SP-100 Program: space reactor system and subsystem investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, R.B.
1983-09-30
For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs.
SP-100 program: Space reactor system and subsystem investigations
NASA Astrophysics Data System (ADS)
Harty, R. B.
1983-09-01
For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. The nuclear safety review/approval process that is required for a space reactor system is summarized. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that is expected and to provide information that could be usable in future programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Kokkinos
2005-04-28
The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less
World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)
Nuclear safety for the space exploration initiative
NASA Technical Reports Server (NTRS)
Dix, Terry E.
1991-01-01
The results of a study to identify potential hazards arising from nuclear reactor power systems for use on the lunar and Martian surfaces, related safety issues, and resolutions of such issues by system design changes, operating procedures, and other means are presented. All safety aspects of nuclear reactor power systems from prelaunch ground handling to eventual disposal were examined consistent with the level of detail for SP-100 reactor design at the 1988 System Design Review and for launch vehicle and space transport vehicle designs and mission descriptions as defined in the 90-day Space Exploration Initiative (SEI) study. Information from previous aerospace nuclear safety studies was used where appropriate. Safety requirements for the SP-100 space nuclear reactor system were compiled. Mission profiles were defined with emphasis on activities after low earth orbit insertion. Accident scenarios were then qualitatively defined for each mission phase. Safety issues were identified for all mission phases with the aid of simplified event trees. Safety issue resolution approaches of the SP-100 program were compiled. Resolution approaches for those safety issues not covered by the SP-100 program were identified. Additionally, the resolution approaches of the SP-100 program were examined in light of the moon and Mars missions.
Fusion Safety Program annual report, fiscal year 1994
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.
1995-03-01
This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.
FFTF Passive Safety Test Data for Benchmarks for New LMR Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.
Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less
Light-Water-Reactor safety research program. Quarterly progress report, January--March 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The report summarizes the Argonne National Laboratory work performed during January, February, and March 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Hajime; Kukita; Ohnuki, Akira
1997-07-01
The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. McEligot; K. G. Condie; G. E. McCreery
2005-10-01
Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, B.E.
The PIUS reactor utilizes simplified, inherent, passive, or other innovative means to accomplish safety functions. Accordingly, the PIUS reactor is subject to the requirements of 10CFR52.47(b)(2)(i)(A). This regulation requires that the applicant adequately demonstrate the performance of each safety feature, interdependent effects among the safety features, and a sufficient data base on the safety features of the design to assess the analytical tools used for safety analysis. Los Alamos has assessed the quality and completeness of the existing and planned data bases used by Asea Brown Boveri to validate its safety analysis codes and other relevant data bases. Only amore » limited data base of separate effect and integral tests exist at present. This data base is not adequate to fulfill the requirements of 10CFR52.47(b)(2)(i)(A). Asea Brown Boveri has stated that it plans to conduct more separate effect and integral test programs. If appropriately designed and conducted, these test programs have the potential to satisfy most of the data base requirements of 10CFR52.47(b)(2)(i)(A) and remedy most of the deficiencies of the currently existing combined data base. However, the most important physical processes in PIUS are related to reactor shutdown because the PIUS reactor does not contain rodded shutdown and control systems. For safety-related reactor shutdown, PIUS relies on negative reactivity insertions from the moderator temperature coefficient and from boron entering the core from the reactor pool. Asea Brown Boveri has neither developed a direct experimental data base for these important processes nor provided a rationale for indirect testing of these key PIUS processes. This is assessed as a significant shortcoming. In preparing the conclusions of this report, test documentation and results have been reviewed for only one integral test program, the small-scale integral tests conducted in the ATLE facility.« less
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pytel, K.; Mieleszczenko, W.; Lechniak, J.
2010-03-01
The presented paper contains neutronic and thermal-hydraulic (for steady and unsteady states) calculation results prepared to support annex to Safety Analysis Report for MARIA reactor in order to obtain approval for program of testing low-enriched uranium (LEU) lead test fuel assemblies (LTFA) manufactured by CERCA. This includes presentation of the limits and operational constraints to be in effect during the fuel testing investigations. Also, the scope of testing program (which began in August 2009), including additional measurements and monitoring procedures, is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis; Rabiti, Cristian; Martineau, Richard
Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degreemore » of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”« less
NASA Astrophysics Data System (ADS)
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
Transactions of the Twenty-First Water Reactor Safety Information Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteleone, S.
1993-10-01
This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningfulmore » discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.« less
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
National Environmental Policy Act Hazards Assessment for the TREAT Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd D. Christensen; Annette L. Schafer
2013-11-01
This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less
National Environmental Policy Act Hazards Assessment for the TREAT Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Boyd D.; Schafer, Annette L.
2014-02-01
This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less
Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Mitchell T.; Bunt, R.; Corradini, M.
The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affectmore » reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).« less
LWRS ATR Irradiation Testing Readiness Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett
2012-09-01
The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Testmore » Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2014-10-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.
Fault tree applications within the safety program of Idaho Nuclear Corporation
NASA Technical Reports Server (NTRS)
Vesely, W. E.
1971-01-01
Computerized fault tree analyses are used to obtain both qualitative and quantitative information about the safety and reliability of an electrical control system that shuts the reactor down when certain safety criteria are exceeded, in the design of a nuclear plant protection system, and in an investigation of a backup emergency system for reactor shutdown. The fault tree yields the modes by which the system failure or accident will occur, the most critical failure or accident causing areas, detailed failure probabilities, and the response of safety or reliability to design modifications and maintenance schemes.
Conversion Preliminary Safety Analysis Report for the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Baek, J. S.; Hanson, A. L.
The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less
NASA Technical Reports Server (NTRS)
1972-01-01
The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and Environmental Management Programs, or Director, Office of Nuclear Material Safety and... 10 Energy 2 2012-01-01 2012-01-01 false Reports. 140.6 Section 140.6 Energy NUCLEAR REGULATORY...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graslund, C.; Hellstrand, E.
Sweden benefits in many ways from the reactor safety research performed in other countries. Its own activity complements this effort, but a certain fraction is oriented toward safety issues that are intimately related to the special design of the ASEA-ATOM boiling-water reactor. Through the availability of the decommissioned Marviken reactor plant, Sweden has been able to play a leading role in integral containment experiments with international participation. Joint efforts with other countries are now devoted to defining new large-scale experiments to be performed in the unique Marviken facility. The largest portion of the safety research program in Sweden is performedmore » by Studsvik Energiteknik AB, but various universities, consultant firms, and research institutes are also involved. In addition, a substantial amount of work is done by the reactor vendor ASEA-ATOM. The overall annual budget is at present between $7 and $8 million, with three governmental authorities as the main financing bodies.« less
Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop
NASA Technical Reports Server (NTRS)
Clark, John S. (Editor)
1991-01-01
Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.
A probabilistic safety analysis of incidents in nuclear research reactors.
Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi
2012-06-01
This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.
Research reports (Annual reports). State: end of 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1975-05-01
This compilation of research reports is the third one to be published once a year in the frame of a comprehensive reporting on current investigations with regard to reactor safety. There are three types of reports: RS Research Reports, LRA Research Reports, GFK Research Reports. The RS Research Reports and the LRA Research Reports give information on the investigations sponsored by the Bundesminister fuer Forschung und Technologie (BMFT) and partly by the Bundesminister des Innern (BMI [SR 100, At T 85 a]) as individual reactor safety research projects. The GFK Research Reports inform about theoretical and experimental investigations on reactormore » safety conducted by the Gesellschaft fuer Kernforschung mbH (GFK), Karlsruhe. The Laboratorium fuer Reaktorregelung und Anlagensicherung (LRA), Muenchen-Garching, executes nine individual research projects comprehended under number At T 85 a. The work carried out by the GFK is included in the main project 'Nuclear Safety' (PNS). The single reports are attached to the main parts and focal points of the Research Program Reactor Safety. Therefore, at the head of the reports, under 'Project Number', not only the RS-, LRA- or GFK-Number but also the number of the main part of the Research Program which the reported investigation contributes to is noted. (orig.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Leonard, Keith J.; Tan, Lizhen
Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superiormore » degradation resistance in light water reactor (LWR)-relevant environments by 2024.« less
AGR-1 Compact 1-3-1 Post-Irradiation Examination Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul Andrew
The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A seriesmore » of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).« less
AGR-1 Compact 5-3-1 Post-Irradiation Examination Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul; Harp, Jason; Winston, Phil
The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series ofmore » fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.« less
Interface design of VSOP'94 computer code for safety analysis
NASA Astrophysics Data System (ADS)
Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi
2014-09-01
Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Schaefer, R. W.; McKnight, R. D.
Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less
Progress in space nuclear reactor power systems technology development - The SP-100 program
NASA Technical Reports Server (NTRS)
Davis, H. S.
1984-01-01
Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.
Hydrogen and water reactor safety: proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteleone, S.
This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updatedmore » and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.« less
Reactor Operations Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M.M.
1989-01-01
The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less
Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.
This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kyle W.; Gauntt, Randall O.; Cardoni, Jeffrey N.
2013-11-01
Data, a brief description of key boundary conditions, and results of Sandia National Laboratories’ ongoing MELCOR analysis of the Fukushima Unit 2 accident are given for the reactor core isolation cooling (RCIC) system. Important assumptions and related boundary conditions in the current analysis additional to or different than what was assumed/imposed in the work of SAND2012-6173 are identified. This work is for the U.S. Department of Energy’s Nuclear Energy University Programs fiscal year 2014 Reactor Safety Technologies Research and Development Program RC-7: RCIC Performance under Severe Accident Conditions.
NASA Technical Reports Server (NTRS)
Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.
1993-01-01
An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0284; Docket No. 50-247; License No. DPR-26] Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point Unit 2, LLC, Issuance of Director's Decision Notice is hereby given that the Deputy Director, Reactor Safety Programs, Office of Nuclear Reactor...
Nuclear space power safety and facility guidelines study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehlman, W.F.
1995-09-11
This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system ismore » planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. L. Sharp; R. T. McCracken
The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzedmore » in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.« less
SP-100 design, safety, and testing
NASA Technical Reports Server (NTRS)
Cox, Carl. M.; Mahaffey, Michael M.; Smith, Gary L.
1991-01-01
The SP-100 Program is developing a nuclear reactor power system that can enhance and/or enable future civilian and military space missions. The program is directed to develop space reactor technology to provide electrical power in the range of tens to hundreds of kilowatts. The major nuclear assembly test is to be conducted at the Hanford Site near Richland, Washington, and is designed to validate the performance of the 2.4-MWt nuclear and heat transport assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
2017-06-21
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culbert, W.H.
1985-10-01
This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliancemore » with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderhaegen, M.; Laboratory of Waves and Acoustic, Institut Langevin, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris; Paumel, K.
2011-07-01
In support of the French ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor program, which aims to demonstrate the industrial applicability of sodium fast reactors with an increased level of safety demonstration and availability compared to the past French sodium fast reactors, emphasis is placed on reactor instrumentation. It is in this framework that CEA studies continuous core monitoring to detect as early as possible the onset of sodium boiling. Such a detection system is of particular interest due to the rapid progress and the consequences of a Total Instantaneous Blockage (TIB) at a subassembly inlet, where sodium boilingmore » intervenes in an early phase. In this paper, the authors describe all the particularities which intervene during the different boiling stages and explore possibilities for their detection. (authors)« less
NASA Technical Reports Server (NTRS)
1972-01-01
The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, M. L.; Peko, D.; Farmer, M.
In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, M. L.
In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less
INL Experimental Program Roadmap for Thermal Hydraulic Code Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn McCreery; Hugh McIlroy
2007-09-01
Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.« less
FY16 Status Report for the Uranium-Molybdenum Fuel Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.
2016-09-22
The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less
Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.
Virtual environments simulation in research reactor
NASA Astrophysics Data System (ADS)
Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin
2017-01-01
Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.
The WSTIAC Quarterly. Volume 9, Number 3
2010-01-25
program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained
An interagency space nuclear propulsion safety policy for SEI - Issues and discussion
NASA Technical Reports Server (NTRS)
Marshall, A. C.; Sawyer, J. C., Jr.
1991-01-01
An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top level safety requirements and guidelines to address these issues. Safety topics include reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations. In this paper the emphasis is placed on the safety policy and the issues and considerations that are addressed by the NSPWG recommendations.
NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion
NASA Technical Reports Server (NTRS)
Marshall, Albert C.; Sawyer, J. C., Jr.; Bari, Robert A.; Brown, Neil W.; Cullingford, Hatice S.; Hardy, Alva C.; Lee, James H.; Mcculloch, William H.; Niederauer, George F.; Remp, Kerry
1992-01-01
An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top-level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of safety functional requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
Sofu, Tanju
2015-04-01
The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel--coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sofu, Tanju
2015-04-01
The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain cool-able. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less
Leveraging Safety Programs to Improve and Support Security Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, Janice; Snell, Mark K.; Pratt, R.
2015-10-01
There has been a long history of considering Safety, Security, and Safeguards (3S) as three functions of nuclear security design and operations that need to be properly and collectively integrated with operations. This paper specifically considers how safety programmes can be extended directly to benefit security as part of an integrated facility management programme. The discussion will draw on experiences implementing such a programme at Sandia National Laboratories’ Annular Research Reactor Facility. While the paper focuses on nuclear facilities, similar ideas could be used to support security programmes at other types of high-consequence facilities and transportation activities.
Overview of DOE-NE Proliferation and Terrorism Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadasivan, Pratap
2012-08-24
Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mixmore » of innovative methods that support the general practice of risk assessments, and selected applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Cadwallader; C. P. C. Wong; M. Abdou
2014-10-01
A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module andmore » blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.« less
NASA Astrophysics Data System (ADS)
Taranenko, L.; Janouch, F.; Owsiacki, L.
2001-06-01
This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... ensure adequate protection of public health and safety, to promote the common defense and security, and to protect the environment. One way to support this mission is through the implementation of the Reactor Oversight Process (ROP), which is the agency's program to inspect, measure, and assess the safety...
Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program
NASA Astrophysics Data System (ADS)
Deswandri; Subekti, M.; Sunaryo, Geni Rina
2018-02-01
Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.
Dismantlement of the TSF-SNAP Reactor Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peretz, Fred J
2009-01-01
This paper describes the dismantlement of the Tower Shielding Facility (TSF)?Systems for Nuclear Auxiliary Power (SNAP) reactor, a SNAP-10A reactor used to validate radiation source terms and shield performance models at Oak Ridge National Laboratory (ORNL) from 1967 through 1973. After shutdown, it was placed in storage at the Y-12 National Security Complex (Y-12), eventually falling under the auspices of the Highly Enriched Uranium (HEU) Disposition Program. To facilitate downblending of the HEU present in the fuel elements, the TSF-SNAP was moved to ORNL on June 24, 2006. The reactor assembly was removed from its packaging, inspected, and the sodium-potassiummore » (NaK) coolant was drained. A superheated steam process was used to chemically react the residual NaK inside the reactor assembly. The heat exchanger assembly was removed from the top of the reactor vessel, and the criticality safety sleeve was exchanged for a new safety sleeve that allowed for the removal of the vessel lid. A chain-mounted tubing cutter was used to separate the lid from the vessel, and the 36 fuel elements were removed and packaged in four U.S. Department of Transportation 2R/6M containers. The fuel elements were returned to Y-12 on July 13, 2006. The return of the fuel elements and disposal of all other reactor materials accomplished the formal objectives of the dismantlement project. In addition, a project model was established for the handling of a fully fueled liquid-metal?cooled reactor assembly. Current criticality safety codes have been benchmarked against experiments performed by Atomics International in the 1950s and 1960s. Execution of this project provides valuable experience applicable to future projects addressing space and liquid-metal-cooled reactors.« less
Annual Report to Congress of the Atomic Energy Commission for 1965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaborg, Glenn T.
1966-01-31
The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less
PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel
2016-04-01
Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, B.W.; Miller, R.L.
1983-07-01
This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh
2008-07-15
The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configurationmore » with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)« less
Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. D. Bess; J. B. Briggs; A. S. Garcia
2011-09-01
One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less
Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.
This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…
Safety system augmentation at Russian nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.
1996-12-31
This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC powermore » supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Sterbentz, James W.; Snoj, Luka
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
10 CFR 26.4 - FFD program applicability to categories of individuals.
Code of Federal Regulations, 2012 CFR
2012-01-01
....4 Section 26.4 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Administrative... unescorted access to nuclear power reactor protected areas by the licensees in § 26.3(a) and, as applicable... health and safety; (2) Performing health physics or chemistry duties required as a member of the onsite...
10 CFR 26.4 - FFD program applicability to categories of individuals.
Code of Federal Regulations, 2013 CFR
2013-01-01
....4 Section 26.4 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Administrative... unescorted access to nuclear power reactor protected areas by the licensees in § 26.3(a) and, as applicable... health and safety; (2) Performing health physics or chemistry duties required as a member of the onsite...
NASA Technical Reports Server (NTRS)
Goodin, James Ronald
2006-01-01
NASA's Columbia Accident Investigation Board (CAIB) referred 8 times to the NASA "Silent Safety Program." This term, "Silent Safety Program" was not an original observation but first appeared in the Rogers Commission's Investigation of the Challenger Mishap. The CAIB on page 183 of its report in the paragraph titled 'Encouraging Minority Opinion,' stated "The Naval Reactor Program encourages minority opinions and "bad news." Leaders continually emphasize that when no minority opinions are present, the responsibility for a thorough and critical examination falls to management. . . Board interviews revealed that it is difficult for minority and dissenting opinions to percolate up through the agency's hierarchy. . ." The first question and perhaps the only question is - what is a silent safety program? Well, a silent safety program may be the same as the dog that didn't bark in Sherlock Holmes' "Adventure of the Silver Blaze" because system safety should behave as a devil's advocate for the program barking on every occasion to insure a critical review inclusion. This paper evaluates the NASA safety program and provides suggestions to prevent the recurrence of the silent safety program alluded to in the Challenger Mishap Investigation. Specifically targeted in the CAM report, "The checks and balances the safety system was meant to provide were not working." A silent system safety program is not unique to NASA but could emerge in any and every organization. Principles developed by Irving Janis in his book, Groupthink, listed criteria used to evaluate an organization's cultural attributes that allows a silent safety program to evolve. If evidence validates Jams's criteria, then Jams's recommendations for preventing groupthink can also be used to improve a critical evaluation and thus prevent the development of a silent safety program.
Eddy Current Flow Measurements in the FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.
2017-02-02
The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.
2014-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
The in-depth safety assessment (ISA) pilot projects in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C. A.
1998-02-10
Ukraine operates pressurized water reactors of the Soviet-designed type, VVER. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs). After approval of the SARS by the Ukrainian Nuclear Regulatory Authority, the plants will be granted longer-term operating licenses. In September 1995, the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine issued a new contents requirement for the safety analysis reports of VVERs in Ukraine. It contains requirements in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. Themore » DBA requirements are an expanded version of the older SAR requirements. The last two requirements, on PRA and BDBA, are new. The US Department of Energy (USDOE), through the International Nuclear Safety Program (INSP), has initiated an assistance and technology transfer program to Ukraine to assist their nuclear power stations in developing a Western-type technical basis for the new SARS. USDOE sponsored In-Depth Safety Assessments (ISAs) have been initiated at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1. USDOE/INSP have structured the ISA program in such a way as to provide maximum assistance and technology transfer to Ukraine while encouraging and supporting the Ukrainian plants to take the responsibility and initiative and to perform the required assessments.« less
An Overview of INEL Fusion Safety R&D Facilities
NASA Astrophysics Data System (ADS)
McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.
