Sample records for reactors physics physique

  1. Effect of Sports Club Activities on the Physique and Physical Fitness of Young Japanese Males

    ERIC Educational Resources Information Center

    Noguchi, Takanori; Demura, Shin-ichi; Shimada, Shigeru; Kobayashi, Hidetsugu; Yamaji, Shunsuke; Yamada, Takayoshi

    2013-01-01

    This study compared the growth and development of the physique and physical fitness of young Japanese males who belong to sports clubs and those who did not based on longitudinal data obtained over four years. Physique and physical fitness tests were administered to 253 healthy male technical college students four times from the 9 to 12 grade.…

  2. The Social Physique Anxiety Scale: construct validity in adolescent females.

    PubMed

    McAuley, E; Burman, G

    1993-09-01

    Hart, Leary, and Rejeski have developed the Social Physique Anxiety Scale (SPA), a measure of the anxiety experienced in response to having one's physique evaluated by other people. The present study cross-validated the psychometric properties of this measure in a sample (N = 236) of adolescent competitive female gymnasts. Employing structural equation modeling, the proposed unidimensional factor structure of the SPA was supported, although some questions regarding the robustness of the fit are raised. Construct validity was demonstrated by significant inverse relationships between aspects of physical efficacy (perceived physical ability and physical self-presentation confidence) and degree of social physique anxiety. These findings are discussed in terms of possible alternative factor structures and integration of social anxiety and other psychosocial constructs to better understand physical activity behavior.

  3. An examination of eating attitudes and physical activity levels of Turkish university students with regard to self-presentational concern.

    PubMed

    Aşçi, F Hülya; Tüzün, Macide; Koca, Canan

    2006-11-01

    This study aimed to examine eating attitudes and physical activity level of young women and men university students with regard to social physique anxiety level. 482 university students participated in this study voluntarily. "Eating Attitude Test (EAT-40)", "Social Physique Anxiety Scale" and "Physical Activity Assessment Questionnaire" were used to assess the eating attitude, social physique anxiety and physical activity level of participants, respectively. Women and men participants in this study were assigned to high (HSPA) and low (LSPA) social physique anxiety groups with respect to their median scores. Men had favorable eating attitudes and higher physical activity level than women. In addition, participants in the HSPA group had unfavorable eating attitudes and higher physical activity MET values than participants in the LSPA group. On the other hand, groupxgender interaction was only significant for the eating attitudes scores but, not for physical activity level. Women in the HSPA group scored higher on the EAT-40 than men in HSPA and women and men in the LSPA groups.

  4. Social Physique Anxiety and Intention to Be Physically Active: A Self-Determination Theory Approach.

    PubMed

    Sicilia, Álvaro; Sáenz-Alvarez, Piedad; González-Cutre, David; Ferriz, Roberto

    2016-12-01

    Based on self-determination theory, the purpose of this study was to analyze the relationship between social physique anxiety and intention to be physically active, while taking into account the mediating effects of the basic psychological needs and behavioral regulations in exercise. Having obtained parents' prior consent, 390 students in secondary school (218 boys, 172 girls; M age  = 15.10 years, SD = 1.94 years) completed a self-administered questionnaire during physical education class that assessed the target variables. Preliminary analyses included means, standard deviations, and bivariate correlations among the target variables. Next, a path analysis was performed using the maximum likelihood estimation method with the bootstrapping procedure in the statistical package AMOS 19. Analysis revealed that social physique anxiety negatively predicted intention to be physically active through mediation of the basic psychological needs and the 3 autonomous forms of motivation (i.e., intrinsic motivation, integrated regulation, and identified regulation). The results suggest that social physique anxiety is an internal source of controlling influence that hinders basic psychological need satisfaction and autonomous motivation in exercise, and interventions aimed at reducing social physique anxiety could promote future exercise.

  5. Social Physique Anxiety, Obligation to Exercise, and Exercise Choices among College Students

    ERIC Educational Resources Information Center

    Chu, Hui-Wen; Bushman, Barbara A.; Woodard, Rebecca J.

    2008-01-01

    Objective: The authors examined relationships among social physique anxiety, obligation to exercise, and exercise choices. Participants and Methods: College students (N = 337; 200 women, 137 men) volunteered to complete 3 questionnaires: the Social Physique Anxiety Scale (SPAS), Obligatory Exercise Questionnaire (OEQ), and Physical Activity…

  6. Physical and Physiological Correlates of Social Physique Anxiety in College Students

    ERIC Educational Resources Information Center

    Yaman, Çetin

    2017-01-01

    The purpose of the present study was to explore the relationship among social physique anxiety, physical measures such as body fat and physical self-concept. 367 (226 male and 141 female) college students ranging in age from 21 to 33 participated in the study. Participants were randomly chosen among the healthy students without any metabolic and…

  7. Niveaux d'étude du cerveau, et sagesse physique

    NASA Astrophysics Data System (ADS)

    Toulouse, Gérard

    1993-02-01

    The brain is a complex spatio-temporal affair. Several brain theories propose the definition of three superposed levels of study. But physics, though the experience of condensed matter physics, suggests that it is unwise to enforce onto brain theories a unified hierarchical scheme, the inspiration for which seems to come from the realm of sub-molecular physics. Le cerveau est une affaire spatio-temporelle complexe. Plusieurs théories du cerveau proposent de définir trois niveaux d'études superposés. Mais la physique, à travers l'expérience de la physique de la matière condensée, suggère qu'il n'est pas sage d'imposer sur les théories du cerveau un schéma hiérarchique unifié, dont l'inspiration semble provenir du domaine de la physique sub-moléculaire.

  8. Les Annales de Réadaptation et de Médecine Physique publication in 2008.

    PubMed

    Thevenon, A

    2009-03-01

    In 2008 the European Society of Physical and Rehabilitation Medicine (ESPRM) established a network of European journal and promoted collaboration among the European Physical and Rehabilitation Medicine (PRM) journals. In this connection, the authors present here the articles published in the Annales de Réadaptation et Médecine Physique in 2008. In the same time, the European Journal presents in the Annales de Réadaptation et Médecine Physique its main articles of year 2008. The papers published in the Annales de Réadaptation et Médecine Physique in 2008 were reviewed, classified by topics and discussed. Sixty-four papers are described, with a coverage of all the fields of PRM, from childhood to elderly, from basic science to clinical research, from case studies to epidemiological works. The aim of this paper was to provide physiatrists with some articles of the Annales de Réadaptation et Médecine Physique related to their working condition. Next year, the name of our journal will become Annals of Physical and Rehabilitation Medicine, as most of the articles will be published in French and in English, with the hope that more and more European authors and readers will find it more convenient.

  9. Examining the Moderating Effect of Appearance Impression Motivation on the Relationship between Perceived Physical Appearance and Social Physique Anxiety

    ERIC Educational Resources Information Center

    Amorose, Anthony J.; Hollembeak, Jill

    2005-01-01

    Despite the conceptual importance of impression motivation in predicting social anxiety (Leary & Kowalski, 1995; Schlenker & Leary, 1982), no research has tested the link between impression motivation specifically regarding one's physical appearance (appearance impression motivation, or AIM) and social physique anxiety (SPA). The purpose of this…

  10. Social Physique Anxiety and Intention to Be Physically Active: A Self-Determination Theory Approach

    ERIC Educational Resources Information Center

    Sicilia, Álvaro; Sáenz-Alvarez, Piedad; González-Cutre, David; Ferriz, Roberto

    2016-01-01

    Purpose: Based on self-determination theory, the purpose of this study was to analyze the relationship between social physique anxiety and intention to be physically active, while taking into account the mediating effects of the basic psychological needs and behavioral regulations in exercise. Method: Having obtained parents' prior consent, 390…

  11. Un regard international sur la sécurité nucléaire

    NASA Astrophysics Data System (ADS)

    Birkhofer, Adolf

    2002-10-01

    Safety has always been an important objective in nuclear technology. Starting with a set of sound physical principles and prudent design approaches, safety concepts have gradually been refined and cover now a wide range of provisions related to design, quality and operation. Research, the evaluation of operating experiences and probabilistic risk assessments constitute an essential basis and international co-operation plays a significant role in that context. Concerning future developments a major objective for new reactor concepts, such as the EPR, is to practically exclude a severe core damage accident with large scale consequences outside the plant. To cite this article: A. Birkhofer, C. R. Physique 3 (2002) 1059-1065.

  12. Does Body Mass Index Influence Behavioral Regulations, Dispositional Flow and Social Physique Anxiety in Exercise Setting?

    PubMed Central

    Ersöz, Gözde; Altiparmak, Ersin; Aşçı, F. Hülya

    2016-01-01

    The purpose of this study was to examine differences in behavioral regulations, dispositional flow, social physique anxiety of exercisers in terms of body mass index (BMI). 782 university students participated in this study. Dispositional Flow State Scale-2, Behavioral Regulations in Exercise Questionnaire-2, Social Physique Anxiety Scale and Physical Activity Stages of Change Questionnaire were administered to participants. After controlling for gender, analysis indicated significant differences in behavioral regulations, dispositional flow and social physique anxiety of exercise participants with regards to BMI. In summary, the findings demonstrate that normal weighted participants exercise for internal reasons while underweighted participants are amotivated for exercise participation. Additionally, participants who are underweight had higher dispositional flow and lower social physique anxiety scores than other BMI classification. Key points Normal weighted participants exercise for internal reasons. Underweighted participants are amotivated for exercise participation. Underweighted participants had higher dispositional flow. Underweighted participants have lower social physique anxiety scores than normal weighted, overweight and obese participants. PMID:27274667

  13. The Examination of the Correlation between Social Physique Anxiety Levels and Narcissism Levels of the Students Who Studied at the SPES

    ERIC Educational Resources Information Center

    Gezer, Engin

    2014-01-01

    The aim of the study was to discover the correlation between social physique anxiety levels and narcissism levels of the students of the school of the physical education and sports. A total of 308 students who studied at different academic departments of the school of the physical education and sports of Mustafa Kemal University participated in…

  14. Optimizing Operational Physical Fitness (Optimisation de L’Aptitude Physique Operationnelle)

    DTIC Science & Technology

    2009-01-01

    NORTH ATLANTIC TREATY ORGANISATION RESEARCH AND TECHNOLOGY ORGANISATION AC/323(HFM-080)TP/200 www.rto.nato.int RTO TECHNICAL REPORT TR... RESEARCH AND TECHNOLOGY ORGANISATION AC/323(HFM-080)TP/200 www.rto.nato.int RTO TECHNICAL REPORT TR-HFM-080 Optimizing Operational Physical...Fitness (Optimisation de l’aptitude physique opérationnelle) Final Report of Task Group 019. ii RTO-TR-HFM-080 The Research and

  15. Crowd Confrontation and Non-Lethal Weapons: A Literature Review and Conceptual Model

    DTIC Science & Technology

    2008-03-01

    what he knows (cognitive state), and what he feels physically (physical state) or psychologically (emotional state). 7. Communication (i.e. the act of...ressent physiquement (état physique) ou psychologiquement (état émotionnel). 7. La communication (c.-à-d. l’action de transmettre de l’information) joue...riot situations during peacekeeping operations, for example in Drvar, Bosnia, in April 1998 [ Coombs , 2006]. The Canadian Forces thus have a need to

  16. Social physique anxiety and physical activity behaviour of male and female exercisers.

    PubMed

    Portman, Robert M; Bradbury, Jane; Lewis, Kiara

    2018-03-01

    Despite females consistently reporting greater social physique anxiety (SPA), previous literature has yet to demonstrate whether SPA gender differences are linked to the way males and females perform physical activity. This study investigated an association between SPA and physical activity frequency, history of exercise, and physical activity intensity. Participants were represented by currently active users (N = 33 males; N = 31 females) of an on-campus university-run gym and completed a background physical activity questionnaire and the nine-item Social Physique Anxiety Scale. Participants also performed an exercise session at a self-selected level of exertion, with the intensity of each session measured via heart rate monitor. SPA was not associated with physical activity frequency, history of exercise (length of gym membership), or intensity for male and female exercisers. With respect to male participants, females reported higher SPA and a preference for performing higher intensity physical activity. Females and males also indicated a preference for performing aerobic and anaerobic physical activity respectively. Our findings suggest the experience of SPA does not deter body-conscious individuals from the performance of regular physical activity. Findings also suggest the discrepancy in male and female SPA is not linked to differences in the way physical activity is performed.

  17. The role of physical activity, body mass index and maturity status in body-related perceptions and self-esteem of adolescents.

    PubMed

    Altıntaş, A; Aşçı, F H; Kin-İşler, A; Güven-Karahan, B; Kelecek, S; Özkan, A; Yılmaz, A; Kara, F M

    2014-01-01

    Adolescence represents a transitional period which is marked by physical, social and psychological changes. Changes in body shape and physical activity especially alter and shape the psychological well-being of adolescents. The purpose of this study was to determine the role of physical activity level, body mass index and maturity status in body-related perception and self-esteem of 11-18 years old adolescents. A total of 1012 adolescents participated in this study. The "Social Physique Anxiety Scale", "Body Image Satisfaction Scale", "Physical Self-Perception Profile for Children" and "Rosenberg Self-Esteem Inventory" were administered. Physical activity level and body mass index were assessed using the "Physical Activity Questionnaire" and "Bioelectrical Impedance Analyzer", respectively. Regression analysis indicated that body mass index was the only predictor of perceived body attractiveness, social physique anxiety, body image satisfaction and self-esteem for female adolescents. For male adolescents, both physical activity and body mass index were correlated with perceived body attractiveness and social physique anxiety. Pubertal status were not correlated with self-esteem and body-related perceptions for both males and females adolescents. In summary, body mass index and physical activity plays an important role in body-related perceptions and self-esteem of adolescents.

  18. Canadian Journal of Physics. Volume 69, Number 2 (Revue Canadienne de Physique. Volume 69, Numero 2

    DTIC Science & Technology

    1991-02-01

    4KNational Research Conseil national Council Canada de recherches Canada SMC CtRC Canadian Journal Revue canadienne of Physics de physique Volume 69...Number 2, February 1991 Volume 69, num~ro 2, W~rier 1991 AD-A235 711 Aviliable for $36.00 from National Research Council of Canada, Ottawa, Ont...Publid par THE NATIONAL RESEARCH COUNCIL OF CANADA LE CONSEIL NATIONAL DE RECHERCHES DU CANADA Editor R. W. NICHOLLS Directeur scientifique Editorial

  19. Social physique anxiety, obligation to exercise, and exercise choices among college students.

    PubMed

    Chu, Hui-Wen; Bushman, Barbara A; Woodard, Rebecca J

    2008-01-01

    The authors examined relationships among social physique anxiety, obligation to exercise, and exercise choices. College students (N = 337; 200 women, 137 men) volunteered to complete 3 questionnaires: the Social Physique Anxiety Scale (SPAS), Obligatory Exercise Questionnaire (OEQ), and Physical Activity Specification Survey (PASS). On the SPAS, men (M score = 31.9 +/- 8.8) differed from women (M score = 37.3 +/- 8.3; p = .001). Men (M score = 43.0 +/- 9.9) and women (M score = 43.0 +/- 9.6) responded similarly (p = .94) on the OEQ. There was no interaction between sex and exercise level on the SPAS or OEQ. When separated by low, medium, and high SPAS scores, neither OEQ nor exercise scores differed. Obligation to exercise appears to be similar for both sexes. Women, however, appear to have higher levels of anxiety regarding how others evaluate their physique than do men. The combination of level of activity and sex do not appear to be associated with social physique anxiety or obligation to exercise.

