10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor... be designed to store spent fuel and/or solid reactor-related GTCC waste. (1) Reactor-related GTCC...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General considerations. 72.90 Section 72.90 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors...
Clean catalytic combustor program
NASA Technical Reports Server (NTRS)
Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.
1983-01-01
A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.
Impact of Including Higher Actinides in Fast Reactor Transmutation Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Forget; M. Asgari; R. Ferrer
2007-09-01
Previous fast reactor transmutation studies generally disregarded higher mass minor actinides beyond Cm-246 due to various considerations including deficiencies in nuclear cross-section data. Although omission of these higher mass actinides does not significantly impact the neutronic calculations and fuel cycle performance parameters follow-on neutron dose calculations related to fuel recycling, transportation and handling are significantly impacted. This report shows that including the minor actinides in the equilibrium fast reactor calculations will increase the predicted neutron emission by about 30%. In addition a sensitivity study was initiated by comparing the impact of different cross-section evaluation file for representing these minor actinides.
Code of Federal Regulations, 2014 CFR
2014-01-01
... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... determination of no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor...
Code of Federal Regulations, 2013 CFR
2013-01-01
... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... determination of no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor...
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors... environmental impact of the ISFSI or MRS must be investigated and assessed. (b) Proposed sites for the ISFSI or... proposed site for an MRS, the potential for radiological and other environmental impacts on the region must...
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors... environmental impact of the ISFSI or MRS must be investigated and assessed. (b) Proposed sites for the ISFSI or... proposed site for an MRS, the potential for radiological and other environmental impacts on the region must...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
...., Aerotest Radiography and Research Reactor; Notice of Consideration of Approval of Transfer and Conforming Amendment, Opportunity for a Hearing, and Order Imposing Procedures for Access to Sensitive Unclassified Non... Manager, Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear...
Reactor pressure vessel embrittlement: Insights from neural network modelling
NASA Astrophysics Data System (ADS)
Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.
2018-04-01
Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.
NASA Technical Reports Server (NTRS)
Stubblefield, F. W. (Editor)
1987-01-01
Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.
An evaluation of alloys and coatings for use in automobile thermal reactors
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Oldrieve, R. E.
1974-01-01
Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were analyzed in cyclic engine dynamometer tests with peak temperature of 1900 F (1040 C). Two developmental ferritic iron alloys GE1541 and NASA-18T - exhibited the best overall performance lasting at least 60% of the life of the test engine. Four of the alloys evaluated warrant consideration for reactor use. They include GE1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.-
Evaluation of alloys and coatings for use in automobile thermal reactors
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Oldrieve, R. E.
1974-01-01
Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were evaluated in cyclic engine dynamometer tests with a peak temperature of 1040 C (1900 F). Two developmental ferritic-iron alloys, GE-1541 and NASA-18T, exhibited the best overall performance by lasting at least 60 percent of the life of test engine. Four of the alloys evaluated warrant consideration for reactor use. They are GE-1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MH Lane
2006-02-15
This letter forwards a compilation of knowledge gained regarding international interactions and issues associated with Project Prometheus. The following topics are discussed herein: (1) Assessment of international fast reactor capability and availability; (2) Japanese fast reactor (JOYO) contracting strategy; (3) NRPCT/Program Office international contract follow; (4) Completion of the Japan Atomic Energy Agency (JAEA)/Pacific Northwest National Laboratory (PNNL) contract for manufacture of reactor test components; (5) US/Japanese Departmental interactions and required Treaties and Agreements; and (6) Non-technical details--interactions and considerations.
Computed tomography of radioactive objects and materials
NASA Astrophysics Data System (ADS)
Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.
1990-12-01
Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.
Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development
NASA Astrophysics Data System (ADS)
Berg, Thomas A.; Disney, Richard K.
2004-02-01
Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.
Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Thomas A.; Disney, Richard K.
Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.
Neutron fluxes in test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles Jean-Michel
Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.
Safety in the Chemical Laboratory: Handling of Oxygen in Research Experiments.
ERIC Educational Resources Information Center
Burnett, R. J.; Cole, J. E., Jr.
1985-01-01
Examines some of the considerations involved in setting up a typical oxygen/organic reaction. These considerations (including protection for personnel/equipment, adequate ventilation, reactor design, maximum reactor charge, operating procedures, and others) influence how the reaction is to be conducted and what compromises the scientist must…
Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne L.
This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less
Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne Leland
This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less
Structural materials issues for the next generation fission reactors
NASA Astrophysics Data System (ADS)
Chant, I.; Murty, K. L.
2010-09-01
Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
Schlegel, S; Koeser, H
2007-01-01
Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.
Nuclear reactor having a polyhedral primary shield and removable vessel insulation
Ekeroth, Douglas E.; Orr, Richard
1993-01-01
A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.
Nuclear reactor having a polyhedral primary shield and removable vessel insulation
Ekeroth, D.E.; Orr, R.
1993-12-07
A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.
NASA Reactor Facility Hazards Summary. Volume 1
NASA Technical Reports Server (NTRS)
1959-01-01
The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.
10 CFR 72.210 - General license issued.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...
10 CFR 72.210 - General license issued.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...
On the Effectiveness of Wastewater Cylindrical Reactors: an Analysis Through Steiner Symmetrization
NASA Astrophysics Data System (ADS)
Díaz, J. I.; Gómez-Castro, D.
2016-03-01
The mathematical analysis of the shape of chemical reactors is studied in this paper through the research of the optimization of its effectiveness η such as introduced by R. Aris around 1960. Although our main motivation is the consideration of reactors specially designed for the treatment of wastewaters our results are relevant also in more general frameworks. We simplify the modeling by assuming a single chemical reaction with a monotone kinetics leading to a parabolic equation with a non-necessarily differentiable function. In fact we consider here the case of a single, non-reversible catalysis reaction of chemical order q, 00). We assume the chemical reactor of cylindrical shape Ω =G× (0,H) with G and open regular set of {R}2 not necessarily symmetric. We show that among all the sections G with prescribed area the ball is the set of lowest effectiveness η (t,G). The proof uses the notions of Steiner rearrangement. Finally, we show that if the height H is small enough then the effectiveness can be made as close to 1 as desired.
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
NRC ARDC Guidance Support Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holbrook, Mark R.
This report provides a summary that reflects the progress and status of proposed regulatory design criteria for advanced non-light water reactor (LWR) designs in accordance with the Level 3 milestone M3AT-17IN2001013 in work package AT-17IN200101. These criteria have been designated as advanced reactor design criteria (ARDC) and they provide guidance to future applicants for addressing the general design criteria (GDC) that are currently applied specifically to LWR designs. This report provides a summary of Phase 2 activities related to the various tasks associated with ARDC development and the subsequent development of ARDC regulatory guidance for sodium fast reactor (SFR) andmore » modular high-temperature gas-cooled reactor (HTGR) designs. Status Report Organization: Section 2 discusses the origin of the GDC and their application to LWRs. Section 3 addresses the objective of this initiative and how it benefits the advanced non-LWR reactor vendors. Section 4 discusses the scope and structure of the initiative. Section 5 provides background on the U.S. Department of Energy (DOE) ARDC team’s original development of the proposed ARDC that were submitted to the NRC for consideration. Section 6 provides a summary of recent ARDC Phase 2 activities. Appendices A through E document the DOE ARDC team’s public comments on various sections of the NRC’s draft regulatory guide DG–1330, “Guidance for Developing Principal Design Criteria for Non-Light Water Reactors.”« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... INFORMATION CONTACT: Michael Mahoney, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission... Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation. [FR... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346] FirstEnergy Nuclear Operating Company; Notice of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
NASA Astrophysics Data System (ADS)
Cook, William Gordon
Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.
Proceedings of a Symposium on Advanced Compact Reactor Systems
NASA Technical Reports Server (NTRS)
1983-01-01
Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichman, K.; Tsao, J.; Mayfield, M.
The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less
Nuclear energy center site survey reactor plant considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, H.
The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers.
Thermionic reactor power conditioner design for nuclear electric propulsion.
NASA Technical Reports Server (NTRS)
Jacobsen, A. S.; Tasca, D. M.
1971-01-01
Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.
KINETICS OF LOW SOURCE REACTOR STARTUPS. PART I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurwitz, H. Jr.; MacMillan, D.B.; Smith, J.H.
1962-06-01
Statistical fluctuntions of neutron populations in reactors are analyzed by means of an approximate theoretical model. Development of the model is given in detail; also included are extensive numerical results derived from its application to systems with time-dependent reactivity, namely, a reactor during start-up. The special relationships of fluctuations to safety considerations are discussed. (auth)
Mission design considerations for nuclear risk mitigation
NASA Technical Reports Server (NTRS)
Stancati, Mike; Collins, John
1993-01-01
Strategies for the mitigation of the nuclear risk associated with two specific mission operations are discussed. These operations are the safe return of nuclear thermal propulsion reactors to earth orbit and the disposal of lunar/Mars spacecraft reactors.
Zirconium Hydride Space Power Reactor design.
NASA Technical Reports Server (NTRS)
Asquith, J. G.; Mason, D. G.; Stamp, S.
1972-01-01
The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
10 CFR 110.26 - General license for the export of nuclear reactor components.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor...
Modernization of existing VVER-1000 surveillance programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Erak, D.; Makhotin, D.
2011-07-01
According to generally accepted world practice, evaluation of the reactor pressure vessel (RPV) material behavior during operation is carried out using tests of surveillance specimens. The main objective of the surveillance program consists in insurance of safe RPV operation during the design lifetime and lifetime-extension period. At present, the approaches of pressure vessels residual life validation based on the test results of their surveillance specimens have been developed and introduced in Russia and are under consideration in other countries where vodo-vodyanoi energetichesky reactors- (VVER-) 1000 are in operation. In this case, it is necessary to ensure leading irradiation of surveillancemore » specimens (as compared to the pressure vessel wall) and to provide uniformly irradiated specimen groups for mechanical testing. Standard surveillance program of VVER-1000 has several significant shortcomings and does not meet these requirements. Taking into account program of lifetime extension of VVER-1000 operating in Russia, it is necessary to carry out upgrading of the VVER-1000 surveillance program. This paper studies the conditions of a surveillance specimen's irradiation and upgrading of existing sets to provide monitoring and prognosis of RPV material properties for extension of the reactor's lifetime up to 60 years or more. (authors)« less
An active target for the accelerator-based transmutation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebyonkin, K.F.
1995-10-01
Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less
Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.
2006-06-01
Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.
Supercell Depletion Studies for Prismatic High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi
2012-10-01
The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challengesmore » exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.« less
On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.
2017-01-01
It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.
Helium-3 blankets for tritium breeding in fusion reactors
NASA Technical Reports Server (NTRS)
Steiner, Don; Embrechts, Mark; Varsamis, Georgios; Vesey, Roger; Gierszewski, Paul
1988-01-01
It is concluded that He-3 blankets offers considerable promise for tritium breeding in fusion reactors: good breeding potential, low operational risk, and attractive safety features. The availability of He-3 resources is the key issue for this concept. There is sufficient He-3 from decay of military stockpiles to meet the International Thermonuclear Experimental Reactor needs. Extraterrestrial sources of He-3 would be required for a fusion power economy.
High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment
NASA Astrophysics Data System (ADS)
Heinrich, Jonathon
2016-10-01
Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.
ERIC Educational Resources Information Center
Hogerton, John F.
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…
NASA-EPA automotive thermal reactor technology program
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Hibbard, R. R.
1972-01-01
The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... Part VI Nuclear Regulatory Commission 10 CFR Part 51 Consideration of Environmental Impacts of... Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After Cessation of Reactor Operation... Commission (NRC or Commission) is revising its generic determination on the environmental impacts of storage...
10 CFR 2.500 - Scope of subpart.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Procedures Applicable to Proceedings for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be... consideration in separate hearings of an application for a license to manufacture nuclear power reactors under... 10 Energy 1 2010-01-01 2010-01-01 false Scope of subpart. 2.500 Section 2.500 Energy NUCLEAR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju
2010-01-01
Alloy 617 is currently considered as a leading candidate material for high temperature components in the Gen IV Nuclear Reactor Systems. Because of the unprecedented severe working conditions beyond its commercial service experience required by the Gen IV systems, the alloy faces various challenges in both mechanical and metallurgical properties. Following a previous paper discussing the mechanical property challenges, this paper is focused on the challenges and issues in metallurgical properties of the alloy for the intended nuclear application. Considerations are given in details about its metallurgical stability and aging evolution, aging effects on mechanical properties, potential Co hazard, andmore » internal oxidation. Some research and development activities are suggested with discussions on viability to satisfy the Gen IV Nuclear Reactor System needs.« less
Radiocarbon tracer measurements of atmospheric hydroxyl radical concentrations
NASA Technical Reports Server (NTRS)
Campbell, M. J.; Farmer, J. C.; Fitzner, C. A.; Henry, M. N.; Sheppard, J. C.
1986-01-01
The usefulness of the C-14 tracer in measurements of atmospheric hydroxyl radical concentration is discussed. The apparatus and the experimental conditions of three variations of a radiochemical method of atmosphere analysis are described and analyzed: the Teflon bag static reactor, the flow reactor (used in the Wallops Island tests), and the aircraft OH titration reactor. The procedure for reduction of the aircraft reactor instrument data is outlined. The problems connected with the measurement of hydroxyl radicals are discussed. It is suggested that the gas-phase radioisotope methods have considerable potential in measuring tropospheric impurities present in very low concentrations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broda, Jill Terese
The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the samemore » order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju
2010-01-01
Alloy 617 is currently considered as a leading candidate material for high temperature components in the Gen IV Nuclear Reactor Systems. Because of the unprecedented severe working conditions beyond its commercial service experience required by the Gen IV systems, the alloy faces various challenges in both mechanical and metallurgical properties. This paper, as Part I of the discussion, is focused on the challenges and issues in the mechanical properties of Alloy 617 for the intended nuclear application. Considerations are given in details in its mechanical property data scatter, low creep strength in the desired high temperature range, lack of longtermmore » creep curves, high loading rate dependency, and preponderant tertiary creep. Some research and development activities are suggested with discussions on their viability to satisfy the Gen IV Nuclear Reactor System needs in near future and in the long run.« less
On heat loading, novel divertors, and fusion reactors
NASA Astrophysics Data System (ADS)
Kotschenreuther, M.; Valanju, P. M.; Mahajan, S. M.; Wiley, J. C.
2007-07-01
The limited thermal power handling capacity of the standard divertors (used in current as well as projected tokamaks) is likely to force extremely high (˜90%) radiation fractions frad in tokamak fusion reactors that have heating powers considerably larger than ITER [D. J. Campbell, Phys. Plasmas 8, 2041 (2001)]. Such enormous values of necessary frad could have serious and debilitating consequences on the core confinement, stability, and dependability for a fusion power reactor, especially in reactors with Internal Transport Barriers. A new class of divertors, called X-divertors (XD), which considerably enhance the divertor thermal capacity through a flaring of the field lines only near the divertor plates, may be necessary and sufficient to overcome these problems and lead to a dependable fusion power reactor with acceptable economics. X-divertors will lower the bar on the necessary confinement to bring it in the range of the present experimental results. Its ability to reduce the radiative burden imparts the X-divertor with a key advantage. Lower radiation demands allow sharply peaked density profiles that enhance the bootstrap fraction creating the possibility for a highly increased beta for the same beta normal discharges. The X-divertor emerges as a beta-enhancer capable of raising it by up to roughly a factor of 2.
MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Gohar, Yousry
2015-11-01
In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less
151. ARAIII Reactor building (ARA608) Details of reactor pit and ...
151. ARA-III Reactor building (ARA-608) Details of reactor pit and instrument plan. Aerojet-general 880-area/GCRE-608-T-19. Date: November 1958. Ineel index code no. 063-0608-25-013-102678. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -
NASA Astrophysics Data System (ADS)
Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro
Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... significance, special nuclear material of low strategic significance, and irradiated reactor fuel. 70.20b..., special nuclear material of low strategic significance, and irradiated reactor fuel. (a) A general license... requirements of § 73.67 of this chapter. (3) Irradiated reactor fuel of the type and quantity subject to the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... significance, special nuclear material of low strategic significance, and irradiated reactor fuel. 70.20b..., special nuclear material of low strategic significance, and irradiated reactor fuel. (a) A general license... requirements of § 73.67 of this chapter. (3) Irradiated reactor fuel of the type and quantity subject to the...
Nuclear Rocket Technology Conference
NASA Technical Reports Server (NTRS)
1966-01-01
The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the conference, and Mr. Roy V. Humble. Dr. John C. Eward served as general chairman for the conference.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.220 Violations. This general license is subject to the...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.220 Violations. This general license is subject to the...
Supplement to Theory of Neutron Chain Reactions
DOE R&D Accomplishments Database
Weinberg, Alvin M.; Noderer, L. C.
1952-05-26
General discussions are given of the theory of neutron chain reactions. These include observations on exponential experiments, the general reactor with resonance fission, microscopic pile theory, and homogeneous slow neutron reactors. (B.J.H.)
155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...
155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo
2009-01-01
Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.
Present status of liquid metal research for a fusion reactor
NASA Astrophysics Data System (ADS)
Tabarés, Francisco L.
2016-01-01
Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.
A Compact Nuclear Fusion Reactor for Space Flights
NASA Astrophysics Data System (ADS)
Nastoyashchiy, Anatoly F.
2006-05-01
A small-scale nuclear fusion reactor is suggested based on the concepts of plasma confinement (with a high pressure gas) which have been patented by the author. The reactor considered can be used as a power setup in space flights. Among the advantages of this reactor is the use of a D3He fuel mixture which at burning gives main reactor products — charged particles. The energy balance considerably improves, as synchrotron radiation turn out "captured" in the plasma volume, and dangerous, in the case of classical magnetic confinement, instabilities in the direct current magnetic field configuration proposed do not exist. As a result, the reactor sizes are quite suitable (of the order of several meters). A possibility of making reactive thrust due to employment of ejection of multiply charged ions formed at injection of pellets from some adequate substance into the hot plasma center is considered.
Criteria for the selection of materials for water-cooled reactors., with comments on D 2O reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, W.B.
1962-07-06
When intense radiation, high temperatures, and high mechanical stresses act in combination on different materials in contact, the familiar classification of materials into solids, liquids, and gases is a handicap rather than a help. Water becomes a source of H 2 that will pass into a metal and change its resistance to stress. Hydrogen diffuses rapidly through metals even at water temperatures. At the higher temperatures in nuclear fuel, O 2 and C diffuse rapidly. In some ceramic fuels the operating temperatures are so high that even heavy atoms will dwell less than a msec in any given lattice position.more » With so high a rate of the breaking of bonds, diffusion and interaction, the contribution of all substances present to the general ecology needs consideration. The stabilization of the mechanical properties of metals when bombarded by fast neutrons and exposed to wandering atoms, especially H, has to be studied. The behavior of Zr alloys and UO/sub 2/ in such environments has been extensively studied, and useful design criteria have been set and explored. (auth)« less
Biofuel from jute stick by pyrolysis technology
NASA Astrophysics Data System (ADS)
Ferdous, J.; Parveen, M.; Islam, M. R.; Haniu, H.; Takai, K.
2017-06-01
In this study the conversion of jute stick into biofuels and chemicals by externally heated fixed-bed pyrolysis reactor have been taken into consideration. The solid jute stick was characterized through proximate and ultimate analysis, gross calorific values and thermo-gravimetric analysis to investigate their suitability as feedstock for this consideration. The solid biomass particles were fed into the reactor by gravity feed type reactor feeder. The products were oil, char and gases. The liquid and char products were collected separately while the gas was flared into the atmosphere. The process conditions were varied by fixed-bed temperature; feed stock particle size, N2 gas flow rate and running time. All parameters were found to influence the product yields significantly. The maximum liquid yields were 50 wt% of solid jute stick at reactor temperature 425°C for N2 gas flow rate 6 l/min, feed particle size 1180-1700 µm and running time 30 min. Liquid products obtained at these conditions were characterized by physical properties, chemical analysis and GC-MS techniques. The results show that it is possible to obtained liquid products that are comparable to petroleum fuels and valuable chemical feedstock from the selected biomass if the pyrolysis conditions are chosen accordingly.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... Design,'' GDC 31, ``Fracture Prevention of Reactor Coolant Pressure Boundary,'' and GDC 32, ``Inspection... Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration...
Structural materials for Gen-IV nuclear reactors: Challenges and opportunities
NASA Astrophysics Data System (ADS)
Murty, K. L.; Charit, I.
2008-12-01
Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.
NASA Astrophysics Data System (ADS)
Alzbutas, Robertas
2015-04-01
In general, the Emergency Planning Zones (EPZ) are defined as well as plant site and arrangement structures are designed to minimize the potential for natural and manmade hazards external to the plant from affecting the plant safety related functions, which can affect nearby population and environment. This may include consideration of extreme winds, fires, flooding, aircraft crash, seismic activity, etc. Thus the design basis for plant and site is deeply related to the effects of any postulated external events and the limitation of the plant capability to cope with accidents i.e. perform safety functions. It has been observed that the Probabilistic Safety Assessment (PSA) methodologies to deal with EPZ and extreme external events have not reached the same level of maturity as for severe internal events. The design basis for any plant and site is deeply related to the effects of any postulated external events and the limitation of the plant capability to cope with accidents i.e. perform safety functions. As a prime example of an advanced reactor and new Nuclear Power Plant (NPP) with enhanced safety, the International Reactor Innovative and Secure (IRIS) and Site selection for New NPP in Lithuania had been considered in this work. In the used Safety-by-Design™ approach, the PSA played obviously a key role; therefore a Preliminary IRIS PSA had been developed along with the design. For the design and pre-licensing process of IRIS the external events analysis included both qualitative evaluation and quantitative assessment. As a result of preliminary qualitative analyses, the external events that were chosen for more detailed quantitative scoping evaluation were high winds and tornadoes, aircraft crash, and seismic events. For the site selection in Lithuania a detail site evaluation process was performed and related to the EPZ and risk zoning considerations. In general, applying the quantitative assessment, bounding site characteristics could be used in order to optimize potential redefinition or future restrictions on plant siting and risk zoning. It must be noticed that the use of existing regulations and installations as the basis for this redefinition will not in any way impact the high degree of conservatism inherent in current regulations. Moreover, the remapping process makes this methodology partially independent from the uncertainties still affecting probabilistic techniques. Notwithstanding these considerations, it is still expected that applying this methodology to advanced plant designs with improved safety features will allow significant changes in the emergency planning requirements, and specifically the size of the EPZ. In particular, in the case of IRIS it is expected that taking full credit of the Safety-by-Design™ approach of the IRIS reactor will allow a dramatic changes in the EPZ, while still maintaining a level of protection to the public fully consistent with existing regulations.
Applying chemical engineering concepts to non-thermal plasma reactors
NASA Astrophysics Data System (ADS)
Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI
2018-06-01
Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...