1997-06-01
The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclaire, Nicolas; Le Dauphin, Francois-Xavier; Duhamel, Isabelle
2014-11-04
The MIRTE (Materials in Interacting and Reflecting configurations, all Thicknesses) program was established to answer the needs of criticality safety practitioners in terms of experimental validation of structural materials and to possibly contribute to nuclear data improvement, which ultimately supports reactor safety analysis as well. MIRTE took the shape of a collaboration between the AREVA and ANDRA French industrialists and a noncommercial international funding partner such as the U.S. Department of Energy. The aim of this paper is to present the configurations of the MIRTE 1 and MIRTE 2 programs and to highlight the results of the titanium experiments recentlymore » published in the International Handbook of Evaluated Criticality Safety Benchmark Experiments.« less
NGNP Data Management and Analysis System Modeling Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia D. Gentillon
2009-09-01
Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the thirdmore » NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.« less
Physics of reactor safety. Quarterly report, January--March 1977. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-06-01
This report summarizes work done on reactor safety, Monte Carlo analysis of safety-related critical assembly experiments, and planning of DEMI safety-related critical experiments. Work on reactor core thermal-hydraulics is also included.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies
NASA Astrophysics Data System (ADS)
Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.
2006-01-01
A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.
Thermal-hydraulic interfacing code modules for CANDU reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Gold, M.; Sills, H.
1997-07-01
The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
PIE on Safety-Tested AGR-1 Compact 5-1-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.
Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactormore » (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.« less
Parallel computation of multigroup reactivity coefficient using iterative method
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter
2013-09-01
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
Safety control circuit for a neutronic reactor
Ellsworth, Howard C.
2004-04-27
A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.
Flooding Experiments and Modeling for Improved Reactor Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solmos, M.; Hogan, K. J.; Vierow, K.
2008-09-14
Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge linemore » can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.« less
DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadasivan, Pratap
2012-06-21
This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D programmore » planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodiac, F.; Hudelot, JP.; Lecerf, J.
CABRI is an experimental pulse reactor operated by CEA at the Cadarache research center. Since 1978 the experimental programs have aimed at studying the fuel behavior under Reactivity Initiated Accident (RIA) conditions. Since 2003, it has been refurbished in order to be able to provide RIA and LOCA (Loss Of Coolant Accident) experiments in prototypical PWR conditions (155 bar, 300 deg. C). This project is part of a broader scope including an overall facility refurbishment and a safety review. The global modification is conducted by the CEA project team. It is funded by IRSN, which is conducting the CIP experimentalmore » program, in the framework of the OECD/NEA project CIP. It is financed in the framework of an international collaboration. During the reactor restart, commissioning tests are realized for all equipment, systems and circuits of the reactor. In particular neutronics and power commissioning tests will be performed respectively in 2015 and 2016. This paper focuses on the design of a complete and original dosimetry program that was built in support to the CABRI core characterization and to the power calibration. Each one of the above experimental goals will be fully described, as well as the target uncertainties and the forecasted experimental techniques and data treatment. (authors)« less
Fast-acting nuclear reactor control device
Kotlyar, Oleg M.; West, Phillip B.
1993-01-01
A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.
French Regulatory practice and experience feedback on steam generator tube integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandon, G.
1997-02-01
This paper summarizes the way the French Safety Authority applies regulatory rules and practices to the problem of steam generator tube cracking in French PWR reactors. There are 54 reactors providing 80% of French electrical consumption. The Safety Authority closely monitors the performance of tubes in steam generators, and requires application of a program which deals with problems prior to the actual development of leakage. The actual rules regarding such performance are flexible, responding to the overall performance of operating steam generators. In addition there is an inservice inspection service to examine tubes during shutdown, and to monitor steam generatorsmore » for leakage during operation, with guidelines for when generators must be pulled off line.« less
Safety approach to the selection of design criteria for the CRBRP reactor refueling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisl, C J; Berg, G E; Sharkey, N F
1979-01-01
The selection of safety design criteria for Liquid Metal Fast Breeder Reactor (LMFBR) refueling systems required the extrapolation of regulations and guidelines intended for Light Water Reactor refueling systems and was encumbered by the lack of benefit from a commercially licensed predecessor other than Fermi. The overall approach and underlying logic are described for developing safety design criteria for the reactor refueling system (RRS) of the Clinch River Breeder Reactor Plant (CRBRP). The complete selection process used to establish the criteria is presented, from the definition of safety functions to the finalization of safety design criteria in the appropriate documents.more » The process steps are illustrated by examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bignan, G.; Gonnier, C.; Lyoussi, A.
2015-07-01
Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less
Understanding and managing the effects of battery charger and inverter aging
NASA Astrophysics Data System (ADS)
Gunther, W.; Aggarwal, S.
An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized.
VVER Reactor Safety in Eastern Europe and Former Soviet Union
NASA Astrophysics Data System (ADS)
Papadopoulou, Demetra
2012-02-01
VVER Soviet-designed reactors that operate in Eastern Europe and former Soviet republics have heightened international concern for years due to major safety deficiencies. The governments of countries with VVER reactors have invested millions of dollars toward improving the safety of their nuclear power plants. Most of these reactors will continue to operate for the foreseeable future since they provide urgently-needed electrical power. Given this situation, this paper assesses the radiological consequences of a major nuclear accident in Eastern Europe. The paper also chronicles the efforts launched by the international nuclear community to improve the safety of the reactors and notes the progress made so far through extensive collaborative efforts in Armenia, Bulgaria, the Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine to reduce the risks of nuclear accidents. Western scientific and technical staff collaborated with these countries to improve the safety of their reactor operations by strengthening the ability of the regulator to perform its oversight function, installing safety equipment and technologies, investing time in safety training, and working diligently to establish an enduring safety culture. Still, continued safety improvement efforts are necessary to ensure safe operating practices and achieve timely phase-out of older plants.
Powering the Nuclear Navy (U.S. Department of Energy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Secretary Perry toured the USS Harry Truman with Admiral Caldwell. The Truman is powered by the Department of Energy’s Nuclear Propulsion Program. These ships can run 25 years with a single nuclear-powered reactor. Secretary Perry was briefed on the importance of nuclear propulsion to the carrier’s capabilities. The Naval Nuclear Propulsion Program provides power plants that ensure safety, reliability, and extended deployment capacity.
MODFLOW 2.0: A program for predicting moderator flow patterns
NASA Astrophysics Data System (ADS)
Peterson, P. F.; Paik, I. K.
1991-07-01
Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in the operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
Nuclear Reactor Safety--The APS Submits its Report
ERIC Educational Resources Information Center
Physics Today, 1975
1975-01-01
Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan Stacy; Hollie K. Gilbert
2005-02-01
Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less
An Innovative Hybrid Loop-Pool SFR Design and Safety Analysis Methods: Today and Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hongbin Zhang; Haihua Zhao; Vincent Mousseau
2008-04-01
Investment in commercial sodium cooled fast reactor (SFR) power plants will become possible only if SFRs achieve economic competitiveness as compared to light water reactors and other Generation IV reactors. Toward that end, we have launched efforts to improve the economics and safety of SFRs from the thermal design and safety analyses perspectives at Idaho National Laboratory. From the thermal design perspective, an innovative hybrid loop-pool SFR design has been proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to further improve economics and safety. From the safety analysesmore » perspective, we have initiated an effort to develop a high fidelity reactor system safety code.« less
Methods and strategies for future reactor safety goals
NASA Astrophysics Data System (ADS)
Arndt, Steven Andrew
There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk-informed analyses and discussions. This dissertation examines potential approaches to updating the safety goals that include the establishment of new quantitative safety goal associated with the comparative risk of generating electricity by viable competing technologies and modifications of the goals to account for multi-plant reactor sites, and issues associated with the use of safety goals in both initial licensing and operational decision making. This research develops a new quantitative health objective that uses a comparable benefit risk metric based on the life-cycle risk of the construction, operation and decommissioning of a comparable non-nuclear electric generation facility, as well as the risks associated with mining and transportation. This dissertation also evaluates the effects of using various methods for aggregating site risk as a safety metric, as opposed to using single plant safety goals. Additionally, a number of important assumptions inherent in the current safety goals, including the effect of other potential negative societal effects such as the generation of greenhouse gases (e.g., carbon dioxide) have on the risk of electric power production and their effects on the setting of safety goals, is explored. Finally, the role risk perception should play in establishing safety goals has been explored. To complete this evaluation, a new method to analytically compare alternative technologies of generating electricity was developed, including development of a new way to evaluate risk perception, and a new method was developed for evaluating the risk at multiple units on a single site. To test these modifications to the safety goals a number of possible reactor designs and configurations were evaluated using these new proposed safety goals to determine the goals' usefulness and utility. The results of the analysis showed that the modifications provide measures that more closely evaluate the potential risk to the public from the operation of nuclear power plants than the current safety goals, while still providing a straight-forward process for assessment of reactor design and operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongbin; Zhao, Haihua; Gleicher, Frederick Nathan
RELAP-7 is a nuclear systems safety analysis code being developed at the Idaho National Laboratory, and is the next generation tool in the RELAP reactor safety/systems analysis application series. RELAP-7 development began in 2011 to support the Risk Informed Safety Margins Characterization (RISMC) Pathway of the Light Water Reactor Sustainability (LWRS) program. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical methods, and physical models in order to provide capabilities needed for the RISMC methodology and to support nuclear power safety analysis. The code is beingmore » developed based on Idaho National Laboratory’s modern scientific software development framework – MOOSE (the Multi-Physics Object-Oriented Simulation Environment). The initial development goal of the RELAP-7 approach focused primarily on the development of an implicit algorithm capable of strong (nonlinear) coupling of the dependent hydrodynamic variables contained in the 1-D/2-D flow models with the various 0-D system reactor components that compose various boiling water reactor (BWR) and pressurized water reactor nuclear power plants (NPPs). During Fiscal Year (FY) 2015, the RELAP-7 code has been further improved with expanded capability to support boiling water reactor (BWR) and pressurized water reactor NPPs analysis. The accumulator model has been developed. The code has also been coupled with other MOOSE-based applications such as neutronics code RattleSnake and fuel performance code BISON to perform multiphysics analysis. A major design requirement for the implicit algorithm in RELAP-7 is that it is capable of second-order discretization accuracy in both space and time, which eliminates the traditional first-order approximation errors. The second-order temporal is achieved by a second-order backward temporal difference, and the one-dimensional second-order accurate spatial discretization is achieved with the Galerkin approximation of Lagrange finite elements. During FY-2015, we have done numerical verification work to verify that the RELAP-7 code indeed achieves 2nd-order accuracy in both time and space for single phase models at the system level.« less
ERIC Educational Resources Information Center
Primack, Joel
1975-01-01
The reactor safety controversy is reviewed in light of the United States Atomic Energy Commission's Reactor Safety Study and the Report to the American Physical Society by the Study Group on Light Water Reactor Safety. Areas of agreement and disagreement are identified and implications for national policy are explored. (BT)
Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Dionne, B.; Sikik, E.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less
SLSF in-reactor local fault safety experiment P4. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D. H.; Holland, J. W.; Braid, T. H.
The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less
Vachon, Lawrence J.
1980-03-11
This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.
Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Reich, W.J.
1991-09-01
The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less
Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview
NASA Astrophysics Data System (ADS)
Doshi, Bharat; Reddy, D. Chenna
2017-04-01
Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.
Status and progress of the RERTR program in the year 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.; Nuclear Engineering Division
2003-01-01
One of the most important events affecting the RERTR program during the past year was the decision by the U.S. Department of Energy to request the U.S. Congress to significantly increase RERTR program funding. This decision was prompted, at least in part, by the terrible events of September 11, 2001, and by a high-level U.S./Russian Joint Expert Group recommendation to immediately accelerate RERTR program activities in both countries, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors. The U.S. Congress is expectedmore » to approve this request very soon, and the RERTR program has prepared itself well for the intense activities that the 'Accelerated RERTR Program' will require. Promising results have been obtained in the development of a fabrication process for monolithic LEU U-Mo fuel. Most existing and future research reactors could be converted to LEU with this fuel, which has a uranium density between 15.4 and 16.4 g/cm{sup 3} and yielded promising irradiation results in 2002. The most promising method hinges on producing the monolithic meat by cold-rolling a thin ingot produced by casting. The aluminum clad and the meat are bonded by friction stir welding and the cladding surface is finished by a light cold roll. This method can be applied to the production of miniplates and appears to be extendable to the production of full-size plates, possibly with intermediate anneals. Other methods planned for investigation include high temperature bonding and hot isostatic pressing. The progress achieved within the Russian RERTR program, both for the traditional tube-type elements and for the new 'universal' LEU U-Mo pin-type elements, promises to enable soon the conversion of many Russian-designed research and test reactors. Irradiation testing of both fuel types with LEU U-Mo dispersion fuels has begun. Detailed studies are in progress to define the feasibility of converting each Russian-designed research and test reactor to either fuel type. The plan for the Accelerated RERTR Program is structured to achieve LEU conversion of all HEU research reactors supplied by the United States and Russia during the next nine years. This effort will address, in addition to the fuel development and qualification, the analyses and performance/economic/safety evaluations needed to implement the conversions. In combination with this over-arching goal, the RERTR program plans to achieve at the earliest possible date qualification of LEU U-Mo dispersion fuels with uranium densities of 6 g/cm{sup 3} and 7 g/cm{sup 3}. Reactors currently using or planning to use LEU silicide fuel will rely on this fuel after termination of the FRRSNFA program, because it is acceptable to COGEMA for reprocessing. Qualification of LEU U-Mo dispersion fuels has suffered some unavoidable delays but, to accelerate it as much as possible, the RERTR program, the French CEA, and the Australian ANSTO have agreed to jointly pursue a two-element qualification test of LEU U-Mo dispersion fuel with uranium density of 7.0 g/cm{sup 3} to be performed in the Osiris reactor during 2004. The RERTR program also intends to eliminate all obstacles to the utilization of LEU in targets for isotope production, so that this important function can be performed without the need for weapons-grade materials. All of us, working together as we have for many years, can ensure that all these goals will be achieved. By promoting the efficiency and safety of research reactors while eliminating the traffic in weapons-grade uranium, we can prevent the possibility that some of this material might fall in the wrong hands. Few causes can be more deserving of our joint efforts.« less
Improved Nuclear Reactor and Shield Mass Model for Space Applications
NASA Technical Reports Server (NTRS)
Robb, Kevin
2004-01-01
New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faidy, C.
Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.
Development of a Software Safety Process and a Case Study of Its Use
NASA Technical Reports Server (NTRS)
Knight, J. C.
1996-01-01
Research in the year covered by this reporting period has been primarily directed toward: continued development of mock-ups of computer screens for operator of a digital reactor control system; development of a reactor simulation to permit testing of various elements of the control system; formal specification of user interfaces; fault-tree analysis including software; evaluation of formal verification techniques; and continued development of a software documentation system. Technical results relating to this grant and the remainder of the principal investigator's research program are contained in various reports and papers.
Investigation of materials for fusion power reactors
NASA Astrophysics Data System (ADS)
Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.
2014-06-01
The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.
Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks
NASA Technical Reports Server (NTRS)
Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris
2015-01-01
Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.
Analysis of JKT01 Neutron Flux Detector Measurements In RSG-GAS Reactor Using LabVIEW
NASA Astrophysics Data System (ADS)
Rokhmadi; Nur Rachman, Agus; Sujarwono; Taryo, Taswanda; Sunaryo, Geni Rina
2018-02-01
The RSG-GAS Reactor, one of the Indonesia research reactors and located in Serpong, is owned by the National Nuclear Energy Agency (BATAN). The RSG-GAS reactor has operated since 1987 and some instrumentation and control systems are considered to be degraded and ageing. It is therefore, necessary to evaluate the safety of all instrumentation and controls and one of the component systems to be evaluated is the performance of JKT01 neutron flux detector. Neutron Flux Detector JKT01 basically detects neutron fluxes in the reactor core and converts it into electrical signals. The electrical signal is then forwarded to the amplifier (Amplifier) to become the input of the reactor protection system. One output of it is transferred to the Main Control Room (RKU) showing on the analog meter as an indicator used by the reactor operator. To simulate all of this matter, a program to simulate the output of the JKT01 Neutron Flux Detector using LabVIEW was developed. The simulated data is estimated using a lot of equations also formulated in LabVIEW. The calculation results are also displayed on the interface using LabVIEW available in the PC. By using this simulation program, it is successful to perform anomaly detection experiments on the JKT01 detector of RSG-GAS Reactor. The simulation results showed that the anomaly JKT01 neutron flux using electrical-current-base are respectively, 1.5×,1.7× and 2.0×.
Generation III reactors safety requirements and the design solutions
NASA Astrophysics Data System (ADS)
Felten, P.
2009-03-01
Nuclear energy's public acceptance, and hence its development, depends on its safety. As a reactor designer, we will first briefly remind the basic safety principles of nuclear reactors' design. We will then show how the industry, and in particular Areva with its EPR, made design evolution in the wake of the Three Miles Island accident in 1979. In particular, for this new generation of reactors, severe accidents are taken into account beyond the standard design basis accidents. Today, Areva's EPR meets all so-called "generation III" safety requirements and was licensed by several nuclear safety authorities in the world. Many innovative solutions are integrated in the EPR, some of which will be introduced here.
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
Safety features of subcritical fluid fueled systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, C.R.
1995-10-01
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitativemore » in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.« less
Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A
2010-01-01
We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, R.W.; Post, D.W.; Lovell, R.T.
1981-04-01
Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less
Safety Issues at the Defense Production Reactors. A Report to the U.S. Department of Energy.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.
This report provides an assessment of safety management, safety review, and safety methodology employed by the Department of Energy (DOE) and private contractors. Chapter 1, "The DOE Safety Framework," examines safety objectives for production reactors and processes to implement the objectives. Chapter 2, "Technical Issues,"…
Safety Testing of AGR-2 UCO Compacts 6-4-2 and 2-3-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Morris, Robert N.; Baldwin, Charles A.
2017-08-01
Post-irradiation examination (PIE) and elevated-temperature safety testing are being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). Details on this irradiation experiment have been previously reported [Collin 2014]. The AGR-2 PIE effort builds upon the understanding acquired throughout the AGR-1 PIE campaign [Demkowicz et al. 2015] and is establishing a database for the different AGR-2 fuel designs.
Safety and environmental constraints on space applications of fusion energy
NASA Technical Reports Server (NTRS)
Roth, J. Reece
1990-01-01
Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.
Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Bergeron, A.; Dionne, B.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less
Top shield temperatures, C and K Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agar, J.D.
1964-12-28
A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pind, C.
The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives formore » heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories.« less
Double-clad nuclear fuel safety rod
McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan
1984-01-01
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
Double-clad nuclear-fuel safety rod
McCarthy, W.H.; Atcheson, D.B.
1981-12-30
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.K.; Mohr, D.; Planchon, H.P.
This article discusses a series of successful loss-of-flow-without-scram tests conducted in Experimental Breeder Reactor-II (EBR-II), a metal-fueled, sodium-cooled fast reactor. These May 1985 tests demonstrated the capability of the EBR to reduce reactor power passively during a loss of flow and to maintain reactor temperatures within bounds without any reliance on an active safety system. The tests were run from reduced power to ensure that temperatures could be maintained well below the fuel-clad eutectic temperature. Good agreement was found between selected test data and pretest predictions made with the EBR-II system analysis code NATDEMO and the hot channel analysis codemore » HOTCHAN. The article also discusses safety assessments of the tests as well as modifications required on the EBR-II reactor safety system for conducting required on the EBR-II reactor safety system for the conducting the tests.« less
Current status of nuclear engineering education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palladino, N.J.
1975-09-01
The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...
Nuclear reactor fuel containment safety structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewell, M.P.
A nuclear reactor fuel containment safety structure is disclosed and is shown to include an atomic reactor fuel shield with a fuel containment chamber and exhaust passage means, and a deactivating containment base attached beneath the fuel reactor shield and having exhaust passages, manifold, and fluxing and control material and vessels. 1 claim, 8 figures.
Monitoring circuit for reactor safety systems
Keefe, Donald J.
1976-01-01
The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.
Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A.
