J. E.
1999-09-27
Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less
Microscale Heat Conduction Models and Doppler Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman I.; Ougouag, Abderrafi
2015-01-22
The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperaturemore » rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteleone, S.
This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updatedmore » and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.« less
A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit
Mandelli, Diego; Prescott, Steven; Smith, Curtis; ...
2015-05-17
In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore » NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.« less
Hutter, E.
1983-08-15
A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.
Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors
NASA Astrophysics Data System (ADS)
Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti
2010-12-01
Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.
Advanced low-activation materials. Fibre-reinforced ceramic composites
NASA Astrophysics Data System (ADS)
Fenici, P.; Scholz, H. W.
1994-09-01
A serious safety and environmental concern for thermonuclear fusion reactor development regards the induced radioactivity of the first wall and structural components. The use of low-activation materials (LAM) in a demonstration reactor would reduce considerably its potential risk and facilitate its maintenance. Moreover, decommissioning and waste management including disposal or even recycling of structural materials would be simplified. Ceramic fibre-reinforced SiC materials offer highly appreciable low activation characteristics in combination with good thermomechanical properties. This class of materials is now under experimental investigation for structural application in future fusion reactors. An overview on the recent results is given, covering coolant leak rates, thermophysical properties, compatibility with tritium breeder materials, irradiation effects, and LAM-consistent purity. SiC/SiC materials present characteristics likely to be optimised in order to meet the fusion application challenge. The scope is to put into practice the enormous potential of inherent safety with fusion energy.
The WSTIAC Quarterly. Volume 9, Number 3
2010-01-25
program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained
Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies
NASA Astrophysics Data System (ADS)
Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.
2006-01-01
A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.
An Evolutionary Optimization of the Refueling Simulation for a CANDU Reactor
NASA Astrophysics Data System (ADS)
Do, Q. B.; Choi, H.; Roh, G. H.
2006-10-01
This paper presents a multi-cycle and multi-objective optimization method for the refueling simulation of a 713 MWe Canada deuterium uranium (CANDU-6) reactor based on a genetic algorithm, an elitism strategy and a heuristic rule. The proposed algorithm searches for the optimal refueling patterns for a single cycle that maximizes the average discharge burnup, minimizes the maximum channel power and minimizes the change in the zone controller unit water fills while satisfying the most important safety-related neutronic parameters of the reactor core. The heuristic rule generates an initial population of individuals very close to a feasible solution and it reduces the computing time of the optimization process. The multi-cycle optimization is carried out based on a single cycle refueling simulation. The proposed approach was verified by a refueling simulation of a natural uranium CANDU-6 reactor for an operation period of 6 months at an equilibrium state and compared with the experience-based automatic refueling simulation and the generalized perturbation theory. The comparison has shown that the simulation results are consistent from each other and the proposed approach is a reasonable optimization method of the refueling simulation that controls all the safety-related parameters of the reactor core during the simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan Stacy; Hollie K. Gilbert
2005-02-01
Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less
Analysis of Loss-of-Coolant Accidents in the NIST Research Reactor - Early Phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Joo S.; Diamond, David
A study of the fuel temperature during the early phase of a loss-of-coolant accident (LOCA) in the NIST research reactor (NBSR) was completed. Previous studies had been reported in the preliminary safety analysis report for the conversion of the NBSR from high-enriched uranium (HEU) fuel to low-enriched (LEU) fuel. Those studies had focused on the most vulnerable LOCA situation, namely, a double-ended guillotine break in the time period after reactor trip when water is drained from either the coolant channels inside the fuel elements or the region outside the fuel elements. The current study fills in a gap in themore » analysis which is the early phase of the event when there may still be water present but the reactor is at power or immediately after reactor trip and pumps have tripped. The calculations were done, for both the current HEU-fueled core and the proposed LEU core, with the TRACE thermal-hydraulic systems code. Several break locations and different break sizes were considered. In all cases the increase in the clad (or fuel meat) temperature was relatively small so that a large margin to the temperature threshold for blistering (the Safety Limit for the NBSR) remained.« less
Takamatsu, Kuniyoshi; Hu, Rui
2014-11-27
A new, highly efficient reactor cavity cooling system (RCCS) with passive safety features without a requirement for electricity and mechanical drive is proposed for high temperature gas cooled reactors (HTGRs) and very high temperature reactors (VHTRs). The RCCS design consists of continuous closed regions; one is an ex-reactor pressure vessel (RPV) region and another is a cooling region having heat transfer area to ambient air assumed at 40 (°C). The RCCS uses a novel shape to efficiently remove the heat released from the RPV with radiation and natural convection. Employing the air as the working fluid and the ambient airmore » as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. Therefore, HTGRs and VHTRs adopting the new RCCS design can avoid core melting due to overheating the fuels. The simulation results from a commercial CFD code, STAR-CCM+, show that the temperature distribution of the RCCS is within the temperature limits of the structures, such as the maximum operating temperature of the RPV, 713.15 (K) = 440 (°C), and the heat released from the RPV could be removed safely, even during a loss of coolant accident (LOCA). Finally, when the RCCS can remove 600 (kW) of the rated nominal state even during LOCA, the safety review for building the HTTR could confirm that the temperature distribution of the HTTR is within the temperature limits of the structures to secure structures and fuels after the shutdown because the large heat capacity of the graphite core can absorb heat from the fuel in a short period. Therefore, the capacity of the new RCCS design would be sufficient for decay heat removal.« less
Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors.