  20. Examining Combinations of Social Physique Anxiety and Motivation Regulations Using Latent Profile Analysis

    ERIC Educational Resources Information Center

    Ullrich-French, Sarah; Cox, Anne E.; Cooper, Brittany Rhoades

    2016-01-01

    Previous research has used cluster analysis to examine how social physique anxiety (SPA) combines with motivation in physical education. This study utilized a more advanced analytic approach, latent profile analysis (LPA), to identify profiles of SPA and motivation regulations. Students in grades 9-12 (N = 298) completed questionnaires at two time…

  1. Give or Take a Few? Comparing Measured and Self-Reported Height and Weight as Correlates of Social Physique Anxiety

    ERIC Educational Resources Information Center

    Gay, Jennifer; Monsma, Eva V.; Torres-McGehee, Toni

    2009-01-01

    Statistically controlling for physical size is common practice, especially in self-perception studies uncovering the etiology of maladaptive behaviors, such as eating disorders. For example, social physique anxiety (SPA)--apprehension about social evaluations while presenting oneself in front of others (Leary, 1992)--is a prominent correlate of…

  2. Exercise dependence, social physique anxiety, and social support in experienced and inexperienced bodybuilders and weightlifters

    PubMed Central

    Hurst, R.; Hale, B.; Smith, D.; Collins, D.

    2000-01-01

    Objectives—To investigate psychological correlates of exercise dependence in experienced and inexperienced bodybuilders and weightlifters. Secondary objectives included measuring social physique anxiety, bodybuilding identity, and social support among bodybuilders and weightlifters. Methods—Thirty five experienced bodybuilders, 31 inexperienced bodybuilders, and 23 weightlifters completed the bodybuilding dependence scale, a bodybuilding version of the athletic identity measurement scale, the social physique anxiety scale, and an adapted version of the social support survey-clinical form. Results—A between subjects multivariate analysis of variance was calculated on the scores of the three groups of lifters for the four questionnaires. Univariate F tests and follow up tests indicated that experienced bodybuilders scored significantly higher than inexperienced bodybuilders and weightlifters on bodybuilding dependence (p<0.001), social identity and exclusivity subscales of bodybuilding identity (p<0.001), and social support scales (p<.001), and significantly lower on social physique anxiety (p<0.001). Conclusion—Experienced bodybuilders exhibit more exercise dependence, show greater social support behaviour, and experience less social physique anxiety than inexperienced bodybuilders and weightlifters. Key Words: bodybuilding; exercise dependence; social physical anxiety; social support; athletic identity PMID:11131230

  3. Caracterisation Physique des Sols Camp Militaire de Petawawa (Physical Characterization of the Soil in Military Camp of Petawawa).

    DTIC Science & Technology

    1979-10-01

    AD-AO95 392 DEFENCE RESEARCH ESTABLISHMENT OTTAWA (ONTARIO) FI6 8/13 CARACTERISATION PHY SI QUE DES SOLS CAMP MILITAIRE DE PETAWAWA (P--ETC(U) OCT 79...defense nationale 2b, GROUP Ottawa, Ontario -KIA-04----- , I D )kI1,vlt Nr Ti fti CARACTERISATION PHYSIQUE DES SOLS, BASE DES FORCES CANADIENNES PETAWAAA I

  4. Examining the Stability of the 7-Item Social Physique Anxiety Scale Using a Test-Retest Method

    ERIC Educational Resources Information Center

    Scott, Lisa A.; Burke, Kevin L.; Joyner, A. Barry; Brand, Jennifer S.

    2004-01-01

    This study examined the stability of the 7-item Social Physique Anxiety Scale (SPAS-7) using a test-retest method. Collegiate, undergraduate (N = 201) students completed two administrations of the SPAS-7, with a 14-day separation between the administrations. The scale was administered either at the beginning or end of the physical activity class.…

  5. What’s in a Surname? Physique, Aptitude, and Sports Type Comparisons between Tailors and Smiths

    PubMed Central

    Voracek, Martin; Rieder, Stephan; Stieger, Stefan; Swami, Viren

    2015-01-01

    Combined heredity of surnames and physique, coupled with past marriage patterns and trade-specific physical aptitude and selection factors, may have led to differential assortment of bodily characteristics among present-day men with specific trade-reflecting surnames (Tailor vs. Smith). Two studies reported here were partially consistent with this genetic-social hypothesis, first proposed by Bäumler (1980). Study 1 (N = 224) indicated significantly higher self-rated physical aptitude for prototypically strength-related activities (professions, sports, hobbies) in a random sample of Smiths. The counterpart effect (higher aptitude for dexterity-related activities among Tailors) was directionally correct, but not significant, and Tailor-Smith differences in basic physique variables were nil. Study 2 examined two large total-population-of-interest datasets (Austria/Germany combined, and UK: N = 7001 and 20532) of men’s national high-score lists for track-and-field events requiring different physiques. In both datasets, proportions of Smiths significantly increased from light-stature over medium-stature to heavy-stature sports categories. The predicted counterpart effect (decreasing prevalences of Tailors along these categories) was not supported. Related prior findings, the viability of possible alternative interpretations of the evidence (differential positive selection for trades and occupations, differential endogamy and assortative mating patterns, implicit egotism effects), and directions for further inquiry are discussed in conclusion. PMID:26161803

  6. What's in a Surname? Physique, Aptitude, and Sports Type Comparisons between Tailors and Smiths.

    PubMed

    Voracek, Martin; Rieder, Stephan; Stieger, Stefan; Swami, Viren

    2015-01-01

    Combined heredity of surnames and physique, coupled with past marriage patterns and trade-specific physical aptitude and selection factors, may have led to differential assortment of bodily characteristics among present-day men with specific trade-reflecting surnames (Tailor vs. Smith). Two studies reported here were partially consistent with this genetic-social hypothesis, first proposed by Bäumler (1980). Study 1 (N = 224) indicated significantly higher self-rated physical aptitude for prototypically strength-related activities (professions, sports, hobbies) in a random sample of Smiths. The counterpart effect (higher aptitude for dexterity-related activities among Tailors) was directionally correct, but not significant, and Tailor-Smith differences in basic physique variables were nil. Study 2 examined two large total-population-of-interest datasets (Austria/Germany combined, and UK: N = 7001 and 20,532) of men's national high-score lists for track-and-field events requiring different physiques. In both datasets, proportions of Smiths significantly increased from light-stature over medium-stature to heavy-stature sports categories. The predicted counterpart effect (decreasing prevalences of Tailors along these categories) was not supported. Related prior findings, the viability of possible alternative interpretations of the evidence (differential positive selection for trades and occupations, differential endogamy and assortative mating patterns, implicit egotism effects), and directions for further inquiry are discussed in conclusion.

  7. The Physique of Elite Female Artistic Gymnasts: A Systematic Review.

    PubMed

    Bacciotti, Sarita; Baxter-Jones, Adam; Gaya, Adroaldo; Maia, José

    2017-09-01

    It has been suggested that successful young gymnasts are a highly select group in terms of the physique. This review summarizes the available literature on elite female gymnasts' anthropometric characteristics, somatotype, body composition and biological maturation. The main aims were to identify: (i) a common physique and (ii) the differences, if any, among competitive/performance levels. A systematic search was conducted online using five different databases. Of 407 putative papers, 17 fulfilled all criteria and were included in the review. Most studies identified similar physiques based on: physical traits (small size and low body mass), a body type (predominance of ecto-mesomorphy), body composition (low fat mass), and maturity status (late skeletal maturity as well as late age-at-menarche). However, there was no consensus as to whether these features predicted competitive performance, or even differentiated between gymnasts within distinctive competitive levels. In conclusion, gymnasts, as a group, have unique pronounced characteristics. These characteristics are likely due to selection for naturally-occurring inherited traits. However, data available for world class competitions were mostly outdated and sample sizes were small. Thus, it was difficult to make any conclusions about whether physiques differed between particular competitive levels.

  8. Puberty and Physical Self-Perceptions of Competitive Female Figure Skaters: An Interdisciplinary Approach

    ERIC Educational Resources Information Center

    Monsma, Eva V.; Malina, Robert M.; Feltz, Deborah L.

    2006-01-01

    This study considered the interrelationships among biological maturation and its physical correlates, social physique anxiety, and appearance-related physical self-perceptions in 113 adolescent female figure skaters participating in solo (n = 73) or partner contexts (n = 40). Participants were interviewed about their menarcheal status, underwent a…

  9. Colloquium P.G.de Gennes

    ScienceCinema

    None

    2018-05-18

    Lecture from Professor Pierre Gilles from Gennes, who received the Nobel Prize for Physics in 1991, became a professor at the Collège de France in 1971, director of the Ecole de Physique et Chimie (School of Physics and Chemistry) in Paris, etc.

  10. Physique and Body Composition in Soccer Players across Adolescence

    PubMed Central

    Nikolaidis, Pantelis Theodoros; Vassilios Karydis, Nikos

    2011-01-01

    Purpose Although the contribution of physique and body composition in soccer performance was recognized, these parameters of physical fitness were not well-studied in adolescent players. Aim of this study was to investigate physique and body composition across adolescence. Methods Male adolescents (N=297 aged 12.01–20.98 y), classified into nine one-year age-groups, child (control group, N=16 aged 7.34–11.97 y) and adult players (control group, N=29 aged 21.01–31.59 y), all members of competitive soccer clubs, performed a series of anthropometric measures (body mass, height, skinfolds, circumferences and girths), from which body mass index (BMI), percentage of body fat (BF%), fat mass (FM), fat free mass (FFM) and somatotype (Heath-Carter method) were calculated. Results Age had a positive association with FM (r=0.2, P<0.001) and FFM (r=0.68, P<0.001), and a negative association with BF (r=−0.12, P=0.047). Somatotype components changed across adolescence as well; age was linked to endomorphy (r=−0.17, P=0.005), mesomorphy (r=0.14, P=0.019) and ectomorphy (r=−0.17, P=0.004). Compared with age-matched general population, participants exhibited equal body mass, higher stature, lower body mass index and lower BF. Conclusion During adolescence, soccer players presented significant differences in terms of body composition and physique. Thus, these findings could be employed by coaches and fitness trainers engaged in soccer training in the context of physical fitness assessment and talent identification. PMID:22375222

  11. The Education and Training of Physics Teachers Worldwide. A Survey.

    ERIC Educational Resources Information Center

    Davies, Brian, Ed.

    The Group Internationale de Recherche sur l'Enseignment de la Physique (GIREP), known in English as The International Research Group on Physics Teaching, is an independent association for the improvement of physics teaching in schools and, to a lesser extent, at the interface between school and university. Provided in this three-part book is…

  12. A qualitative examination of women's self-presentation and social physique anxiety during injury rehabilitation.

    PubMed

    Driediger, Molly V; McKay, Carly D; Hall, Craig R; Echlin, Paul S

    2016-12-01

    To understand women's self-presentation experiences in the rehabilitation setting, and their attitudes and preferences toward the social and physical features of the rehabilitation environment. Qualitative study. Outpatient physiotherapy clinic. Ten women (age 18 to 64) with high social physique anxiety (Social Physique Anxiety Scale score ≥25) referred for physiotherapy following acute injury. Semi-structured interviews were conducted prior to commencement of treatment, and again after a third treatment session. Participants experienced extensive self-presentational concerns that were intensified due to the nature of the physiotherapy environment. The women reported that their self-presentational anxiety did not diminish over time, and was related to others' negative perceptions regarding their physical appearance and inability to perform exercises as well as expected. The presence of men or younger women in the clinic was identified as a barrier to appointment attendance, along with open concept clinic settings, which were associated with the most potential for evaluation. Mirrors and windows in the physiotherapy clinic were highlighted as anxiety provoking. The women suggested that they would feel apprehensive about advocating for themselves if they felt uncomfortable with the area in which they were receiving treatment, and instead used avoidance coping strategies (e.g., hiding behind equipment, preventing eye contact) to manage their anxiety. Physique-anxious women experience extensive self-presentational concerns in the rehabilitation environment, which could affect treatment adherence. Modifying the treatment setting, providing protective self-presentational strategies such as positive self-talk, and open patient-therapist communication could be implemented to help mitigate these concerns. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  13. The effect of labour on somatotype of males during the adolescent growth period.

    PubMed

    Ozener, B; Duyar, I

    2008-01-01

    Although the effect of labour and physical stress on the height and weight of growing children is relatively well known, rather limited information concerning the influences of the work environment on the physique of working children and adolescents is available. The purpose of this study was to increase our knowledge of the effects of mechanical stress on the human physique via somatotype during the adolescent growth period. Anthropometric measurements of 509 male apprentices aged 13.50-18.49 years and measurements of 451 nonworking youth (control group) of the same age group were taken. The members of both groups were from the lower socioeconomic strata and had similar living conditions. The apprentices were working an average of 11h per day in vocations requiring intense physical effort. The subjects were somatotyped using the Heath-Carter anthropometric protocol. The overall mean somatotypes were 2.3-4.4-3.3 for working adolescents, and 2.5-3.9-3.6 for the nonworking controls. A one-way multivariate analysis of variance (MANOVA) indicated significant differences between the groups. Working adolescents were more mesomorphic and less ectomorphic than their nonworking peers. In both groups, endomorphy decreased with age up to age 15; then remained stable for the labourers but increased for the nonworking peers. In both groups, mesomorphy was stable, but decreased with ectomorphy. These results indicate that physical stress not only causes retardation in linear growth, but also produces changes in human physique during the growth period.

  14. Drive for muscularity and social physique anxiety mediate the perceived ideal physique muscle dysmorphia relationship.

    PubMed

    Thomas, Adam; Tod, David A; Edwards, Christian J; McGuigan, Michael R

    2014-12-01

    This study examined the mediating role of drive for muscularity and social physique anxiety (SPA) in the perceived muscular male ideal physique and muscle dysmorphia relationship in weight training men. Men (N = 146, mean ± SD; age, 22.8 ± 5.0 years; weight, 82.0 ± 11.1 kg; height, 1.80 ± 0.07 m; body mass index, 25.1 ± 3.0) who participated in weight training completed validated questionnaires measuring drive for muscularity, SPA, perceived muscular male ideal physique, global muscle dysmorphia, and several characteristics of muscle dysmorphia (exercise dependence, diet manipulation, concerns about size/symmetry, physique protection behavior, and supplementation). Perceived ideal physique was an independent predictor of muscle dysmorphia measures except physique protection (coefficients = 0.113-0.149, p ≤ 0.05). Perceived ideal physique also predicted muscle dysmorphia characteristics (except physique protection and diet) through the indirect drive for muscularity pathway (coefficients = 0.055-0.116, p ≤ 0.05). Perceived ideal physique also predicted size/symmetry concerns and physique protection through the indirect drive for muscularity and SPA pathway (coefficients = 0.080-0.025, p ≤ 0.05). These results extend current research by providing insights into the way correlates of muscle dysmorphia interact to predict the condition. The results also highlight signs (e.g., anxiety about muscularity) that strength and conditioning coaches can use to identify at-risk people who may benefit from being referred for psychological assistance.

  15. Immersion francaise precoce: Education physique 1-7 (Early French Immersion: Physical Education for Grades 1-7).

    ERIC Educational Resources Information Center

    Burt, Andy; And Others

    This curriculum guide for physical education is intended for use in grades 1-7 in the early French immersion program. It is a translation of the regular physical education program and a compilation of references and supplementary teaching material. It is noted that because of the comparative lack of references in French, much of the reference…

  16. Foreword

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Gaspard, Pierre; Van den Broeck, Christian

    2007-06-01

    We introduce and present the proceedings of the conference "Work, dissipation, and fluctuations in nonequilibrium physics" held in Brussels, 22-25 March 2006 under the auspices of the International Solvay Institutes for Physics and Chemistry and organized by the Center for Nonlinear Phenomena and Complex Systems of the Université Libre de Bruxelles. To cite this article: B. Derrida et al., C. R. Physique 8 (2007).