1997-02-01
One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery,{close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices ofmore » Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.« less
US Efforts in Support of Examinations at Fukushima Daiichi – 2016 Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amway, P.; Andrews, N.; Bixby, Willis
Although it is clear that the accident signatures from each unit at the Fukushima Daiichi Nuclear Power Station (NPS) [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limitedmore » full scale prototypic data. Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company Holdings (TEPCO) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This document reports recent results from the US Forensics Effort to use information obtained by TEPCO to enhance the safety of existing and future nuclear power plant designs. This Forensics Effort, which is sponsored by the Reactor Safety Technologies Pathway of the Department of Energy Office of Nuclear Energy Light Water Reactor (LWR) Sustainability Program, consists of a group of US experts in LWR safety and plant operations that have identified examination needs and are evaluating TEPCO information from Daiichi that address these needs. Examples presented in this report demonstrate that significant safety insights are being obtained in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights are being used to update guidance for severe accident prevention, mitigation, and emergency planning. Furthermore, reduced uncertainties in modeling the events at Daiichi will improve the realism of reactor safety evaluations and inform future D&D activities by improving the capability for characterizing potential hazards to workers involved with cleanup activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponciroli, Roberto; Passerini, Stefano; Vilim, Richard B.
Advanced reactors are often claimed to be passively safe against unprotected upset events. In common practice, these events are not considered in the context of the plant control system, i.e., the reactor is subjected to classes of unprotected upset events while the normally programmed response of the control system is assumed not to be present. However, this approach constitutes an oversimplification since, depending on the upset involving the control system, an actuator does not necessarily go in the same direction as needed for safety. In this work, dynamic simulations are performed to assess the degree to which the inherent self-regulatingmore » plant response is safe from active control system override. The simulations are meant to characterize the resilience of the plant to unprotected initiators. The initiators were represented and modeled as an actuator going to a hard limit. Consideration of failure is further limited to individual controllers as there is no cross-connect of signals between these controllers. The potential for passive safety override by the control system is then relegated to the single-input single-output controllers. Here, the results show that when the plant control system is designed by taking into account and quantifying the impact of the plant control system on accidental scenarios there is very limited opportunity for the preprogrammed response of the control system to override passive safety protection in the event of an unprotected initiator.« less
Ponciroli, Roberto; Passerini, Stefano; Vilim, Richard B.
2017-06-21
Advanced reactors are often claimed to be passively safe against unprotected upset events. In common practice, these events are not considered in the context of the plant control system, i.e., the reactor is subjected to classes of unprotected upset events while the normally programmed response of the control system is assumed not to be present. However, this approach constitutes an oversimplification since, depending on the upset involving the control system, an actuator does not necessarily go in the same direction as needed for safety. In this work, dynamic simulations are performed to assess the degree to which the inherent self-regulatingmore » plant response is safe from active control system override. The simulations are meant to characterize the resilience of the plant to unprotected initiators. The initiators were represented and modeled as an actuator going to a hard limit. Consideration of failure is further limited to individual controllers as there is no cross-connect of signals between these controllers. The potential for passive safety override by the control system is then relegated to the single-input single-output controllers. Here, the results show that when the plant control system is designed by taking into account and quantifying the impact of the plant control system on accidental scenarios there is very limited opportunity for the preprogrammed response of the control system to override passive safety protection in the event of an unprotected initiator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; Diego Mandelli; Ronald L. Boring
2015-07-01
The United States Department of Energy is sponsoring the Light Water Reactor Sustainability program, which has the overall objective of supporting the near-term and the extended operation of commercial nuclear power plants. One key research and development (R&D) area in this program is the Risk-Informed Safety Margin Characterization pathway, which combines probabilistic risk simulation with thermohydraulic simulation codes to define and manage safety margins. The R&D efforts to date, however, have not included robust simulations of human operators, and how the reliability of human performance or lack thereof (i.e., human errors) can affect risk-margins and plant performance. This paper describesmore » current and planned research efforts to address the absence of robust human reliability simulations and thereby increase the fidelity of simulated accident scenarios.« less
RELAP-7 Software Verification and Validation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling
This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less
Fulfilling the Roosevelts’ Vision for American Naval Power (1923-2005)
2006-06-30
nuclear pressure vessels are based on the results of that program.81 In...of a Nuclear Submarine 14 Identification Friend-or-Foe Systems 15 First American Airborne Radar 17 ThE COlD WAR 18 Monopulse Radar...Film-Forming Foam 38 Nuclear Reactor Safety iii 39 Linear Predictive Coder 40 Submarine Habitability 41
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar; Allen, Todd; Anderson, Mark
The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR,more » the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Yuan, Haomin; Kraus, A.
The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less
Safety and control of accelerator-driven subcritical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rief, H.; Takahashi, H.
1995-10-01
To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut downmore » the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.« less
Assessment of nuclear reactor concepts for low power space applications
NASA Technical Reports Server (NTRS)
Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.
1988-01-01
The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.
Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, L. B.; Kolb, J. O.
1970-01-01
Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.
A new safety channel based on ¹⁷N detection in research reactors.
Seyfi, Somayye; Gharib, Morteza
2015-10-01
Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heavy-Section Steel Irradiation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosseel, T.M.
2000-04-01
Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichman, K.; Tsao, J.; Mayfield, M.
The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less
Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
Hunsbedt, Anstein; Boardman, Charles E.
1993-01-01
A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.
Light-water-reactor safety research program. Quarterly progress report, July--September 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
Progress is summarized in the following research and development areas: (1) loss-of-coolant accident research; heat transfer and fluid dynamics; (2) transient fuel response and fission-product release; and (3) mechanical properties of Zircaloy containing oxygen. Also included is an appendix on Kinetics of Fission Gas and Volatile Fission-product Behavior under Transient Conditions in LWR Fuel.
NASA Astrophysics Data System (ADS)
Kozier, K. S.; Rosinger, H. E.
The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Mitchell T.
Although the accident signatures from each unit at the Fukushima Daiichi Nuclear Power Station (NPS) [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limited full scale prototypic data.more » Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company Holdings, Incorporated (TEPCO Holdings) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This document, which has been updated to include FY2017 information, summarizes results from U.S. efforts to use information obtained by TEPCO Holdings to enhance the safety of existing and future nuclear power plant designs. This effort, which was initiated in 2014 by the Reactor Safety Technologies Pathway of the Department of Energy Office of Nuclear Energy Light Water Reactor (LWR) Sustainability Program, consists of a group of U.S. experts in LWR safety and plant operations that have identified examination needs and are evaluating TEPCO Holdings information from Daiichi that address these needs. Each year, annual reports include examples demonstrating that significant safety insights are being obtained in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights are being used to update guidance for severe accident prevention, mitigation, and emergency planning. Furthermore, reduced uncertainties in modeling the events at Daiichi will improve the realism of reactor safety evaluations and inform future D&D activities by improving the capability for characterizing potential hazards to workers involved with cleanup activities. Highlights in this FY2017 report include new insights with respect to the forces required to produce the observed Daiichi Unit 1 (1F1) shield plug endstate, the observed leakage from 1F1 components, and the amount of combustible gas generation required to produce the observed explosions in Daiichi Units 3 and 4 (1F3 and 1F4). This report contains an appendix with a list of examination needs that was updated after U.S. experts reviewed recently obtained information from examinations at Daiichi. Additional details for higher priority, near-term, examination activities are also provided. This report also includes an appendix with a description of an updated website that has been reformatted to better assist U.S. experts by providing information in an archived retrievable location, as well as an appendix summarizing U.S. Forensics activities to host the TMI-2 Knowledge Transfer and Relevance to Fukushima Meeting that was held in Idaho Falls, ID, on October 10-14, 2016.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, Gerhard; Bostelmann, F.
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less
Safety philosophy of gas turbine high temperature reactor (GTHTR300)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa
2002-07-01
Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Majormore » features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)« less
Fuels irradiation testing for the SP-100 program
NASA Technical Reports Server (NTRS)
Makenas, Bruce J.; Hales, Janell W.; Ward, Alva L.
1991-01-01
An SP-100 fuel pin irradiation testing program is well on the way to providing data for performance correlations and demonstrating the lifetime and safety of the fuel system of the compact lithium-cooled reactor. Key SP-100 fuel performance issues addressed are the need for low fuel swelling and low fission gas release to minimize cladding strain, and the need for barrier integrity to prevent fuel/cladding chemical interaction. This paper provides a description of the irradiation test program that addresses these key issues and summarizes recent results of posttest examinations including data obtained at 6 atom percent goal burnup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Hu, Rui; Lisowski, Darius
2016-04-17
The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at themore » NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.« less
Commercial grade item (CGI) dedication of MDR relays for nuclear safety related applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, R.K.; Julka, A.; Modi, G.
1994-08-01
MDR relays manufactured by Potter and Brumfield (P and B) have been used in various safety related applications in commercial nuclear power plants. These include emergency safety features (ESF) actuation systems, emergency core cooling systems (ECCS) actuation, and reactor protection systems. The MDR relays manufactured prior to May 1990 showed signs of generic failure due to corrosion and outgassing of coil varnish. P and B has made design changes to correct these problems in relays manufactured after May 1990. However, P and B does not manufacture the relays under any 10CFR50 Appendix B quality assurance (QA) program. They manufacture themore » relays under their commercial QA program and supply these as commercial grade items. This necessitates CGI Dedication of these relays for use in nuclear-safety-related applications. This paper presents a CGI dedication program that has been used to dedicate the MDR relays manufactured after May 1990. The program is in compliance with current Nuclear Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) guidelines and applicable industry standards; it specifies the critical characteristics of the relays, provides the tests and analysis required to verify the critical characteristics, the acceptance criteria for the test results, performs source verification to qualify P and B for its control of the critical characteristics, and provides documentation. The program provides reasonable assurance that the new MDR relays will perform their intended safety functions.« less
Risk Informed Margins Management as part of Risk Informed Safety Margin Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith
2014-06-01
The ability to better characterize and quantify safety margin is important to improved decision making about Light Water Reactor (LWR) design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plantmore » safety and performance will become known. To support decision making related to economics, readability, and safety, the Risk Informed Safety Margin Characterization (RISMC) Pathway provides methods and tools that enable mitigation options known as risk informed margins management (RIMM) strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernander, O.; Haga, I.; Segerberg, F.
BS>From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). Although the present status of the boiling water reactor is one of proven technology, design refinements and technical innovations are still being made to further improve reliability, economy and safety. The new standard ASEA- ATOM BWR features a number of such refinements and design improvements involving main circulation punips, containment design, refuelling system and off-gas treatment plant. In some respects the nuclear and hydraulic design of the ASEA- ATOM BWR differs from that adopted by other BWR manufacturers. Since the Oskarshamn I plant was the first nuclear power station havingmore » these features an extensive physics and hydraulics test program was made during the reactor start- up. The results of these tests have fully confirmed the ability of calculation methods to predict the behavior of the reactor. (auth)« less
NASA Technical Reports Server (NTRS)
Knight, John C.
1995-01-01
We are engaged in a research program in safety-critical computing that is based on two case studies. We use these case studies to provide application-specific details of the various research issues, and as targets for evaluation of research ideas. The first case study is the Magnetic Stereotaxis System (MSS), an investigational device for performing human neurosurgery being developed in a joint effort between the Department of Physics at the University of Virginia and the Department of Neurosurgery at the University of Iowa. The system operates by manipulating a small permanent magnet (known as a 'seed') within the brain using an externally applied magnetic field. By varying the magnitude and gradient of the external magnetic field, the seed can be moved along a non-linear path and positioned at a site requiring therapy, e.g., a tumor. The magnetic field required for movement through brain tissue is extremely high, and is generated by a set of six superconducting magnets located in a housing surrounding the patient's head. The system uses two X-ray cameras positioned at right angles to detect in real time the locations of the seed and of X-ray opaque markers affixed to the patient's skull. the X-ray images are used to locate the objects of interest in a canonical frame of reference. the second case study is the University of Virginia Research Nuclear Reactor (UVAR). It is a 2 MW thermal, concrete-walled pool reactor. The system operates using 20 to 25 plate-type fuel assemblies placed on a rectangular grid plate. There are three scramable safety rods, and one non-scramable regulating rod that can be put in automatic mode. It was originally constructed in 1959 as a 1 MW system, and it was upgraded to 2 MW in 1973. Though only a research reactor rather than a power reactor, the issues raised are significant and can be related to the problems faced by full-scale reactor systems.
NASA Astrophysics Data System (ADS)
Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders
2009-08-01
The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.
NASA Astrophysics Data System (ADS)
Gong, Xing; Li, Rui; Sun, Maozhou; Ren, Qisen; Liu, Tong; Short, Michael P.
2016-12-01
Accelerator-driven systems (ADS) are a promising approach for nuclear waste disposal. Nevertheless, the principal candidate materials proposed for ADS construction, such as the ferritic/martensitic steel, T91, and austenitic stainless steels, 316L and 15-15Ti, are not fully compatible with the liquid lead-bismuth eutectic (LBE) coolant. Under some operating conditions, liquid metal embrittlement (LME) or liquid metal corrosion (LMC) may occur in these steels when exposed to LBE. These environmentally-induced material degradation effects pose a threat to ADS reactor safety, as failure of the materials could initiate a severe accident, in which fission products are released into the coolant. Meanwhile, parallel efforts to develop accident-tolerant fuels (ATF) in light water reactors (LWRs) could provide both general materials design philosophies and specific material solutions to the ADS program. In this paper, the potential contributions of the ATF materials development program to the ADS materials qualification program are evaluated and discussed in terms of service conditions and materials performance requirements. Several specific areas where coordinated development may benefit both programs, including composite materials and selected coatings, are discussed.
Management of the aging of critical safety-related concrete structures in light-water reactor plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, D.J.; Oland, C.B.; Arndt, E.G.
1990-01-01
The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniquesmore » for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki
Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.
IN-PILE CORROSION TEST LOOPS FOR AQUEOUS HOMOGENEOUS REACTOR SOLUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, H.C.; Jenks, G.H.; Bohlmann, E.G.
1960-12-21
An in-pile corrosion test loop is described which is used to study the effect of reactor radiation on the corrosion of materials of construction and the chemical stability of fuel solutions of interest to the Aqueous Homogeneous Reactor Program at ORNL. Aqueous solutions of uranyl sulfate are circulated in the loop by means of a 5-gpm canned-rotor pump, and the pump loop is designed for operation at temperatures to 300 ts C and pressures to 2000 psia while exposed to reactor radiation in beam-hole facilities of the LITR and ORR. Operation of the first loop in-pile was begun in Octobermore » 1954, and since that time 17 other in-pile loop experiments were completed. Design criteria of the pump loop and its associated auxiliary equipment and instrumentation are described. In-pile operating procedures, safety features, and operating experience are presented. A cost summary of the design, fabrication, and installation of the loop and experimental facillties is also included. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr; Park, Sangrok; Kim, Byong Sup
Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent statusmore » of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Coobs, J.H.; Lotts, A.L.
1976-04-01
Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soubies, B.; Henry, J.Y.; Le Meur, M.
1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de Francemore » (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.« less
Overview of the Westinghouse Small Modular Reactor building layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of themore » plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)« less
Current and prospective safety issues at the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.R.
The Brookhaven high-flux beam reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated, and reflected by heavy water and uses materials test reactor and engineering test reactor type of fuel elements containing enriched uranium. The reactor power when operation began in 1965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time, safety questions have been raised that resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper discusses the principalmore » safety issues and plans for their resolution and return to 60-MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its effect on the life of the facility are briefly discussed.« less
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
Methodology, status, and plans for development and assessment of the RELAP5 code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, G.W.; Riemke, R.A.
1997-07-01
RELAP/MOD3 is a computer code used for the simulation of transients and accidents in light-water nuclear power plants. The objective of the program to develop and maintain RELAP5 was and is to provide the U.S. Nuclear Regulatory Commission with an independent tool for assessing reactor safety. This paper describes code requirements, models, solution scheme, language and structure, user interface validation, and documentation. The paper also describes the current and near term development program and provides an assessment of the code`s strengths and limitations.
Review of Nuclear Thermal Propulsion Ground Test Options
NASA Technical Reports Server (NTRS)
Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen
2015-01-01
High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.
Reliability and safety of the electrical power supply complex of the Hanford production reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, F.D.
Safety has been and must continue to be the inviolable modulus by which the operation of a nuclear reactor must be judged. A malfunction in any reactor may well result in a release of fission products which may dissipate over a wide geographical area. Such dissipation may place the health, happiness and even the lives of the people in the region in serious jeopardy. As a result, the property damage and liability cost may reach astronomical values in the order of magnitude of billions of dollars. Reliability of the electrical network is an indispensable factor in attaining a high ordermore » of safety assurance. Progress in the peaceful use of atomic energy may take the form of electrical power generation using the nuclear reactor as a source of thermal energy. In view of these factors it seems appropriate and profitable that a critical engineering study be made of the safety and reliability of the Hanford reactors without regard to cost economics. This individual and independent technical engineering analysis was made without regard to Hanford traditional engineering and administration assignments. The main objective has been to focus attention on areas which seem to merit further detailed study on conditions which seem to need adjustment but most of all on those changes which will improve reactor safety. This report is the result of such a study.« less
New reactor technology: safety improvements in nuclear power systems.
Corradini, M L
2007-11-01
Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.
The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searchedmore » and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.« less
Strong, G.H.; Faught, M.L.
1963-12-24
A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)
On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.
2017-01-01
It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.
Study Gives Good Odds on Nuclear Reactor Safety
ERIC Educational Resources Information Center
Russell, Cristine
1974-01-01
Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A.C.; Sanders, C.; Tennet, M.G.
""Jason"" reactors are described in which the power level is increased from the original 10 kw to 100 kw. The problems encountered in making this ten- fold increase in power arise not only in connection with the removal of the extra heat produced but also with a number of effects which, although negligible at 10 kw, become significant at 100 kw. These effects are examined and the steps taken, where necessary, to prevent them from becoming troublesome are described. Attention is paid to the safety of the system. A program of work carried out on the Langley ""Jason,"" which throwsmore » considerable light on the behavior of a 100 kw reactor under severe fault conditions, is described here for the first time. (auth)« less
The Euratom Seventh Framework Programme FP7 (2007-2011)
NASA Astrophysics Data System (ADS)
Garbil, R.
2010-10-01
The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a) Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b) Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities), life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c) Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d) Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e) Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.
Verification and Validation Strategy for LWRS Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl M. Stoots; Richard R. Schultz; Hans D. Gougar
2012-09-01
One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verifiedmore » and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.« less
Heavy-section steel technology and irradiation programs-retrospective and prospective views
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanstad, Randy K; Bass, Bennett Richard; Rosseel, Thomas M
In 1965, the Atomic Energy Commission (AEC), at the advice of the Advisory Committee on Reactor Safeguards (ACRS), initiated the process that resulted in the establishment of the Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL). Dr. Spencer H. Bush of Battelle Northwest Laboratory, the man being honored by this symposium, representing the ACRS, was one of the Staff Advisors for the program and helped to guide its technical direction. In 1989, the Heavy-Section Steel Irradiation (HSSI) Program, formerly the HSST task on irradiation effects, was formed as a separate program, and this year the HSST/HSSImore » Programs, sponsored by the U.S. Nuclear Regulatory Commission (USNRC), celebrate 40 years of continuous research oriented toward the safety of light-water nuclear reactor pressure vessels. This paper presents a summary of results from those programs with a view to future activities. The HSST Program was established in 1967 and initially included extensive investigations of heavy-section low-alloy steel plates, forgings, and welds, including metallurgical studies, mechanical properties, fracture toughness (quasi-static and dynamic), fatigue crack-growth, and crack arrest toughness. Also included were irradiation effects studies, thermal shock analyses, testing of thick-section tensile and fracture specimens, and non-destructive testing. In the subsequent decades, the HSST Program conducted extensive large-scale experiments with intermediate-size vessels (with varying size flaws) pressurized to failure, similar experiments under conditions of thermal shock and even pressurized thermal shock (PTS), wide-plate crack arrest tests, and biaxial tests with cruciform-shaped specimens. Extensive analytical and numerical studies accompanied these experiments, including the development of computer codes such as the recent Fracture Analysis of Vessels Oak Ridge (FAVOR) code currently being used for PTS evaluations. In the absence of radiation damage to the RPV, fracture of the vessel is improbable. However, exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The HSSI Program has conducted a series of experiments to assess the effects of neutron irradiation on RPV material behavior, especially fracture toughness. These studies have included RPV plates and welds, varying chemical compositions, and fracture toughness specimens up to 4 in. thickness. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. Results from the HSST and HSSI Program are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety.« less
Safety evaluation report on Tennessee Valley Authority: Browns Ferry nuclear performance plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-10-01
This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory commission staff. The Browns Ferry Nuclear Plant consists of three boiling-water reactors at a site in Limestone County, Alabama. The plan addresses the plant-specific concerns requiring resolution before the startup of Unit 2. The staff will inspect implementation of those TVA programs that address these concerns. Where systems are common to Units 1 and 2 or to Units 2more » and 3, the staff safety evaluations of those systems are included herein. 85 refs.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertyurek, Ugur; Gauld, Ian C.