Ford, Michael J; Abdulla, Ahmed; Morgan, M Granger
2017-11-01
It is hard to see how our energy system can be decarbonized if the world abandons nuclear power, but equally hard to introduce the technology in nonnuclear energy states. This is especially true in countries with limited technical, institutional, and regulatory capabilities, where safety and proliferation concerns are acute. Given the need to achieve serious emissions mitigation by mid-century, and the multidecadal effort required to develop robust nuclear governance institutions, we must look to other models that might facilitate nuclear plant deployment while mitigating the technology's risks. One such deployment paradigm is the build-own-operate-return model. Because returning small land-based reactors containing spent fuel is infeasible, we evaluate the cost, safety, and proliferation risks of a system in which small modular reactors are manufactured in a factory, and then deployed to a customer nation on a floating platform. This floating small modular reactor would be owned and operated by a single entity and returned unopened to the developed state for refueling. We developed a decision model that allows for a comparison of floating and land-based alternatives considering key International Atomic Energy Agency plant-siting criteria. Abandoning onsite refueling is beneficial, and floating reactors built in a central facility can potentially reduce the risk of cost overruns and the consequences of accidents. However, if the floating platform must be built to military-grade specifications, then the cost would be much higher than a land-based system. The analysis tool presented is flexible, and can assist planners in determining the scope of risks and uncertainty associated with different deployment options. © 2017 Society for Risk Analysis.
Digital Signal Processing Methods for Safety Systems Employed in Nuclear Power Industry
NASA Astrophysics Data System (ADS)
Popescu, George
Some of the major safety concerns in the nuclear power industry focus on the readiness of nuclear power plant safety systems to respond to an abnormal event, the security of special nuclear materials in used nuclear fuels, and the need for physical security to protect personnel and reactor safety systems from an act of terror. Routine maintenance and tests of all nuclear reactor safety systems are performed on a regular basis to confirm the ability of these systems to operate as expected. However, these tests do not determine the reliability of these safety systems and whether the systems will perform for the duration of an accident and whether they will perform their tasks without failure after being engaged. This research has investigated the progression of spindle asynchronous error motion determined from spindle accelerations to predict bearings failure onset. This method could be applied to coolant pumps that are essential components of emergency core cooling systems at all nuclear power plants. Recent security upgrades mandated by the Nuclear Regulatory Commission and the Department of Homeland Security have resulted in implementation of multiple physical security barriers around all of the commercial and research nuclear reactors in the United States. A second part of this research attempts to address an increased concern about illegal trafficking of Special Nuclear Materials (SNM). This research describes a multi element scintillation detector system designed for non - invasive (passive) gamma ray surveillance for concealed SNM that may be within an area or sealed in a package, vehicle or shipping container. Detection capabilities of the system were greatly enhanced through digital signal processing, which allows the combination of two very powerful techniques: 1) Compton Suppression (CS) and 2) Pulse Shape Discrimination (PSD) with less reliance on complicated analog instrumentation.
Reliability enhancement of APR + diverse protection system regarding common cause failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Y. G.; Kim, Y. M.; Yim, H. S.
