Sample records for reactors inteligencia artificial

  1. Northeast Artificial Intelligence Consortium Annual Report. Volume 2. 1988 Discussing, Using, and Recognizing Plans (NLP)

    DTIC Science & Technology

    1989-10-01

    Encontro Portugues de Inteligencia Artificial (EPIA), Oporto, Portugal, September 1985. [15] N. J. Nilsson. Principles Of Artificial Intelligence. Tioga...FI1 F COPY () RADC-TR-89-259, Vol II (of twelve) Interim Report October 1969 AD-A218 154 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL...7a. NAME OF MONITORING ORGANIZATION Northeast Artificial Of p0ilcabe) Intelligence Consortium (NAIC) Rome_____ Air___ Development____Center

  2. Northeast Artificial Intelligence Consortium (NAIC). Volume 2. Discussing, Using, and Recognizing Plans

    DTIC Science & Technology

    1990-12-01

    knowledge and meta-reasoning. In Proceedings of EP14-85 ("Encontro Portugues de Inteligencia Artificial "), pages 138-154, Oporto, Portugal, 1985. [19] N, J...See reverse) 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION Northeast Artificial Intelligence...ABSTRACTM-2.,-- The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and

  3. Possible Conflicts, ARRs, and Conflicts

    DTIC Science & Technology

    2002-05-04

    Fourteenth European Conference on Artificial Intelligence Inteligencia Artificial , 41-53, (2001). (ECAI 2000), pp. 136-140, Berlin, Germany, (2000). [31] B...introduced), or proach to model-based diagnosis within the Artificial Intelligence backward (when a discrepancy is found, such as in CAEN [2, 21], community... Artificial Intelli- Relations (ARRs for short), for fault detection and localization [34]. gence community (usually known as DX). It is a research

  4. A Multiagent Based Model for Tactical Planning

    DTIC Science & Technology

    2002-10-01

    Pub. Co. 1985. [10] Castillo, J.M. Aproximación mediante procedimientos de Inteligencia Artificial al planeamiento táctico. Doctoral Thesis...been developed under the same conceptual model and using similar Artificial Intelligence Tools. We use four different stimulus/response agents in...The conceptual model is built on base of the Agents theory. To implement the different agents we have used Artificial Intelligence techniques such

  5. Models of Mental Functioning

    DTIC Science & Technology

    1989-05-14

    Mental Retardation. Detterman, D. K. (in press). Common challenges in understanding human and artificial intelligence. [Review of Creative Intelligences...Limited. Sternberg, R. J., & Detterman, D. K. (1988). Oue es la inteligencia ? Enfoque actual de su naturaleza y definicion. Translation of What is

  6. Intelligence Professionalism in the Americas (profesionalismo de inteligencia en las americas)

    DTIC Science & Technology

    2004-11-01

    latinoamericanos, a lo largo de tres conceptuales artículos que relacionan estos informes, país por país, con el hemisferio en su conjunto. Su lectura ha... critica también la politización que existió en las actividades de inteligencia y propone una definición de inteligencia gubernamental como la recolección...Inteligencia en el Centro de Altos Estudios Nacionales, Instituto de Altos Estudios Policiales, Escuela Superior de Guerra Naval, Escuela Superior de Guerra

  7. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor

    PubMed Central

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-01

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process. PMID:24389750

  8. ELECTRONUCLEAR REACTOR

    DOEpatents

    Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

    1960-04-19

    An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

  9. Growth of methylaminotrophic, acetotrophic and hydrogenotrophic methanogenic bacteria on artificial supports.

    PubMed

    Urrutia, H; Vidal, R; Baeza, M; Reyes, J E; Aspe, E

    1997-06-01

    The efficiency of organic matter degradation in attached biomass reactors depends on the suitable selection of artificial support for the retention of bacterial communities. We have studied the growth on glass and clay beads of methylaminotrophic, acetotrophic and hydrogenotrophic methanogenic bacterial communities isolated from anaerobic reactors. Bacterial counts were performed by the standard MPN technique. Experiments were performed in 50 ml vials for 12 days at 35 degrees C. Increase in the counts of methylaminotrophic and hydrogenotrophic methanogens occurred on both glass and clay beads. The latter support material also stimulated the growth rate of methylaminotrophic methanogens.

  10. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN).

    PubMed

    Delnavaz, M; Ayati, B; Ganjidoust, H

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds. 2010 Elsevier B.V. All rights reserved.

  11. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors.

    PubMed

    Ali, Hany S M; Blagden, Nicholas; York, Peter; Amani, Amir; Brook, Toni

    2009-06-28

    This study employs artificial neural networks (ANNs) to create a model to identify relationships between variables affecting drug nanoprecipitation using microfluidic reactors. The input variables examined were saturation levels of prednisolone, solvent and antisolvent flow rates, microreactor inlet angles and internal diameters, while particle size was the single output. ANNs software was used to analyse a set of data obtained by random selection of the variables. The developed model was then assessed using a separate set of validation data and provided good agreement with the observed results. The antisolvent flow rate was found to have the dominant role on determining final particle size.

  12. Decreasing of BOD Concentration on Artificial Domestic Wastewater Using Anaerob Biofilter Reactor Technology

    NASA Astrophysics Data System (ADS)

    Sumiyati, Sri; Purwanto; Sudarno

    2018-02-01

    Pollution of domestic wastewater becomes an urban problem. Domestic wastewater contains a variety of pollutants. One of the pollutant parameters in domestic wastewater is BOD. Domestic wastewater which BOD concentrations exceeding the quality standard will be harmful to the environment, particularly the receiving water body. Therefore, before being discharged into the environment, domestic wastewater needs to be processed first. One of the processing that has high efficiency, low cost and easy operation is biofilter technology. The purpose of this research was to analyze the efficiency of BOD concentration reduction in domestic wastewater with anaerobic reactor biofilter using volcanic gravel media. The type of reactor used is an anaerobic biofilter made of glass which volume of 30 liters while the biofilter media is volcanic gravel. In this research the established HRT were 24, 12, 6 and 3 hours. The results showed that the efficiency of BOD concentration reduction in artificial domestic wastewater reached 80%.

  13. CO2 Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor.

    PubMed

    Noji, Tomoyasu; Jin, Tetsuro; Nango, Mamoru; Kamiya, Nobuo; Amao, Yutaka

    2017-02-01

    In this study, we demonstrated the conversion of CO 2 to formic acid under ambient conditions in a photoreduction nanoporous reactor using a photosensitizer, methyl viologen (MV 2+ ), and formate dehydrogenase (FDH). The overall efficiency of this reactor was 14 times higher than that of the equivalent solution. The accumulation rate of formic acid in the nanopores of 50 nm is 83 times faster than that in the equivalent solution. Thus, this CO 2 photoreduction nanoporous glass reactor will be useful as an artificial photosynthesis system that converts CO 2 to fuel.

  14. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    PubMed

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  15. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Vitela, Javier E.; Martinell, Julio J.

    1998-02-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN.

  16. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  17. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, K.C.

    1988-01-21

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.

  18. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, Kenny C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  19. Translations on Eastern Europe, Scientific Affairs, No. 562

    DTIC Science & Technology

    1977-10-28

    remodeling and mod- ernization of the institute’s facilities resulted in an increase in the reactor’s neutron flux and power output capacity and...research technique involving the use of the experimental reactor is neutron activation analysis. Using this method it is possible to produce...artificial radioactivity through the bombardment of non-active substances with neutrons . This is one of the most sensitive methods of chemical analysis

  20. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  1. Predicting Microbial Fuel Cell Biofilm Communities and Bioreactor Performance using Artificial Neural Networks.

    PubMed

    Lesnik, Keaton Larson; Liu, Hong

    2017-09-19

    The complex interactions that occur in mixed-species bioelectrochemical reactors, like microbial fuel cells (MFCs), make accurate predictions of performance outcomes under untested conditions difficult. While direct correlations between any individual waste stream characteristic or microbial community structure and reactor performance have not been able to be directly established, the increase in sequencing data and readily available computational power enables the development of alternate approaches. In the current study, 33 MFCs were evaluated under a range of conditions including eight separate substrates and three different wastewaters. Artificial Neural Networks (ANNs) were used to establish mathematical relationships between wastewater/solution characteristics, biofilm communities, and reactor performance. ANN models that incorporated biotic interactions predicted reactor performance outcomes more accurately than those that did not. The average percent error of power density predictions was 16.01 ± 4.35%, while the average percent error of Coulombic efficiency and COD removal rate predictions were 1.77 ± 0.57% and 4.07 ± 1.06%, respectively. Predictions of power density improved to within 5.76 ± 3.16% percent error through classifying taxonomic data at the family versus class level. Results suggest that the microbial communities and performance of bioelectrochemical systems can be accurately predicted using data-mining, machine-learning techniques.

  2. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, J. OM.; Hitchens, G. D.; Kaba, L.

    1988-01-01

    The investigation into electrolysis as a means of waste treatment and recycling on manned space missions is described. The electrochemical reactions of an artificial fecal waste mixture was examined. Waste electrolysis experiments were performed in a single compartment reactor, on platinum electrodes, to determine conditions likely to maximize the efficiency of oxidation of fecal waste material to CO2. The maximum current efficiencies for artificial fecal waste electrolysis to CO2 was found to be around 50 percent in the test apparatus. Experiments involving fecal waste oxidation on platinum indicates that electrodes with a higher overvoltage for oxygen evolution such as lead dioxide will give a larger effective potential range for organic oxidation reactions. An electrochemical packed column reactor was constructed with lead dioxide as electrode material. Preliminary experiments were performed using a packed-bed reactor and continuous flow techniques showing this system may be effective in complete oxidation of fecal material. The addition of redox mediator Ce(3+)/Ce(4+) enhances the oxidation process of biomass components. Scientific literature relevant to biomass and fecal waste electrolysis were reviewed.

  3. Integrated intelligent systems in advanced reactor control rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs.,more » 5 figs.« less

  4. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  5. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  6. Influence of oil type on the amounts of acrylamide generated in a model system and in French fries.

    PubMed

    Mestdagh, Frédéric J; De Meulenaer, Bruno; Van Poucke, Christof; Detavernier, Christ'l; Cromphout, Caroline; Van Peteghem, Carlos

    2005-07-27

    Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.

  7. The chemical state of defective uranium-plutonium oxide fuel pins irradiated in sodium cooled reactors

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1997-09-01

    Steady-state irradiation experiments were conducted in the sodium loop of the Siloe reactor on artificially failed mixed oxide pins that had been pre-irradiated in fast reactors up to 11.5% burnup. The formation of the predominant reaction product Na 3(U,Pu)O 4 starts on the fuel surface and is terminated when a lower O/(U + Pu) threshold of the fuel is attained. The axial extent of the reaction product depends on the size of the initial cladding defect. The occurrence of secondary cracks is possible. Na(U,Pu)O 3 forms at higher fuel temperatures. The existence of Na 3U 1- xPu xO 4 is shown in pre-irradiated blanket pins after artificial defect formation. Caesium in the oxocompounds is reduced to the metallic state and is dissolved in the coolant. Evidence of a very low chemical potential of oxygen in defective fuel pins is sustained by the occurrence of actinide-platinum metal phases formed by coupled reduction of hypostoichiometric fuel with ɛ-(Mo,Tc,Ru,Rh,Pd) precipitates. Continued operation of defective pins is not hazardous by easy precautions.

  8. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  9. Mars manned fusion spaceship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedrick, J.; Buchholtz, B.; Ward, P.

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, spacemore » connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.« less

  10. Mars manned fusion spaceship

    NASA Technical Reports Server (NTRS)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  11. Treatment of wastewater containing a large amount of suspended solids by a novel multi-staged UASB reactor.

    PubMed

    Uemura, S; Harada, H; Ohashi, A; Torimura, S

    2005-12-01

    Treatment of artificial wastewater containing a large amount of suspended solids comprised of soybean processing waste and pig fodder was studied using a novel multi-staged upflow anaerobic sludge blanket reactor. The reactor consisted of three compartments, each containing a gas solid separator. The wastewater had chemical oxygen demand of approximately 21600 mg l(-1), suspended solids of 12800 mg l(-1), and an ammonia concentration of 945 mg l(-1). A continuous experiment without effluent circulation showed that the multi-staged reactor was not that effective for the treatment of wastewater containing a large amount of suspended solids. However, operation of the reactor with circulation of effluent enabled the reactor to achieve organic removal of 85% and approximately 70% methane conversion at loading rates of between 4.0 to 5.4 kg-chemical oxygen demand per cubic meter per day, meaning that the reactor was more effective when effluent was circulated. Morphological investigation revealed that the crude fiber in the sludge was partially degraded and that it had many small depressions on its surface. Evolved biogas may have become caught in these depressions of the fibers and caused washout of the sludge.

  12. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    PubMed Central

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  13. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    PubMed

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  14. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  15. Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation.

    PubMed

    Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying

    2012-06-01

    The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.

  16. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  17. South Atlantic Conflict of 1982: A Case Study in Military Cohesion

    DTIC Science & Technology

    1988-04-01

    Level Technical School); Centro de Instruction de Inteligencia (Center for Intelligence Instruction) and Centro de Altos Estudios (The Center for...pero plenos de emocion y grandeza. (1987). La Semana, 12-15. Gal, R. (1985). Committment and obedience in the military: An Israeli case study. Armed

  18. Degradation of carbendazim in water via photo-Fenton in Raceway Pond Reactor: assessment of acute toxicity and transformation products.

    PubMed

    da Costa, Elizângela Pinheiro; Bottrel, Sue Ellen C; Starling, Maria Clara V M; Leão, Mônica M D; Amorim, Camila Costa

    2018-05-08

    This study aimed at investigating the degradation of fungicide carbendazim (CBZ) via photo-Fenton reactions in artificially and solar irradiated photoreactors at laboratory scale and in a semi-pilot scale Raceway Pond Reactor (RPR), respectively. Acute toxicity was monitored by assessing the sensibility of bioluminescent bacteria (Aliivibrio fischeri) to samples taken during reactions. In addition, by-products formed during solar photo-Fenton were identified by liquid chromatography coupled to mass spectrometry (UFLC-MS). For tests performed in lab-scale, two artificial irradiation sources were compared (UV λ > 254nm and UV-Vis λ > 320nm ). A complete design of experiments was performed in the semi-pilot scale RPR in order to optimize reaction conditions (Fe 2+ and H 2 O 2 concentrations, and water depth). Efficient degradation of carbendazim (> 96%) and toxicity removal were achieved via artificially irradiated photo-Fenton under both irradiation sources. Control experiments (UV photolysis and UV-Vis peroxidation) were also efficient but led to increased acute toxicity. In addition, H 2 O 2 /UV λ > 254nm required longer reaction time (60 minutes) when compared to the photo-Fenton process (less than 1 min). While Fenton's reagent achieved high CBZ and acute toxicity removal, its efficiency demands higher concentration of reagents in comparison to irradiated processes. Solar photo-Fenton removed carbendazim within 15 min of reaction (96%, 0.75 kJ L -1 ), and monocarbomethoxyguanidine, benzimidazole isocyanate, and 2-aminobenzimidazole were identified as transformation products. Results suggest that both solar photo-Fenton and artificially irradiated systems are promising routes for carbendazim degradation.

  19. Monochromatic neutron beam production at Brazilian nuclear research reactors

    NASA Astrophysics Data System (ADS)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  20. Noise source and reactor stability estimation in a boiling water reactor using a multivariate autoregressive model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanemoto, S.; Andoh, Y.; Sandoz, S.A.

    1984-10-01

    A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less

  1. Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Hicks, M. C.; Lauver, R. W.; Hegde, U. G.; Sikora, T. J.

    2006-01-01

    Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.

  2. Reactor pressure vessel embrittlement: Insights from neural network modelling

    NASA Astrophysics Data System (ADS)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  3. Simplifying microbial electrosynthesis reactor design.

    PubMed

    Giddings, Cloelle G S; Nevin, Kelly P; Woodward, Trevor; Lovley, Derek R; Butler, Caitlyn S

    2015-01-01

    Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional 'H-cell' reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

  4. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    PubMed

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Fault detection and analysis in nuclear research facility using artificial intelligence methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Abu Bakar, E-mail: Abakar@uniten.edu.my; Ibrahim, Maslina Mohd

    In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)more » are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either ‘yes’ or ‘no’ state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.« less

  6. Remediation of mercury-polluted soils using artificial wetlands.

    PubMed

    García-Mercadoa, Héctor Daniel; Fernándezb, Georgina; Garzón-Zúñigac, Marco Antonio; Durán-Domínguez-de-Bazúaa, María Del Carmen

    2017-01-02

    Mexico's mercury mining industry is important for economic development, but has unfortunately contaminated soils due to open-air disposal. This case was seen at two sites in the municipality of Pinal de Amoles, State of Queretaro, Mexico. This paper presents an evaluation of mercury dynamics and biogeochemistry in two soils (mining waste soil) using ex-situ wetlands over 36 weeks. In soils sampled in two former mines of Pinal de Amoles, initial mercury concentrations were 424 ± 29 and 433 ± 12 mg kg -1 in La Lorena and San Jose, former mines, respectively. Typha latifolia and Phragmites australis were used and 20 reactors were constructed (with and without plants). The reactors were weekly amended with a nutrient solution (NPK), for each plant, at a pH of 5.0. For remediation using soils from San Jose 70-78% of mercury was removed in T. latifolia reactors and 76-82% in P. australis reactors, and for remediation of soils from La Lorena, mercury content was reduced by 55-71% using T. latifolia and 58-66% in P. australis reactors. Mercury emissions into the atmosphere were estimated to be 2-4 mg m -2 h -1 for both soils.

  7. Novel online monitoring and alert system for anaerobic digestion reactors.

    PubMed

    Dong, Fang; Zhao, Quan-Bao; Li, Wen-Wei; Sheng, Guo-Ping; Zhao, Jin-Bao; Tang, Yong; Yu, Han-Qing; Kubota, Kengo; Li, Yu-You; Harada, Hideki

    2011-10-15

    Effective monitoring and diagnosis of anaerobic digestion processes is a great challenge for anaerobic digestion reactors, which limits their stable operation. In this work, an online monitoring and alert system for upflow anaerobic sludge blanket (UASB) reactors is developed on the basis of a set of novel evaluating indexes. The two indexes, i.e., stability index S and auxiliary index a, which incorporate both gas- and liquid-phase parameters for UASB, enable a quantitative and comprehensive evaluation of reactor status. A series of shock tests is conducted to evaluate the response of the monitoring and alert system to organic overloading, hydraulic, temperature, and toxicant shocks. The results show that this system enables an accurate and rapid monitoring and diagnosis of the reactor status, and offers reliable early warnings on the potential risks. As the core of this system, the evaluating indexes are demonstrated to be of high accuracy and sensitivity in process evaluation and good adaptability to the artificial intelligence and automated control apparatus. This online monitoring and alert system presents a valuable effort to promote the automated monitoring and control of anaerobic digestion process, and holds a high promise for application.

  8. Degradation characteristics of polylactide in thermophilic anaerobic digestion with hyperthermophilic solubilization condition.

    PubMed

    Wang, F; Hidaka, T; Oishi, T; Osumi, S; Tsubota, J; Tsuno, H

    2011-01-01

    To test whether hyperthermophilic treatment promotes polylactide (PLA) dissolution and methane conversion under anaerobic digestion conditions, a single thermophilic control reactor (55 °C) and a two-phase system consisting of a hyperthermophilic reactor (80 °C) and a thermophilic reactor (55 °C) were continuously fed with a mixture of PLA and artificial kitchen garbage. In Runs 1 and 2, the PLA dissolution ratios in the two-phase system were 79.2 ± 6.5% and 85.2 ± 7.0%, respectively, higher than those of the control. Batch experimental results indicated that hyperthermophilic treatment could promote PLA dissolution to a greater degree as compared with single thermophilic treatment and that ammonia addition also had a promotional effect on PLA dissolution. In the two-phase system, after hyperthermophilic treatment, dissolved PLA was converted to methane gas under the subsequent thermophilic condition.

  9. Application of gas sensor arrays in assessment of wastewater purification effects.

    PubMed

    Guz, Łukasz; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Suchorab, Zbigniew; Sobczuk, Henryk; Bieganowski, Andrzej

    2014-12-23

    A gas sensor array consisting of eight metal oxide semiconductor (MOS) type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP) in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR). A comparison of the gas sensor array (electronic nose) response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose-gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I) chemical oxygen demand (COD) (r = 0.988); (II) total suspended solids (TSS) (r = 0.938); (III) turbidity (r = 0.940); (IV) pH (r = 0.554); (V) nitrogen compounds: N-NO3 (r = 0.958), N-NO2 (r = 0.869) and N-NH3 (r = 0.978); (VI) and volatile organic compounds (VOC) (r = 0.987). Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  10. Greywater as a sustainable water source: A photocatalytic treatment technology under artificial and solar illumination.

    PubMed

    Tsoumachidou, Sophia; Velegraki, Theodora; Antoniadis, Apostolos; Poulios, Ioannis

    2017-06-15

    Greywater considers being a highly reclaimable water source particularly important for water-stressed nations. In this work, heterogeneous photocatalysis using artificial and solar illumination has been applied for the mineralization of simulated light greywater (effluents from dishwashers and kitchen sinks were excluded from the study). The effects on the process' efficiency of TiO 2 P25 catalyst's concentration, initial concentration of H 2 O 2 and Fe 3+ , pH of the solution, as well as the type of radiation, were evaluated in a bench-scale Pyrex reactor and a pilot-scale slurry fountain photoreactor. The treatment efficiency has been followed through the evolution of the organic matter content expresses as dissolved organic carbon (DOC). Best results were obtained with the photo-Fenton-assisted TiO 2 photocatalytic process with 72% DOC removal after 210 min of bench scale treatment, while under the same photocatalytic conditions in the pilot reactor the DOC removal reached almost 64%. Moreover, the decrease in toxicity, phytotoxicity and biodegradability of the simulated wastewater has been observed after solar-induced photocatalytic treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    PubMed

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  13. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.

    PubMed

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-09-29

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.

  14. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id

    2014-09-30

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less

  15. Information Sharing About International Terrorism in Latin America

    DTIC Science & Technology

    2005-06-01

    articles/anmviewer.asp?a=464&print=yes. Somoza, L. (2001). Inteligencia: Su Utilidad para la Toma de Decisiones en un Mundo de Nuevos Conflictos...Terrorism Violence in Europe.” March 9-11, 2001, Minda de Gunzburg Center for European Studies, Harvard University, Cambridge, Massachusetts. 56...Taylor and Francis. Jane’s (2005). Terrorism and Insurgency Center. Fuerzas Armadas Revolucionarias de Colombia (FARC). Retrieved February 25, 2005

  16. Amazon Surveillance System (SIVAM): U.S. and Brazilian Cooperation

    DTIC Science & Technology

    1999-12-01

    Controle de Träfe go Aereo) Clutter Effects Model Parliamentary Investigation Commission (Comissäo Parlamentär de Inqutrito) Weather Forecasting...de Pesquisas Espaciais) INPA National Institute of Amazon Research (Instituto Nacional de Pesquisas da Amazonia ) IR Infrared KW Kilowatt (a...VSAT System for Surveillance of the Amazon (Sistema de Vigiläncia da Amazonia ) Brazilian Intelligence Agency (Subsecretaria de Inteligencia

  17. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    PubMed

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The performance and microbial diversity of temperature-phased hyperthermophilic and thermophilic anaerobic digestion system fed with organic waste.

    PubMed

    Lee, M Y; Cheon, J H; Hidaka, T; Tsuno, H

    2008-01-01

    The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of a hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 20.8% of COD solubilization was achieved at 70 degrees C, with 12.6% at 80 degrees C. The average protein solubilization reached 31% at 80 degrees C. Methane conversion efficiency following the acidification was around 85% on average at 55 degrees C, but decreased with increasing temperature and methane gas was not produced over 73 degrees C. As well, bacteria affiliated with the methanogens dominated the population below 65 degrees C, while those affiliated with acidogens were predominant over 73 degrees C. These results indicated that the hyperthermophilic process has considerable benefits to treat wastewater or waste containing high concentration of protein.

  19. Core reactivity estimation in space reactors using recurrent dynamic networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Tsai, Wei K.

    1991-01-01

    A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.

  20. Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment.

    PubMed

    Park, YongJin; Hong, Feng; Cheon, JiHoon; Hidaka, Taira; Tsuno, Hiroshi

    2008-01-01

    Lab-scale single-phase and two-phase thermophilic methane fermentation systems (SPS and TPS, respectively) were operated and fed with artificial kitchen waste. In both SPS and TPS, the highest methane recovery ratio of 90%, in terms of chemical oxygen demand by dichromate (CODcr), was observed at an organic loading rate (OLR) of 15 gCODcr/(l.d). The ratio of particle CODcr remaining to total CODcr in the influent was 0.1 and the ratio of NH(4)-N concentration to the input total nitrogen concentration was 0.5 in both SPS and TPS. However, the propionate concentration in the SPS reactor fluctuated largely and was 2 gCODcr/l higher than that in TPS, indicating less stable digestion. Regardless, efficient kitchen waste degradation can be accomplished in both SPS and TPS at an OLR of <20 gCODcr/(l.d), even though TPS may be more stable and easier to maintain. Bacillus coagulans predominated with an occupied ratio of approximately 90% in the acid fermentation reactor of TPS, and then a richer microbial community with a higher Shannon index value was maintained in the methane fermentation reactor of TPS than in the SPS reactor.