Kloss, S; Müller, U; Oelschläger, H
2005-09-01
Facilities for the manufacturing of pharmaceutical drug substances on the pilot-plant and the industrial scale as well as chemical reactors and vessels used for chemical work-up mainly consist of alloyed stainless steel. The influence of the alloy composition and the surface condition, i.e. of the roughness of the stainless-steel materials, on the adsorption of structurally diverse steroidal substances and, hence, on the quality of the products was studied. In general, stainless-steel alloys with smooth, not so rough surfaces are to be favored as reactor material. However, it was demonstrated in this study that, on account of the weak interaction between active substances and steel materials, mechanically polished materials of a medium roughness up to approx. 0.4 microm can be employed instead of the considerably more cost-intensive electrochemically polished stainless-steel surfaces. The type of surface finishing up to a defined roughness, then, has no influence on the quality of these pharmaceutical products. Substances that, because of their molecular structure, can function as "anions" in the presence of polar solvents, are adsorbed on very smooth surfaces prepared by electrochemical methods, forming an amorphous surface film. For substances with this structural characteristics, the lower-cost mechanically polished reactor materials of a medium roughness up to approx. 0.5 microm should be used exclusively.
Integrated NTP Vehicle Radiation Design
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis A.; Rodriquez, Mitchell A.
2018-01-01
The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves.
Integrated NTP Vehicle Radiation Design
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis; Rodriquez, Mitchell
2018-01-01
The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Feasibility Study for a Combined Radiation Environment in the ACRR-FRECII Cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parma, Edward J.
The objective of this report is to determine the feasibility of a combined pulsed - power accelerator machine, similar to HERMES - III, with the Annular Core Research Reactor (ACRR) Fueled - Ring External Cavity (FREC - II) in a new facility. The document is conceptual in nature, and includes some neutronic analysis that i llustrates that that the physics of such a concept would be feasible. There would still be many engineering design considerations and issues that would need to be investigated in order to determine the true viability of such a concept. This report does n ot addressmore » engineering design details, the cost of such a facility, or what would be required to develop the safety authorization of the concept. The radiation requirements for the "on - target" gamma - ray dose and dose rate are not addressed in this report . It is assumed that if the same general on - target specifications for a HERMES - III type machine could be met with the proposed concept, that the machine would b e considered highly useful as a radiation effects sciences platform. In general, the combined accelerator/ACRR reactor concept can be shown to be feasible with no major issues that would preclude the usefulness of such a facility. The new facility would provide a capability that currently does not exist in the radiation testing complex.« less
157. ARAIII Reactor building (ARA608) Main gas loop mechanical flow ...
157. ARA-III Reactor building (ARA-608) Main gas loop mechanical flow sheet. This drawing was selected as a typical example of mechanical arrangements within reactor building. Aerojet-general 880-area/GCRE-0608-50-013-102634. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
10 CFR 1.43 - Office of Nuclear Reactor Regulation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...
10 CFR 1.43 - Office of Nuclear Reactor Regulation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...
10 CFR 1.43 - Office of Nuclear Reactor Regulation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...
10 CFR 1.43 - Office of Nuclear Reactor Regulation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...
10 CFR 1.43 - Office of Nuclear Reactor Regulation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...
Energy in perspective: an orientation conference for educators. [28 presentations
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKlveen, J.W.
An awareness of energy and the pertinent economic, environmental, and risk/benefit consideration must be presented to the public. A logical beginning point is in the classroom, through knowledgeable and motivated educators. Ms. Carolyn Warner, Superintendent of Public Instruction, State of Arizona, presented the first paper, Energy and the Educator. Papers on all aspects of energy were presented at the conference by experts from throughout the United States. The papers were: Energy Resources: World and U.S.A.; Coal Technology: Mining, Energy Generation, Wastes, and Environmental Considerations; Energy Conservation; Arizona's Energy Resources and Development; Gas and Oil: Natural Gas, S.N.G., Oil, Oil Shale,more » and Tar Sands; Geothermal Energy Perspective; Solar Energy; Solar Technology; Natural Radiation Environment; Fission Theory; Arizona's Palo Verde Nuclear Generation Complex; Gas Cooled Reactors, Liquid Metal Reactors and Alternatives; Radioactive Wastes: Disposal Alternatives; Reactor Safety; Nuclear Safeguards; Fusion Power; Genetic and Somatic Radiation Effects; Energy Economics; Religion, Philosophy, and Energy; Nuclear Studies in Fine Arts and Archeology; Nuclear Methods Applied to Agriculture and Food Preservation; Nuclear Methods in Criminology; Environmental Impact of Energy Generation; and Risk and Insurance Consideration--Energy for Tomorrow. The tours to energy installations conducted during the conference and demonstration related to energy are cited. (MCW)« less
SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER
Collier, D.M.; Meeks, L.A.; Palmer, J.P.
1960-05-10
A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.
Power conditioning for space nuclear reactor systems
NASA Technical Reports Server (NTRS)
Berman, Baruch
1987-01-01
This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.
Material Control and Accounting Design Considerations for High-Temperature Gas Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trond Bjornard; John Hockert
The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactormore » types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.« less
The effect of mixing on fermentation of primary solids, glycerol, and biodiesel waste.
Ghasemi, Marzieh; Randall, Andrew A
2018-03-01
In this study, the effect of mixing on volatile fatty acid (VFA) production and composition was investigated through running five identical bench-scale reactors that were filled with primary solid and dosed with either pure glycerol or biodiesel waste. Experimental results revealed that there was an inverse correlation between the mixing intensity and the VFA production. The total VFA production in the un-mixed reactor was 9,787 ± 3,601 mg COD/L, whereas in the reactor mixed at 100 rpm this dropped to 3,927 ± 1,175 mg COD/L, while both types of reactor were dosed with pure glycerol at the beginning of each cycle to reach the initial concentration of 1,000 mg/L (1,217 mg COD/L). Propionic acid was the dominant VFA in all the reactors except the reactor mixed at 30 rpm. It is hypothesized that low mixing facilitated hydrogen transfer between obligate hydrogen producing acetogens (OHPA) and hydrogen consuming acidogens in these non-methanogenic reactors. Also, in a narrower range of mixing (0 or 7 rpm), the total VFA production in biodiesel waste-fed reactors was considerably higher than that of pure glycerol-fed reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Camara, S.N.
1958-10-01
The Spanish experimental swimming pool reactor is constructed on the grounds of the Ciudad Universitaria de Madrid. A general layout of the reactor building and its annexes is given, and the reactor building itself is described. The construction of the reactor building and the characteristics of the annex building are discussed. (J.S.R.)
System and method for air temperature control in an oxygen transport membrane based reactor
Kelly, Sean M
2016-09-27
A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.
System and method for temperature control in an oxygen transport membrane based reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.
A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.
156. ARAIII Reactor building (ARA608) Electrical and control details of ...
156. ARA-III Reactor building (ARA-608) Electrical and control details of mobile work bridge over reactor and pipiing pits. Aerojet-general 880-area/GCRE-608-E-6. Date: November 1958. Ineel index code no. 063-0608-10-013-102621. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed under §§ 50.21(b) or 50.22 holding an operating license under this part...
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed under §§ 50.21(b) or 50.22 holding an operating license under this part...
Core plasma design of the compact helical reactor with a consideration of the equipartition effect
NASA Astrophysics Data System (ADS)
Goto, T.; Miyazawa, J.; Yanagi, N.; Tamura, H.; Tanaka, T.; Sakamoto, R.; Suzuki, C.; Seki, R.; Satake, S.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group
2018-07-01
Integrated physics analysis of plasma operation scenario of the compact helical reactor FFHR-c1 has been conducted. The DPE method, which predicts radial profiles in a reactor by direct extrapolation from the reference experimental data, has been extended to implement the equipartition effect. Close investigation of the plasma operation regime has been conducted and a candidate plasma operation point of FFHR-c1 has been identified within the parameter regime that has already been confirmed in LHD experiment in view of MHD equilibrium, MHD stability and neoclassical transport.
Szabó, Enikö; Liébana, Raquel; Hermansson, Malte; Modin, Oskar; Persson, Frank; Wilén, Britt-Marie
2017-01-01
The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable impact on the composition of the granular sludge communities, but also that the granule communities can be dynamic even at steady-state reactor operation due to high functional redundancy of several key guilds. Knowledge about microbial diversity with specific functional guilds under different operating conditions can be important for engineers to predict the stability of reactor functions during the start-up and continued reactor operation. PMID:28507540
Analysis of failed nuclear plant components
NASA Astrophysics Data System (ADS)
Diercks, D. R.
1993-12-01
Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boing, L.E.; Henley, D.R.; Manion, W.J.
1989-12-01
Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document inmore » their evaluation process. 73 refs., 26 figs., 69 tabs.« less
Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview
NASA Astrophysics Data System (ADS)
Doshi, Bharat; Reddy, D. Chenna
2017-04-01
Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.
Proposal for a possible use of fusion power for hydrogen production within this century
NASA Astrophysics Data System (ADS)
Seifritz, W.
Consideration is given to the possibility of building a commercial fusion power reactor before the turn of the century. The main element incorporated by the proposed system is the PACER project powerplant, which employs the explosive deuterium-deuterium (D-D) fusion process. Because all required technology already exists, PACER is believed to represent the quickest way to harness fusion on a large scale. It is argued that such reactors, scattered throughout the world on a series of 'energy parks', will meet a 30 TW global energy demand after the depletion of fossil fuel resources. Consideration is also given to both the breeding of fissile materials and the electrolytic production of hydrogen; a by-product of which would be deuterium fuel.
NASA Astrophysics Data System (ADS)
Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.
2018-02-01
Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
150. ARAIII Reactor building (ARA608) Sections. Show highbay section, heater ...
150. ARA-III Reactor building (ARA-608) Sections. Show high-bay section, heater stack, and depth of reactor, piping, and heater pits. Aerojet-general 880-area/GCRE-608-A-3. Date: February 1958. Ineel index code no. 063-0608-00-013-102613. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Progress in space nuclear reactor power systems technology development - The SP-100 program
NASA Technical Reports Server (NTRS)
Davis, H. S.
1984-01-01
Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.
NASA Astrophysics Data System (ADS)
Prada, Svitlana V.; Bohme, Diethard K.; Baranov, Vladimir I.
2007-03-01
We report ion-mobility measurements with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR) designed to investigate ion molecule reactivity in organic mass spectrometry. Functionalized pentacene ions, which are generally unreactive were chosen for study to decouple drift/diffusion effects from reactivity (including clustering). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions. These capabilities were successfully employed in the measurement of ion mobilities in different modes of IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration.
Tokamak experimental power reactor conceptual design. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-08-01
Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)
NASA Astrophysics Data System (ADS)
1988-12-01
The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space.
BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel
2015-09-01
BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on themore » formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.« less
148. ARAIII Reactor building (ARA608) Floor plan. Shows location of ...
148. ARA-III Reactor building (ARA-608) Floor plan. Shows location of reactor, heater, and mechanical loop pits; mechanical and electrical equipment rooms; and other work areas. Aerojet-general 880-area/GCRE-608-A-1. Date: February 1958. Ineel index code no. 063-0608-00-013-102612. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
158. ARAIII Reactor building (ARA608) Secondary cooling loop and piping ...
158. ARA-III Reactor building (ARA-608) Secondary cooling loop and piping plan. This drawing was selected as a typical example of piping arrangements within reactor building. Aerojet/general 880-area/GCRE-608-P-16. Date: February 1958. INeel index code no. 063-0608-50-013-102641. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Sloshing response of a reactor tank with internals
NASA Astrophysics Data System (ADS)
Ma, D. C.; Gvildys, J.; Chang, Y. W.
The sloshing response of a large reactor tank with in tank components is presented. It is indicated that the presence of the internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequency of a tank with internals is considerably higher than that of a tank without internal. The higher sloshing frequency reduces the sloshing wave height on the free surface but increases the dynamic pressure in the fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Flanagan, George F.; Voth, Marcus
Development of non-power molten salt reactor (MSR) test facilities is under consideration to support the analyses needed for development of a full-scale MSR. These non-power MSR test facilities will require review by the US Nuclear Regulatory Commission (NRC) staff. This report proposes chapter adaptations for NUREG-1537 in the form of interim staff guidance to address preparation and review of molten salt non-power reactor license applications. The proposed adaptations are based on a previous regulatory gap analysis of select chapters from NUREG-1537 for their applicability to non-power MSRs operating with a homogeneous fuel salt mixture.
NASA Astrophysics Data System (ADS)
Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.
2009-07-01
Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.
NERVA-Derived Nuclear Thermal Propulsion Dual Mode Operation
NASA Astrophysics Data System (ADS)
Zweig, Herbert R.; Hundal, Rolv
1994-07-01
Generation of electrical power using the nuclear heat source of a NERVA-derived nuclear thermal rocket engine is presented. A 111,200 N thrust engine defined in a study for NASA-LeRC in FY92 is the reference engine for a three-engine vehicle for which a 50 kWe capacity is required. Processes are described for energy extraction from the reactor and for converting the energy to electricity. The tie tubes which support the reactor fuel elements are the source of thermal energy. The study focuses on process systems using Stirling cycle energy conversion operating at 980 K and an alternate potassium-Rankine system operating at 1,140 K. Considerations are given of the effect of the power production on turbopump operation, ZrH moderator dissociation, creep strain in the tie tubes, hydrogen permeation through the containment materials, requirements for a backup battery system, and the effects of potential design changes on reactor size and criticality. Nuclear considerations include changing tie tube materials to TZM, changing the moderator to low vapor-pressure yttrium hydride, and changing the fuel form from graphite matrix to a carbon-carbide composite.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill
1988-01-01
A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.
Thermal evaluation of alternative shipping cask for irradiated experiments
Guillen, Donna Post
2015-06-01
Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavitymore » of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. Furthermore, from a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.« less
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
Transition from HEU to LEU fuel in Romania`s 14-MW TRIGA reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretscher, M.M.; Snelgrove, J.L.
1991-12-31
The 14-MW TRIGA steady state reactor (SSR) located in Pitesti, Romania, first went critical in the fall of 1979. Initially, the core configuration for full power operation used 29 fuel clusters each containing a 5 {times} 5 square array of HEU (10 wt%) -- ZrH -- Er (2.8 wt%) fuel-moderator rods (1.295 cm o.d.) clad in Incology. With a total inventory of 35 HEU fuel clusters, burnup considerations required a gradual expansion of the core from 29 to 32 and finally to 35 clusters before the reactor was shut down because of insufficient excess reactivity. At this time each ofmore » the original 29 fuel clusters had an overage {sup 235}U burnup in the range from 50 to 62%. Because of the US policy regarding the export of highly enriched uranium, fresh HEU TRIGA replacement fuel is not available. After a number of safety-related measurements, the SSR is expected to resume full power operation in the near future using a mixed core containing five LEU TRIGA clusters of the same geometry as the original fuel but with fuel-moderator rods containing 45 wt% U (19.7% {sup 235}U enrichment) and 1.1 wt% Er. Rods for 14 additional LEU fuel clusters will be fabricated by General Atomics. In support of the SSR mixed core operation numerous neutronic calculations have been performed. This paper presents some of the results of those calculations.« less
139. ARAIII Index of drwaings of gascooled reactor experiment buildings. ...
139. ARA-III Index of drwaings of gas-cooled reactor experiment buildings. Aerojet-general 880-area/GCRE-100. Date: February 1958. Ineel index code no. 063-9999-80-013-102505. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar
The supercritical carbon-dioxide (referred to as SC-CO 2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO 2 direct cycle gas fast reactor has also been recently proposed. The SC-CO 2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO 2 densities, and allows for smaller components size, fewermore » components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO 2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO 2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO 2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO 2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO 2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO 2 environment is the possibility for simultaneous occurrence of carburization during oxidation of the material. Carburization can potentially lead to embrittlement of structural alloys in SC-CO 2 Brayton cycle. An important consideration in regards to corrosion is that the temperatures can vary widely across the various sections of the SC-CO 2 Brayton cycle, from room temperature to 750°C, with even higher temperatures being desirable for higher efficiencies. Thus the extent of corrosion and corrosion mechanisms in various components and SC-CO 2 Brayton cycle will be different, requiring a judicious selection of materials for different sections of the cycle. The goal of this project was to address materials corrosion-related challenges, identify appropriate materials, and advance the body of scientific knowledge in the area of high temperature SC-CO 2 corrosion. The focus was on corrosion of materials in SC-CO 2 environment in the temperature range of 450°C to 750°C at a pressure of 2900 psi for exposure duration for up to 1000 hours. The Table below lists the materials tested in the project. The materials were selected based on their high temperature strength, their code certification status, commercial availabilities, and their prior or current usage in the nuclear reactor industry. Additionally, pure Fe, Fe-12%Cr, and Ni-22%Cr were investigated as simple model materials to more clearly understand corrosion mechanisms. This first phase of the project involved testing in research grade SC-CO 2 (99.999% purity). Specially designed autoclaves with high fidelity temperature, pressure, and flow control capabilities were built or modified for this project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans David
2015-10-01
The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less
Using the theory of small perturbations in performance calculations of the RBMK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaev, N.V.; Druzhinin, V.E.; Pogosbekyan, L.R.
The theory of small perturbations in reactor physics is discussed and applied to two-dimensional calculations of the RBMK. The classical theory of small perturbations implies considerable errors in calculations because the perturbations cannot be considered small. The modified theory of small perturbations presented here can be used in atomic power stations for determining reactivity effects and reloading rates of channels in reactors and also for assessing the reactivity storage in control rods.
10 CFR 72.6 - License required; types of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the receipt, handling, storage, and transfer of reactor-related GTCC are specific licenses. Any... hereby issued to receive title to and own spent fuel, high-level radioactive waste, or reactor-related...
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
10 CFR 72.6 - License required; types of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the receipt, handling, storage, and transfer of reactor-related GTCC are specific licenses. Any... hereby issued to receive title to and own spent fuel, high-level radioactive waste, or reactor-related...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
154. ARAIII Reactor building (ARA608) Foundation sections and details. Shows ...
154. ARA-III Reactor building (ARA-608) Foundation sections and details. Shows profiles of pits. Aerojet-general 888-area/GCRE-608-S-2. Date: February 1958. Ineel index code no. 062-0608-60-013-102654. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
153. ARAIII Reactor building (ARA608) Foundation plan. Aerojetgeneral 880area/GCRE608S1. Date: ...
153. ARA-III Reactor building (ARA-608) Foundation plan. Aerojet-general 880-area/GCRE-608-S-1. Date: February 1958. Ineel index code no. 063-0608-60-013-102653. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
152. ARAIII Reactor building (ARA608) Details of heater and piping ...
152. ARA-III Reactor building (ARA-608) Details of heater and piping pits, including instrumentation plan. Aerojet-general 880-area/GCRE-608-T-18. Date: November 1958. Ineel index code no. 063-0608-25-013-102677. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
149. ARAIII Reactor building (ARA608) Exterior elevations, showing north, south, ...
149. ARA-III Reactor building (ARA-608) Exterior elevations, showing north, south, east, and west. Aerojet-general 880-area/GCRE-608-A-6. Date: February 1958. Ineel index code no. 063-0608-00-013-102615. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Immediate notification requirements for operating nuclear power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear...
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Immediate notification requirements for operating nuclear power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear...
NASA Astrophysics Data System (ADS)
Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.
2017-08-01
Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.
NASA Astrophysics Data System (ADS)
Dautray, Robert
2011-06-01
The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation, etc., radioprotection measures and treatment for the "transuranic" elements. For a long period of time, France was in the forefront of nuclear breeder power generation science, technological research and also in the knowledge base related to breeder reactors. It is in the country's interest to pursue these efforts and this could per se constitute one of the national priorities. Nous sommes naturellement bien conscients de l'énorme problème qui se pose au Japon actuellement comme suite au tremblement de terre et au tsunami de mars 2011 et leurs conséquences, notamment sur des installations électronucléaires. Le texte que nous présentons concerne des conditions totalement générales, indépendantes des problèmes spécifiques de sûreté qu'il faudra, de toute façon, traiter dans le cadre d'un développement éventuel de l'énergie nucléaire.We are aware, of course, of the huge problem that Japan has to deal with the aftermath of the quake and tsunami of March 2011 and their consequences on electronuclear power plants. The text that we present here concerns general physical topics independent of the specific safety problems, general physical topics which will have to be solved in the case of a contingent development of electronuclear power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.
1994-04-01
The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, R.W.; Post, D.W.; Lovell, R.T.
1981-04-01
Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less
Radiation dose distributions due to sudden ejection of cobalt device.
Abdelhady, Amr
2016-09-01
The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine
2016-10-01
The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?
General layout of reactor and control areas upon advent of ...
General layout of reactor and control areas upon advent of power burst facility (PBF). Shows relationship of PBF to SPERT-I, -II, -III, and -IV. Ebasco Services 1205-PER/PBF-U-102. Date: July 1965. INEEL index no. 761-0100-00-205-123006 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew
The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performancemore » of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The empirical model was also implemented in the computational models of the NSTF using both RELAP5-3D and STARCCM+ codes. Accounting for the effects of ambient conditions, simulations from both codes predicted the natural circulation flow rates very well.« less
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2012 CFR
2012-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2014 CFR
2014-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2010 CFR
2010-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2011 CFR
2011-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2013 CFR
2013-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahlmeister, J E; Haberer, W V; Casey, D F
1960-12-15
The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less
Chakraborty, Sudip; Rusli, Handajaya; Nath, Arijit; Sikder, Jaya; Bhattacharjee, Chiranjib; Curcio, Stefano; Drioli, Enrico
2016-01-01
Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.
Characterisation of MR reactor pond in nNRC 'Kurchatov institute' before dismantling work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Alexey; Simirsky, Yury; Semin, Ilya
2013-07-01
In this work complex α-, β-, γ-spectrometric research of water, bottom slimes and deposits on walls of the reactor pond and the storage pond of the MR reactor was made. Identify, that the main dose forming radionuclide, during dismantling work on the reactor MR, is Cs-137. It is shown, that specific activity of radionuclides in bottom slimes considerably exceed specific activity of radionuclides in water from ponds, and near to high level radioactive waste. It is detected that decreasing the water level in reactor ponds on 1 m, increase the exposure dose rate at a distance 1 m from themore » pond in 2 times. The observed increase in exposure dose rate can be explained by contribution on dose rate the cesium-137 deposed on walls of the storage pond. Effectiveness of cleaning of walls of the pool of storage from deposits by a water jet of high pressure is investigated. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devgun, Jas S.; Laraia, Michele; Pescatore, Claudio
Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimizemore » the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-line sharing of information and especially the creation of an on-line compendium of methods, tools, and techniques by which damaged fuel and other unique situations have been addressed can be addressed sooner and maintained as new problems and solutions arise and are resolved. The IAEA's new 'WEB 2.0 tool' CONNECT is expected to play a significant role in this and related information-sharing activities. The trend in some countries such as the United States has been to re-license the existing reactors for additional twenty years, beyond the original design life. Given the advances in technology over the past four decades, and considering that the newer designs incorporate significant improvements in safety systems, it may not be economical or technically feasible to retrofit enhancements into some of the older reactors. In such cases, the reactors may be retired from service and decommissioned. Overall, the energy demand in the world continues to rise, with sharp increases in the Asian countries, and nuclear power's role in the world's energy supply is expected to continue. Events at Fukushima have led to a re-examination on many fronts, including reactor design and regulatory requirements. Further changes may occur in these areas in the post-Fukushima era. These changes in turn will also impact the world-wide decommissioning scene and the decommissioning phase of the future reactors. (authors)« less
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
Support vector machines for nuclear reactor state estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavaljevski, N.; Gross, K. C.