2012-07-01
The Advanced Power Reactor Plus (APR +) nuclear power plant design has been developed on the basis of the APR1400 (Advanced Power Reactor 1400 MWe) to further enhance safety and economics. For the mitigation of Anticipated Transients Without Scram (ATWS) as well as Common Cause Failures (CCF) within the Plant Protection System (PPS) and the Emergency Safety Feature - Component Control System (ESF-CCS), several design improvement features have been implemented for the Diverse Protection System (DPS) of the APR + plant. As compared to the APR1400 DPS design, the APR + DPS has been designed to provide the Safety Injectionmore » Actuation Signal (SIAS) considering a large break LOCA accident concurrent with the CCF. Additionally several design improvement features, such as channel structure with redundant processing modules, and changes of system communication methods and auto-system test methods, are introduced to enhance the functional reliability of the DPS. Therefore, it is expected that the APR + DPS can provide an enhanced safety and reliability regarding possible CCF in the safety-grade I and C systems as well as the DPS itself. (authors)« less
Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrell, W.B.; Klein, A.
1977-02-23
This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970), through Vol. 17, No. 6 (Nov.-Dec. 1976). The index includes a chronological list of articles (including abstract) followed by KWIC and Author Indexes. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 350 technical articles in the last six years of publication.
Split-core heat-pipe reactors for out-of-pile thermionic power systems.
NASA Technical Reports Server (NTRS)
Niederauer, G.; Lantz, E.; Breitweiser, R.
1971-01-01
Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Leonard, Keith J.; Tan, Lizhen
Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superiormore » degradation resistance in light water reactor (LWR)-relevant environments by 2024.« less
Three-dimensional analysis of tokamaks and stellarators
Garabedian, Paul R.
2008-01-01
The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807
A study on pseudo interface wave technique for CRDM weld defects in nuclear power plants
NASA Astrophysics Data System (ADS)
Lee, Jaesun; Park, Junpil; Cho, Younho; Huh, Hyung; Park, Keun-Bae; Kim, Dong-Ok
2015-03-01
The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundary conditions and the experimental result shows a possibility of the defect detection on J-groove weld.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourham, Mohamed A.; Gilligan, John G.
Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing componentsmore » safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.« less
Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor
NASA Astrophysics Data System (ADS)
Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah
2016-01-01
The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.
Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.
In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, B.W.; Miller, R.L.
1983-07-01
This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.
Soviet space nuclear reactor incidents - Perception versus reality
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1992-01-01
Since the Soviet Union reportedly began flying nuclear power sources in 1965 it has had four publicly known accidents involving space reactors, two publicly known accidents involving radioisotope power sources and one close call with a space reactor (Cosmos 1900). The reactor accidents, particularly Cosmos 954 and Cosmos 1402, indicated that the Soviets had adopted burnup as their reentry philosophy which is consistent with the U.S. philosophy from the 1960s and 1970s. While quantitative risk analyses have shown that the Soviet accidents have not posed a serious risk to the world's population, concerns still remain about Soviet space nuclear safety practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, A. J.; Fei, T.; Strons, P. S.
The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort ismore » to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis Report (FSAR) [3]. Depending on the availability of historical data derived from HEU TREAT operation, results calculated for the LEU core are compared to measurements obtained from HEU TREAT operation. While all analyses in this report are largely considered complete and have been reviewed for technical content, it is important to note that all topics will be revisited once the LEU design approaches its final stages of maturity. For most safety significant issues, it is expected that the analyses presented here will be bounding, but additional calculations will be performed as necessary to support safety analyses and safety documentation. It should also be noted that these analyses were completed as the LEU design evolved, and therefore utilized different LEU reference designs. Preliminary shielding, neutronic, and thermal hydraulic analyses have been completed and have generally demonstrated that the various LEU core designs will satisfy existing safety limits and standards also satisfied by the existing HEU core. These analyses include the assessment of the dose rate in the hodoscope room, near a loaded fuel transfer cask, above the fuel storage area, and near the HEPA filters. The potential change in the concentration of tramp uranium and change in neutron flux reaching instrumentation has also been assessed. Safety-significant thermal hydraulic items addressed in this report include thermally-induced mechanical distortion of the grid plate, and heating in the radial reflector.« less
Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... Methodology for Boiling Water Reactors, June 2011. To support use of Topical Report ANP-10307PA, Revision 0... the NRC's E-Filing system does not support unlisted software, and the NRC Meta System Help Desk will... Water Reactors with AREVA Topical Report ANP- 10307PA, Revision 0, ``AREVA MCPR Safety Limit Methodology...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on February 21... the Safety Evaluation Reports (SERs) associated with the US-APWR design certification and the Comanche...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewe, W.E.; Krucoff, D.
1958-10-31
Study of the ADFR concept included experimental work on fuel dust suspension stability and redispersibility, erosion, and dust deposition using the fuel dust circulation loop. Some theoretical work was done in the areas of reactor safety and breeding. (For preceding period -see AECU-3827.) (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingersoll, Daniel T
2007-01-01
Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less
Supply of enriched uranium for research reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, H.