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
Mertyurek, Ugur; Gauld, Ian C.
2015-12-24
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krass, A.W.
2005-12-19
This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. Themore » material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.« less
LBE water interaction in sub-critical reactors: First experimental and modelling results
NASA Astrophysics Data System (ADS)
Ciampichetti, A.; Agostini, P.; Benamati, G.; Bandini, G.; Pellini, D.; Forgione, N.; Oriolo, F.; Ambrosini, W.
2008-06-01
This paper concerns the study of the phenomena involved in the interaction between LBE and pressurised water which could occur in some hypothetical accidents in accelerator driven system type reactors. The LIFUS 5 facility was designed and built at ENEA-Brasimone to reproduce this kind of interaction in a wide range of conditions. The first test of the experimental program was carried out injecting water at 70 bar and 235 °C in a reaction vessel containing LBE at 1 bar and 350 °C. A pressurisation up to 80 bar was observed in the test section during the considered transient. The SIMMER III code was used to simulate the performed test. The calculated data agree in a satisfactory way with the experimental results giving confidence in the possibility to use this code for safety analyses of heavy liquid metal cooled reactors.
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, M.S.; Belford, M.; Cohen, A.
This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, J. D.; Briggs, J. B.; Gulliford, J.
Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energymore » Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning is the critical experiments with fast reactor fuel rods in water, interesting in terms of justification of nuclear safety during transportation and storage of fresh and spent fuel. These reports provide a detailed review of the experiment, designate the area of their application and include results of calculations on modern systems of constants in comparison with the estimated experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellesen, C.; Grape, S.; Haakanson, A.
2013-07-01
Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)
Babcock and Wilcox assessment of the Pratt and Whitney XNR2000
NASA Technical Reports Server (NTRS)
Westerman, Kurt O.; Scoles, Stephen W.; Jensen, R. R.; Rodes, J. R.; Ales, M. W.
1993-01-01
Babcock & Wilcox performed four subtasks related to the assessment of the Pratt & Whitney XNR2000 nuclear reactor as follows: (1) cermet fuel element fabricability assessment; (2) mechanical design review of the reactor system; (3) neutronic analysis review; and (4) safety assessment. The results of the mechanical and physics reviews have been integrated into the reactor design. The results of the fuel and safety assessments are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunbar, K.A.
1972-01-10
A safety survey covering the disciplines of Reactor Safety, Nuclear Criticality Safety, Health Protection and Industrial Safety and Fire Protection was conducted at the ANL-West EBR-II FEF Complex during the period January 10-18, 1972. In addition, the entire ANL-West site was surveyed for Health Protection and Industrial Safety and Fire Protection. The survey was conducted by members of the AEC Chicago Operations Office, a member of RDT-HQ and a member of the RDT-ID site office. Eighteen recommendations resulted from the survey, eleven in the area of Industrial Safety and Fire Protection, five in the area of Reactor Safety and twomore » in the area of Nuclear Criticality Safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, A. J.; Fei, T.; Strons, P. S.
The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort ismore » to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis Report (FSAR) [3]. Depending on the availability of historical data derived from HEU TREAT operation, results calculated for the LEU core are compared to measurements obtained from HEU TREAT operation. While all analyses in this report are largely considered complete and have been reviewed for technical content, it is important to note that all topics will be revisited once the LEU design approaches its final stages of maturity. For most safety significant issues, it is expected that the analyses presented here will be bounding, but additional calculations will be performed as necessary to support safety analyses and safety documentation. It should also be noted that these analyses were completed as the LEU design evolved, and therefore utilized different LEU reference designs. Preliminary shielding, neutronic, and thermal hydraulic analyses have been completed and have generally demonstrated that the various LEU core designs will satisfy existing safety limits and standards also satisfied by the existing HEU core. These analyses include the assessment of the dose rate in the hodoscope room, near a loaded fuel transfer cask, above the fuel storage area, and near the HEPA filters. The potential change in the concentration of tramp uranium and change in neutron flux reaching instrumentation has also been assessed. Safety-significant thermal hydraulic items addressed in this report include thermally-induced mechanical distortion of the grid plate, and heating in the radial reflector.« less
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
NASA Astrophysics Data System (ADS)
Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-01
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-29
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclearmore » waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.« less
Temperature actuated automatic safety rod release
Hutter, E.; Pardini, J.A.; Walker, D.E.
1984-03-13
A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.
Temperature actuated automatic safety rod release
Hutter, Ernest; Pardini, John A.; Walker, David E.
1987-01-01
A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.
Risk Management for Sodium Fast Reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denman, Matthew R.; Groth, Katrina; Cardoni, Jeffrey N.
2015-01-01
Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event withmore » the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingersoll, Daniel T
2007-01-01
Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less
Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.
Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E
2012-08-01
The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor... would result in a major inconvenience. Dated: September 17, 2010. Antonio Dias, Chief, Reactor Safety...
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...
Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132; Sekimoto, Hiroshi
2010-12-23
Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period hasmore » been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this evaluation has confirmed that breeding condition and negative coefficient can be obtained simultaneously for water-cooled thorium reactor obtains based on the whole core fuel arrangement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Sridharan, K.
2015-12-01
The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computationalmore » tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe 2+) irradiation.« less
JEN-1 Reactor Control System; SISTEMA DE CONTROL DEL REACTOR JEN-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantillo, M.F.; Nuno, C.M.; Andreu, J.L.M.
1963-01-01
ABS>The JEN-1 3Mw power swimming pool reactor electrical control circuits are described. Start-up, power generation in the core, and shutdown are controlled by the reactor control system. This control system guarantees in each moment the safety conditions during reactor operation. Each circuit was represented by a scheme, complemented with a description of its function, components, and operation theory. Components described include: scram circuit; fission counter control circuit; servo control circuit; control circuit of safety sheets; control circuits of primary, secondary, and clean-up pump motors and tower fan motor; primary valve motor circuit; center cubicle alarm circuit; and process alarm circuit.more » (auth)« less
Miller, H.I.; Smith, R.C.
1958-01-21
This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.
Final report, PT IP-535-C: Test of smaller VSR`s in DR reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, A.D.
1963-04-17
Because of rod-sticking problems at DR Reactor, a knuckle rod of B Reactor design was installed in vertical safety channel number 28. The substitute VSR, which has a smaller diameter than the original DR rod, has been tested for its operational feasibility including both drop time and reactivity effect. The reactivity effect of the rod was estimated by comparison of the reactivity transient caused by insertion of the specific B-type rod after scramming into the pile, with similar transients caused by normal vertical safety rod in an adjacent channel. This document lists the indicated relative control strength of the rodmore » as an empirical basis for future safety calculations. Results indicate that the B-type knuckel rod in DR reactor is about 80% as strong as a normal DR vertical safety rod if used in equivalent flux distribution and location; this makes it reasonable to assume that the local control strength of the B-type knuckel rod is 98 {mu}b.« less
Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Per; Greenspan, Ehud
2015-02-09
This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designsmore » are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.« less
The Simulator Development for RDE Reactor
NASA Astrophysics Data System (ADS)
Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montierth, Leland M.
2016-07-19
The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element designmore » for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.« less
27. The top of a typical pile, F Reactor in ...
27. The top of a typical pile, F Reactor in February 1945 in this case, showing the vertical safety rods (VSRs) and the cables that support them. The rods could be dropped into the pile to effect a rapid shutdown. The four silvered-colored drums on the left contained boron solution and are part of the last ditch safety system. Should the VSRs channels become blocked by an occurrence such as an earthquake, the solution could be dumped into the VSR channels to help shut down the reactor. D-8334 - B Reactor, Richland, Benton County, WA
Status and improvement of CLAM for nuclear application
NASA Astrophysics Data System (ADS)
Huang, Qunying
2017-08-01
A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.
Application of reliability-centered-maintenance to BWR ECCS motor operator valve performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Choi, Y.A.
1993-01-01
This paper describes the application of reliability-centered maintenance (RCM) methods to plant probabilistic risk assessment (PRA) and safety analyses for four boiling water reactor emergency core cooling systems (ECCSs): (1) high-pressure coolant injection (HPCI); (2) reactor core isolation cooling (RCIC); (3) residual heat removal (RHR); and (4) core spray systems. Reliability-centered maintenance is a system function-based technique for improving a preventive maintenance program that is applied on a component basis. Those components that truly affect plant function are identified, and maintenance tasks are focused on preventing their failures. The RCM evaluation establishes the relevant criteria that preserve system function somore » that an RCM-focused approach can be flexible and dynamic.« less
Coupling the System Analysis Module with SAS4A/SASSYS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, T. H.; Hu, R.
2016-09-30
SAS4A/SASSYS-1 is a simulation tool used to perform deterministic analysis of anticipated events as well as design basis and beyond design basis accidents for advanced reactors, with an emphasis on sodium fast reactors. SAS4A/SASSYS-1 has been under development and in active use for nearly forty-five years, and is currently maintained by the U.S. Department of Energy under the Office of Advanced Reactor Technology. Although SAS4A/SASSYS-1 contains a very capable primary and intermediate system modeling component, PRIMAR-4, it also has some shortcomings: outdated data management and code structure makes extension of the PRIMAR-4 module somewhat difficult. The user input format formore » PRIMAR-4 also limits the number of volumes and segments that can be used to describe a given system. The System Analysis Module (SAM) is a fairly new code development effort being carried out under the U.S. DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM is being developed with advanced physical models, numerical methods, and software engineering practices; however, it is currently somewhat limited in the system components and phenomena that can be represented. For example, component models for electromagnetic pumps and multi-layer stratified volumes have not yet been developed. Nor is there support for a balance of plant model. Similarly, system-level phenomena such as control-rod driveline expansion and vessel elongation are not represented. This report documents fiscal year 2016 work that was carried out to couple the transient safety analysis capabilities of SAS4A/SASSYS-1 with the system modeling capabilities of SAM under the joint support of the ART and NEAMS programs. The coupling effort was successful and is demonstrated by evaluating an unprotected loss of flow transient for the Advanced Burner Test Reactor (ABTR) design. There are differences between the stand-alone SAS4A/SASSYS-1 simulations and the coupled SAS/SAM simulations, but these are mainly attributed to the limited maturity of the SAM development effort. The severe accident modeling capabilities in SAS4A/SASSYS-1 (sodium boiling, fuel melting and relocation) will continue to play a vital role for a long time. Therefore, the SAS4A/SASSYS-1 modernization effort should remain a high priority task under the ART program to ensure continued participation in domestic and international SFR safety collaborations and design optimizations. On the other hand, SAM provides an advanced system analysis tool, with improved numerical solution schemes, data management, code flexibility, and accuracy. SAM is still in early stages of development and will require continued support from NEAMS to fulfill its potential and to mature into a production tool for advanced reactor safety analysis. The effort to couple SAS4A/SASSYS-1 and SAM is the first step on the integration of these modeling capabilities.« less
75 FR 57302 - Advisory Committee on Reactor Safeguards; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... Monday, October 14, 2009, (74 FR 52829-52830). Thursday, October 7, 2010, Conference Room T2-B1, Two....: Final Safety Evaluation Report Associated with the Economic Simplified Boiling Water Reactor (ESBWR..., Inc. regarding the final Safety Evaluation Report associated with the ESBWR design certification...
SAFETY AND SECURITY BUILDING, TRA614. ELEVATIONS. SECTIONS. TWO ROOF LEVELS. ...
SAFETY AND SECURITY BUILDING, TRA-614. ELEVATIONS. SECTIONS. TWO ROOF LEVELS. BLAW-KNOX 3150-814-2, 3/1950. INL INDEX NO. 531-0614-00-098-100703, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
SAFETY AND SECURITY BUILDING, TRA614. SIMPLIFIED FLOOR LAYOUT AND WEST ...
SAFETY AND SECURITY BUILDING, TRA-614. SIMPLIFIED FLOOR LAYOUT AND WEST ELEVATION. BLAW-KNOX 3150-14-1, 1/1950. INL INDEX NO. 531-0614-00-098-100024, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
10 CFR 2.106 - Notice of issuance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... previously published. (d) The Director of Nuclear Material Safety and Safeguards will also cause to be... Application-How Initiated § 2.106 Notice of issuance. (a) The Director, Office of New Reactors, Director, Office of Nuclear Reactor Regulation, or Director, Office of Nuclear Material Safety and Safeguards, as...
Light Water Reactor Sustainability Program FY13 Status Update for EPRI - RISMC Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis
2013-09-01
The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced "RISMC toolkit" that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho Nationalmore » Laboratory (INL) is collaborating with the Electric Power Research Institute (EPRI) in order to focus on applications of interest to the U.S. nuclear power industry. This report documents the collaboration activities performed between INL and EPRI during FY2013.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollaway, W.R.
1991-08-01
If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less
Automatic safety rod for reactors. [LMFBR
Germer, J.H.
1982-03-23
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
Automatic safety rod for reactors
Germer, John H.
1988-01-01
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
Passive cooling system for top entry liquid metal cooled nuclear reactors
Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.
1992-01-01
A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.
NASA Astrophysics Data System (ADS)
Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas
2018-05-01
The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field
The Experimental Breeder Reactor II seismic probabilistic risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roglans, J; Hill, D J
1994-02-01
The Experimental Breeder Reactor II (EBR-II) is a US Department of Energy (DOE) Category A research reactor located at Argonne National Laboratory (ANL)-West in Idaho. EBR-II is a 62.5 MW-thermal Liquid Metal Reactor (LMR) that started operation in 1964 and it is currently being used as a testbed in the Integral Fast Reactor (IFR) Program. ANL has completed a Level 1 Probabilistic Risk Assessment (PRA) for EBR-II. The Level 1 PRA for internal events and most external events was completed in June 1991. The seismic PRA for EBR-H has recently been completed. The EBR-II reactor building contains the reactor, themore » primary system, and the decay heat removal systems. The reactor vessel, which contains the core, and the primary system, consisting of two primary pumps and an intermediate heat exchanger, are immersed in the sodium-filled primary tank, which is suspended by six hangers from a beam support structure. Three systems or functions in EBR-II were identified as the most significant from the standpoint of risk of seismic-induced fuel damage: (1) the reactor shutdown system, (2) the structural integrity of the passive decay heat removal systems, and (3) the integrity of major structures, like the primary tank containing the reactor that could threaten both the reactivity control and decay heat removal functions. As part of the seismic PRA, efforts were concentrated in studying these three functions or systems. The passive safety response of EBR-II reactor -- both passive reactivity shutdown and passive decay heat removal, demonstrated in a series of tests in 1986 -- was explicitly accounted for in the seismic PRA as it had been included in the internal events assessment.« less
Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percher, Catherine
2012-06-19
The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limits on its operation, and presents a safety analysis of the structures, systems, and components and of... products. The description shall be sufficient to permit understanding of the system designs and their relationship to the safety evaluations. Items such as the reactor core, reactor coolant system, instrumentation...
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki; Anshari, Rio
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Su'ud, Zaki; Anshari, Rio
2012-06-01
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdren, J.P.
The need for fusion energy depends strongly on fusion's potential to achieve ambitious safety goals more completely or more economically than fission can. The history and present complexion of public opinion about environment and safety gives little basis for expecting either that these concerns will prove to be a passing fad or that the public will make demands for zero risk that no energy source can meet. Hazard indices based on ''worst case'' accidents and exposures should be used as design tools to promote combinations of fusion-reactor materials and configurations that bring the worst cases down to levels small comparedmore » to the hazards people tolerate from electricity at the point of end use. It may well be possible, by building such safety into fusion from the ground up, to accomplish this goal at costs competitive with other inexhaustible electricity sources. Indeed, the still rising and ultimately indeterminate costs of meeting safety and environmental requirements in nonbreeder fission reactors and coal-burning power plants mean that fusion reactors meeting ambitious safety goals may be able to compete economically with these ''interim'' electricity sources as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlenwein, P.; Frisch, W.; Kafka, P.
Nuclear reactors of 200- to 400-MW(thermal) power for district heating are the subject of increasing interest, and several specific designs are under discussion today. In the Federal Republic of Germany (FRG), the Kraftwerk Union AG has presented a 200-MW(thermal) heating reactor concept. The main safety issues of this design are assessed. In this design, the primary system is fully integrated into the reactor pressure vessel (RPV), which is tightly enclosed by the containment. The low process parameters like pressure, temperature, and power density and the high ratio of coolant volume to thermal power allow the design of simple safety features.more » This is supported by the preference of passive over active components. A special feature is a newly designed hydraulic control and rod drive mechanism, which is also integrated into the RPV. Within the safety assessment an overview of the relevant FRG safety rules and guidelines, developed mainly for large, electricity-generating power plants, is given. Included is a discussion of the extent to which these licensing rules can be applied to the concept of heating reactors.« less
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...
Analysis of UF6 breeder reactor power plants
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1976-01-01
Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.
Comparative evaluation of solar, fission, fusion, and fossil energy resources, part 3
NASA Technical Reports Server (NTRS)
Clement, J. D.; Reupke, W. A.
1974-01-01
The role of nuclear fission reactors in becoming an important power source in the world is discussed. The supply of fissile nuclear fuel will be severely depleted by the year 2000. With breeder reactors the world supply of uranium could last thousands of years. However, breeder reactors have problems of a large radioactive inventory and an accident potential which could present an unacceptable hazard. Although breeder reactors afford a possible solution to the energy shortage, their ultimate role will depend on demonstrated safety and acceptable risks and environmental effects. Fusion power would also be a long range, essentially permanent, solution to the world's energy problem. Fusion appears to compare favorably with breeders in safety and environmental effects. Research comparing a controlled fusion reactor with the breeder reactor in solving our long range energy needs is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, Gary A.; Ford, John T.; Barber, Allison Delo
2010-11-01
Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.« less
Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne L.
This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less
Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne Leland
This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...
Sensitivity to VSR failure: K pipe break accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meichle, R.H.
1969-09-12
Reactor effects of failure of a safety rod to scram can be considered in two major respects: The reduction in total safety system strength which will affect the amount of ``prompt drop`` and subsequent flux decay rate of the average neutron flux-level; and the change in local flux distribution due to the absence of the particular rod which fails to enter the reactor. The purpose of this memorandum is to describe the physical effects involved and to indicate the approximate magnitude of both reactor-wide and localized changes in event of failure of a VSR simultaneous with a K Reactor risermore » accident.« less
Hutter, Ernest
1986-01-01
A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett; Shannon Bragg-Sitton
The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system thatmore » would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.« less
HWCTR CONTROL ROD AND SAFETY ROD DRIVE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kale, S.H.
1963-07-01
The Heavy Water Components Test Reactor (HWCTR) is a pressurized, D/sub 2/O reactor designed for operation up to 70 Mw at 1500 psig and 3l5 deg C. It has 18 control rods and six safety rods, each driven by an electric motor through a rack and pinion gear train. Racks, pinions, and bearings are located inside individual pressure housings that are penetrated by means of floating ring labyrinth seals. The drives are mounted on the reactor vessel top head. Safety rods have electromagnetic clutches and fall into the reactor when scrammed. The reliability and performance of the rod drives aremore » very good. Seal leakage is well within design limits. Recent inspections of seals and control rod plants showed no evidence of crud buildup or stress corrosion cracking of type 17- 4PH'' stainless steel components. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com
2014-09-30
Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less
Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, M.S.; Cohen, A.; Greenberg, D.
1991-12-31
This report highlights Brookhaven National Laboratory`s activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)
Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, M.S.; Cohen, A.; Greenberg, D.