2000-02-14
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locke, G.L.
1958-09-08
The design basis is composed of requirements and conditions for the design of the reactor plant (composed of the reactor and heat dissipation system). Its intent is to insure that the final product meets the economic, safety, and technical objectives of the project. The design basis is dependent on the ground rules, objectives, technical criteria, and practical design considerations. This document is being issued with the understanding that these items are not yet firmly established in all respects, and therefore, the numbers put down here are subject to change. Consideration of the spectrum of probable changes that might be mademore » leads to the conclusion that the numbers here are close to the final ones and are satisfactory as a basis for the initial stages of design. Some numbers are omitted because of insufficient data at this time.« less
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
10 CFR 72.22 - Contents of application: General and financial information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste from storage. (f) Each applicant for a license under this part to receive, transfer, and possess power reactor spent fuel, power...
10 CFR 72.218 - Termination of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.218 Termination of licenses. (a) The notification regarding the program for the management of spent fuel at the reactor required by § 50.54(bb) of...
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
10 CFR 72.218 - Termination of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.218 Termination of licenses. (a) The notification regarding the program for the management of spent fuel at the reactor required by § 50.54(bb) of...
LOFT. Reactor apparatus leaves A&M building (TAN607). Shielded locomotive has ...
LOFT. Reactor apparatus leaves A&M building (TAN-607). Shielded locomotive has aerojet logo, which replaced old general electric logo, pulls reactor from assembly shop on dolly. Camera facing easterly. Date: 1973. INEEL negative no. 73-3700 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murav’ev, V. P., E-mail: murval1@mail.ru
The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.
Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system.
Bradu, C; Magureanu, M; Parvulescu, V I
2017-08-15
A novel advanced oxidation process based on the combination of ozonation with non-thermal plasma generated in a pulsed corona discharge was developed for the oxidative degradation of recalcitrant organic pollutants in water. The pulsed corona discharge in contact with liquid, operated in oxygen, produced 3.5mgL -1 ozone, which was subsequently introduced in the ozonation reactor. The solution to be treated was continuously circulated between the plasma reactor and the ozonation reactor. The system was tested for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and considerably improved performance as compared to ozonation alone, both with respect to the removal of the target compound and to mineralization. The apparent reaction rate constant for 2,4-D removal was 0.195min -1 , more than two times higher than the value obtained in ozonation experiments. The mineralization reached more than 90% after 60min treatment and the chlorine balance confirms the absence of quantifiable amounts of chlorinated by-products. The energy efficiency was considerably enhanced by shortening the duration of the discharge pulses, which opens the way for further optimization of the electrical circuit design. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, Jon; Hayes, Steven; Walters, L. C.
This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less
Safety considerations in testing a fuel-rich aeropropulsion gas generator
NASA Technical Reports Server (NTRS)
Rollbuhler, R. James; Hulligan, David D.
1991-01-01
A catalyst containing reactor is being tested using a fuel-rich mixture of Jet A fuel and hot input air. The reactor product is a gaseous fuel that can be utilized in aeropropulsion gas turbine engines. Because the catalyst material is susceptible to damage from high temperature conditions, fuel-rich operating conditions are attained by introducing the fuel first into an inert gas stream in the reactor and then displacing the inert gas with reaction air. Once a desired fuel-to-air ratio is attained, only limited time is allowed for a catalyst induced reaction to occur; otherwise the inert gas is substituted for the air and the fuel flow is terminated. Because there presently is not a gas turbine combustor in which to burn the reactor product gas, the gas is combusted at the outlet of the test facility flare stack. This technique in operations has worked successfully in over 200 tests.
Biaxial Creep Specimen Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
JL Bump; RF Luther
This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Navalmore » Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.« less
Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A
2007-01-01
The combined SHARON-Anammox process is a promising technique for nitrogen removal from wastewater streams with high ammonium concentrations. It is typically applied to sludge digestion reject water, in order to relieve the activated sludge tanks, to which this stream is typically recycled. This contribution assesses the impact of the applied control strategy in the SHARON-reactor, both on the effluent quality of the subsequent Anammox reactor as well as on the plant-wide level by means of an operating cost index. Moreover, it is investigated to which extent the usefulness of a certain control strategy depends on the reactor design (volume). A simulation study is carried out using the plant-wide Benchmark Simulation Model no. 2 (BSM2), extended with the SHARON and Anammox processes. The results reveal a discrepancy between optimizing the reject water treatment performance and minimizing plant-wide operating costs.
NASA Astrophysics Data System (ADS)
H, L. SWAMI; C, DANANI; A, K. SHAW
2018-06-01
Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-09-15
This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meftah, B.
1982-01-01
Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropicmore » scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.« less
Fail-safe reactivity compensation method for a nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.
The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on themore » constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.« less
Reference Reactor Module for the Affordable Fission Surface Power System
NASA Astrophysics Data System (ADS)
Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.
2008-01-01
Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO2-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important ``affordability'' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.
Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan
2014-07-09
Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.
UF6 breeder reactor power plants for electric power generation
NASA Technical Reports Server (NTRS)
Rust, J. H.; Clement, J. D.; Hohl, F.
1976-01-01
The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.
Foreign Trip Report MATGEN-IV Sep 24- Oct 26, 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Caro, M S
2007-10-30
Gen-IV activities in France, Japan and US focus on the development of new structural materials for Gen-IV nuclear reactors. Oxide dispersion strengthened (ODS) F/M steels have raised considerable interest in nuclear applications. Promising collaborations can be established seeking fundamental knowledge of relevant Gen-IV ODS steel properties (see attached travel report on MATGEN- IV 'Materials for Generation IV Nuclear Reactors'). Major highlights refer to results on future Ferritic/Martensitic steel cladding candidates (relevant to Gen-IV materials properties for LFR Materials Program) and on thermodynamic and mechanic behavior of metallic FeCr binary alloys, base matrix for future candidate steels (for the LLNL-LDRD projectmore » on Critical Issues on Materials for Gen-IV Reactors).« less
Ekeroth, D.E.; Garner, D.C.; Hopkins, R.J.; Land, J.T.
1993-11-30
An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof. 3 figures.
Ekeroth, Douglas E.; Garner, Daniel C.; Hopkins, Ronald J.; Land, John T.
1993-01-01
An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-03
..., ``Reactor Trip System (RTS) Instrumentation'' and TS 3.3.2, ``Engineered Safety Feature Actuation System (ESFAS) Instrumentation.'' The Commission had previously issued a Notice of Consideration of Issuance of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag
2012-04-01
The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather thanmore » graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.« less
Preliminary consideration of CFETR ITER-like case diagnostic system.
Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X
2016-11-01
Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.
Preliminary consideration of CFETR ITER-like case diagnostic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. S.; Liu, Y. K.; Gao, X.
2016-11-15
Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basicmore » control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.« less
Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants
NASA Astrophysics Data System (ADS)
Rebak, Raul B.
2017-12-01
After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl) cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.
Fluidized bed coal desulfurization
NASA Technical Reports Server (NTRS)
Ravindram, M.
1983-01-01
Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.
Nuclear reactor construction with bottom supported reactor vessel
Sharbaugh, John E.
1987-01-01
An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
A report of Shippingport operation during Seed 2 lifetime is presented. The information is primarily confined to the nuclear portion of the operation. A general review of station performance is given along with details of reactor physics, reactor thermal and hydraulic performance, reactor plant performance and modifications, operational chemistry, and radioactive contamination experience. (J.R.D.)
Modelling of the anti-neutrino production and spectra from a Magnox reactor
NASA Astrophysics Data System (ADS)
Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie
2018-01-01
The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor operation was calculated. The results of the preliminary calculations are shown and limitations in the methods and data discussed.
Gaseous fuel reactors for power systems
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Rodgers, R. J.
1977-01-01
Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.
Review of heat transfer problems associated with magnetically-confined fusion reactor concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, M.A.; Werner, R.W.; Carlson, G.A.
1976-04-01
Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements.more » Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.« less
Beryllium for fusion application - recent results
NASA Astrophysics Data System (ADS)
Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.
2002-12-01
The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
NASA Astrophysics Data System (ADS)
Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-01
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-29
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclearmore » waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.« less
Advanced Low-Emissions Catalytic-Combustor Program, phase 1. [aircraft gas turbine engines
NASA Technical Reports Server (NTRS)
Sturgess, G. J.
1981-01-01
Six catalytic combustor concepts were defined, analyzed, and evaluated. Major design considerations included low emissions, performance, safety, durability, installations, operations and development. On the basis of these considerations the two most promising concepts were selected. Refined analysis and preliminary design work was conducted on these two concepts. The selected concepts were required to fit within the combustor chamber dimensions of the reference engine. This is achieved by using a dump diffuser discharging into a plenum chamber between the compressor discharge and the turbine inlet, with the combustors overlaying the prediffuser and the rear of the compressor. To enhance maintainability, the outer combustor case for each concept is designed to translate forward for accessibility to the catalytic reactor, liners and high pressure turbine area. The catalytic reactor is self-contained with air-cooled canning on a resilient mounting. Both selected concepts employed integrated engine-starting approaches to raise the catalytic reactor up to operating conditions. Advanced liner schemes are used to minimize required cooling air. The two selected concepts respectively employ fuel-rich initial thermal reaction followed by rapid quench and subsequent fuel-lean catalytic reaction of carbon monoxide, and, fuel-lean thermal reaction of some fuel in a continuously operating pilot combustor with fuel-lean catalytic reaction of remaining fuel in a radially-staged main combustor.
III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor.
Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George
2011-07-11
Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni(0) and Cu(2+). This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals - considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well.
III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor
Grimshaw, Pengpeng; Calo, Joseph M.; Hradil, George
2011-01-01
Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni0 and Cu2+. This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals – considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well. PMID:21874093
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
Rao, A Gangagni; Naidu, G Venkata; Prasad, K Krishna; Rao, N Chandrasekhar; Mohan, S Venkata; Jetty, Annapurna; Sarma, P N
2004-07-01
Studies are carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater are found to be very high with low Biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and start up of the reactor is carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor is studied at different organic loading rates (OLR) and it is found that the optimum OLR is 10 kg COD/m3/day. The wastewater under investigation, which is having considerable quantity of SS, is treated anaerobically without any pretreatment. The COD and BOD of the reactor outlet wastewater are monitored and reduction at steady state and optimum OLR is observed to be 60-70% of COD and 80-90% of BOD. The reactor is subjected to organic shock loads at two different OLR and it is observed that the reactor could withstand shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS. Copyright 2003 Elsevier Ltd.
Wigner, E.P.
1958-04-22
A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.
Employing ISRU Models to Improve Hardware Design
NASA Technical Reports Server (NTRS)
Linne, Diane L.
2010-01-01
An analytical model for hydrogen reduction of regolith was used to investigate the effects of several key variables on the energy and mass performance of reactors for a lunar in-situ resource utilization oxygen production plant. Reactor geometry, reaction time, number of reactors, heat recuperation, heat loss, and operating pressure were all studied to guide hardware designers who are developing future prototype reactors. The effects of heat recuperation where the incoming regolith is pre-heated by the hot spent regolith before transfer was also investigated for the first time. In general, longer reaction times per batch provide a lower overall energy, but also result in larger and heavier reactors. Three reactors with long heat-up times results in similar energy requirements as a two-reactor system with all other parameters the same. Three reactors with heat recuperation results in energy reductions of 20 to 40 percent compared to a three-reactor system with no heat recuperation. Increasing operating pressure can provide similar energy reductions as heat recuperation for the same reaction times.
Increased occupational radiation doses: nuclear fuel cycle.
Bouville, André; Kryuchkov, Victor
2014-02-01
The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21).
Pereira, Alyne Duarte; Leal, Cíntia Dutra; Dias, Marcela França; Etchebehere, Claudia; Chernicharo, Carlos Augusto L; de Araújo, Juliana Calabria
2014-08-01
The effects of phenol on the nitrogen removal performance of a sequencing batch reactor (SBR) with anammox activity and on the microbial community within the reactor were evaluated. A phenol concentration of 300 mg L(-1) reduced the ammonium-nitrogen removal efficiency of the SBR from 96.5% to 47%. The addition of phenol changed the microbial community structure and composition considerably, as shown by denaturing gradient gel electrophoresis and 454 pyrosequencing of 16S rRNA genes. Some phyla, such as Proteobacteria, Verrucomicrobia, and Firmicutes, increased in abundance, whereas others, such as Acidobacteria, Chloroflexi, Planctomycetes, GN04, WS3, and NKB19, decreased. The diversity of the anammox bacteria was also affected by phenol: sequences related to Candidatus Brocadia fulgida were no longer detected, whereas sequences related to Ca. Brocadia sp. 40 and Ca. Jettenia asiatica persisted. These results indicate that phenol adversely affects anammox metabolism and changes the bacterial community within the anammox reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rebak, Raul B.
2018-02-01
The US has currently a fleet of 99 nuclear power light water reactors which generate approximately 20% of the electricity consumed in the country. Near 90% of the reactors are at least 30 years old. There are incentives to make the existing reactors safer by using accident tolerant fuels (ATF). Compared to the standard UO2-zirconium-based system, ATF need to tolerate loss of active cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. Ferritic iron-chromium-aluminum (FeCrAl) alloys have been identified as an alternative to replace current zirconium alloys. They contain Fe (base) + 10-22 Cr + 4-6 Al and may contain smaller amounts of other elements such as molybdenum and traces of others. FeCrAl alloys offer outstanding resistance to attack by superheated steam by developing an alumina oxide on the surface in case of a loss of coolant accident like at Fukushima. FeCrAl alloys also perform well under normal operation conditions both in boiling water reactors and pressurized water reactors because they are protected by a thin oxide rich in chromium. Under normal operation condition, the key element is Cr and under accident conditions it is Al.
Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael
2016-01-01
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO 2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related tomore » both Helium and to sCO 2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO 2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO 2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation« less
Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test
NASA Astrophysics Data System (ADS)
Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.
2004-02-01
One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.
Flow photochemistry: Old light through new windows
Knowles, Jonathan P; Elliott, Luke D
2012-01-01
Summary Synthetic photochemistry carried out in classic batch reactors has, for over half a century, proved to be a powerful but under-utilised technique in general organic synthesis. Recent developments in flow photochemistry have the potential to allow this technique to be applied in a more mainstream setting. This review highlights the use of flow reactors in organic photochemistry, allowing a comparison of the various reactor types to be made. PMID:23209538
NASA Astrophysics Data System (ADS)
Bragg-Sitton, Shannon M.
The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and implementation of a virtual reactivity feedback control loop; testing and thermal hydraulic characterization of the coolant flow paths for two space reactor concepts; and analysis of heat pipe operation during start-up and steady state operation.
NASA Astrophysics Data System (ADS)
Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd
2015-04-01
Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that "proven technology" is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for "proven technology" is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the "proven technology" term according to a specific country's requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of "proven technology" that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia's definition of "proven technology".
Environmental assessment of different biofilters for the treatment of gaseous streams.
Alfonsín, Carolina; Hernández, Jerónimo; Omil, Francisco; Prado, Óscar J; Gabriel, David; Feijoo, Gumersindo; Moreira, Ma Teresa
2013-11-15
Biological techniques have been considered as an interesting alternative to treat gaseous streams from industrial processes. In this work, the performance of biofilters was evaluated from an environmental point of view by using Life Cycle Assessment methodology. More specifically, the potential impacts of four biofilters packed with different organic materials: spherical clay pellets covered with compost, a mixture of coconut fibre and sludge based carbon, peat and heather and pine bark have been quantified. The impact categories considered in this work were: eutrophication, acidification, global warming, photochemical oxidation, malodorous air, human toxicity and marine, terrestrial and freshwater ecotoxicity. From an environmental point of view, the reactor packed with coconut fibre and sludge based carbon appears to be the most suitable alternative since it presented the lowest values in almost all the impact categories assessed. On the other hand, the biofilter packed with clay pellets covered with compost seems to be the most penalized bioreactor providing the highest impacts for six of the nine impact categories evaluated, mainly due to the significant pressure drop achieved in the reactor which led to a considerable increase of energy demand. The reactor packed with coconut fibre and sludge based carbon is also the most beneficial alternative after performing the normalization step. In this case, the alternatives of peat and heather and pine bark are the less favourable ones in terms of photochemical oxidation, which was attributed to the lowest efficiency of methyl isobutyl ketone removal efficiency observed in both configurations. On the other hand, the option of treating off-gases is, in general, more positive and advisable than the direct discharge to the atmosphere. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Tiankui; Rebsdorf, Morten; Engelrud, Ulrik; Xu, Xuebing
2005-03-09
The aim of the study was to develop an efficient glycerolysis system for the enzymatic production of monoacylglycerols (MAGs) containing polyunsaturated fatty acids. Glycerolysis has been widely applied in industry for the chemical production of food MAGs under high temperature. The enzymatic glycerolysis system at 40-70 degrees C is unfortunately a multiphase system, which leads to the lower reaction efficiency. A tert-butyl alcohol system was developed after careful evaluation and more than 20-fold of the reaction efficiency from this system was obtained compared to the solvent-free system. Novozym 435 was employed as a catalyst in the glycerolysis from the screening. In the batch reaction system with tert-butyl alcohol, temperature higher than 40 degrees C was favored. The glycerol/oil ratio was best in the study with 4.5 while the solvent weight ratio from 1 to 3 had little effect. In general, 60-70% yield can be obtained at 2 h in the stirred tank reactor. The continuous glycerolysis was conducted in a packed bed reactor. MAG yield up to 70% was reached at 30-40 min residence time. The continuous glycerolysis was more sensitive to the amount of tert-butyl alcohol, and in the weight ratio to oil more than 2 was favored. The continuous process was optimized with the assistance of response surface methodology. Optimal conditions for the packed bed reactor after all considerations were recommended as glycerol/oil 4:1 (mol/mol), temperature 40 degrees C, and residence time 45 min. The operation stability study showed that there was no slight reduction of reaction performance at more than 30 days, implying a high feasibility in practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.T.; Hiergesell, R.A.; Kaplan, D.I.
2006-07-01
At the Savannah River Site (SRS), nuclear production reactors used de-ionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These de-ionizers were removed from the reactors and stored as a legacy waste and due to the relatively high carbon-14 (C-14) contamination (i.e., on the order of 740 giga becquerel (GBq) (20 curies) per de-ionizer) were considered a legacy 'waste with no path to disposal'. Considerable progress has been made in consideration of a disposal path for the legacy reactor de-ionizers. Presently, 48 - 50 de-ionizers being stored atmore » SRS have 'no path to disposal' because the disposal limit for C-14 in the SRS's low-level waste disposal facility's Intermediate Level Vault (ILV) is only 160 GBq (4.2 curies) per vault. The current C-14 ILV disposal limit is based on a very conservative analysis of the air pathway. The paper will describe the alternatives that were investigated that resulted in the selection of a route to pursue. This paper will then describe SRS's efforts to reduce the conservatism in the analysis, which resulted in a significantly larger C-14 disposal limit. The work consisted of refining the gas-phase analysis to simulate the migration of C-14 from the waste to the ground surface and evaluated the efficacy of carbonate chemistry in cementitious environment of the ILV for suppressing the volatilization of C-14. During the past year, a Special Analysis was prepared for Department of Energy approval to incorporate the results of these activities that increased the C-14 disposal limits for the ILV, thus allowing for disposal of the Reactor Moderator De-ionizers. Once the Special Analysis is approved by DOE, the actual disposal would be dependent on priority and funding, but the de-ionizers will be removed from the 'waste with no path to disposal list'. (authors)« less
Reactor-Produced Medical Radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A
2011-01-01
The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chaptermore » is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.« less
Spatial homogenization methods for pin-by-pin neutron transport calculations
NASA Astrophysics Data System (ADS)
Kozlowski, Tomasz
For practical reactor core applications low-order transport approximations such as SP3 have been shown to provide sufficient accuracy for both static and transient calculations with considerably less computational expense than the discrete ordinate or the full spherical harmonics methods. These methods have been applied in several core simulators where homogenization was performed at the level of the pin cell. One of the principal problems has been to recover the error introduced by pin-cell homogenization. Two basic approaches to treat pin-cell homogenization error have been proposed: Superhomogenization (SPH) factors and Pin-Cell Discontinuity Factors (PDF). These methods are based on well established Equivalence Theory and Generalized Equivalence Theory to generate appropriate group constants. These methods are able to treat all sources of error together, allowing even few-group diffusion with one mesh per cell to reproduce the reference solution. A detailed investigation and consistent comparison of both homogenization techniques showed potential of PDF approach to improve accuracy of core calculation, but also reveal its limitation. In principle, the method is applicable only for the boundary conditions at which it was created, i.e. for boundary conditions considered during the homogenization process---normally zero current. Therefore, there exists a need to improve this method, making it more general and environment independent. The goal of proposed general homogenization technique is to create a function that is able to correctly predict the appropriate correction factor with only homogeneous information available, i.e. a function based on heterogeneous solution that could approximate PDFs using homogeneous solution. It has been shown that the PDF can be well approximated by least-square polynomial fit of non-dimensional heterogeneous solution and later used for PDF prediction using homogeneous solution. This shows a promise for PDF prediction for off-reference conditions, such as during reactor transients which provide conditions that can not typically be anticipated a priori.
Evaluation Metrics Applied to Accident Tolerant Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner
2014-10-01
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuelsmore » and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.« less
Safety and environmental constraints on space applications of fusion energy
NASA Technical Reports Server (NTRS)
Roth, J. Reece
1990-01-01
Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.
THE FUEL ELEMENT GRAPHITE. Project DRAGON.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, L.W.; Price, M.S.T.
1963-01-15
The main requirements of a fuel element graphite for reactors based on the Dragon concept are low transmission coefficient for fission products, dimensional stability under service conditions, high strength, high thermal conductivity, high purity, and high resistance to oxidation. Since conclusions reached in early 1960, a considerable amount of information has accumulated concerning the likely behaviour of graphites in high temperature reactor systems, particularly data on dimensional stability under irradiation. The influence of this new knowledge on the development of fuel element graphite with the Dragon Project is discussed in detail in the final section of this paper.
Alternate fusion fuels workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-06-01
The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached.
BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.
1981-06-01
This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.