1997-08-01
Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel onmore » December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.« less
Commercial grade item (CGI) dedication of MDR relays for nuclear safety related applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, R.K.; Julka, A.; Modi, G.
1994-08-01
MDR relays manufactured by Potter and Brumfield (P and B) have been used in various safety related applications in commercial nuclear power plants. These include emergency safety features (ESF) actuation systems, emergency core cooling systems (ECCS) actuation, and reactor protection systems. The MDR relays manufactured prior to May 1990 showed signs of generic failure due to corrosion and outgassing of coil varnish. P and B has made design changes to correct these problems in relays manufactured after May 1990. However, P and B does not manufacture the relays under any 10CFR50 Appendix B quality assurance (QA) program. They manufacture themore » relays under their commercial QA program and supply these as commercial grade items. This necessitates CGI Dedication of these relays for use in nuclear-safety-related applications. This paper presents a CGI dedication program that has been used to dedicate the MDR relays manufactured after May 1990. The program is in compliance with current Nuclear Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) guidelines and applicable industry standards; it specifies the critical characteristics of the relays, provides the tests and analysis required to verify the critical characteristics, the acceptance criteria for the test results, performs source verification to qualify P and B for its control of the critical characteristics, and provides documentation. The program provides reasonable assurance that the new MDR relays will perform their intended safety functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, P. J.; Westwood, R.N; Mark, R. T.
2006-07-01
The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety casesmore » for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)« less
10 CFR 72.70 - Safety analysis report updating.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety analysis report updating. 72.70 Section 72.70 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.124 - Criteria for nuclear criticality safety.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
10 CFR 72.124 - Criteria for nuclear criticality safety.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
10 CFR 72.124 - Criteria for nuclear criticality safety.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
10 CFR 72.124 - Criteria for nuclear criticality safety.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
10 CFR 72.124 - Criteria for nuclear criticality safety.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; David W. Nigg
2009-11-01
One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.
Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widiawati, Nina, E-mail: nina-widiawati28@yahoo.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id
Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uraniummore » fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.« less
Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor
NASA Astrophysics Data System (ADS)
Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.
2014-04-01
The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.
Physical particularities of nuclear reactors using heavy moderators of neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N.
2016-12-15
In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program packagemore » for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.« less
Research reactor loading pattern optimization using estimation of distribution algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon
2006-07-01
A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less
Shift Verification and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Tara M.; Evans, Thomas M.; Davidson, Gregory G
2016-09-07
This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over amore » burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.« less
NASA Astrophysics Data System (ADS)
Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian
2018-01-01
ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical experiment yields that we could verify the effects of heterogeneity of propagation medium on waves in Liquid sodium.
28. A typical main control panel in a 105 reactor ...
28. A typical main control panel in a 105 reactor building, in this case 105-F in February 1945. A single operator sat at the controls to regulate the pile's rate of reaction and monitor it for safety. The galvanometer screens (the two horizontal bars just below the nine round gauges that showed the positions of the control rods) showed the pile's current power setting. With that information, the operator could set the control rod positions to increase, decrease, or maintain the power. D-8310 - B Reactor, Richland, Benton County, WA
Low exchange element for nuclear reactor
Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.
1985-01-01
A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewe, W.E.; Krucoff, D.
1958-10-31
Work has begun on the ADFR, a reactor using a new fuel form -- fissionable dust carried in an inent gas. Temperatures in the range 2,000 to 3,000 deg F appear feasible in an all-ceramic system. Experimental study of the fuel form was initiated, and a loop to circulate the fuel dust was constructed. Initial operation is encouraging. Theoretical studies were carried on in the areas of reactor physics, heat transfer, and safety. (auth)
CHEMICAL ENGINEERING DIVISION SUMMARY REPORT, OCTOBER, NOVEMBER, DECEMBER 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-03-01
Chemical-metallurgical processing studies were made of pyrometallurgical development snd research, and fuel processing facilities for EBR-II. Fuel-cycle applications of fluidization and volatility techniques included laboratory investigations of fluoride volatility processes, engineeringscale development, and conversion of UF/sub 6/ to UO/sub 2/. Reactor safety studies consisted of metal oxidation and ignition kinetics, and metal-water reactions. Reactor chemistry investigations were conducted to determine nuclear constants and suitable reactor decontamination methods. Routine operations are summarized for the high-level gammairradiation facillty and waste processing. (B.O.G.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1989-11-01
The operation of a nuclear power plant must be regularly supported by various reactor dynamics and thermal-hydraulic analyses, which may include final safety analysis report (FSAR) design-basis calculations, and conservative and best-estimate analyses. The development and improvement of computer codes and analysis methodologies provide many advantages, including the ability to evaluate the effect of modeling simplifications and assumptions made in previous reactor kinetics and thermal-hydraulic calculations. This paper describes the results of using the RETRAN, MCPWR, and STAR codes in a tandem, predictive-corrective manner for three pressurized water reactor (PWR) transients: (a) loss of feedwater (LOF) anticipated transient without scrammore » (ATWS), (b) station blackout ATWS, and (c) loss of total reactor coolant system (RCS) flow with a scram.« less
McDermott, D.J.; Schrader, K.J.; Schulz, T.L.