  1. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  2. RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Rabiti; D. Mandelli; A. Alfonsi

    Increases in computational power and pressure for more accurate simulations and estimations of accident scenario consequences are driving the need for Dynamic Probabilistic Risk Assessment (PRA) [1] of very complex models. While more sophisticated algorithms and computational power address the back end of this challenge, the front end is still handled by engineers that need to extract meaningful information from the large amount of data and build these complex models. Compounding this problem is the difficulty in knowledge transfer and retention, and the increasing speed of software development. The above-described issues would have negatively impacted deployment of the new highmore » fidelity plant simulator RELAP-7 (Reactor Excursion and Leak Analysis Program) at Idaho National Laboratory. Therefore, RAVEN that was initially focused to be the plant controller for RELAP-7 will help mitigate future RELAP-7 software engineering risks. In order to accomplish this task, Reactor Analysis and Virtual Control Environment (RAVEN) has been designed to provide an easy to use Graphical User Interface (GUI) for building plant models and to leverage artificial intelligence algorithms in order to reduce computational time, improve results, and help the user to identify the behavioral pattern of the Nuclear Power Plants (NPPs). In this paper we will present the GUI implementation and its current capability status. We will also introduce the support vector machine algorithms and show our evaluation of their potentiality in increasing the accuracy and reducing the computational costs of PRA analysis. In this evaluation we will refer to preliminary studies performed under the Risk Informed Safety Margins Characterization (RISMC) project of the Light Water Reactors Sustainability (LWRS) campaign [3]. RISMC simulation needs and algorithm testing are currently used as a guidance to prioritize RAVEN developments relevant to PRA.« less

  3. Energy Innovation Hubs: A Home for Scientific Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computermore » modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.« less

  4. Energy Innovation Hubs: A Home for Scientific Collaboration

    ScienceCinema

    Chu, Steven

    2017-12-11

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.

  5. A study on using fireclay as a biomass carrier in an activated sludge system.

    PubMed

    Tilaki, Ramazan Ali Dianati

    2011-01-01

    By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufacturing plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l(-1), and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 3,000 mg l(-1) and in the batch mode was 2,400 mg l(-1). The attached biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 1,500 mg l(-1) and in the batch mode was 980 mg l(-1). Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.

  6. The Assessment of the Intelligence of Latinos in the United States. (La Medicion de la Inteligencia de los Latinos en los Estados Unidos).

    ERIC Educational Resources Information Center

    Cauce, Ana M.; And Others

    Most of the research on the assessment of the intelligence of Latinos in the United States appears to be based on some possibly erroneous or at least dubious assumptions. Among these are the following: (1) the assumption of bilinguality; (2) the assumption of equal proficiency in the English language; (3) the assumption of the equivalence of…

  7. Relationship between Emotional Intelligence and Mental Health in School Counselors (Relación entre Inteligencia Emocional y salud mental en Orientadores Educativos)

    ERIC Educational Resources Information Center

    Cejudo, Javier

    2016-01-01

    Introduction: The purpose of the present research is aimed at studying the relationship between emotional intelligence as an ability and emotional intelligence as a trait and mental health of a sample of school counsellors. Method: The sample has been made up of 203 school counsellors. The instruments used have been: Mayer-Salovey-Caruso Emotional…

  8. Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis.

    PubMed

    Adam, Zachary R

    2016-06-01

    Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.

  9. DNA-Based Enzyme Reactors and Systems

    PubMed Central

    Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.

    2016-01-01

    During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications. PMID:28335267

  10. The synthesis of starch from carbon dioxide using isolubilized stabilized enzymes

    NASA Technical Reports Server (NTRS)

    Bassham, J. A.; Bearden, L.; Wilke, C.; Carroad, P.; Mitra, G.; Ige, R.

    1972-01-01

    Systems for artificial manufacture of starch and for delineation of technological areas, and the rationale for studying them are considered. A discussion of the enzyme-catalyzed routes of synthesis available and a choice as to the most promising route are presented. A discussion of the enzymes involved, of enzyme insolubilization technology, and of possible engineering approaches, with examples in the form of model calculations for both reactors and separators, are also presented.

  11. Degradation of benzotriazole and benzothiazole in treatment wetlands and by artificial sunlight.

    PubMed

    Felis, Ewa; Sochacki, Adam; Magiera, Sylwia

    2016-11-01

    Laboratory-scale experiments were performed using unsaturated subsurface-flow treatment wetlands and artificial sunlight (with and without TiO 2 ) to study the efficiency of benzotriazole and benzothiazole removal and possible integration of these treatment methods. Transformation products in the effluent from the treatment wetlands and the artificial sunlight reactor were identified by high performance liquid chromatography coupled with tandem mass spectrometry. The removal of benzothiazole in the vegetated treatment wetlands was 99.7%, whereas the removal of benzotriazole was 82.8%. The vegetation positively affected only the removal of benzothiazole. The major transformation products in the effluents from the treatment wetlands were methylated and hydroxylated derivatives of benzotriazole, and hydroxylated derivatives of benzothiazole. Hydroxylation was found to be the main process governing the transformation pathway for both compounds in the artificial sunlight experiment (with and without TiO 2 ). Benzotriazole was not found to be susceptible to photodegradation in the absence of TiO 2 . The integration of the sunlight-induced processes (with TiO 2 ) with subsurface-flow treatment wetlands caused further elimination of the compounds (42% for benzotriazole and 58% for benzothiazole). This was especially significant for the elimination of benzotriazole, because the removal of this compound was 96% in the coupled processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I; Merino, S

    2018-03-15

    The aim of this work was to evaluate the performance of a novel self-autonomous reactor technology (capable of working with solar irradiation and artificial UV light) for water treatment using aniline as model compound. This new reactor design overcomes the problems of the external mass transfer effect and the accessibility to photons occurring in traditional reaction systems. The UV-light source is located inside the rotating quartz drums (where TiO 2 is immobilized), allowing light to easily reach the water and the TiO 2 surface. Several processes (UV, H 2 O 2 , Solar, TiO 2 , Solar/TiO 2 , Solar/TiO 2 /H 2 O 2 and UV/Solar/H 2 O 2 /TiO 2 ) were tested. The synergy between Solar/H 2 O 2 and Solar/TiO 2 processes was quantified to be 40.3% using the pseudo-first-order degradation rate. The apparent photonic efficiency, ζ, was also determined for evaluating light utilization. For the Solar/TiO 2 /H 2 O 2 process, the efficiency was found to be practically constant (0.638-0.681%) when the film thickness is in the range of 1.67-3.87 μm. However, the efficiency increases up to 2.67% when artificial UV light was used in combination, confirming the efficient design of this installation. Thus, if needed, lamps can be switched on during cloudy days to improve the degradation rate of aniline and its mineralization. Under the optimal conditions selected for the Solar/TiO 2 /H 2 O 2 process ([H 2 O 2 ] = 250 mg/L; pH = 4, [TiO 2 ] = 0.65-1.25 mg/cm 2 ), 89.6% of aniline is degraded in 120 min. If the lamps are switched on, aniline is completely degraded in 10 min, reaching 85% of mineralization in 120 min. TiO 2 was re-used during 5 reaction cycles without apparent loss in activity (<2%). Quantification of hydroxyl radicals and dissolved oxygen allows a chemical-based explanation of the process. Finally, the UV/Solar/TiO 2 /H 2 O 2 process was found to have lower operation costs than other systems described in literature (0.67 €/m 3 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Integrating anammox with the autotrophic denitrification process via electrochemistry technology.

    PubMed

    Qiao, Sen; Yin, Xin; Zhou, Jiti; Wei, Li'e; Zhong, Jiayou

    2018-03-01

    In this study, an autotrophic denitrification process was successfully coupled with anammox to remove the nitrate by-product via electrochemical technology. When the voltage applied to the combined electrode reactor was 1.5 V, the electrode reaction removed nitrate by using the autotrophic denitrification biomass without affecting the anammox biomass. The nitrogen removal efficiency of the combined electrode reactor reached 99.1% without detectable nitrate at an influent NO 2 - -N/NH 4 + -N ratio of 1.5. On day 223, using the model calculations based on reaction equations, 19.7% of total nitrogen was removed via the autotrophic denitrification process, while the majority of nitrogen removal (approximately 79.4%) was attributed to the anammox reaction. Small variations of the population numbers and community structure of artificial bacteria according to electron microscopy predicted that the anammox and autotrophic denitrifying biomasses could coexist in the electrode reactor. Then, 16S rRNA analysis determined that the anammox biomass group was always dominant in mixed flora during continuous cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Results of R/V Yaquina cruise YALOC-74, Leg 3: seabed disposal program, North Pacific study area MPG-2, 33$sup 0$20'N, 151$sup 0$00'W, November 30--December 21, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, G R

    1975-07-01

    During 10 days in the vicinity of 33$sup 0$20'N, 151$sup 0$00'W (MPG-2 area), three near-bottom current meters were deployed, the bathymetry and subbottom acoustic structure of the surrounding seafloor were determined, and sediment cores were collected for studies of artificial radionuclide distribution, geotechnical properties, geochemical properties, and to identify the character of shallow acoustic reflectors. Large volume water samples for artificial radionuclide studies and suspended sediment were also collected. These samples and data will supplement earlier material to be used in the evaluation of the central North Pacific as a potential site for the ultimate disposal of high-level reactor wastes.more » (auth)« less

  15. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  16. A Treatise on the Measurement of Radioactive Argon in the Atmosphere.

    DTIC Science & Technology

    1984-03-01

    and 39Ar are produced continuously by cosmic - *" ray interactions with the atmosphere. The half-lives of these isotopes (35.02 days and 269 years...spectively) are long enough so that the specific activity pro- duced by cosmic - rays is at a steady-state level in the atmos- phere. These levels have been...In addition to the natural cosmic - ray production, 3 7Ar and 39Ar can also be produced artificially in nuclear reactors and nuclear explosions

  17. [Anthropogenic sources of radiation hazard in the near-Earth space].

    PubMed

    Fedoseev, G A

    2004-01-01

    All plausible artificial radioactive sources entering the near-Earth space (NES) were systematized and consequences of various large radiation accidents and catastrophes to Earth and NES were analyzed. Aggressive "population" of near-Earth orbits by space stations with rotating crews, unmanned research platforms and observatories extends "borderlines" of the noosphere raising at the same time concerns about the noosphere radiation safety and global radioecology. Specifically, consideration is given to the facts of negative effects of space power reactor facilities on results of orbital astrophysical investigations.

  18. Characterization of Used Nuclear Fuel with Multivariate Analysis for Process Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayman, Kenneth J.; Coble, Jamie B.; Orton, Christopher R.

    2014-01-01

    The Multi-Isotope Process (MIP) Monitor combines gamma spectroscopy and multivariate analysis to detect anomalies in various process streams in a nuclear fuel reprocessing system. Measured spectra are compared to models of nominal behavior at each measurement location to detect unexpected changes in system behavior. In order to improve the accuracy and specificity of process monitoring, fuel characterization may be used to more accurately train subsequent models in a full analysis scheme. This paper presents initial development of a reactor-type classifier that is used to select a reactor-specific partial least squares model to predict fuel burnup. Nuclide activities for prototypic usedmore » fuel samples were generated in ORIGEN-ARP and used to investigate techniques to characterize used nuclear fuel in terms of reactor type (pressurized or boiling water reactor) and burnup. A variety of reactor type classification algorithms, including k-nearest neighbors, linear and quadratic discriminant analyses, and support vector machines, were evaluated to differentiate used fuel from pressurized and boiling water reactors. Then, reactor type-specific partial least squares models were developed to predict the burnup of the fuel. Using these reactor type-specific models instead of a model trained for all light water reactors improved the accuracy of burnup predictions. The developed classification and prediction models were combined and applied to a large dataset that included eight fuel assembly designs, two of which were not used in training the models, and spanned the range of the initial 235U enrichment, cooling time, and burnup values expected of future commercial used fuel for reprocessing. Error rates were consistent across the range of considered enrichment, cooling time, and burnup values. Average absolute relative errors in burnup predictions for validation data both within and outside the training space were 0.0574% and 0.0597%, respectively. The errors seen in this work are artificially low, because the models were trained, optimized, and tested on simulated, noise-free data. However, these results indicate that the developed models may generalize well to new data and that the proposed approach constitutes a viable first step in developing a fuel characterization algorithm based on gamma spectra.« less

  19. Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Castin, N.; Becquart, C. S.; Malerba, L.

    2011-05-01

    An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of copper-vacancy clusters in Fe. This information, which cannot be obtained directly from experimental measurements, is needed to parameterise models describing the nanostructure evolution under irradiation of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC method has been improved by employing artificial intelligence techniques for the regression of the activation energies required by the model as input. These energies are calculated allowing for the effects of local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as possible and the nudged-elastic-band method. The model validation was based on comparison with available ab initio calculations for verification of the used cohesive model, as well as with other models and theories.

  20. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.

    PubMed

    Ongen, Atakan; Ozcan, H Kurtulus; Arayıcı, Semiha

    2013-12-15

    This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Un Marco Abierto: Un Manual de Matematicas y Ciencas Utilizando Inteligencias Multiples Disenado para Estudiantes Bilingues de Educacion General y Especial (An Open Framework: A Math and Science Manual Utilizing Multiple Intelligences Designed for Bilingual Students in General and Special Education).

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Bilingual Education.

    This manual incorporates a Multiple Intelligences perspective into its presentation of themes and lesson ideas for Spanish-English bilingual elementary school students in grades 4-8 and is designed for both gifted and special education uses. Each unit includes practice activities, semantic maps to illustrate and help organize ideas as well as…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Numerous methods have been developed around the world to model the dynamic behavior and detect a faulty operating mode of a temperature sensor. In this context, we present in this study a new method based on the dependence between the fuel assembly temperature profile on control rods positions, and the coolant flow rate in a nuclear reactor. This seems to be possible since the insertion of control rods at different axial positions and variations in flow rate of the reactor coolant results in different produced thermal power in the reactor. This is closely linked to the instant fuel rod temperaturemore » profile. In a first step, we selected parameters to be used and confirmed the adequate correlation between the chosen parameters and those to be estimated by the proposed monitoring system. In the next step, we acquired and de-noised the data of corresponding parameters, the qualified data is then used to design and train the artificial neural network. The effective data denoising was done by using the wavelet transform to remove a various kind of artifacts such as inherent noise. With the suitable choice of wavelet level and smoothing method, it was possible for us to remove all the non-required artifacts with a view to verify and analyze the considered signal. In our work, several potential mother wavelet functions (Haar, Daubechies, Bi-orthogonal, Reverse Bi-orthogonal, Discrete Meyer and Symlets) were investigated to find the most similar function with the being processed signals. To implement the proposed monitoring system for the fuel rod temperature sensor (03 wire RTD sensor), we used the Bayesian artificial neural network 'BNN' technique to model the dynamic behavior of the considered sensor, the system correlate the estimated values with the measured for the concretization of the proposed system we propose an FPGA (field programmable gate array) implementation. The monitoring system use the correlation. (authors)« less

  3. Non-equilibrium steady states in supramolecular polymerization

    NASA Astrophysics Data System (ADS)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  4. Fluid dynamic modeling of nano-thermite reactions

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki

    2014-03-01

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.

  5. Fluid dynamic modeling of nano-thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.

    2014-03-14

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less

  6. Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores.

    PubMed

    Zaghloul, Mohamed A S; Wang, Mohan; Huang, Sheng; Hnatovsky, Cyril; Grobnic, Dan; Mihailov, Stephen; Li, Ming-Jun; Carpenter, David; Hu, Lin-Wen; Daw, Joshua; Laffont, Guillaume; Nehr, Simon; Chen, Kevin P

    2018-04-30

    This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.2 × 10 14 n/cm 2 /s. Fifty five-day tests of FBG sensors showed less than 5 dB reduction in FBG peak strength after over 1 × 10 20 n/cm 2 of accumulated fast neutron dose. The radiation-induced compaction of FBG sensors produced less than 5.5 nm FBG wavelength shift toward shorter wavelength. To test temporal responses of FBG sensors, a number of reactor anomaly events were artificially created to abruptly change reactor power, temperature, and neutron flux over short periods of time. The thermal sensitivity and temporal responses of FBGs were determined at different accumulated doses of neutron flux. Results presented in this paper reveal that temperature-stable Type-II FBGs fabricated in radiation-hardened fibers can survive harsh in-pile conditions. Despite large parameter drift induced by strong nuclear radiation, further engineering and innovation on both optical fibers and fiber devices could lead to useful fiber sensors for various in-pile measurements to improve safety and efficiency of existing and next generation nuclear reactors.

  7. Geology and hydrology of the Elk River, Minnesota, nuclear-reactor site

    USGS Publications Warehouse

    Norvitch, Ralph F.; Schneider, Robert; Godfrey, Richard G.

    1963-01-01

    The Elk River, Minn., nuclear-reactor site is on the east bluff of the Mississippi River about 35 miles northwest of Minneapolis and St. Paul. The area is underlain by about 70 to 180 feet of glacial drift, including at the top as much as 120 feet of outwash deposits (valley train) of the glacial Mississippi River. The underlying Cambrian bedrock consists of marine sedimentary formations including artesian sandstone aquifers. A hypothetically spilled liquid at the reactor site could follow one or both of two courses, thus: (1) It could flow over the land surface and through an artificial drainage system to the river in a matter of minutes; (2) part or nearly all of it could seep downward to the water table and then move laterally to the river. The time required might range from a few weeks to a year, or perhaps more. The St. Paul and Minneapolis water-supply intakes, 21 and 25 miles downstream, respectively, are the most critical points to be considered in the event of an accidental spill. Based on streamflow and velocity data for the Mississippi River near Anoka, the time required for the maximum concentration of a contaminant to travel from the reactor site to the St. Paul intake was computed to be about 8 hours, at the median annual maximum daily discharge. For this discharge, the maximum concentration at the intake would be about 0.0026 microcurie per cubic foot for the release of 1 curie of activity into the river near the reactor site.

  8. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow.

    PubMed

    Al-Rasheed, Radwan; Cardin, David J

    2003-06-01

    We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO(2) (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 gl(-1); while the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure oxygen, an optimal flow rate was observed at 300 ml min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 (+/-0.6) kJ mol(-1).

  9. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  10. Use of artificial intelligence in severe accident diagnosis for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zheng; Okrent, D.; Kastenberg, W.E.

    1995-12-31

    A combination approach of an expert system and neural networks is used to implement a prototype severe accident diagnostic system which would monitor the progression of the severe accident and provide necessary plant status information to assist the plant staff in accident management during the accident. The station blackout accident in a pressurized water reactor (PWR) is used as the study case. The current phase of research focus is on distinguishing different primary system failure modes and following the accident transient before and up to vessel breach.

  11. Fischer-Tropsch Slurry Reactor modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Y.; Gamwo, I.K.; Harke, F.W.

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas,more » solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.« less

  12. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  13. Physical and chemical differences between natural and artificial pools in blanket peatlands

    NASA Astrophysics Data System (ADS)

    Turner, Ed; Baird, Andy; Billett, Mike; Chapman, Pippa; Dinsmore, Kerry; Holden, Joseph

    2014-05-01

    Natural pools are common features of many northern peatlands. Numerous artificial pools are being created behind dams installed during drain-blocking, a common peatland restoration technique, significantly increasing the area of open water. Natural pools are known to be major sources of GHGs (e.g. Hamilton et al. 1994), but the reasons they are such 'hotspots' is poorly understood. We hypothesize that pools act as 'biochemical reactors' of particulate and dissolved organic carbon (POC and DOC) transported from surrounding peat that is processed into a range of products including CH4 and CO2. Therefore, understanding the processes operating in both natural and artificial pool systems is fundamental to elucidating this hypothesis. Water levels and temperature have been continuously monitored at six natural and six artificial pools within the 'Flow Country' blanket peatland in northern Scotland since May 2013. Bi-weekly sampling of waters from pools, peat matrix through-flow (via piezometers) and surface flow has been conducted for analysis of DOC, POC, DIC, CH4diss and CO2diss, together with GHG flux measurements from pool surfaces and adjacent peat. We show that, to date, pool water levels rapidly respond to rainfall, although artificial pools appear to respond with greater magnitude. For example, over the course of same rainfall event (20-23 June 2013), natural and artificial pool levels increased between 5.3 and 9.8 cm, and 12.5 and 22.6 cm respectively. Temperature measured at c. 5 cm from the base of each pool shows distinct diurnal fluctuations, which are of greater magnitude in all but one of the natural pools compared to the artificial pools: over the same period (20-23 July 2013), the maximum diurnal variation at the artificial pool site was 5.1 °C compared to 9.2 °C within the natural pools. Vegetation cover is generally higher in artificial pools and may have a moderating effect on variations in pool temperature. Results of pool-water DOC analysis from regular sampling at the study site and a wider regional survey indicate DOC concentrations are consistently higher in artificial pools. The implications of these preliminary results in relation to the carbon cycle and GHGs of blanket peatlands are briefly discussed. Hamilton, J. D., Kelly, C. A., Rudd, J. W. M., Hesslein, R. H. and Roulet, N. T. (1994) Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research 99, 1495-1510.

  14. The effect of fast neutron irradiation on the superconducting properties of REBCO coated conductors with and without artificial pinning centers

    NASA Astrophysics Data System (ADS)

    Fischer, D. X.; Prokopec, R.; Emhofer, J.; Eisterer, M.

    2018-04-01

    Superconductors are essential components of future fusion power plants. The magnet coils responsible for producing the field required for confining the fusion plasma are exposed to considerable neutron radiation. This makes irradiation studies necessary for understanding the radiation response of the superconductor. High temperature superconductors are promising candidates as magnet coil materials. YBCO and GdBCO tapes of several manufacturers were irradiated to fast neutron fluences of up to 3.9 × 1022 m-2 in the research reactor at the Atominstitut. Low energy neutrons contribute to the fission reactor spectrum but not to the expected spectrum at the fusion magnets. Low energy neutrons have to be shielded in irradiation experiments to avoid their substantial effect on the superconducting properties of tapes containing gadolinium. The critical current (I c) of the tapes in this study was examined at fields of up to 15 T and down to a temperature of 30 K. I c first increases upon irradiation and reaches a maximum at a certain fluence, which depends highly on temperature, being highest at low temperature. I c declines at high fluences and eventually degrades with respect to its initial value. Tapes with artificial pinning centers (APCs) degrade at lower fluences than tapes without them. The n-values decrease in all types of tapes after irradiation even when the critical currents are increased. The field dependence of the volume pinning force differs in pristine tapes with and without APCs but shows the same behavior after irradiation.

  15. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate.

    PubMed

    Shi, Yue; Zhao, Xiu-Tao; Cao, Peng; Hu, Yinyin; Zhang, Liang; Jia, Yan; Lu, Zeqi

    2009-09-01

    In order to treat the kitchen wastes and produce hydrogen, anaerobic fermentation technology was used in this experiment. The results showed that the fermentation type changed from mixed acid fermentation to ethanol fermentation in a continuous stirred tank reactor (CSTR) 22 days after start-up. The maximum efficiency of hydrogen bio-production in the CSTR was 4.77 LH(2)/(L reactor d) under the following conditions: organic loading rate (OLR) of 32-50 kg COD/(m(3) d), oxidation reduction potential (ORP) of -450 to -400 mV, influent pH value of 5.0-6.0, effluent pH value of 4.0-4.5, influent alkalinity of 300-600 mg/l, temperature of 35 +/- 1 degrees C and hydraulic retention time (HRT) of 7 h. An artificial neural network (ANN) model was established, and each parameter influencing the performance of the reactor was compared using the method of partitioning connection weights (PCW). The results showed that OLR, pH, ORP and alkalinity could influence the fermentation characteristics and hydrogen yield of the anaerobic activated sludge; with an influence hierarchy: OLR > pH values > ORP > alkalinity. An economic analysis showed that the cost of producing hydrogen in this experiment was less than the cost of electrolysis of water.

  16. Mesenchymal stem cell therapy for cutaneous radiation syndrome.

    PubMed

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-06-01

    Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.

  17. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    This documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix cermet fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.

  18. Atmospheric emission of 137Cs82 from Beloyarsk nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kolotkov, G. A.

    2018-01-01

    Citing Beloyarsk nuclear power plant (Russia) as an example, the problem of remote detection of radioactivity in the atmospheric pollution is examined. The comparative analysis of injected radionuclides into the atmosphere from the nuclear power plant with advanced fast neutron reactor is carried out. The main radionuclides throw out into the atmosphere from the nuclear power plant are beta-radionuclides. The secondary and tertiary spectra of beta-electrons decay for artificial radionuclide 137Cs82 is calculated, using Spencer-Fano’s equation. The averaged parameters of initial beta - electrons generated by 137Cs82 decay in the atmosphere is calculated.

  19. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, withmore » the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.« less

  20. Strategy to identify the causes and to solve a sludge granulation problem in methanogenic reactors: application to a full-scale plant treating cheese wastewater.

    PubMed

    Macarie, Hervé; Esquivel, Maricela; Laguna, Acela; Baron, Olivier; El Mamouni, Rachid; Guiot, Serge R; Monroy, Oscar

    2017-08-26

    Granulation of biomass is at the basis of the operation of the most successful anaerobic systems (UASB, EGSB and IC reactors) applied worldwide for wastewater treatment. Despite of decades of studies of the biomass granulation process, it is still not fully understood and controlled. "Degranulation/lack of granulation" is a problem that occurs sometimes in anaerobic systems resulting often in heavy loss of biomass and poor treatment efficiencies or even complete reactor failure. Such a problem occurred in Mexico in two full-scale UASB reactors treating cheese wastewater. A close follow-up of the plant was performed to try to identify the factors responsible for the phenomenon. Basically, the list of possible causes to a granulation problem that were investigated can be classified amongst nutritional, i.e. related to wastewater composition (e.g. deficiency or excess of macronutrients or micronutrients, too high COD proportion due to proteins or volatile fatty acids, high ammonium, sulphate or fat concentrations), operational (excessive loading rate, sub- or over-optimal water upflow velocity) and structural (poor hydraulic design of the plant). Despite of an intensive search, the causes of the granulation problems could not be identified. The present case remains however an example of the strategy that must be followed to identify these causes and could be used as a guide for plant operators or consultants who are confronted with a similar situation independently of the type of wastewater. According to a large literature based on successful experiments at lab scale, an attempt to artificially granulate the industrial reactor biomass through the dosage of a cationic polymer was also tested but equally failed. Instead of promoting granulation, the dosage caused a heavy sludge flotation. This shows that the scaling of such a procedure from lab to real scale cannot be advised right away unless its operability at such a scale can be demonstrated.

  1. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    PubMed

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.

  2. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    PubMed Central

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0–100 MPa) and temperature (0–70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate. PMID:24348470

  3. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network.