Li, Jin-hui; Sun, Xiao-fei; Yao, Zhi-tong; Zhao, Xiang-yang
2014-02-01
A combined thermal desorption (TD)-molten salt oxidation (MSO) reactor system was applied to remediate the 1,2,3-trichlorobenzene (1,2,3-TCB) contaminated soil. The TD reactor was used to enrich the contaminant from soil, and its dechlorination of the contaminant was achieved in the MSO reactor. The optimum operating conditions of TD, and the effects of MSO reactor temperatures, additive amounts of the TCB on destruction and removal efficiency (DRE) of TCB and chlorine retention efficiency (CRE) were investigated. The reaction mechanism and pathway were proposed as well. The combined system could remediate the contaminated soil at a large scale of concentration from 5 to 25gkg(-1), and the DRE and CRE reached more than 99% and 95%, respectively, at temperatures above 850°C. The reaction emissions included C6H6, CH4, CO and CO2, and chlorinated species were not detected. It was found that a little increase in the temperature can considerably reduce the emission of C6H6, CH4, and CO, while the CO2 level increased. Copyright © 2014. Published by Elsevier Ltd.
The diversity and unit of reactor noise theory
NASA Astrophysics Data System (ADS)
Kuang, Zhifeng
The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the contribution of the terms that are novel as compared to the traditional formulae has been made. The second subject treats a problem in power reactor noise with the Langevin formalism. With a very few exceptions, in all previous work the diffusion approximation was used. In order to extend the treatment to transport theory, in Paper III, we introduced a novel method, i.e. Padé approximation via Lanczos algorithm to calculate the transfer function of a finite slab reactor described by one-group transport equation. It was found that the local-global decomposition of the neutron noise, formerly only reproduced in at least 2- group theory, can be reconstructed. We have also showed the existence of a boundary layer of the neutron noise close to the boundary. Finally, we have explored the possibility of building up a unified theory to account for the coexistence of zero power and power reactor noise in a system. In Paper IV, a unified description of the neutron noise is given by the use of backward master equations in a model where the cross section fluctuations are given as a simple binary pseudorandom process. The general solution contains both the zero power and power reactor noise concurrently, and they can be extracted individually as limiting cases of the general solution. It justified the separate treatments of zero power and power reactor noise. The result was extended to the case including one group of delayed neutron precursors in Paper V.
Analytical solutions for coagulation and condensation kinetics of composite particles
NASA Astrophysics Data System (ADS)
Piskunov, Vladimir N.
2013-04-01
The processes of composite particles formation consisting of a mixture of different materials are essential for many practical problems: for analysis of the consequences of accidental releases in atmosphere; for simulation of precipitation formation in clouds; for description of multi-phase processes in chemical reactors and industrial facilities. Computer codes developed for numerical simulation of these processes require optimization of computational methods and verification of numerical programs. Kinetic equations of composite particle formation are given in this work in a concise form (impurity integrated). Coagulation, condensation and external sources associated with nucleation are taken into account. Analytical solutions were obtained in a number of model cases. The general laws for fraction redistribution of impurities were defined. The results can be applied to develop numerical algorithms considerably reducing the simulation effort, as well as to verify the numerical programs for calculation of the formation kinetics of composite particles in the problems of practical importance.
Immobilised lipases in the cosmetics industry.
Ansorge-Schumacher, Marion B; Thum, Oliver
2013-08-07
Commercial products for personal care, generally perceived as cosmetics, have an important impact on everyday life worldwide. Accordingly, the market for both consumer products and specialty chemicals comprising their ingredients is considerable. Lipases have started to play a minor role as active ingredients in so-called 'functional cosmetics' as well as a major role as catalysts for the industrial production of various specialty esters, aroma compounds and active agents. Interestingly, both applications almost always require preparation by appropriate immobilisation techniques. In addition, for catalytic use special reactor concepts often have to be employed due to the mostly limited stability of these preparations. Nevertheless, these processes show distinct advantages based on process simplification, product quality and environmental footprint and are therefore apt to more and more replace traditional chemical processes. Here, for the first time a review on the various aspects of using immobilised lipases in the cosmetics industry is given.
JPRS Report, Science & Technology, USSR: Chemistry.
1988-12-23
Escape Accidents at Nuclear Power Plant With Water Moderated Reactors [S. A. Kabakehi, M. A. Budayev, et al.; KHIMIYA VYSOKIKH ENERGIY, Vol 22 No 4...water on the reactor surface also lowered loss of radicals. In general, the extent and temperature function Study of Radicals Desorbing From Surface... reactor sur- Alcohols With Oxygen face, by adsorption of the reagents and reaction products 184100 13f Moscow KHIMICHESKA YA FIZIKA on this surface and the
Transient Effects in Turbulence Modelling.
1979-12-01
plenum region of a liquid-metal- cooled fast breeder reactor (LMFBR). The efficient heat transfer characteristics of liquid metal coolant, combined...Transients in Generalized Liquid-Metal Fast Breeder Reactor Outlet Plenums," Nuclear Technology, Vol. 44, July 1979, p. 210. 135 15. Lorenz, J. J., "MIX... Sodium Coolant in the Outlet Plenum of a Fast Nuclear Reactor ," Int. J. Heat Mass Transfer, Vol. 21, 1978, pp. 1565-1579. 19. Chen, Y. B., Golay, M. W
Lauterböck, B; Nikolausz, M; Lv, Z; Baumgartner, M; Liebhard, G; Fuchs, W
2014-04-01
The effect of reduced ammonia levels on anaerobic digestion was investigated. Two reactors were fed with slaughterhouse waste, one with a hollow fiber membrane contractor for ammonia removal and one without. Different organic loading rates (OLR) and free ammonia and sulfide concentrations were investigated. In the reactor with the membrane contactor, the NH4-N concentration was reduced threefold. At a moderate OLR (3.1 kg chemical oxygen demand - COD/m(3)/d), this reactor performed significantly better than the reference reactor. At high OLR (4.2 kg COD/m(3)/d), the reference reactor almost stopped producing methane (0.01 Nl/gCOD). The membrane reactor also showed a stable process with a methane yield of 0.23 Nl/g COD was achieved. Both reactors had predominantly a hydrogenotrophic microbial consortium, however in the membrane reactor the genus Methanosaeta (acetoclastic) was also detected. In general, all relevant parameters and the methanogenic consortium indicated improved anaerobic digestion of the reactor with the membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.
Control console replacement at the WPI Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T
2012-07-13
Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general methodology for constructing, inoculating, operating, and monitoring a CSAD system for the purpose of testing the suitability of a given organic substrate for long-term anaerobic digestion. The construction section of this article will cover building the lab-scale reactor system. The inoculation section will explain how to create an anaerobic environment suitable for seeding with an active methanogenic inoculum. The operating section will cover operation, maintenance, and troubleshooting. The monitoring section will introduce testing protocols using standard analyses. The use of these measures is necessary for reliable experimental assessments of substrate suitability for AD. This protocol should provide greater protection against a common mistake made in AD studies, which is to conclude that reactor failure was caused by the substrate in use, when really it was improper user operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Brenda R.; Williams, Julie B.
2013-11-01
The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called ‘transient testing’ in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existingmore » nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these historic properties is consistent with original missions related to nuclear reactor testing and is expected to result in no adverse effects to their historic significance. Cultural resource investigations also involved communication with representatives from the Shoshone-Bannock Tribes to characterize cultural resources of potential tribal concern. This report provides a summary of the cultural resources inventoried and assessed within the defined areas of potential effect for the resumption of transient testing at the INL. Based on these analyses, proposed activities would have no adverse effects on historic properties within the APEs that have been defined. Other archaeological resources and cultural resources of potential concern to the Shoshone-Bannock Tribes and others that are located near the APEs are also discussed with regard to potential indirect impacts. The report concludes with general recommendations for measures to reduce impacts to all identified resources.« less
Control system for a small fission reactor
Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.
1985-02-08
A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.
Pradhan, A S; Bakshi, A K
2002-01-01
CaSO4:Dy and LiF TLDs do not exhibit photon energy dependence beyond +/-55% for photons in the energy range from 1 MeV to about 7 MeV. However, when sandwiched between metal filters or used in TLD badge holders having metal filters, the response changes for irradiation from high energy photons as compared to that from 60Co gamma rays (generally used for reference calibrations). This effect is about the same for both the lower atomic number TLD (LiF) and higher atomic number TLD (CaSO4:Dy). For TLDs held on the surface of the phantom and irradiated in collimated photon beams, the response of TLDs without any filter or those under the open window of the TLD badge is considerably reduced due to insufficient build-up to high energy photons, whereas for uncollimated radiation fields from power reactors, an over-response is observed. It is observed that the use of inappropriate encapsulation of dosemeters would cause a significant error not only in the estimation of doses due to penetrating radiations but also in the estimation of beta doses in the mixed fields of beta radiation, high energy gamma rays and high energy electrons often encountered in the fields of pressurised heavy water reactors.
Skillman, L C; Bajsa, O; Ho, L; Santhanam, B; Kumar, M; Ho, G
2009-07-01
Safe reuse of animal wastes to capture energy and nutrients, through anaerobic digestion processes, is becoming an increasingly desirable solution to environmental pollution. Pathogen decay is the most important safety consideration and is in general, improved at elevated temperatures and longer hydraulic residence times. During routine sampling to assess pathogen decay in thermophilic digestion, an inversely proportional relationship between levels of Clostridium perfringens and gas production was observed. Further samples were collected from pilot-scale, bench-scale thermophilic reactors and batch scale vials to assess whether gas production (predominantly methane) could be a useful indicator of decay of the thermotolerant pathogens C. perfringens and Campylobacter jejuni. Pathogen levels did appear to be lower where gas production and levels of methanogens were higher. This was evident at each operating temperature (50, 57, 65 degrees C) in the pilot-scale thermophilic digesters, although higher temperatures also reduced the numbers of pathogens detected. When methane production was higher, either when feed rate was increased, or pH was lowered from 8.2 (piggery wastewater) to 6.5, lower numbers of pathogens were detected. Although a number of related factors are known to influence the amount and rate of methane production, it may be a useful indicator of the removal of the pathogens C. perfringens and C. jejuni.
NASA Astrophysics Data System (ADS)
Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin
2015-11-01
High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.
IMPROVEMENTS RELATING TO NUCLEAR REACTOR CORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-03-01
A nuclear reactor core composed of a number of stacked horizontal layers is described. Each layer is made up of elements of moderator material of equal height and of generally hexagonal cross-section. Each element has holes containing nuclear fuel and separate ones for coolant. (C.E.S.)
U.S. Nuclear Cooperation With India: Issues for Congress
2010-02-24
Panorama , February 6, 2009. “Chennai Daily Report: India, Kazakhstan Set To Sign Nuclear Reactor Export Deal,” Chennai Business Line Online, July 10, 2009...agreements that covered reactors producing more than 5 MW thermal or special nuclear material connected therewith. 123 United States General Accounting
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
The development of a universal diagnostic probe system for Tokamak fusion test reactor
NASA Technical Reports Server (NTRS)
Mastronardi, R.; Cabral, R.; Manos, D.
1982-01-01
The Tokamak Fusion Test Reactor (TFTR), the largest such facility in the U.S., is discussed with respect to instrumentation in general and mechanisms in particular. The design philosophy and detailed implementation of a universal probe mechanism for TFTR is discussed.
Ceramic membranes with mixed conductivity and their application
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. L.; Leonidov, I. A.; Patrakeev, M. V.
2013-08-01
Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references.
Hydrogen considerations in light-water power reactons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keilholtz, G.W.
1976-02-01
A critical review of the literature now available on hydrogen considerations in light-water power reactors (LWRs) and a bibliography of that literature are presented. The subject matter includes mechanisms for the generation of hydrogen-oxygen mixtures, a description of the fundamental properties of such mixtures, and their spontaneous ignition in both static and dynamic systems. The limits for hydrogen flammability and flame propagation are examined in terms of the effects of pressure, temperature, and additives; the emphasis is on the effects of steam and water vapor. The containment systems for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) are compared, and methodsmore » to control hydrogen and oxygen under the conditions of both normal operation and postulated accidents are reviewed. It is concluded that hydrogen can be controlled so that serious complications from the production of hydrogen will not occur. The bibliography contains abstracts from the computerized files of the Nuclear Safety Information Center. Key-word, author, and permuted-title indexes are provided. The bibliography includes responses to questions asked by the U. S. Nuclear Regulatory Commission (NRC) which relate to hydrogen, as well as information on normal operations and postulated accidents including generation of hydrogen from core sprays. Other topics included in the ten sections of the bibliography are metal-water reactions, containment atmosphere, radiolytic gas, and recombiners.« less
Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N
2005-01-01
Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.
77 FR 41814 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... Unit 1 result primarily from periodic testing of diesel generators and fire water pump diesel engines... rural. GGNS Unit 1 is a General Electric Mark 3 boiling-water reactor. Identification of the Proposed... following: replacing the reactor feed pump turbine rotors; replacing the main generator current transformers...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... Westinghouse Electric Company, General Electric--Hitachi Nuclear Energy (GEH), and their contractors, pursuant... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Future Plant Designs; Revision to the September 24, 2010, ACRS Meeting Federal Register Notice...
Analysis of a boron-carbide-drum-controlled critical reactor experiment
NASA Technical Reports Server (NTRS)
Mayo, W. T.
1972-01-01
In order to validate methods and cross sections used in the neutronic design of compact fast-spectrum reactors for generating electric power in space, an analysis of a boron-carbide-drum-controlled critical reactor was made. For this reactor the transport analysis gave generally satisfactory results. The calculated multiplication factor for the most detailed calculation was only 0.7-percent Delta k too high. Calculated reactivity worth of the control drums was $11.61 compared to measurements of $11.58 by the inverse kinetics methods and $11.98 by the inverse counting method. Calculated radial and axial power distributions were in good agreement with experiment.
Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.P.
2000-02-11
A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data upmore » through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.« less
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.
FUEL ASSEMBLY FOR A NEUTRONIC REACTOR
Wigner, E.P.
1958-04-29
A fuel assembly for a nuclear reactor of the type wherein liquid coolant is circulated through the core of the reactor in contact with the external surface of the fuel elements is described. In this design a plurality of parallel plates containing fissionable material are spaced about one-tenth of an inch apart and are supported between a pair of spaced parallel side members generally perpendicular to the plates. The plates all have a small continuous and equal curvature in the same direction between the side members.
Stainless steel blanket concept for tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbowski, J.S.; Lee, A.Y.; Prevenslik, T.V.
1979-01-25
The purpose of this joint ORNL/Westinghouse Program is to develop a design concept for a tokamak reactor blanket system which satisfies engineering requirements for a utility environment. While previous blanket studies have focused primarily on performance issues (thermal, neutronic, and structural), this study has emphasized consideration of reliability, fabricability, and lifetime.
78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental... (YAEC) is the holder of Possession-Only License DPR-3 for the Yankee Nuclear Power Station (YNPS... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule...
Production of hydrogen by direct gasification of coal with steam using nuclear heat
NASA Technical Reports Server (NTRS)
1975-01-01
Problems related to: (1) high helium outlet temperature of the reactor, and (2) gas generator design used in hydrogen production are studied. Special attention was given to the use of Oklahoma coal in the gasification process. Plant performance, operation, and environmental considerations are covered.
Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1995-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rim, Jung H.; Kuhn, Kevin J.; Tandon, Lav
Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials’ properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modelling feedback andmore » trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. In conclusion, based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.« less
Status report on the disposal of radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culler, F.L. Jr.; McLain, S.
1957-06-25
A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less
Promethus Hot Leg Piping Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
AM Girbik; PA Dilorenzo
2006-01-24
The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactormore » (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.« less
The Application of U-Np Fuel and {sup 6}Li Burnable Poison for Space Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, Konstantin L.; Saito, Masaki; Artisyuk, Vladimir V.
2003-11-15
The possible application of {sup 6}Li as a burnable poison and U-Np nitride as a fuel for space nuclear reactors has been studied. The analysis was performed for an infinite lattice with a leakage in the form of buckling and (U-Np)N fuel with 20% uranium enrichment. The combination of {sup 7}Li as a coolant and {sup 6}Li as a burnable poison results in a favorable criticality behavior during burnup. The parameters taken into consideration include the different fuel and coolant compositions, the form of absorber material, and the various absorber mass and concentrations. It was found that absorption properties ofmore » {sup 6}Li allow reaching the burnup value up to 67 GWd/tHM while reactivity swing is comparable with {beta}{sub eff}. The corresponding reactor lifetime is {approx}10 to 30 yr.« less
Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera
NASA Technical Reports Server (NTRS)
Stanojev, B. J.; Houts, M.
2004-01-01
Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.
Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System
NASA Astrophysics Data System (ADS)
Marcille, T. F.; Dixon, D. D.; Fischer, G. A.; Doherty, S. P.; Poston, D. I.; Kapernick, R. J.
2006-01-01
In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.
Advanced low-activation materials. Fibre-reinforced ceramic composites
NASA Astrophysics Data System (ADS)
Fenici, P.; Scholz, H. W.
1994-09-01
A serious safety and environmental concern for thermonuclear fusion reactor development regards the induced radioactivity of the first wall and structural components. The use of low-activation materials (LAM) in a demonstration reactor would reduce considerably its potential risk and facilitate its maintenance. Moreover, decommissioning and waste management including disposal or even recycling of structural materials would be simplified. Ceramic fibre-reinforced SiC materials offer highly appreciable low activation characteristics in combination with good thermomechanical properties. This class of materials is now under experimental investigation for structural application in future fusion reactors. An overview on the recent results is given, covering coolant leak rates, thermophysical properties, compatibility with tritium breeder materials, irradiation effects, and LAM-consistent purity. SiC/SiC materials present characteristics likely to be optimised in order to meet the fusion application challenge. The scope is to put into practice the enormous potential of inherent safety with fusion energy.
Lashkari, A; Khalafi, H; Kazeminejad, H
2013-05-01
In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.
Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core
Lashkari, A.; Khalafi, H.; Kazeminejad, H.
2013-01-01
In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672
High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan
2009-01-01
An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.
PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.
1981-09-01
This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less
Burn Control Mechanisms in Tokamaks
NASA Astrophysics Data System (ADS)
Hill, M. A.; Stacey, W. M.
2015-11-01
Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.
Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei
2016-09-01
The aerobic-anaerobic landfill method (AALM) is a novel approach in solid waste management that could shorten the landfill post-closure period and minimize the environmental loads. In this study, the aerobic-anaerobic landfill method was evaluated by using intermittent aeration. In addition, the nitrification-denitrification process was assessed as a means of reducing the emission of greenhouse gases (GHGs) and improving the leachate quality during the degradation of the organic solid waste. The leachate quality and the gas composition in each of the reactors were measured during the experimental period (408days). The aeration process entailed the injection of air into plexiglass cylinders (200cm height×10 cm diameter), filled with fresh organic solid waste collected from a composting plant. Different aeration routines were applied, namely, continuous aeration (aerobic reactor A), aeration for three days/week (aerobic-anaerobic reactor B), aeration for 6h/day (aerobic-anaerobic reactor C), and no aeration (non-aerated reactor D). It was found that aerobic reactor A produced the best results in terms of reduction of GHGs and improvement of the leachate quality. The aerobic-anaerobic reactor C was found to be more effective than reactor B in respect of both the emission of GHGs and the leachate quality; moreover, compared with aerobic reactor A, energy costs were reduced by operating this reactor. The transition period phenomenon was investigated during an intensive seven-day experiment conducted on the discharged leachate obtained from aerobic-anaerobic reactors B and C. The experiment concerned the differences in the composition of the gas during the aeration and the non-aeration periods. It was found that the transition period between the aeration and non-aeration cycles, which followed the simultaneous nitrification-denitrification had a considerable effect on the leachate quality of both the reactors. The results indicated that AALM has the potential to reduce leachate pollutants and the emission of GHGs. Furthermore, the occurrence of simultaneous nitrification-denitrification presents the prospect that intermittent aeration could reduce landfill aftercare and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hsieh, T.-M.; Koenig, D. R.
1977-01-01
Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.
Experimental investigation of a new method for advanced fast reactor shutdown cooling
NASA Astrophysics Data System (ADS)
Pakholkov, V. V.; Kandaurov, A. A.; Potseluev, A. I.; Rogozhkin, S. A.; Sergeev, D. A.; Troitskaya, Yu. I.; Shepelev, S. F.
2017-07-01
We consider a new method for fast reactor shutdown cooling using a decay heat removal system (DHRS) with a check valve. In this method, a coolant from the decay heat exchanger (DHX) immersed into the reactor upper plenum is supplied to the high-pressure plenum and, then, inside the fuel subassemblies (SAs). A check valve installed at the DHX outlet opens by the force of gravity after primary pumps (PP-1) are shut down. Experimental studies of the new and alternative methods of shutdown cooling were performed at the TISEY test facility at OKBM. The velocity fields in the upper plenum of the reactor model were obtained using the optical particle image velocimetry developed at the Institute of Applied Physics (Russian Academy of Sciences). The study considers the process of development of natural circulation in the reactor and the DHRS models and the corresponding evolution of the temperature and velocity fields. A considerable influence of the valve position in the displacer of the primary pump on the natural circulation of water in the reactor through the DHX was discovered (in some modes, circulation reversal through the DHX was obtained). Alternative DHRS designs without a shell at the DHX outlet with open and closed check valve are also studied. For an open check valve, in spite of the absence of a shell, part of the flow is supplied through the DHX pipeline and then inside the SA simulators. When simulating power modes of the reactor operation, temperature stratification of the liquid was observed, which increased in the cooling mode via the DHRS. These data qualitatively agree with the results of tests at BN-600 and BN-800 reactors.
Background radiation measurements at high power research reactors
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.; Prospect Collaboration
2016-01-01
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.
Control console replacement at the WPI Reactor. [Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Fux, C; Siegrist, H
2004-01-01
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.
12. General Arrangement Plan, Building 189D, U.S. Atomic Energy Commission, ...
12. General Arrangement Plan, Building 189-D, U.S. Atomic Energy Commission, General Electric Company, Dwg. No. H-1-11068, 1958. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA
A review and assessment of hydrodynamic cavitation as a technology for the future.
Gogate, Parag R; Pandit, Aniruddha B
2005-01-01
In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors.
Gliding arc in tornado using a reverse vortex flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalra, Chiranjeev S.; Cho, Young I.; Gutsol, Alexander
The present article reports a new gliding arc (GA) system using a reverse vortex flow ('tornado') in a cylindrical reactor (gliding arc in tornado, or GAT), as used to preserve the main advantages of traditional GA systems and overcome their main drawbacks. The primary advantages of traditional GA systems retained in the present GAT are the possibility to generate transitional plasma and to avoid considerable electrode erosion. In contrast to a traditional GA, the new GAT system ensures much more uniform gas treatment and has a significantly larger gas residence time in the reactor. The present article also describes themore » design of the new reactor and its stable operation regime when the variation of GAT current is very small. These features are understood to be very important for most viable applications. Additionally the GAT provides near-perfect thermal insulation from the reactor wall, indicating that the present GAT does not require the reactor wall to be constructed of high-temperature materials. The new GAT system, with its unique properties such as a high level of nonequilibrium and a large residence time, looks very promising for many industrial applications including fuel conversion, carbon dioxide conversion to carbon monoxide and oxygen, surface treatment, waste treatment, flame stabilization, hydrogen sulfide treatment, etc.« less
Ultrasound pre-treatment for anaerobic digestion improvement.
Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F
2009-01-01
Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Sterbentz, James W.; Snoj, Luka
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
NASA Technical Reports Server (NTRS)
Bittker, David A.
1996-01-01
A generalized version of the NASA Lewis general kinetics code, LSENS, is described. The new code allows the use of global reactions as well as molecular processes in a chemical mechanism. The code also incorporates the capability of performing sensitivity analysis calculations for a perfectly stirred reactor rapidly and conveniently at the same time that the main kinetics calculations are being done. The GLSENS code has been extensively tested and has been found to be accurate and efficient. Nine example problems are presented and complete user instructions are given for the new capabilities. This report is to be used in conjunction with the documentation for the original LSENS code.
Heat transfer evaluation in a plasma core reactor
NASA Technical Reports Server (NTRS)
Smith, D. E.; Smith, T. M.; Stoenescu, M. L.
1976-01-01
Numerical evaluations of heat transfer in a fissioning uranium plasma core reactor cavity, operating with seeded hydrogen propellant, was performed. A two-dimensional analysis is based on an assumed flow pattern and cavity wall heat exchange rate. Various iterative schemes were required by the nature of the radiative field and by the solid seed vaporization. Approximate formulations of the radiative heat flux are generally used, due to the complexity of the solution of a rigorously formulated problem. The present work analyzes the sensitivity of the results with respect to approximations of the radiative field, geometry, seed vaporization coefficients and flow pattern. The results present temperature, heat flux, density and optical depth distributions in the reactor cavity, acceptable simplifying assumptions, and iterative schemes. The present calculations, performed in cartesian and spherical coordinates, are applicable to any most general heat transfer problem.
141. ARAIII Equipment location plan. Includes list of equipment and ...
141. ARA-III Equipment location plan. Includes list of equipment and location in reactor, control, and other buildings. Aerojet-general 880-area/GCRE-101-U-1. Date: February 1958. Ineel index code no. 063-0101-65-013-192508. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Accident analysis of heavy water cooled thorium breeder reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki
2015-04-16
Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k,more » and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.« less
Accident analysis of heavy water cooled thorium breeder reactor
NASA Astrophysics Data System (ADS)
Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki
2015-04-01
Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.
Omil, F; Lens, P; Visser, A; Hulshoff Pol, L W; Lettinga, G
1998-03-20
The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilising SRB to outcompete MB. Copyright 1998 John Wiley & Sons, Inc.
Background radiation measurements at high power research reactors
Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...
2015-10-23
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
NASA Technical Reports Server (NTRS)
Martini, M.
1981-01-01
Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.
Nuclear Reactors for Space Power, Understanding the Atom Series.
ERIC Educational Resources Information Center
Corliss, William R.
The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... Patel, Project Manager, US-APWR Projects Branch, Division of New Reactor Licensing, Office of New.... Before issuing the amendment, regardless of whether a hearing is requested, the Commission will make a... make it immediately effective, notwithstanding the request for a hearing. Any hearing held would take...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paratte, J.M.; Pelloni, S.; Grimm, P.
1991-04-01
This paper analyzes the capability of various code systems and JEF-1-based nuclear data libraries to compute light water reactor lattices by comparing calculations with results from thermal reactor benchmark experiments TRX and BAPL and with previously published values. With the JEF-1 evaluation, eigenvalues are generally well predicted within 8 mk (1 mk = 0.001) or less by all code systems, and all methods give reasonable results for the measured reaction rate ratios within, or not too far from, the experimental uncertainty.
Dimethyl ether production from methanol and/or syngas
Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli
2015-02-17
Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.
Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Middleton, Bobby
Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.
Heat barrier for use in a nuclear reactor facility
Keegan, Charles P.
1988-01-01
A thermal barrier for use in a nuclear reactor facility is disclosed herein. Generally, the thermal barrier comprises a flexible, heat-resistant web mounted over the annular space between the reactor vessel and the guard vessel in order to prevent convection currents generated in the nitrogen atmosphere in this space from entering the relatively cooler atmosphere of the reactor cavity which surrounds these vessels. Preferably, the flexible web includes a blanket of heat-insulating material formed from fibers of a refractory material, such as alumina and silica, sandwiched between a heat-resistant, metallic cloth made from stainless steel wire. In use, the web is mounted between the upper edges of the guard vessel and the flange of a sealing ring which surrounds the reactor vessel with a sufficient enough slack to avoid being pulled taut as a result of thermal differential expansion between the two vessels. The flexible web replaces the rigid and relatively complicated structures employed in the prior art for insulating the reactor cavity from the convection currents generated between the reactor vessel and the guard vessel.
Heat insulating system for a fast reactor shield slab
Kotora Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.
1986-04-01
Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.
Heat insulating system for a fast reactor shield slab
Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.
1986-01-01
Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.
Heat insulating system for a fast reactor shield slab
Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.
1984-04-10
Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.
Bertin, Lorenzo; Berselli, Sara; Fava, Fabio; Petrangeli-Papini, Marco; Marchetti, Leonardo
2004-01-01
Anaerobic digestion is one of the most promising technologies for disposing olive mill wastewaters (OMWs). The process is generally carried out in the conventional contact bioreactors, which however are often unable to efficiently remove OMW phenolic compounds, that therefore occur in the effluents. The possibility of mitigating this problem by employing an anaerobic OMW-digesting microbial consortium passively immobilized in column reactors packed with granular activated carbon (GAC) or "Manville" silica beads (SB) was here investigated. Under batch conditions, both GAC- and SB-packed-bed biofilm reactors exhibited OMW COD and phenolic compound removal efficiencies markedly higher (from 60% to 250%) than those attained in a parallel anaerobic dispersed growth reactor developed with the same inoculum; GAC-reactor exhibited COD and phenolic compound depletion yields higher by 62% and 78%, respectively, than those achieved with the identically configured SB-biofilm reactor. Both biofilm reactors also mediated an extensive OMW remediation under continuous conditions, where GAC-reactor was much more effective than the corresponding SB-one, and showed a tolerance to high and variable organic loads along with a volumetric productivity in terms of COD and phenolic compound removal significantly higher than those averagely displayed by most of the conventional and packed-bed laboratory-scale reactors previously proposed for the OMW digestion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Kathryn A.; Adams, Bradley J.
The LWR RD&D Working Group developed a detailed list of RD&D suggestions and recommendations, which are provided in Appendix D. The Working Group then undertook a systematic ranking process, described in Appendix E. The results of the ranking process are not meant to be a strict set of priorities, but rather should provide insight into how the items generally ranked within the Working Group. Future discussions and investigation into these items could provide information that would support a change in these priorities or in their emphasis. The results of this prioritization are provided below. Note that in general, many RD&Dmore » ideas are applicable to both new Advanced Light Water Reactor (ALWR) plants and currently operating plants.« less
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
Skyshine study for next generation of fusion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Y.; Yang, S.
1987-02-01
A shielding analysis for next generation of fusion devices (ETR/INTOR) was performed to study the dose equivalent outside the reactor building during operation including the contribution from neutrons and photons scattered back by collisions with air nuclei (skyshine component). Two different three-dimensional geometrical models for a tokamak fusion reactor based on INTOR design parameters were developed for this study. In the first geometrical model, the reactor geometry and the spatial distribution of the deuterium-tritium neutron source were simplified for a parametric survey. The second geometrical model employed an explicit representation of the toroidal geometry of the reactor chamber and themore » spatial distribution of the neutron source. The MCNP general Monte Carlo code for neutron and photon transport was used to perform all the calculations. The energy distribution of the neutron source was used explicitly in the calculations with ENDF/B-V data. The dose equivalent results were analyzed as a function of the concrete roof thickness of the reactor building and the location outside the reactor building.« less
Modeling residence-time distribution in horizontal screw hydrolysis reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Stickel, Jonathan J.
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Modeling residence-time distribution in horizontal screw hydrolysis reactors
Sievers, David A.; Stickel, Jonathan J.
2017-10-12
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Sensor placement in nuclear reactors based on the generalized empirical interpolation method
NASA Astrophysics Data System (ADS)
Argaud, J.-P.; Bouriquet, B.; de Caso, F.; Gong, H.; Maday, Y.; Mula, O.
2018-06-01
In this paper, we apply the so-called generalized empirical interpolation method (GEIM) to address the problem of sensor placement in nuclear reactors. This task is challenging due to the accumulation of a number of difficulties like the complexity of the underlying physics and the constraints in the admissible sensor locations and their number. As a result, the placement, still today, strongly relies on the know-how and experience of engineers from different areas of expertise. The present methodology contributes to making this process become more systematic and, in turn, simplify and accelerate the procedure.
Le, Chi Chip; Wismer, Michael K; Shi, Zhi-Cai; Zhang, Rui; Conway, Donald V; Li, Guoqing; Vachal, Petr; Davies, Ian W; MacMillan, David W C
2017-06-28
Photocatalysis for organic synthesis has experienced an exponential growth in the past 10 years. However, the variety of experimental procedures that have been reported to perform photon-based catalyst excitation has hampered the establishment of general protocols to convert visible light into chemical energy. To address this issue, we have designed an integrated photoreactor for enhanced photon capture and catalyst excitation. Moreover, the evaluation of this new reactor in eight photocatalytic transformations that are widely employed in medicinal chemistry settings has confirmed significant performance advantages of this optimized design while enabling a standardized protocol.
Dynamic Computer Model of a Stirling Space Nuclear Power System
2006-05-04
diagram of electric propulsion…………………………………. 17 Figure 2-1. General NEP structure……………………………………………………….20 Figure 2-2. Fission of uranium -235...Figure 2-1. General NEP structure. [20] 21 Figure 2-2. Fission of uranium -235. In a fast reactor, the average number of neutrons...that is modeled for this project is a 600 kW(t) fast fission reactor consisting of uranium nitride fuel and sodium potassium coolant. Its dynamic
Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor
NASA Astrophysics Data System (ADS)
Hagiwara, S.; Nabetani, H.; Nakajima, M.
2015-04-01
Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non-edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.
Feasibility study of full-reactor gas core demonstration test
NASA Technical Reports Server (NTRS)
Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.
1973-01-01
Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.
Bioreactors with immobilized lipases: state of the art.
Balcão, V M; Paiva, A L; Malcata, F X
1996-05-01
This review attempts to provide an updated compilation of studies reported in the literature pertaining to reactors containing lipases in immobilized forms, in a way that helps the reader direct a bibliographic search and develop an integrated perspective of the subject. Highlights are given to industrial applications of lipases (including control and economic considerations), as well as to methods of immobilization and configurations of reactors in which lipases are used. Features associated with immobilized lipase kinetics such as enzyme activities, adsorption properties, optimum operating conditions, and estimates of the lumped parameters in classical kinetic formulations (Michaelis-Menten model for enzyme action and first-order model for enzyme decay) are presented in the text in a systematic tabular form.
Bootstrap and fast wave current drive for tokamak reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehst, D.A.
1991-09-01
Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less
Basic elements of light water reactor fuel rod design. [FUELROD code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, J.; Eckart, R.
1981-06-01
Basic design techniques and equations are presented to allow students to understand and perform preliminary fuel design for normal reactor conditions. Each of the important design considerations is presented and discussed in detail. These include the interaction between fuel pellets and cladding and the changes in fuel and cladding that occur during the operating lifetime of the fuel. A simple, student-oriented, fuel rod design computer program, called FUELROD, is described. The FUELROD program models the in-pile pellet cladding interaction and allows a realistic exploration of the effect of various design parameters. By use of FUELROD, the student can gain anmore » appreciation of the fuel rod design process. 34 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A.C.; Sanders, C.; Tennet, M.G.
""Jason"" reactors are described in which the power level is increased from the original 10 kw to 100 kw. The problems encountered in making this ten- fold increase in power arise not only in connection with the removal of the extra heat produced but also with a number of effects which, although negligible at 10 kw, become significant at 100 kw. These effects are examined and the steps taken, where necessary, to prevent them from becoming troublesome are described. Attention is paid to the safety of the system. A program of work carried out on the Langley ""Jason,"" which throwsmore » considerable light on the behavior of a 100 kw reactor under severe fault conditions, is described here for the first time. (auth)« less
Nuclear data activities at the n_TOF facility at CERN
NASA Astrophysics Data System (ADS)
Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Radeck, D.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.
2016-10-01
Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility n_TOF will be presented.
Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed
2016-11-01
Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.
Numerical Approach to Wood Pyrolysis in Considerating Heat Transfer in Reactor Chamber
NASA Astrophysics Data System (ADS)
Idris, M.; Novalia, U.
2017-03-01
Pyrolysis is the decomposition process of solid biomass into gas, tar and charcoal through thermochemical methods. The composition of biomass consists of cellulose hemi cellulose and lignin, which each will decompose at different temperatures. Currently pyrolysis has again become an important topic to be discussed. Many researchers make and install the pyrolysis reactor to convert biomass waste into clean energy hardware that can be used to help supply energy that has a crisis. Additionally the clean energy derived from biomass waste is a renewable energy, in addition to abundant source also reduce exhaust emissions of fossil energy that causes global warming. Pyrolysis is a method that has long been known by humans, but until now little is known about the phenomenon of the pyrolysis process that occurs in the reactor. One of the Pyrolysis’s phenomena is the heat transfer process from the temperature of the heat source in the reactor and heat the solid waste of biomass. The solid waste of biomass question in this research is rubber wood obtained from one of the company’s home furnishings. Therefore, this study aimed to describe the process of heat transfer in the reactor during the process. ANSYS software was prepared to make the simulation of heat transfer phenomena at the pyrolysis reactor. That’s the numerical calculation carried out for 1200 seconds. Comparison of temperature performed at T1, T2 and T3 to ensure that thermal conductivity is calculated by numerical accordance with experimental data. The distribution of temperature in the reactor chamber specifies the picture that excellent heat conduction effect of the wood near or attached to wooden components, cellulose, hemicellulose and lignin down into gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.
2014-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
Comparison of evolving photovoltaic and nuclear power systems for earth orbital applications
NASA Technical Reports Server (NTRS)
Rockey, D. E.; Jones, R. M.; Schulman, I.
1982-01-01
Photovoltaic and fission reactor orbital power systems are compared in terms of the end-to-end system power-to-mass ratios. Three PV systems are examined, i.e., a solid substrate with a cell array and a NiCd battery, a modified SEP array and an NiH2 battery, and a 62-micron Si cell array and a fuel cell. All arrays were modeled to be 13.5% efficient and to produce 25 kW dc. The SP-100 reactor consists of the heat source, radiation shield, heat pipes to transfer thermal energy from the reactor to thermoelectric elements, and a waste heat radiator. Consideration is given to system applications in orbits ranging from LEO to GEO, and to mission durations of 1, 5, and 10 yr. PV systems are concluded to be flight-proven, useful out of radiation belts, and best for low to moderate power levels. Limitations exist for operations where atmospheric drag may become a factor and due to the size of a large PV power supply. Space nuclear reactors will continue under development and uses at high power levels and in low altitude orbits are foreseen.
NASA Technical Reports Server (NTRS)
Meier, Anne J.; Shah, Malay; Petersen, Elspeth; Hintze, Paul; Muscatello, Tony
2017-01-01
The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model.
Enrichment of 57Fe isotope in neutron flux of nuclear reactors observed by Mössbauer spectroscopy.
Sawicki, Jerzy A
2018-02-01
The abundance of 57 Fe isotope in nuclear reactor core materials can be considerably enriched by neutron-capture 56 Fe(n,γ) reactions. This is demonstrated using the sections of Zr-2.5 wt.%Nb pressure tubes removed from two CANDU* reactors. The tubes contained 0.11 and 0.04wt% Fe and were irradiated for about 10 effective full power years (EFPY) up to ~10 26 n/m 2 fast neutron (E > 1MeV) fluencies. The Mössbauer spectra of 57 Fe in irradiated samples indicated up to 10 times larger areas than unirradiated off-cuts from the same pressure tubes. The observed effect is in accord with the values calculated for known thermal neutron-capture cross-sections and resonance capture integrals, neutron flux profiles and spectra, and times of irradiation. The build-up of 57 Fe facilitated recording Mössbauer absorption spectra of alloys with minor amount of Fe down to ~ 400ppm, despite intense background radiation emitted by samples. These findings can open new possibilities in post-irradiation studies of alloys used in nuclear reactors and in other objects subjected to large neutron fluencies. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Georgieva, Tania I.; Mikkelsen, Marie J.; Ahring, Birgitte K.
Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70°C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/1. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/1) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.
Corrosion and Corrosion Control in Light Water Reactors
NASA Astrophysics Data System (ADS)
Gordon, Barry M.
2013-08-01
Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.
Deployment history and design considerations for space reactor power systems
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.
2009-05-01
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's "BUK" power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ˜800 km orbit. The US' SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90-96 wt%) and operated at a reactor exit temperature of 833-973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO 2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (˜0.5 kW e and ˜1 year for SNAP-10A, <3.0 kW e and <6 months for BUK, and ˜5.5 kW e and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ˜4.5 months, were boosted into ˜800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000-3000 km orbits would generate significantly more power of 10's to 100's kW e for 5-10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.
Policke, Timothy A; Nygaard, Eric T
2014-05-06
The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.
Fast Breeder Reactors in Sweden: Vision and Reality.
Fjaestad, Maja
2015-01-01
The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and '60s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy. Sweden had advanced plans for a nuclear breeder program, but canceled them in the middle of the 1970s with the rise of nuclear skepticism. The article investigates the nuclear breeder as a technological vision. The nuclear breeder reactor is an example of a technological future that did not meet its industrial expectations. But that does not change the fact that the breeder was an influential technology. Decisions about the contemporary reactors were taken with the idea that in a foreseeable future they would be replaced with the efficient breeder. The article argues that general themes in the history of the breeder reactor can deepen our understanding of the mechanisms behind technological change.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Rabenberg, Ellen; Stanley, Christine M.; Edmunson, Jennifer; Alleman, James E.; Chen, Kevin; Dumez, Sam
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spent regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, James M.; Stanley, Christine; Edmunson, Jennifer; Dumez, Samuel; Chen, Kevin; Alleman, James E.
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spend regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Alloy Selection for Accident Tolerant Fuel Cladding in Commercial Light Water Reactors
NASA Astrophysics Data System (ADS)
Rebak, Raul B.
2015-12-01
As a consequence of the March 2011 events at the Fukushima site, the U.S. congress asked the Department of Energy (DOE) to concentrate efforts on the development of nuclear fuels with enhanced accident tolerance. The new fuels had to maintain or improve the performance of current UO2-zirconium alloy rods during normal operation conditions and tolerate the loss of active cooling in the core for a considerably longer time period than the current system. DOE is funding cost-shared research to investigate the behavior of advanced steels both under normal operation conditions in high-temperature water [ e.g., 561 K (288 °C)] and under accident conditions for reaction with superheated steam. Current results show that, under accident conditions, the advanced ferritic steels (1) have orders of magnitude lower reactivity with steam, (2) would generate less hydrogen and heat than the current zirconium alloys, (3) are resistant to stress corrosion cracking under normal operation conditions, and (4) have low general corrosion in water at 561 K (288 °C).
DeHart, Mark D.; Baker, Benjamin A.; Ortensi, Javier
2017-07-27
The Transient Test Reactor (TREAT) at Idaho National Laboratory will resume operations in late 2017 after a 23 year hiatus while maintained in a cold standby state. Over that time period, computational power and simulation capabilities have increased substantially and now allow for new multiphysics modeling possibilities that were not practical or feasible for most of TREAT's operational history. Hence the return of TREAT to operational service provides a unique opportunity to apply state-of-the-art software and associated methods in the modeling and simulation of general three-dimensional steady state and kinetic behavior for reactor operation, and for coupling of the coremore » power transient model to experiment simulations. However, measurements taken in previous operations were intended to predict power deposition in experimental samples, with little consideration of three-dimensional core power distributions. Hence, interpretation of data for the purpose of validation of modern methods can be challenging. For the research discussed herein, efforts are described for the process of proper interpretation of data from the most recent calibration experiments performed in the core, the M8 calibration series (M8-CAL). These measurements were taken between 1990 and 1993 using a set of fission wires and test fuel pins to estimate the power deposition that would be produced in fast reactor test fuel pins during the M8 experiment series. Because of the decision to place TREAT into a standby state in 1994, the M8 series of transients were never performed. However, potentially valuable information relevant for validation is available in the M8-CAL measurement data, if properly interpreted. This article describes the current state of the process of recovery of useful data from M8-CAL measurements and quantification of biases and uncertainties to potentially apply to the validation of multiphysics methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark D.; Baker, Benjamin A.; Ortensi, Javier
The Transient Test Reactor (TREAT) at Idaho National Laboratory will resume operations in late 2017 after a 23 year hiatus while maintained in a cold standby state. Over that time period, computational power and simulation capabilities have increased substantially and now allow for new multiphysics modeling possibilities that were not practical or feasible for most of TREAT's operational history. Hence the return of TREAT to operational service provides a unique opportunity to apply state-of-the-art software and associated methods in the modeling and simulation of general three-dimensional steady state and kinetic behavior for reactor operation, and for coupling of the coremore » power transient model to experiment simulations. However, measurements taken in previous operations were intended to predict power deposition in experimental samples, with little consideration of three-dimensional core power distributions. Hence, interpretation of data for the purpose of validation of modern methods can be challenging. For the research discussed herein, efforts are described for the process of proper interpretation of data from the most recent calibration experiments performed in the core, the M8 calibration series (M8-CAL). These measurements were taken between 1990 and 1993 using a set of fission wires and test fuel pins to estimate the power deposition that would be produced in fast reactor test fuel pins during the M8 experiment series. Because of the decision to place TREAT into a standby state in 1994, the M8 series of transients were never performed. However, potentially valuable information relevant for validation is available in the M8-CAL measurement data, if properly interpreted. This article describes the current state of the process of recovery of useful data from M8-CAL measurements and quantification of biases and uncertainties to potentially apply to the validation of multiphysics methods.« less
Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel and J. M. Capron
2007-07-25
This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.
Cermet-fueled reactors for advanced space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, C.L.; Palmer, R.S.; Taylor, I.N.
Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less
Assessment of Sensor Technologies for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.
This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less
Risk Analysis for Public Consumption: Media Coverage of the Ginna Nuclear Reactor Accident.