1994-05-03
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.
1994-01-01
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
Long lifetime fast spectrum reactor for lunar surface power system
NASA Astrophysics Data System (ADS)
Kambe, Mitsuru
1993-01-01
In the framework of innovative reactor research activities, a conceptual design study of fast spectrum reactor and primary system for 800 kWe lunar surface power system to be combined with potassium Rankine cycle power conversion has been conducted to meet the power requirements of the lunar base activities in the next century. The reactor subsystem is characterized by RAPID (Refueling by All Pins Integrated Design) concept to enhance inherent safety and to enable quick and simplifed refueling in every 10 years. RAPID concept affords power plant design lifetime of up to 30 years. Integrity of the reactor structure and replacement of failed primary circuits are also discussed. Substantial reduction in per-kWh cost on considering launch, emplacement, and final disposition can be expected by a long system lifetime.
77 FR 16278 - Advisory Committee on Reactor Safeguards: Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
..., 11545 Rockville Pike, Rockville, Maryland. Thursday, April 12, 2012, Conference Room T2-B1, 11545....: Selected Chapters of the Safety Evaluation Report (SER) with Open Items Associated with the Calvert Cliffs... chapters of the NRC staff's Safety Evaluation Report (SER) with open items associated with the Calvert...
75 FR 51500 - Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
..., October 14, 2009 (74 FR 52829-52830). Thursday, September 9, 2010, Conference Room T2-B1, Two White Flint... Fabrication Facility and the Associated Safety Evaluation Report (Open/ Closed)--The Committee will hold... the MOX Fuel Fabrication Facility and the associated Safety Evaluation Report. [Note: A portion of...
75 FR 70304 - Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
..., Rockville, Maryland. Thursday, December 2, 2010, Conference Room T2-B1, Two White Flint North, Rockville... opening remarks regarding the conduct of the meeting. 8:35 a.m.-10 a.m.: Final Safety Evaluation Report... Kewaunee, Inc., regarding the final safety evaluation report associated with the License Renewal...
78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Review of Safety Analysis Reports for Nuclear Power... Analysis Reports for Nuclear Power Plants: LWR Edition.'' The new subsection is the Standard Review Plan... Nuclear Power Plants: Integral Pressurized Water Reactor (iPWR) Edition.'' DATES: Comments must be filed...
The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert Stephen
Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologiesmore » may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... environmental issues raised in the Fukushima Task Force Report. The NRC is not instituting a public comment... Reactor Safety in the 21st Century: The Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident'' (Fukushima Task Force Report, ADAMS Accession No. ML111861807), dated July 12, 2011, as...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on November 20... Sections 3.7 and 3.8) of the Safety Evaluation Report (SER) associated with the US-APWR design...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-08
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR The ACRS Subcommittee on US-APWR will hold a meeting on April 25- 26, 2013, Room T-2B1... 7, ``Instrumentation and Control,'' of the Safety Evaluation Report (SER) associated with the US...
NTRE extended life feasibility assessment
NASA Technical Reports Server (NTRS)
1993-01-01
Results of a feasibility analysis of a long life, reusable nuclear thermal rocket engine are presented in text and graph form. Two engine/reactor concepts are addressed: the Particle Bed Reactor (PBR) design and the Commonwealth of Independent States (CIS) concept. Engine design, integration, reliability, and safety are addressed by various members of the NTRE team from Aerojet Propulsion Division, Energopool (Russia), and Babcock & Wilcox.
Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.
ERIC Educational Resources Information Center
Fillo, J. A.
This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…
Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragusa, Jean; Vierow, Karen
2011-09-01
The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culbert, W.H.
1985-10-01
This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliancemore » with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.« less