  17. Psychological Well-Being and Motivation in a Turkish Physical Education Context

    ERIC Educational Resources Information Center

    Erturan-Ilker, Gökçe

    2014-01-01

    Using Self Determination as a framework, the purpose of the study was to examine the relationships between basic psychological needs, motivational regulations, self-esteem, subjective vitality, and social physique anxiety in physical education. One thousand and eighty two high school students aged between 14 and 19 [mean (M) = 15.89 ± 0.95 years]…

  18. Body Image Concerns in College-Aged Male Physical Education Students: A Descriptive Inquiry

    ERIC Educational Resources Information Center

    Olson, Michele S.; Esco, Michael R.; Willifo, Hank

    2009-01-01

    The purpose of this study was to examine body image concerns in college-aged male physical education majors. Sixty volunteers completed validated body image instruments including two-dimensional figure drawings. In general, the sample reported that they preferred a larger, more muscular physique reflective of male images that currently abound the…

  19. PEOPLE IN PHYSICS: 'Lady Newton' - an eighteenth century Marquise

    NASA Astrophysics Data System (ADS)

    Badilescu, Simona

    1996-07-01

    The contribution of Voltaire and Mme du Châtelet to the diffusion of Newtonian physics in eighteenth century France is outlined. Their most important writings in the realm of physics (Philosophical Letters, Elements de la philosophie de Newton, Institutions de Physique) are analysed and the impact of the new ideas on the traditional Cartesian physics is emphasized. The genesis of the first French translation of Newton's Principia is described. The usefulness of the historically connected stories in the teaching of physics is envisaged.

  20. Moving to Inclusion. Active Living through Physical Education: Maximizing Opportunities for Students with a Disability = Integration en Mouvement. La vie active par l'education physique: Multipliez les possibilities offertes aux eleves ayant un handicap.

    ERIC Educational Resources Information Center

    Active Living Alliance for Canadians with a Disability, Gloucester (Ontario).

    This document is composed of 10 manuals which provide both general and specific guidelines to facilitate the inclusion of Canadian students with disabilities in physical education programs. An introductory manual identifies general concepts, strategies, and practical approaches that can be used in an inclusive physical education program. It…

  1. Activités physiques libres ou encadrées et condition physique liée à la santé chez des adultes burundais: étude transversale

    PubMed Central

    Bizimana, Jean Berchmans; Lawani, Mansourou Mohamed; Akplogan, Barnabé; Gaturagi, Charles

    2016-01-01

    Introduction l’activité physique régulière a un impact positif sur la santé. Cette étude a pour objet de comparer la condition physique liée à la santé des adultes qui s’exercent librement avec celle des adultes bénéficiant d’un encadrement professionnel. Elle tente aussi d’établir une relation entre le niveau d’activité physique et les paramètres de la condition liée à la santé. Méthodes nous avons évalué le niveau d’activité physique et les paramètres de la condition physique liée à la santé. Par le test t pour échantillons indépendants, nous avons comparé les moyennes et avons par le calcul du coefficient de corrélation r de Pearson analysé la relation entre le niveau d’activité physique et les paramètres de la condition physique. Résultats des écarts significatifs (p < 0,05) de niveau d’activité physique, de souplesse, de V˙O2max et de la FC de repos ont été enregistrés en faveur du groupe encadré. Le niveau d’activité physique est positivement corrélé (p < 0,05) au V˙O2max et à la force de préhension mais négativement corrélé à la FC de repos et au cholestérol LDL. La prévalence des facteurs de risque cardiovasculaire n’est pas élevée excepté pour le cholestérol HDL. Conclusion les résultats de cette étude montrent que l’activité physique libre est aussi efficace que l’activité physique encadrée dans le maintien des profils lipidique et physiologique favorables à la santé chez l’adulte burundais. Cependant, l’activité physique encadrée apporte des bénéfices supplémentaires pour le V˙O2max, la fréquence cardiaque de repos, la souplesse antérieure et la détente verticale PMID:28203315

  2. Individual variability in the core interthreshold zone as related to body physique, somatotype, and physical constitution.

    PubMed

    Kakitsuba, Naoshi; Mekjavic, Igor B; Katsuura, Tetsuo

    2009-11-01

    For evaluating the effect of body physique, somatotype, and physical constitution on individual variability in the core interthreshold zone (CIZ), data from 22 healthy young Japanese male subjects were examined. The experiment was carried out in a climatic chamber in which air temperature was maintained at 20-24 degrees C. The subjects' body physique and the maximum work load were measured. Somatotype was predicted from the Heath-Carter Somatotype method. In addition, factors reflecting physical constitution, for example, susceptibility to heat and cold, and quality of sleep were obtained by questionnaire. The subjects wore a water-perfused suit which was perfused with water at a temperature of 25 degrees C and at a rate of 600 cc/min, and exercised on an ergometer at 50% of their maximum work rate for 10-15 min until their sweating rate increased. They then remained continuously seated without exercise until shivering increased. Rectal temperature (T(re)) and skin temperatures at four sites were monitored by thermistors, and sweating rate was measured at the forehead with a sweat rate monitor. Oxygen uptake was monitored with a gas analyzer. The results showed individual variability in the CIZ. According to the reciprocal cross-inhibition (RCI) theory, thermoafferent information from peripheral and core sensors is activated by T(re), mean skin temperature (T(sk)), and their changes. Since T(sk) was relatively unchanged, the data were selected to eliminate the influence of the core cooling rate on the sensor-to-effector pathway before RCI, and the relationship between the CIZ and the various factors was then analyzed. The results revealed that susceptibility to heat showed a good correlation with the CIZ, indicating that individual awareness of heat may change the CIZ due to thermoregulatory behavior.

  3. The Canadian Human Rights Act. Physical Handicap and Employment = Loi canadienne sur les droits de la personne. Le handicap physique et l'emploi.

    ERIC Educational Resources Information Center

    Canadian Human Rights Commission, Ottawa (Ontario).

    This booklet presents administrative criteria for implementation of the Canadian Human Rights Act to be used by the Canadian Human Rights Commission to evaluate employment decisions affecting physically handicapped individuals. They are of value to employers who need to know how the Commission will analyze employer arguments that they have not…

  4. Physics 30: Grade 12 Diploma Examination = Physique 30: Examen en vue du diplome 12 annee.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Student Evaluation Branch.

    This document, in both English and French versions, is the Physics 30 Grade 12 Diploma Examination from Alberta Education. It is a 2.5 hour closed-book examination consisting of 37 multiple-choice and 12 numerical-response questions of equal value that are worth 70% of the examination, and 2 written-response questions of equal value worth 30% of…

  5. The influence of exercise identity and social physique anxiety on exercise dependence.

    PubMed

    Cook, Brian; Karr, Trisha M; Zunker, Christie; Mitchell, James E; Thompson, Ron; Sherman, Roberta; Erickson, Ann; Cao, Li; Crosby, Ross D

    2015-09-01

    Previous research has identified exercise identity and social physique anxiety as two independent factors that are associated with exercise dependence. The purpose of our study was to investigate the unique and interactive effect of these two known correlates of exercise dependence in a sample of 1,766 female runners. Regression analyses tested the main effects of exercise identity and social physique anxiety on exercise dependence. An interaction term was calculated to examine the potential moderating effect of social physique anxiety on the exercise identity and exercise dependence relationship. Results indicate a main effect for exercise identity and social physique anxiety on exercise dependence; and the interaction of these factors explained exercise dependence scores beyond the independent effects. Thus, social physique anxiety acted as a moderator in the exercise identity and exercise dependence relationship. Our results indicate that individuals who strongly identify themselves as an exerciser and also endorse a high degree of social physique anxiety may be at risk for developing exercise dependence. Our study supports previous research which has examined factors that may contribute to the development of exercise dependence and also suggests a previously unknown moderating relationship for social physique anxiety on exercise dependence.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluquet, Alain

    Cette théetudie les techniques d'identication de l'electron dans l'experience D0 au laboratoire Fermi pres de Chicago Le premier chapitre rappelle quelques unes des motivations physiques de l'experience physique des jets physique electrofaible physique du quark top Le detecteur D0 est decrit en details dans le second chapitre Le troisieme cha pitre etudie les algorithmes didentication de lelectron trigger reconstruction ltres et leurs performances Le quatrieme chapitre est consacre au detecteur a radiation de transition TRD construit par le Departement dAstrophysique Physique des Particules Physique Nucleaire et dInstrumentation Associee de Saclay il presente son principe sa calibration et ses performances Ennmore » le dernier chapitre decrit la methode mise au point pour lanalyse des donnees avec le TRD et illustre son emploi sur quelques exemples jets simulant des electrons recherche du quark top« less

  7. Body self-discrepancies and women's social physique anxiety: the moderating role of the feared body.

    PubMed

    Woodman, Tim; Steer, Rebecca

    2011-05-01

    We explored ideal, ought, and feared body image self-discrepancies as predictors of social physique anxiety within Carver, Lawrence, and Scheier's and Woodman and Hemmings' interaction frameworks. One hundred women completed actual, ideal, ought, and feared body self-discrepancy visual analogue scales, the Social Physique Anxiety Scale and the Beck Depression Inventory-II. Moderated hierarchical regression analyses indicated that the relationship between ought body fat discrepancies and social physique anxiety was moderated by proximity to the feared fat self. Specifically, the positive relationship between ought fat discrepancies and social physique anxiety was stronger when women were far from their feared body self. The results highlight the importance of considering the feared self in order to more fully understand the relationship between body image and social physique anxiety. ©2010 The British Psychological Society.

  8. Medically Unexplained Physical Symptoms in Military Health (Symptomes physiques medicalement inexpliques dans la sante militaire)

    DTIC Science & Technology

    2017-12-01

    Development of Persistent Pain and psychological Morbidity after Motor Vehicle Collision: Integrating the Potential Role of Stress Response Systems... abnormalities of quantitative EEG which suggest a THE LONG-TERM COSTS OF TRAUMATIC STRESS: INTERTWINED PHYSICAL AND PSYCHOLOGICAL CONSEQUENCES STO-TR-HFM...S.A., Clauw, D.J., Abelson, J.L. et al., The development of persistent pain and psychological morbidity after motor vehicle collision: integrating

  9. The influence of exercise identity and social physique anxiety on exercise dependence

    PubMed Central

    Cook, Brian; Karr, Trisha M.; Zunker, Christie; Mitchell, James E.; Thompson, Ron; Sherman, Roberta; Erickson, Ann; Cao, Li; Crosby, Ross D.

    2015-01-01

    Background Previous research has identified exercise identity and social physique anxiety as two independent factors that are associated with exercise dependence. Aims The purpose of our study was to investigate the unique and interactive effect of these two known correlates of exercise dependence in a sample of 1,766 female runners. Methods Regression analyses tested the main effects of exercise identity and social physique anxiety on exercise dependence. An interaction term was calculated to examine the potential moderating effect of social physique anxiety on the exercise identity and exercise dependence relationship. Results Results indicate a main effect for exercise identity and social physique anxiety on exercise dependence; and the interaction of these factors explained exercise dependence scores beyond the independent effects. Thus, social physique anxiety acted as a moderator in the exercise identity and exercise dependence relationship. Discussion Our results indicate that individuals who strongly identify themselves as an exerciser and also endorse a high degree of social physique anxiety may be at risk for developing exercise dependence. Conclusions Our study supports previous research which has examined factors that may contribute to the development of exercise dependence and also suggests a previously unknown moderating relationship for social physique anxiety on exercise dependence. PMID:26551910

  10. Perceived somatotype and stereotypes of physique among Nigerian schoolchildren.

    PubMed

    Salokun, S O; Toriola, A L

    1985-11-01

    The influence of perceived somatotype on stereotypes of behavior associated with body build was investigated among 160 male and 140 female Nigerian children in secondary school. In both groups, the perception of subjects' own physiques and discrepancy between their perceived and preferred physiques significantly explained the variance in the character trait scores attributed to body types. In general, the subjects attributed positive character traits to their perceived somatotypes and undesirable traits to the physiques with which they were dissatisfied. Thus, the perception of somatotype and discrepancy between perceived and preferred physique could significantly differentiate the character traits attributed to body build among male and female children.

  11. A Psychometric Evaluation of the Self-Presentational Efficacy Scale

    ERIC Educational Resources Information Center

    Lamarche, Larkin; Gammage, Kimberley L.; Sullivan, Philip J.; Gabriel, David A.

    2013-01-01

    This study examined the psychometric properties of the Self-Presentational Efficacy Scale (SPES) developed by Gammage, Hall, and Martin Ginis (2004). University students (196 men and 269 women) completed the SPES and measures of social physique anxiety, fear of negative evaluation, and physical activity. Participants also completed the SPES a…

  12. Stalking the Feast Beast.

    ERIC Educational Resources Information Center

    Trimpey, Lois

    This paper discusses the use of Rational Recovery (RR) as a counseling technique in treating people who feel fat, particularly women. Fatness is viewed as a philosophy, not a physical condition. Cultural influences defining and stressing ideal femininity come down hard on women whose physiques or appearances do not measure up. RR gives people…

  13. Physical appearance concerns are uniquely associated with the severity of steroid dependence and depression in anabolic-androgenic steroid users.

    PubMed

    Griffiths, Scott; Jacka, Brendan; Degenhardt, Louisa; Murray, Stuart B; Larance, Briony

    2018-02-27

    Emerging research suggests that the sub-population of anabolic-androgenic steroid (AAS) users who experience physical appearance concerns may suffer greater psychological dysfunction than other sub-populations, including users with athletic or occupational concerns. Thus, among current AAS users, we sought to determine whether, and to what extent, social physique anxiety-an established measure of appearance concern-was associated with psychological dysfunction. Interviews were conducted with a sample of 74 male AAS users living in Australia. Users completed self-report instruments of the severity of AAS dependence, depression, hazardous and risky drinking, use of non-AAS illicit drugs, psychological side-effects due to AAS use and abnormal test results due to AAS use. Multivariate analyses revealed that greater social physique anxiety was uniquely associated with more severe symptoms of both AAS dependence and depression. Moreover, the effect size of these relationships was large. Social physique anxiety was not associated with hazardous or risky drinking, non-AAS illicit drug use, psychological side-effects or abnormal test results. Limitations notwithstanding, the study is consistent with the notion that AAS users who experience appearance concerns are at heightened risk of co-morbid psychological dysfunction. Given trends indicating an increase in the prevalence of AAS use in Australia and elsewhere, the findings suggest that health-care systems may need to consider prioritising the sub-population of AAS users who experience appearance concerns. Further investigation of the clinical syndrome of AAS dependence is required, including its relation to body image and eating disorders. © 2018 Australasian Professional Society on Alcohol and other Drugs.