ERIC Educational Resources Information Center
Dunwoody, Sharon; And Others
Researchers have determined that the lay public makes risk judgments in ways that are very different from those advocated by scientists. Noting that these differences have caused considerable concern among those who promote and regulate health and safety, a study examined media coverage of the accident at the Robert E. Ginna nuclear power plant…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... adversely affect plant safety, and would have no adverse effect on the probability of any accident. For the accidents that involve damage or melting of the fuel in the reactor core, fuel rod integrity has been shown to be unaffected by extended burnup under consideration; therefore, the probability of an accident...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-23
... adversely affect plant safety, and would have no adverse effect on the probability of any accident. For the accidents that involve damage or melting of the fuel in the reactor core, fuel rod integrity has been shown to be unaffected by extended burnup under consideration; therefore, the consequences of an accident...
Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman; Ougouag, Abderrafi
2014-07-08
This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can bemore » easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.« less
Aeration costs in stirred-tank and bubble column bioreactors
Humbird, D.; Davis, R.; McMillan, J. D.
2017-08-10
To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benton, J; Wall, D; Parker, E
This paper presents the latest information on one of the Accelerated Highly Enriched Uranium (HEU) Disposition initiatives that resulted from the May 2002 Summit meeting between Presidents George W. Bush and Vladimir V. Putin. These initiatives are meant to strengthen nuclear nonproliferation objectives by accelerating the disposition of nuclear weapons-useable materials. The HEU Transparency Implementation Program (TIP), within the National Nuclear Security Administration (NNSA) is working to implement one of the selected initiatives that would purchase excess Russian HEU (93% 235U) for use as fuel in U.S. research reactors over the next ten years. This will parallel efforts to convertmore » the reactors' fuel core from HEU to low enriched uranium (LEU) material, where feasible. The paper will examine important aspects associated with the U.S. research reactor HEU purchase. In particular: (1) the establishment of specifications for the Russian HEU, and (2) transportation safeguard considerations for moving the HEU from the Mayak Production Facility in Ozersk, Russia, to the Y-12 National Security Complex in Oak Ridge, TN.« less
Shielding Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.
2015-01-01
Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.
Lee, M Y; Cheon, J H; Hidaka, T; Tsuno, H
2008-01-01
The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of a hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 20.8% of COD solubilization was achieved at 70 degrees C, with 12.6% at 80 degrees C. The average protein solubilization reached 31% at 80 degrees C. Methane conversion efficiency following the acidification was around 85% on average at 55 degrees C, but decreased with increasing temperature and methane gas was not produced over 73 degrees C. As well, bacteria affiliated with the methanogens dominated the population below 65 degrees C, while those affiliated with acidogens were predominant over 73 degrees C. These results indicated that the hyperthermophilic process has considerable benefits to treat wastewater or waste containing high concentration of protein.
Determination of origin and intended use of plutonium metal using nuclear forensic techniques.
Rim, Jung H; Kuhn, Kevin J; Tandon, Lav; Xu, Ning; Porterfield, Donivan R; Worley, Christopher G; Thomas, Mariam R; Spencer, Khalil J; Stanley, Floyd E; Lujan, Elmer J; Garduno, Katherine; Trellue, Holly R
2017-04-01
Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials' properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240 Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modeling feedback and trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. Based on this investigation, the most likely intended use for these plutonium foils was 239 Pu fission foil targets for physics experiments, such as cross-section measurements, etc. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination of origin and intended use of plutonium metal using nuclear forensic techniques
Rim, Jung H.; Kuhn, Kevin J.; Tandon, Lav; ...
2017-04-01
Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials’ properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modelling feedback andmore » trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. In conclusion, based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.« less
Determination of 241Pu in low-level radioactive wastes from reactors.
Martin, J E
1986-11-01
Plutonium-241 is unique in low-level radioactive wastes (LLW) from nuclear power plants because it is the only significant beta-emitting transuranic nuclide in LLW, has a relatively short half-life of 14.4 y, and has a fairly high allowable concentration for shallow land burial. Radiochemical separation of Pu followed by liquid scintillation analysis was used to quantitate 241Pu in a wide range of solid, semi-solid, and liquid LLW samples from two nuclear plants in Michigan. The 241Pu concentrations varied considerably by sample type and reactor operational period as did their correlation with 137Cs, 144Ce, 239Pu and 240Pu concentrations in the same sample. These patterns were also found in reported data for 241Pu in LLW from other reactors, raising the difficulty of accurately determining the inventory (or source term) in a LLW shallow land burial site and its implications for predicting and controlling the future environmental and public health impacts of such disposal.
High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan
2009-01-01
An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.
Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle
NASA Astrophysics Data System (ADS)
Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.
2015-12-01
The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.
Aeration costs in stirred-tank and bubble column bioreactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, D.; Davis, R.; McMillan, J. D.
To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less
Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.
2015-12-15
The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no usemore » of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-01-01
Thirty-one papers and 10 summaries of papers presented at the Third Conference on Analytical Chemistry in Nuclear Reactor Technology held at Gatlinburg, Tennessee, October 26 to 29, 1959, are given. The papers are grouped into four sections: general, analytical chemistry of fuels, analytical chemistry of plutonium and the transplutonic elements, and the analysis of fission-product mixtures. Twenty-seven of the papers are covered by separate abstracts. Four were previously abstracted for NSA. (M.C.G.)
Operating manual for the Bulk Shielding Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-04-01
The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.
Operating manual for the Bulk Shielding Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolben, H.; Wehling, H.J.
Incipient damage to mechanical structure may be detected early in time by deviations from normal dynamic behavior. For vibration monitoring of coupled systems, only a small number of transducers are necessary, in general. On the basis, Kraftwerk Union has been involved in the development and construction of vibration monitoring systems for pressurized water reactors over the last 20 yr. The current state of the art permits vibration monitoring during normal operation by reactor personnel without expert assistance. The new SUS-86 microprocessor-based system allows further expansion toward an expert system.
Minimum-sized ideal reactor for continuous alcohol fermentation using immobilized microorganism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamane, T.; Shimizu, S.
Recently, alcohol fermentation has gained considerable attention with the aim of lowering its production cost in the production processes of both fuel ethanol and alcoholic beverages. The over-all cost is a summation of costs of various subsystems such as raw material (sugar, starch, and cellulosic substances) treatment, fermentation process, and alcohol separation from water solutions; lowering the cost of the fermentation processes is very important in lowering the total cost. Several new techniques have been developed for economic continuous ethanol production, use of a continuous wine fermentor with no mechanical stirring, cell recycle combined with continuous removal of ethanol undermore » vaccum, a technique involving a bed of yeast admixed with an inert carrier, and use of immobilized yeast reactors in packed-bed column and in a three-stage double conical fluidized-bed bioreactor. All these techniques lead to increases more or less, in reactor productivity, which in turn result in the reduction of the reactor size for a given production rate and a particular conversion. Since an improvement in the fermentation process often leads to a reduction of fermentor size and hence, a lowering of the initial construction cost, it is important to theoretically arrive at a solution to what is the minimum-size setup of ideal reactors from the viewpoint of liquid backmixing. In this short communication, the minimum-sized ideal reactor for continuous alcohol fermentation using immobilized cells will be specifically discussed on the basis of a mathematical model. The solution will serve for designing an optimal bioreactor. (Refs. 26).« less
Spent Nuclear Fuel Disposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C.
One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less
Spent Nuclear Fuel Disposition
Wagner, John C.
2016-05-22
One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav
2015-07-01
The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spentmore » nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)« less
Parallelization and automatic data distribution for nuclear reactor simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebrock, L.M.
1997-07-01
Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directlymore » affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.« less
A roadmap for nuclear energy technology
NASA Astrophysics Data System (ADS)
Sofu, Tanju
2018-01-01
The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge to tackle the licensing and demonstration challenges for these advanced reactor concepts, realization of their enormous potential is not likely, at least in the U.S.
Control system for a small fission reactor
Burelbach, James P.; Kann, William J.; Saiveau, James G.
1986-01-01
A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.
Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu
2017-05-01
Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.
Design of megawatt power level heat pipe reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao
An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors.more » The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.« less
Grebe, J.J.
1959-07-14
High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.
Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Steeve, Brian E.; Kapernick, Richard J.
2004-01-01
One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center: An important consideration throughout the design development of the heat exchanger w its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.
1998-04-01
For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.
Safety philosophy of gas turbine high temperature reactor (GTHTR300)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa
2002-07-01
Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Majormore » features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)« less
Design of virtual SCADA simulation system for pressurized water reactor
NASA Astrophysics Data System (ADS)
Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman
2016-02-01
The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.
Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M
2017-12-01
The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
PBF Reactor Building (PER620). Construction view shows native lava rock ...
PBF Reactor Building (PER-620). Construction view shows native lava rock surrounding basement excavation and general complexity of planning required to build the PBF. A three-inch low-pressure air line protrudes from wall just below left center. Date: February 21, 1967. Photographer: Larry Page. INEEL negative no. 67-1125 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; David Gertman
Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms ofmore » human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.« less
A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo; David I Gertman; Jeffrey C Joe
2014-08-01
This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less
Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD
NASA Astrophysics Data System (ADS)
Viellieber, Mathias; Class, Andreas G.
2013-11-01
Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.
Nelson, Jack L.; Haushild, W.L.
1970-01-01
Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.
NASA Astrophysics Data System (ADS)
Ott, L. J.; Robb, K. R.; Wang, D.
2014-05-01
Following the severe accidents at the Japanese Fukushima Daiichi Nuclear Power Station in 2011, the US Department of Energy initiated research and development on the enhancement of the accident tolerance of light water reactors by the development of fuels/cladding that, in comparison with the standard UO2/Zircaloy (Zr) system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations. Analyses are presented that illustrate the impact of these new candidate fuel/cladding materials on the fuel performance at normal operating conditions and on the reactor system under DB and BDB accident conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazantsev, A. A., E-mail: kazantsevanatoly@gmail.com; Sergeev, V. V.; Kochnov, O. Yu.
The temperature regime is calculated for two different designs of containers with uranium-bearing material for the upgraded VVR-Ts research reactor facility (IVV.10M). The containers are to be used in the production of {sup 99}Mo. It is demonstrated that the modification of the container design leads to a considerable temperature reduction and an increase in the near-wall boiling margin and allows one to raise the amount of material loaded into the container. The calculations were conducted using the international thermohydraulic contour code TRAC intended to analyze the technical safety of water-cooled nuclear power units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hold, A.
An advanced nonlinear transient model for calculating steady-state and dynamic behaviors of characteristic parameters of a Kraftwerk Union-type vertical natural-circulation U-tube steam generator and its main steam system is presented. This model has been expanded due to the increasing need for safety-related accident research studies. It now takes into consideration the possibilities of dryout and superheating along the secondary side of the steam generator. The resulting theoretical model is the basis of the digital code UTSG-2, which can be used both by itself and in combination with other pressurized water reactor transient codes, such as ALMOD-3.4, AMOD-4, and ATHLET.
Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan
2018-02-19
This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and quantified for almost all chemical species in the reactive process, including radical species.
Experiences in utilization of research reactors in Yugoslavia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.
1971-06-15
The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less
Design considerations for lunar base photovoltaic power systems
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Curtis, Henry B.; Landis, Geoffrey A.
1990-01-01
A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power systems and a power system utilizing both nuclear and solar power sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rescek, F.
1995-03-01
Commonwealth Edison Company is an investor-owned utility company supplying electricity to over three million customers (eight million people) in Chicago and northern Illinois, USA. The company operates 16 generating stations which have the capacity to produce 22,522 megawatts of electricity. Six of these generating stations, containing 12 nuclear units, supply 51% of this capacity. The 12 nuclear units are comprised of four General Electric boiling water (BWR-3) reactors, two General Electric BWR-5 reactors, and six Westinghouse four-loop pressurized water reactors (PWR). In August 1993, Commonwealth Edison created an ALARA Council with the responsibility to provide leadership and guidance that resultsmore » in an effective ALARA Culture within the Nuclear Operations Division. Unlike its predecessor, the Corporate ALARA Committee, the ALARA Council is designed to bring together senior managers from the six nuclear stations and corporate to create a collaborative effort to reduce occupational doses at Commonwealth Edison`s stations.« less
9 CFR 78.30 - General restrictions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.30 General restrictions. (a) Brucellosis reactor swine, brucellosis exposed swine, feral swine, sows, and boars may not be moved interstate or in...
9 CFR 78.30 - General restrictions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.30 General restrictions. (a) Brucellosis reactor swine, brucellosis exposed swine, feral swine, sows, and boars may not be moved interstate or in...
9 CFR 78.30 - General restrictions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.30 General restrictions. (a) Brucellosis reactor swine, brucellosis exposed swine, feral swine, sows, and boars may not be moved interstate or in...
9 CFR 78.30 - General restrictions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.30 General restrictions. (a) Brucellosis reactor swine, brucellosis exposed swine, feral swine, sows, and boars may not be moved interstate or in...
NASA Astrophysics Data System (ADS)
Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro
2009-02-01
An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.
Spent nuclear fuel discharges from US reactors 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-05
This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactivemore » Waste Management.« less
Reactor power system deployment and startup
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.
1985-01-01
This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.
Long Distance Reactor Antineutrino Flux Monitoring
NASA Astrophysics Data System (ADS)
Dazeley, Steven; Bergevin, Marc; Bernstein, Adam
2015-10-01
The feasibility of antineutrino detection as an unambiguous and unshieldable way to detect the presence of distant nuclear reactors has been studied. While KamLAND provided a proof of concept for long distance antineutrino detection, the feasibility of detecting single reactors at distances greater than 100 km has not yet been established. Even larger detectors than KamLAND would be required for such a project. Considerations such as light attenuation, environmental impact and cost, which favor water as a detection medium, become more important as detectors get larger. We have studied both the sensitivity of water based detection media as a monitoring tool, and the scientific impact such detectors might provide. A next generation water based detector may be able to contribute to important questions in neutrino physics, such as supernova neutrinos, sterile neutrino oscillations, and non standard electroweak interactions (using a nearby compact accelerator source), while also providing a highly sensitive, and inherently unshieldable reactor monitoring tool to the non proliferation community. In this talk I will present the predicted performance of an experimental non proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674192.
Borowski, Sebastian; Boniecki, Paweł; Kubacki, Przemysław; Czyżowska, Agata
2018-04-01
In this study, the anaerobic mesophilic co-digestion of food waste (FW) with municipal sewage sludge (MSS) and slaughterhouse waste (SHW) was undertaken in 3-dm 3 laboratory reactors as well as in 50-dm 3 reactors operated in semi-continuous conditions. The highest methane yield of around 0.63 m 3 CH 4 /kgVS fed was achieved for the mixture of FW and SHW treated in the laboratory digester operated at solids retention time (SRT) of 30 days, whereas the co-digestion of FW with MSS under similar operating conditions produced 0.46 m 3 of methane from 1 kgVS fed . No significant differences between methane yields from laboratory digesters and large-scale reactors were reported. The conditioning tests with the digestates from reactor experiments revealed the highest efficiency of inorganic coagulants among all investigated chemicals, which applied in a dose of 10 g/kg allowed to reduce capiliary suction time (CST) of the digestate below 20 s. The combined conditioning with coagulants and bentonite did not further reduce the CST value but improved the quality of the digestate supernatant. In particular, the concentrations of suspended solids, COD as well as metals in the supernatant were considerably lowered. Copyright © 2017. Published by Elsevier Ltd.
Principles and practices of irradiation creep experiment using pressurized mini-bellows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Li, Meimei; Snead, Lance Lewis
2013-01-01
This article is to describe the key design principles and application practices of the newly developed in-reactor irradiation creep testing technology using pressurized mini-bellows. Miniature creep test frames were designed to fit into the high flux isotope reactor (HFIR) rabbit capsule whose internal diameter is slightly less than 10 mm. The most important consideration for this in-reactor creep testing technology was the ability of the small pressurized metallic bellows to survive irradiation at elevated temperatures while maintaining applied load to the specimen. Conceptual designs have been developed for inducing tension and compression stresses in specimens. Both the theoretical model andmore » the in-furnace test confirmed that a gas-pressurized bellows can produce high enough stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress range in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief introduction to the in-reactor creep experiment for graphite is provided to connect to the companion paper describing the application practices and irradiation creep data. An experimental and calculation procedure to obtain in-situ applied stress values from post irradiation in-furnace force measurements is also presented.« less
NASA Astrophysics Data System (ADS)
Fensin, Michael L.; Elliott, John O.; Lipinski, Ronald J.; Poston, David I.
2006-01-01
The goal in designing any space power system is to develop a system able to meet the mission requirements for success while minimizing the overall costs. The mission requirements for the this study was to develop a reactor (with Stirling engine power conversion) and shielding configuration able to fit, along with all the other necessary science equipment, in a Cryobot 3 m high with ~0.5 m diameter hull, produce 1 kWe for 5yrs, and not adversely affect the mission science by keeping the total integrated dose to the science equipment below 150 krad. Since in most space power missions the overall system mass dictates the mission cost, the shielding designs in this study incorporated Martian water extracted at the startup site in order to minimize the tungsten and LiH mass loading at launch. Different reliability and mass minimization concerns led to three design configuration evolutions. With the help of implementing Martian water and configuring the reactor as far from the science equipment as possible, the needed tungsten and LiH shield mass was minimized. This study further characterizes the startup dose and the necessary mission requirements in order to ensure integrity of the surface equipment during reactor startup phase.
Sister Lab Program Prospective Partner Nuclear Profile: Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissani, M; Tyson, S
2006-12-14
Indonesia has participated in cooperative technical programs with the IAEA since 1957, and has cooperated with regional partners in all of the traditional areas where nuclear science is employed: in medicine, public health (such as insect control and eradication programs), agriculture (e.g. development of improved varieties of rice), and the gas and oil industries. Recently, Indonesia has contributed significantly to the Reduced Enrichment Research and Training Reactor (RERTR) Program by conducting experiments to confirm the feasibility of Mo-99 production using high-density low enriched uranium (LEU) fuel, a primary goal of the RERTR Program. Indonesia's first research reactor, the TRIGA Markmore » II at Bandung, began operation in 1964 at 250 kW and was subsequently upgraded in 1971 to 1 MW and further upgraded in 2000 to 2 MW. This reactor was joined by another TRIGA Mark II, the 100-kW Kartini-PPNY at Yogyakarta, in 1979, and by the 30-MW G.A. Siwabessy multipurpose reactor in Serpong, which achieved criticality in July 1983. A 10-MW radioisotope production reactor, to be called the RPI-10, also was proposed for construction at Serpong in the late 1990s, but the project apparently was not carried out. In the five decades since its nuclear research program began, Indonesia has trained a cadre of scientific and technical staff who not only operate and conduct research with the current facilities, but also represent the nucleus of a skilled labor pool to support development of a nuclear power program. Although Indonesia's previous on-again, off-again consideration of nuclear power has not gotten very far in the past, it now appears that Indonesia again is giving serious consideration to beginning a national nuclear energy program. In June 2006, Research and Technology Minister Kusmayanto Kadiman said that his ministry was currently putting the necessary procedures in place to speed up the project to acquire a nuclear power plant, indicating that, ''We will need around five years to complete the project. If we can start the study, go to tender, and sign the contract for the project this year, the power plant could be on stream by 2011''. While this ambitious schedule may be a bit unrealistic, it suggests new momentum to move forward on the project. The favored site for the proposed plant is the Muria Peninsula, located on Java's north central coast.« less
Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E
2010-07-01
The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. Copyright 2010 Elsevier Ltd. All rights reserved.
Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.
1987-11-24
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.
1989-10-03
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.
1989-01-01
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
NASA Astrophysics Data System (ADS)
Stacey, W. M.
2009-09-01
The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.
RERTR 2009 (Reduced Enrichment for Research and Test Reactors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Totev, T.; Stevens, J.; Kim, Y. S.
2010-03-01
The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Testmore » Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.« less
Design of virtual SCADA simulation system for pressurized water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman
The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles ofmore » energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.« less
Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel
Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...
2017-03-26
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less
The Use of Thorium within the Nuclear Power Industry - 13472
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Keith
2013-07-01
Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, frommore » the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)« less
Thermionic fast spectrum reactor-converter on the basis of multi-cell TFE
NASA Astrophysics Data System (ADS)
Ponomarev-Stepnoi, N. N.; Kompaniets, G. V.; Poliakov, D. N.; Stepennov, B. S.; Andreev, P. V.; Zhabotinsky, E. E.; Nikolaev, Yu. V.; Lapochkin, N. V.
2001-02-01
Today Russian experts have technological experience in development of in-core thermionic converters for reactors of space nuclear power plants. Such a converter contains nuclear fuel inside and really represents a fuel element of a reactor. Two types of reactors can be considered on the basis of these thermionic fuel elements: with thermal or intermediate neutron spectrum, and with fast neutron spectrum. The first type is characterized by the presence of moderator in core that ensures most economical usage of nuclear fuel. The estimation shows that moderated system is the most effective in the power range of about 5 ... 100 kWe. The power systems of higher level are characterized by larger dimensions due to the presence of moderator. The second type of reactor is considered for higher power levels. This power range is about hundreds kWe. Dimensions of the fast reactor and core configuration are determined by the necessity to ensure the required net output power, on the one hand, and the necessity to ensure critical state on the other hand. In the case of using in-core thermionic fuel elements of the specified design, minimal reactor output power is determined by reactor criticality condition, and maximum reactor power output is determined by specifications and launcher capabilities. In the present paper the effective multiplication factor of a fast spectrum reactor on the basis of a multi-cell TFE developed by ``Lutch'' is considered a function of the total number of TFEs in the reactor. The MCU Monte-Carlo code, developed in Russia (Alekseev, et al., 1991), was used for computations. TFE computational models are placed in the nodes of a uniform triangular lattice and surrounded with pressure vessel and a side reflector. Ordinary fuel pins without thermionic converters were used instead of some TFEs to optimize criticality parameters, dimensions and output power of the reactor. General weight parameters of the reactor are presented in the paper. .
Cost-effective treatment of swine wastes through recovery of energy and nutrients.
Amini, Adib; Aponte-Morales, Veronica; Wang, Meng; Dilbeck, Merrill; Lahav, Ori; Zhang, Qiong; Cunningham, Jeffrey A; Ergas, Sarina J
2017-11-01
Wastes from concentrated animal feeding operations (CAFOs) are challenging to treat because they are high in organic matter and nutrients. Conventional swine waste treatment options in the U.S., such as uncovered anaerobic lagoons, result in poor effluent quality and greenhouse gas emissions, and implementation of advanced treatment introduces high costs. Therefore, the purpose of this paper is to evaluate the performance and life cycle costs of an alternative system for treating swine CAFO waste, which recovers valuable energy (as biogas) and nutrients (N, P, K + ) as saleable fertilizers. The system uses in-vessel anaerobic digestion (AD) for methane production and solids stabilization, followed by struvite precipitation and ion exchange (IX) onto natural zeolites (chabazite or clinoptilolite) for nutrient recovery. An alternative approach that integrated struvite recovery and IX into a single reactor, termed STRIEX, was also investigated. Pilot- and bench-scale reactor experiments were used to evaluate the performance of each stage in the treatment train. Data from these studies were integrated into a life cycle cost analysis (LCCA) to assess the cost-effectiveness of various process alternatives. Significant improvement in water quality, high methane production, and high nutrient recovery (generally over 90%) were observed with both the AD-struvite-IX process and the AD-STRIEX process. The LCCA showed that the STRIEX system can provide considerable financial savings compared to conventional systems. AD, however, incurs high capital costs compared to conventional anaerobic lagoons and may require larger scales to become financially attractive. Copyright © 2017 Elsevier Ltd. All rights reserved.