    PubMed

    Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi

    2017-03-01

    Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of slow positron beam lines and applications

    NASA Astrophysics Data System (ADS)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  5. Development and evaluation of a technique for in vivo monitoring of 60Co in human liver

    NASA Astrophysics Data System (ADS)

    Gomes, GH; Silva, MC; Mello, JQ; Dantas, ALA; Dantas, BM

    2018-03-01

    60Co is an artificial radioactive metal produced by activation of iron with neutrons. It decays by beta particles and gamma radiation and represents a risk of internal exposure of workers involved in the maintenance of nuclear power reactors. Intakes can be quantified through in vivo monitoring. This work describes the development of a technique for the quantification of 60Co in human liver. The sensitivity of the method is evaluated based on the minimum detectable effective doses. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intakes.

  6. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering.

  7. Composting in small laboratory pilots: performance and reproducibility.

    PubMed

    Lashermes, G; Barriuso, E; Le Villio-Poitrenaud, M; Houot, S

    2012-02-01

    Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creating artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O(2) consumption and CO(2) emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Colombia’s Experience Developing Its Capacity - To the Brink and Back

    DTIC Science & Technology

    2012-05-01

    millones Movilidad 2.074.324 Inteligencia/ comunicaciones 539.587 Pie de fuerza (Incluye activación y sostenimiento 4 años) Total 37.849 2.095.216...integral y otros programas sectoriales 145.262 Subtotal 6.041.350 MANTENIMIENTO DE LAS CAPACIDADES ESTRATÉGICAS MÍNIMAS 1.437.653 Total 7.479.003 Asignado...Feb 1007 FLb 2008 Fab 2005’ Fc!b 20:Ul F1b :10] 1 FLb 2m2 I ro d,t; rf.IIODNAL I FU Eill:.S MR.ITAR.ES - ? f ... - s·JTu.A.cl6N._AcTuAL -oe-- LA

  9. A medical prescription for a mind

    NASA Astrophysics Data System (ADS)

    Simões da Fonseca, J.

    1999-03-01

    The author who is an expert in clinical psychiatry deals with the problem of modeling human Mind the way physicians implicitly use when their profession renders necessary to intervene to help or even cure patients. If physicists, mathematicians or cognitive science specialists and engineers may propose artificial designs for a mind, psychiatrists and psychologists have developed reliable diagnostic systems for the classification of normal or else psychopathological states. Usually in Psychiatry it is not made any use of an algorithmic approach to describe and characterize psychological processes during cognitive, perceptual, emotional, motivational processes or else anticipatory processes, distinct types of memory, learning processes, etc. Differently from what is mentioned in Neuropsychological literature the author and his group were able to find a significant and consistent relationship between the level of ostensive expression of symptoms and competence in interpretation of information carried by verbal communication during the simulation of social interactions by restrict groups of experimenters. Furthermore it is shown how dendro-dendritic models of neural processing are adequate to represent symbolic processes performed by local operators in the Cortex, as well as the usefulness of models of chemical reactors either batch reactors or else flow plug reactors to represent virtual neural networks capable of clarifying some aspects of cognition and of the structure of the Self. Finally many episodes of the life of the late Warren Sturgis McCulloch are recalled as attribute of gratitude of the author who was his before the last student.

  10. Immobilization of Iodate and Iodide using Iron Oxides through Sorption and Co-precipitation at Hanford Site

    NASA Astrophysics Data System (ADS)

    Wang, G.; Qafoku, N. P.; Truex, M. J.; Strickland, C. E.; Freedman, V. L.

    2017-12-01

    Isotopes of iodine were generated during plutonium production at the U.S. Department of Energy (DOE) Hanford Site. The long half-life 129I generated during reactor operations has been released into the subsurface, resulting in several large plumes at the Hanford subsurface. We studied the interaction of iodate (IO3-) and iodide (I-) with Fe oxides. A series of batch experiments were conducted to investigate adsorption and co-precipitation of iodine species in the presence of a variety of Fe oxides, such as ferrihydrite, goethite, hematite and magnetite. In the sorption experiments, each Fe oxide was added to an artificial groundwater containing either iodate or iodide, and reacted at room temperature. The sorption batch experiments for each mineral were conducted at varied initial iodate or iodide concentrations under 3 different pH conditions (pH 5, 7, and 9). In the co-precipitation batch experiments, the initial Fe-mineral-forming solutions were prepared in artificial groundwater containing iodate or iodide. Our results indicate that both sorption and co-precipitation are viable mechanisms of the attenuation of the liquid phase iodine. Species Fe oxides could serve as hosts of iodate and iodide that are present at the Hanford subsurface.

  11. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    PubMed Central

    Cheng, Kuan-Chen; Catchmark, Jeff M; Demirci, Ali

    2009-01-01

    Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS) were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC) production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L) that was 2.5-fold greater than the control (2.82 g/L). The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93%) and similar crystal size (5.2 nm) to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to the control BC. The results clearly demonstrated that implementation of PCS within agitated fermentation enhanced BC production and improved its mechanical properties and thermal stability. PMID:19630969

  12. Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.

    PubMed

    Kamesh, Reddi; Rani, K Yamuna

    2016-09-01

    A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Kinetic rate laws of Cd, Pb, and Zn vaporization during municipal solid waste incineration.

    PubMed

    Falcoz, Quentin; Gauthier, Daniel; Abanades, Stéphane; Flamant, Gilles; Patisson, Fabrice

    2009-03-15

    The kinetic rate laws of heavy metal (HM) vaporization from municipal solid waste during its incineration were studied. Realistic artificial waste (RAW) samples spiked with Pb, Zn, and Cd were injected into a fluidized bed reactor. Metal vaporization wastracked by continuous measure ofthe above metals in exhaust gases. An inverse model of the reactor was used to calculate the metal vaporization rates from the concentration vs time profiles in the outlet gas. For each metal, experiments were carried out at several temperatures in order to determine the kinetic parameters and to obtain specific rate laws as functions of temperature. Temperature has a strong influence on the HM vaporization dynamics, especially on the vaporization kinetics profile. This phenomenon was attributed to internal diffusion control of the HM release. Two types of kinetic rate laws were established based on temperature: a fourth- or fifth-order polynomial rate law (r(x) = k0e(-E(A)/RT)p(x)) for temperatures lower than 740 degrees C and a first-order polynomial (r(x) = k0e(-E(A)/ RT(q-q(f) for temperatures higher than 740 degrees C.

  14. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater.

    PubMed

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. 2010 Elsevier B.V. All rights reserved.

  15. The New Status of Argon-37 Artificial Neutrino Source Project

    NASA Astrophysics Data System (ADS)

    Abdurashitov, J. N.; Gavrin, V. N.; Mirmov, I. N.; Veretenkin, E. P.; Yants, V. E.; Oshkanov, N. N.; Karpenko, A. I.; Maltsev, V. V.; Barsanov, V. I.; Trubin, K. S.; Zlokazov, S. B.; Khomyakov, Yu. S.; Poplavsky, V. M.; Saraeva, T. O.; Vasiliev, B. A.; Mishin, O. V.; Bowles, T. J.; Teasdale, W. A.; Lande, K.; Wildenhain, P.; Cleveland, B. T.; Elliott, S. R.; Haxton, W.; Wilkerson, J. F.; Suzuki, A.; Suzuki, Y.; Nakahata, M.

    2002-07-01

    Solution of the solar neutrino problem is significantly depends on the next generation of detectors that can measure the neutrino radiation from the Sun in intermediate energies. An intense (˜ 1 MCi) 37Ar source would be an ideal tool for the calibration of new solar neutrino detectors. The technology of the production of such a source is based on the irradiation of a large mass of a Ca-containing target in a high-flux fast-neutron reactor. Produced 37Ar extracted from this target, will be purified and encapsulated in a source holder. A joint scientific collaboration of Russian, US and Japanese institutions are researching and developing the initial steps of this work and are funded by ISTC and CRDF.

  16. Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass.

    PubMed

    Yue, Zheng-Bo; Li, Wen-Wei; Yu, Han-Qing

    2013-01-01

    Rumen in the mammalian animals is a natural cellulose-degrading system and the microorganisms inside have been found to be able to effectively digest lignocellulosic biomass. Furthermore, methane or volatile fatty acids, which could be further converted to other biofuels, are the two major products in such a system. This paper offers an overview of recent development in the application of rumen microorganisms for lignocellulosic biomass conversion. Application of recent molecular tools in the analysis of rumen microbial community, progress in the development of artificial rumen reactors, the latest research results about characterizing rumen-dominated anaerobic digestion process and energy products are summarized. Also, the potential application of such a rumen-dominated process is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium.

    PubMed

    Feng, Yujie; Li, Chao; Zhang, Dawei

    2011-01-01

    Chlorella vulgaris was used to study algal lipid production with wastewater treatment. Artificial wastewater was used to cultivate C. vulgaris in a column aeration photobioreactor (CAP) under batch and semi-continuous cultivation with various daily culture replacements (0.5l-1.5l per 2l reactor). The cell density was decreased from 0.89 g/l with the daily replacement of 0.5l to 0.28 g/l with 1.5l replacement. However, C. vulgaris culture achieved the highest lipid content (42%, average value of the phase) and the lipid productivity (147 mg/ld(-1)) with daily replacement of 1.0 l. And then the nutrient removal efficiency were 86% (COD), 97% (NH(4)(+)) and 96% (TP), respectively. Analyses of energy efficiency showed that the net energy ratio (NER) for lipid production with daily replacement of 1.0 l (1.25) was higher than the other volume replacement protocols. And cost analyses showed that the algal biomass can be competitive with petroleum at US$ 63.97 per barrel with the potential credit for wastewater treatment. According to the above results, it is concluded that the present research will lead to an economical technology of algal lipid production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Radioactive contamination of the environment and its effects on livestock and food of animal origin (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreuzer, W.

    External and internal natural radiation exposure seems to be relatively and absolutely higher in livestock, mainly in herbivores, than in man. The artificial internal and external radiation exposure hardly exists in animals, even not in the vicinity of nuclear reactors. The external radiation exposure resulting from the radionuclides of the fallout of nuclear weapon experiments was negligibly small in Central Europe. The internal radiation exposure after intake of radionuclides with food of animal origin and their accumulation in the organism of the consumer is important. Milk and dairy products may contain considerable amounts of/sup 131/I, /sup 137/Cs, and /sup 90/Sr.more » In meat, /sup 137/Cs-contaminations were found sporadically that were higher than the permissible maximal dose. In total, the artificial radiation exposure did not yet reach the dimensions of the natural radiation exposure, neither in livestock nor in men, even not in reindeers or their breeders in Lapland, where the extreme /sup 137/Cs-contamination of the lichen causes high /sup 137/Csactivity, both in reindeers and in reindeer breeders who live almost exclusively on meat, blood, and milk of the animals. The radioactive contamination of livestock and food of animal origin may cause concern in case of a crisis or emengency. (GE)« less

  19. Functional Nanopores: A Solid-state Concept for Artificial Reaction Compartments and Molecular Factories.

    PubMed

    Puebla-Hellmann, Gabriel; Mayor, Marcel; Lörtscher, Emanuel

    2016-01-01

    On the road towards the long-term goal of the NCCR Molecular Systems Engineering to create artificial molecular factories, we aim at introducing a compartmentalization strategy based on solid-state silicon technology targeting zeptoliter reaction volumes and simultaneous electrical contact to ensembles of well-oriented molecules. This approach allows the probing of molecular building blocks under a controlled environment prior to their use in a complex molecular factory. Furthermore, these ultra-sensitive electrical conductance measurements allow molecular responses to a variety of external triggers to be used as sensing and feedback mechanisms. So far, we demonstrate the proof-of-concept by electrically contacting self-assembled mono-layers of alkane-dithiols as an established test system. Here, the molecular films are laterally constrained by a circular dielectric confinement, forming a so-called 'nanopore'. Device yields above 85% are consistently achieved down to sub-50 nm nanopore diameters. This generic platform will be extended to create distributed, cascaded reactors with individually addressable reaction sites, including interconnecting micro-fluidic channels for electrochemical communication among nanopores and sensing sites for reaction control and feedback. In this scientific outlook, we will sketch how such a solid-state nanopore concept can be used to study various aspects of molecular compounds tailored for operation in a molecular factory.

  20. In Vitro Evaluation of Glycoengineered RSV-F in the Human Artificial Lymph Node Reactor.

    PubMed

    Radke, Lars; Sandig, Grit; Lubitz, Annika; Schließer, Ulrike; von Horsten, Hans Henning; Blanchard, Veronique; Keil, Karolin; Sandig, Volker; Giese, Christoph; Hummel, Michael; Hinderlich, Stephan; Frohme, Marcus

    2017-08-15

    Subunit vaccines often require adjuvants to elicit sustained immune activity. Here, a method is described to evaluate the efficacy of single vaccine candidates in the preclinical stage based on cytokine and gene expression analysis. As a model, the recombinant human respiratory syncytial virus (RSV) fusion protein (RSV-F) was produced in CHO cells. For comparison, wild-type and glycoengineered, afucosylated RSV-F were established. Both glycoprotein vaccines were tested in a commercial Human Artificial Lymph Node in vitro model (HuALN ® ). The analysis of six key cytokines in cell culture supernatants showed well-balanced immune responses for the afucosylated RSV-F, while immune response of wild-type RSV-F was more Th1 accentuated. In particular, stronger and specific secretion of interleukin-4 after each round of re-stimulation underlined higher potency and efficacy of the afucosylated vaccine candidate. Comprehensive gene expression analysis by nCounter gene expression assay confirmed the stronger onset of the immunologic reaction in stimulation experiments with the afucosylated vaccine in comparison to wild-type RSV-F and particularly revealed prominent activation of Th17 related genes, innate immunity, and comprehensive activation of humoral immunity. We, therefore, show that our method is suited to distinguish the potency of two vaccine candidates with minor structural differences.

  1. Precipitation of Phosphate Minerals by Microorganisms Isolated from a Fixed-Biofilm Reactor Used for the Treatment of Domestic Wastewater

    PubMed Central

    Rivadeneyra, Almudena; Gonzalez-Martinez, Alejandro; Gonzalez-Lopez, Jesus; Martin-Ramos, Daniel; Martinez-Toledo, Maria Victoria; Rivadeneyra, Maria Angustias

    2014-01-01

    The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%. Twelve major colonies with phosphate precipitation capacity were the dominant heterotrophic platable bacteria growing aerobically in artificial media. According to their taxonomic affiliations (based on partial sequencing of the 16S rRNA), the 12 strains belonged to the following genera of Gram-negative bacteria: Rhodobacter, Pseudoxanthobacter, Escherichia, Alcaligenes, Roseobacter, Ochrobactrum, Agromyce, Sphingomonas and Paracoccus. The phylogenetic tree shows that most of the identified populations were evolutionarily related to the Alphaproteobacteria (91.66% of sequences). The minerals formed were studied by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray microanalysis (EDX). All of these strains formed phosphate crystals and precipitated struvite (MgNH4PO4·6H2O), bobierrite [Mg3(PO4)2·8H2O] and baricite [(MgFe)3(PO4)2·8H2O]. The results obtained in this study show that struvite and spherulite crystals did not show any cell marks. Moreover, phosphate precipitation was observed in the bacterial mass but also near the colonies. Our results suggest that the microbial population contributed to phosphate precipitation by changing the media as a consequence of their metabolic activity. Moreover, the results of this research suggest that bacteria play an active role in the mineral precipitation of soluble phosphate from urban wastewater in submerged fixed-film bioreactors. PMID:24699031

  2. Evaluation of available analytical techniques for monitoring the quality of space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    To assure the quality of potable water (PW) on the Space Station (SS) a number of chemical and physical tests must be conducted routinely. After reviewing the requirements for potable water, both direct and indirect analytical methods are evaluated that could make the required tests and improvements compatible with the Space Station operation. A variety of suggestions are made to improve the analytical techniques for SS operation. The most important recommendations are: (1) the silver/silver chloride electrode (SB) method of removing I sub 2/I (-) biocide from the water, since it may interfere with analytical procedures for PW and also its end uses; (2) the orbital reactor (OR) method of carrying out chemistry and electrochemistry in microgravity by using a disk shaped reactor on an orbital table to impart artificial G force to the contents, allowing solution mixing and separation of gases and liquids; and (3) a simple ultra low volume highly sensitive electrochemical/conductivity detector for use with a capillary zone electrophoresis apparatus. It is also recommended, since several different conductivity and resistance measurements are made during the analysis of PW, that the bipolar pulse measuring circuit be used in all these applications for maximum compatibility and redundancy of equipment.

  3. Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend

    PubMed Central

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L−1 sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  4. Some Considerations on {sup 242m}Am Production in Thermal Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesana, Alessandra; Mongelli, Sara Tania; Terrani, Mario

    2004-10-15

    Recently, it has been suggested to consider {sup 242m}Am as a potential nuclear fuel. This artificial nuclide can be produced through {sup 241}Am neutron capture carried on in a neutron field typical of a thermal reactor. In order to suppress the thermal neutron flux, which will cause {sup 242m}Am depletion mainly through fission, proper neutron filters should be adopted. In a very intense neutron field, the {sup 242m}Am enrichment depends mainly on the energy distribution of the neutrons, the sample thickness, and the cutoff energy of the neutron filter.An investigation on different geometries of the sample to be irradiated usingmore » Cd, B, Sm, and Gd as neutron filters has been carried out by means of Monte Carlo simulation. The most favorable results have been obtained irradiating thin {sup 241}Am samples (11 {mu}g/cm{sup 2}) covered with a Gd (0.2-mm-thick) or Sm (1-mm-thick) filter. In these cases the theoretical {sup 242m}Am enrichment can reach 20%.The preparation of significant quantities of this unconventional nuclear fuel implies isotopic separation techniques operating in high radioactive environments and hopefully characterized by very high recovery factors, which are in no way trivial problems.« less

  5. Fusion powered human transport to Mars (UWFR94)

    NASA Technical Reports Server (NTRS)

    Cappellari, John; Grota, Susan; Hagedorn, David; Hirai, Yoshi; Remmel, Mark; Schmidt, Deanna; Sveum, Matt; Wandow, Helena

    1994-01-01

    In the future, two important technological dreams will have become reality: fusion will be a viable power source, and human settlement on Mars will be feasible, desirable, and even necessary. Merging these two concepts is especially attractive for the aerospace engineer because of the high specific power that will be possible with fusion (on the order 10 kW/kg). The UWFR94, a large, fusion-powered, human-transport ship, is designed to transport 100 passengers between earth and Mars in approximately thirty days. This relatively short transit time, which mitigates the need for artificial gravity, is made possible by a Polywell inertial electrostatic fusion reactor capable of 20 kW/kg. The mass of each reactor is 37 metric tons and the fuel used is (3)He-(3)He. The electricity generated drives the propulsion system, composed of nine ion thrusters and 780 tons of xenon propellant. The payload consists of three independent, identical cylinders housing the crew, and has a mass of approximately 400 tons. The aluminum cylinders' radius and length are 3 and 12 meters, respectively, with a thickness of 6 cm (15 cm in the solar flare safe rooms). Atmospheric reentry is avoided by constructing and repairing the UWFR94 in space, and by transferring crew and cargo to shuttle-like vehicles for transportation to the planet upon arrival.

  6. Biodegradation of PAHs in Soil: Influence of Initial PAHs Concentration

    NASA Astrophysics Data System (ADS)

    Kamil, N. A. F. M.; Talib, S. A.

    2016-07-01

    Most studies on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) evaluate the effect of initial PAHs concentration in liquid medium. There are limited studies on evaluation in solid medium such as contaminated soil. This study investigated the potential of the bacteria, Corynebacterium urealyticum isolated from municipal sludge in degrading phenanthrene contaminated soil in different phenanthrene concentration. Batch experiments were conducted over 20 days in reactors containing artificially contaminated phenanthrene soil at different concentration inoculated with a bacterial culture. This study established the optimum condition for phenanthrene degradation by the bacteria under nonindigenous condition at 500 mg/kg of initial phenanthrene concentration. High initial concentration required longer duration for biodegradation process compared to low initial concentration. The bacteria can survive for three days for all initial phenanthrene concentrations.

  7. Composting in small laboratory pilots: Performance and reproducibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We design an innovative small-scale composting device including six 4-l reactors. Black-Right-Pointing-Pointer We investigate the performance and reproducibility of composting on a small scale. Black-Right-Pointing-Pointer Thermophilic conditions are established by self-heating in all replicates. Black-Right-Pointing-Pointer Biochemical transformations, organic matter losses and stabilisation are realistic. Black-Right-Pointing-Pointer The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creatingmore » artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O{sub 2} consumption and CO{sub 2} emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures.« less

  8. Stability of Cr Remediation Products Linked to Duration of Bioremediation.

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Bobb, C.; Bennett, S.; Izbicki, J. A.

    2017-12-01

    Groundwater and alluvium beneath Hinkley Valley, Mojave Desert, California contain elevated levels of anthropogenic Cr(VI). In-situ remediation (ISR) using ethanol as an electron donor is employed at the site to reduce soluble, toxic, Cr(VI) to insoluble and non-hazardous Cr(III). We conducted year-long experiments to determine the fate of isotopically-labeled 50Cr tracer within microcosms consisting of sealed batch reactors containing aquifer material and groundwater from within and near the mapped Cr(VI) plume. Ethanol was added periodically to the reactors to drive biologically mediated reduction of Cr(VI). Reduction and sorption of 50Cr tracer on the solid matrix was examined by selective extractions designed to monitor operationally-defined weakly sorbed, specifically sorbed, amorphous, and well-crystalized strong-acid extractable phases. Recovery of the 50Cr tracer by ICP-MS analysis of each extract revealed the degree of mineralization of the added 50Cr. Initially, the tracer was distributed evenly between the aqueous and weakly sorbed phases, with little present in the strongly sorbed, amorphous or crystalline phases. After several months, most 50Cr was incorporated within the amorphous fraction and by one year increasing amounts were associated with the crystalline phase. Artificial substrates also were prepared as experimental controls. Artificial substrates showed similar trends; however less 50Cr was associated with amorphous Fe in acid-washed Ottowa sand coated with 2-line ferrihydrite than in aquifer sediments. Washed sand without ferrihydrite reacted with site water sorbed very little 50Cr, and no 50Cr was found in the amorphous fraction; however some was converted to the crystalline form with time. This suggests that groundwater-borne organisms alone were capable of reducing Cr(VI) to Cr(III) with ethanol in the absence of Fe(II). A planned metagenomics study of materials from these experiments is expected to highlight changes in microbial community composition and diversity as ISR progresses. Our experimental results bode well for the permanency of Cr sequestration by ISR; that is, Cr solubilization by re-oxidation may be less likely if reduced Cr is bound in more recalcitrant phases via extended reduction.

  9. Grey water treatment at a sports centre for reuse in irrigation: a case study.

    PubMed

    Gabarró, J; Batchelli, L; Balaguer, M D; Puig, S; Colprim, J

    2013-01-01

    Grey water has long been considered a promising option for dealing with water scarcity and reuse. However, factors such as lack of macronutrients and low carbon content make its treatment challenging. The aim of this paper was to investigate the applicability of sequencing batch reactor (SBR) technology to on-site grey water treatment at a sports centre for reuse in irrigation. The results demonstrated that the regenerated water complied with microbiological parameters concerning restriction of solids and organic matter removal. Denitrification was not fully accomplished, but ammonium was totally oxidised and low concentrations of nitrates were achieved. Effluent with good appearance and no odour was used in an experimental study to irrigate a grid system containing natural and artificial grass sections. The conclusion is that SBR technology offers a promising treatment for grey water.

  10. Quantitative measurement of the growth rate of the PHA-producing photosynthetic bacterium Rhodocyclus gelatinous CBS-2[PolyHydroxyAlkanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfrum, E.J.; Weaver, P.F.

    Researchers at the National Renewable Energy Laboratory (NREL) have been investigating the use of model photosynthetic microorganisms that use sunlight and two-carbon organic substrates (e.g., ethanol, acetate) to produce biodegradable polyhydroxyalkanoate (PHA) copolymers as carbon storage compounds. Use of these biological PHAs in single-use plastics applications, followed by their post-consumer composting or anaerobic digestion, could impact petroleum consumption as well as the overloading of landfills. The large-scale production of PHA polymers by photosynthetic bacteria will require large-scale reactor systems utilizing either sunlight or artificial illumination. The first step in the scale-up process is to quantify the microbial growth rates andmore » the PHA production rates as a function of reaction conditions such as nutrient concentration, temperature, and light quality and intensity.« less

  11. Optical analysis of enamel and dentin caries in relation to mineral density using swept-source optical coherence tomography

    PubMed Central

    Ueno, Tomoka; Shimada, Yasushi; Matin, Khairul; Zhou, Yuan; Wada, Ikumi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji

    2016-01-01

    Abstract. The aim of this study was to evaluate the signal intensity and signal attenuation of swept source optical coherence tomography (SS-OCT) for dental caries in relation to the variation of mineral density. SS-OCT observation was performed on the enamel and dentin artificial demineralization and on natural caries. The artificial caries model on enamel and dentin surfaces was created using Streptococcus mutans biofilms incubated in an oral biofilm reactor. The lesions were centrally cross sectioned and SS-OCT scans were obtained in two directions to construct a three-dimensional data set, from the lesion surface (sagittal scan) and parallel to the lesion surface (horizontal scan). The integrated signal up to 200  μm in depth (IS200) and the attenuation coefficient (μ) of the enamel and dentin lesions were calculated from the SS-OCT signal in horizontal scans at five locations of lesion depth. The values were compared with the mineral density obtained from transverse microradiography. Both enamel and dentin demineralization showed significantly higher IS200 and μ than the sound tooth substrate from the sagittal scan. Enamel demineralization showed significantly higher IS200 than sound enamel, even with low levels of demineralization. In demineralized dentin, the μ from the horizontal scan consistently trended downward compared to the sound dentin. PMID:27704033

  12. Emergent Chemical Behavior in Variable-Volume Protocells

    PubMed Central

    Shirt-Ediss, Ben; Solé, Ricard V.; Ruiz-Mirazo, Kepa

    2015-01-01

    Artificial protocellular compartments and lipid vesicles have been used as model systems to understand the origins and requirements for early cells, as well as to design encapsulated reactors for biotechnology. One prominent feature of vesicles is the semi-permeable nature of their membranes, able to support passive diffusion of individual solute species into/out of the compartment, in addition to an osmotic water flow in the opposite direction to the net solute concentration gradient. Crucially, this water flow affects the internal aqueous volume of the vesicle in response to osmotic imbalances, in particular those created by ongoing reactions within the system. In this theoretical study, we pay attention to this often overlooked aspect and show, via the use of a simple semi-spatial vesicle reactor model, that a changing solvent volume introduces interesting non-linearities into an encapsulated chemistry. Focusing on bistability, we demonstrate how a changing volume compartment can degenerate existing bistable reactions, but also promote emergent bistability from very simple reactions, which are not bistable in bulk conditions. One particularly remarkable effect is that two or more chemically-independent reactions, with mutually exclusive reaction kinetics, are able to couple their dynamics through the variation of solvent volume inside the vesicle. Our results suggest that other chemical innovations should be expected when more realistic and active properties of protocellular compartments are taken into account. PMID:25590570

  13. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Plasmolysis for efficient CO2 -to-fuel conversion

    NASA Astrophysics Data System (ADS)

    van Rooij, Gerard

    2015-09-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrational modes. It is therefore a promising option for creating artificial solar fuels from CO2as raw material using (intermittently available) sustainable energy surpluses, which can easily be deployed within the present infrastructure for conventional fossil fuels. In this presentation, a common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures and conversion degrees, respectively. The results are interpreted on basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favourable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry still to dominate the initial experiments. Novel reactor approaches are proposed to tailor the plasma dynamics to achieve the non-equilibrium in which vibrational excitation is dominant. In collaboration with Dirk van den Bekerom, Niek den Harder, Teofil Minea, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands; Gield Berden, Institute for Molecules and Materials, FELIX facility, Radboud University, Nijmegen, Netherlands; Richard Engeln, Applied Physics, Plasma en Materials Processing, Eindhoven University of Technology; and Waldo Bongers, Martijn Graswinckel, Erwin Zoethout, Richard van de Sanden, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands.