1991-01-01
This report highlights Brookhaven National Laboratory's activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)
Interim reliability evaluation program, Browns Ferry 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1981-01-01
Probabilistic risk analysis techniques, i.e., event tree and fault tree analysis, were utilized to provide a risk assessment of the Browns Ferry Nuclear Plant Unit 1. Browns Ferry 1 is a General Electric boiling water reactor of the BWR 4 product line with a Mark 1 (drywell and torus) containment. Within the guidelines of the IREP Procedure and Schedule Guide, dominant accident sequences that contribute to public health and safety risks were identified and grouped according to release categories.
SAFETY AND SECURITY BUILDING, TRA614. FLOOR, ROOF, AND FOUNDATION PLANS. ...
SAFETY AND SECURITY BUILDING, TRA-614. FLOOR, ROOF, AND FOUNDATION PLANS. ROOM FUNCTIONS. DOOR AND ROOM FINISH SCHEDULE. BLAW-KNOX 3150-814-1, 3/1950. INL INDEX NO. 531-0614-00-098-100702, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Experimental study on the instability of Pressure Balance Injection System (PBIS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Koji; Teshima, Hideyuki; Madarame, Haruki
1996-06-01
The Passive Safety Reactor has been developed to reduce the construction cost and to improve the safety. Japan Atomic Energy Research institute (JAERI) proposed the System-Integrated Pressurized Water Reactor (SPWR) as a Passive Safety Reactor. In the SPWR design, the Pressure Balanced Injection System (PBIS) was introduced for the passive safety concept. The water with boron in a containment vessel were passively injected into the core by the pressure difference between the containment vessel and reactor vessel at a severe accidental condition. However there are few studies on the thermo-hydraulic characteristics of the PBIS. In this study, the thermal hydraulicsmore » of the PBIS are experimentally investigated using the small scale model. The instability of the injected flow was observed in the adiabatic experiment. The instability was caused by the pressure balance between the two vessels. The mechanism of the instability are discussed, resulting in the good agreement with the experimental results. In the steam experiment, another instability was observed, which was caused by the heat balance in the main tank.« less
FY2017 Updates to the SAS4A/SASSYS-1 Safety Analysis Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, T. H.
The SAS4A/SASSYS-1 safety analysis software is used to perform deterministic analysis of anticipated events as well as design-basis and beyond-design-basis accidents for advanced fast reactors. It plays a central role in the analysis of U.S. DOE conceptual designs, proposed test and demonstration reactors, and in domestic and international collaborations. This report summarizes the code development activities that have taken place during FY2017. Extensions to the void and cladding reactivity feedback models have been implemented, and Control System capabilities have been improved through a new virtual data acquisition system for plant state variables and an additional Block Signal for a variablemore » lag compensator to represent reactivity feedback for novel shutdown devices. Current code development and maintenance needs are also summarized in three key areas: software quality assurance, modeling improvements, and maintenance of related tools. With ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor safety analysis and help solidify DOE’s leadership role in fast reactor safety both domestically and in international collaborations.« less
Light Water Reactor Sustainability Program Integrated Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce
2014-04-01
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution tomore » the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November 13, 2012. Comments...
NUCLEAR REACTOR CONTROL SYSTEM
Epler, E.P.; Hanauer, S.H.; Oakes, L.C.
1959-11-01
A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.
The use of experimental data in an MTR-type nuclear reactor safety analysis
NASA Astrophysics Data System (ADS)
Day, Simon E.
Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type ( i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core.
2011 Annual Criticality Safety Program Performance Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Hoffman
The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection,more » an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is planned for 2012 to clarify design requirements for criticality alarms. Training - Criticality Safety Engineering has developed training and provides training for many employee positions, including fissionable material handlers, facility managers, criticality safety officers, firefighters, and criticality safety engineers. Criticality safety training at the INL is a program strength. A revision to the training module developed in 2010 to supplement MFC certified fissionable material handlers (operators) training was prepared and presented in August of 2011. This training, 'Applied Science of Criticality Safety,' builds upon existing training and gives operators a better understanding of how their criticality controls are derived. Improvements to 00INL189, 'INL Criticality Safety Principles' are planned for 2012 to strengthen fissionable material handler training.« less
Preliminary Framework for Human-Automation Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Spielman, Zachary Alexander
The Department of Energy’s Advanced Reactor Technologies Program sponsors research, development and deployment activities through its Next Generation Nuclear Plant, Advanced Reactor Concepts, and Advanced Small Modular Reactor (aSMR) Programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Human Automation Collaboration (HAC) Research Project is located under the aSMR Program, which identifies developing advanced instrumentation and controls and human-machine interfaces as one of four key research areas. It is expected that the new nuclear power plant designs will employ technology significantly more advanced than the analog systems in the existing reactor fleetmore » as well as utilizing automation to a greater extent. Moving towards more advanced technology and more automation does not necessary imply more efficient and safer operation of the plant. Instead, a number of concerns about how these technologies will affect human performance and the overall safety of the plant need to be addressed. More specifically, it is important to investigate how the operator and the automation work as a team to ensure effective and safe plant operation, also known as the human-automation collaboration (HAC). The focus of the HAC research is to understand how various characteristics of automation (such as its reliability, processes, and modes) effect an operator’s use and awareness of plant conditions. In other words, the research team investigates how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. This report addresses the Department of Energy milestone M4AT-15IN2302054, Complete Preliminary Framework for Human-Automation Collaboration, by discussing the two phased development of a preliminary HAC framework. The framework developed in the first phase was used as the basis for selecting topics to be investigated in more detail. The results and insights gained from the in-depth studies conducted during the second phase were used to revise the framework. This report describes the basis for the framework developed in phase 1, the changes made to the framework in phase 2, and the basis for the changes. Additional research needs are identified and presented in the last section of the report.« less
Propellant actuated nuclear reactor steam depressurization valve
Ehrke, Alan C.; Knepp, John B.; Skoda, George I.
1992-01-01
A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.
Microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1984-01-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less
Annual Report to Congress of the Atomic Energy Commission for 1969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaborg, Glenn T.
1970-01-31
The document represents the 1969 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1969'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Byproduct Nuclear Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Space Nuclear Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Rooyen, Isabella Johanna; Lillo, Thomas Martin; Wen, Haiming
2017-01-01
A series of up to seven irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Quantification Program, with irradiation completed at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the first experiment (i.e., AGR-1) in November 2009 for an effective 620 full power days. The objective of the AGR-1 experiment was primarily to provide lessons learned on the multi-capsule test train design and to provide early data on fuel performance for use in fuel fabrication process development and post-irradiation safety testing data at high temperatures. This report describes the advanced microscopy and micro-analysismore » results on selected AGR-1 coated particles.« less
Annual Report to Congress of the Atomic Energy Commission for 1968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaborg, Glenn T.
1969-01-31
The document represents the 1968 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1968'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Nuclear Byproduct Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori
2013-01-01
Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.E. Craft; R. C. O'Brien; S. D. Howe
Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact,more » fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.« less
Development a computer codes to couple PWR-GALE output and PC-CREAM input
NASA Astrophysics Data System (ADS)
Kuntjoro, S.; Budi Setiawan, M.; Nursinta Adi, W.; Deswandri; Sunaryo, G. R.
2018-02-01
Radionuclide dispersion analysis is part of an important reactor safety analysis. From the analysis it can be obtained the amount of doses received by radiation workers and communities around nuclear reactor. The radionuclide dispersion analysis under normal operating conditions is carried out using the PC-CREAM code, and it requires input data such as source term and population distribution. Input data is derived from the output of another program that is PWR-GALE and written Population Distribution data in certain format. Compiling inputs for PC-CREAM programs manually requires high accuracy, as it involves large amounts of data in certain formats and often errors in compiling inputs manually. To minimize errors in input generation, than it is make coupling program for PWR-GALE and PC-CREAM programs and a program for writing population distribution according to the PC-CREAM input format. This work was conducted to create the coupling programming between PWR-GALE output and PC-CREAM input and programming to written population data in the required formats. Programming is done by using Python programming language which has advantages of multiplatform, object-oriented and interactive. The result of this work is software for coupling data of source term and written population distribution data. So that input to PC-CREAM program can be done easily and avoid formatting errors. Programming sourceterm coupling program PWR-GALE and PC-CREAM is completed, so that the creation of PC-CREAM inputs in souceterm and distribution data can be done easily and according to the desired format.
Analysis of radiation safety for Small Modular Reactor (SMR) on PWR-100 MWe type
NASA Astrophysics Data System (ADS)
Udiyani, P. M.; Husnayani, I.; Deswandri; Sunaryo, G. R.
2018-02-01
Indonesia as an archipelago country, including big, medium and small islands is suitable to construction of Small Medium/Modular reactors. Preliminary technology assessment on various SMR has been started, indeed the SMR is grouped into Light Water Reactor, Gas Cooled Reactor, and Solid Cooled Reactor and from its site it is group into Land Based reactor and Water Based Reactor. Fukushima accident made people doubt about the safety of Nuclear Power Plant (NPP), which impact on the public perception of the safety of nuclear power plants. The paper will describe the assessment of safety and radiation consequences on site for normal operation and Design Basis Accident postulation of SMR based on PWR-100 MWe in Bangka Island. Consequences of radiation for normal operation simulated for 3 units SMR. The source term was generated from an inventory by using ORIGEN-2 software and the consequence of routine calculated by PC-Cream and accident by PC Cosyma. The adopted methodology used was based on site-specific meteorological and spatial data. According to calculation by PC-CREAM 08 computer code, the highest individual dose in site area for adults is 5.34E-02 mSv/y in ESE direction within 1 km distance from stack. The result of calculation is that doses on public for normal operation below 1mSv/y. The calculation result from PC Cosyma, the highest individual dose is 1.92.E+00 mSv in ESE direction within 1km distance from stack. The total collective dose (all pathway) is 3.39E-01 manSv, with dominant supporting from cloud pathway. Results show that there are no evacuation countermeasure will be taken based on the regulation of emergency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... could communicate with a safety system. In this case, appropriate isolation devices would be required at..., feedwater flow, and reactor power; (2) Safety injection: Reactor core isolation cooling flow, high-pressure... data points identified in the ERDS Data Point Library 9 (site specific data base residing on the ERDS...
Code of Federal Regulations, 2010 CFR
2010-01-01
... could communicate with a safety system. In this case, appropriate isolation devices would be required at..., feedwater flow, and reactor power; (2) Safety injection: Reactor core isolation cooling flow, high-pressure... data points identified in the ERDS Data Point Library 9 (site specific data base residing on the ERDS...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.B.; Pyatt, D.W.; Sholtis, J.A.
1993-01-10
The Interagency Nuclear Safety Review Panel (INSRP) has provided reviews of all nuclear powered spacecraft launched by the United States. The two most recent launches were Ulysses in 1990 and Galileo in 1989. One reactor was launched in 1965 (SNAP-10A). All other U.S. space missions have utilized radioisotopic thermoelectric generators (RTGs). There are several missions in the next few years that are to be nuclear powered, including one that would utilize the Topaz II reactor purchased from Russia. INSRP must realign itself to perform parallel safety assessments of a reactor powered space mission, which has not been done in aboutmore » thirty years, and RTG powered missions.« less
Mohammadi, A; Hassanzadeh, M; Gharib, M
2016-02-01
In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.
75 FR 66168 - Seeks Qualified Candidates for the Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... NUCLEAR REGULATORY COMMISSION Seeks Qualified Candidates for the Advisory Committee on Reactor... Reactor Safeguards (ACRS). Submit r[eacute]sum[eacute]s to Ms. Brandi Hamilton, ACRS, Mail Stop T2E-26, U... of existing and proposed nuclear power plants and on the adequacy of proposed reactor safety...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will... would result in major inconvenience. Dated: March 3, 2010. Antonio F. Dias, Chief, Reactor Safety Branch...
Reactor shutdown delays medical procedures
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-01-01
A longer-than-expected maintenance shutdown of the Canadian nuclear reactor that produces North America's entire supply of molybdenum-99 - from which the radioactive isotopes technetium-99 and iodine-131 are made - caused delays to the diagnosis and treatment of thousands of seriously ill patients last month. Technetium-99 is a key component of nuclear-medicine scans, while iodine-131 is used to treat cancer and other diseases of the thyroid. Production eventually resumed, but only after the Canadian government had overruled the Canadian Nuclear Safety Commission (CNSC), which was still concerned about the reactor's safety.
A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizwan-uddin; Nick Karancevic; Stefano Markidis
2008-04-23
many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important crterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals.
Environmental Compliance Assessment and Management Program (ECAMP)
1993-04-01
Type Flammable Liquids Combustible Liquids IA IB Ic II ll Glass or approved plasticI 1 Pt2 1 qt2 13 1 1 Metal (other than DOT drums) 1 5 5 5 5 Safety...for the glass and plastic containers fisted. 2 One gallon of nearest metric equivalent size may be used if metal containers must be avoided because of...1I0 Separated aqueous stream from the reactor product washing step in the produc- tion of chlorobenzenes. 3 - 94 Table 3-1 (continued) Teo2 USEPA
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
A summary of sodium-cooled fast reactor development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoto, Kazumi; Dufour, Philippe; Hongyi, Yang
Much of the basic technology for the Sodium-cooled fast Reactor (SFR) has been established through long term development experience with former fast reactor programs, and is being confirmed by the Phénix end-of-life tests in France, the restart of Monju in Japan, the lifetime extension of BN-600 in Russia, and the startup of the China Experimental Fast Reactor in China. Planned startup in 2014 for new SFRs: BN-800 in Russia and PFBR in India, will further enhance the confirmation of the SFR basic technology. Nowadays, the SFR development has advanced to aiming at establishment of the Generation-IV system which is dedicatedmore » to sustainable energy generation and actinide management, and several advanced SFR concepts are under development such as PRISM, JSFR, ASTRID, PGSFR, BN-1200, and CFR-600. Generation-IV International Forum is an international collaboration framework where various R&D activities are progressing on design of system and component, safety and operation, advanced fuel, and actinide cycle for the Generation-IV SFR development, and will play a beneficial role of promoting them thorough providing an opportunity to share the past experience and the latest data of design and R&D among countries developing SFR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, David Andrew
2017-04-01
Modular high temperature gas-cooled reactor (HTGR) designs were developed to provide natural safety, which prevents core damage under all licensing basis events. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. The required level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude relative to source terms for other reactor types and allows a graded approach to emergency planning and the potential elimination of the need for evacuation and sheltering beyond a small exclusion area. Achieving this level, however,more » is predicated on exceptionally high coated-particle fuel fabrication quality and excellent performance under normal operation and accident conditions. The design goal of modular HTGRs is to meet the Environmental Protection Agency (EPA) Protective Action Guides (PAGs) for offsite dose at the Exclusion Area Boundary (EAB). To achieve this, the reactor design concepts require a level of fuel integrity that is far better than that achieved for all prior U.S.-manufactured tristructural isotropic (TRISO) coated particle fuel.« less
SPLASH program for three dimensional fluid dynamics with free surface boundaries
NASA Astrophysics Data System (ADS)
Yamaguchi, A.
1996-05-01
This paper describes a three dimensional computer program SPLASH that solves Navier-Stokes equations based on the Arbitrary Lagrangian Eulerian (ALE) finite element method. SPLASH has been developed for application to the fluid dynamics problems including the moving boundary of a liquid metal cooled Fast Breeder Reactor (FBR). To apply SPLASH code to the free surface behavior analysis, a capillary model using a cubic Spline function has been developed. Several sample problems, e.g., free surface oscillation, vortex shedding development, and capillary tube phenomena, are solved to verify the computer program. In the analyses, the numerical results are in good agreement with the theoretical value or experimental observance. Also SPLASH code has been applied to an analysis of a free surface sloshing experiment coupled with forced circulation flow in a rectangular tank. This is a simplified situation of the flow field in a reactor vessel of the FBR. The computational simulation well predicts the general behavior of the fluid flow inside and the free surface behavior. Analytical capability of the SPLASH code has been verified in this study and the application to more practical problems such as FBR design and safety analysis is under way.
NASA Astrophysics Data System (ADS)
Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim
2018-02-01
Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.
Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)
Modeling and simulation of CANDU reactor and its regulating system
NASA Astrophysics Data System (ADS)
Javidnia, Hooman
Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different phenomena related to the transfer of the energy from the core. The main function of the reactor regulating system is to control the power of the reactor. This is achieved by using a set of detectors. reactivity devices. and digital control algorithms. Three main reactivity devices that are activated during short-term or intermediate-term transients are modeled in this thesis. The main elements of the digital control system are implemented in accordance to the program specifications for the actual control system in CANDU reactors. The simulation results are validated against requirements of the reactor regulating system. actual plant data. and pre-validated data from other computer codes. The validation process shows that the simulation results can be trusted in making engineering decisions regarding the reactor regulating system and prediction of the system performance in response to upset conditions or disturbances. KEYWORDS: CANDU reactors. reactor regulating system. nodal model. spatial kinetics. reactivity devices. simulation.
Final Report on ITER Task Agreement 81-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brad J. Merrill
An International Thermonuclear Experimental Reactor (ITER) Implementing Task Agreement (ITA) on Magnet Safety was established between the ITER International Organization (IO) and the Idaho National Laboratory (INL) Fusion Safety Program (FSP) during calendar year 2004. The objectives of this ITA were to add new capabilities to the MAGARC code and to use this updated version of MAGARC to analyze unmitigated superconductor quench events for both poloidal field (PF) and toroidal field (TF) coils of the ITER design. This report documents the completion of the work scope for this ITA. Based on the results obtained for this ITA, an unmitigated quenchmore » event in an ITER larger PF coil does not appear to be as severe an accident as in an ITER TF coil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestovich, Kimberly Shay
Harnessing the power of the nuclear sciences for national security and to benefit others is one of Los Alamos National Laboratory’s missions. MST-8 focuses on manipulating and studying how the structure, processing, properties, and performance of materials interact at the atomic level under nuclear conditions. Within this group, single crystal scintillators contribute to the safety and reliability of weapons, provide global security safeguards, and build on scientific principles that carry over to medical fields for cancer detection. Improved cladding materials made of ferritic-martensitic alloys support the mission of DOE-NE’s Fuel Cycle Research and Development program to close the nuclear fuelmore » cycle, aiming to solve nuclear waste management challenges and thereby increase the performance and safety of current and future reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less
Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; Diego Mandelli; Cristian Rabiti
2013-11-01
The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim tomore » improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetsch, D.; Bieniussa, K.; Schulz, H.
This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branchingmore » pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.« less
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis
1986-01-01
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis
1986-07-01
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
NASA Technical Reports Server (NTRS)
Hsieh, T.-M.; Koenig, D. R.
1977-01-01
Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.
Operating manual for the Bulk Shielding Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-04-01
The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.
Operating manual for the Bulk Shielding Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.
Upgrade of Irradiation Test Capability of the Experimental Fast Reactor Joyo
NASA Astrophysics Data System (ADS)
Sekine, Takashi; Aoyama, Takafumi; Suzuki, Soju; Yamashita, Yoshioki
2003-06-01
The JOYO MK-II core was operated from 1983 to 2000 as fast neutron irradiation bed. In order to meet various requirements for irradiation tests for development of FBRs, the JOYO upgrading project named MK-III program was initiated. The irradiation capability in the MK-III core will be about four times larger than that of the MK-II core. Advanced irradiation test subassemblies such as capsule type subassembly and on-line instrumentation rig are planned. As an innovative reactor safety system, the irradiation test of Self-Actuated Shutdown System (SASS) will be conducted. In order to improve the accuracy of neutron fluence, the core management code system was upgraded, and the Monte Carlo code and Helium Accumulation Fluence Monitor (HAFM) were applied. The MK-III core is planned to achieve initial criticality in July 2003.
Adaptive control method for core power control in TRIGA Mark II reactor
NASA Astrophysics Data System (ADS)
Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd
2018-01-01
The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.
Small space reactor power systems for unmanned solar system exploration missions
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.