142. ARAIII General plan of GCRE area, including electrical distribution ...
142. ARA-III General plan of GCRE area, including electrical distribution plan for power and lighting. Includes detail of floodlight and security lighting poles and fixtures. Aerojet-general 880-area/GCRE-406-1. Date: February 1958. Ineel index code no. 063-0406-00-013-102539. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Guler Yigitoglu, Askin
In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.
2014-01-01
Background There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Results Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave® (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons’ staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Conclusions Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased enzyme accessibility. Pretreatment reactors using physical force to disrupt cell walls increase the effectiveness of the pretreatment process. PMID:24713111
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false General policy considerations, purpose and scope of rules relating to open Commission meetings. 147.1 Section 147.1 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION OPEN COMMISSION MEETINGS § 147.1 General policy considerations, purpose and scope of rules...
Significance of breeding in fast nuclear reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, S.M.; Abidi, S.B.M.
1983-12-01
Only breeder reactors--nuclear power plants that produce more fuel than they consume--are capable in principle of extracting the maximum amount of fission energy contained in uranium ore, thus offering a practical long-term solution to uranium supply problems. Uranium would then constitute a virtually inexhaustible fuel reserve for the world's future energy needs. The ultimate argument for breeding is to conserve the energy resources available to mankind. A long-term role for nuclear power with fast reactors is proven to be economically viable, environmentally acceptable and capable of wide scale exploitation in many countries. In this paper, various suggestions pertaining to themore » fuel fabrication route, fuel cycle economics, studies of the physics of fast nuclear reactors and of engineering design simplifications are presented. Fast reactors contain no moderator and inherently require enriched fuel. In general, the main aim is to suggest an improvement in the understanding of the safety and control characteristics of fast breeder power reactors. Development work is also being devoted to new carbide and nitride fuels, which are likely to exhibit breeding characteristics superior to those of the oxides of plutonium and uranium.« less
Thermodynamic analysis of cesium and iodine behavior in severe light water reactor accidents
NASA Astrophysics Data System (ADS)
Minato, Kazuo
1991-11-01
In order to understand the release and transport behavior of cesium (Cs) and iodine (I) in severe light water reactor accidents, chemical forms of Cs and I in steam-hydrogen mixtures were analyzed thermodynamically. In the calculations reactions of boron (B) with Cs were taken into consideration. The analysis showed that B plays an important role in determining chemical forms of Cs. The main Cs-containing species are CsBO 2(g) and CsBO 2(l), depending on temperature. The contribution of CsOH(g) is minor. The main I-containing species are HI(g) and CsI(g) over the wide ranges of the parameters considered. Calculations were also carried out under the conditions of the Three Mile Island Unit 2 accident.
Possible consequences of operation with KIVN fuel elements in K Zircaloy process tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.A.
1963-08-06
From considerations of the results of experimental simulations of non-axial placement of fuel elements in process tubes and in-reactor experience, it is concluded that the ultimate outcome of a charging error which results in operation with one or more unsupported fuel elements in a K Zircaloy-2 process tube would be multiple fuel failure and failure of the process tube. The outcome of the accident is determined by the speed with which the fuel failure is detected and the reactor is shut down. The release of fission products would be expected to be no greater than that which has occurred followingmore » severe fuel failure incidents. The highest probability for fission product release occurs during the discharge of failed fuel elements, when a small fraction of the exposed uranium of the fuel element may be oxidized when exposed to air before the element falls into the water-filled discharge chute. The confinement and fog spray facilities were installed to reduce the amount of fission products which might escape from the reactor building after such an event.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.S.
1964-06-15
A series of three experimental tests was conducted on the operation and adequacy of the K-Reactors` third, or last-ditch, cooling system. The first test showed considerable line corrosion the second test was performed directly after line cleaning, and the third test showed a significant amount of additional line corrosion after only nine months of service. The present cooling adequacy of this last-ditch system at the KE and KW reactors is summarized these show the power levels for which we have adequate last-ditch cooling as a function of the crosstie coolant temperature. These figures include the effects of increasing the numbermore » of pumps that remain in operation at the other K-Reactor, and various other operating or emergency conditions. These curves are for diesel pump speeds of 750 rpm which are planned for June of this year. In these figures the crosstie temperature is assumed to be a conservative 5{degrees}C above the process water inlet temperature.« less
Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems
NASA Technical Reports Server (NTRS)
Harty, Richard B.; Durand, Richard E.
1993-01-01
An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.
THERMAL PROPERTIES AND HEATING AND COOLING DURABILITY OF REACTOR SHIELDING CONCRETE (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoi, J.; Chujo, K.; Saji, K.
1959-01-01
A study was made of the thermal properties of various concretes made of domestic raw materials for radiation shields of a power reactor and of a high- flux research reactor. The results of measurements of thermal expansion coefficient, specific heat, thermal diffusivity, thermal conductivity, cyclical heating, and cooling durability are described. Relationships between thermal properties and durability are discussed and several photographs of the concretes are given. It is shown that the heating and cooling durability of such a concrete which has a large thermal expansion coefficient or a considerable difference between the thermal expansion of coarse aggregate and themore » one of cement mortar part or aggregates of lower strength is very poor. The decreasing rates of bending strength and dynamical modulus of elasticity and the residual elongation of the concrete tested show interesting relations with the modified thermal stress resistance factor containing a ratio of bending strength and thermal expansion coefficient. The thermal stress resistance factor seems to depend on the conditions of heat transfer on the surface and on heat release in the concrete. (auth)« less
Effect of carbon ion irradiation on Ag diffusion in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
Effect of carbon ion irradiation on Ag diffusion in SiC
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; ...
2015-11-14
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Arpád; Ilea, Petru
2014-05-30
The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples. Copyright © 2014 Elsevier B.V. All rights reserved.
History of fast reactor fuel development
NASA Astrophysics Data System (ADS)
Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.
1993-09-01
The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.
Shehab, Noura; Li, Dong; Amy, Gary L; Logan, Bruce E; Saikaly, Pascal E
2013-11-01
A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m(2)), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities.
Nuclear Engine System Simulation (NESS) version 2.0
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.
Fischer-Tropsch Wastewater Utilization
Shah, Lalit S.
2003-03-18
The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, K.F.; Winje, D.K.
This report presents data comparing the performance of light water reactors in the United States and the Federal Republic of Germany (FRG). The comparisons are made for the years 1980-1983 and include 21 Westinghouse Pressurized Water Reactors (PWRs), 22 General Electric Boiling Water Reactors (BWRs) in the US; and 6 Kraftwerk Union (KWU) PWRs and 4 KWJ BWRs in the FRG. Data on capacity losses are presented in a disaggregated form for scheduled outages, forced outages, and regulatory imposed outages. Further, within the scheduled and forced outages, the data is subdivided into losses associated with the nuclear island, the balancemore » of plant, or other causes.« less
Humbird, David; Trendewicz, Anna; Braun, Robert; ...
2017-01-12
A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less
Introduction to D-He(3) fusion reactors
NASA Technical Reports Server (NTRS)
Vlases, G. C.; Steinhauer, L. C.
1989-01-01
A review and evaluation of D-He(3) fusion reactor technology is presented. The advantages and disadvantages of the D-He(3) and D-T reactor cycles are outlined and compared. In addition, the general design features of D-He(3) tokamaks and field reversed configuration (FRC) reactors are described and the relative merits of each are compared. It is concluded that both tokamaks and FRC's offer certain advantages, and that the ultimate decision as to which to persue for terrestrial power generation will depend heavily on how the physics performance of each of them develops over the next few years. It is clear that the D-He(3) fuel cycle offers marked advantages over the D-T cycle. Although the physics requirements for D-He(3) are more demanding, the overwhelming advantages resulting from the two order of magnitude reduction of neutron flux are expected to lead to a shorter time to commercialization than for the D-T cycle.
Kjellander, Marcus; Götz, Kathrin; Liljeruhm, Josefine; Boman, Mats; Johansson, Gunnar
2013-04-01
Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.
Introduction to D-He(3) fusion reactors
NASA Astrophysics Data System (ADS)
Vlases, G. C.; Steinhauer, L. C.
1989-07-01
A review and evaluation of D-He(3) fusion reactor technology is presented. The advantages and disadvantages of the D-He(3) and D-T reactor cycles are outlined and compared. In addition, the general design features of D-He(3) tokamaks and field reversed configuration (FRC) reactors are described and the relative merits of each are compared. It is concluded that both tokamaks and FRC's offer certain advantages, and that the ultimate decision as to which to persue for terrestrial power generation will depend heavily on how the physics performance of each of them develops over the next few years. It is clear that the D-He(3) fuel cycle offers marked advantages over the D-T cycle. Although the physics requirements for D-He(3) are more demanding, the overwhelming advantages resulting from the two order of magnitude reduction of neutron flux are expected to lead to a shorter time to commercialization than for the D-T cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Trendewicz, Anna; Braun, Robert
A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less
Defense Implications of a Nuclear Iran for Turkey
2007-12-01
firms including Atomic Energy of Canada, Kraftwerk Union of Germany, and General Electric of the United States. Negotiations with General Electric...ended prematurely since, according to the firm, a reactor in Sinop would not be feasible due to seismic threats in Black Sea. The German firm Kraftwerk
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Is there a general hierarchy of consideration that agencies must follow in their utilization of space? 102-79.55 Section 102-79... Utilization of Space Utilization of Space § 102-79.55 Is there a general hierarchy of consideration that...
Martin, S. W.; Gerrow, A. F.
1978-01-01
Data on farm characteristics and the results of the first herd test for brucellosis were collected for 74 reactor and 74 negative herds in Wellington County, Ontario. Each reactor herd was classified as either probably infected or probably not infected using the occurrence of abortions prior to the first herd test or during the testing period, the total number of cattle removed and/or the spread of reactors within the herd as criteria of infection. Statistical techniques were used to select variables which were good “discriminators” between probably infected and noninfected herds. In general, reactor herds were primarily dairy herds and were somewhat larger than negative herds. The presence of only single suspicious reactors on the first test appeared to be a good predictor of lack of infection with Brucella abortus. Among the 37 farms in this category the single reactor was removed from only eight farms and no evidence o fthe spread of infection was observed. The presence of one or more positive reactors on the first herd test appeared to be a good predictor of the presence of infection. Of the 24 farms in this category, evidence of the spread of infection was present in ten farms and seven of these ten farms were eventually depopulated. The brucella milk ring test appeared to be the most effective means of identifying infected herds under the conditions present in Wellington County. PMID:417777
Pressurized reactor system and a method of operating the same
Isaksson, J.M.
1996-06-18
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.
Pressurized reactor system and a method of operating the same
Isaksson, Juhani M.
1996-01-01
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honma, George
The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will bemore » used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).« less
A Comparison of Fast-Spectrum and Moderated Space Fission Reactors
NASA Astrophysics Data System (ADS)
Poston, David I.
2005-02-01
The reactor neutron spectrum is one of the fundamental design choices for any fission reactor, but the implications of using a moderated spectrum are vastly different for space reactors as opposed to terrestrial reactors. In addition, the pros and cons of neutron spectra are significantly different among many of the envisioned space power applications. This paper begins with a discussion of the neutronic differences between fast-spectrum and moderated space reactors. This is followed by a discussion of the pros and cons of fast-spectrum and moderated space reactors separated into three areas—technical risk, performance, and safety/safeguards. A mix of quantitative and qualitative arguments is presented, and some conclusions generally can be made regarding neutron spectrum and space power application. In most cases, a fast-spectrum system appears to be the better alternative (mostly because of simplicity and higher potential operating temperatures); however, in some cases, such as a low-power (<100-kWt) surface reactor, a moderated spectrum could provide a better approach. In all cases, the determination of which spectrum is preferred is a strong function of the metrics provided by the "customer"— i.e., if a certain level of performance is required, it could provide a different solution than if a certain level of safeguards is required (which in some cases could produce a null solution). The views expressed in this document are those of the author and do not necessarily reflect agreement by the Government.
Tory II-A: a nuclear ramjet test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, J.W.
Declassified 28 Nov 1973. The first test reactor in the Pluto program, leading to development of a nuclear ramjet engine, is called Tory II-A. While it is not an actual prototype engine, this reactor embodies a core design which is considered feasible for an engine, and operation of the reactor will provide a test of that core type as well as more generalized values in reactor design and testing. The design of Tory II-A and construction of the reactor and of its test facility are described. Operation of the Tory II-A core at a total power of 160 megawatts, withmore » 800 pounds of air per second passing through the core and emerging at a temperature of 2000 deg F, is the central objective of the test program. All other reactor and facility components exist to support operation of the core, and preliminary steps in the test program itself will be directed primarily toward ensuring attalnment of full-power operation and collection of meaningful data on core behavior during that operation. The core, 3 feet in diameter and 41/2 feet long, will be composed of bundled ceramic tubes whose central holes will provide continuous air passages from end to end of the reactor. These tubes are to be composed of a homogeneous mixture of UO/sub 2/ fuel and BeO moderator, compacted and sintered to achieve high strength and density. (30 references) (auth)« less
Civilian nuclear incidents: An overview of historical, medical, and scientific aspects
Rojavin, Yuri; Seamon, Mark J; Tripathi, Ravi S; Papadimos, Thomas J; Galwankar, Sagar; Kman, Nicholas; Cipolla, James; Grossman, Michael D; Marchigiani, Raffaele; Stawicki, Stanislaw P A
2011-01-01
Given the increasing number of operational nuclear reactors worldwide, combined with the continued use of radioactive materials in both healthcare and industry, the unlikely occurrence of a civilian nuclear incident poses a small but real danger. This article provides an overview of the most important historical, medical, and scientific aspects associated with the most notable nuclear incidents to date. We have discussed fundamental principles of radiation monitoring, triage considerations, and the short- and long-term management of radiation exposure victims. The provision and maintenance of adequate radiation safety among first responders and emergency personnel are emphasized. Finally, an outline is included of decontamination, therapeutic, and prophylactic considerations pertaining to exposure to various radioactive materials. PMID:21769214
Civilian nuclear incidents: An overview of historical, medical, and scientific aspects.
Rojavin, Yuri; Seamon, Mark J; Tripathi, Ravi S; Papadimos, Thomas J; Galwankar, Sagar; Kman, Nicholas; Cipolla, James; Grossman, Michael D; Marchigiani, Raffaele; Stawicki, Stanislaw P A
2011-04-01
Given the increasing number of operational nuclear reactors worldwide, combined with the continued use of radioactive materials in both healthcare and industry, the unlikely occurrence of a civilian nuclear incident poses a small but real danger. This article provides an overview of the most important historical, medical, and scientific aspects associated with the most notable nuclear incidents to date. We have discussed fundamental principles of radiation monitoring, triage considerations, and the short- and long-term management of radiation exposure victims. The provision and maintenance of adequate radiation safety among first responders and emergency personnel are emphasized. Finally, an outline is included of decontamination, therapeutic, and prophylactic considerations pertaining to exposure to various radioactive materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hierarchy of consideration that agencies must follow in their utilization of space? 102-83.15 Section 102-83... general hierarchy of consideration that agencies must follow in their utilization of space? Yes, Federal agencies must follow the hierarchy of consideration identified in § 102-79.55 of this chapter. ...
ASME code considerations for the compact heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestell, James; Sham, Sam
2015-08-31
The mission of the U.S. Department of Energy (DOE), Office of Nuclear Energy is to advance nuclear power in order to meet the nation's energy, environmental, and energy security needs. Advanced high temperature reactor systems such as sodium fast reactors and high and very high temperature gas-cooled reactors are being considered for the next generation of nuclear reactor plant designs. The coolants for these high temperature reactor systems include liquid sodium and helium gas. Supercritical carbon dioxide (sCO₂), a fluid at a temperature and pressure above the supercritical point of CO₂, is currently being investigated by DOE as a workingmore » fluid for a nuclear or fossil-heated recompression closed Brayton cycle energy conversion system that operates at 550°C (1022°F) at 200 bar (2900 psi). Higher operating temperatures are envisioned in future developments. All of these design concepts require a highly effective heat exchanger that transfers heat from the nuclear or chemical reactor to the chemical process fluid or the to the power cycle. In the nuclear designs described above, heat is transferred from the primary to the secondary loop via an intermediate heat exchanger (IHX) and then from the intermediate loop to either a working process or a power cycle via a secondary heat exchanger (SHX). The IHX is a component in the primary coolant loop which will be classified as "safety related." The intermediate loop will likely be classified as "not safety related but important to safety." These safety classifications have a direct bearing on heat exchanger design approaches for the IHX and SHX. The very high temperatures being considered for the VHTR will require the use of very high temperature alloys for the IHX and SHX. Material cost considerations alone will dictate that the IHX and SHX be highly effective; that is, provide high heat transfer area in a small volume. This feature must be accompanied by low pressure drop and mechanical reliability and robustness. Classic shell and tube designs will be large and costly, and may only be appropriate in steam generator service in the SHX where boiling inside the tubes occurs. For other energy conversion systems, all of these features can be met in a compact heat exchanger design. This report will examine some of the ASME Code issues that will need to be addressed to allow use of a Code-qualified compact heat exchanger in IHX or SHX nuclear service. Most effort will focus on the IHX, since the safety-related (Class A) design rules are more extensive than those for important-to-safety (Class B) or commercial rules that are relevant to the SHX.« less
21 CFR 25.15 - General procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false General procedures. 25.15 Section 25.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ENVIRONMENTAL IMPACT CONSIDERATIONS Agency Actions Requiring Environmental Consideration § 25.15 General procedures. (a) All...
Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrall, Andrew; Todosow, Michael
2016-01-01
Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less
A study of the Coriolis effect on the fluid flow profile in a centrifugal bioreactor.
Detzel, Christopher J; Thorson, Michael R; Van Wie, Bernard J; Ivory, Cornelius F
2009-01-01
Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR), which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This article focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore, a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated, the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results are confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
A Study of the Coriolis Effect on the Fluid Flow Profile in a Centrifugal Bioreactor
Detzel, Christopher J.; Thorson, Michael R.; Van Wie, Bernard J.; Ivory, Cornelius F.
2011-01-01
Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR) which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This paper focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. PMID:19455639
The MSFR as a flexible CR reactor: the viewpoint of safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiorina, C.; Cammi, A.; Franceschini, F.
2013-07-01
In this paper, the possibility has first been discussed of using the liquid-fuelled Molten Salt Fast Reactor (MSFR) as a flexible conversion ratio (CR) reactor without design modification. By tuning the reprocessing rate it is possible to determine the content of fission products in the core, which in turn can significantly affect the neutron economy without incurring in solubility problems. The MSFR can thus be operated as U-233 breeder (CR>1), iso-breeder (CR=1) and burner reactor (CR<1). In particular a 40 year doubling time can be achieved, as well as a considerable Transuranics and MA (minor actinide) burning rate equal tomore » about 150 kg{sub HN}/GWE-yr. The safety parameters of the MSFR have then been evaluated for different fuel cycle strategies. Th use and a softer spectrum combine to give a strong Doppler coefficient, one order of magnitude higher compared to traditional fast reactors (FRs). The fuel expansion coefficient is comparable to the Doppler coefficient and is only mildly affected by core compositions, thus assisting the fuel cycle flexibility of the MSFR. βeff and generation time are comparable to the case of traditional FRs, if a static fuel is assumed. A notable reduction of βeff is caused by salt circulation, but a low value of this parameter is a limited concern in the MSFR thanks to the lack of a burnup reactivity swing and of positive feedbacks. A simple approach has also been developed to evaluate the MSFR capabilities to withstand all typical double-fault accidents, for different fuel cycle options.« less
Special Purpose Nuclear Reactor (5 MW) for Reliable Power at Remote Sites Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James William; Werner, James Elmer; McKellar, Michael George
The Phenomena Identification and Ranking Table (PIRT) technique was conducted on the Special Purpose Reactor nuclear plant design. The PIRT is a structured process to identify safety-relevant/safety-significant phenomena and assess the importance and knowledge base by ranking the phenomena. The Special Purpose Reactor is currently in the conceptual design stage. The candidate reactor has a solid monolithic stainless steel core with an array of heat pipes and fuel pellets embedded in the monolith. The heat pipes are used to remove heat from the core using simple, reliable, and well-characterized physics (capillarity, boiling, and condensation). In the initial design, one heatmore » exchanger is used for the working fluid that produces energy, and a second heat exchanger is used to remove decay heat in emergency or shutdown conditions. In addition, a power conversion cycle such as an open-air Brayton system is available as an option for power conversion and process heat. This report summarizes and documents the process and scope of the four PIRT reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings are presented along with a summary of the findings from the four individual PIRTs, namely (1) Reactor Accident and Normal Operations, (2) Heat Pipes, (3) Materials, and (4) Power Conversion. The PIRT reports for these four major system areas evaluated are attached as appendixes to this report and provide considerably more detail about each assessment as well as a more complete listing of the phenomena that were evaluated.« less
Radiation effect of neutrons produced by D-D side reactions on a D-3He fusion reactor
NASA Astrophysics Data System (ADS)
Bahmani, J.
2017-04-01
One of the most important characteristics in D-3He fusion reactors is neutron production via D-D side reactions. The neutrons can activate structural material, degrading them and ultimately converting them into high-level radioactive waste, while it is really costly and difficult to remove them. The neutrons from a fusion reactor could also be used to make weapons-grade nuclear material, rendering such types of fusion reactors a serious proliferation hazard. A related problem is the presence of radioactive elements such as tritium in D-3He plasma, either as fuel for or as products of the nuclear reactions; substantial quantities of radioactive elements would not only pose a general health risk, but tritium in particular would also be another proliferation hazard. The problems of neutron radiation and radioactive element production are especially interconnected because both would result from the D-D side reaction. Therefore, the presentation approach for reducing neutrons via D-D nuclear side reactions in a D-3He fusion reactor is very important. For doing this research, energy losses and neutron power fraction in D-3He fusion reactors are investigated. Calculations show neutrons produced by the D-D nuclear side reaction could be reduced by changing to a more 3He-rich fuel mixture, but then the bremsstrahlung power loss fraction would increase in the D-3He fusion reactor.
Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatty, Randy L; Harrison, Thomas J
IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical ofmore » commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.« less
10 CFR 72.22 - Contents of application: General and financial information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Contents of application: General and financial information. 72.22 Section 72.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN...