  14. History without time: Buffon's natural history as a nonmathematical physique.

    PubMed

    Hoquet, Thierry

    2010-03-01

    While "natural history" is practically synonymous with the name of Buffon, the term itself has been otherwise overlooked by historians of science. This essay attempts to address this omission by investigating the meanings of "physique," "natural philosophy," and "history," among other terms, with the purpose of understanding Buffon's actual objectives. It also shows that Buffon never claimed to be a Newtonian and should not be considered as such; the goal is to provide a historical analysis that resituates Buffon's thought within his own era. This is done, primarily, by eschewing the often-studied question of time in Buffon. Instead, this study examines the nontemporal meanings of the word "history" within the naturalist's theory and method. The title of his Natural History is examined both as an indicator of the kind of science that Buffon was hoping to achieve and as a source of great misinterpretation among his peers. Unlike Buffon, many of his contemporaries actually envisioned the study of nature from a Baconian perspective where history was restricted to the mere collection of facts and where philosophy, which was the implicit and ultimate goal of studying nature, was seen, at least for the present, as unrealizable. Buffon confronts this tendency insofar as his Histoire naturelle claims to be the real physique that, along with describing nature, also sought to identify general laws and provide clear insight into what true knowledge of nature is or should be. According to Buffon, history (both natural and civil) is not analogous to mathematics; it is a nonmathematical method whose scope encompasses both nature and society. This methodological stance gives rise to the "physicization" of certain moral concepts--a gesture that was interpreted by his contemporaries as Epicurean and atheist. In addition, Buffon reduces a number of metaphysically tainted historical concepts (e.g., antediluvian monuments) to objects of physical analysis, thereby confronting the very foundation of natural theology. In Buffon, as this essay makes clear, natural history is paving the way for a new physique (science of natural beings), independent from mathematics and from God, that treats naturalia in a philosophical and "historical" manner that is not necessarily "temporal."

  15. Contributions and Implications of the Medford, Oregon, Boys' Growth Study.

    ERIC Educational Resources Information Center

    Clarke, H. H.

    The overall and long-range purposes of the Medford Boys' Growth Study are: (1) to construct physical and motor growth curves and growth acceleration curves of boys seven to 18 years old; (2) to relate these traits to physiological maturity, physique type, nutritional status, socio-personal adjustment, interests, and scholastic aptitude and…

  16. L'education physique en Suisse Histoire et situation actuelle.

    ERIC Educational Resources Information Center

    Burgener, Louis

    The document presents major aspects of the historical development and current situation of physical education in Switzerland. The study is designed as a manual for education students; as a reference book for educators, youth federations, sports associations, and the press; and as a volume to acquaint foreign readers with particular aspects of the…

  17. A Self-determination Theory approach to the study of body image concerns, self-presentation and self-perceptions in a sample of aerobic instructors.

    PubMed

    Thøgersen-Ntoumani, Cecilie; Ntoumanis, Nikos

    2007-03-01

    This study examined motivational predictors of body image concerns, self-presentation and self-perceptions using Self-determination Theory as a guiding framework. Aerobic instructors (N = 149) completed questionnaires measuring general need satisfaction, exercise motivational regulations, body image concerns, social physique anxiety and self-perceptions. Introjected regulation predicted all outcome variables in the expected direction. Intrinsic motivation positively predicted physical self-worth. Further, autonomy need satisfaction negatively predicted body image concerns. Finally, differences existed in need satisfaction, introjected regulation, self-perceptions and social physique anxiety between those at risk of developing eating disorders and those not at risk. The results underline the importance of overall and exercise-specific feelings of self-determination in dealing with body image concerns and low self-perceptions of aerobics instructors.

  18. Health and Physique of School Children. Bulletin, 1925, No. 21

    ERIC Educational Resources Information Center

    Rogers, James Frederick

    1925-01-01

    This bulletin reports on the changes and progress in practice and conditions in: (1) School Housing; (2) Playgrounds; (3) Medical inspection; (4) Dental work; (5) Nutrition; (6) Open-air schools and open-window rooms; (7) The summer camp; (8) Other special schools and classes; (9) Health education; (10) Physical training; (11) Safety and first…

  19. Modelling of Molecular Structures and Properties. Proceedings of the International Meeting of Physical Chemistry on Modeling of Molecular Structures and Properties in Physical Chemistry and Biophysics Organized by the Division de Chimie Physique of the Societe Francaise de Chimie Held in Nancy, France on 11-15 September 1989

    DTIC Science & Technology

    1990-01-01

    expert systems, "intelligent" computer-aided instruction , symbolic learning . These aspects will be discussed, focusing on the specific problems the...VLSI chips) according to preliminary specifications. Finally ES are also used in computer-aided instruction (CAI) due to their ability of... instructions to process controllers), academic teaching (for mathematics , physics, foreign language, etc.). Domains of application The different

  20. Effect of Eight-Week Exercise Program on Social Physique Anxiety Conditions in Adult Males

    ERIC Educational Resources Information Center

    Akyüz, Öznur

    2017-01-01

    Physiological changes occurring with physical activity have played role in appearance of a different field of study. Thus, examination of the effect of eight-week exercise program on SPA in adult males forms the purpose of the study. 20 sedentary males aged 18-25 voluntarily participated in the research. Volunteers were applied resistance exercise…

  1. Sex differences in relative foot length and perceived attractiveness of female feet: relationships among anthropometry, physique, and preference ratings.

    PubMed

    Voracek, Martin; Fisher, Maryanne L; Rupp, Barbara; Lucas, Deanna; Fessler, Daniel M T

    2007-06-01

    Foot size proportionate to stature is smaller in women than in men, and small feet apparently contribute to perceived physical attractiveness of females. This exploratory study investigated the sex difference in relative foot length and interrelations among foot length, physique, and foot preference ratings in samples from Austria and Canada, each comprised of 75 men and 75 women. The findings included the following lines of evidence: the sex difference in relative foot length replicated in both data sets; the magnitude of this sex effect was large. Relative foot length was smaller in young, nulliparous, and slim women. Pointed-toe and high-heel shoes were more likely worn by smaller, lighter, and slimmer women. Men reported liking women's feet in general more than vice versa. A vast majority of both men and women favored small feet in women, but large feet in men. One's own foot size appeared to correspond to evaluations of attractiveness; particularly, women with small feet preferred small feet in women in general. The preference for small feet in women was convergent across different methods of evaluating attractiveness. Directions for investigations in this emerging field of research on physical attractiveness are discussed.

  2. Examining social physique anxiety and disordered eating in college women. The roles of social comparison and body surveillance.

    PubMed

    Fitzsimmons-Craft, Ellen E; Harney, Megan B; Brownstone, Lisa M; Higgins, M K; Bardone-Cone, Anna M

    2012-12-01

    Social physique anxiety has been found to be associated with disordered eating. However, what is not yet known is what behaviors college women may engage in that strengthen this relation. In the current study, we examined two possible moderating factors, social comparison and body surveillance. We examined whether these moderators might also generalize to trait anxiety, as well. Participants were 265 women attending a Southeastern university. Social comparison (both general and appearance-related) and body surveillance were tested as moderators of the relation between social physique anxiety and disordered eating. Results indicated that general social comparison, appearance-related social comparison, and body surveillance significantly moderated this relation. Individuals who were high in social physique anxiety and who reported high levels of general or appearance-related social comparison or body surveillance reported much higher levels of disordered eating than those with high social physique anxiety and low levels of these behaviors. Results indicated that only the trait anxiety×body surveillance interaction was significant in identifying elevated disordered eating. Results provide information regarding who may experience high levels of disordered eating in association with social physique anxiety, which has clinical implications including the conceptualization of social comparison and body surveillance as safety behaviors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. TREPS, a tool for coordinate and time transformations in space physics

    NASA Astrophysics Data System (ADS)

    Génot, V.; Renard, B.; Dufourg, N.; Bouchemit, M.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.; André, N.; Pitout, F.; Jacquey, C.; Cecconi, B.; Gangloff, M.

    2018-01-01

    We present TREPS (Transformation de REpères en Physique Spatiale) an online tool to perform coordinate transformations commonly used in planetology and heliophysics. It is based on SPICE kernels developed by NASA/NAIF. Its usage is straightforward, with a 4-step process, including various import/export options. Interoperability with external services is available through Virtual Observatory technology which is illustrated in a use case.

  4. Somatotype in elderly type 2 diabetes patients.

    PubMed

    Buffa, Roberto; Floris, Giovanni; Putzu, Paolo F; Carboni, Luciano; Marini, Elisabetta

    2007-09-01

    Somatotyping is a practical technique for the description of physique. Individuals with Type 2 diabetes are characterized by physical peculiarities, such as overweight, obesity and a central pattern of body fat distribution. Somatotype applications to diabetes are limited. The objective of this study is to describe the somatotype of elderly type 2 diabetes patients. The sample consisted of 110 patients with type 2 diabetes (45 men, mean age 69.4 +/- 7.0 years; 65 women, mean age 72.9 +/- 7.1 years). The pathological subjects were compared with a control group consisting of 280 healthy individuals (134 men, mean age 74.2 +/- 7.3 years; 146 women, mean age 74.9 +/- 7.4 years). The Heath-Carter somatotype was applied. Diabetic men and women (mean somatotype, respectively: 6.8-5.6-0.6 and 8.6-6.4-0.2) presented significantly higher values of endomorphy than the controls (p = 0.043 in men, p = 0.003 in women); men also had a lower mesomorphic component (p = 0.000). The somatotype method revealed physical peculiarities in type 2 diabetes patients. The marked endomorphy in the pathological individuals can be related to general fatness, which is a well known disease risk factor. The somatotype appears to be a suitable technique for the assessment of physique in type 2 diabetes patients.

  5. Media effects of experimental presentation of the ideal physique on eating disorder symptoms: a meta-analysis of laboratory studies.

    PubMed

    Hausenblas, Heather A; Campbell, Anna; Menzel, Jessie E; Doughty, Jessica; Levine, Michael; Thompson, J Kevin

    2013-02-01

    Older meta-analyses of the effects of the media's portrayal of the ideal physique have found small effects revealing that exposure to the ideal physique increases body image concerns. These meta-analyses also included correlational, quasi-experimental, and experimental studies, with limited examination of moderators and other relevant outcomes besides body image. We conducted a systematic literature search and identified 33 experimental (i.e., pre and post data for both experimental and control groups) laboratory studies examining the effects of acute exposure to the media's portrayal of the ideal physique on eating disorder symptoms (i.e., body image, positive affect, negative affect, self-esteem, anger, anxiety and depression) and the mechanisms that moderate this effect. Fourteen separate meta-analyses revealed a range of small to moderate effect sizes for change in outcomes from pre to post for both experimental and control groups. Exposure to images of the ideal physique resulted in small effect sizes for increased depression and anger and decreased self-esteem and positive affect. Moderator analyses revealed moderate effect sizes for increased depression and body dissatisfaction among high-risk participants. This meta-analysis makes it clear that media exposure of the ideal physique results in small changes in eating disorder symptoms, particularly with participants at high risk for developing an eating disorder. Further research is needed to examine the longitudinal effects of media exposure of eating disorder symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  7. Fibrillation auriculaire et activité physique

    PubMed Central

    Bosomworth, N. John

    2015-01-01

    Résumé Objectif Examiner les données probantes portant sur les effets de divers niveaux d’activité physique sur l’incidence de fibrillation auriculaire (FA) dans la population générale et chez les athlètes d’endurance. Sources des données Une recherche a initialement été menée sur PubMed à l’aide des titres MeSH ou des mots-de-texte anglais (avec descripteur de zone de recherche TIAB [title and abstract]) atrial fibrillation et exercise ou physical activity ou athlet* ou sport*, sans filtre additionnel. Le système GRADE (grading of recommendations, assessment, development, and evaluation) a été utilisé pour tirer les conclusions au sujet de la qualité et du niveau de preuve. Sélection des études Aucune étude d’intervention n’est ressortie de la recherche. Les études d’observation ont alors été jugées acceptables et, bien que des études prospectives de cohortes à long terme de plus grande envergure auraient été préférables, des essais cas-témoins ou transversaux ont aussi été inclus dans cette révision. Synthèse Les données disponibles laissent croire à un lien proportionnel à la dose entre l’exercice plus intense et l’incidence réduite de FA chez les femmes. Il en va de même pour les hommes dont le niveau d’activité physique est de faible à modéré. Chez les hommes seulement, l’activité intense est associée à un risque accru de FA et ce, dans la plupart des études, mais pas la totalité d’entre elles. Ce risque est modéré, le rapport de risque instantané étant de 1,29 dans l’une des études de meilleure qualité. Le risque de FA chez la plupart des personnes régulièrement actives est plus faible que le risque observé dans la population sédentaire appariée. Conclusion La fibrillation auriculaire est probablement moins fréquente à mesure que le niveau d’activité physique augmente, la relation dose-réponse étant démontrable. À toutes les intensités, l’exercice doit être encouragé pour ses effets sur le bien-être physique et la réduction de la mortalité. Chez les hommes qui pratiquent des activités vigoureuses, les effets bénéfiques sur la FA pourraient disparaître et le risque pourrait surpasser celui observé dans la population sédentaire; cependant les données probantes à cet effet ne sont ni robustes ni constantes. Ces hommes devraient être mis au courant de cette hausse modeste du risque s’ils choisissent de poursuivre leurs activités physiques vigoureuses.

  8. Une vie saine et active : des directives en matière d’activité physique chez les enfants et les adolescents

    PubMed Central

    Lipnowski, Stan; LeBlanc, Claire MA

    2012-01-01

    RÉSUMÉ L’épidémie d’obésité juvénile augmente partout dans le monde. Même si les facteurs de risque d’obésité sont multifactoriels, bon nombre sont liés au mode de vie et se prêtent à une intervention. Ces facteurs incluent le comportement sédentaire et la thermogenèse sans activité physique, de même que la fréquence, l’intensité, la quantité et le type d’activité physique. Les dispensateurs de soins de première ligne sont en position idéale pour surveiller le taux d’activité physique des enfants, des adolescents et de leur famille, évaluer les choix liés au mode de vie et offrir des conseils pertinents. Le présent document de principes contient des directives visant à réduire le comportement sédentaire et à accroître le taux d’activité physique au sein de la population pédiatrique. Des recommandations d’activités physiques adaptées au développement et visant les nourrissons, les tout-petits, les enfants d’âge préscolaire, les enfants et les adolescents sont présentées. Des stratégies de promotion d’une vie saine et active sur les scènes locale, municipale, provinciale, territoriale et fédérale sont proposées.

  9. Comparing a Yoga Class with a Resistance Exercise Class: Effects on Body Satisfaction and Social Physique Anxiety in University Women.

    PubMed

    Gammage, Kimberley L; Drouin, Breanne; Lamarche, Larkin

    2016-11-01

    The current study compared a single yoga group exercise class and a resistance group exercise class for their effects on state body satisfaction and social physique anxiety in women. A pretest-posttest design was used. Participants (N = 46) completed both a resistance exercise class and yoga class in a counterbalanced order. Measures of body satisfaction and social physique anxiety were completed immediately before and after each class. A 2 (time) × 2 (class type) repeatedmeasures multiple analysis of variance showed a significant overall Time × Class Type interaction (F 2,44 = 5.69, P < .01, η p 2 = .21). There was a significant increase in body satisfaction after the yoga class. After both classes, there was a significant decrease in social physique anxiety, but the magnitude of the change was larger after the yoga class than after the resistance class. Both types of exercise class were associated with improvements in body image, but there were greater improvements after the yoga class. This study provided evidence of the positive effects of yoga for reducing state social physique anxiety and increasing state body satisfaction, adding to correlational evidence suggesting that yoga is particularly beneficial for improving body image-related outcomes in women.

  10. Development of Chinese reference man deformable surface phantom and its application to the influence of physique on electromagnetic dosimetry

    NASA Astrophysics Data System (ADS)

    Yu, D.; Wang, M.; Liu, Q.

    2015-09-01

    A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.