The status of ABWR-II development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiroyuki, Okada; Hideya Kitamura; Kumiaki, Moriya
This paper reports on the current development status of the ABWR-II project, a next generation reactor design based on the ABWR. In the early 90's, a program to develop the next generation reactor for the 21. century was launched, at a time when the first ABWR was still under construction. At the initial stage of this project, development of a 'user friendly' plant design was the primary objective. Thus, the main focus was placed on selecting a design with features promoting ease of operation and maintenance. Meanwhile, the circumstances surrounding the Japanese nuclear power industry changed. The delay of FBRmore » development and the deregulation of the power generation market have significantly boosted the role of light water reactors, and accelerated the need to improve LWR economics. For these reasons, economic competitiveness became an overriding objective in the development of the ABWR-II, with no less importance placed on achieving the highest standards of safety. Several new features were adopted to enhance economic performance: 1700 MW electric output, large fuel bundles, simplified MSIV, large capacity SRV. An output of 1700 MWe was selected for compatibility with the Japanese power grid, and with consideration of current reactor pressure vessel manufacturing capability. Large fuel bundles will contribute to a shortened refueling outage period and a reduction of CRDs. For enhanced safety, the reference design implements a modified ECCS with four subdivision RHR, a diversified power source incorporating gas turbine generators (GTG), an advanced RCIC (ARCIC) and passive heat removal systems consisting of a passive containment cooling system (PCCS) and a passive reactor cooling system (PRCS). The modified ECCS configuration also enables on-line maintenance. While current reactors rely on complex accident management (AM) procedures, implemented by operators in the event of a serious accident, the ABWR-II incorporated severe accident countermeasures at the design stage, to eliminate the need of operator induced AM procedures. The ABWR-II represents one of the most promising and reliable options for the future replacement of older units, without incurring excessive R and D costs. (authors)« less
New Reactor Physics Benchmark Data in the March 2012 Edition of the IRPhEP Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2012-11-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications. Numerous experiments that have been performed worldwide, represent a large investment of infrastructure, expertise, and cost, and are valuable resources of data for present and future research. These valuable assets provide the basis for recording, development, and validation of methods. If the experimental data are lost, the high cost to repeat many of these measurements may be prohibitive. The purpose of the IRPhEP is to provide an extensively peer-reviewed set ofmore » reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. Contributors from around the world collaborate in the evaluation and review of selected benchmark experiments for inclusion in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [1]. Several new evaluations have been prepared for inclusion in the March 2012 edition of the IRPhEP Handbook.« less
Generalized implementation of software safety policies
NASA Technical Reports Server (NTRS)
Knight, John C.; Wika, Kevin G.
1994-01-01
As part of a research program in the engineering of software for safety-critical systems, we are performing two case studies. The first case study, which is well underway, is a safety-critical medical application. The second, which is just starting, is a digital control system for a nuclear research reactor. Our goal is to use these case studies to permit us to obtain a better understanding of the issues facing developers of safety-critical systems, and to provide a vehicle for the assessment of research ideas. The case studies are not based on the analysis of existing software development by others. Instead, we are attempting to create software for new and novel systems in a process that ultimately will involve all phases of the software lifecycle. In this abstract, we summarize our results to date in a small part of this project, namely the determination and classification of policies related to software safety that must be enforced to ensure safe operation. We hypothesize that this classification will permit a general approach to the implementation of a policy enforcement mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel
This cleanup verification package documents completion of remedial action for the 118-F-3, Minor Construction Burial Ground waste site. This site was an open field covered with cobbles, with no vegetation growing on the surface. The site received irradiated reactor parts that were removed during conversion of the 105-F Reactor from the Liquid 3X to the Ball 3X Project safety systems and received mostly vertical safety rod thimbles and step plugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata
The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenkel, Roland
25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is anmore » example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R and D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.« less
NASA Astrophysics Data System (ADS)
Schenkel, Roland
2012-06-01
25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R&D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.
NASA Astrophysics Data System (ADS)
Barbot, Loïc; Villard, Jean-François; Fourrez, Stéphane; Pichon, Laurent; Makil, Hamid
2018-01-01
In the framework of the French National Research Agency program on nuclear safety and radioprotection, the `DIstributed Sensing for COrium Monitoring and Safety' project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named `MATiSSe'. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Thomas K.S.; Ko, F.-K
Although only a few percent of residual power remains during plant outages, the associated risk of core uncovery and corresponding fuel overheating has been identified to be relatively high, particularly under midloop operation (MLO) in pressurized water reactors. However, to analyze the system behavior during outages, the tools currently available, such as RELAP5, RETRAN, etc., cannot easily perform the task. Therefore, a medium-sized program aiming at reactor outage simulation and evaluation, such as MLO with the loss of residual heat removal (RHR), was developed. All important thermal-hydraulic processes involved during MLO with the loss of RHR will be properly simulatedmore » by the newly developed reactor outage simulation and evaluation (ROSE) code. Important processes during MLO with loss of RHR involve a pressurizer insurge caused by the hot-leg flooding, reflux condensation, liquid holdup inside the steam generator, loop-seal clearance, core-level depression, etc. Since the accuracy of the pressure distribution from the classical nodal momentum approach will be degraded when the system is stratified and under atmospheric pressure, the two-region approach with a modified two-fluid model will be the theoretical basis of the new program to analyze the nuclear steam supply system during plant outages. To verify the analytical model in the first step, posttest calculations against the closed integral midloop experiments with loss of RHR were performed. The excellent simulation capacity of the ROSE code against the Institute of Nuclear Energy Research Integral System Test Facility (IIST) test data is demonstrated.« less
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Brucellosis-reactor goats. 309.14 Section 309.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Brucellosis-reactor goats. 309.14 Section 309.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin Leigh; Smith, Curtis Lee; Burns, Douglas Edward
This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expectedmore » to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.« less
International Research Reactor Decommissioning Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopando, Leonardo; Warnecke, Ernst
2008-01-15
Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement tomore » the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.« less
GEM*STAR: Time for an Alternative Way Forward
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2011-10-01
The presumption that nuclear reactors will retain their role in global energy production is constantly being challenged - even more so following recent events at Fukushima. Nuclear energy, despite being ``green,'' has inexorably been coupled in the public mind with three paramount concerns: safety, weapons proliferation, and waste (and then ultimately cost). Over the past four decades, the safety of deployed fleets has greatly improved, yet the capital and political costs of a ``nuclear energy option'' appear insurmountable in several countries. The US approach to civilian nuclear energy has become deeply entrenched, first through choices made by the military, and then by the deployed nuclear reactor fleet. This extends to the research agencies as well, to the point where basic sciences and nuclear energy operate in separate spheres. But technologies and priorities have changed, and the time has arrived where a transformative re-think of nuclear energy is not only possible, but urgent. And nuclear physicists are uniquely positioned to accomplish this. This talk will show that by asking, and answering,``what would an accelerator-driven civilian nuclear energy program look like,'' ADNA Corporation's GEM*STAR design directly addresses all three fundamental concerns: safety, proliferation, and waste - and also the final hurdle: cost. GEM*STAR is not an ``add-on'' (to either Project-X, or GEN III+), but rather a base-line energy production capacity, for either electricity or transport fuel production. It integrates and advances the molten-salt reactor technology developed at ORNL, the MW beam accelerator technologies developed by basic sciences, and a reactor/target design optimized for accelerator driven-systems. The results include: the ability to use LWR spent fuel without reprocessing or additional waste; the ability to use natural uranium; no critical mass ever present; orders-of-magnitude less volatile radioactivity in the core; more efficient use of, and deeper burn of actinides, without additional waste; proliferation resistance (no enrichment or reprocessing); high-tolerance to ``beam-trips'' and ultimately, and perhaps most importantly, lower cost electricity or diesel fuel than any currently envisioned new energy source.
Reliability of programs specified with equational specifications
NASA Astrophysics Data System (ADS)
Nikolik, Borislav
Ultrareliability is desirable (and sometimes a demand of regulatory authorities) for safety-critical applications, such as commercial flight-control programs, medical applications, nuclear reactor control programs, etc. A method is proposed, called the Term Redundancy Method (TRM), for obtaining ultrareliable programs through specification-based testing. Current specification-based testing schemes need a prohibitively large number of testcases for estimating ultrareliability. They assume availability of an accurate program-usage distribution prior to testing, and they assume the availability of a test oracle. It is shown how to obtain ultrareliable programs (probability of failure near zero) with a practical number of testcases, without accurate usage distribution, and without a test oracle. TRM applies to the class of decision Abstract Data Type (ADT) programs specified with unconditional equational specifications. TRM is restricted to programs that do not exceed certain efficiency constraints in generating testcases. The effectiveness of TRM in failure detection and recovery is demonstrated on formulas from the aircraft collision avoidance system TCAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteleone, S.
1998-03-01
This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues relatedmore » to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...
Current and prospective safety issues at the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.R.
The Brookhaven High Flux Beam Reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated and reflected by heavy water and uses MTR-ETR type fuel elements containing enriched uranium. The reactor power when operation began in 19965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time safety questions have been raised which resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper will discuss the principle safety issues, plans for theirmore » resolution and return to 60 MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its affect on the life of the facility will be briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe, Jeffrey .C; Boring, Ronald L.
Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation andmore » control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.« less
The shutdown reactor: Optimizing spent fuel storage cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennington, C.W.
1995-12-31
Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wetmore » and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec`s findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest.« less
Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok
2002-07-15
The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety andmore » Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.« less
HEALTH AND SAFETY BUILDING, TRA667. SOUTH AND WEST ELEVATIONS. FLOOR ...
HEALTH AND SAFETY BUILDING, TRA-667. SOUTH AND WEST ELEVATIONS. FLOOR PLAN AND ROOM DESIGNATIONS. NOTE PAIR OF ENTRY DOORS IN WEST ELEVATION FOR MEN AND WOMEN. CONCRETE T-BEAMS. F.C. TORKELSON CO. 842-MTR-667-A1, 1/1963. INL INDEX NO. 531-0667-00-851-151143, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
BESAFE II: Accident safety analysis code for MFE reactor designs
NASA Astrophysics Data System (ADS)
Sevigny, Lawrence Michael
The viability of controlled thermonuclear fusion as an alternative energy source hinges on its desirability from an economic and an environmental and safety standpoint. It is the latter which is the focus of this thesis. For magnetic fusion energy (MFE) devices, the safety concerns equate to a design's behavior during a worst-case accident scenario which is the loss of coolant accident (LOCA). In this dissertation, we examine the behavior of MFE devices during a LOCA and how this behavior relates to the safety characteristics of the machine; in particular the acute, whole-body, early dose. In doing so, we have produced an accident safety code, BESAFE II, now available to the fusion reactor design community. The Appendix constitutes the User's Manual for BESAFE II. The theory behind early dose calculations including the mobilization of activation products is presented in Chapter 2. Since mobilization of activation products is a strong function of temperature, it becomes necessary to calculate the thermal response of a design during a LOCA in order to determine the fraction of the activation products which are mobilized and thus become the source for the dose. The code BESAFE II is designed to determine the temperature history of each region of a design and determine the resulting mobilization of activation products at each point in time during the LOCA. The BESAFE II methodology is discussed in Chapter 4, followed by demonstrations of its use for two reference design cases: a PCA-Li tokamak and a SiC-He tokamak. Of these two cases, it is shown that the SiC-He tokamak is a better design from an accident safety standpoint than the PCA-Li tokamak. It is also found that doses derived from temperature-dependent mobilization data are different than those predicted using set mobilization categories such as those that involve Piet fractions. This demonstrates the need for more experimental data on fusion materials. The possibility for future improvements and modifications to BESAFE II is discussed in Chapter 6, for example, by adding additional environmental indices such as a waste disposal index. The biggest improvement to BESAFE II would be an increase in the database of activation product mobilization for a larger spectrum of fusion reactor materials. The ultimate goal we have is for BESAFE II to become part of a systems design program which would include economic factors and allow both safety and the cost of electricity to influence design.
Proceedings of a Symposium on Advanced Compact Reactor Systems
NASA Technical Reports Server (NTRS)
1983-01-01
Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.
Passive cooling safety system for liquid metal cooled nuclear reactors
Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.
1991-01-01
A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.
Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.
1993-01-01
The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.
NASA Astrophysics Data System (ADS)
Villard, Jean-Francois; Schyns, Marc
2010-12-01
Optimizing the life cycle of nuclear systems under safety constraints requires high-performance experimental programs to reduce uncertainties on margins and limits. In addition to improvement in modeling and simulation, innovation in instrumentation is crucial for analytical and integral experiments conducted in research reactors. The quality of nuclear research programs relies obviously on an excellent knowledge of their experimental environment which constantly calls for better online determination of neutron and gamma flux. But the combination of continuously increasing scientific requirements and new experimental domains -brought for example by Generation IV programsnecessitates also major innovations for in-pile measurements of temperature, dimensions, pressure or chemical analysis in innovative mediums. At the same time, the recent arising of a European platform around the building of the Jules Horowitz Reactor offers new opportunities for research institutes and organizations to pool their resources in order to face these technical challenges. In this situation, CEA (French Nuclear Energy Commission) and SCK'CEN (Belgian Nuclear Research Centre) have combined their efforts and now share common developments through a Joint Instrumentation Laboratory. Significant progresses have thus been obtained recently in the field of in-pile measurements, on one hand by improvement of existing measurement methods, and on the other hand by introduction in research reactors of original measurement techniques. This paper highlights the state-of-the-art and the main requirements regarding in-pile measurements, particularly for the needs of current and future irradiation programs performed in material testing reactors. Some of the main on-going developments performed in the framework of the Joint Instrumentation Laboratory are also described, such as: - a unique fast neutron flux measurement system using fission chambers with 242Pu deposit and a specific online data processing, - an optical system designed to perform in-pile dimensional measurements of material samples under irradiation, - an acoustical instrumentation allowing the online characterization of fission gas release in Pressurized Water Reactor fuel rods. For each example, the obtained results, expected impacts and development status are detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamov, E.O.; Kuklin, A.N.; Mityaev, Yu.I.
The nuclear power plants with boiling water reactors of improved safety are being developed. There is 26 years of operating experience with the plant VK-50 in Dimitrovgrad. The design and operation of the BWR reactors are described.
Nuclear power: Siting and safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Openshaw, S.
1986-01-01
By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtainedmore » from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety.« less
Regulatory Risk Reduction for Advanced Reactor Technologies – FY2016 Status and Work Plan Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne Leland
2016-08-01
Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy’s (DOE) Advanced Reactor Technologiesmore » (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants« less
RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hongbin Zhang; Haihua Zhao; Cliff Davis
2008-06-01
An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heatmore » from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet temperature. The peak cladding, hot pool, cold pool and reactor inlet temperatures were calculated during LOFC. The results indicate that there are two phases during LOFC transient – the initial thermal equilibration phase and the long term decay heat removal phase. The initial thermal equilibration phase occurs over a few hundred seconds, as the system adjusts from forced circulation to natural circulation flow. Subsequently, during long-term heat removal phase all temperatures evolve very slowly due to the large thermal inertia of the primary and buffer pool systems. The results clearly show that passive safety PRACS can effectively transfer decay heat from the primary system to the buffer pool by natural circulation. The DRACS system in turn can effectively transfer the decay heat to the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Pointer, William David; Sieger, Matt
2016-04-01
The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.
Safety approaches for high power modular laser operation
NASA Astrophysics Data System (ADS)
Handren, R. T.
1993-03-01
Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.
75 FR 13611 - Meeting of the ACRS Subcommittee on Reliability and PRA; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS... rescheduling would result in major inconvenience. Dated: March 15, 2010. Antonio F. Dias, Chief, Reactor Safety Branch B, Advisory Committee on Reactor Safeguards. [FR Doc. 2010-6203 Filed 3-19-10; 8:45 am] BILLING...
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Status of reduced enrichment programs for research reactors in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanda, Keiji; Nishihara, Hedeaki; Shirai, Eiji
1997-08-01
The reduced enrichment programs for the JRR-2, JRR-3, JRR-4 and JMTR of Japan Atomic Energy Research Institute (JAERI), and the KUR of Kyoto University Research Reactor Institute (KURRI) have been partially completed and are mostly still in progress under the Joint Study Programs with Argonne National Laboratory (ANL). The JMTR and JRR-2 have been already converted to use MEU aluminide fuels in 1986 and 1987, respectively. The operation of the upgraded JRR-3(JRR-3M) has started in March 1990 with the LEU aluminide fuels. Since May 1992, the two elements have been inserted in the KUR. The safety review application for themore » full core conversion to use LEU silicide in the JMTR was approved in February 1992 and the conversion has been done in January 1994. The Japanese Government approved a cancellation of the KUHFR Project in February 1991, and in April 1994 the U.S. Government gave an approval to utilize HEU in the KUR instead of the KUHFR. Therefore, the KUR will be operated with HEU fuel until 2001. Since March 1994, Kyoto University is continuing negotiation with UKAEA Dounreay on spent fuel reprocessing and blending down of recovered uranium, in addition to that with USDOE.« less
Summary of NR Program Prometheus Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Ashcroft; C Eshelman
2006-02-08
The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less
Superconducting magnet development for tokamaks and mirrors: a technical assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laverick, C.; Jacobs, R. B.; Boom, R. W.
1977-11-01
The role of superconducting magnets in Magnetic Fusion Energy Research and Development is assessed from a consideration of program plans and schedules, the present status of the programs and the research and development suggestions arising from recent studies and workshops. A principal conclusion is that the large superconducting magnet systems needed for commercial magnetic fusion reactors can be constructed. However such magnets working under severe conditions, with increasingly stringent reliability, safety and cost restrictions can never be built unless experience is first gained in a number of important installations designed to prove physics and technology steps on the way tomore » commercial power demonstration. The immediate problem is to design a technology program in the absence of definite device needs and specifications, giving a priority weighting to the multiplicity of good, high quality development program suggestions when all proposals cannot be supported.« less
Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code
Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc
2018-02-02
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less
Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Liao, Huafei
2014-12-01
United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constitutedmore » a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.« less
Autonomous Control of Space Nuclear Reactors
NASA Technical Reports Server (NTRS)
Merk, John
2013-01-01
Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.
78 FR 35056 - Effectiveness of the Reactor Oversight Process Baseline Inspection Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0125] Effectiveness of the Reactor Oversight Process... the effectiveness of the reactor oversight process (ROP) baseline inspection program with members of... Nuclear Reactor Regulations, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; telephone: 301...
Design and analysis of a nuclear reactor core for innovative small light water reactors
NASA Astrophysics Data System (ADS)
Soldatov, Alexey I.
In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4). This section also includes discussion of the parameters important for safety and evaluation of Reactor Control System options for the proposed core design. An evaluation of the sensitivity of the proposed design to uncertainty in calculated parameters is presented in chapter 4-5. The results presented in this dissertation cover a new area of reactor design and operational parameters, and may be applicable to other small and large pressurized water reactor designs.
Safety and licensing of a small modular gas-cooled reactor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.W.; Kelley, A.P. Jr.