  15. Development and Application of a Polymicrobial in vitro Wound Biofilm Model

    PubMed Central

    Woods, Jeremy; Boegli, Laura; Kirker, Kelly R.; Agostinho, Alessandra M.; Durch, Amanda M.; Pulcini, Elinor deLancey; Stewart, Philip S.; James, Garth A.

    2012-01-01

    Aims The goal of this investigation was to develop an in vitro, polymicrobial, wound biofilm capable of supporting the growth of bacteria with variable oxygen requirements. Methods and Results The strict anaerobe Clostridium perfringens was isolated by cultivating wound homogenates using the drip-flow reactor, and a three-species biofilm model was established using methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and C. perfringens in the colony-drip-flow reactor model. Plate counts revealed that MRSA, P. aeruginosa, and C. perfringens grew to 7.39±0.45, 10.22±0.22, and 7.13±0.77 log CFU per membrane, respectively. The three-species model was employed to evaluate the efficacy of two antimicrobial dressings, Curity™ AMD and Acticoat™, compared to sterile gauze controls. Microbial growth on Curity™ AMD and gauze were not significantly different, for any species, whereas Acticoat™ was found to significantly reduce growth for all three species. Conclusions Using the Colony-DFR, a three-species biofilm was successfully grown, and the biofilms displayed a unique structure consisting of distinct layers that appeared to be inhabited exclusively or predominantly by a single species. Significance and Impact of Study The primary accomplishment of this study was the isolation and growth of an obligate anaerobe in an in vitro model without establishing an artificially anaerobic environment. PMID:22353049

  16. Influence of lime on struvite formation and nitrogen conservation during food waste composting.

    PubMed

    Wang, Xuan; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    This study aimed at investigating the feasibility of supplementing lime with struvite salts to reduce ammonia emission and salinity consequently to accelerate the compost maturity. Composting was performed in 20-L bench-scale reactors for 35days using artificial food waste mixed with sawdust at 1.2:1 (w/w dry basis), and Mg and P salts (MgO and K2HPO4, respectively). Nitrogen loss was significantly reduced from 44.3% to 27.4% during composting through struvite formation even with the addition of lime. Lime addition significantly reduced the salinity to less than 4mS/cm with a positive effect on improving compost maturity. Thus addition of both lime and struvite salts synergistically provide advantages to buffer the pH, reduce ammonia emission and salinity, and accelerate food waste composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dead time corrections using the backward extrapolation method

    NASA Astrophysics Data System (ADS)

    Gilad, E.; Dubi, C.; Geslot, B.; Blaise, P.; Kolin, A.

    2017-05-01

    Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly complicated task due to the different nature of the dead time in the different components of the monitoring system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study, a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data, back to zero. The method has been implemented on actual neutron noise measurements carried out in the MINERVE zero power reactor, demonstrating high accuracy (of 1-2%) in restoring the corrected count rate.

  18. Energy Security: From Deal Killers to Game Changers

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2010-03-01

    Five ``deal killers'' for achieving energy security will be addressed: 1) Global warming and CO2 emissions from fossil fuel combustion, 2) Intermittent energy sources (wind, solar) and the presence and stability of the grid, 3) Penetration of plant defenses to produce transportation fuels from biomass, 4) Mimicking nature: artificial photosynthesis for solar energy-to-fuels, and 5) Spent fuel from nuclear power reactors. Basic research can lead to ``game changers'' for these five fields: 1) Carbon capture and storage through enhanced oil and gas recovery, 2) Electrical energy storage for base-load electricity through batteries and supercapacitors, 3) Genetic modification of the plant cell wall, and catalytic methods for conversion of plant sugars to fuels, 4) Separation of solar-induced electrons from holes, and catalysis to produce fuels, and 5) Closing the nuclear fuel cycle. The present state for each of these game changers will be summarized, and future research opportunities discussed.

  19. Novel Materials for Prosthetic Liners

    NASA Technical Reports Server (NTRS)

    Ragolta, Carolina I.; Morford, Megan

    2011-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury that reduce quality of life. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications. Three tests were performed on several types of aerogel to assess the properties of each material. Moisture vapor permeability was tested by incubating four aerogel varieties with an artificial sweat solution at 37.0 C and less than 20% relative humidity for 24 hours. Two aerogel varieties were eliminated from the study due to difficulties in handling the material, and further testing proceeded with Pyrogel in 2.0 and 6.0 mm thicknesses. Force distribution was tested by compressing samples under a load of 4448 N at a rate of 2.5 mm/min. Biofilm formation was tested in a high-shear CDC Biofilm Reactor. Results showed that 2.0 mm Pyrogel blanket allowed 55.7 plus or minus 28.7% of an artificial sweat solution to transpire, and 35.5 plus or minus 27.8% transpired through 6.0 mm Pyrogel blanket. Samples also outperformed the load-bearing capabilities of existing liner materials. No statistically significant difference was found between the two Pyrogel thicknesses for either moisture vapor permeability or force distribution. In addition, biofilm formation results showed no change between the two Pyrogel thicknesses. The breathability and load bearing properties of aerogel make it a suitable material for application to prosthetic liners.

  20. Diversity of microbes and potential exoelectrogenic bacteria on anode surface in microbial fuel cells.

    PubMed

    Sun, Yujiao; Zuo, Jiane; Cui, Longtao; Deng, Qian; Dang, Yan

    2010-02-01

    Single-chamber microbial fuel cells (MFCs), inoculated with anaerobic sludge and continuously run with two kinds of organic wastewater influents, were systemically investigated. The diversity of microbes, determined by 16S rDNA analysis, was analyzed on three anodes under different conditions. One anode was in a closed circuit in synthetic wastewater containing glucose. The other two anodes, in open or closed circuits, were fed effluent from an anaerobic reactor treating starch wastewater. The chemical oxygen demand (COD) removal efficiency was about 70%, and the exported voltages were about 450 mV. The 16S rDNA molecular clones of microbes on anode surfaces showed significant changes in Eubacterial structure under different conditions. gamma-Proteobacteria and the high G+C gram-positive groups were predominant in the synthetic wastewater, while epsilon-Proteobacteria predominated in the anaerobic reactor effluent. Known exoelectrogenic bacterial species composition also changed greatly depending on substrate. On the artificial substrate, 28% of the bacterial sequences were affiliated with Aeromonas, Pseudomonas, Geobacter, and Desulfobulbus. On the anaerobic effluent, only 6% were affiliated with Geobacter or Clostridium. Because only a few exoelectrogenic bacteria from MFCs have been directly isolated and studied, we compared the community structures of two bacterial anodes, in open and closed circuits, under the same substrate of anaerobic effluent in order to identify additional exoelectrogenic bacterial strains. Alcaligenes monasteriensis, Comamonas denitrificans, and Dechloromonas sp. were found to be potential exoelectrogenic bacteria worthy of further research.

  1. Efficient production of methane from artificial garbage waste by a cylindrical bioelectrochemical reactor containing carbon fiber textiles

    PubMed Central

    2013-01-01

    A cylindrical bioelectrochemical reactor (BER) containing carbon fiber textiles (CFT; BER + CFT) has characteristics of bioelectrochemical and packed-bed systems. In this study, utility of a cylindrical BER + CFT for degradation of a garbage slurry and recovery of biogas was investigated by applying 10% dog food slurry. The working electrode potential was electrochemically regulated at −0.8 V (vs. Ag/AgCl). Stable methane production of 9.37 L-CH4 · L−1 · day−1 and dichromate chemical oxygen demand (CODcr) removal of 62.5% were observed, even at a high organic loading rate (OLR) of 89.3 g-CODcr · L−1 · day−1. Given energy as methane (372.6 kJ · L−1 · day−1) was much higher than input electric energy to the working electrode (0.6 kJ · L−1 · day−1) at this OLR. Methanogens were highly retained in CFT by direct attachment to the cathodic working electrodes (52.3%; ratio of methanogens to prokaryotes), compared with the suspended fraction (31.2%), probably contributing to the acceleration of organic material degradation and removal of organic acids. These results provide insight into the application of cylindrical BER + CFT in efficient methane production from garbage waste including a high percentage of solid fraction. PMID:23497472

  2. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  3. Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition.

    PubMed

    Gong, H; Pishgar, R; Tay, J H

    2018-04-27

    Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R 2 ) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R 2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.

  4. Nitrous oxide and methane emission in an artificial wetland treating polluted runoff from an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Mander, Ülo; Tournebize, Julien; Soosaar, Kaido; Chaumont, Cedric; Hansen, Raili; Muhel, Mart; Teemusk, Alar; Vincent, Bernard

    2015-04-01

    An artificial wetland built in 2010 to reduce water pollution in a drained agricultural watershed showed real potential for pesticide and nitrate removal. The 1.2 ha off-shore wetland with a depth of from 0.1 to 1 m intercepts drainage water from a 450 ha watershed located near the village of Rampillon (03°03'37.3'' E, 48°32'16.7'' N, 70 km south-east of Paris, France). A sluice gate installed at the inlet makes it possible to close the wetland during the winter months (December - March), when no pesticides are applied and rainfall events are more frequent. The flow entering the wetland fluctuates from 0 to 120 L/s. The wetland is partially covered by Carex spp., Phragmites australis, Juncus conglomeratus, Typha latifolia and philamentous algae. Since 2011, an automatic water quality monitoring system measures water discharge, temperature, dissolved O2, conductivity pH, NO3- and DOC in both inlet and outlet. In May 2014, an automatic weather station and Campbell Irgason system for the measurement of CO2 and H2O fluxes were installed in the middle of the wetland. In May and November 2014 one-week high frequency measurement campaigns were conducted to study N2O and CH4 fluxes using 6 manually operated opaque floating static chambers and 12 floating automatic dynamic chambers. The latter were operated via multiplexer and had an incubation time of 5 minutes, whereas the gas flow was continuously measured using the Aerodyne TILDAS quantum cascade laser system. During the campaign, the reduction of NO3- concentration was measured in nine reactor pipes. Also, water samples were collected for N2O and N2 isotope analysis, and sediments were collected for potential N2 emission measurements. In May, the hydraulic retention time (HRT) was 30 days, and the average NO3- concentration decreased from 24 in the inflow to 0 mg/L in the outflow. Methane flux was relatively high (average 1446, variation 0.2-113990 μg CH4-C m-2 h-1), while about 2/3 was emitted via ebullition. Nitrous oxide flux was low (average 1.1, variation from -25 to 63 μg N2O-N m-2 h-1) and showed consumption during the daytime. Similarly to CH4, most of the N2O emission originated from ebullition. The potential N2 flux from sediments was high (990-1920 μg N m-2 h-1). In November, with HRT at about 3 days, the average NO3- concentration decreased from 45 to 20 mg/L. Methane flux was 2-3 times lower and N2O emission about 2 times higher than in May. This is related to the lower water temperature (20°C in May and 10°C in November) and shorter HRT in November. However, in situ pipe reactors showed a 90% NO3- removal potential in both periods. Offshore artificial wetlands can efficiently remove NO3- without significant N2O emission, although CH4 flux can be high during the first 5 years after establishment.

  5. Energy and phosphorus recovery from black water.

    PubMed

    de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N

    2011-01-01

    Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.

  6. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    NASA Astrophysics Data System (ADS)

    Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.

    2009-12-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  7. Energy Security: From Deal Killers to Game Changers

    NASA Astrophysics Data System (ADS)

    Cooke, Charlie

    2010-03-01

    Five energy security ``deal killers" are identified: 1) Global warming and CO2 emissions from fossil fuel combustion; 2) Intermittent energy sources (wind, solar) and the presence and stability of the grid; 3) Penetration of plant defenses to produce transportation fuels from biomass; 4) Mimicking nature: artificial photosynthesis for solar energy to fuels; and 5) Spent fuel from nuclear power reactors. Transformational basic research is required to successfully change the ground rules, to transform these ``deal killers" into ``game changers." T hey are: 1) Offsetting carbon capture and storage costs through enhanced oil recovery and methane generation from high temperature geothermal saline aquifers; 2) Electrical energy storage, through batteries and super-capacitors; 3) Genetic modification of plant cell walls, and catalytic methods for transforming plant sugars into fuels; 4) Separation of solar-induced electrons from holes, and catalysis to produce fuels; and 5) Closing the nuclear fuel cycle. Basic research can revolutionize our approach to carbon-free energy by enhancing nature to achieve energy security.

  8. The Flow in a Model Rotating-Wall Bioreactor.

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Neitzel, G. Paul

    1997-11-01

    Aggregates of mammalian cells can be grown on artificial polymer constructs in a reactor vessel in order to produce high-quality tissue for medical applications. The growth and differentiation of these cells is greatly affected by the fluid flow and mass transfer within the bioreactor. The surface shear stress on the constructs is an especially important quantity of interest. Here, we consider a bioreactor in the form of two concentric, independently-rotating cylinders with the axis of rotation in a horizontal plane. We shall examine the flow around a model tissue construct in the form of a disk fixed in the flow produced by the rotating walls of the bioreactor. Using CFD techniques, we shall determine the flow field and the surface shear stress distribution on the construct as a function of the wall velocities, the Reynolds number of the flow, and the construct size and position. The results will be compared to the PIV measurements of this system reported by Brown & Neitzel(1997 Meeting of the APS/DFD.).

  9. Photocatalytic surface reactions on indoor wall paint.

    PubMed

    Salthammer, T; Fuhrmann, F

    2007-09-15

    The reduction of indoor air pollutants by air cleaning systems has received considerable interest, and a number of techniques are now available. So far, the method of photocatalysis was mainly applied by use of titanium dioxide (TiO2) in flow reactors under UV light of high intensity. Nowadays, indoor wall paints are equipped with modified TiO2 to work as a catalyst under indoor daylight or artificial light. In chamber experiments carried out under indoor related conditions itwas shown thatthe method works for nitrogen dioxide with air exchange and for formaldehyde without air exchange at high concentrations. In further experiments with volatile organic compounds (VOCs), a small effect was found for terpenoids with high kOH rate constants. For other VOCs and carbon monoxide there was no degradation at all or the surface acted as a reversible sink. Secondary emissions from the reaction of paint constituents were observed on exposure to light. From the results it is concluded that recipes of photocatalytic wall paints need to be optimized for better efficiency under indoor conditions.

  10. Wetland restoration and compliance issues on the Savannah River site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wein, G.R.; McLeod, K.W.; Sharitz, R.R.

    1993-01-01

    Operation of the nuclear production reactors on the Savannah River Site has faced potential conflicts with wetland regulations on several occasions. This paper provides two examples in which regulatory compliance and restoration research have been meshed, providing both compliance and better knowledge to aid future regulatory needs. The decision to restart the L reactor required the mitigation of thermal effluents under Sec. 316 of the Clean Water Act. The National Pollutant Discharge Elimination System, permit for the selected mitigation alternative, a 405-ha once-through cooling reservoir, required the establishment of a balanced biological community (BBC) within the lake. To promote themore » development of a BBC, the reservoir was seeded with water from an existing BBC (Par Pond) and stocked with fish and had artificial reefs constructed. The US Department of Energy (DOE) also requested that the Savannah River Ecology Laboratory establish littoral/wetland vegetation along the shoreline to provide aquatic and wildlife habitat, shoreline stabilization, and a good faith effort toward the establishment of a BBC. The development of wetland vegetation was deemed important to the successful development of a BBC within L Lake. However, in a similar cooling reservoir system constructed in 1957 (Par Pond), wetland vegetation successfully developed without any planting effort. Other than the good faith effort toward a BBC, there is no reason to assume a littoral/wetland community would not develop of its own accord. However, research conducted at L Lake indicates that the planting of wetland vegetation at L Lake accelerated the process of natural selection over that of areas that were not planted.« less

  11. Anticipatory systems using a probabilistic-possibilistic formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoukalas, L.H.

    1989-01-01

    A methodology for the realization of the Anticipatory Paradigm in the diagnosis and control of complex systems, such as power plants, is developed. The objective is to synthesize engineering systems as analogs of certain biological systems which are capable of modifying their present states on the basis of anticipated future states. These future states are construed to be the output of predictive, numerical, stochastic or symbolic models. The mathematical basis of the implementation is developed on the basis of a formulation coupling probabilistic (random) and possibilistic(fuzzy) data in the form of an Information Granule. Random data are generated from observationsmore » and sensors input from the environment. Fuzzy data consists of eqistemic information, such as criteria or constraints qualifying the environmental inputs. The approach generates mathematical performance measures upon which diagnostic inferences and control functions are based. Anticipated performance is generated using a fuzzified Bayes formula. Triplex arithmetic is used in the numerical estimation of the performance measures. Representation of the system is based upon a goal-tree within the rule-based paradigm from the field of Applied Artificial Intelligence. The ensuing construction incorporates a coupling of Symbolic and Procedural programming methods. As a demonstration of the possibility of constructing such systems, a model-based system of a nuclear reactor is constructed. A numerical model of the reactor as a damped simple harmonic oscillator is used. The neutronic behavior is described by a point kinetics model with temperature feedback. The resulting system is programmed in OPS5 for the symbolic component and in FORTRAN for the procedural part.« less

  12. Novel Formulation of Adaptive MPC as EKF Using ANN Model: Multiproduct Semibatch Polymerization Reactor Case Study.

    PubMed

    Kamesh, Reddi; Rani, Kalipatnapu Yamuna

    2017-12-01

    In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.

  13. Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan Golomb; Eugene Barry; David Ryan

    2005-11-01

    This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous semi-annual reports we described the formation of stable C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, beach sand, shale and lizardite, a rock rich in magnesium silicate. For the creation of these emulsions we used a High-Pressure Batch Reactor (HPBR) equipped with view windows for illumination and video camera recording. For deep ocean sequestration, a C/W emulsion using pulverized limestone may be the most suitable. (a) Limestone (mainly CaCO{sub 3}) is cheap and plentiful; (b) limestone is innocuous for marine organisms (inmore » fact, it is the natural ingredient of shells and corals); (c) it buffers the carbonic acid that forms when CO{sub 2} dissolves in water. For large-scale sequestration of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion a device is needed that mixes the ingredients, liquid carbon dioxide, seawater, and a slurry of pulverized limestone in seawater continuously, rather than incrementally as in a batch reactor. A practical mixing device is a Kenics-type static mixer. The static mixer has no moving parts, and the shear force for mixing is provided by the hydrostatic pressure of liquid CO{sub 2} and CaCO{sub 3} slurry in the delivery pipes from the shore to the disposal depth. This semi-annual progress report is dedicated to the description of the static mixer and the results that have been obtained using a bench-scale static mixer for the continuous formation of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion. The static mixer has an ID of 0.63 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} in artificial seawater (3.5% by weight NaCl) and liquid CO{sub 2} are co-injected into the mixer. From the mixer, the resulting emulsion flows into a Jerguson cell with two oblong windows on opposite sides, then it is vented. A fully ported ball valve inserted after the Jerguson cell allows the emulsion to be stopped in the cell. In such a manner the emulsion can be photographed while it is flowing through the cell, or after it has stagnated in the cell. A slurry of 10 g/L CaCO{sub 3} (Sigma Chemicals C-4830 reagent grade) in artificial seawater, co-injected into the static mixer at a rate of 1.5 L/min with liquid CO{sub 2} at a rate of 150 mL/min, at temperature 5-10 C, pressure 10 MPa, produced an emulsion with mean globule diameter in the 70-100 {micro}m range. In a HPBR, using the same materials, proportions, temperature and pressure, mixed with a magnetic stir bar at 1300 rpm, the mean globule diameter is in the 200-300 {micro}m range. Evidently, the static mixer produces an emulsion with smaller globule diameters and narrower distribution of globule diameters than a batch reactor.« less

  14. Experimental and Numerical Investigation of Pressure Drop in Silicon Carbide Fuel Rod for Application in Pressurized Water Reactors

    NASA Astrophysics Data System (ADS)

    Abir, Ahmed Musafi

    Spacer grids are used in Pressurized Water Reactors (PWRs) fuel assemblies which enhances heat transfer from fuel rods. However, there remain regions of low turbulence in between the spacer grids. To enhance turbulence in these regions surface roughness is applied on the fuel rod walls. Meyer [1] used empirical correlations to predict heat transfer and friction factor for artificially roughened fuel rod bundles at High Performance Light Water Reactors (LWRs). Their applicability was tested by Carrilho at University of South Carolina's (USC) Single Heated Element Loop Tester (SHELT). He attained a heat transfer and friction factor enhancement of 50% and 45% respectively, using Inconel nuclear fuel rods with square transverse ribbed surface. Following him Najeeb conducted a similar study due to three dimensional diamond shaped blocks in turbulent flow. He recorded a maximum heat transfer enhancement of 83%. At present, several types of materials are being used for fuel rod cladding including Zircaloy, Uranium oxide, etc. But researchers are actively searching for new material that can be a more practical alternative. Silicon Carbide (SiC) has been identified as a material of interest for application as fuel rod cladding [2]. The current study deals with the experimental investigation to find out the friction factor increase of a SiC fuel rod with 3D surface roughness. The SiC rod was tested at USC's SHELT loop. The experiment was conducted in turbulent flowing Deionized (DI) water at steady state conditions. Measurements of Flow rate and pressure drop were made. The experimental results were also validated by Computational Fluid Dynamics (CFD) analysis in ANSYS Fluent. To simplify the CFD analysis and to save computational resources the 3D roughness was approximated as a 2D one. The friction factor results of the CFD investigation was found to lie within +/-8% of the experimental results. A CFD model was also run with the energy equation turned on, and a heat generation of 8 kW applied to the rod. A maximum heat transfer enhancement of 18.4% was achieved at the highest flow rate investigated (i.e. Re=109204).

  15. Approaches to optimal aquifer management and intelligent control in a multiresolutional decision support system

    NASA Astrophysics Data System (ADS)

    Orr, Shlomo; Meystel, Alexander M.

    2005-03-01

    Despite remarkable new developments in stochastic hydrology and adaptations of advanced methods from operations research, stochastic control, and artificial intelligence, solutions of complex real-world problems in hydrogeology have been quite limited. The main reason is the ultimate reliance on first-principle models that lead to complex, distributed-parameter partial differential equations (PDE) on a given scale. While the addition of uncertainty, and hence, stochasticity or randomness has increased insight and highlighted important relationships between uncertainty, reliability, risk, and their effect on the cost function, it has also (a) introduced additional complexity that results in prohibitive computer power even for just a single uncertain/random parameter; and (b) led to the recognition in our inability to assess the full uncertainty even when including all uncertain parameters. A paradigm shift is introduced: an adaptation of new methods of intelligent control that will relax the dependency on rigid, computer-intensive, stochastic PDE, and will shift the emphasis to a goal-oriented, flexible, adaptive, multiresolutional decision support system (MRDS) with strong unsupervised learning (oriented towards anticipation rather than prediction) and highly efficient optimization capability, which could provide the needed solutions of real-world aquifer management problems. The article highlights the links between past developments and future optimization/planning/control of hydrogeologic systems. Malgré de remarquables nouveaux développements en hydrologie stochastique ainsi que de remarquables adaptations de méthodes avancées pour les opérations de recherche, le contrôle stochastique, et l'intelligence artificielle, solutions pour les problèmes complexes en hydrogéologie sont restées assez limitées. La principale raison est l'ultime confiance en les modèles qui conduisent à des équations partielles complexes aux paramètres distribués (PDE) à une échelle donnée. Alors que l'accumulation d'incertitudes et, par conséquent, la stockasticité ou l'aléat a augmenté la perspicacité et amis en lumière d'importantes relations entre l'incertitude, la fiabilité, le risque, et leur effet sur les coûts de fonctionnement, il a également (a) introduit une complexité additionnelle qui résulte dans un pouvoir prohibitif des moyens de calcul informatique même pour une simple estimation de l'incertitude; et (b) a conduita une reconnaissance de notre manque d'aptitude à maîtriser l'incertitude totale même en introduisant tous les paramètres connus de l'incertitude. La représentation du changement est introduit: une adaptation de nouvelles méthodes de contrôle intelligent qui va relâcher la dépendance à la rigidité des algorithmes, aux calculs informatiques intensifs, à la PDE stockastique, et qui modifiera l'emphase entre les MRDS—systèmes interactifs d'aide à la décision de multiresolutionelle (flexibles, adaptables et orientables selon les objectifs)—avec un fort apprentissage non (orienté vers l'anticipation plutôt que la prédiction), et une capacité d'optimisation efficiente très élevée, qui pourrait apporter le besoin de solutions pour la modélisation des problèmes de management des aquifères réalistes. Cet article met en lumière les liens entre les développements passés et les futurs moyens d'optimisation, de gestion et de contrôle des systèmes hydrogéologiques. A pesar de nuevos avances notables en hidrología estocástica y las adaptaciones de métodos avanzados de investigación de operaciones, control estocástico, e inteligencia artificial, las soluciones de problemas complejos del mundo real en hidrogeología han sido bastante limitadas. La principal razón es la dependencia definitiva en modelos de primer-principio que conducen a ecuaciones parciales diferencias de parámetro distribuido complejas (PDE) a una escala dada. Mientras que la adición de incertidumbre, y por lo tanto, estocasticidad o aleatoriedad ha incrementado la profundidad y resaltado relaciones importantes entre la incertidumbre, confiabilidad, riesgo, y su efecto en la función de costo, la adición también ha permitido (a) introducir complejidad adicional que resulta en potencia computacional excesiva aún para un solo parámetro incierto/aleatorio; y (b) llevar a reconocer nuestra discapacidad para evaluar la incertidumbre completa aún cuando se incluyen todos los parámetros inciertos. Se introduce un cambio paradigmático: una adaptación de nuevos métodos de control de inteligencia que relajarála dependencia en PDE estocásticas, rígidas y de uso computacional intensivo, cambiando el énfasis hacia un sistema de apoyo de decisiones de propósitos múltiples (MRDS) adaptivo, flexible, y orientadoa objetivos con fuerte aprendizaje sin supervisión (orientado a la anticipación más que a la predicción) con fuerte capacidad de optimización eficiente, lo cual podría aportar las soluciones necesarias a los problemas de manejo reales con los acuíferos. El artículo resalta los vínculos entre desarrollos pasados y control/planificación/optimización futura de sistemas hidrogeológicos.