  11. Voyage dans le noir. Trous noirs, matière noire, énergie noire et antimatière [Journey in the dark. Black holes, dark matter, dark energy and antimatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez-Gaume, Luis; Doser, Michael; Grojean, Chri

    2009-11-26

    Et si nous faisions avec les physiciens un voyage dans le noir ? De l'astrophysique à la physique des particules les trois noirs, la matière noire, l'énergie noire ou l’antimatière intriguent et fascinent. Que sont ces objets qui bousculent nos idées et qui véhiculent parfois des craintes irraisonnées? Luis Alvarez-Gaume, Michael Doser et Christophe Grojean, physiciens du CERN vous invitent à mettre en lumière (!) les constituants de base de la matière et à explorer les mystères de la physique contemporaine. Une soirée lumineuse pour éclairer des concepts et ne plus avoir peur du noir. [ What if we mademore » a trip to the physicists in the dark? From astrophysics to particle physics the three blacks, dark matter, dark energy or antimatter intrigue and fascinate. What are these objects that jostle our ideas and sometimes convey irrational fears? Luis Alvarez-Gaume, Michael Doser and Christophe Grojean, CERN physicists invite you to highlight (!) The basic constituents of matter and to explore the mysteries of contemporary physics. A bright evening to illuminate concepts and not be afraid of the dark.]« less

  12. List of Participants

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Mohab Abou ZeidInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Ido AdamMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Henrik AdorfLeibniz Universität Hannover Mohammad Ali-AkbariIPM, Tehran Antonio Amariti Università di Milano-Bicocca Nicola Ambrosetti Université de Neuchâtel Martin Ammon Max-Planck-Institut für Physik, München Christopher AndreyÉcole Polytechnique Fédérale de Lausanne (EPFL) Laura AndrianopoliPolitecnico di Torino David AndriotLPTHE, Université UPMC Paris VI Carlo Angelantonj Università di Torino Pantelis ApostolopoulosUniversitat de les Illes Balears, Palma Gleb ArutyunovInstitute for Theoretical Physics, Utrecht University Davide AstolfiUniversità di Perugia Spyros AvramisUniversité de Neuchâtel Mirela BabalicChalmers University, Göteborg Foday BahDigicom Ioannis Bakas University of Patras Igor BandosUniversidad de Valencia Jose L F BarbonIFTE UAM/CSIC Madrid Till BargheerMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marco Baumgartl Eidgenössische Technische Hochschule (ETH), Zürich James BedfordImperial College London Raphael BenichouLaboratoire de Physique Théorique, École Normale Supérieure, Paris Francesco Benini SISSA, Trieste Eric Bergshoeff Centre for Theoretical Physics, University of Groningen Alice BernamontiVrije Universiteit, Brussel Julia BernardLaboratoire de Physique Théorique, École Normale Supérieure, Paris Adel Bilal Laboratoire de Physique Théorique, École Normale Supérieure, Paris Marco Billo' Università di Torino Matthias Blau Université de Neuchâtel Guillaume BossardAlbert-Einstein-Institut, Golm Leonardo BriziÉcole Polytechnique Fédérale de Lausanne (EPFL) Johannes BroedelLeibniz Universität Hannover (AEI) Tom BrownQueen Mary, University of London Ilka BrunnerEidgenössische Technische Hochschule (ETH), Zürich Erling BrynjolfssonUniversity of Iceland Dmitri BykovSteklov Institute, Moscow and Trinity College, Dublin Joan CampsUniversitat de Barcelona Davide CassaniLaboratoire de Physique Théorique, École Normale Supérieure, Paris Alejandra CastroUniversity of Michigan Claudio Caviezel Max-Planck-Institut für Physik, München Alessio Celi Universitat de Barcelona Anna Ceresole Istituto Nazionale di Fisica Nucleare, Università di Torino Athanasios ChatzistavrakidisNational Technical University of Athens Wissam ChemissanyCentre for Theoretical Physics, University of Groningen Eugen-Mihaita CioroianuUniversity of Craiova Andres CollinucciTechnische Universität Wien Paul CookUniversità di Roma, Tor Vergata Lorenzo CornalbaUniversità di Milano-Bicocca Aldo CotroneKatholieke Universiteit Leuven Ben Craps Vrije Universiteit, Brussel Stefano Cremonesi SISSA, Trieste Riccardo D'AuriaPolitecnico di Torino Gianguido Dall'AgataUniversity of Padova Jose A de AzcarragaUniversidad de Valencia Jan de BoerInstituut voor Theoretische Fysica, Universiteit van Amsterdam Sophie de BuylInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Marius de LeeuwUtrecht University Frederik De RooVrije Universiteit, Brussel Jan De Rydt Katholieke Universiteit Leuven and CERN, Geneva Bernard de WitInstitute for Theoretical Physics, Utrecht University Stephane DetournayIstituto Nazionale di Fisica Nucleare, Sezione di Milano Paolo Di Vecchia Niels Bohr Institute, København Eugen DiaconuUniversity of Craiova Vladimir Dobrev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia Nick DoreyUniversity of Cambridge Hajar Ebrahim NajafabadiIPM, Tehran Federico Elmetti Università di Milano Oleg Evnin Vrije Universiteit, Brussel Francesco Fiamberti Università di Milano Davide Forcella SISSA, Trieste and CERN, Geneva Valentina Forini Humboldt-Universität zu Berlin Angelos Fotopoulos Università di Torino Denis Frank Université de Neuchâtel Marialuisa Frau Università di Torino Matthias Gaberdiel Eidgenössische Technische Hochschule (ETH), Zürich Diego Gallego SISSA/ISAS, Trieste Maria Pilar Garcia del MoralIstituto Nazionale di Fisica Nucleare, Università di Torino Valentina Giangreco Marotta PulettiUppsala University Valeria L GiliQueen Mary, University of London Luciano GirardelloUniversità di Milano-Bicocca Gian GiudiceCERN, Geneva Kevin Goldstein Institute for Theoretical Physics, Utrecht University Joaquim Gomis Universitat de Barcelona Pietro Antonio GrassiUniversità del Piemonte Orientale, Alessandria Viviane GraßLudwig-Maximilians-Universität, München Gianluca Grignani Università di Perugia Luca Griguolo Università di Parma Johannes GrosseJagiellonian University, Krakow Umut Gursoy École Polytechnique, Palaiseau Norberto Gutierrez RodriguezUniversity of Oviedo Babak HaghighatPhysikalisches Institut, Universität Bonn Troels Harmark Niels Bohr Institute, København Robert HaslhoferEidgenössische Technische Hochschule (ETH), Zürich Tae-Won HaPhysikalisches Institut, Universität Bonn Alexander HauptImperial College London and Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marc HenneauxUniversité Libre de Bruxelles Johannes HennLAPTH, Annecy-le-Vieux Shinji HiranoNiels Bohr Institute, København Stefan HoheneggerEidgenössische Technische Hochschule (ETH), Zürich Jan HomannLudwig-Maximilians-Universität, München Gabriele Honecker CERN, Geneva Joost HoogeveenInstituut voor Theoretische Fysica, Universiteit van Amsterdam Mechthild HuebscherUniversidad Autónoma de Madrid Chris HullImperial College London Carmen-Liliana IonescuUniversity of Craiova Ella JasminUniversité Libre de Bruxelles Konstantin KanishchevInstitute of Theoretical Physics, University of Warsaw Stefanos Katmadas Utrecht University Alexandros KehagiasNational Technical University of Athens Christoph Keller Eidgenössische Technische Hochschule (ETH), Zürich Patrick Kerner Max-Planck-Institut für Physik, München Rebiai KhaledLaboratoire de Physique Mathématique et Physique Subatomique, Université Mentouri, Constantine Elias Kiritsis Centre de Physique Théorique, École Polytechnique, Palaiseau and University of Crete Denis KleversPhysikalisches Institut, Universität Bonn Paul Koerber Max-Planck-Institut für Physik, München Simon Koers Max-Planck-Institut für Physik, München Karl KollerLudwig-Maximilians-Universität, München Peter Koroteev Institute for Theoretical and Experimental Physics (ITEP), Moscow and Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Alexey KoshelevVrije Universiteit, Brussel Costas KounnasÉcole Normale Supérieure, Paris Daniel KreflCERN, Geneva Charlotte KristjansenNiels Bohr Institute, København Finn LarsenCERN, Geneva and University of Michigan Arnaud Le DiffonÉcole Normale Supérieure, Lyon Michael LennekCentre de Physique Théorique, École Polytechnique, Palaiseau Alberto Lerda Università del Piemonte Orientale, Alessandria Andreas LiberisUniversity of Patras Maria A Lledo Universidad de Valencia Oscar Loaiza-Brito CINVESTAV, Mexico Florian Loebbert Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Yolanda Lozano University of Oviedo Dieter Luest Ludwig-Maximilians-Universität, München Tomasz Łukowski Jagiellonian University, Krakow Diego Mansi University of Crete Alberto Mariotti Università di Milano-Bicocca Raffaele Marotta Istituto Nazionale di Fisica Nucleare, Napoli Alessio Marrani Istituto Nazionale di Fisica Nucleare and LNF, Firenze Andrea Mauri University of Crete Liuba Mazzanti École Polytechnique, Palaiseau Sean McReynoldsUniversità di Milano-Bicocca AKM Moinul Haque Meaze Chittagong University Patrick Meessen Instituto de Física Teórica, Universidad Autónoma de Madrid Carlo MeneghelliUniversità di Parma and Albert-Einstein-Institut, Golm Lotta Mether University of Helsinki and CERN, Geneva René Meyer Max-Planck-Institut für Physik, München Georgios MichalogiorgakisCenter de Physique Théorique, École Polytechnique, Palaiseau Giuseppe Milanesi Eidgenössische Technische Hochschule (ETH), Zürich Samuel Monnier Université de Genève Wolfgang MueckUniversità di Napoli Federico II Elena Méndez Escobar University of Edinburgh Iulian Negru University of Craiova Emil NissimovInstitute for Nuclear Research and Nuclear Energy, Sofia Teake NutmaCentre for Theoretical Physics, University of Groningen Niels Obers Niels Bohr Institute, København Olof Ohlsson SaxUppsala University Rodrigo OleaIstituto Nazionale di Fisica Nucleare, Sezione di Milano Domenico OrlandoUniversité de Neuchâtel Marta Orselli Niels Bohr Institute, København Tomas OrtinInstituto de Física Teórica, Universidad Autónoma de Madrid Yaron OzTel Aviv University Enrico PajerLudwig-Maximilians-Universität, München Angel Paredes GalanUtrecht University Sara PasquettiUniversité de Neuchâtel Silvia PenatiUniversità di Milano-Bicocca Jan PerzKatholieke Universiteit Leuven Igor PesandoUniversità di Torino Tassos PetkouUniversity of Crete Marios PetropoulosCenter de Physique Théorique, École Polytechnique, Palaiseau Franco PezzellaIstituto Nazionale di Fisica Nucleare, Sezione di Napoli Moises Picon PonceUniversity of Padova Marco PirroneUniversità di Milano-Bicocca Andrea PrinslooUniversity of Cape Town Joris RaeymaekersKatholieke Universiteit Leuven Alfonso RamalloUniversidade de Santiago de Compostela Carlo Alberto RattiUniversità di Milano-Bicocca Marco RauchPhysikalisches Institut, Universität Bonn Ronald Reid-EdwardsUniversity of Hamburg Patricia RitterUniversity of Edinburgh Peter RoenneDESY, Hamburg Jan RosseelUniversità di Torino Clement RuefService de Physique Théorique, CEA Saclay Felix RustMax-Planck-Institut für Physik, München Thomas RyttovNiels Bohr Institute, København and CERN, Geneva Agustin Sabio VeraCERN, Geneva Christian SaemannTrinity College, Dublin Houman Safaai SISSA, Trieste Henning SamtlebenÉcole Normale Supérieure, Lyon Alberto SantambrogioIstituto Nazionale di Fisica Nucleare, Sezione di Milano Silviu Constantin SararuUniversity of Craiova Ricardo SchiappaCERN, Geneva Ionut Romeo SchiopuChalmers University, Göteborg Cornelius Schmidt-ColinetEidgenössische Technische Hochschule (ETH), Zürich Johannes SchmudeSwansea University Waldemar SchulginLaboratoire de Physique Théorique, École Normale Supérieure, Paris Domenico SeminaraUniversità di Firenze Alexander SevrinVrije Universiteit, Brussel Konstadinos SfetsosUniversity of Patras Igor ShenderovichSt Petersburg State University Jonathan ShockUniversidade de Santiago de Compostela Massimo SianiUniversità di Milano-Bicocca Christoph SiegUniversità Degli Studi di Milano Joan SimonUniversity of Edinburgh Paul SmythUniversity of Hamburg Luca SommovigoUniversidad de Valencia Dmitri Sorokin Istituto Nazionale di Fisica Nucleare, Padova Christos SourdisUniversity of Patras Wieland StaessensVrije Universiteit, Brussel Ivan StefanovUniversity of Patras Sigurdur StefanssonUniversity of Iceland Kellogg Stelle Imperial College London Giovanni Tagliabue Università di Milano Laura Tamassia Katholieke Universiteit Leuven Javier TarrioUniversidade de Santiago de Compostela Dimitri TerrynVrije Universiteit, Brussel Larus Thorlacius University of Iceland Mario ToninDipartimento Di Fisica, Sezione Di Padova Mario Trigiante Politecnico di Torino Efstratios TsatisUniversity of Patras Arkady TseytlinImperial College London Pantelis TziveloglouCornell University, New York and CERN, Geneva Angel Uranga CERN, Geneva Dieter Van den Bleeken Katholieke Universiteit Leuven Ernst van Eijk Università di Napoli Federico II Antoine Van Proeyen Katholieke Universiteit Leuven Maaike van ZalkUtrecht University Pierre Vanhove Service de Physique Théorique, CEA Saclay Silvia Vaula Instituto de Física Teórica, Universidad Autónoma de Madrid Cristian Vergu Service de Physique Théorique, CEA Saclay Alessandro VichiÉcole Polytechnique Fédérale de Lausanne (EPFL) Marlene WeissCERN, Geneva and Eidgenössische Technische Hochschule (ETH), Zürich Sebastian Weiss Université de Neuchâtel Alexander WijnsUniversity of Iceland Linus WulffUniversity of Padova Thomas WyderKatholieke Universiteit Leuven Ahmed YoussefAstroParticule et Cosmologie (APC), Université Paris Diderot Daniela ZanonUniversità Degli Studi di Milano Andrea ZanziPhysikalisches Institut, Universität Bonn Andrey ZayakinInstitute for Theoretical and Experimental Physics (ITEP), Moscow Tobias ZinggUniversity of Iceland Dimitrios ZoakosUniversidade de Santiago de Compostela Emanuele ZorzanUniversità di Milano Konstantinos ZoubosNiels Bohr Institute, København

  13. Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling

    PubMed Central

    Harada, Shunsuke; Hashizume, Toko; Nemoto, Kanako; Shao, Zhenhua; Higashitani, Nahoko; Etheridge, Timothy; Szewczyk, Nathaniel J; Fukui, Keiji; Higashibata, Akira; Higashitani, Atsushi

    2016-01-01

    Skeletal muscle wasting is a major obstacle for long-term space exploration. Similar to astronauts, the nematode Caenorhabditis elegans displays negative muscular and physical effects when in microgravity in space. It remains unclear what signaling molecules and behavior(s) cause these negative alterations. Here we studied key signaling molecules involved in alterations of C. elegans physique in response to fluid dynamics in ground-based experiments. Placing worms in space on a 1G accelerator increased a myosin heavy chain, myo-3, and a transforming growth factor-β (TGF-β), dbl-1, gene expression. These changes also occurred when the fluid dynamic parameters viscosity/drag resistance or depth of liquid culture were increased on the ground. In addition, body length increased in wild type and body wall cuticle collagen mutants, rol-6 and dpy-5, grown in liquid culture. In contrast, body length did not increase in TGF-β, dbl-1, or downstream signaling pathway, sma-4/Smad, mutants. Similarly, a D1-like dopamine receptor, DOP-4, and a mechanosensory channel, UNC-8, were required for increased dbl-1 expression and altered physique in liquid culture. As C. elegans contraction rates are much higher when swimming in liquid than when crawling on an agar surface, we also examined the relationship between body length enhancement and rate of contraction. Mutants with significantly reduced contraction rates were typically smaller. However, in dop-4, dbl-1, and sma-4 mutants, contraction rates still increased in liquid. These results suggest that neuromuscular signaling via TGF-β/DBL-1 acts to alter body physique in response to environmental conditions including fluid dynamics. PMID:28725724

  14. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  15. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  16. Stress and Thermal Stress Compensation in Quartz SAW Devices

    DTIC Science & Technology

    1991-08-01

    Laboratoire De Physique Et Metrologie Des Oscillateurs E. Bigler, D. Hauden, S. Ballandras OTIC hELECTLE E P19 99f "j APPROVED FOR PUBLIC RELASE, DISTRIBUTION...ORGANIZATION NAME(S) AND ADDRE$S(ES) 8. PERFORMING ORGANIZATION Laboratoire De Physique Et Metrologie Des Oscillateurs REPORT NUMBER Center National de la

  17. Developmental and Contextual Risks of Social Physique Anxiety among Female Athletes

    ERIC Educational Resources Information Center

    Gay, Jennifer L.; Monsma, Eva V.; Torres-McGehee, Toni M.