A modular side-by-side high-temperature gas-cooled reactor (SBS-HTGR) is being developed by Interatom/Kraftwerk Union (KWU). The General Electric Company and Interatom/KWU entered into a proprietary working agreement to continue develop jointly of the SBS-HTGR. A study on adapting the SBS-HTGR for application in the US has been completed. The study investigated the safety characteristics and the use of this type of design in an innovative approach to licensing. The safety objective guiding the design of the modular SBS-HTGR is to control radionuclide release by the retention of fission products within the fuel particles with minimal reliance on active design features. Themore » philosophy on which this objective is predicated is that by providing a simple safety case, the safety criteria can be demonstrated as being met with high confidence through conduct of a full-scale module safety test.« less
A Review of Gas-Cooled Reactor Concepts for SDI Applications
1989-08-01
710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests
Westinghouse Small Modular Reactor balance of plant and supporting systems design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memmott, M. J.; Stansbury, C.; Taylor, C.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operationmore » of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)« less
Phenomena Important in Molten Salt Reactor Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David J.; Brown, Nicholas R.; Denning, Richard
The U.S. Nuclear Regulatory Commission (NRC) is preparing for the future licensing of advanced reactors that will be very different from current light water reactors. Part of the NRC preparation strategy is to identify the simulation tools that will be used for confirmatory safety analysis of normal operation and abnormal situations in those reactors. This report advances that strategy for reactors that will use molten salts (MSRs). This includes reactors with the fuel within the salt as well as reactors using solid fuel. Although both types are discussed in this report, the emphasis is on those reactors with liquid fuelmore » because of the perception that solid-fuel MSRs will be significantly easier to simulate. These liquid-fuel reactors include thermal and fast neutron spectrum alternatives. The specific designs discussed in the report are a subset of many designs being considered in the U.S. and elsewhere but they are considered the most likely to submit information to the NRC in the near future. The objective herein, is to understand the design of proposed molten salt reactors, how they will operate under normal or transient/accident conditions, and what will be the corresponding modeling needs of simulation tools that consider neutronics, heat transfer, fluid dynamics, and material composition changes in the molten salt. These tools will enable the NRC to eventually carry out confirmatory analyses that examine the validity and accuracy of applicant’s calculations and help determine the margin of safety in plant design.« less
Solution of heat removal from nuclear reactors by natural convection
NASA Astrophysics Data System (ADS)
Zitek, Pavel; Valenta, Vaclav
2014-03-01
This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.
Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Petti
2014-06-01
Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germanymore » produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.« less
An assessment and validation study of nuclear reactors for low power space applications
NASA Technical Reports Server (NTRS)
Klein, A. C.; Gedeon, S. R.; Morey, D. C.
1987-01-01
The feasibility and safety of six conceptual small, low power nuclear reactor designs was evaluated. Feasibility evaluations included the determination of sufficient reactivity margins for seven years of full power operation and safe shutdown as well as handling during pre-launch assembly phases. Safety evaluations were concerned with the potential for maintaining subcritical conditions in the event of launch or transportation accidents. These included water immersion accident scenarios both with and without water flooding the core. Results show that most of the concepts can potentially meet the feasibility and safety requirements; however, due to the preliminary nature of the designs considered, more detailed designs will be necessary to enable these concepts to fully meet the safety requirements.
Safety evaluation report on Tennessee Valley Authority: Browns Ferry Nuclear Performance Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This safety evaluation report (SER) was prepared by the US Nuclear Regulatory Commission (NRC) staff and represents the second and last supplement (SSER 2) to the staff's original SER published as Volume 3 of NUREG-1232 in April 1989. Supplement 1 of Volume 3 of NUREG-1232 (SSER 1) was published in October 1989. Like its predecessors, SSER 2 is composed of numerous safety evaluations by the staff regarding specific elements contained in the Browns Ferry Nuclear Performance Plan (BFNPP), Volume 3 (up to and including Revision 2), submitted by the Tennessee Valley Authority (TVA) for the Browns Ferry Nuclear Plant (BFN).more » The Browns Ferry Nuclear Plant consists of three boiling-water reactors (BWRs) at a site in Limestone County, Alabama. The BFNPP describes the corrective action plans and commitments made by TVA to resolve deficiencies with its nuclear programs before the startup of Unit 2. The staff has inspected and will continue to inspect TVA's implementation of these BFNPP corrective action plans that address staff concerns about TVA's nuclear program. SSER 2 documents the NRC staff's safety evaluations and conclusions for those elements of the BFNPP that were not previously addressed by the staff or that remained open as a result of unresolved issues identified by the staff in previous SERs and inspections.« less
Analysis of the TREAT LEU Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2016-03-01
Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less
On Study of Application of Micro-reactor in Chemistry and Chemical Field
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2018-02-01
Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anspaugh, L.R.; Hendrickson, S.M.
1994-12-01
In April 1988, the US and the former-USSR signed a Memorandum of Cooperation (MOC) for Civilian Nuclear Reactor Safety; this MOC was a direct result of the accident at the Chernobyl Nuclear Power Plant Unit 4 and the following efforts by the two countries to implement a joint program to improve the safety of nuclear power plants and to understand the implications of environmental releases. A Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS) was formed to implement the MOC. The JCCCNRS established many working groups; most of these were the responsibility of the Nuclear Regulatory Commission, as farmore » as the US participation was concerned. The lone exception was Working Group 7 on Environmental Transport and Health Effects, for which the US participation was the responsibility of the US Department of Energy (DOE). The purpose of Working Group 7 was succintly stated to be, ``To develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` To implement the work DOE then formed two subworking groups: 7.1 to address Environmental Transport and 7.2 to address Health Effects. Thus, the DOE-funded Chernobyl Studies Project began. The majority of the initial tasks for this project are completed or near completion. The focus is now turned to the issue of health effects from the Chernobyl accident. Currently, we are involved in and making progress on the case-control and co-hort studies of thyroid diseases among Belarussian children. Dosimetric aspects are a fundamental part of these studies. We are currently working to implement similar studies in Ukraine. A major part of the effort of these projects is supporting these studies, both by providing methods and applications of dose reconstruction and by providing support and equipment for the medical teams.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. EPR... of the Safety Evaluation Report (SER) with open items associated with U.S. EPR Design Control...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-09-15
This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.
KINETICS OF LOW SOURCE REACTOR STARTUPS. PART I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurwitz, H. Jr.; MacMillan, D.B.; Smith, J.H.
1962-06-01
Statistical fluctuntions of neutron populations in reactors are analyzed by means of an approximate theoretical model. Development of the model is given in detail; also included are extensive numerical results derived from its application to systems with time-dependent reactivity, namely, a reactor during start-up. The special relationships of fluctuations to safety considerations are discussed. (auth)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee On US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on October 18... Subcommittee will review Chapter 4, ``Reactor,'' of the Safety Evaluation Reports associated with the US-APWR...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Miley, George H.; Santarius, John F.
1991-01-01
The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
Corletti, M.M.; Lau, L.K.; Schulz, T.L.
1993-12-14
The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, J.; Kucukboyaci, V. N.; Nguyen, L.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less
Safety and Regulatory Issues of the Thorium Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian; Worrall, Andrew; Powers, Jeffrey
2014-02-01
Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less
The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations
NASA Astrophysics Data System (ADS)
Matzie, Regis A.
2007-03-01
The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.
NASA Astrophysics Data System (ADS)
Cole, Christopher J. P.
Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.
Fission-suppressed fusion breeder on the thorium cycle and nonproliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R. W.
2012-06-19
Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P{sub fusion}/P{sub input}=4. Fusion reactors could be designed to destroymore » fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing {sup 233}U with {sup 238}U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 {sup 232}U atoms for each {sup 233}U atom produced from thorium, about twice the IAEA standards of 'reduced protection' or 'self protection.' With 2.4%{sup 232}U, high explosive material is predicted to degrade owing to ionizing radiation after a little over 1/2 year and the heat rate is 77 W just after separation and climbs to over 600 W ten years later. The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) also called liquid fluoride thorium reactors (LFTR) because of the molten fuel does not need hands on fabrication and handling.« less
NEUTRONIC REACTOR FUEL ELEMENT
Horning, W.A.; Lanning, D.D.; Donahue, D.J.
1959-10-01
A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.
Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, D.; Brunett, A.; Passerini, S.
Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. Themore » mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.« less
Analysis of reactor trips originating in balance of plant systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetson, F.T.; Gallagher, D.W.; Le, P.T.
1990-09-01
This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of thesemore » events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs.« less
Neutronic calculation of fast reactors by the EUCLID/V1 integrated code
NASA Astrophysics Data System (ADS)
Koltashev, D. A.; Stakhanova, A. A.
2017-01-01
This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.
Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M
2017-12-01
The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilli, Ludivine; Charron, Sylvie
2012-07-01
In 2009 and 2010, the Institute for Nuclear Safety and Radiation Protection (IRSN) led two pilot actions dealing with nuclear installations' safety cases. One concerned the periodical review of the French 900 MWe nuclear reactors, the other concerned the decommissioning of a workshop located on the site of Areva's La Hague fuel-reprocessing plant site in Northwestern France. The purpose of both these programs was to test ways for IRSN and a small number of stakeholders (Non-Governmental Organizations (NGOs) members, local elected officials, etc.) to engage in technical discussions. The discussions were intended to enable the stakeholders to review future applicationsmore » and provide valuable input. The test cases confirmed there is a definite challenge in successfully opening a meaningful dialogue to discuss technical issues, in particular the fact that most expertise reports were not public and the conflict that exists between the contrary demands of transparency and confidentiality of information. The test case also confirmed there are ways to further improvement of stakeholders' involvement. (authors)« less
NASA Astrophysics Data System (ADS)
Butler, Thomas S.
Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.
Design requirements for innovative homogeneous reactor, lesson learned from Fukushima accident
NASA Astrophysics Data System (ADS)
Arbie, Bakri; Pinem, Suryan; Sembiring, Tagor; Subki, Iyos
2012-06-01
The Fukushima disaster is the largest nuclear accident since the 1986 Chernobyl disaster, but it is more complex as multiple reactors and spent fuel pools are involved. The severity of the nuclear accident is rated 7 in the International Nuclear Events Scale. Expert said that "Fukushima is the biggest industrial catastrophe in the history of mankind". According to Mitsuru Obe, in The Wall Street Journal, May 16th of 2011, TEPCO estimates the nuclear fuel was exposed to the air less than five hours after the earthquake struck. Fuel rods melted away rapidly as the temperatures inside the core reached 2800 C within six hours. In less than 16 hours, the reactor core melted and dropped to the bottom of the pressure vessel. The information should be evaluated in detail. In Germany several nuclear power plant were shutdown, Italy postponed it's nuclear power program and China reviewed their nuclear power program. Different news come from Britain, in October 11, 2011, the Safety Committee said all clear for nuclear power in Britain, because there are no risk of strong earthquake and tsunami in the region. Due to this severe fact, many nuclear scientists and engineer from all over the world are looking for a new approach, such as homogeneous reactor which was developed in Oak Ridge National Laboratory in 1960-ies, during Dr. Alvin Weinberg tenure as the Director of ORNL. The paper will describe the design requirement that will be used as the basis for innovative homogeneous reactor. Innovative Homogeneous Reactor is expected to reduce core melt by two decades (4), since the fuel is intermix homogeneously with coolant and secondly we eliminate the used fuel rod which need to be cooled for a long period of time. In order to be successful for its implementation of the innovative system, testing and validation, three phases of development will be introduced. The first phase is Low Level Goals is really the proof of concept;the Medium Level Goal is Technical Goalsand the High Level Goals which is Business Goals.
MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew
The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performancemore » of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The empirical model was also implemented in the computational models of the NSTF using both RELAP5-3D and STARCCM+ codes. Accounting for the effects of ambient conditions, simulations from both codes predicted the natural circulation flow rates very well.« less
78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, R. U.; Benneche, P. E.; Hosticka, B.
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these users institutions is enhanced by the use of the nuclear facilities.
NASA Astrophysics Data System (ADS)
Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua
2018-01-01
China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.
KERENA safety concept in the context of the Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, T.; Novotny, C.; Bielor, E.
Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less
Station Blackout Analysis of HTGR-Type Experimental Power Reactor
NASA Astrophysics Data System (ADS)
Syarip; Zuhdi, Aliq; Falah, Sabilul
2018-01-01
The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less
Safety and core design of large liquid-metal cooled fast breeder reactors
NASA Astrophysics Data System (ADS)
Qvist, Staffan Alexander
In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. EPR... 6 and Chapter 15 of the U.S. EPR Safety Evaluation Report (SER) with Open Items. The Subcommittee...
SP-100 reactor with Brayton conversion for lunar surface applications
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Rodriguez, Carlos D.; Mckissock, Barbara I.; Hanlon, James C.; Mansfield, Brian C.
1992-01-01
Examined here is the potential for integrating Brayton-cycle power conversion with the SP-100 reactor for lunar surface power system applications. Two designs were characterized and modeled. The first design integrates a 100-kWe SP-100 Brayton power system with a lunar lander. This system is intended to meet early lunar mission power needs while minimizing on-site installation requirements. Man-rated radiation protection is provided by an integral multilayer, cylindrical lithium hydride/tungsten (LiH/W) shield encircling the reactor vessel. Design emphasis is on ease of deployment, safety, and reliability, while utilizing relatively near-term technology. The second design combines Brayton conversion with the SP-100 reactor in a erectable 550-kWe powerplant concept intended to satisfy later-phase lunar base power requirements. This system capitalizes on experience gained from operating the initial 100-kWe module and incorporates some technology improvements. For this system, the reactor is emplaced in a lunar regolith excavation to provide man-rated shielding, and the Brayton engines and radiators are mounted on the lunar surface and extend radially from the central reactor. Design emphasis is on performance, safety, long life, and operational flexibility.
Small reactor power systems for manned planetary surface bases
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.
Focused technology: Nuclear propulsion
NASA Technical Reports Server (NTRS)
Miller, Thomas J.
1991-01-01
The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.
Nuclear Data Uncertainty Propagation to Reactivity Coefficients of a Sodium Fast Reactor
NASA Astrophysics Data System (ADS)
Herrero, J. J.; Ochoa, R.; Martínez, J. S.; Díez, C. J.; García-Herranz, N.; Cabellos, O.
2014-04-01
The assessment of the uncertainty levels on the design and safety parameters for the innovative European Sodium Fast Reactor (ESFR) is mandatory. Some of these relevant safety quantities are the Doppler and void reactivity coefficients, whose uncertainties are quantified. Besides, the nuclear reaction data where an improvement will certainly benefit the design accuracy are identified. This work has been performed with the SCALE 6.1 codes suite and its multigroups cross sections library based on ENDF/B-VII.0 evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2014-10-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less
Research Program of a Super Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie
2006-07-01
Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSalle, F.R.; Golbeg, P.R.; Chenault, D.M.
For reactor and nuclear facilities, both Title 10, Code of Federal Regulations, Part 50, and US Department of Energy Order 6430.1A require assessments of the interaction of non-Safety Class 1 piping and equipment with Safety Class 1 piping and equipment during a seismic event to maintain the safety function. The safety class systems of nuclear reactors or nuclear facilities are designed to the applicable American Society of Mechanical Engineers standards and Seismic Category 1 criteria that require rigorous analysis, construction, and quality assurance. Because non-safety class systems are generally designed to lesser standards and seismic criteria, they may become missilesmore » during a safe shutdown earthquake. The resistance of piping, tubing, and equipment to seismically generated missiles is addressed in the paper. Gross plastic and local penetration failures are considered with applicable test verification. Missile types and seismic zones of influence are discussed. Field qualification data are also developed for missile evaluation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
Development concept for a small, split-core, heat-pipe-cooled nuclear reactor
NASA Technical Reports Server (NTRS)
Lantz, E.; Breitwieser, R.; Niederauer, G. F.
1974-01-01
There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.
NASA-EPA automotive thermal reactor technology program
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Hibbard, R. R.
1972-01-01
The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.
Criticality Safety Basics for INL FMHs and CSOs
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. L. Putman
2012-04-01
Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticalitymore » safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.« less
A Reload and Startup Plan for and #8233;Conversion of the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Varuttamaseni, A.
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts.The reload portionmore » of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
A reload and startup plan for conversion of the NIST research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. J. Diamond
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts. The reloadmore » portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
Experiment Design and Analysis Guide - Neutronics & Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misti A Lillo
2014-06-01
The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.
2017-03-01
This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less
MTR, TRA603. FIRST FLOOR PLAN. REACTOR AT CENTER. TWENTYMETER CHOPPER ...
MTR, TRA-603. FIRST FLOOR PLAN. REACTOR AT CENTER. TWENTY-METER CHOPPER HOUSE. COFFIN TURNING ROLLS. REMOVABLE PANEL OVER CANAL ON EAST SIDE. NEW PLUG STORAGE ACCESS. DOOR SCHEDULE INDICATES STEEL (FOR VAULT), WIRE MESH, AND HOLLOW METAL TYPES. STORAGE AND ISSUE ROOM. SAFETY SHOWERS. DOORWAY TO WING, TRA-604. BLAW-KNOX 3150-803-2, 7/1950. INL INDEX NO. 531-0603-00-098-100561, REV. 10. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
1980-08-01
metal fast breeder reactor (LMFBR) design. It also re-examines the impact of the accident at Three Mile Island on the design basis concept, and how...Water Reactors : ImpZications for Liquid MetaZ Fast Breeder Reactors , by W. E. Kastenberg and K. A. Solomon, July 1979. v SUNMARY The 1979 accident...the liquid metal fast breeder reactor (LMFBR). This Note assesses the impact of the TMI-2 accident on the LMFBR. Specifically, it: o Reviews the
Status and problems of fusion reactor development.
Schumacher, U
2001-03-01
Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.
Earthquake effects at nuclear reactor facilities: San Fernando earthquake of February 9th, 1971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, G.; Ibanez, P.; Matthiesen, F.
1972-02-01
The effects of the San Fernando earthquake of February 9, 1971 on 26 reactor facilities located in California, Arizona, and Nevada are reported. The safety performance of the facilities during the earthquake is discussed. (JWR)
Hanford Atomic Products Operation monthly report for March 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-04-20
This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.
METHOD AND APPARATUS FOR REACTOR SAFETY CONTROL
Huston, N.E.
1961-06-01
A self-contained nuclear reactor fuse controlled device tron absorbing material, normally in a compact form but which can be expanded into an extended form presenting a large surface for neutron absorption when triggered by an increase in neutron flux, is described.
Multiphysics Object-Oriented Simulation Environment (MOOSE)
None
2017-12-09
Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.
Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yacout, A. M.; Billone, M. C.
2016-09-16
The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of datamore » were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.« less
Expanded scope of training and education programs at the UFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernetson, W.G.; Whaley, P.M.
1985-01-01
Historically, the University of Florida Training Reactor (UFTR) has been used to train both hot and cold license reactor operator candidates in intensive two- and three-week training programs consisting of a correlated set of classroom lectures, hands-on reactor operations, and laboratory exercises. These training programs provide nuclear plant operating staff with fundamental operational experience in understanding, controlling, and evaluating subcritical multiplication, reactivity effects, reactivity manipulations, and reactor operations; a sufficient number of startups and shutdowns is also assured. The UDTR is also used in a nuclear engineering course entitled ''Principles of Nuclear Reactor Operations.'' The purpose of this paper ismore » to report the results of efforts to redirect and refine tractor operations educational and training programs at the UFTR.« less
Science and Safety: 'Acceptable' Risk
ERIC Educational Resources Information Center
Science News, 1976
1976-01-01
Stresses ways to answer questions related to widespread publicity - are nuclear reactors safe, will dangerous research in genetic manipulation be banned? - with emphasis on true meaning of safety as related to risks. (EB)
The RERTR Program status and progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1995-12-01
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1995 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1994. The revelation that Iraq was on the verge of developing a nuclear weapon at the time of the Gulf War, and that it was planning to do so by extracting HEU from the fuel of its research reactors, has given new impetus and urgency to the RERTR commitment of eliminating HEU use in research and test reactors worldwide.more » Development of advanced LEU research reactor fuels is scheduled to begin in October 1995. The Russian RERTR program, which aims to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels, is now in operation. A Statement of Intent was signed by high US and Chinese officials, endorsing cooperative activities between the RERTR program and Chinese laboratories involved in similar activities. Joint studies of LEU technical feasibility were completed for the SAFARI-I reactor in South Africa and for the ANS reactor in the US. A new study has been initiated for the FRM-II reactor in Germany. Significant progress was made on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU. A cooperation agreements is in place with the Indonesian BATAN. The first prototypical irradiation of an LEU metal-foil target for {sup 99}Mo production was accomplished in Indonesia. The TR-2 reactor, in Turkey, began conversion. SAPHIR, in Switzerland, was shut down. LEU fuel fabrication has begun for the conversion of two more US reactors. Twelve foreign reactors and nine domestic reactors have been fully converted. Approximately 60 % of the work required to eliminate the use of HEU in US-supplied research reactors has been accomplished.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labrousse, M.; Lerouge, B.; Dupuy, G.