  16. Spatial and temporal changes in Actinobacterial dominance in experimental artificial groundwater recharge.

    PubMed

    Kolehmainen, Reija E; Tiirola, Marja; Puhakka, Jaakko A

    2008-11-01

    Artificial groundwater recharge (AGR) is used in the drinking water industry to supplement groundwater resources and to minimise the use of chemicals in water treatment. This study analysed the spatial and temporal changes of microbial communities in AGR using two test systems: a nutrient-amended fluidized-bed reactor (FBR) and a sand column. Structural changes in the feed lake water (Lake Roine), FBR, and sand column bacterial communities were determined by denaturing gradient gel electrophoresis (DGGE) and the length heterogeneity analysis of amplified 16S rRNA genes (LH-PCR). Two clone libraries were created to link the LH-PCR results to the dominant bacterial groups. The lake water bacterial community was relatively stable, with three bands dominating in all LH-PCR products. The most dominant fragment accounted for up to 72% and was derived from Actinobacteria. Based on the clone libraries and LH-PCR data, Actinobacteria also dominated in the unattached bacterial community of the FBR, whereas several Proteobacterial groups were more abundant on the FBR carrier particles. In the stabilised AGR system a major change in the community structure of the lake water bacteria took place during passage within the first 0.6m in the sand column as the community composition shifted from Actinobacteria-dominated populations to a diverse, mainly Proteobacterial communities. Concurrently, most of the dissolved organic carbon (DOC) was removed at this stage. In summary, the study showed that the make-up of microbial communities in experimental AGR systems responded to changes in their environment. LH-PCR showed potential as a method to determine microbial community dynamics in long-term studies at real-scale AGR sites. This is the first step to provide data on microbial community dynamics in AGR for drinking water production.

  17. Study of methanogenesis during bioutilization of plant residuals

    NASA Astrophysics Data System (ADS)

    Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.

    2005-02-01

    The waste management strategy for the future should meet the benefits of human safety, respect principles of planet ecology, and compatibility with other habitability systems. For these purposes waste management technologies relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based on the biodegradation of organic substances by various microorganisms. The objectives of our study were: to evaluate the effectiveness of microbial biodegradation of vegetable non-edible residual, using artificial inoculum, and to study the peculiarities of biogas, and possibilities of optimizing or reducing the share of methane. The diminution rate of organic gained 76% from initial mass within 9 days of fermentation. The biogas production achieved 46 l/kg of substrate. The microbial studies of biodegradation process revealed the following peculiarities: (i) gradual quantitative increase of Lactobacillus sp. (from 103 to 105 colony-forming units (CFU) per ml); (ii) activation of Clostridia sp. (from 102 to 10 4 CFU/ml); and (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae, Protea sp., Staphylococci). Chromatography analysis revealed the constant presence of carbon dioxide (up to 90.9%). The methane content measures revealed traces 0.1-0.4%. However, when we optimized the methane production in "boiling layer" using methanogenic granules, the amount of methane in biogas reached 80-90%. Based on the results obtained the artificial inoculum was created which was capable of initiating biodegradation of vegetable wastes. This inoculum consisted of active sludge adapted to wastes mixed with excretea of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time than that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding methane reactor to the plant digester.

  18. Crosstalk between immune cells and mesenchymal stromal cells in a 3D bioreactor system.

    PubMed

    Seifert, Martina; Lubitz, Annika; Trommer, Jeanne; Könnig, Darja; Korus, Gabriela; Marx, Uwe; Volk, Hans-Dieter; Duda, Georg; Kasper, Grit; Lehmann, Kerstin; Stolk, Meaghan; Giese, Christoph

    2012-11-01

    Mesenchymal stromal cells (MSC), known for their high immune modulatory capacity are promising tools for several cell-based therapies. To better mimic the in vivo situation of MSC interactions with immune cells, we applied an artificial lymph node (ALN)-bioreactor culture system combining a miniaturized perfusion bioreactor with a 3D matrix-based cell culture of immune competent cells forming micro-organoids. Rat lymph node cells and allogeneic bone marrow-derived MSCs were seeded in a 20:1 ratio within the agarose matrix of the ALN-reactor. Lymphocytes were pre-incubated with Concanavalin A (ConA) and then co-cultured with MSC in the matrix with additional ConA in the perfusing medium. Live/dead staining showed survival of the co-cultures during the 8-day ALN-reactor run. Paraffin sections of bioreactor matrices were analyzed by proliferating cell nuclear antigen (PCNA)-specific stai-ning to determine MSC proliferation. Immune modulatory capacity was defined by daily analysis of cytokine secretion profiles (TNFa, IFNy, IL-1a, IL-1ß, IL-2, IL-4, IL-6, IL-10, IL-12p40/p70, GM-CSF). Cytokine peak secretion at day 2 was significantly inhibited by MSCs for TNFa (96.8 ± 4.8%) and IFNy (88.7 ± 12.0%) in 3D co-cultures. In contrast, other cytokines (IL-1, IL-6, IL-12) were induced. Furthermore, we detected a significantly higher (58.8%) fraction of proliferating MSCs in the presence of immune cells compared to control bioreactors loaded with MSCs only. In the future, this system might be an excellent tool to investigate the mechanisms of MSC-mediated immune modulation during simulated in vivo conditions.

  19. A new method to measure and model dynamic oxygen microdistributions in moving biofilms.

    PubMed

    Wang, Jian-Hui; Chen, You-Peng; Dong, Yang; Wang, Xi-Xi; Guo, Jin-Song; Shen, Yu; Yan, Peng; Ma, Teng-Fei; Sun, Xiu-Qian; Fang, Fang; Wang, Jing

    2017-10-01

    Biofilms in natural environments offer a superior solution to mitigate water pollution. Artificially intensified biofilm reactors represented by rotating biological contactors (RBCs) are widely applied and studied. Understanding the oxygen transfer process in biofilms is an important aspect of these studies, and describing this process in moving biofilms (such as biofilms in RBCs) is a particular challenge. Oxygen transfer in RBCs behaves differently than in other biological reactors due to the special oxygen supply mode that results from alternate exposure of the biofilm to wastewater and air. The study of oxygen transfer in biofilms is indispensable for understanding biodegradation in RBCs. However, the mechanisms are still not well known due to a lack of effective tools to dynamically analyze oxygen diffusion, reaction, and microdistribution in biofilms. A new experimental device, the Oxygen Transfer Modeling Device (OTMD), was designed and manufactured for this purpose, and a mathematical model was developed to model oxygen transfer in biofilm produced by an RBC. This device allowed the simulation of the local environment around the biofilm during normal RBC operation, and oxygen concentrations varying with time and depth in biofilm were measured using an oxygen microelectrode. The experimental data conformed well to the model description, indicating that the OTMD and the model were stable and reliable. Moreover, the OTMD offered a flexible approach to study the impact of a single-factor on oxygen transfer in moving biofilms. In situ environment of biofilm in an RBC was simulated, and dynamic oxygen microdistributions in the biofilm were measured and well fitted to the built model description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. iss012e16633

    NASA Image and Video Library

    2006-01-28

    ISS012-E-16633 (28 Jan. 2006) --- Savannah River Site, South Carolina is featured in this image photographed by an Expedition 12 crew member on the International Space Station. Situated between the South Carolina piedmont and the Atlantic Ocean, the Savannah River Site is an important part of the US Department of Energy’s nuclear program. Construction of the site – originally called the Savannah River Plant – began in 1951 for the purpose of generating radioactive materials, primarily the hydrogen isotope tritium and plutonium-239, necessary for nuclear weapons production during the Cold War. A total of five nuclear reactors occupy the central portion of the site and operated throughout 1953-1992. Following the end of the Cold War in 1991 activities at the Savannah River Site are now focused on disposal of nuclear wastes, environmental cleanup of the site itself, and development of advanced remediation technologies. The Savannah River Site is located in the Sand Hills region of South Carolina and includes an area of 800 square kilometers (300 square miles). The southern half of the Site (building clusters with reflective white rooftops) is shown. The nearby Savannah River and its tributary creeks provided a ready source of water for the nuclear reactors; to this end, two artificial lakes (“L” Lake and Par Pond) were constructed. The meandering channel of the River and its floodplain, characterized by grey-brown sediments, extends from northwest to southeast across the left portion of the image. The proximity of the River, and the permeable nature of the geological materials under laying the site (sand, clay, gravel, and carbonate rocks), necessitate extensive and ongoing environmental monitoring and cleanup efforts to reduce potential contamination of local water sources. According to NASA scientists, final remediation of wastes posing threats to surface and groundwater is scheduled to occur by 2025.

  1. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  2. Influence of lime and struvite on microbial community succession and odour emission during food waste composting.

    PubMed

    Wang, Xuan; Selvam, Ammaiyappan; Lau, Sam S S; Wong, Jonathan W C

    2018-01-01

    Lime addition as well as formation of struvite through the addition of magnesium and phosphorus salts provide good pH buffering and may reduce odour emission. This study investigated the odour emission during food waste composting under the influence of lime addition, and struvite formation. Composting was performed in 20-L reactors for 56days using artificial food waste mixed with sawdust at 1.2:1 (w/w dry basis). VFA was one of the most important odours during food waste composting. However, during thermophilic phase, ammonia is responsible for max odour index in the exhaust gas. Trapping ammonia through struvite formation significantly reduced the maximum odour unit of ammonia from 3.0×10 4 to 1.8×10 4 . The generation and accumulation of acetic acid and butyric acid led to the acidic conditions. The addition of phosphate salts in treatment with struvite formation improved the variation of total bacteria, which in turn increased the organic decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Amoxicillin effects on functional microbial community and spread of antibiotic resistance genes in amoxicillin manufacture wastewater treatment system.

    PubMed

    Meng, Lingwei; Li, Xiangkun; Wang, Xinran; Ma, Kaili; Liu, Gaige; Zhang, Jie

    2017-11-01

    This study aimed to reveal how amoxicillin (AMX) affected the microbial community and the spread mechanism of antibiotic resistance genes (ARGs) in the AMX manufacture wastewater treatment system. For this purpose, a 1.47 L expanded granular sludge bed (EGSB) reactor was designed and run for 241days treating artificial AMX manufacture wastewater. 454 pyrosequencing was applied to analyze functional microorganisms in the system. The antibiotic genes OXA- 1 , OXA -2 , OXA -10 , TEM -1 , CTX-M -1 , class I integrons (intI1) and 16S rRNA genes were also examined in sludge samples. The results showed that the genera Ignavibacterium, Phocoenobacter, Spirochaeta, Aminobacterium and Cloacibacillus contributed to the degradation of different organic compounds (such as various sugars and amines). And the relative quantification of each β-lactam resistance gene in the study was changed with the increasing of AMX concentration. Furthermore the vertical gene transfer was the main driver for the spread of ARGs rather than horizontal transfer pathways in the system. Copyright © 2017. Published by Elsevier B.V.

  4. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    NASA Astrophysics Data System (ADS)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  5. Independent technical support for the frozen soil barrier installation and operation at the Fukushima Daiichi Nuclear Power Station (F1 Site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Jackson, Dennis G.; Truex, Michael J.

    TEPCO is implementing a number of water countermeasures to limit the releases and impacts of contaminated water to the surrounding environment. The diverse countermeasures work together in an integrated manner to provide different types, and several levels, of protection. In general, the strategy represents a comprehensive example of a “defense in depth” concept that is used for nuclear facilities around the world. One of the key countermeasures is a frozen soil barrier encircling the damaged reactor facilities. The frozen barrier is intended to limit the flow of water into the area and provide TEPCO the ability to reduce the amountmore » of contaminated water that requires treatment and storage. The National Laboratory team supports the selection of artificial ground freezing and the incorporation of the frozen soil barrier in the contaminated water countermeasures -- the technical characteristics of a frozen barrier are relatively well suited to the Fukushima-specific conditions and the need for inflow reduction. Further, our independent review generally supports the TEPCO/Kajima design, installation strategy and operation plan.« less

  6. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater.

    PubMed

    Antwi, Philip; Li, Jianzheng; Meng, Jia; Deng, Kaiwen; Koblah Quashie, Frank; Li, Jiuling; Opoku Boadi, Portia

    2018-06-01

    In this a, three-layered feedforward-backpropagation artificial neural network (BPANN) model was developed and employed to evaluate COD removal an upflow anaerobic sludge blanket (UASB) reactor treating industrial starch processing wastewater. At the end of UASB operation, microbial community characterization revealed satisfactory composition of microbes whereas morphology depicted rod-shaped archaea. pH, COD, NH 4 + , VFA, OLR and biogas yield were selected by principal component analysis and used as input variables. Whilst tangent sigmoid function (tansig) and linear function (purelin) were assigned as activation functions at the hidden-layer and output-layer, respectively, optimum BPANN architecture was achieved with Levenberg-Marquardt algorithm (trainlm) after eleven training algorithms had been tested. Based on performance indicators such the mean squared errors, fractional variance, index of agreement and coefficient of determination (R 2 ), the BPANN model demonstrated significant performance with R 2 reaching 87%. The study revealed that, control and optimization of an anaerobic digestion process with BPANN model was feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    PubMed

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  8. JPRS Report, Science & Technology, China: Energy.

    DTIC Science & Technology

    1992-03-30

    breeder reactors should become...the primary type of reactors . In developing breeder reactors , we should follow the path of using metal fuel. Breeder reactors give us more time to...first reactor used for power generation was a fast reactor : the " Breeder 1" reactor at the Idaho National Reactor Test Center which was used to

  9. The application and development of artificial intelligence in smart clothing

    NASA Astrophysics Data System (ADS)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  10. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    PubMed Central

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  11. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  12. Artificial organs versus regenerative medicine: is it true?

    PubMed

    Nosé, Yukihiko; Okubo, Hisashi

    2003-09-01

    Individuals engaged in the fields of artificial kidney and artificial heart have often mistakenly stated that "the era of artificial organs is over; regenerative medicine is the future." Contrarily, we do not believe artificial organs and regenerative medicine are different medical technologies. As a matter of fact, artificial organs developed during the last 50 years have been used as a bridge to regeneration. The only difference between regenerative medicine and artificial organs is that artificial organs for the bridge to regeneration promote tissue regeneration in situ, instead of outside the body (for example, vascular prostheses, neuroprostheses, bladder substitutes, skin prostheses, bone prostheses, cartilage prostheses, ligament prostheses, etc.). All of these artificial organs are successful because tissue regeneration over a man-made prosthesis is established inside the patient's body (artificial organs to support regeneration). Another usage of the group of artificial organs for the bridge to regeneration is to sustain the functions of the patient's diseased organs during the regeneration process of the body's healthy tissues and/or organs. This particular group includes artificial kidney, hepatic assist, respiratory assist, and circulatory assist. Proof of regeneration of these healthy tissues and/or organs is demonstrated in the short-term recovery of end-stage organ failure patients (artificial organs for bridge to regeneration). A third group of artificial organs for the bridge to regeneration accelerates the regenerating process of the patient's healthy tissues and organs. This group includes neurostimulators, artificial blood (red cells) blood oxygenators, and plasmapheresis devices, including hemodiafiltrators. So-called "therapeutic artificial organs" fall into this category (artificial organs to accelerate regeneration). Thus, almost all of today's artificial organs are useful in the bridge to regeneration of healthy natural tissues and organs. It does not matter whether these tissues are cultivated inside or outside the patient's body. Thus, we strongly believe in the need for joint development programs between artificial organ technologies and regenerative medicine technologies. In particular, the importance of using both man-made substitute organ technologies and natural tissue-derived substitute organ technologies is stressed for improved medical care in the future.

  13. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  14. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  15. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  16. The Japanese artificial organs scene: current status.

    PubMed

    Mitamura, Yoshinori; Murabayashi, Shun

    2005-08-01

    Artificial organs and regenerative medicine are the subjects of very active research and development (R&D) in Japan and various artificial organs are widely used in patients. Results of the R&D are presented at the annual conference of the Japanese Society for Artificial Organs (JSAO). Progress in the fields of artificial organs and regenerative medicine are reviewed annually in the Japanese Journal of Artificial Organs. The official English-language journal of JSAO, Journal of Artificial Organs, also publishes many original articles by Japanese researchers. Although the annual conference and the publications of JSAO provide the world with update information on artificial organs and regenerative medicine in Japan, the information is not always understood appropriately in the rest of the world, mainly due to language problems. This article therefore introduces the current status of artificial organs and regenerative medicine in Japan. Artificial hearts and metabolic support systems are reviewed here and other interesting areas such as regenerative medicine can be found elsewhere.

  17. 10 CFR 2.337 - Evidence at a hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...

  18. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  19. 10 CFR 2.337 - Evidence at a hearing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...

  20. The Correlation between Insertion Depth of Prodisc-C Artificial Disc and Postoperative Kyphotic Deformity: Clinical Importance of Insertion Depth of Artificial Disc.

    PubMed

    Lee, Do-Youl; Kim, Se-Hoon; Suh, Jung-Keun; Cho, Tai-Hyoung; Chung, Yong-Gu

    2012-09-01

    This study was designed to investigate the correlation between insertion depth of artificial disc and postoperative kyphotic deformity after Prodisc-C total disc replacement surgery, and the range of artificial disc insertion depth which is effective in preventing postoperative whole cervical or segmental kyphotic deformity. A retrospective radiological analysis was performed in 50 patients who had undergone single level total disc replacement surgery. Records were reviewed to obtain demographic data. Preoperative and postoperative radiographs were assessed to determine C2-7 Cobb's angle and segmental angle and to investigate postoperative kyphotic deformity. A formula was introduced to calculate insertion depth of Prodisc-C artificial disc. Statistical analysis was performed to search the correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity, and to estimate insertion depth of Prodisc-C artificial disc to prevent postoperative kyphotic deformity. In this study no significant statistical correlation was observed between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity regarding C2-7 Cobb's angle. Statistical correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity was observed regarding segmental angle (p<0.05). It failed to estimate proper insertion depth of Prodisc-C artificial disc effective in preventing postoperative kyphotic deformity. Postoperative segmental kyphotic deformity is associated with insertion depth of Prodisc-C artificial disc. Anterior located artificial disc leads to lordotic segmental angle and posterior located artificial disc leads to kyphotic segmental angle postoperatively. But C2-7 Cobb's angle is not affected by artificial disc location after the surgery.

  1. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  2. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  3. Heat transfer analysis of cylindrical anaerobic reactors with different sizes: a heat transfer model.

    PubMed

    Liu, Jiawei; Zhou, Xingqiu; Wu, Jiangdong; Gao, Wen; Qian, Xu

    2017-10-01

    The temperature is the essential factor that influences the efficiency of anaerobic reactors. During the operation of the anaerobic reactor, the fluctuations of ambient temperature can cause a change in the internal temperature of the reactor. Therefore, insulation and heating measures are often used to maintain anaerobic reactor's internal temperature. In this paper, a simplified heat transfer model was developed to study heat transfer between cylindrical anaerobic reactors and their surroundings. Three cylindrical reactors of different sizes were studied, and the internal relations between ambient temperature, thickness of insulation, and temperature fluctuations of the reactors were obtained at different reactor sizes. The model was calibrated by a sensitivity analysis, and the calibrated model was well able to predict reactor temperature. The Nash-Sutcliffe model efficiency coefficient was used to assess the predictive power of heat transfer models. The Nash coefficients of the three reactors were 0.76, 0.60, and 0.45, respectively. The model can provide reference for the thermal insulation design of cylindrical anaerobic reactors.

  4. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  5. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  6. [Current state and development of artificial lungs].

    PubMed

    Mei, Zaoxian; Sun, Xin; Wu, Qi

    2010-12-01

    The artificial lung is a technical device for providing life support; it will be put in use when the natural lungs are failing and are not able to maintain sufficient oxygenation of the body's organ systems. From the viewpoint of long-term development, the artificial lung should be permanently implanted in the body, so that it will substitute for the human pulmonary function partially or completely. In this paper, four artificial lung technologies were expounded with reference to the development and research process of artificial lung. They were extracorporeal membrane oxygenation, intravascular artificial lung, implantable artificial lung, and pumpless extracorporeal lung assist. In this paper were described the structure of the four kinds of artificial lung, the working principle, and their advantages, disadvantages and indications. The prospect of artificial lung was evaluated in the light of the data from the existing animal experiments and from the clinical experience of the centers.

  7. Artificial selection increased body weight but induced increase of runs of homozygosity in Hanwoo cattle

    PubMed Central

    Kim, Kwondo; Jung, Jaehoon; Caetano-Anollés, Kelsey; Sung, Samsun; Yoo, DongAhn; Choi, Bong-Hwan; Kim, Hyung-Chul; Jeong, Jin-Young; Cho, Yong-Min; Park, Eung-Woo; Choi, Tae-Jeong; Park, Byoungho; Lim, Dajeong

    2018-01-01

    Artificial selection has been demonstrated to have a rapid and significant effect on the phenotype and genome of an organism. However, most previous studies on artificial selection have focused solely on genomic sequences modified by artificial selection or genomic sequences associated with a specific trait. In this study, we generated whole genome sequencing data of 126 cattle under artificial selection, and 24,973,862 single nucleotide variants to investigate the relationship among artificial selection, genomic sequences and trait. Using runs of homozygosity detected by the variants, we showed increase of inbreeding for decades, and at the same time demonstrated a little influence of recent inbreeding on body weight. Also, we could identify ~0.2 Mb runs of homozygosity segment which may be created by recent artificial selection. This approach may aid in development of genetic markers directly influenced by artificial selection, and provide insight into the process of artificial selection. PMID:29561881

  8. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  9. Reactor pressure vessel head vents and methods of using the same

    DOEpatents

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  10. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less

  11. 10 CFR 52.167 - Issuance of manufacturing license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...

  12. A novel plant protection strategy for transient reactors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.

    A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.

  13. Process and apparatus for adding and removing particles from pressurized reactors

    DOEpatents

    Milligan, John D.

    1983-01-01

    A method for adding and removing fine particles from a pressurized reactor is provided, which comprises connecting the reactor to a container, sealing the container from the reactor, filling the container with particles and a liquid material compatible with the reactants, pressurizing the container to substantially the reactor pressure, removing the seal between the reactor and the container, permitting particles to fall into or out of the reactor, and resealing the container from the reactor. An apparatus for adding and removing particles is also disclosed.

  14. Effects of imperfect mixing on low-density polyethylene reactor dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, C.M.; Dihora, J.O.; Ray, W.H.

    1998-07-01

    Earlier work considered the effect of feed conditions and controller configuration on the runaway behavior of LDPE autoclave reactors assuming a perfectly mixed reactor. This study provides additional insight on the dynamics of such reactors by using an imperfectly mixed reactor model and bifurcation analysis to show the changes in the stability region when there is imperfect macroscale mixing. The presence of imperfect mixing substantially increases the range of stable operation of the reactor and makes the process much easier to control than for a perfectly mixed reactor. The results of model analysis and simulations are used to identify somemore » of the conditions that lead to unstable reactor behavior and to suggest ways to avoid reactor runaway or reactor extinction during grade transitions and other process operation disturbances.« less

  15. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam.

    PubMed

    van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2007-10-01

    The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.

  16. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  17. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  18. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required...

  19. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required...

  20. KINETICS OF TREAT USED AS A TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerman, C.E.; Johnson, R.D.; Gasidlo, J.

    1962-05-01

    An analysis is presented concerning the reactor kinetics of TREAT used as a pulsed, engineering test reactor for fast reactor fuel element studies. A description of the reactor performance is given for a wide range of conditions associated with its use as a test reactor. Supplemental information on meltdown experimentation is included. (J.R.D.)

  1. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  2. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, Douglas E.; Orr, Richard

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  3. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  4. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  5. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  6. Opto-mechanical design of a dispersive artificial eye.

    PubMed

    Coughlan, Mark F; Mihashi, Toshifumi; Goncharov, Alexander V

    2017-05-20

    We present an opto-mechanical artificial eye that can be used for examining multi-wavelength ophthalmic instruments. Standard off-the-shelf lenses and a refractive-index-matching fluid were used in the creation of the artificial eye. In addition to dispersive properties, the artificial eye can be used to simulate refractive error. To analyze the artificial eye, a multi-wavelength Hartmann-Shack aberrometer was used to measure the longitudinal chromatic aberration and the possibility of inducing refractive error. Off-axis chromatic aberrations were also analyzed by imaging through the artificial eye at two discrete wavelengths. Possible extensions to the dispersive artificial eye are also discussed.

  7. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  8. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service.