    2011-01-01

    In the present study, we examined developmental and contextual factors that may increase the odds of reporting higher social physique anxiety (SPA) among 404 adolescent athletes 11 to 16 years old. Findings showed older, later maturing athletes past peak height velocity and with greater body mass index (BMI) reported higher SPA. Individual…

  18. Social Physique Anxiety in Adolescence: An Exploration of Influences, Coping Strategies, and Health Behaviors

    ERIC Educational Resources Information Center

    Sabiston, C. M.; Sedgwick, W. A.; Crocker, P. R. E.; Kowalski, K. C.; Mack, D. E.

    2007-01-01

    This study explored adolescent females' experiences of social physique anxiety (SPA) and related coping strategies. A final sample of 31 adolescent females ages 13 to 18 years discussed dealing with SPA during individual semistructured interviews. Resultant themes pertaining to the transactional experiences of SPA were coded using content…

  19. PHENIX Collaboration

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Ma, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Sodre, T.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.

    2014-12-01

    We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China, (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Republic of Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.

  20. PHENIX Collaboration

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Maai, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Sodre, T.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.

    2014-11-01

    We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundaç ao de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.

  1. A UNIX SVR4-OS 9 distributed data acquisition for high energy physics

    NASA Astrophysics Data System (ADS)

    Drouhin, F.; Schwaller, B.; Fontaine, J. C.; Charles, F.; Pallares, A.; Huss, D.

    1998-08-01

    The distributed data acquisition (DAQ) system developed by the GRPHE (Groupe de Recherche en Physique des Hautes Energies) group is a combination of hardware and software dedicated to high energy physics. The system described here is used in the beam tests of the CMS tracker. The central processor of the system is a RISC CPU hosted in a VME card, running a POSIX compliant UNIX system. Specialized real-time OS9 VME cards perform the instrumentation control. The main data flow goes over a deterministic high speed network. The UNIX system manages a list of OS9 front-end systems with a synchronisation protocol running over a TCP/IP layer.

  2. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  3. Voyage dans le noir. Trous noirs, matière noire, énergie noire et antimatière [Journey in the dark. Black holes, dark matter, dark energy and antimatter

    ScienceCinema

    Alvarez-Gaume, Luis; Doser, Michael; Grojean, Chri

    2018-05-24

    Et si nous faisions avec les physiciens un voyage dans le noir ? De l'astrophysique à la physique des particules les trois noirs, la matière noire, l'énergie noire ou l’antimatière intriguent et fascinent. Que sont ces objets qui bousculent nos idées et qui véhiculent parfois des craintes irraisonnées? Luis Alvarez-Gaume, Michael Doser et Christophe Grojean, physiciens du CERN vous invitent à mettre en lumière (!) les constituants de base de la matière et à explorer les mystères de la physique contemporaine. Une soirée lumineuse pour éclairer des concepts et ne plus avoir peur du noir. [ What if we made a trip to the physicists in the dark? From astrophysics to particle physics the three blacks, dark matter, dark energy or antimatter intrigue and fascinate. What are these objects that jostle our ideas and sometimes convey irrational fears? Luis Alvarez-Gaume, Michael Doser and Christophe Grojean, CERN physicists invite you to highlight (!) The basic constituents of matter and to explore the mysteries of contemporary physics. A bright evening to illuminate concepts and not be afraid of the dark.

  4. A Polytomous Item Response Theory Analysis of Social Physique Anxiety Scale

    ERIC Educational Resources Information Center

    Fletcher, Richard B.; Crocker, Peter

    2014-01-01

    The present study investigated the social physique anxiety scale's factor structure and item properties using confirmatory factor analysis and item response theory. An additional aim was to identify differences in response patterns between groups (gender). A large sample of high school students aged 11-15 years (N = 1,529) consisting of n =…

  5. Body physique and proportionality of Brazilian female artistic gymnasts.

    PubMed

    Bacciotti, Sarita; Baxter-Jones, Adam; Gaya, Adroaldo; Maia, José

    2018-04-01

    This study aimed to identify physique characteristics (anthropometry, somatotype, body proportionality) of Brazilian female artistic gymnasts, and to compare them across competitive levels (sub-elite versus non-elite) within competitive age-categories. Two hundred forty-nine female gymnasts (68 sub-elite; 181 non-elite) from 26 Brazilian gymnastics clubs, aged 9-20 years and split into four age-categories, were sampled. Gymnasts were assessed for 16 anthropometric traits (height, weight, lengths, widths, girths, and skinfolds); somatotype was determined according to Heath-Carter method, body fat was estimated by bioimpedance, and proportionality was computed based on the z-phantom strategy. Non-elite and sub-elite gymnasts had similar values in anthropometric characteristics, however non-elite had higher fat folds in all age-categories (P < 0.01). In general, mesomorphy was the salient somatotype component in all age-categories, and an increase in endomorphy, followed by a decrease in ectomorphy across age was observed. Regarding proportionality, profile similarity was found between sub-elite and non-elite within age-categories. In conclusion results suggest the presence of a typical gymnast's physical prototype across age and competitive level, which can be useful to coaches during their selection processes in clubs and regional/national teams.

  6. Modelling of Molecular Structures and Properties in Physical Chemistry and Biophysics, Forty-Fourth International Meeting (Modelisation des Structures et Proprietes Moleculaires en Chimie Physique et en Biophysique, Quarante- Quatrieme Reunion Internationale)

    DTIC Science & Technology

    1989-09-01

    pyridone).Previous work on, py/ridimum, pyrazinjumn or pyrimidi im salts Koon 2 -pyrimloone and 2 - pyrimidone salts [43j have shown that some...forces. Acct . r ~[U... •K;.i. LJ , ’ 0, ’’ .t_I ..- .It . ( :.. 2 A VIBRATIONAL MOLECULAR FORCE FIELD FOR .ACROMOLECULA-R MODELLI= Gerard VERGOTENi...microscopic point of view are (1) understanding, ( 2 ) interpretation of experimental results, (3) semiquantitative estimates of experimental results and (4

  7. Quand la réadaptation blesse? Éducateurs victimes de violence

    PubMed Central

    Geoffrion, Steve; Ouellet, Frédéric

    2014-01-01

    Cette étude vise à comprendre le phénomène de la violence physique vécue par les éducateurs œuvrant dans dix Centres Jeunesse (CJ) du Québec. Pour ce faire, un sondage de victimisation a été administré à 586 éducateurs en internat. En premier lieu, la prévalence de cette problématique sera établie. Par la suite, les facteurs individuels et environnementaux prédisposant aux agressions physiques seront identifiés. Des édu-cateurs sondés, 53,9 % rapportent avoir été victimes de violence physique au cours de la dernière année. Sur le plan individuel, être affecté par les manifestations agressives des clients et la fréquence des violences psychologiques subies augmentent les risques de victimisation physique. Quant au contexte, l’âge de la clientèle et le motif de l’interven-tion (basé sur la loi justifiant le placement) auprès de l’enfant ou de l’adolescent influencent l’occurrence des actes violents dirigés contre les éducateurs. Nos analyses montrent également que les violences physiques dont sont victimes les éducateurs affectent autant l’individu que l’institution. L’identification de facteurs permettant de prédire les risques de victimisation pourrait notamment servir à orienter les programmes de prévention de la violence dans les CJ, mais aussi à cibler les éducateurs les plus à risque afin de leur fournir un soutien adapté. PMID:24976673

  8. Social Physique Anxiety and Pressure to Be Thin in Adolescent Ballet Dancers, Rhythmic Gymnastics and Swimming Athletes

    ERIC Educational Resources Information Center

    Kosmidou, Evdoxia; Giannitsopoulou, Evgenia; Moysidou, Dimitra

    2017-01-01

    Participation in sports may influence negative body image and Social Physique Anxiety (SPA) as there is pressure by significant others to have a certain body image. The aim of the present study was to examine possible differences in SPA and perceived pressure to be thin between female preadolescent and adolescent ballet dancers, rhythmic…

  9. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  10. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...

  11. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...

  12. A Unix SVR-4-OS9 distributed data acquisition for high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouhin, F.; Schwaller, B.; Fontaine, J.C.

    1998-08-01

    The distributed data acquisition (DAQ) system developed by the GRPHE (Groupe de Recherche en Physique des Hautes Energies) group is a combination of hardware and software dedicated to high energy physics. The system described here is used in the beam tests of the CMs tracker. The central processor of the system is a RISC CPU hosted in a VME card, running a POSIX compliant UNIX system. Specialized real-time OS9 VME cards perform the instrumentation control. The main data flow goes over a deterministic high speed network. The Unix system manages a list of OS9 front-end systems with a synchronization protocolmore » running over a TCP/IP layer.« less

  13. An Examination of Motivational Regulations, Dispositional Flow and Social Physique Anxiety among College Students for Exercise: A Self-Determination Theory Approach

    ERIC Educational Resources Information Center

    Ersöz, Gözde

    2016-01-01

    Based on self-determination theory (SDT), the main goal of this study is to analyze dispositional flow and social physique anxiety (SPA) that could be predicted by gender, BMI and motivational regulations and to examine motivational regulations, dispositional flow and SPA of college students in terms of stage of change for exercise. Participants…

  14. Human Factors Aspects of Aircraft Accidents

    DTIC Science & Technology

    1982-10-01

    preexistante (incapacite soudaine ou non en vo_l) La plus dangereuse (en particulier dans les phases decollage et atterrissage) est l’in- capacite... soudaine . Elle peut 6tre mortelle - dans ce caa, generalement eardiaque - ou sa traduire par des troubles psychiques - d’un developpement brutal et...done conduire a une lncapacite plus ou moins soudaine en vol. pefaillances physiques accidentelles Kors les defaillances physiques classiques

  15. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  16. OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15’, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  17. Psychophysiological Tracking of a Female Physique Competitor through Competition Preparation

    PubMed Central

    ROHRIG, BRANDON J.; PETTITT, ROBERT W.; PETTITT, CHERIE D.; KANZENBACH, TODD L.

    2017-01-01

    Natural physique competitions are based on subjective judgments of how a competitor appears on show day. Prior to competition, there is a prolonged dieting phase referred to as contest preparation. The primary goal is to reduce body fat levels while maintaining skeletal muscle mass. The study tracked the physiological and psychological changes for a 24 year old female preparing for a physique competition. Purpose: The study was conducted to describe the physiological and psychological changes of a female physique competitor who engages in long-term contest preparation. Methods: Diet, body composition, blood work, energy expenditure, mood, and performance were evaluated through contest preparation. Results: The participant lost 10.1kg throughout contest preparation in a strong weekly linear pattern (R2=0.97). Body fat was reduced from 30.45% to 15.85% while fat free mass was maintained. Mood for the participant remained stable until month five, when an observed variation occurred, with performance maintaining. Conclusions: Contest preparation was successful in reducing the body fat in the participant while having a minimum effect on both performance and fat free mass. For athletes looking to lose large amounts of body fat with minimal performance decrements a prolonged diet period with moderate exercise and food restriction can be an effective solution. PMID:28344742

  18. Psychophysiological Tracking of a Female Physique Competitor through Competition Preparation.

    PubMed

    Rohrig, Brandon J; Pettitt, Robert W; Pettitt, Cherie D; Kanzenbach, Todd L

    2017-01-01

    Natural physique competitions are based on subjective judgments of how a competitor appears on show day. Prior to competition, there is a prolonged dieting phase referred to as contest preparation. The primary goal is to reduce body fat levels while maintaining skeletal muscle mass. The study tracked the physiological and psychological changes for a 24 year old female preparing for a physique competition. The study was conducted to describe the physiological and psychological changes of a female physique competitor who engages in long-term contest preparation. Diet, body composition, blood work, energy expenditure, mood, and performance were evaluated through contest preparation. The participant lost 10.1kg throughout contest preparation in a strong weekly linear pattern (R 2 =0.97). Body fat was reduced from 30.45% to 15.85% while fat free mass was maintained. Mood for the participant remained stable until month five, when an observed variation occurred, with performance maintaining. Contest preparation was successful in reducing the body fat in the participant while having a minimum effect on both performance and fat free mass. For athletes looking to lose large amounts of body fat with minimal performance decrements a prolonged diet period with moderate exercise and food restriction can be an effective solution.

  19. All-Manganite Tunnel Junctions with Interface-Induced Barrier Magnetism

    NASA Astrophysics Data System (ADS)

    Sefrioui, Zouhair

    2011-03-01

    The recent discovery of several unexpected phases at complex oxide interfaces is providing new insights into the physics of strongly correlated electron systems. The possibility of tailoring the electronic structure of such interfaces has triggered a great technological drive to functionalize them into devices. In this communication, we describe an alternative strategy to produce spin filtering by inducing a ferromagnetic insulating state in an ultrathin antiferromagnetic layer in contact with a ferromagnetic layer. This artificially induced spin filtering persists up to relatively high temperatures and operates at high applied bias voltages. The results suggest that after playing a key role in exchange-bias for spin-valves, uncompensated moments at engineered antiferromagnetic interfaces represent a novel route for generating highly spin-polarized currents with antiferromagnets. Work done in collaboration with M. Bibes, C. Carrétéro, A. Barthélémy (Unité Mixte de Physique CNRS/Thales, Campus de Polytechnique, 1, Avenue A. Fresnel, 91767 Palaiseau (France) and Université Paris-Sud, 91045 Orsay (France)), F.A. Cuellar, C. Visani, A. Rivera-Calzada, , C. León, J. Santamaria (Grupo de Física de Materiales Complejos, Universidad Complutense de Madrid, 28040 Madrid (Spain)), M.J. Calderón, L. Brey (Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain)), K. March, M. Walls, D. Imhoff (Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, 91405 Orsay (France)), R. Lopez Anton, T.R. Charlton (ISIS, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom)), E. Iborra (Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Telecomunicaciones, 28040 Madrid (Spain)), F. Ott (Léon Brillouin, CEA/CNRS, UMR 12, 91191 Gif-sur-Yvette (France)). This work was supported by the Spanish Ministry for Science and Education programs MAT2008 06517, and the Réseau Thématique de Recherche Avancée (RTRA) ``Triangle de la Physique.''