1978-04-01
THERMOS is a water reactor designed to provide hot water up to 120/sup 0/C for district heating or for desalination applications. It is a 100-MW reactor based on proven technology: oxide fuel plate elements, integrated primary circuit, and reactor vessel located in the bottom of a pool. As in swimming pool reactors, the pool is used for biological shielding, emergency core cooling, and fission product filtering (in case of an accident). Before economics, safety is the main characteristic of the concept: no fuel failure admitted, core under water in any accidental configuration, inspection of every ''nuclear'' component, and double-wall containment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
A RE-LOOK AT THE US NRC SAFETY GOALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
mubayi v.
2013-09-22
Since they were adopted in 1986, the US NRC’s Safety Goals have played a valuable role as a de facto risk acceptance criterion against which the predicted performance of a commercial nuclear power reactor can be evaluated and assessed. The current safety goals are cast in terms of risk metrics called quantitative health objectives (QHOs), limiting numerical values of the risks of the early and latent health effects of accidental releases of radioactivity to the offsite population. However, while demonstrating compliance with current safety goals has been an important step in assessing the acceptance of the risk posed by LWRs,more » new or somewhat different goals may be needed that go beyond the current early fatality and latent cancer fatality QHOs in assessing reactor risk. Natural phenomena such as hurricanes seem to be suitable candidates for establishing a background rate to derive a risk goal as their order of magnitude cost of damages is similar to those estimated in severe accident Level 3 PRAs done for nuclear power plants. This paper obtains a risk goal that could have a wider applicability, compared to the current QHOs, as a technology-neutral goal applicable to future reactors and multi-unit sites.« less
A Figure of Merit: Quantifying the Probability of a Nuclear Reactor Accident.
Wellock, Thomas R
In recent decades, probabilistic risk assessment (PRA) has become an essential tool in risk analysis and management in many industries and government agencies. The origins of PRA date to the 1975 publication of the U.S. Nuclear Regulatory Commission's (NRC) Reactor Safety Study led by MIT professor Norman Rasmussen. The "Rasmussen Report" inspired considerable political and scholarly disputes over the motives behind it and the value of its methods and numerical estimates of risk. The Report's controversies have overshadowed the deeper technical origins of risk assessment. Nuclear experts had long sought to express risk in a "figure of merit" to verify the safety of weapons and, later, civilian reactors. By the 1970s, technical advances in PRA gave the methodology the potential to serve political ends, too. The Report, it was hoped, would prove nuclear power's safety to a growing chorus of critics. Subsequent attacks on the Report's methods and numerical estimates damaged the NRC's credibility. PRA's fortunes revived when the 1979 Three Mile Island accident demonstrated PRA's potential for improving the safety of nuclear power and other technical systems. Nevertheless, the Report's controversies endure in mistrust of PRA and its experts.
LANL: Weapons Infrastructure Briefing to Naval Reactors, July 18, 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chadwick, Frances
Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Toolmore » for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCammon, C.S.; Krishnan, E.R.; Goodman, R.J.
The potential for employee exposure to acrylates or methacrylates was investigated by a walk-through industrial-hygiene survey at the Inmont facility of BASF Corporation, Cincinnati, Ohio. Radiation-curable coatings and ink vehicles have been produced at this facility for the previous 7 years. Coatings are formulated in a mixing tank with a high-speed agitator. Two enclosed reactors were used to formulate the ink vehicles. The work force is composed of 205 employees, 41 of whom function in areas where exposure to the suspect chemicals is likely. No industrial hygiene data for multifunctional acrylates had been collected and no illnesses attributable to themore » chemicals have been reported at the facility. There is a structured medical program at the facility with a safety program and a general industrial-hygiene program. Adequate personnel records were have been kept for all employees. No recommendations were considered necessary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lescop, B.; Badeau, G.; Ivanovic, S.
Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. Themore » facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10{sup 12} n/cm{sup 2}.s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CFUL01, connected to an electronic system type SIREX.The system works in pulse mode and exhibits two outputs: the counting rate and the doubling time. For the high level of power, the I and C is equipped with two detection systems HN1 and HN2.Each way contain a boron ionization chamber (type CC52) connected to an electronics system type SIREX. The system works in current mode and has two outputs: the current and the doubling time. For each mode, the trainees can observe and measure the signal at the different stages of the electronic system, with an oscilloscope. They can understand the role of each component of the detection system: detector, cable and each electronic block. The limitation of the detection modes and their operating range can be established from the measured signal. The trainees can also modify the settings of the electronic system, such as the high voltage and the discrimination level in order to obtain all the characteristic curves of the detectors. These curves are used to define the right setting of the electronic system and to discuss the expected degradation of the detector signal resulting from the detector damage under the integrated neutron and gamma fluxes. Moreover, in addition to the study of the neutron detection systems itself, the integration of the measurements made by these detection systems in the logic of the safety system of the nuclear reactor is also addressed. Providing the trainees with an extensive overview of each part of the neutron monitoring instrumentation apply to a nuclear reactor, hands-on measurements on the ISIS reactor play a major role in ensuring a practical and comprehensive understanding of the neutron detection system and their integration in the safety system of nuclear reactors. It also gives a solid background for the follow up and the development of the neutron detection systems. In addition to on-reactor training, Internet Reactor Laboratory capability has been implemented on the ISIS reactor in 2014. For the Internet Reactor Laboratory an extensive video conference system has been implemented on ISIS reactor. The system includes 4 cameras and the transmission of the video signal given by the supervision system of the reactor which records and processes the data of the reactor. According to the pedagogic needs during the training courses, the lecturer on the ISIS reactor chooses to broadcast the relevant information at each stage of the course. For example, graph showing the histogram of the counting and current as a function of the time, or the electrical signal observed on the oscilloscope, can be broadcasted trough internet. By interacting through the video conference, the remote classroom is able to ask for changes in the reactor power or settings of the detection systems. They can also ask for the broadcast of some particular information. At the guest institution, the information is displayed in two parts or screens, as shown in the Figure 3. Concerning the interaction with - and the feedback from - the remote classroom, the camera of the video system in the remote classroom is used to ensure the contact between the trainees and the lecturer and reactor operators. Thus, the Internet Reactor Laboratory is complementary to the on reactor training courses. It allows distant learning, reducing the overall cost of the course when this is necessary. It can efficiently be used for the development of the human resources needed by the nuclear industry and the nuclear programs in countries without research reactors.« less
SNAP (Space Nuclear Auxiliary Power) reactor overview. Final report, June 1982-December 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, S.S.
1984-08-01
The SNAP reactor programs are outlined in this report. A summary of the program is included along with a technical outline of the SER, S2DR, SNAP 10A/SNAPSHOT, S8ER, and S8DR reactor systems. Specifications of the designs, the design logic and a conclusion outlining some of the program weaknesses are given.
GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Blair Briggs; John D. Bess; Jim Gulliford
2011-09-01
Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical ormore » subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPhEP will be discussed in the full paper, selected benchmarks that have been added to the ICSBEP Handbook will be highlighted, and a preview of the new benchmarks that will appear in the September 2011 edition of the Handbook will be provided. Accomplishments of the IRPhEP will also be highlighted and the future of both projects will be discussed. REFERENCES (1) International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I-IX, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), September 2010 Edition, ISBN 978-92-64-99140-8. (2) International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC(2006)1, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), March 2011 Edition, ISBN 978-92-64-99141-5.« less
Westinghouse Small Modular Reactor passive safety system response to postulated events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. C.; Wright, R. F.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. Themore » integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)« less
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Document Control Desk, Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or Director, Division of Security Policy... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 73.4 Section 73.4 Energy NUCLEAR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
Scientist vs. Citizen: The Shoreham Controversy
ERIC Educational Resources Information Center
Carl, Ann; Sailor, Vance L.
1972-01-01
Two views on the issue of nuclear reactor safety with reference to the license application of a nuclear power plant on Long Island. Each side presents scientific arguments concerning the safety standards proposed. (AL)
The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.
1999-05-10
Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Departmentmore » of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments.« less
Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)
NASA Astrophysics Data System (ADS)
Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.
2014-06-01
Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip E. MacDonald
2005-01-01
The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission ofmore » the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.« less
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
An approach to model reactor core nodalization for deterministic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less
NEUTRONIC REACTOR WITH ACCESSIBLE THIMBLE AND EMERGENCY COOLING FEATURES
McCorkle, W.H.
1960-02-23
BS>A safety system for a water-moderated reactor is described. The invention comprises a reservoir system for spraying the fuel elements within a fuel assembly with coolant and keeping them in a continuous bath even if the coolant moderator is lost from the reactor vessel. A reservoir gravity feeds one or more nozzels positioned within each fuel assembly which continually forces water past the fuel elements.
Helium-3 blankets for tritium breeding in fusion reactors
NASA Technical Reports Server (NTRS)
Steiner, Don; Embrechts, Mark; Varsamis, Georgios; Vesey, Roger; Gierszewski, Paul
1988-01-01
It is concluded that He-3 blankets offers considerable promise for tritium breeding in fusion reactors: good breeding potential, low operational risk, and attractive safety features. The availability of He-3 resources is the key issue for this concept. There is sufficient He-3 from decay of military stockpiles to meet the International Thermonuclear Experimental Reactor needs. Extraterrestrial sources of He-3 would be required for a fusion power economy.
U.S.-Russian Civilian Nuclear Cooperation Agreement: Issues for Congress
2010-07-09
for nuclear cooperation in 1973 to allow for cooperation in controlled thermonuclear fusion, fast breeder reactors , and fundamental research. The...that a 123 agreement is needed to implement this action plan—for example, full scale technical cooperation on fast reactors and demonstration of...superpowers convened a Joint Coordinating Committee for Civilian Reactor Safety starting in 1988.10 After the fall of the Soviet Union and prior to July
Integral Inherently Safe Light Water Reactor (I 2S-LWR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, Bojan; Memmott, Matthew; Boy, Guy
This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I 2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to addressmore » the preference of some utilities in the US power market for unit power level on the order of 1 GWe.« less
Effect of Neutron Absorbers Mixed in or Coating the Fuel of a 1-MWt Lithium-Cooled Space Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, Benjamin W.; Los Alamos National Laboratory, Los Alamos, NM 87545; Poston, David I.
2005-02-06
The goal of this study was to determine the effect of various neutron poisons (boron, dysprosium, erbium, and gadolinium) on a 1-MWt, lithium-cooled liquid-metal reactor. The isotopes were considered to be in-fuel poisons, as well as poisons coating the fuel. One way to quantify the effectiveness of a poison in meeting accident-condition requirements is by defining the safety margin as the difference between keff at the beginning of life and keff during the accident scenarios. The isotope that showed the most potential in increasing the safety margin for the wet-sand/water case was 157Gd. The safety margin was 10%-20% greater usingmore » 157Gd as an in-fuel poison as opposed to a coating, depending on the poison quantity. However, the most limiting condition (i.e., the accident scenario with the highest keff, thus the lowest safety margin) is when the reactor is submerged in wet sand. None of the isotopes considered significantly affected the safety margin for the dry-sand case. However, the poison isotopes considered may have applicability for meeting the wet-sand/water keff requirements or as burnable poisons in a moderated system. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.« less
Count-doubling time safety circuit
Rusch, Gordon K.; Keefe, Donald J.; McDowell, William P.
1981-01-01
There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary.
NASA Astrophysics Data System (ADS)
van Duysen, J. C.; Meric de Bellefon, G.
2017-02-01
The first light water nuclear reactor dedicated to electricity production was commissioned in Shippingport, Pennsylvania in the United States in 1957. Sixty years after the event, it is clear that this type of reactor will be a major source of electricity and one of the key solutions to limit climate change in the 21st century. This article pays homage to the teams that contributed to this achievement by their involvement in research and development and their determination to push back the frontiers of knowledge. Via a few examples of scientific or technological milestones, it describes the evolution of ideas, models, and techniques during the last 60 years, and gives the current state-of-the-art in areas related to the safety of the reactor pressure vessel. Among other topics, it focuses on vessel manufacturing, steel fracture mechanics analysis, and understanding of irradiation-induced damage.
DOE handbook: Guide to good practices for training and qualification of maintenance personnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
The purpose of this Handbook is to provide contractor training organizations with information that can be used to verify the adequacy of and/or modify existing maintenance training programs, or to develop new training programs. This guide, used in conjunction with facility-specific job analyses, provides a framework for training and qualification programs for maintenance personnel at DOE reactor and nonreactor nuclear facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. The functional positions of maintenance mechanic, electrician, and instrumentation and control technician are covered by this guide. Sufficient common knowledge and skills were found tomore » include the three disciplines in one guide to good practices. Contents include: qualifications; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Appendices are included which relate to: administrative training; industrial safety training; fundamentals training; tools and equipment training; facility systems and component knowledge training; facility systems and component skills training; and specialized skills training.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron
Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less
Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less
Analytical modeling of helium turbomachinery using FORTRAN 77
NASA Astrophysics Data System (ADS)
Balaji, Purushotham
Advanced Generation IV modular reactors, including Very High Temperature Reactors (VHTRs), utilize helium as the working fluid, with a potential for high efficiency power production utilizing helium turbomachinery. Helium is chemically inert and nonradioactive which makes the gas ideal for a nuclear power-plant environment where radioactive leaks are a high concern. These properties of helium gas helps to increase the safety features as well as to decrease the aging process of plant components. The lack of sufficient helium turbomachinery data has made it difficult to study the vital role played by the gas turbine components of these VHTR powered cycles. Therefore, this research work focuses on predicting the performance of helium compressors. A FORTRAN77 program is developed to simulate helium compressor operation, including surge line prediction. The resulting design point and off design performance data can be used to develop compressor map files readable by Numerical Propulsion Simulation Software (NPSS). This multi-physics simulation software that was developed for propulsion system analysis has found applications in simulating power-plant cycles.
CBP for Field Workers – Results and Insights from Three Usability and Interface Design Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Bly, Aaron Douglas
2015-09-01
Nearly all activities that involve human interaction with the systems in a nuclear power plant are guided by procedures. Even though the paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety, improving procedure use could yield significant savings in increased efficiency as well as improved nuclear safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use and adherence, researchers in the Light-Water Reactor Sustainability (LWRS) Program, togethermore » with the nuclear industry, have been investigating the possibility and feasibility of replacing the current paper-based procedure process with a computer-based procedure (CBP) system. This report describes a field evaluation of new design concepts of a prototype computer-based procedure system.« less
Nuclear reactor control apparatus
Sridhar, Bettadapur N.
1983-10-25
Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.
SPERT I DESTRUCTIVE TEST PROGRAM SAFETY ANALYSIS REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spano, A.H.; Miller, R.W.
1962-06-15
The water-moderated core used for destructive experiments is mounted in the Spent I open-type reactor vessel, which has no provision for pressurization or forced coolant flow. The core is an array of highly enriched aluminum clad, plate-type fuel assemblies, using four bladetype, gang-operated control rods. Reactor transients are initiated at ambient temperature by step-insentions of reactivity, using a control rod which can be quickly ejected from the core. Following an initial series of static measurements to determine the basic- reactor properties of the test core, a series of nondestructive, self-limiting power excursion tests was performed, which covered a reactor periodmore » range down to the point where minor fuel plate damage first occurred -approximately for a 10- msec period test. These tests provided power, temperature, and pressure data. Additional kinetic teste in the period region between 10 and 5 msec were completed to explore the region of limited core damage. Fuel plate damage results included plate distortion, cladding cracking, and fuel melting. These exploratory tests were valuable in revealing unexpected changes in the dependence of pressure, temperature, burst energy, and burst shape parameters on reactor period, although the dependence of peak power on reactor period was not significantly changed. An evaluation of hazards involved in conducting the 2- msec test, based on pessimistic assumptions regarding fission product release and weather conditions, indicates that with the procedural controls normally exercised in the conduct of any transient test at Spent and the special controls to be in effect during the destructive test series, no significant hazard to personnel or to the general public will be obtained. All nuclear operation is conducted remotely approximately 1/2 mile from the reactor building. Discussion is also given of the supervision and control of personnel during and after each destructive test, and of the plans for re-entry, cleanup, and restoration of the facility. (auth)« less
Impact of Passive Safety on FHR Instrumentation Systems Design and Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, David Eugene
2015-01-01
Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, throughmore » an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.« less
N Reactor Deactivation Program Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, J.L.
1993-12-01
This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less
Experiences in utilization of research reactors in Yugoslavia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.
1971-06-15
The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less
Hanford Works monthly report, December 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1951-01-22
This is a progress report of the production reactors on the Hanford Reservation for the month of December 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, April 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1952-05-20
This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, August 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-09-18
This is a progress report of the production reactors on the Hanford Reservation for the month of August 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, May 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1951-06-21
This is a progress report of the production reactors on the Hanford Reservation for the month of May 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, December 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1952-01-22
This is a progress report of the production reactors on the Hanford Reservation for the month of December 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, March 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1951-04-20
This is a progress report of the production reactors on the Hanford Reservation for the month of March 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, July 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
This is a progress report of the production reactors on the Hanford Reservation for the month of July 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, March 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1952-04-18
This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, July 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1952-08-15
This is a progress report of the production reactors on the Hanford Reservation for the month of July 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford works monthly report, September 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
This is a progress report of the production reactors on the Hanford Reservation for the month of September 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, January 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
This is a progress report of the production reactors on the Hanford Reservation for the month of January 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
Hanford Works monthly report, August 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1951-09-24
This is a progress report of the production reactors on the Hanford Reservation for the month of August 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, July 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-08-18
This is a progress report of the production reactors on the Hanford Reservation for the month of July 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, November 1951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1951-12-21
This is a progress report of the production reactors on the Hanford Reservation for the month of November 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, October 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-11-20
This is a progress report of the production reactors on the Hanford Reservation for the month of October 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, September 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-10-20
This is a progress report of the production reactors on the Hanford Reservation for the month of September 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Hanford Works monthly report, November 1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prout, G.R.
1950-12-20
This is a progress report of the production reactors on the Hanford Reservation for the month of November 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.
Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiberi, V.
2012-07-01
The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity ofmore » the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine core concentrations mesh for the calculation of the power distribution. (authors)« less
NASA Technical Reports Server (NTRS)
1972-01-01
Nuclear safety analysis as applied to a space base mission is presented. The nuclear safety analysis document summarizes the mission and the credible accidents/events which may lead to nuclear hazards to the general public. The radiological effects and associated consequences of the hazards are discussed in detail. The probability of occurrence is combined with the potential number of individuals exposed to or above guideline values to provide a measure of accident and total mission risk. The overall mission risk has been determined to be low with the potential exposure to or above 25 rem limited to less than 4 individuals per every 1000 missions performed. No radiological risk to the general public occurs during the prelaunch phase at KSC. The most significant risks occur from prolonged exposure to reactor debris following land impact generally associated with the disposal phase of the mission where fission product inventories can be high.
Manned space flight nuclear system safety. Volume 1: base nuclear system safety
NASA Technical Reports Server (NTRS)
1972-01-01
The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.
A liquid-metal filling system for pumped primary loop space reactors
NASA Astrophysics Data System (ADS)
Crandall, D. L.; Reed, W. C.
Some concepts for the SP-100 space nuclear power reactor use liquid metal as the primary coolant in a pumped loop. Prior to filling ground engineering test articles or reactor systems, the liquid metal must be purified and circulated through the reactor primary system to remove contaminants. If not removed, these contaminants enhance corrosion and reduce reliability. A facility was designed and built to support Department of Energy Liquid Metal Fast Breeder Reactor tests conducted at the Idaho National Engineering Laboratory. This test program used liquid sodium to cool nuclear fuel in in-pile experiments; thus, a system was needed to store and purify sodium inventories and fill the experiment assemblies. This same system, with modifications and potential changeover to lithium or sodium-potassium (NaK), can be used in the Space Nuclear Power Reactor Program. This paper addresses the requirements, description, modifications, operation, and appropriateness of using this liquid-metal system to support the SP-100 space reactor program.
Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike
2018-01-16
Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike
2014-10-29
Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosuremore » and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."« less
NASA Astrophysics Data System (ADS)
Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.
NASA Astrophysics Data System (ADS)
Syarip; Po, L. C. C.
2018-05-01
In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.