Siting process for disposal site of low level radiactive waste in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.
The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The sitemore » selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.« less
Process analysis of a molten carbonate fuel cell power plant fed with a biomass syngas
NASA Astrophysics Data System (ADS)
Tomasi, C.; Baratieri, M.; Bosio, B.; Arato, E.; Baggio, P.
The coupling of renewable energy sources and innovative power generation technologies is of topical interest to meet demands for increased power generation and cleaner environmental performance. Accordingly, biomass is receiving considerable attention as a partial substitute for fossil fuels, as it is more environmentally friendly and provides a profitable way of disposing of waste. In addition, fuel cells are perceived as most promising electrical power generation systems. Today, many plants combining these two concepts are under study; they differ in terms of biomass type and/or power plant configuration. Even if the general feasibility of such applications has been demonstrated, there are still many associated problems to be resolved. This study examines a plant configuration based on a molten carbonate fuel cell (MCFC) and a recirculated fluidized-bed reactor which has been applied to the thermal conversion of many types of biomass. Process analysis is conducted by simulating the entire plant using a commercial code. In particular, an energy assessment is studied by taking account of the energy requirements of auxiliary equipment and the possibility of utilizing the exhaust gases for cogeneration.
An experimental study of the distribution of retained xenon in transient-tested UO 2 fuel
NASA Astrophysics Data System (ADS)
Mogensen, M.; Bagger, C.; Walker, C. T.
1993-01-01
XRF and EPMA results for the distribution of retained xenon in twenty fuel pins are surveyed. The aim is to show the progress that has been achieved by combining these methods. One of the main concerns of the paper is the reliability of the XRF and EPMA measurements and the identification, of the principal sources of uncertainty. Another, is the wealth of new mechanistic information that has been acquired by systematically combining XRF and EPMA with quantitative image analysis (QIA) of the local size distribution of the gas bubbles in the fuel. It is shown that by correlating the three data sets it is possible to establish the distribution of retained gas on the grain boundaries and to estimate the pressure of the gas contained in grain boundary bubbles. It is concluded that often gas release during a reactor power transient cannot be predicted on the basis of simple gas diffusion considerations and that it is not possible to derive a gas diffusion coefficent of general relevance from puncturing data.
Verification and Validation of the BISON Fuel Performance Code for PCMI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Novascone, Stephen Rhead; Gardner, Russell James
2016-06-01
BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described. Validation for application to light water reactor (LWR) PCMI problems is assessed by comparing predicted and measured rod diameter following base irradiation andmore » power ramps. Results indicate a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. Initial rod diameter comparisons have led to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Matt Ebner; Manohar Sohal
2010-03-01
Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work
Operating experience feedback report: New plants, Commercial power reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennig, R.L.; O'Reilly, P.D.
1987-07-01
This report documents a detailed review of the cause of unplanned events during the early months of licensed operation for plants licensed between March 1983 and April 1986. The major lessons and corrective actions that appear to have the greatest potential for improving the effectiveness of plant startups are provided for consideration through the operating experience feedback programs and activities of the industry and the NRC staff.
Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun
2010-09-01
The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The benefits of an advanced fast reactor fuel cycle for plutonium management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannum, W.H.; McFarlane, H.F.; Wade, D.C.
1996-12-31
The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less
Khosravi, Morteza; Rakhshaee, Roohan; Ganji, Masuod Taghi
2005-12-09
Intact and treated biomass can remove heavy metals from water and wastewater. This study examined the ability of the activated, semi-intact and inactivated Azolla filiculoides (a small water fern) to remove Pb(2+), Cd(2+), Ni(2+) and Zn(2+) from the aqueous solution. The maximum uptake capacities of these metal ions using the activated Azolla filiculoides by NaOH at pH 10.5 +/- 0.2 and then CaCl(2)/MgCl(2)/NaCl with total concentration of 2 M (2:1:1 mole ratio) in the separate batch reactors were obtained about 271, 111, 71 and 60 mg/g (dry Azolla), respectively. The obtained capacities of maximum adsorption for these kinds of the pre-treated Azolla in the fixed-bed reactors (N(o)) were also very close to the values obtained for the batch reactors (Q(max)). On the other hand, it was shown that HCl, CH(3)OH, C(2)H(5)OH, FeCl(2), SrCl(2), BaCl(2) and AlCl(3) in the pre-treatment processes decreased the ability of Azolla to remove the heavy metals in comparison to the semi-intact Azolla, considerably. The kinetic studies showed that the heavy metals uptake by the activated Azolla was done more rapid than those for the semi-intact Azolla.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perret, G.; Pattupara, R. M.; Girardin, G.
2012-07-01
The gas-cooled fast reactor (GCFR) concept was investigated experimentally in the PROTEUS zero power facility at the Paul Scherrer Inst. during the 1970's. The experimental program was aimed at neutronics studies specific to the GCFR and at the validation of nuclear data in fast spectra. A significant part of the program used thorium oxide and thorium metal fuel either distributed quasi-homogeneously in the reference PuO{sub 2}/UO{sub 2} lattice or introduced in the form of radial and axial blanket zones. Experimental results obtained at the time are still of high relevance in view of the current consideration of the Gas-cooled Fastmore » Reactor (GFR) as a Generation-IV nuclear system, as also of the renewed interest in the thorium cycle. In this context, some of the experiments have been modeled with modern Monte Carlo codes to better account for the complex PROTEUS whole-reactor geometry and to allow validating recent continuous neutron cross-section libraries. As a first step, the MCNPX model was used to test the JEFF-3.1, JEFF-3.1.1, ENDF/B-VII.0 and JENDL-3.3 libraries against spectral indices, notably involving fission and capture of {sup 232}Th and {sup 237}Np, measured in GFR-like lattices. (authors)« less
NASA Astrophysics Data System (ADS)
Huang, Yin-Nan
Nuclear power plants (NPPs) and spent nuclear fuel (SNF) are required by code and regulations to be designed for a family of extreme events, including very rare earthquake shaking, loss of coolant accidents, and tornado-borne missile impacts. Blast loading due to malevolent attack became a design consideration for NPPs and SNF after the terrorist attacks of September 11, 2001. The studies presented in this dissertation assess the performance of sample conventional and base isolated NPP reactor buildings subjected to seismic effects and blast loadings. The response of the sample reactor building to tornado-borne missile impacts and internal events (e.g., loss of coolant accidents) will not change if the building is base isolated and so these hazards were not considered. The sample NPP reactor building studied in this dissertation is composed of containment and internal structures with a total weight of approximately 75,000 tons. Four configurations of the reactor building are studied, including one conventional fixed-base reactor building and three base-isolated reactor buildings using Friction Pendulum(TM), lead rubber and low damping rubber bearings. The seismic assessment of the sample reactor building is performed using a new procedure proposed in this dissertation that builds on the methodology presented in the draft ATC-58 Guidelines and the widely used Zion method, which uses fragility curves defined in terms of ground-motion parameters for NPP seismic probabilistic risk assessment. The new procedure improves the Zion method by using fragility curves that are defined in terms of structural response parameters since damage and failure of NPP components are more closely tied to structural response parameters than to ground motion parameters. Alternate ground motion scaling methods are studied to help establish an optimal procedure for scaling ground motions for the purpose of seismic performance assessment. The proposed performance assessment procedure is used to evaluate the vulnerability of the conventional and base-isolated NPP reactor buildings. The seismic performance assessment confirms the utility of seismic isolation at reducing spectral demands on secondary systems. Procedures to reduce the construction cost of secondary systems in isolated reactor buildings are presented. A blast assessment of the sample reactor building is performed for an assumed threat of 2000 kg of TNT explosive detonated on the surface with a closest distance to the reactor building of 10 m. The air and ground shock waves produced by the design threat are generated and used for performance assessment. The air blast loading to the sample reactor building is computed using a Computational Fluid Dynamics code Air3D and the ground shock time series is generated using an attenuation model for soil/rock response. Response-history analysis of the sample conventional and base isolated reactor buildings to external blast loadings is performed using the hydrocode LS-DYNA. The spectral demands on the secondary systems in the isolated reactor building due to air blast loading are greater than those for the conventional reactor building but much smaller than those spectral demands associated with Safe Shutdown Earthquake shaking. The isolators are extremely effective at filtering out high acceleration, high frequency ground shock loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-04-01
This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build newmore » production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.« less
Versatile in situ gas analysis apparatus for nanomaterials reactors.
Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole
2014-09-02
We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering.
Kinetics of thermophilic anaerobes in fixed-bed reactors.
Perez, M; Romero, L I; Sales, D
2001-08-01
The main objective of this study is to estimate growth kinetic constants and the concentration of "active" attached biomass in two anaerobic thermophilic reactors which contain different initial sizes of immobilized anaerobic mixed cultures and decompose distillery wastewater. This paper studies the substrate decomposition in two lab-scale fixed-bed reactors operating at batch conditions with corrugated tubes as support media. It can be demonstrated that high micro-organisms-substrate ratios favor the degradation activity of the different anaerobic cultures, allowing the stable operation without lag-phases and giving better quality in effluent. The kinetic parameters obtained--maximum specific growth rates (mu(max)), non-biodegradable substrate (S(NB)) and "active or viable biomass" concentrations (X(V0))--were obtained by applying the Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz], with COD as substrate and methane (CH4) as the main product of the anaerobic process. This method is suitable to calculate and to differentiate the main kinetic parameters of both the total anaerobic mixed culture and the methanogenic population. Comparison of experimental measured concentration of volatile attached solids (VS(att)) in both reactors with the estimated "active" biomass concentrations obtained by applying Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz] shows that a large amount of inert matter is present in the fixed-bed reactor.
Fluorine interaction with defects on graphite surface by a first-principles study
NASA Astrophysics Data System (ADS)
Wang, Song; Xuezhi, Ke; Zhang, Wei; Gong, Wenbin; Huai, Ping; Zhang, Wenqing; Zhu, Zhiyuan
2014-02-01
The interaction between fluorine atom and graphite surface has been investigated in the framework of density functional theory. Due to the consideration of molten salt reactor system, only carbon adatoms and vacancies are chemical reactive for fluorine atoms. Fluorine adsorption on carbon adatom will enhance the mobility of carbon adatom. Carbon adatom can also be removed easily from graphite surface in form of CF2 molecule, explaining the formation mechanism of CF2 molecule in previous experiment. For the interaction between fluorine and vacancy, we find that fluorine atoms which adsorb at vacancy can hardly escape. Both pristine surface and vacancy are impossible for fluorine to penetrate due to the high penetration barrier. We believe our result is helpful to understand the compatibility between graphite and fluorine molten salt in molten salt reactor system.
Developmental status of thermionic materials.
NASA Technical Reports Server (NTRS)
Yang, L.; Chin, J.
1972-01-01
Description of the reference materials selected for the major components of the unit cell of a thermionic pile element (TFE), the out-of-pile and in-pile test results, and current efforts for improving the life and performance of thermionic fuel elements. The component materials are required to withstand the fuel burnup and fast neutron fluence dictated by the thermionic reactor system. Tungsten was selected as the cladding material because of its compatibility with both the carbide and the oxide fuel materials. Niobium was selected as the collector material because its thermal expansion coefficient matches closely with that of the thin aluminum oxide layer used to electrically insulate the collector from the TFE sheath. An unfueled converter has performed stably over 41,000 hr. Accelerated irradiation tests have attained burnups equivalent to that for 40,000 hr of the thermionic reactor under consideration.
Development of probabilistic design method for annular fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, Takayuki
2007-07-01
The increase of linear power and burn-up during the reactor operation is considered as one measure to ensure the utility of fast reactors in the future; for this the application of annular oxide fuels is under consideration. The annular fuel design code CEPTAR was developed in the Japan Atomic Energy Agency (JAEA) and verified by using many irradiation experiences with oxide fuels. In addition, the probabilistic fuel design code BORNFREE was also developed to provide a safe and reasonable fuel design and to evaluate the design margins quantitatively. This study aimed at the development of a probabilistic design method formore » annular oxide fuels; this was implemented in the developed BORNFREE-CEPTAR code, and the code was used to make a probabilistic evaluation with regard to the permissive linear power. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galperin, A.; Segev, M.; Radkowsky, A.
1986-11-01
Control requirements for advanced pressurized water reactor designs must be met with heavy loadings of burnable poison rods, the required reactivity hold-down typically amounting to 30% or more in a poisoned subassembly. Two apparent choices for poisons are natural boron rods and natural gadolinium rods. Studied and analyzed is the effect of these two poisons on the hot-to-cold reactivity upswing. Compared with an upswing of 2.9% in a nonpoisoned assembly, the upswing in the gadolinium-poisoned assembly is 3.0%, and the upswing in the boron-poisoned assembly is 8.8%. Thus the hot-to-cold control penalty is almost nil for the choice of gadoliniummore » and is considerable for the choice of boron.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W.R.; Giovengo, J.F.
1987-10-01
Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less
NASA Astrophysics Data System (ADS)
Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.
2004-02-01
The extent to which, if any, full power ground nuclear testing of space reactors should be performed has been a point of discussion within the industry for decades. Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Is the test article an accurate representation of the flight system? Are the costs too restrictive? The obvious benefits of full power ground nuclear testing; obtaining systems integrated reliability data on a full-scale, complete end-to-end system; come at some programmatic risk. Safety related information is not obtained from a full-power ground nuclear test. This paper will discuss and assess these and other technical considerations essential in the decision to conduct full power ground nuclear-or alternative-tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TODOSOW,M.; KAZIMI,M.
2004-08-01
Issues affecting the implementation, public perception and acceptance of nuclear power include: proliferation, radioactive waste, safety, and economics. The thorium cycle directly addresses the proliferation and waste issues, but optimization studies of core design and fuel management are needed to ensure that it fits within acceptable safety and economic margins. Typical pressurized water reactors, although loaded with uranium fuel, produce 225 to 275 kg of plutonium per gigawatt-year of operation. Although the spent fuel is highly radioactive, it nevertheless offers a potential proliferation pathway because the plutonium is relatively easy to separate, amounts to many critical masses, and does notmore » present any significant intrinsic barrier to weapon assembly. Uranium 233, on the other hand, produced by the irradiation of thorium, although it too can be used in weapons, may be ''denatured'' by the addition of natural, depleted or low enriched uranium. Furthermore, it appears that the chemical behavior of thoria or thoria-urania fuel makes it a more stable medium for the geological disposal of the spent fuel. It is therefore particularly well suited for a once-through fuel cycle. The use of thorium as a fertile material in nuclear fuel has been of interest since the dawn of nuclear power technology due to its abundance and to potential neutronic advantages. Early projects include homogeneous mixtures of thorium and uranium oxides in the BORAX-IV, Indian Point I, and Elk River reactors, as well as heterogeneous mixtures in the Shippingport seed-blanket reactor. However these projects were developed under considerably different circumstances than those which prevail at present. The earlier applications preceded the current proscription, for non-proliferation purposes, of the use of uranium enriched to more than 20 w/o in {sup 235}U, and has in practice generally prohibited the use of uranium highly enriched in {sup 235}U. They were designed when the expected burnup of light water fuel was on the order of 25 MWD/kgU--about half the present day value--and when it was expected that the spent fuel would be recycled to recover its fissile content.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anh Bui; Nam Dinh; Brian Williams
In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Suchmore » sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.« less
Mohammadi, A; Hassanzadeh, M; Gharib, M
2016-02-01
In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flow-through pretreatment of lignocellulosic biomass with inorganic nanoporous membranes
Bhave, Ramesh R.; Lynd, Lee; Shao, Xiongjun
2018-04-03
A process for the pretreatment of lignocellulosic biomass is provided. The process generally includes flowing water through a pretreatment reactor containing a bed of particulate ligno-cellulosic biomass to produce a pressurized, high-temperature hydrolyzate exit stream, separating solubilized compounds from the hydrolyzate exit stream using an inorganic nanoporous membrane element, fractionating the retentate enriched in solubilized organic components and recycling the permeate to the pretreatment reactor. The pretreatment process provides solubilized organics in concentrated form for the subsequent conversion into biofuels and other chemicals.
2004-12-01
abundance and neutron cross-section of 17~r (the precursor of 171 Er~~limit,tb~’Xi!Y o~_ 171Er that could be produced and delivered to Suf field to about...the radioisotope being produced. Additional factors relate to the irradiation conditions and include the reactor neutron flux and the irradiation...generally be desirable to have single radioisotopic sources with nuclear characteristics (e.g., half-life, gamma-ray energies and emission rates
TEMPEST code simulations of hydrogen distribution in reactor containment structures. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
The mass transport version of the TEMPEST computer code was used to simulate hydrogen distribution in geometric configurations relevant to reactor containment structures. Predicted results of Battelle-Frankfurt hydrogen distribution tests 1 to 6, and 12 are presented. Agreement between predictions and experimental data is good. Best agreement is obtained using the k-epsilon turbulence model in TEMPEST in flow cases where turbulent diffusion and stable stratification are dominant mechanisms affecting transport. The code's general analysis capabilities are summarized.
16 CFR 1012.1 - General policy considerations; scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Policy, sets forth requirements for advance public notice, public attendance, and recordkeeping for... 16 Commercial Practices 2 2010-01-01 2010-01-01 false General policy considerations; scope. 1012.1 Section 1012.1 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL MEETINGS POLICY-MEETINGS...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingersoll, Daniel T
2007-01-01
Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sridharan, Kumar; Morgan, Dane
2015-01-22
The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsinmore » had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re-evaluate thermophysical properties of flibe and flinak. Pacific Northwest National Laboratories has focused on evaluating the fluorinating gas nitrogen trifluoride as a potential salt purification agent. Work there was performed on removing hydroxides and oxides from flinak salt under controlled conditions. Lastly, the University of California Berkeley has spent considerable time designing and simulating reactor components with fluoride salts at high temperatures. Despite the hurdles presented by the innate chemical hazards, considerable progress has been made. The stage has been set to perform new research on salt chemical control which could advance the fluoride salt cooled reactor concept towards commercialization. What were previously thought of as chemical undesirable, but nuclear certified, alloys have been shown to be theoretically compatible with fluoride salts at high temperatures. This preliminary report has been prepared to communicate the construction of the basic infrastructure required for flibe, as well as suggest original research to performed at the University of Wisconsin. Simultaneously, the contents of this report can serve as a detailed, but introductory guide to allow anyone to learn the fundamentals of chemistry, engineering, and safety required to work with flibe salt.« less
Wait, Isaac W; Johnston, Cliff T; Blatchley, Ernest R
2007-06-01
Ultraviolet (UV) disinfection systems are incorporated into drinking water production facilities because of their broad-spectrum antimicrobial capabilities, and the minimal disinfection by-product formation that generally accompanies their use. Selection of an optimal location for a UV system within a drinking water treatment facility depends on many factors; a potentially important consideration is the effect of system location on operation and maintenance issues, including the potential for fouling of quartz surfaces. To examine the effect of system location on fouling, experiments were conducted at a groundwater treatment facility, wherein aeration, chlorination, and sand filtration were applied sequentially for treatment. In this facility, access to the water stream was available prior to and following each of the treatment steps. Therefore, it was possible to examine the effects of each of these unit operations on fouling dynamics within a UV system. Results indicated zero-order formation kinetics for the fouling reactions at all locations. Increases in oxidation reduction potential, caused by water treatment steps such as aeration and chlorination, increased the rate of sleeve fouling and the rate of irradiance loss within the reactor. Analysis of metals in the sleeve foulant showed that calcium and iron predominate, and relative comparisons of foulant composition to water chemistry highlighted a high affinity for incorporation into the foulant matrix for both iron and manganese, particularly after oxidizing treatment steps. Fouling behavior was observed to be in qualitative agreement with representations of the degree of saturation, relative to the metal:ligand combinations that are believed to comprise a large fraction of the foulants that accumulate on the surfaces of quartz jackets in UV systems used to treat water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anuar, Nuraslinda, E-mail: nuraslinda@uniten.edu.my; Kahar, Wan Shakirah Wan Abdul, E-mail: shakirah@tnb.com.my; Manan, Jamal Abdul Nasir Abd
Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that “proven technology” is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for “proven technology” is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the “proven technology” term according to amore » specific country’s requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of “proven technology” that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia’s definition of “proven technology”.« less
General considerations in testing and evaluating crop varieties for agroforestry systems
Lolita N. Ragus
1993-01-01
Introduction of new crops in agroforestry is often suggested as a way to improve productivity. This paper provides general guidelines in selecting companion plant combinations and general considerations in evaluating, testing, naming, maintaining genetic purity and distributing crop varieties to farmers.
Alman, David E [Corvallis, OR; Wilson, Rick D [Corvallis, OR; Davis, Daniel L [Albany, OR
2011-03-08
This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.
Epoxidation catalyst and process
Linic, Suljo; Christopher, Phillip
2010-10-26
Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.
Investigation of Fe and Ca in non-stimulated human saliva using NAA
NASA Astrophysics Data System (ADS)
de Medeiros, J. A. G.; Zamboni, C. B.; Kovacs, L.; Lewgoy, H. R.
2015-07-01
In this study we investigated non-stimulated human whole saliva of healthy subjects and patients with periodontal disease using Neutron Activation Analysis technique (NAA). The measurements were performed in the IEA-R1 nuclear reactor at IPEN-CNEN/SP. We found considerable metabolic changes mainly in Fe and Ca concentration in whole saliva of periodontal patients. These data are useful for identifying or preventing this oral disease in the Brazilian population.
VVER-440 and VVER-1000 reactor dosimetry benchmark - BUGLE-96 versus ALPAN VII.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duo, J. I.
2011-07-01
Document available in abstract form only, full text of document follows: Analytical results of the vodo-vodyanoi energetichesky reactor-(VVER-) 440 and VVER-1000 reactor dosimetry benchmarks developed from engineering mockups at the Nuclear Research Inst. Rez LR-0 reactor are discussed. These benchmarks provide accurate determination of radiation field parameters in the vicinity and over the thickness of the reactor pressure vessel. Measurements are compared to calculated results with two sets of tools: TORT discrete ordinates code and BUGLE-96 cross-section library versus the newly Westinghouse-developed RAPTOR-M3G and ALPAN VII.0. The parallel code RAPTOR-M3G enables detailed neutron distributions in energy and space in reducedmore » computational time. ALPAN VII.0 cross-section library is based on ENDF/B-VII.0 and is designed for reactor dosimetry applications. It uses a unique broad group structure to enhance resolution in thermal-neutron-energy range compared to other analogous libraries. The comparison of fast neutron (E > 0.5 MeV) results shows good agreement (within 10%) between BUGLE-96 and ALPAN VII.O libraries. Furthermore, the results compare well with analogous results of participants of the REDOS program (2005). Finally, the analytical results for fast neutrons agree within 15% with the measurements, for most locations in all three mockups. In general, however, the analytical results underestimate the attenuation through the reactor pressure vessel thickness compared to the measurements. (authors)« less