  20. PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier

    2012-05-01

    Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not only was it a showroom for the research currently being carried out by many groups throughout the world, but there was also a permanent look towards the future. During these days, the CSIC Campus witnessed many scientific conversations triggered by the interaction amongst the people and groups that participated in LOOPS'11 Madrid and which, in many cases, will crystallise into new results and advances in the field. The conference would not have been possible without the generous help of a number of national and international institutions. The organizers would like to acknowledge the financial support provided by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación), the Spanish Research Council, CSIC (Consejo Superior de Investigaciones Cientĺficas), The BBVA Foundation (Fundación BBVA), The CONSOLIDER-CPAN project, the Spanish Society for Gravitation and Relativity (SEGRE), The Universidad Carlos III of Madrid (UC3M), and the European Science Foundation (ESF). The ESF, through the Quantum Gravity and Quantum Geometry network, provided full support for a number of young participants that have contributed to these proceedings: Dario Benedetti (Albert Einstein Institute, Potsdam, Germany), Norbert Bodendorfer (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Mariam Bouhmadi López (CENTRA, Centro Multidisciplinar de Astrofĺsica, Lisbon), Timothy Budd (Institute for Theoretical Physics, Utrecht University, The Netherlands), Miguel Campiglia (Institute for Gravitation and the Cosmos, Penn State University, USA), Gianluca Delfino (School of Mathematical Sciences, University of Nottingham, UK), Maite Dupuis (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Michał Dziendzikowski (Institute of Theoretical Physics, Warsaw University, Poland), Muxin Han (Centre de Physique Théorique de Luminy, Marseille, France), Philipp Höhn (Institute for Theoretical Physics, Utrecht University, The Netherlands), Jacek Puchta (Centre de Physique Théorique de Luminy, Marseille, France), James Ryan (Albert Einstein Institute, Potsdam, Germany), Lorenzo Sindoni (Albert Einstein Institute, Golm, Germany), David Sloan (Institute for Theoretical Physics, Utrecht University, The Netherlands), Johannes Tambornino (Laboratoire de Physique, ENS Lyon, France), Andreas Thurn (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Francesca Vidotto (Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France), and Matteo Smerlak (Albert Einstein Institute, Golm, Germany). We would like to conclude this preamble by thanking all the attendants of the conference for their high and enthusiastic participation. The presence of a large number of past and present Loop Quantum Gravity practitioners, as well as a significant number of top researchers in other approaches to quantum gravity, provided ample opportunities for fruitful scientific exchanges and a very lively atmosphere. It is encouraging to see that, 25 years after the inception of Loop Quantum Gravity, there is a vibrant young community of researchers entering the field. Let us hope that, with their help, the quantization of general relativity can be successfully accomplished in the near future. The Editors Conference photograph

  1. EBR-II Reactor Physics Benchmark Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Chad L.; Lum, Edward S; Stewart, Ryan

    This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.

  2. Characteristics of muscle dysmorphia in male football, weight training, and competitive natural and non-natural bodybuilding samples.

    PubMed

    Baghurst, Timothy; Lirgg, Cathy

    2009-06-01

    The purpose of this study was to identify differences in traits associated with muscle dysmorphia between collegiate football players (n=66), weight trainers for physique (n=115), competitive non-natural bodybuilders (n=47), and competitive natural bodybuilders (n=65). All participants completed demographic questionnaires in addition to the Muscle Dysmorphia Inventory (Rhea, Lantz, & Cornelius, 2004). Results revealed a significant main effect for group, and post hoc tests found that the non-natural bodybuilding group did not score significantly higher than the natural bodybuilding group on any subscale except for Pharmacological Use. Both the non-natural and natural bodybuilding groups scored significantly higher than those that weight trained for physique on the Dietary Behavior and Supplement Use subscales. The collegiate football players scored lowest on all subscales of the Muscle Dysmorphia Inventory except for Physique Protection where they scored highest. Findings are discussed with future research expounded.

  3. Physique traits of lightweight rowers and their relationship to competitive success

    PubMed Central

    Slater, G; Rice, A; Mujika, I; Hahn, A; Sharpe, K; Jenkins, D

    2005-01-01

    Objectives: Physique traits and their relationship to competitive success were assessed amongst lightweight rowers competing at the 2003 Australian Rowing Championships. Methods: Full anthropometric profiles were collected from 107 lightweight rowers (n = 65 males, n = 45 females) competing in the Under 23 and Open age categories. Performance assessments were obtained for 66 of these rowers based on results in the single sculls events. The relationship between physique traits and competitive success was then determined. Results: Lower body fat (heat time estimate –8.4 s kg–1, p<0.01), greater total body mass (heat time estimate –4.4 s kg–1, p = 0.03), and muscle mass (heat time estimate –10.2 s kg–1, p<0.01) were associated with faster 2000 m heat times. Conclusions: The more successful lightweight rowers were those who had lower body fat and greater total muscle mass. PMID:16183770

  4. The influence of social anxiety on the body checking behaviors of female college students.

    PubMed

    White, Emily K; Warren, Cortney S

    2014-09-01

    Social anxiety and eating pathology frequently co-occur. However, there is limited research examining the relationship between anxiety and body checking, aside from one study in which social physique anxiety partially mediated the relationship between body checking cognitions and body checking behavior (Haase, Mountford, & Waller, 2007). In an independent sample of 567 college women, we tested the fit of Haase and colleagues' foundational model but did not find evidence of mediation. Thus we tested the fit of an expanded path model that included eating pathology and clinical impairment. In the best-fitting path model (CFI=.991; RMSEA=.083) eating pathology and social physique anxiety positively predicted body checking, and body checking positively predicted clinical impairment. Therefore, women who endorse social physique anxiety may be more likely to engage in body checking behaviors and experience impaired psychosocial functioning. Published by Elsevier Ltd.

  5. The Relationship of Gender and Self-Efficacy on Social Physique Anxiety among College Students.

    PubMed

    Rothberger, Sara M; Harris, Brandonn S; Czech, Daniel R; Melton, Bridget

    The anxiety or fear associated with physique evaluation is defined as Social Physique Anxiety (SPA). Numerous studies have examined this construct, yet a gap exists exploring this phenomenon among current college students with SPA, self-efficacy, and gender concurrently. Therefore, the purposes of this study included quantitatively analyzing the association between SPA, gender, and self-efficacy. Participants included 237 students at a Southeastern university participating in jogging, body conditioning, or weight training courses. Analysis of Variance yielded a significant main effect for self-efficacy as well, as those with lower self-efficacy displayed higher levels of SPA ( p < 0.001). Stepwise regression analysis indicated self-efficacy and gender were both significant predictors of SPA. This information could aid in creating interventions designed to decrease the prevalence of SPA and increase levels of self-efficacy among the current college student population.

  6. New Reactor Physics Benchmark Data in the March 2012 Edition of the IRPhEP Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; Jim Gulliford

    2012-11-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications. Numerous experiments that have been performed worldwide, represent a large investment of infrastructure, expertise, and cost, and are valuable resources of data for present and future research. These valuable assets provide the basis for recording, development, and validation of methods. If the experimental data are lost, the high cost to repeat many of these measurements may be prohibitive. The purpose of the IRPhEP is to provide an extensively peer-reviewed set ofmore » reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. Contributors from around the world collaborate in the evaluation and review of selected benchmark experiments for inclusion in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [1]. Several new evaluations have been prepared for inclusion in the March 2012 edition of the IRPhEP Handbook.« less

  7. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  8. REACTOR PHYSICS QUARTERLY REPORT JANUARY, FEBRUARY, MARCH 1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, L. C.; Clayton, E. D.; Heineman, R. E.

    1970-05-01

    The objective of the Reactor Physics Quarterly Report is to inform the scientific community in a timely manner of the technical progress made on the many phases of reactor physics work within the laboratory. The report contains brief technical discussions of accomplishments in all areas where significant progress has been made during the quarter.

  9. Torleif Ericson 60th Birthday

    ScienceCinema

    None

    2017-12-09

    Plusieurs discours à l'occasion du 60me anniversaire de Torleif Ericson, physicien né à Lund (Suède), et remerciements pour son travail et son effort de relier la physique des particules à la physique nucléaire. A la fin de la cérémonie un document scientifique de 400 pages "die Festschrift" lui est remis comme cadeau d'anniversaire avec un grand nombre de contributions d'amis etc...

  10. Ohio State University Symposium (45th) on Molecular Spectroscopy Held in Columbus, Ohio on 11-15 Jun 1990

    DTIC Science & Technology

    1990-06-15

    Atmospheric Administration, Boulder, CO 80303. Address of Ortigoso and Escribano: Instituto de Estructura de al Materia, Consejo Superior de investigaciones ...10 min.(1:42) J. M. GUILMOT anO M. HERMAN, Laboratoire de Chimie Physique Moleculaire, tjniversit’c Libre de ...CANY-PEYRET, Laboratoire de Physique Mole’*u’ai:e et Atmospherique, Universite Pierre et Marie Curie et CNRS, 75252 Paris, France. MF4. FIR LASER STARK

  11. Women's anxiety about social and exercise settings.

    PubMed

    Walton, Vicki R; Finkenberg, Mel E

    2002-04-01

    This study involved a comparison of social physique anxiety, assessed through the application of a modified version of the Social Physique Anxiety Scale, with 28 women who were new members exercising at all-female facilities compared to 43 new female members exercising at coeducational facilities. Analyses indicated there were no significant differences in means between the groups. The scores of women attending all-female facilities were significantly more influenced by the sex of members when choosing a facility.

  12. Physical and chemical controls on the critical zone

    USGS Publications Warehouse

    Anderson, S.P.; Von Blanckenburg, F.; White, A.F.

    2007-01-01

    Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.

  13. The influence of somatotype on anaerobic performance

    PubMed Central

    Faulkner, James; Jobson, Simon

    2018-01-01

    The link between athlete physique and performance in sports is well established. However, a direct link between somatotype three-numeral rating and anaerobic performance has not yet been reported. The purpose of this study was to assess the relations between somatotype and anaerobic performance using both singular and multivariate analyses. Thirty-six physically active males (mean ± standard deviation age 26.0 ± 9.8 years; body mass 79.5 ± 12.9 kg; height 1.82 ± 0.07 m) were somatotype-rated using the Heath-Carter method. Subjects were assessed for 3 repetition maximum (3 RM) bench press and back squat, and completed a 30-second maximal sprint cycle test. Positive correlations were observed between mesomorphy and 3 RM bench press (r = 0.560, p < 0.001), mesomorphy and 3 RM back squat (r = 0.550, p = 0.001) and between mesomorphy and minimum power output (r = 0.357, p = 0.033). Negative correlations were observed between ectomorphy and 3 RM bench press (r = -0.381, p = 0.022), and ectomorphy and 3 RM back squat (r = -0.336, p = 0.045). Individual regression analysis indicated that mesomorphy was the best predictor of 3 RM bench press performance, with 31.4% of variance in 3 RM bench press performance accounted for by the mesomorphy rating (p < 0.001). A combination of mesomorphy and ectomorphy best predicted 3 RM back squat performance (R2 = 0.388, p < 0.04). Around one third of strength performance is predicted by somatotype-assessed physique in physically active males. This could have important implications for the identification of those predisposed to perform well in sports containing strength-based movements and prescription of training programmes. PMID:29787610

  14. The influence of somatotype on anaerobic performance.

    PubMed

    Ryan-Stewart, Helen; Faulkner, James; Jobson, Simon

    2018-01-01

    The link between athlete physique and performance in sports is well established. However, a direct link between somatotype three-numeral rating and anaerobic performance has not yet been reported. The purpose of this study was to assess the relations between somatotype and anaerobic performance using both singular and multivariate analyses. Thirty-six physically active males (mean ± standard deviation age 26.0 ± 9.8 years; body mass 79.5 ± 12.9 kg; height 1.82 ± 0.07 m) were somatotype-rated using the Heath-Carter method. Subjects were assessed for 3 repetition maximum (3 RM) bench press and back squat, and completed a 30-second maximal sprint cycle test. Positive correlations were observed between mesomorphy and 3 RM bench press (r = 0.560, p < 0.001), mesomorphy and 3 RM back squat (r = 0.550, p = 0.001) and between mesomorphy and minimum power output (r = 0.357, p = 0.033). Negative correlations were observed between ectomorphy and 3 RM bench press (r = -0.381, p = 0.022), and ectomorphy and 3 RM back squat (r = -0.336, p = 0.045). Individual regression analysis indicated that mesomorphy was the best predictor of 3 RM bench press performance, with 31.4% of variance in 3 RM bench press performance accounted for by the mesomorphy rating (p < 0.001). A combination of mesomorphy and ectomorphy best predicted 3 RM back squat performance (R2 = 0.388, p < 0.04). Around one third of strength performance is predicted by somatotype-assessed physique in physically active males. This could have important implications for the identification of those predisposed to perform well in sports containing strength-based movements and prescription of training programmes.

  15. REACTOR PHYSICS CONSTANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-07-01

    This second edition is based on data available on March 15, 1961. Sections on constants necessary for the interpretation of experimental data and on digital computer programs for reactor design and reactor physics have been added. 1344 references. (D.C.W.)

  16. Influence of players' physique on rugby football injuries.

    PubMed Central

    Lee, A J; Myers, J L; Garraway, W M

    1997-01-01

    OBJECTIVES: To determine whether there is an association between a player's physique and injuries incurred while playing rugby football. METHODS: A cohort study was carried out involving all senior rugby clubs in the Scottish Borders during the 1993-1994 rugby season. Somatotype estimates were determined for 1152 (95%) of the 1216 eligible players. Body mass index (BMI), chest to waist ratio, and the ponderal index (PI) were used to classify players' physique as endomorphic (obese), mesomorphic (muscular), and ectomorphic (linear). RESULTS: A strong association was found between physique and age (chi 2 test: chi 2 = 317.2, df = 10, P < 0.0001). More younger players were ectomorphs. Older players were more often endomorphic. The physiques of forwards and backs were significantly different (chi 2 test: chi 2 = 58.6, df = 2, P < 0.0001), with forwards being of a heavier build than three-quarters, even after adjustment for age. Endomorphic players were more likely than ectomorphs to be injured in a match after adjustment for age (age-adjusted mean BMI for players who were injured in a match was 25.4 compared with 24.6 for players who were not injured in a match, P < 0.0001; adjusted chest to waist ratio means were 1.136 and 1.125 respectively, P = 0.0307; adjusted PI means were 0.414 and 0.417 respectively, P = 0.0056). Increased risk of injury may occur when players play out of position, since one fifth of all injuries occurred in this circumstance. CONCLUSIONS: Further research needs to be conducted using a more objective method of measuring somatotype on a further cohort of players so that the risk of injury for different body types can be examined more closely and related to other potential confounding factors. The level of increased risk for individuals playing out of their usual playing position needs to be established with a greater degree of certainty. PMID:9192128

  17. Encyclopédie scientifique de l'universe: les étoiles - le système solaire.

    NASA Astrophysics Data System (ADS)

    This book is a revised, extended and updated edition of the volume published in 1979 (27.003.156).Contents: Première partie - le système solaire: 1. Astronomie des positions (J. Lévy). 2. Le système des constantes astronomiques; les données fondamentales (A. Bec-Borsenberger, F. Chollet). 3. Mécanique du système solaire (B. Morando). 4. Relief et structure des planètes telluriques et des satellites (A. Cazenave, P. Masson, P. Thomas). 5. Physique des atmosphères planétaires denses (D. Gautier, M. Combes,G. Moreels, J. P. Parisot, O. Tallagrand). 6. Les anneaux entourant les planètes (N. Borderies, A. Dollfus). 7. Les comètes et les météorites (A. Levasseur-Regourd). 8. L'environnement du Soleil et de la Terre (J.-L. Steinberg, J.-P. Bibring, A. Boischot, P. Couturier, R. Dumont, T. Encrenaz, P. Lamy).Deuxième partie - le Soleil et les bases de la physique stellaire: 9. Théorie des atmosphères du Soleil et des étoiles (R. Michard). 10. Physique de l'atmosphère solaire {non perturbée} (P. Mein). 11. Les centres actifs (J.-C. Hénoux, J.-C. Vial). 12. Éruptions solaires et phénomènes transitoires (J.-C. Hénoux, M. Pick, G. Trottet). 13. Le cycle solaire (J. Latour, P. Simon).Troisième partie - physique des étoiles: 14. Acquisition des données fondamentales (F. Spite). 15. Les étoiles doubles (R. Bouigue, P. Muller). 16. Les étoiles variables (M. Auvergne, A. Baglin, D. Ducatel, J.-M. Le Contel, J. C. Valtier). 17. Structure interne et évolution des étoiles (J.-P. Zahn). 18. Les familles physiques d'étoiles (G. Cayrel).