    PubMed

    Belhassen, Yaniv; Rousseau, Meghan; Tynyakov, Jenny; Shashar, Nadav

    2017-12-01

    Artificial reefs are increasingly being used around the globe to attract recreational divers, for both environmental and commercial reasons. This paper examines artificial coral reefs as recreational ecosystem services (RES) by evaluating their attractiveness and effectiveness and by examining divers' attitudes toward them. An online survey targeted at divers in Israel (n = 263) indicated that 35% of the dives in Eilat (a resort city on the shore of the Red Sea) take place at artificial reefs. A second study monitored divers' behavior around the Tamar artificial reef, one of the most popular submerged artificial reefs in Eilat, and juxtaposed it with divers' activities around two adjacent natural reefs. Findings show that the average diver density at the artificial reef was higher than at the two nearby natural knolls and that the artificial reef effectively diverts divers from natural knolls. A third study that examined the attitudes towards natural vs. artificial reefs found that the artificial reefs are considered more appropriate for training, but that divers feel less relaxed around them. By utilizing the RES approach as a framework, the study offers a comprehensive methodology that brings together the aesthetic, behavioral, and attitudinal aspects in terms of which artificial reefs can be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Internet advertising of artificial tanning in Australia.

    PubMed

    Team, Victoria; Markovic, Milica

    2006-08-01

    Artificial tanning, defined as deliberate exposure to ultraviolet rays produced by artificial tanning devices, is a new and emerging public health issue in Australia and globally. Epidemiological research suggests that artificial tanning may contribute to the incidence of melanoma, nonmelanoma skin cancer as well as other health problems. Given that Australia has a high incidence of skin cancer, we have undertaken a study to explore how artificial tanning has been promoted to its users. The aim was to analyze the completeness and accuracy of information about artificial tanning. A content analysis of web sites of tanning salons and distributors of tanning equipment in Australia was conducted. A total of 22 web sites were analyzed. None of the solarium operators or distributors of equipment provided full information about the risks of artificial tanning. Fifty-nine percent of web advertisements had no information and 41% provided only partial information regarding the risks of artificial tanning. Pictures with the image of bronze-tanned bodies, predominantly women, were used by all web advertisers. In light of the success of sun-safety campaigns in Australia, the findings of future epidemiological research on the prevalence of artificial tanning and sociological and anthropological research on why people utilize artificial tanning should be a basis for developing effective targeted health promotion on the elimination of artificial tanning in the country.

  10. METHOD AND APPARATUS FOR CONTROLLING DIRECT-CYCLE NEUTRONIC REACTORS

    DOEpatents

    Reed, G.A.

    1961-01-10

    A control arrangement is offered for a boiling-water reactor. Boric acid is maintained in the water in the reactor and the amount in the reactor is controlled by continuously removing a portion of the water from the reactor, concentrating the boric acid by evaporating the water therefrom, returning a controlled amount of the acid to the reactor, and simultaneously controlling the water level by varying the rate of spent steam return to the reactor.

  11. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  12. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...

  13. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...

  14. Multi-robot task allocation based on two dimensional artificial fish swarm algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Taixiong; Li, Xueqin; Yang, Liangyi

    2007-12-01

    The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.

  15. Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor.

    PubMed

    Elmitwalli, Tarek A; Sklyar, Vladimir; Zeeman, Grietje; Lettinga, Gatze

    2002-05-01

    The pre-treatment of domestic sewage for removal of suspended solids (SS) at a process temperature of 13 degrees C and an hydraulic retention time (HRT) of 4 h was investigated in an anaerobic filter (AF) and anaerobic hybrid (AH) reactor. The AF and the top of the AH reactor consisted of vertical sheets of reticulated polyurethane foam (RPF) with knobs. All biomass in the AF was only in attached form to avoid clogging and sludge washout. The AF reactor showed a significantly higher removal of total and suspended chemical oxygen demand (COD) than the AH reactor, respectively, 55% and 82% in the AF reactor and 34% and 53% in the AH reactor. Because the reactors were operated at a short HRT and low temperature, the hydrolysis, acidification and methanogenesis based on the influent COD were limited to, respectively, 12%, 21% and 23% for the AF reactor and 12%, 17% and 16% for the AH reactor. The excess sludge from the AH reactor was more stabilised and had a better settling capacity and dewaterability. However, the excess sludge from both the AH and AF reactors needed stabilisation. Therefore, the AF reactor is recommended for the pretreatment of domestic sewage at low temperatures.

  16. Nuclear reactor cavity floor passive heat removal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluidmore » communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.« less

  17. Methods and apparatuses for deoxygenating pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph

    Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactormore » effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.« less

  18. Artificial reefs and reef restoration in the Laurentian Great Lakes

    USGS Publications Warehouse

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  19. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  20. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology.

    PubMed

    Saijo, Hideto; Igawa, Kazuyo; Kanno, Yuki; Mori, Yoshiyuki; Kondo, Kayoko; Shimizu, Koutaro; Suzuki, Shigeki; Chikazu, Daichi; Iino, Mitsuki; Anzai, Masahiro; Sasaki, Nobuo; Chung, Ung-il; Takato, Tsuyoshi

    2009-01-01

    Ideally, artificial bones should be dimensionally compatible with deformities, and be biodegradable and osteoconductive; however, there are no artificial bones developed to date that satisfy these requirements. We fabricated novel custom-made artificial bones from alpha-tricalcium phosphate powder using an inkjet printer and implanted them in ten patients with maxillofacial deformities. The artificial bones had dimensional compatibility in all the patients. The operation time was reduced due to minimal need for size adjustment and fixing manipulation. The postsurgical computed tomography analysis detected partial union between the artificial bones and host bone tissues. There were no serious adverse reactions. These findings provide support for further clinical studies of the inkjet-printed custom-made artificial bones.

  1. Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1

    DTIC Science & Technology

    1989-03-01

    American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to

  2. When Do Commercial Reactors Permanently Shut Down?

    EIA Publications

    2011-01-01

    For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

  3. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  4. 10 CFR 2.603 - Acceptance and docketing of application for early review of site suitability issues in a...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...

  5. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  6. 10 CFR 2.603 - Acceptance and docketing of application for early review of site suitability issues in a...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...

  7. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  8. Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormon, S.; Fallot, M., E-mail: fallot@subatech.in2p3.fr; Bui, V.-M.

    This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {supmore » 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.« less

  9. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid.

    PubMed

    Bathe, Stephan; Schwarzenbeck, Norbert; Hausner, Martina

    2009-06-01

    A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.

  10. Contrasting Fish Behavior in Artificial Seascapes with Implications for Resources Conservation

    PubMed Central

    Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe

    2013-01-01

    Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics. PMID:23935978

  11. Contrasting fish behavior in artificial seascapes with implications for resources conservation.

    PubMed

    Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe

    2013-01-01

    Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics.

  12. 7 CFR 51.2542 - U.S. Artificially Opened.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS) United States Standards for Grades of Pistachio Nuts in the Shell § 51.2542 U.S. Artificially Opened. “U.S. Artificially Opened” consists of artificially opened pistachio nuts in the shell which meet...

  13. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts.

    PubMed

    Shi, Xuchuan; Guo, Xianglin; Zuo, Jiane; Wang, Yajiao; Zhang, Mengyu

    2018-05-01

    Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m 3 ·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better performance of the thermophilic reactor. Copyright © 2018. Published by Elsevier Ltd.

  14. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  15. The effect of artificial bulk viscosity in simulations of forced compressible turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, A.; Morgan, B.

    The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less

  16. The effect of artificial bulk viscosity in simulations of forced compressible turbulence

    DOE PAGES

    Campos, A.; Morgan, B.

    2018-05-17

    The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less

  17. Artificial Sweeteners: A systematic review of metabolic effects in youth

    PubMed Central

    Brown, Rebecca J.; De Banate, Mary Ann; Rother, Kristina I.

    2010-01-01

    Epidemiological data have demonstrated an association between artificial sweetener use and weight gain. Evidence of a causal relationship linking artificial sweetener use to weight gain and other metabolic health effects is limited. However, recent animal studies provide intriguing information that supports an active metabolic role of artificial sweeteners. This systematic review examines the current literature on artificial sweetener consumption in children and its health effects. Eighteen studies were identified. Data from large, epidemiologic studies support the existence of an association between artificially-sweetened beverage consumption and weight gain in children. Randomized controlled trials in children are very limited, and do not clearly demonstrate either beneficial or adverse metabolic effects of artificial sweeteners. Presently, there is no strong clinical evidence for causality regarding artificial sweetener use and metabolic health effects, but it is important to examine possible contributions of these common food additives to the global rise in pediatric obesity and diabetes. PMID:20078374

  18. Artificial sweeteners: a systematic review of metabolic effects in youth.

    PubMed

    Brown, Rebecca J; de Banate, Mary Ann; Rother, Kristina I

    2010-08-01

    Epidemiological data have demonstrated an association between artificial sweetener use and weight gain. Evidence of a causal relationship linking artificial sweetener use to weight gain and other metabolic health effects is limited. However, recent animal studies provide intriguing information that supports an active metabolic role of artificial sweeteners. This systematic review examines the current literature on artificial sweetener consumption in children and its health effects. Eighteen studies were identified. Data from large, epidemiologic studies support the existence of an association between artificially-sweetened beverage consumption and weight gain in children. Randomized controlled trials in children are very limited, and do not clearly demonstrate either beneficial or adverse metabolic effects of artificial sweeteners. Presently, there is no strong clinical evidence for causality regarding artificial sweetener use and metabolic health effects, but it is important to examine possible contributions of these common food additives to the global rise in pediatric obesity and diabetes.

  19. An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles

    PubMed Central

    Ferris, Daniel P.; Czerniecki, Joseph M.; Hannaford, Blake

    2005-01-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury. PMID:16082019

  20. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  1. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  2. Differences in predators of artificial and real songbirds nests: Evidence of bias in artificial nest studies

    Treesearch

    Frank R. Thompson; Dirk E. Burhans

    2004-01-01

    In the past two decades, many researchers have used artificial nest to measure relative rates of nest predation. Recent comparisons show that real and artificial nests may not be depredated at the same rate, but no one has examined the mechanisms underlying these patterns. We determined differences in predator-specific predation rates of real and artificial nests. we...

  3. Operators in the Plum Brook Reactor Facility Control Room

    NASA Image and Video Library

    1970-03-21

    Donald Rhodes, left, and Clyde Greer, right, monitor the operation of the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility from the control room. The 60-megawatt test reactor, NASA’s only reactor, was the eighth largest test reactor in the world. The facility was built by the Lewis Research Center in the late 1950s to study the effects of radiation on different materials that could be used to construct nuclear propulsion systems for aircraft or rockets. The reactor went critical for the first time in 1961. For the next two years, two operators were on duty 24 hours per day working on the fission process until the reactor reached its full-power level in 1963. Reactor Operators were responsible for monitoring and controlling the reactor systems. Once the reactor was running under normal operating conditions, the work was relatively uneventful. Normally the reactor was kept at a designated power level within certain limits. Occasionally the operators had to increase the power for a certain test. The shift supervisor and several different people would get together and discuss the change before boosting the power. All operators were required to maintain a Reactor Operator License from the Atomic Energy Commission. The license included six months of training, an eight-hour written exam, a four-hour walkaround, and testing on the reactor controls.

  4. Wear resistance of a modified polymethyl methacrylate artificial tooth compared to five commercially available artificial tooth materials.

    PubMed

    Kamonwanon, Pranithida; Yodmongkol, Sirasa; Chantarachindawong, Rojcharin; Thaweeboon, Sroisiri; Thaweeboon, Boonyanit; Srikhirin, Toemsak

    2015-08-01

    Wear resistance is a limitation of artificial denture teeth. Improving the wear resistance of conventional artificial denture teeth is of value to prosthodontic patients. The purpose of this in vitro study was to evaluate the wear resistance and hardness of modified polymethyl methacrylate artificial denture teeth compared to 5 commercially available artificial tooth materials. This study evaluated 180 artificial denture teeth (6 groups) that included 3 groups of conventional artificial teeth (MajorDent, Cosmo HXL, and Gnathostar), 2 groups of composite resin artificial teeth (Endura and SR Orthosit PE), and 1 group of modified surface artificial teeth. The flattened buccal surface of each tooth (n=15) was prepared for investigation with the Vickers hardness test and the elucidate wear test (n=15) by using a brushing machine. Each group was loaded for 18,000 cycles, at 2 N, and 150 rpm. The wear value was identified with a profilometer. The data were statistically analyzed by using 1-way ANOVA and post hoc Turkey honestly significant difference tests (α=.001). The tribologies were observed under a scanning electron microscope, and the cytotoxicities were evaluated by MTT assay. The Vickers hardnesses ranged from 28.48 to 39.36. The wear depths and worn surface area values ranged from 1.12 to 10.79 μm and from 6.74 to 161.95 μm(2). The data revealed that the modified artificial denture teeth were significantly harder and exhibited significantly higher wear resistance than did the conventional artificial teeth (P<.001). The scanning electron microscopic images revealed cross sections of the conventional artificial denture teeth with intensively worn surface areas after brushing. The cytotoxicity test revealed 97.85% cell viability, which indicates the nontoxicity of the modified surface of this material. Within the limitations of this study, the polymethyl methacrylate modified surface artificial denture teeth was not significantly different from that of the composite resin artificial denture teeth, with the exceptions that the surface was harder and more wear resistant. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  6. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  7. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  8. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  9. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  10. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...

  11. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...

  12. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  13. Demonstration of Robustness and Integrated Operation of a Series-Bosch System

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Mansell, Matthew J.; Stanley, Christine; Barnett, Bill; Junaedi, Christian; Vilekar, Saurabh A.; Ryan, Kent

    2016-01-01

    Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a NASA-designed RWGS reactor designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith® technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with NASA's RWGS reactor. The test results will be provided in this paper. Separately, in 2015, a semi-continuous CF reactor was designed and fabricated at NASA based on the results from batch CF reactor testing. The batch CF reactor and the semi-continuous CF reactor were individually integrated with an upstream RWGS reactor to demonstrate the system operation and to evaluate performance. Here, we compare the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level.

  14. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation.

    PubMed

    Rincón, Guillermo J; La Motta, Enrique J

    2014-11-01

    US and international regulations pertaining to the control of bilge water discharges from ships have concentrated their attention to the levels of oil and grease rather than to the heavy metal concentrations. The consensus is that any discharge of bilge water (and oily water emulsion within 12 nautical miles from the nearest land cannot exceed 15 parts per million (ppm). Since there is no specific regulation for metal pollutants under the bilge water section, reference standards regulating heavy metal concentrations are taken from the ambient water quality criteria to protect aquatic life. The research herein presented discusses electro-coagulation (EC) as a method to treat bilge water, with a focus on oily emulsions and heavy metals (copper, nickel and zinc) removal efficiency. Experiments were run using a continuous flow reactor, manufactured by Ecolotron, Inc., and a synthetic emulsion as artificial bilge water. The synthetic emulsion contained 5000 mg/L of oil and grease, 5 mg/L of copper, 1.5 mg/L of nickel, and 2.5 mg/l of zinc. The experimental results demonstrate that EC is very efficient in removing oil and grease. For oil and grease removal, the best treatment and cost efficiency was obtained when using a combination of carbon steel and aluminum electrodes, at a detention time less than one minute, a flow rate of 1 L/min and 0.6 A/cm(2) of current density. The final effluent oil and grease concentration, before filtration, was always less than 10 mg/L. For heavy metal removal, the combination of aluminum and carbon steel electrodes, flow rate of 1 L/min, effluent recycling, and 7.5 amps produced 99% zinc removal efficiency. Copper and nickel are harder to remove, and a removal efficiency of 70% was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  16. Artificial organs: recent progress in artificial hearing and vision.

    PubMed

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.

  17. Artificial Intelligence and Information Retrieval.

    ERIC Educational Resources Information Center

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  18. Continuous Glucose Monitoring

    MedlinePlus

    ... costs will be covered. What is an artificial pancreas? A CGM is one part of the “artificial pancreas” systems that are beginning to reach people with ... has played an important role in developing artificial pancreas technology. An artificial pancreas replaces manual blood glucose ...

  19. The role of nuclear reactors in space exploration and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. Onemore » reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built and flew space reactors; it is time to do so again.« less

  20. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.

  1. 10 CFR 72.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...

  2. 10 CFR 72.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...

  3. Unmixed fuel processors and methods for using the same

    DOEpatents

    Kulkarni, Parag Prakash; Cui, Zhe

    2010-08-24

    Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.

  4. Thermionic switched self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.; Brummond, William A.

    1989-01-01

    A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

  5. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  6. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less

  8. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells.

    PubMed

    Inoue, Kengo; Ito, Toshihiro; Kawano, Yoshihiro; Iguchi, Atsushi; Miyahara, Morio; Suzuki, Yoshihiro; Watanabe, Kazuya

    2013-11-01

    Cassette-electrode microbial fuel cells (CE-MFCs) are efficient and scalable devices for electricity production from organic waste. Previous studies have demonstrated that CE-MFCs are capable of generating electricity from artificial wastewater at relatively high efficiencies. In this study, a single-cassette CE-MFC was constructed, and its capacity for electricity generation from cattle manure suspended in water (solid to water ratio of 1:50) was examined. The CE-MFC reactor was operated in batch mode for 49 days; electricity generation became stable 2 weeks after initiating the operation. The maximum power density was measured at 16.3 W m⁻³ on day 26. Sequencing analysis of PCR-amplified 16S rRNA gene fragments obtained from the original manure and from anode biofilms suggested that Chloroflexi and Geobacteraceae were abundant in the anode biofilm (29% and 18%, respectively), whereas no Geobacteraceae sequences were detected in the original manure sample. The results of this study suggest that CE-MFCs can be used to generate electricity from water-suspended cattle manure in a scalable MFC system. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. The SCRAM tool-kit

    NASA Technical Reports Server (NTRS)

    Tamir, David; Flanigan, Lee A.; Weeks, Jack L.; Siewert, Thomas A.; Kimbrough, Andrew G.; Mcclure, Sidney R.

    1994-01-01

    This paper proposes a new series of on-orbit capabilities to support the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These proposed capabilities form a toolkit termed Space Construction, Repair, and Maintenance (SCRAM). SCRAM addresses both intra-Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) needs. SCRAM provides a variety of tools which enable welding, brazing, cutting, coating, heating, and cleaning, as well as corresponding nondestructive examination. Near-term IVA-SCRAM applications include repair and modification to fluid lines, structure, and laboratory equipment inside a shirt-sleeve environment (i.e. inside Spacelab or Space Station). Near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by contaminants. The SCRAM tool-kit also promises future EVA applications involving mass production tasks automated by robotics and artificial intelligence, for construction of large truss, aerobrake, and nuclear reactor shadow shields structures. The leading candidate tool processes for SCRAM, currently undergoing research and development, include Electron Beam, Gas Tungsten Arc, Plasma Arc, and Laser Beam. A series of strategic space flight experiments would make SCRAM available to help conquer the space frontier.

  10. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  11. Light-dependent controlled synthesis and photocatalytic properties of stable Ag{sub 3} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Dong; Liu, Jin-Ku, E-mail: jkliu@ecust.edu.cn; Luo, Chong-Xiao

    2014-12-15

    The silver phosphate (Ag{sub 3}PO{sub 4}) is applied in organic matter photodegradation as a novel catalyst materials, however, its instability reduces the photocatalytic life and limits its further applications. In this work, a series of Ag{sub 3}PO{sub 4} crystalline nanoparticle clusters have been synthesized by a photocontrol method. By comparing their sunlight photocatalytic properties, the Ag{sub 3}PO{sub 4} nanoparticles with dominant (2 2 0) facets have a lower surface energy (1.05 J m{sup −2}) than existing Ag{sub 3}PO{sub 4} crystals which can offer a longer catalyst service life. The photodegradation rate of the Ag{sub 3}PO{sub 4} nanoparticles is about 3more » times that of common Ag{sub 3}PO{sub 4} bulk materials and the sunlight is used as the power source instead of high cost artificial visible light sources in this catalytic system. An effective continuous photodegradation reactor using Ag{sub 3}PO{sub 4} nanoparticles is successfully fabricated to degrade rhodamine B solution. At the same time, this work provides an example for how oxidation photocatalyst works without extra adding sacrificial reagent.« less

  12. Sandia technology: Engineering and science applications

    NASA Astrophysics Data System (ADS)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  13. Stagnation, circulation, and erosion of granular materials through belt conveyor sluice gate

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas; Moralda, Michael; Dunne, Ryan

    2013-11-01

    Control of flow rates in conversion reactors for discrete materials like biomass can be achieved in belt conveyors through a combination of belt speed, hopper size, and aperture opening. As material is extracted from the bottom of the storage hopper, other material cannot achieve plug flow and therefore is restricted from exiting through a sluice-gate type opening. The excess material moves vertically from the opening causing a pile up and recirculation back along the free surface of the hopper. Experimental results obtained through high speed imaging show the position of the stagnation point as well as the rate of circulation is dependent on the mass flow rate achieved and instantaneous fill level. The movement of material into the plug flow along the belt allows verification of deposition models on erodible beds rather than rigid surfaces with artificial roughness of glued particles. Similarly, the pile-up at the exit influences the efficiency of the transport affecting the narrow energy return on investment of biomass resources. The laboratory-scale behavior can therefore be translated into industrial performance metrics for increased operational efficiency. This work is supported by the NSF REU Site Operation E-Tank under award number 1156789.

  14. Study of Methanogenesis while Bioutilisation of Plant Residuals

    NASA Astrophysics Data System (ADS)

    Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.

    respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based upon the biodegradation of organic substances by various microorganisms. vegetable non-edible residual, using artificial inoculum; to study peculiarities of biogas, possibilities to optimize or to reduce the share of methane. fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i)gradual quantitative increasing of Lactobacillus sp. (from 103 to 105 colony forming units (CFU) per ml); (ii)activation of Clostridia sp. (from 102 to 104 CFU/ml); (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). methane content measures revealed traces 0.1-0.4%. granules, the amount of methane in biogas reached 80-90%. biodegradation of vegetable wastes. This inoculum consists of active sludge adapted to wastes mixed with excretes of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time, then that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding of methane reactor to the plant digester.

  15. Removal of Cr, Mn, and Co from textile wastewater by horizontal rotating tubular bioreactor.

    PubMed

    Zeiner, Michaela; Rezić, Tonci; Santek, Bozidar; Rezić, Iva; Hann, Stephan; Stingeder, Gerhard

    2012-10-02

    Environmental pollution by industrial wastewaters polluted with toxic heavy metals is of great concern. Various guidelines regulate the quality of water released from industrial plants and of surface waters. In wastewater treatment, bioreactors with microbial biofilms are widely used. A horizontal rotating tubular bioreactor (HRTB) is a combination of a thin layer and a biodisc reactor with an interior divided by O-ring shaped partition walls as carriers for microbial biomass. Using a biofilm of heavy metal resistant bacteria in combination with this special design provides various advantages for wastewater treatment proven in a pilot study. In the presented study, the applicability of HRTB for removing metals commonly present in textile wastewaters (chromium, manganese, cobalt) was investigated. Artificial wastewaters with a load of 125 mg/L of each metal underwent the bioreactor treatment. Different process parameters (inflow rate, rotation speed) were applied for optimizing the removal efficiency. Samples were drawn along the bioreactor length for monitoring the metal contents on site by UV-vis spectrometry. The metal uptake of the biomass was determined by ICP-MS after acidic microwave assisted digestion. The maximum removal rates obtained for chromium, manganese, and cobalt were: 100%, 94%, and 69%, respectively.

  16. Propellant actuated nuclear reactor steam depressurization valve

    DOEpatents

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  17. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  18. Thermal-hydraulic interfacing code modules for CANDU reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  19. Prerequisites for Deriving Formal Specifications from Natural Language Requirements.

    DTIC Science & Technology

    1983-04-01

    International Joint Conference on Artificial Intell1ence, American Association for Artificial Intelligence, Mento Park, CA, 1981, 385-387. Mann, William C...Centering". Proceedings of the Seventh International Joint Conference on Artificial Intelligence, American Association for Artificial Intelligence, Mento

  20. Artificial life and Piaget.

    PubMed

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  1. Introduction to Concepts in Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  2. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  3. 97. ARAIII. ML1 reactor has been moved into GCRE reactor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. ARA-III. ML-1 reactor has been moved into GCRE reactor building (ARA-608) for examination of corrosion on its underside and repair. May 24, 1963. Ineel photo no. 63-3485. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  4. NEUTRONIC REACTOR MANIPULATING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1962-08-01

    A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

  5. Non-stationarity in experimental travel time measured in a lysimeter: theoretical and modeling lessons from a simplified hydrological system

    NASA Astrophysics Data System (ADS)

    Queloz, Pierre; Carraro, Luca; Bertuzzo, Enrico; Botter, Gianluca; Rao, P. Suresh C.; Rinaldo, Andrea

    2014-05-01

    Experimental data have been collected over a year-long period in a large weighing lysimeter. Natural climatic forcing occurs, except for rainfall which is artificially generated as a given Poisson process at a daily timescale. A constant water table is maintained and excess infiltrated water is discharged through the outlet at the bottom of the lysimeter. Soil water storage and evapotranspiration fluxes (accentuated by a willow tree planted in the lysimeter) were monitored throughout the experiment, so that accurate time series of all in- and out-fluxes are available. Five rainfall inputs were marked with individually traceable passive solutes (fluorobenzoic acids) at various initial soil moisture conditions during the first month of the experiment. Tracer concentrations were measured in the soil water and in the discharge at high temporal resolution. We aim here at directly measuring solute travel times, a proxy of hydrological transport with the main advantage to blend the bulk effects of water velocity distributions. The drivers of water displacement in this hydrological setting - and in any other realistic case - have intrinsically a non-stationary nature (e.g. random rainfall occurrence, seasonal evapotranspiration cycles and moisture-related soil connectivity), but the integration of these processes over a larger time scale (i.e. typically the time scale of the mean travel time) often lead to the stationary assumption thus considerably simplifying the data interpretation. Results clearly show that even in such a hydrological system with reduced complexity, experimental travel time distributions are non-stationary and are strongly influenced by the states encountered by the system during the transport phase. The measurements help at identifying the relevant key features influencing the experimental bulk transport. Modeling efforts have demonstrated the inability of a plug-flow reactor (old-water first reservoir) to reproduce the solute outfluxes dynamics. On the other hand, the well-mixed reactor performs well at long term, but hardly applies for the period directly following the tracer injection.

  6. Is the creation of artificial life morally significant?

    PubMed Central

    Douglas, Thomas; Powell, Russell; Savulescu, Julian

    2013-01-01

    In 2010, the Venter lab announced that it had created the first bacterium with an entirely synthetic genome. This was reported to be the first instance of ‘artificial life,’ and in the ethical and policy discussions that followed it was widely assumed that the creation of artificial life is in itself morally significant. We cast doubt on this assumption. First we offer an account of the creation of artificial life that distinguishes this from the derivation of organisms from existing life and clarify what we mean in asking whether the creation of artificial life has moral significance. We then articulate and evaluate three attempts to establish that the creation of artificial life is morally significant. These appeal to (1) the claim that the creation of artificial life involves playing God, as expressed in three distinct formulations; (2) the claim that the creation of artificial life will encourage reductionist attitudes toward the living world that undermine the special moral value accorded to life; and (3) the worry that artificial organisms will have an uncertain functional status and consequently an uncertain moral status. We argue that all three attempts to ground the moral significance of the creation of artificial life fail, because none of them establishes that the creation of artificial life is morally problematic in a way that the derivation of organisms from existing life forms is not. We conclude that the decisive moral consideration is not how life is created but what non-genealogical properties it possesses. PMID:23810562

  7. Is the creation of artificial life morally significant?

    PubMed

    Douglas, Thomas; Powell, Russell; Savulescu, Julian

    2013-12-01

    In 2010, the Venter lab announced that it had created the first bacterium with an entirely synthetic genome. This was reported to be the first instance of 'artificial life,' and in the ethical and policy discussions that followed it was widely assumed that the creation of artificial life is in itself morally significant. We cast doubt on this assumption. First we offer an account of the creation of artificial life that distinguishes this from the derivation of organisms from existing life and clarify what we mean in asking whether the creation of artificial life has moral significance. We then articulate and evaluate three attempts to establish that the creation of artificial life is morally significant. These appeal to (1) the claim that the creation of artificial life involves playing God, as expressed in three distinct formulations; (2) the claim that the creation of artificial life will encourage reductionist attitudes toward the living world that undermine the special moral value accorded to life; and (3) the worry that artificial organisms will have an uncertain functional status and consequently an uncertain moral status. We argue that all three attempts to ground the moral significance of the creation of artificial life fail, because none of them establishes that the creation of artificial life is morally problematic in a way that the derivation of organisms from existing life forms is not. We conclude that the decisive moral consideration is not how life is created but what non-genealogical properties it possesses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  9. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  10. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment. SUMMARY: The U.S..., Revision 10, ``Operator Licensing Examination Standards for Power Reactors.'' DATES: Submit comments [email protected] . Both of the Office of New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U...

  11. 76 FR 55718 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor...'' for reactor coolant system (RCS) components, as mentioned in 10 CFR 50 Appendix A, GDC-4. The...

  12. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  13. 75 FR 58449 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor... would result in a major inconvenience. Dated: September 17, 2010. Antonio Dias, Chief, Reactor Safety...

  14. 151. ARAIII Reactor building (ARA608) Details of reactor pit and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    151. ARA-III Reactor building (ARA-608) Details of reactor pit and instrument plan. Aerojet-general 880-area/GCRE-608-T-19. Date: November 1958. Ineel index code no. 063-0608-25-013-102678. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  15. 10 CFR 72.120 - General considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor... be designed to store spent fuel and/or solid reactor-related GTCC waste. (1) Reactor-related GTCC...

  16. ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  18. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  19. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  20. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  1. A Review of Gas-Cooled Reactor Concepts for SDI Applications

    DTIC Science & Technology

    1989-08-01

    710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests

  2. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  3. Function of university reactors in operator licensing training for nuclear utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, F.

    1985-11-01

    The director of the Division of the US Nuclear Regulatory Commission in generic letter 84-10, dated April 26, 1984, spoke the requirement that applicants for senior reactor operator licenses for power reactors shall have performed then reactor startups. Simulator startups were not acknowledged. Startups performed on a university reactor are acceptable. The content and results of a five-day program combining instruction and experiments with the Rensselaer reactor are summarized.

  4. Numerical Simulations of a 96-rod Polysilicon CVD Reactor

    NASA Astrophysics Data System (ADS)

    Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang

    2018-05-01

    With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.

  5. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  6. Characteristics and Dose Levels for Spent Reactor Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Cameron W

    2007-01-01

    Current guidance considers highly radioactive special nuclear materials to be those materials that, unshielded, emit a radiation dose [rate] measured at 1 m which exceeds 100 rem/h. Smaller, less massive fuel assemblies from research reactors can present a challenge from the point of view of self protection because of their size (lower dose, easier to handle) and the desirability of higher enrichments; however, a follow-on study to cross-compare dose trends of research reactors and power reactors was deemed useful to confirm/verify these trends. This paper summarizes the characteristics and dose levels of spent reactor fuels for both research reactors andmore » power reactors and extends previous studies aimed at quantifying expected dose rates from research reactor fuels worldwide.« less

  7. Comparing the new generation accelerator driven subcritical reactor system (ADS) to traditional critical reactors

    NASA Astrophysics Data System (ADS)

    Kemah, Elif; Akkaya, Recep; Tokgöz, Seyit Rıza

    2017-02-01

    In recent years, the accelerator driven subcritical reactors have taken great interest worldwide. The Accelerator Driven System (ADS) has been used to produce neutron in subcritical state by the external proton beam source. These reactors, which are hybrid systems, are important in production of clean and safe energy and conversion of radioactive waste. The ADS with the selection of reliability and robust target materials have been the new generation of fission reactors. In addition, in the ADS Reactors the problems of long-lived radioactive fission products and waste actinides encountered in the fission process of the reactor during incineration can be solved, and ADS has come to the forefront of thorium as fuel for the reactors.

  8. Reactor operation environmental information document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselow, J.S.; Price, V.; Stephenson, D.E.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimalmore » impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.« less

  9. Auxiliary reactor for a hydrocarbon reforming system

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A

    A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anodemore » of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.« less

  11. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  12. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  13. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  14. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  15. A comparison of the technological effectiveness of dairy wastewater treatment in anaerobic UASB reactor and anaerobic reactor with an innovative design.

    PubMed

    Jedrzejewska-Cicinska, M; Kozak, K; Krzemieniewski, M

    2007-10-01

    The present research was an investigation of the influence of an innovative design of reactor filled with polyethylene (PE) granulate on model dairy wastewater treatment efficiency under anaerobic conditions compared to that obtained in a typical UASB reactor. The experiment was conducted at laboratory scale. An innovative reactor was designed with the reaction chamber inclined 30 degrees in relation to the ground with upward waste flow and was filled with PE granular material. Raw model dairy wastewater was fed to two anaerobic reactors of different design at the organic loading rate of 4 kg COD m(-3)d(-1). Throughout the experiment, a higher removal efficiency of organic compounds was observed in the reactor with an innovative design and it was higher by 7.1% on average than in the UASB reactor. The total suspended solids was lower in the wastewater treated in the anaerobic reactor with the innovative design. Applying a PE granulated filling in the chamber of the innovative reactor contributed to an even distribution of sludge biomass in the reactor, reducing washout of anaerobic sludge biomass from the reaction chamber and giving a higher organic compounds removal efficiency.

  16. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  17. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  18. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  19. Synthetic Biology and the Moral Significance of Artificial Life: A Reply to Douglas, Powell and Savulescu.

    PubMed

    Christiansen, Andreas

    2016-06-01

    I discuss the moral significance of artificial life within synthetic biology via a discussion of Douglas, Powell and Savulescu's paper 'Is the creation of artificial life morally significant'. I argue that the definitions of 'artificial life' and of 'moral significance' are too narrow. Douglas, Powell and Savulescu's definition of artificial life does not capture all core projects of synthetic biology or the ethical concerns that have been voiced, and their definition of moral significance fails to take into account the possibility that creating artificial life is conditionally acceptable. Finally, I show how several important objections to synthetic biology are plausibly understood as arguing that creating artificial life in a wide sense is only conditionally acceptable. © 2016 John Wiley & Sons Ltd.

  20. CREATIVE COMPUTATION.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS

  1. Development of a novel tissue-engineered nitinol frame artificial trachea with native-like physical characteristics.

    PubMed

    Sakaguchi, Yasuto; Sato, Toshihiko; Muranishi, Yusuke; Yutaka, Yojiro; Komatsu, Teruya; Omori, Koichi; Nakamura, Tatsuo; Date, Hiroshi

    2018-04-24

    Tracheal reconstruction is complicated by the short length to which a trachea can be resected. We previously developed a biocompatible polypropylene frame artificial trachea, but it lacked the strength and flexibility of the native trachea. In contrast, nitinol may provide these physical characteristics. We developed a novel nitinol frame artificial trachea and examined its biocompatibility and safety in canine models. We constructed several nitinol frame prototypes and selected the frame that most closely reproduced the strength of the native canine trachea. This frame was used to create a collagen-coated artificial trachea that was implanted into 5 adult beagle dogs. The artificial trachea was first implanted into the pedicled omentum and placed in the abdomen. Three weeks later, the omentum-wrapped artificial trachea was moved into the thoracic cavity. The thoracic trachea was then partially resected and reconstructed using the artificial trachea. Follow-up bronchoscopic evaluation was performed, and the artificial trachea was histologically examined after the dogs were sacrificed. Stenosis at the anastomosis sites was not observed in any dog. Survival for 18 months or longer was confirmed in all dogs but 1, which died after 9 months due to reasons unrelated to the artificial trachea. Histological examination confirmed respiratory epithelial regeneration on the artificial trachea's luminal surface. Severe foreign body reaction was not detected around the nitinol frame. The novel nitinol artificial trachea reproduced the physical characteristics of the native trachea. We have confirmed cell engraftment, good biocompatibility, and survival of 18 months or longer for this artificial trachea in canine models. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  2. Percutaneous radiofrequency ablation of hepatic tumours: factors affecting technical failure of artificial ascites formation using an angiosheath.

    PubMed

    Kang, T W; Lee, M W; Hye, M J; Song, K D; Lim, S; Rhim, H; Lim, H K; Cha, D I

    2014-12-01

    To evaluate the technical feasibility of artificial ascites formation using an angiosheath before percutaneous radiofrequency ablation (RFA) for hepatic tumours and to determine predictive factors affecting the technical failure of artificial ascites formation. This retrospective study was approved by the institutional review board. One hundred and thirteen patients underwent percutaneous RFA of hepatic tumours after trying to make artificial ascites using an angiosheath to avoid collateral thermal damage. The technical success rate of making artificial ascites using an angiosheath and conversion rate to other techniques after initial failure of making artificial ascites were evaluated. The technical success rate for RFA was assessed. In addition, potential factors associated with technical failure including previous history of transcatheter arterial chemoembolization (TACE) or RFA, type of abdominal surgery, and adjacent perihepatic structures were reviewed. Predictive factors for the technical failure of artificial ascites formation were analysed using multivariate analysis. The technical success rates of artificial ascites formation by angiosheath and that of RFA were 84.1% (95/113) and 97.3% (110/113), respectively. The conversion rate to other techniques after the failure of artificial ascites formation using an angiosheath was 15.9% (18/113). Previous hepatic resection was the sole independent predictive factor affecting the technical failure of artificial ascites formation (p<0.001, odds ratio = 29.03, 95% confidence interval: 4.56-184.69). Making artificial ascites for RFA of hepatic tumours using an angiosheath was technically feasible in most cases. However, history of hepatic resection was a significant predictive factor affecting the technical failure of artificial ascites formation. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Artificial humidification for the mechanically ventilated patient.

    PubMed

    Selvaraj, N

    Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.

  4. Northeast Artificial Intelligence Consortium (NAIC) Review of Technical Tasks. Volume 2, Part 2.

    DTIC Science & Technology

    1987-07-01

    A-A19 774 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUN (MIC) 1/5 YVIEN OF TEOICR. T.. (U) NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM SYRACUSE MY J...NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM (NAIC) *p,* ~ Review of Technical Tasks ,.. 12 PERSONAL AUTHOR(S) (See reverse) . P VI J.F. Allen, P.B. Berra...See reverse) /" I ABSTRACT (Coninue on ’.wrse if necessary and identify by block number) % .. *. -. ’ The Northeast Artificial Intelligence Consortium

  5. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.

  6. Rearing insects on artificial diets

    USDA-ARS?s Scientific Manuscript database

    Insects are reared in the laboratory for various purposes. They may be reared either on their natural food or artificial diets. Developing artificial diets may be difficult and time consuming but once optimized, artificial diets usually are simple to prepare and easy to use. Because they are process...

  7. 49 CFR 176.148 - Artificial lighting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Artificial lighting. 176.148 Section 176.148... Requirements for Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.148 Artificial lighting. Electric lights, except arc lights, are the only form of artificial lighting permitted when...

  8. 16 CFR 1305.1 - Scope and application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ARTIFICIAL EMBERIZING MATERIALS (ASH AND EMBERS) CONTAINING RESPIRABLE FREE-FORM ASBESTOS § 1305.1 Scope and application. In this part 1305 the Consumer Product Safety Commission declares that artificial emberizing... artificial emberizing materials available in separate kits or with artificial fireplace logs for use in...

  9. 49 CFR 176.148 - Artificial lighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Artificial lighting. 176.148 Section 176.148... Requirements for Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.148 Artificial lighting. Electric lights, except arc lights, are the only form of artificial lighting permitted when...

  10. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation.

    PubMed

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

  11. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  12. Moon orientation in adult and young sandhoppers under artificial light.

    PubMed

    Ugolini, Alberto; Boddi, Vieri; Mercatelli, Luca; Castellini, Carlo

    2005-10-22

    Our experiments, carried out at night and during the day on adults and laboratory-born young of the sandhopper Talitrus saltator, deal with the identification and use of the moon as an orientating factor. Sandhoppers were released in an apparatus (a Plexiglas dome) that produced a scenario similar to the natural one (with artificial sky, moon or sun illuminated at different intensities). When tested at night, the adult and young sandhoppers used the artificial moon like the natural one, independently of the intensity of illumination of the artificial sky and moon. In other words, sandhoppers tested at night always identified the artificial moon as the moon and never as the sun. In daytime releases, the seaward orientation failed at low intensities of artificial sky and sun illumination (3.07 and 1.55 microW cm2, respectively), whereas the sun compass was used effectively at higher levels of artificial sun and sky illumination. The innate ability of moon compass orientation in inexpert young sandhoppers was demonstrated even under artificial light.

  13. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

    PubMed Central

    Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713

  14. Artificial intelligence in medicine.

    PubMed

    Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J

    2004-09-01

    Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.

  15. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  16. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOEpatents

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  17. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    DOEpatents

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  18. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  19. System and method for temperature control in an oxygen transport membrane based reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean M.

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  20. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-09-29

    to design a smaller scale version of a naval pressurized water reactor , or to design a new reactor type potentially using a thorium liquid salt...integrated nuclear power system capable of use on destroyer- sized vessels either using a pressurized water reactor or a thorium liquid salt reactor ...nuclear reactors for Navy surface ships. The text of Section 246 is as follows: SEC. 246. STUDY ON THORIUM -LIQUID FUELED REACTORS FOR NAVAL FORCES

  1. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  2. Modification of UASB reactor by using CFD simulations for enhanced treatment of municipal sewage.

    PubMed

    Das, Suprotim; Sarkar, Supriya; Chaudhari, Sanjeev

    2018-02-01

    Up-flow anaerobic sludge blanket (UASB) has been in use since last few decades for the treatment of organic wastewaters. However, the performance of UASB reactor is quite low for treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. In the present research work, a modification was done in the design of UASB to improve mixing of reactor liquid which is important to enhance the reactor performance. The modified UASB (MUASB) reactor was designed by providing a slanted baffle along the height of the reactor having an angle of 5.7° with the vertical wall. A two-dimensional computational fluid dynamics (CFD) simulation of three phase gas-liquid-solid flow in MUASB reactor was performed and compared with conventional UASB reactor. The CFD study indicated better mixing in terms of vorticity magnitude in MUASB reactor as compared to conventional UASB, which was reflected in the reactor performance. The performance of MUASB was compared with conventional UASB reactor for the onsite treatment of domestic sewage as LSW. Around 16% higher total chemical oxygen demand removal efficiency was observed in MUASB reactor as compared to conventional UASB during this study. Therefore, this MUASB model demonstrates a qualitative relationship between mixing and performance during the treatment of LSW. From the study, it seems that MUASB holds promise for field applications.

  3. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  4. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  5. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  6. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  7. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and... 20, 2012 (77 FR 42771), ``License Renewal for the Dow Chemical TRIGA Research Reactor,'' to inform... Chemical Company which would authorize continued operation of the Dow TRIGA Research Reactor. The notice...

  8. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...

  9. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...

  10. PBF Reactor Building (PER620). Camera faces north into highbay/reactor pit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera faces north into high-bay/reactor pit area. Inside from for reactor enclosure is in place. Photographer: John Capek. Date: March 15, 1967. INEEL negative no. 67-1769 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  12. 155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  13. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  14. Breeder Reactors, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  15. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  16. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  17. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  18. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  19. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  20. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  1. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  2. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less

  3. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  4. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  5. Effect of different sintering temperature on fly ash based geopolymer artificial aggregate

    NASA Astrophysics Data System (ADS)

    Abdullah, Alida; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Tahir, Muhammad Faheem Mohd

    2017-04-01

    This research was conducted to study the mechanical and morphology of fly ash based geopolymer as artificial aggregate at different sintering temperature. The raw material that are used is fly ash, sodium hydroxide, sodium silicate, geopolymer artificial aggregate, Ordinary Portland Cement (OPC), coarse aggregate and fine aggregate. The research starts with the preparation of geopolymer artificial aggregate. Then, geopolymer artificial aggregate will be sintered at six difference temperature that is 400°C, 500°C, 600°C, 700°C, 800°C and 900°C to known at which temperature the geopolymer artificial aggregate will become a lightweight aggregate. In order to characterize the geopolymer artificial aggregate the X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF) was done. The testing and analyses involve for the artificial aggregate is aggregate impact test, specific gravity test and Scanning Electron Microscopy (SEM). After that the process will proceed to produce concrete with two type of different aggregate that is course aggregate and geopolymer artificial aggregate. The testing for concrete is compressive strength test, water absorption test and density test. The result obtained will be compared and analyse.

  6. Embodied artificial agents for understanding human social cognition.

    PubMed

    Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon

    2016-05-05

    In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?' © 2016 The Authors.

  7. Perceptual drifts of real and artificial limbs in the rubber hand illusion.

    PubMed

    Fuchs, Xaver; Riemer, Martin; Diers, Martin; Flor, Herta; Trojan, Jörg

    2016-04-22

    In the rubber hand illusion (RHI), transient embodiment of an artificial hand is induced. An often-used indicator for this effect is the "proprioceptive drift", a localization bias of the real hand towards the artificial hand. This measure suggests that the real hand is attracted by the artificial hand. Principles of multisensory integration, however, rather suggest that conflicting sensory information is combined in a "compromise" fashion and that hands should rather be attracted towards each other. Here, we used a new variant of the RHI paradigm in which participants pointed at the artificial hand. Our results indicate that the perceived positions of the real and artificial hand converge towards each other: in addition to the well-known drift of the real hand towards the artificial hand, we also found an opposite drift of the artificial hand towards the real hand. Our results contradict the notion of perceptual substitution of the real hand by the artificial hand. Rather, they are in line with the view that vision and proprioception are fused into an intermediate percept. This is further evidence that the perception of our body is a flexible multisensory construction that is based on integration principles.

  8. Reactor vibration reduction based on giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  9. 21 CFR 868.5375 - Heat and moisture condenser (artificial nose).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heat and moisture condenser (artificial nose). 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5375 Heat and moisture condenser (artificial nose). (a) Identification. A heat and moisture condenser (artificial nose...

  10. 21 CFR 868.5375 - Heat and moisture condenser (artificial nose).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Heat and moisture condenser (artificial nose). 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5375 Heat and moisture condenser (artificial nose). (a) Identification. A heat and moisture condenser (artificial nose...

  11. Sentence Processing in an Artificial Language: Learning and Using Combinatorial Constraints

    ERIC Educational Resources Information Center

    Amato, Michael S.; MacDonald, Maryellen C.

    2010-01-01

    A study combining artificial grammar and sentence comprehension methods investigated the learning and online use of probabilistic, nonadjacent combinatorial constraints. Participants learned a small artificial language describing cartoon monsters acting on objects. Self-paced reading of sentences in the artificial language revealed comprehenders'…

  12. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  13. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  14. An Investigation of the Application of Artificial Neural Networks to Adaptive Optics Imaging Systems

    DTIC Science & Technology

    1991-12-01

    neural network and the feedforward neural network studied is the single layer perceptron artificial neural network . The recurrent artificial neural network input...features are the wavefront sensor slope outputs and neighboring actuator feedback commands. The feedforward artificial neural network input

  15. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  16. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  17. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  18. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  19. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki; Anshari, Rio

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less

  20. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  1. Computed Flow Through An Artificial Heart And Valve

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    NASA technical memorandum discusses computations of flow of blood through artificial heart and through tilting-disk artificial heart valve. Represents further progress in research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478). One purpose of research to exploit advanced techniques of computational fluid dynamics and capabilities of supercomputers to gain understanding of complicated internal flows of viscous, essentially incompressible fluids like blood. Another to use understanding to design better artificial hearts and valves.

  2. Eyelid Dermatitis Caused by Allergic Contact to Acrylates in Artificial Nails.

    PubMed

    Moreira, Jorge; Gonçalves, Rita; Coelho, Pedro; Maio, Tiago

    2017-03-13

    Over the past few years, there has been an increase in cases of allergic contact dermatitis caused by acrylates, because of the growing popularity of artificial nails. Pathological reactions to artificial nails typically occur on or around the nail area. Eyelid contact dermatitis due to artificial nails is rarely seen, especially in a nonoccupational setting. The authors report the case of a 45-year-old female accountant who developed eyelid dermatitis due to artificial nails.

  3. [Succession pattern of artificial vegetation community and its ecological mechanism in an arid desert region].

    PubMed

    Xu, Cailin; Li, Zizhen

    2003-09-01

    Focusing on the artificial vegetation protection system of the Shapotou section of Baotou-Lanzhou railway in the arid desert region of China, this paper examined the dynamics of dominant plant species and the succession pattern of artificial plant community in the process of establishing and developing regional artificial vegetation. It also studied the driving force and the ecologically intrinsic mechanism of the community succession. The results demonstrated that the species composition of the artificial vegetation dramatically changed after 40 years of succession, from original artificial plant community of shrub and semi-shrub to artificial-natural desert plant community with annual herb dominated. During the process of succession, the importance values of artificial shrubs, such as Caragana korshinskii and Hedysarum scoparius, decreased and gradually retreated from the artificial plant community, while the naturally multiplied annual herb, such as Eragrostis poaeoides, Bassia dasyphylla, Salsola ruthenica, Chloris virgata and etc., were presented one after another and gradually became dominant. Besides, Artemisia ordosica always played a key role in the community due to its ability of naturally sowing and self-replacement. This type of succession pattern was closely related to the shortage of precipitation resource in this region and the formation of soil crust which inhibited the reproduction of shrub and perennial herb with deep root systems. This study provided a theoretical ground for realizing persistent development of artificial plant community.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichman, K.; Tsao, J.; Mayfield, M.

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less

  5. Solution of heat removal from nuclear reactors by natural convection

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav

    2014-03-01

    This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  6. Imaging Fukushima Daiichi reactors with muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi tomore » make this determination in the near future.« less

  7. Imaging Fukushima Daiichi reactors with muons

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Lukić, Zarija; Masuda, Koji; Milner, Edward C.; Morris, Christopher L.; Perry, John O.

    2013-05-01

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, F.C.; Gray, D.D.; Hyndman, J.R.

    The thermal, ecological, and social impacts of a 40-reactor NEC are compared to impacts from four 10-reactor NECs and ten 4-reactor power plants. The comparison was made for surrogate sites in western Tennessee. The surrogate site for the 40-reactor NEC is located on Kentucky Lake. A layout is postulated for ten clusters of four reactors each with 2.5-mile spacing between clusters. The plants use natural-draft cooling towers. A transmission system is proposed for delivering the power (48,000 MW) to five load centers. Comparable transmission systems are proposed for the 10-reactor NECs and the 4-reactor dispersed sites delivering power to themore » same load centers. (auth)« less

  9. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  10. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  11. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    NASA Astrophysics Data System (ADS)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  13. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    PubMed

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  14. A novel plant protection strategy for transient reactors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.

    The present plant protection system (PPS) has been defined for use in the TREAT-upgrade (TU) reactor for controlled transient operation of reactor-fuel behavior testing under simulated reactor-accident conditions. A PPS with energy-dependent trip set points lowered worst-case clad temperatures by as much as 180 K, relative to the use of conventional fixed-level trip set points. The multilayered multilevel protection strategy represents the state-of-the-art in terrestrial transient reactor protection systems, and should be applicable to multi-MW space reactors.

  15. Nuclear Energy Policy

    DTIC Science & Technology

    2009-12-10

    Small Modular Reactors Rising cost estimates for large conventional nuclear power plants—widely projected to be $6 billion or more—have contributed to growing interest in proposals for smaller, modular reactors. Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Modular reactor concepts would use a variety of technologies,

  16. Comparative study on the fauna composition of intertidal invertebrates between natural and artificial substrata in the northeastern coast of Jeju Island

    NASA Astrophysics Data System (ADS)

    Cha, Jae-Hoon; Kim, Kwang-Bae; Song, Ji-Na; Kim, In-Soo; Seo, Jeong-Bin; Kwoun, Chul-Hwi

    2013-12-01

    This study was carried out to learn about differences in the sessile macrobenthic fauna communities between the artificial and natural habitats. There were some differences in terms of species composition and dominant species and community structure between two habitat types. The dominant species include Pollicipes mitella and Granuilittorina exigua in natural rocky intertidal zones; Monodonta labio confusa, Ligia exotica, Tetraclita japonica in the artificial rocky intertidal zones. Among all the species, L. exotica and T. japonica occurred only in the artificial rocky intertidal zone. The results of cluster analysis and nMDS analysis showed a distinct difference in community structure between artificial and natural rocky intertidal zones. The fauna in the natural rocky intertidal zones were similar to each other and the fauna in the artificial rocky intertidal zones were divided depending on the slope of the substratum. In the case of a sloping tetrapod, M. labio confusa and P. mitella were dominant, but at the vertical artificial seawall, Cellana nigrolineata, L. exotica T. japonica were dominant. The analysis of the species presented in natural and artificial rocky intertidal areas showed the exclusive presence of 10 species on natural rocks and 12 species on artificial rocks. The species in the natural rocky intertidal area included mobile gastropods and cnidarians (i.e. rock anemones), and the species in the artificial rocky intertidal area mostly included non-mobile attached animals. The artificial novel structure seems to contribute to increasing the heterogeneity of habitats for marine invertebrate species and an increase the species diversity in rocky coastal areas.

  17. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    PubMed

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  18. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less

  19. 21 CFR 868.5375 - Heat and moisture condenser (artificial nose).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Heat and moisture condenser (artificial nose). 868.5375 Section 868.5375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... moisture condenser (artificial nose). (a) Identification. A heat and moisture condenser (artificial nose...

  20. 21 CFR 868.5375 - Heat and moisture condenser (artificial nose).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Heat and moisture condenser (artificial nose). 868.5375 Section 868.5375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... moisture condenser (artificial nose). (a) Identification. A heat and moisture condenser (artificial nose...

  1. 21 CFR 868.5375 - Heat and moisture condenser (artificial nose).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Heat and moisture condenser (artificial nose). 868.5375 Section 868.5375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... moisture condenser (artificial nose). (a) Identification. A heat and moisture condenser (artificial nose...

  2. 33 CFR 67.15-10 - Spoil banks, artificial islands, and dredged channels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Spoil banks, artificial islands..., DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Miscellaneous Marking Requirements § 67.15-10 Spoil banks, artificial islands, and dredged...

  3. 33 CFR 67.15-10 - Spoil banks, artificial islands, and dredged channels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spoil banks, artificial islands..., DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Miscellaneous Marking Requirements § 67.15-10 Spoil banks, artificial islands, and dredged...

  4. 50 CFR 27.73 - Artificial lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Artificial lights. 27.73 Section 27.73... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: Light and Sound Equipment § 27.73 Artificial lights. No unauthorized person shall use or direct the rays of a spotlight or other artificial...

  5. 50 CFR 27.73 - Artificial lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Artificial lights. 27.73 Section 27.73... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: Light and Sound Equipment § 27.73 Artificial lights. No unauthorized person shall use or direct the rays of a spotlight or other artificial...

  6. 50 CFR 27.73 - Artificial lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Artificial lights. 27.73 Section 27.73... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: Light and Sound Equipment § 27.73 Artificial lights. No unauthorized person shall use or direct the rays of a spotlight or other artificial...

  7. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...

  8. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Committee on Reactor Safeguards. [FR Doc. 2013-08131 Filed 4-5-13; 8:45 am] BILLING CODE 7590-01-P ...

  9. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...

  10. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... behavior of the reactor system during a loss-of-coolant accident. Comparisons to applicable experimental...

  11. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  12. 76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...

  13. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  14. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note: A nuclear reactor... core of a nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2...

  15. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  16. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  17. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  18. Next generation fuel irradiation capability in the High Flux Reactor Petten

    NASA Astrophysics Data System (ADS)

    Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo

    2009-07-01

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  19. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    PubMed

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.

    PubMed

    Toh, Ren Wei; Li, Jie Sheng; Wu, Jie

    2018-01-04

    A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.

  1. Employing ISRU Models to Improve Hardware Design

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.

    2010-01-01

    An analytical model for hydrogen reduction of regolith was used to investigate the effects of several key variables on the energy and mass performance of reactors for a lunar in-situ resource utilization oxygen production plant. Reactor geometry, reaction time, number of reactors, heat recuperation, heat loss, and operating pressure were all studied to guide hardware designers who are developing future prototype reactors. The effects of heat recuperation where the incoming regolith is pre-heated by the hot spent regolith before transfer was also investigated for the first time. In general, longer reaction times per batch provide a lower overall energy, but also result in larger and heavier reactors. Three reactors with long heat-up times results in similar energy requirements as a two-reactor system with all other parameters the same. Three reactors with heat recuperation results in energy reductions of 20 to 40 percent compared to a three-reactor system with no heat recuperation. Increasing operating pressure can provide similar energy reductions as heat recuperation for the same reaction times.

  2. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  3. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less

  4. The IRIS Spool-Type Reactor Coolant Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujawski, J.M.; Kitch, D.M.; Conway, L.E.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a light water cooled, 335 MWe power reactor which is being designed by an international consortium as part of the US DOE NERI Program. IRIS features an integral reactor vessel that contains all the major reactor coolant system components including the reactor core, the coolant pumps, the steam generators and the pressurizer. This integral design approach eliminates the large coolant loop piping, and thus eliminates large loss-of-coolant accidents (LOCAs) as well as the individual component pressure vessels and supports. In addition, IRIS is being designed with a long life core and enhanced safetymore » to address the requirements defined by the US DOE for Generation IV reactors. One of the innovative features of the IRIS design is the adoption of a reactor coolant pump (called 'spool' pump) which is completely contained inside the reactor vessel. Background, status and future developments of the IRIS spool pump are presented in this paper. (authors)« less

  5. Eyelid Dermatitis Caused by Allergic Contact to Acrylates in Artificial Nails

    PubMed Central

    Moreira, Jorge; Gonçalves, Rita; Coelho, Pedro; Maio, Tiago

    2017-01-01

    Over the past few years, there has been an increase in cases of allergic contact dermatitis caused by acrylates, because of the growing popularity of artificial nails. Pathological reactions to artificial nails typically occur on or around the nail area. Eyelid contact dermatitis due to artificial nails is rarely seen, especially in a nonoccupational setting. The authors report the case of a 45-year-old female accountant who developed eyelid dermatitis due to artificial nails. PMID:28603598

  6. 10 CFR 171.3 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... holding an operating license for a power reactor, test reactor or research reactor issued under part 50 of... authorizes operation of a power reactor. The regulations in this part also apply to any person holding a...

  7. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2017-12-21

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored.

  8. Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  9. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Astrophysics Data System (ADS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-09-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  10. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  11. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  12. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  13. Plum Brook Reactor Facility Control Room during Facility Startup

    NASA Image and Video Library

    1961-02-21

    Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.

  14. Research Program of a Super Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less

  15. An artificial nociceptor based on a diffusive memristor.

    PubMed

    Yoon, Jung Ho; Wang, Zhongrui; Kim, Kyung Min; Wu, Huaqiang; Ravichandran, Vignesh; Xia, Qiangfei; Hwang, Cheol Seong; Yang, J Joshua

    2018-01-29

    A nociceptor is a critical and special receptor of a sensory neuron that is able to detect noxious stimulus and provide a rapid warning to the central nervous system to start the motor response in the human body and humanoid robotics. It differs from other common sensory receptors with its key features and functions, including the "no adaptation" and "sensitization" phenomena. In this study, we propose and experimentally demonstrate an artificial nociceptor based on a diffusive memristor with critical dynamics for the first time. Using this artificial nociceptor, we further built an artificial sensory alarm system to experimentally demonstrate the feasibility and simplicity of integrating such novel artificial nociceptor devices in artificial intelligence systems, such as humanoid robots.

  16. Artificial enzymes with protein scaffolds: structural design and modification.

    PubMed

    Matsuo, Takashi; Hirota, Shun

    2014-10-15

    Recent development in biochemical experiment techniques and bioinformatics has enabled us to create a variety of artificial biocatalysts with protein scaffolds (namely 'artificial enzymes'). The construction methods of these catalysts include genetic mutation, chemical modification using synthetic molecules and/or a combination of these methods. Designed evolution strategy based on the structural information of host proteins has become more and more popular as an effective approach to construct artificial protein-based biocatalysts with desired reactivities. From the viewpoint of application of artificial enzymes for organic synthesis, recently constructed artificial enzymes mediating oxidation, reduction and C-C bond formation/cleavage are introduced in this review article. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Experiment for search for sterile neutrino at SM-3 reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Cherniy, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Zinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2016-11-01

    In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.

  18. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  19. A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.

    1995-09-01

    This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.

  20. A Roadmap of Innovative Nuclear Energy System

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  1. Levels and limits in artificial selection of communities.

    PubMed

    Blouin, Manuel; Karimi, Battle; Mathieu, Jérôme; Lerch, Thomas Z

    2015-10-01

    Artificial selection of individuals has been determinant in the elaboration of the Darwinian theory of natural selection. Nowadays, artificial selection of ecosystems has proven its efficiency and could contribute to a theory of natural selection at several organisation levels. Here, we were not interested in identifying mechanisms of adaptation to selection, but in establishing the proof of principle that a specific structure of interaction network emerges under ecosystem artificial selection. We also investigated the limits in ecosystem artificial selection to evaluate its potential in terms of managing ecosystem function. By artificially selecting microbial communities for low CO2 emissions over 21 generations (n = 7560), we found a very high heritability of community phenotype (52%). Artificial selection was responsible for simpler interaction networks with lower interaction richness. Phenotype variance and heritability both decreased across generations, suggesting that selection was more likely limited by sampling effects than by stochastic ecosystem dynamics. © 2015 John Wiley & Sons Ltd/CNRS.

  2. SNAP 10A FS-3 reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawley, J.P.; Johnson, R.A.

    1966-08-15

    SNAP 10FS-3 was the first flight-qualified SNAP reactor system to be operated in a simulated space environment. Prestart-up qualification testing, automatic start-up, endurance period performance, extended operation test and reactor shutdown are described as they affected, or were affected by, overall reactor performance. Performance of the reactor control system and the diagnostic instrumentation is critically evaluted.

  3. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  4. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  5. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  6. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as...) The Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation... of Nuclear Reactor Regulation, as appropriate, that they are complete. (c) If part one of the...

  7. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor

    PubMed Central

    Zhang, Shubin; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance. PMID:29121067

  8. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    PubMed

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  9. Pressurized fluidized bed reactor and a method of operating the same

    DOEpatents

    Isaksson, J.

    1996-02-20

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  10. Pressurized fluidized bed reactor and a method of operating the same

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  11. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  12. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  13. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less

  14. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    NASA Astrophysics Data System (ADS)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  15. Assessment of Sensor Technologies for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.

    This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less

  16. 21 CFR 886.3200 - Artificial eye.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Artificial eye. 886.3200 Section 886.3200 Food and... OPHTHALMIC DEVICES Prosthetic Devices § 886.3200 Artificial eye. (a) Identification. An artificial eye is a device resembling the anterior portion of the eye, usually made of glass or plastic, intended to be...

  17. 21 CFR 886.3200 - Artificial eye.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Artificial eye. 886.3200 Section 886.3200 Food and... OPHTHALMIC DEVICES Prosthetic Devices § 886.3200 Artificial eye. (a) Identification. An artificial eye is a device resembling the anterior portion of the eye, usually made of glass or plastic, intended to be...

  18. 9 CFR 381.119 - Declaration of artificial flavoring or coloring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Containers § 381.119 Declaration of artificial flavoring or coloring. (a) When an artificial smoke flavoring or a smoke flavoring is added as an ingredient in the formula of any poultry product, there shall... “Artificial Smoke Flavoring Added” or “Smoke Flavoring Added,” as applicable, and the ingredient statement...

  19. 9 CFR 381.119 - Declaration of artificial flavoring or coloring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Containers § 381.119 Declaration of artificial flavoring or coloring. (a) When an artificial smoke flavoring or a smoke flavoring is added as an ingredient in the formula of any poultry product, there shall... “Artificial Smoke Flavoring Added” or “Smoke Flavoring Added,” as applicable, and the ingredient statement...

  20. 9 CFR 381.119 - Declaration of artificial flavoring or coloring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Containers § 381.119 Declaration of artificial flavoring or coloring. (a) When an artificial smoke flavoring or a smoke flavoring is added as an ingredient in the formula of any poultry product, there shall... “Artificial Smoke Flavoring Added” or “Smoke Flavoring Added,” as applicable, and the ingredient statement...

  1. 16 CFR 1305.4 - Artificial fireplace ash and embers as banned hazardous products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Artificial fireplace ash and embers as... CONSUMER PRODUCT SAFETY ACT REGULATIONS BAN OF ARTIFICIAL EMBERIZING MATERIALS (ASH AND EMBERS) CONTAINING RESPIRABLE FREE-FORM ASBESTOS § 1305.4 Artificial fireplace ash and embers as banned hazardous products. On...

  2. 16 CFR 1305.4 - Artificial fireplace ash and embers as banned hazardous products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Artificial fireplace ash and embers as... CONSUMER PRODUCT SAFETY ACT REGULATIONS BAN OF ARTIFICIAL EMBERIZING MATERIALS (ASH AND EMBERS) CONTAINING RESPIRABLE FREE-FORM ASBESTOS § 1305.4 Artificial fireplace ash and embers as banned hazardous products. On...

  3. Impact of seasonality on artificial drainage discharge under temperate climate conditions

    Treesearch

    Ulrike Hirt; Annett Wetzig; Devandra Amatya; Marisa Matranga

    2011-01-01

    Artificial drainage systems affect all components of the water and matter balance. For the proper simulation of water and solute fluxes, information is needed about artificial drainage discharge rates and their response times. However, there is relatively little information available about the response of artificial drainage systems to precipitation. To address this...

  4. Phylogeny and active ingredients of artificial Ophiocordyceps lanpingensis ascomata

    NASA Astrophysics Data System (ADS)

    Chen, Zihong; Xu, Ling; Yu, Hong; Zeng, Wenbo; Dai, Yongdong; Wang, Yuanbing

    2018-04-01

    To evaluate the morphological character, phylogenesis and functional components of artificial Ophiocordyceps lanpingensis, a related species of O. sinensis. The ascomata of O. lanpingensis was induced with its asexual strain, HLANY0707 and its microscopic feature was described. Phylogenesis was analyzed with ITS-5.8S sequences of HLANY0707, its cultured stroma, and 39 relative sequences of Hirsutella and Ophiocordyceps based on the maximum likelihood tree. Six nucleosides of artificial O. lanpingensis, natural O. lanpingensis and natural O. sinensis were compared with HPLC analysis. Artificial ascomata of O. lanpingensis could be massively produced with HLANY0707 and had similar microscopic features as the nature specimens. Phylogenetic analysis showed that both the artificial and natural O. lanpingensis had closer relationship with O. sinensis, O. xuefengensis, H. uncinata and O. robertsii, the species whose massively cultured ascomata being not reported. Nucleosides of artificial O. lanpingensis were very similar to natural O. sinensis, implying a promising application prospect of artificial O. lanpingensis as an alternative to O. sinensis. It showed a promising way to develop artificial O. lanpingensis and conserve the rare and endangered species, O. sinensis.

  5. Comparison study on mechanical properties single step and three step artificial aging on duralium

    NASA Astrophysics Data System (ADS)

    Tsamroh, Dewi Izzatus; Puspitasari, Poppy; Andoko, Sasongko, M. Ilman N.; Yazirin, Cepi

    2017-09-01

    Duralium is kind of non-ferro alloy that used widely in industrial. That caused its properties such as mild, high ductility, and resistance from corrosion. This study aimed to know mechanical properties of duralium on single step and three step articial aging process. Mechanical properties that discussed in this study focused on toughness value, tensile strength, and microstructure of duralium. Toughness value of single step artificial aging was 0.082 joule/mm2, and toughness value of three step artificial aging was 0,0721 joule/mm2. Duralium tensile strength of single step artificial aging was 32.36 kgf/mm^2, and duralium tensile strength of three step artificial aging was 32,70 kgf/mm^2. Based on microstructure photo of duralium of single step artificial aging showed that precipitate (θ) was not spreading evenly indicated by black spot which increasing the toughness of material. While microstructure photo of duralium that treated by three step artificial aging showed that it had more precipitate (θ) spread evenly compared with duralium that treated by single step artificial aging.

  6. On the Effects of Artificial Feeding on Bee Colony Dynamics: A Mathematical Model

    PubMed Central

    Paiva, Juliana Pereira Lisboa Mohallem; Paiva, Henrique Mohallem; Esposito, Elisa; Morais, Michelle Manfrini

    2016-01-01

    This paper proposes a new mathematical model to evaluate the effects of artificial feeding on bee colony population dynamics. The proposed model is based on a classical framework and contains differential equations that describe the changes in the number of hive bees, forager bees, and brood cells, as a function of amounts of natural and artificial food. The model includes the following elements to characterize the artificial feeding scenario: a function to model the preference of the bees for natural food over artificial food; parameters to quantify the quality and palatability of artificial diets; a function to account for the efficiency of the foragers in gathering food under different environmental conditions; and a function to represent different approaches used by the beekeeper to feed the hive with artificial food. Simulated results are presented to illustrate the main characteristics of the model and its behavior under different scenarios. The model results are validated with experimental data from the literature involving four different artificial diets. A good match between simulated and experimental results was achieved. PMID:27875589

  7. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Shigeyuki; Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582; Iwasaki, Ryotaro

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure.more » Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.« less

  8. Artificial insect wings with biomimetic wing morphology and mechanical properties.

    PubMed

    Liu, Zhiwei; Yan, Xiaojun; Qi, Mingjing; Zhu, Yangsheng; Huang, Dawei; Zhang, Xiaoyong; Lin, Liwei

    2017-09-26

    The pursuit of a high lift force for insect-scale flapping-wing micro aerial vehicles (FMAVs) requires that their artificial wings possess biomimetic wing features which are close to those of their natural counterpart. In this work, we present both fabrication and testing methods for artificial insect wings with biomimetic wing morphology and mechanical properties. The artificial cicada (Hyalessa maculaticollis) wing is fabricated through a high precision laser cutting technique and a bonding process of multilayer materials. Through controlling the shape of the wing venation, the fabrication method can achieve three-dimensional wing architecture, including cambers or corrugations. Besides the artificial cicada wing, the proposed fabrication method also shows a promising versatility for diverse wing types. Considering the artificial cicada wing's characteristics of small size and light weight, special mechanical testing systems are designed to investigate its mechanical properties. Flexural stiffness, maximum deformation rate and natural frequency are measured and compared with those of its natural counterpart. Test results reveal that the mechanical properties of the artificial cicada wing depend strongly on its vein thickness, which can be used to optimize an artificial cicada wing's mechanical properties in the future. As such, this work provides a new form of artificial insect wings which can be used in the field of insect-scale FMAVs.

  9. Can artificial techniques supply morally neutral human embryos for research?

    PubMed

    Cheshire, William P; Jones, Nancy L

    2005-01-01

    Amidst controversy surrounding research on human embryos, biotechnology has conceived a substitute in the artificial human embryo. We examine the claim that novel embryos constructed artificially should be exempt from ethical restraints appropriate for research on embryos that come into being through natural processes. Morally relevant differences in intrinsic value depend on the sense in which the entity may be artificial, whether in regard to constituent matter, genetic or cellular form, generative means, or intended purpose. Considering each of these Aristotelian categories from a physicalist viewpoint, technology can achieve only limited degrees of artificiality because redesigned embryos still retain most of their natural features and relationships. From an essentialist viewpoint, the very limits of technology preclude the capability of manipulating the fundamental nature or essence of the individual who, even at the embryonic stage of life, cannot be made to be artificial through and through. A human may possess artificially contributed attributes but cannot be an artificial being. Classification of novel human organisms as artificial, therefore, is insufficient grounds by which to relinquish the principle that human moral status should be recognized for all living beings of human origin. In uncertain cases, at least the possibility of special human moral status should be considered present in organisms that are derived asexually, are developmentally defective, or are otherwise technologically altered.

  10. AIonAI: a humanitarian law of artificial intelligence and robotics.

    PubMed

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation.

  11. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  12. Reactor vessel support system. [LMFBR

    DOEpatents

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  13. NUCLEAR REACTOR AS THE OBJECT OF CONTROL. AUTOMATIC CONTROL OF AIRCRAFT ENGINES . B.S. Voronkev Collection of Articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BS> The dynamics of a power reactor is treated in some detail. Although the reactor is described by a nonlinear differential equation of the seventh order, a two-group approximstion with prompt neutrons and one averaged group of delayed neutrons may be used. When the reactor is in equilibrium, the reactor equation may be linearized in two ways. The effects of positive and negative coefficients of tins of the reactor are discussed. The nonlinear character of the control rods is trested. (D.L.C.)

  14. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, Edward F.; Olson, Arne P.; Wade, David C.; Robinson, Bryan W.

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  15. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  16. Special features of the inverse-beta-decay reaction proceeding on a proton in a reactor-antineutrino flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopeikin, V. I., E-mail: kopeikin46@yandex.ru; Skorokhvatov, M. D., E-mail: skorokhvatov-md@nrcki.ru

    2017-03-15

    The evolution of the reactor-antineutrino spectrum and the evolution of the spectrum of positrons from the inverse-beta-decay reaction in the course of reactor operation and after reactor shutdown are considered. The present-day status in determining the initial reactor-antineutrino spectrum on the basis of spectra of beta particles from mixtures of products originating from uranium and plutonium fission is described. A local rise of the experimental spectrum of reactor antineutrinos with respect to the expected spectrum is studied.

  17. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  18. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Paul Y

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  19. Nuclear engine flow reactivity shim control

    DOEpatents

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  20. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  1. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  2. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  3. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  4. Thorium fueled reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  5. [Effects of artificial reef construction to marine ecosystem services value: a case of Yang-Meikeng artificial reef region in Shenzhen].

    PubMed

    Qin, Chuan-xin; Chem, Pi-mao; Jia, Xiao-ping

    2011-08-01

    Based on the researches and statistic data of Yangmeikeng artificial reef region in Shenzhen in 2008 and by the method of ecosystem services value, this paper analyzed the effects of artificial reef construction in the region on the marine ecosystem services. After the artificial reef construction, the tourism service value in the region decreased from 87% to 42%, food supply service value increased from 7% to 27%, and the services value of raw material supply, climatic regulation, air quality regulation, water quality regulation, harmful organism and disease regulation, and knowledge expansion had a slight increase, as compared to the surrounding coastal areas. The total services value per unit area of Yangmeikeng artificial reef region in 2008 was 1714.7 x 10(4) yuan x km(-2), far higher than the mean services value of coastal marine ecosystem in the surrounding areas of Shenzhen and in the world. Artificial reef construction affected and altered the structure of regional marine ecosystem services value, and improved the regional ecosystem services value, being of significance for the rational exploitation and utilization of marine resources and the successful recovery of damaged marine eco-environment and fish resources. Utilizing the method of ecosystem services value to evaluate artificial reef construction region could better elucidate the benefits of artificial reef construction, effectively promote the development of our artificial reef construction, and improve the management of marine ecosystem.

  6. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, suchmore » as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.« less

  7. Small space reactor power systems for unmanned solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  8. A brief history of design studies on innovative nuclear reactors

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2014-09-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  9. Artificial Exo-Society Modeling: a New Tool for SETI Research

    NASA Astrophysics Data System (ADS)

    Gardner, James N.

    2002-01-01

    One of the newest fields of complexity research is artificial society modeling. Methodologically related to artificial life research, artificial society modeling utilizes agent-based computer simulation tools like SWARM and SUGARSCAPE developed by the Santa Fe Institute, Los Alamos National Laboratory and the Bookings Institution in an effort to introduce an unprecedented degree of rigor and quantitative sophistication into social science research. The broad aim of artificial society modeling is to begin the development of a more unified social science that embeds cultural evolutionary processes in a computational environment that simulates demographics, the transmission of culture, conflict, economics, disease, the emergence of groups and coadaptation with an environment in a bottom-up fashion. When an artificial society computer model is run, artificial societal patterns emerge from the interaction of autonomous software agents (the "inhabitants" of the artificial society). Artificial society modeling invites the interpretation of society as a distributed computational system and the interpretation of social dynamics as a specialized category of computation. Artificial society modeling techniques offer the potential of computational simulation of hypothetical alien societies in much the same way that artificial life modeling techniques offer the potential to model hypothetical exobiological phenomena. NASA recently announced its intention to begin exploring the possibility of including artificial life research within the broad portfolio of scientific fields comprised by the interdisciplinary astrobiology research endeavor. It may be appropriate for SETI researchers to likewise commence an exploration of the possible inclusion of artificial exo-society modeling within the SETI research endeavor. Artificial exo-society modeling might be particularly useful in a post-detection environment by (1) coherently organizing the set of data points derived from a detected ETI signal, (2) mapping trends in the data points over time (assuming receipt of an extended ETI signal), and (3) projecting such trends forward to derive alternative cultural evolutionary scenarios for the exo-society under analysis. The latter exercise might be particularly useful to compensate for the inevitable time lag between generation of an ETI signal and receipt of an ETI signal on Earth. For this reason, such an exercise might be a helpful adjunct to the decisional process contemplated by Paragraph 9 of the Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence.

  10. WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Looking Northeast in Oxide Building at Reactors on Second Floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northeast in Oxide Building at Reactors on Second Floor Including Reactor One (Left) and Reactor Two (Right) - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO

  12. Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi

    1997-09-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.

  13. High throughput semiconductor deposition system

    DOEpatents

    Young, David L.; Ptak, Aaron Joseph; Kuech, Thomas F.; Schulte, Kevin; Simon, John D.

    2017-11-21

    A reactor for growing or depositing semiconductor films or devices. The reactor may be designed for inline production of III-V materials grown by hydride vapor phase epitaxy (HVPE). The operating principles of the HVPE reactor can be used to provide a completely or partially inline reactor for many different materials. An exemplary design of the reactor is shown in the attached drawings. In some instances, all or many of the pieces of the reactor formed of quartz, such as welded quartz tubing, while other reactors are made from metal with appropriate corrosion resistant coatings such as quartz or other materials, e.g., corrosion resistant material, or stainless steel tubing or pipes may be used with a corrosion resistant material useful with HVPE-type reactants and gases. Using HVPE in the reactor allows use of lower-cost precursors at higher deposition rates such as in the range of 1 to 5 .mu.m/minute.

  14. Nuclear reactor vessel fuel thermal insulating barrier

    DOEpatents

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  15. Nuclear reactors built, being built, or planned, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor ismore » an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less

  16. Nuclear component horizontal seismic restraint

    DOEpatents

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  17. Safety control circuit for a neutronic reactor

    DOEpatents

    Ellsworth, Howard C.

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  18. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snoj, L.; Sklenka, L.; Rataj, J.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three differentmore » research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)« less

  19. Eddy Current Flow Measurements in the FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.

    2017-02-02

    The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less

  20. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

Top