  18. MICROMECHANICS AND MICROSTRUCTURE EVOLUTION: Modeling, Simulation and Experiments. Held in Madrid, Spain on 12-16 September 2005

    DTIC Science & Technology

    2006-10-30

    acknowledges funding from the ‘‘ Programa Torres Quevedo’’ of the Spanish Ministerio de Educación y Ciencia. References [1] Nix WD. Metall Mater Trans A...University of Madrid E. T. S. de Ingenieros de Caminos Madrid 28040 Spain 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSOR...Rodney * Génie Physique et Mécanique des Matériaux (UMR CNRS 5010), Institut National Polytechnique de Grenoble, 101 rue de la Physique, 38402

  19. Micromechanics and Microstructure Evolution: Modeling, Simulation and Experiments. Conference Held in Madrid, Spain, 12-16 Sep 2005

    DTIC Science & Technology

    2006-10-30

    acknowledges funding from the ‘‘ Programa Torres Quevedo’’ of the Spanish Ministerio de Educación y Ciencia. References [1] Nix WD. Metall Mater Trans A...University of Madrid E. T. S. de Ingenieros de Caminos Madrid 28040 Spain 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSOR...Rodney * Génie Physique et Mécanique des Matériaux (UMR CNRS 5010), Institut National Polytechnique de Grenoble, 101 rue de la Physique, 38402

  20. FERRET-SAND II physics-dosimetry analysis for N Reactor Pressure Tubes 2954, 3053 and 1165 using a WIMS calculated input spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, W.N.; Kellogg, L.S.; Matsumoto, W.Y.

    1988-05-01

    This report is in response to a request from Westinghouse Hanford Company (WHC) that the PNL National Dosimetry Center (NDC) perform physics-dosimetry analyses (E > MeV) for N Reactor Pressure Tubes 2954 and 3053. As a result of these analyses, and recommendations for additional studies, two physics-dosimetry re-evaluations for Pressure Tube 1165 were also accomplished. The primary objective of Pacific Northwest Laboratories' (PNL) National Dosimetry Center (NDC) physics-dosimetry work for N Reactor was to provide FERRET-SAND II physics-dosimetry results to assist in the assessment of neutron radiation-induced changes in the physical and mechanical properties of N Reactor pressure tubes. 15more » refs., 6 figs., 5 tabs.« less

  1. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  2. List of Participants

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Mohab Abou ZeidVrije Universiteit, Brussel Joke AdamKatholieke Universiteit Leuven Nikolas AkerblomMax-Planck-Institut für Physik, München Luis Fernando Alday Utrecht University Stelios Alexandris University of Patras Antonio Amariti Università di Milano-Bicocca Nicola Ambrosetti Université de Neuchâtel Pascal Anastasopoulos Università di Roma Tor Vergata Laura Andrianopoli Enrico Fermi Center Carlo Angelantonj Università di Torino Lilia Anguelova Queen Mary, University of London Daniel AreanUniversidade de Santiago de Compostela Gleb ArutyunovUtrecht University Spyros Avramis NTU Athens—University of Patras Ioannis Bakas University of Patras Subrata Bal Dublin Institute for Advanced Studies Igor Bandos Valencia University Jessica Barrett University of Iceland Marco Baumgartl Eidgenössische Technische Hochschule, Zürich Jacopo Bechi Università di Firenze James Bedford Queen Mary, University of London Jorge Bellorin Universidad Autonoma de Madrid Francesco Benini SISSA, Trieste Eric Bergshoeff Centre for Theoretical Physics, University of Groningen Gaetano BertoldiUniversity of Wales, Swansea Adel Bilal Laboratoire de Physique Théorique, École Normale Superieure, Paris Matthias Blau Université de Neuchâtel Johannes BroedelUniversität Hannover Felix Brümmer Universität Heidelberg Julio Cesar Bueno de Andrade São Paulo State University—UNESP Cliff Burgess McMaster University Agostino Butti Laboratoire de Physique Théorique, École Normale Superieure, Paris Marco Caldarelli Universitat de Barcelona Pablo G Camara Centre de Physique Théorique, École Polytechnique, Palaiseau Joan Camps Universitat de Barcelona Felipe Canoura FernandezUniversidade de Santiago de Compostela Luigi Cappiello Università di Napoli Federico II Luca Carlevaro École Polytechnique, Palaiseau Roberto Casero Centre de Physique Théorique, École Polytechnique, Palaiseau Claudio Caviezel Max-Planck-Institut für Physik, München Alessio Celi Universitat de Barcelona Anna Ceresole Istituto Nazionale di Fisica Nucleare and Università di Torino Kang Sin Choi University of Bonn Michele Cirafici University of Patras Andres Collinucci Katholieke Universiteit Leuven Aldo Cotrone Universitat de Barcelona Ben Craps Vrije Universiteit, Brussel Stefano Cremonesi SISSA, Trieste Gianguido Dall'Agata Padova University Sanjit Das Indian Institute of Technology, Kharagpur Forcella Davide SISSA, Trieste Jose A de Azcarraga Valencia University and Instituto de Fìsica Corpuscular (CSIC-UVEG), Valencia Sophie de BuylInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Jean-Pierre Derendinger Université de Neuchâtel Stephane Detournay Università Degli Studi di Milano Paolo Di Vecchia NORDITA, København Oscar Dias Universitat de Barcelona Vladimir Dobrev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia Joel Ekstrand Department of Theoretical Physics, Uppsala University Federico Elmetti Università di Milano I Diaconu Eugen University of Craiova Oleg Evnin Vrije Universiteit, Brussel Bo Feng Imperial College, London Livia Ferro Università di Torino Pau Figueras Universitat de Barcelona Raphael Flauger University of Texas at Austin Valentina Forini Università di Perugia Angelos Fotopoulos Università di Torino Denis Frank Université de Neuchâtel Lisa Freyhult Albert-Einstein-Institut, Golm Carlos Fuertes Instituto de Física Teórica, Madrid Matthias Gaberdiel Eidgenössische Technische Hochschule, Zürich Maria Pilar Garcia del Moral Università di Torino Daniel Gerber Instituto de Física Teórica, Madrid Valentina Giangreco Marotta Puletti Uppsala University Joaquim Gomis Universitat de Barcelona Gianluca Grignani Università di Perugia Luca Griguolo Università di Parma Umut Gursoy École Polytechnique, Palaiseau and École Normale Supérieure, Paris Michael Haack Ludwig-Maximilians-Universität, München Troels Harmark Niels Bohr Institute, København Alexander Haupt Imperial College, London Michal Heller Jagiellonian University, Krakow Samuli Hemming University of Iceland Yasuaki Hikida DESY, Hamburg Christian Hillmann Max-Planck-Institut für Gravitationsphysik, Potsdam Stephan Hoehne Max-Planck-Institut für Physik, München Gabriele Honecker CERN, Geneva Carlos Hoyos University of Wales, Swansea Mechthild Huebscher Consejo Superior de Investigaciones Cientificas, Madrid Matthias Ihl University of Texas at Austin Emiliano Imeroni University of Wales, Swansea Nikos Irges University of Crete Negru Iulian University of Craiova Matthias Kaminski Ludwig-Maximilians-Universität, München Stefanos Katmadas Universiteit Utrecht Shoichi Kawamoto Oxford University Christoph Keller Eidgenössische Technische Hochschule, Zürich Arjan Keurentjes Vrije Universiteit, Brussel Sadi Khodaee Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran Michael Kiermaier Massachusetts Institute of Technology, Cambridge, MA Elias Kiritsis Centre de Physique Théorique, École Polytechnique, Palaiseau and University of Crete Ingo KirschEidgenössische Technische Hochschule, Zürich Johanna Knapp CERN, Geneva Paul Koerber Max-Planck-Institut für Physik, München Simon Koers Max-Planck-Institut für Physik, München Anatoly Konechny Heriot-Watt University, Edinburgh Peter Koroteev Institute for Theoretical and Experimental Physics (ITEP), Moscow Daniel KreflLudwig-Maximilians-Universität and Max-Planck-Institut für Physik, München Chethan KrishnanUniversité Libre de Bruxelles Stanislav Kuperstein Université Libre de Bruxelles Alberto Lerda Università del Piemonte Orientale, Alessandria Roman Linares Universidad Autonoma Metropolitana, Iztapalapa, México Maria A Lledo Universidad de Valencia Dieter Luest Ludwig-Maximilians-Universität and Max-Planck-Institut für Physik, München Joseph Lykken Fermi National Accelerator Laboratory (Fermilab), Batavia, IL Carlo Maccaferri Vrije Universiteit, Brussel Oscar Macia Universidad de Valencia Tristan Maillard Centre de Physique Théorique, École Polytechnique, Palaiseau Diego Mansi Università Degli Studi di Milano Matteo Marescotti Università del Piemonte Orientale, Alessandria Alberto Mariotti Università di Milano-Bicocca Raffaele Marotta Istituto Nazionale di Fisica Nucleare, Napoli Alessio Marrani Istituto Nazionale di Fisica Nucleare and LNF, Firenze Luca Martucci Instituto de Física Teórica, Madrid and Katholieke Universiteit Leuven David Mateos University of California, Santa Barbara Andrea Mauri Università di Milano Liuba Mazzanti Università di Milano-Bicocca Patrick Meessen Instituto de Física Teórica, Universidad Autónoma de Madrid Lotta Mether Helsinki Institute of Physics Rene Meyer Max-Planck-Institut für Physik, München Giuseppe Milanesi SISSA, Trieste Cesar Miquel-Espanya Universitat de Valencia and Instituto de Física Corpuscular, Valencia Alexander Monin Institute for Theoretical and Experimental Physics (ITEP), Moscow and Moscow State University (MSU) Samuel Monnier Université de Genève Sergio Montero Instituto de Física Teórica, Madrid Nicola Mori Università di Firenze Alexander Marcel Morisse University of California, Santa Cruz Sebastian Moster Max-Planck-Institut für Physik, München Adele Nasti Queen Mary, University of London Vasilis Niarchos École Polytechnique, Palaiseau Emil Nissimov Institute for Nuclear Research and Nuclear Energy, Sofia Francesco Nitti École Polytechnique, Palaiseau Eoin O'Colgain Imperial College, London Niels Obers Niels Bohr Institute, København Rodrigo Olea Università Degli Studi di Milano Marta Orselli Niels Bohr Institute, København Enrico PajerLudwig-Maximilians-Universität, München Eran PaltiOxford University Georgios PapathanasiouBrown University, Providence, RI Angel ParedesCentre de Physique Théorique, École Polytechnique, Palaiseau Jeong-Hyuck ParkMax-Planck-Institut für Physik, München Sara PasquettiUniversità di Parma Silvia PenatiUniversità di Milano-Bicocca Igor PesandoUniversità di Torino Marios PetropoulosÉcole Polytechnique, Palaiseau Roberto PettorinoUniversità di Napoli Federico II Franco PezzellaIstituto Nazionale di Fisica Nucleare, Napoli Moises Picon PonceIstituto Nazionale di Fisica Nucleare, Padova Marco PirroneUniversità di Milano-Bicocca Erik PlauschinnMax-Planck-Institut für Physik, München Andre PloeghCentre for Theoretical Physics, University of Groningen Giuseppe PolicastroLaboratoire de Physique Théorique, École Normale Superieure, Paris Josep PonsUniversitat de Barcelona S Prem KumarUniversity of Wales, Swansea Nikolaos PrezasCERN, Geneva Carlo Alberto RattiUniversità di Milano-Bicocca Riccardo RicciImperial College, London Alejandro RiveroEscuela Universitaria Politécnica de Teruel, Universidad de Zaragoza Irene RodriguezInstituto de Física Teórica, Madrid Maria Jose RodriguezUniversitat de Barcelona Diederik RoestUniversitat de Barcelona Alberto RomagnoniLaboratoire de Physique Théorique d'Orsay, Paris Christian RomelsbergerDublin Institute for Advanced Studies Jan RosseelKatholieke Universiteit Leuven Sebastiano RossiEidgenössische Technische Hochschule, Zürich Felix RustMax-Planck-Institut für Physik, München Cheol RyouPohang University of Science and Technology (POSTECH) Christian SaemannDublin Institute for Advanced Studies Houman Safaai SISSA, Trieste Alberto SantambrogioIstituto Nazionale di Fisica Nucleare, Sezione di Milano Frank SaueressigUniversiteit Utrecht Ricardo SchiappaCERN, Geneva Cornelius Schmidt-ColinetEidgenössische Technische Hochschule, Zürich Maximilian Schmidt-SommerfeldMax-Planck-Institut für Physik, München Waldemar SchulginMax-Planck-Institut für Physik, München Claudio ScruccaUniversité de Neuchâtel Nathan SeibergInstitute of Advanced Studies, Princeton, NJ Domenico SeminaraUniversità di Firenze Alexander SevrinVrije Universiteit, Brussel Konstadinos SfetsosUniversity of Patras Kostas SiamposUniversity of Patras Christoph SiegUniversità Degli Studi di Milano Vaula Silvia Instituto de Física Teórica, Madrid Aaron Sim Imperial College, London Woojoo Sim Pohang University of Science and Technology (POSTECH) Sergey Slizovskiy Department of Theoretical Physics, Uppsala University Paul Smyth Katholieke Universiteit Leuven Corneliu Sochichiu Laboratori Nazionali di Frascati Dmitri Sorokin Istituto Nazionale di Fisica Nucleare, Padova Kellogg Stelle Imperial College, London Piotr Surowka Jagiellonian University, Krakow Yasutoshi Takayama Niels Bohr Institute, København Laura Tamassia Katholieke Universiteit Leuven Radu Tatar University of Liverpool Larus Thorlacius University of Iceland Paavo Tiitola Helsinki Institute of Physics Diego Trancanelli Stony Brook University, NY Michele TraplettiInstitut für Theoretische Physik, Universität Heidelberg Mario Trigiante Politecnico di Torino Angel Uranga CERN, Geneva and Instituto de Física Teórica, Madrid Roberto Valandro SISSA, Trieste Dieter Van den Bleeken Katholieke Universiteit Leuven Antoine Van Proeyen Katholieke Universiteit Leuven Thomas Van Riet Centre for Theoretical Physics, University of Groningen Pierre Vanhove Service de Physique Théorique, Saclay Oscar Varela Universidad de Valencia Alessandro Vichi Scuola Normale Superiore di Pisa Massimiliano VinconQueen Mary, University of London John Ward Queen Mary, University of London and CERN, Geneva Brian Wecht Massachusetts Institute of Technology, Cambridge, MA Marlene Weiss Eidgenössische Technische Hochschule, Zürich and CERN, Geneva Sebastian Weiss Université de Neuchâtel Alexander Wijns Vrije Universiteit, Brussel Przemek Witaszczyk Jagiellonian University, Krakow Timm Wrase University of Texas at Austin Jun-Bao Wu SISSA, Trieste Amos Yarom Ludwig-Maximilians-Universität, München Marco Zagermann Max-Planck-Institut für Physik, München Daniela Zanon Dipartimento di Fisica, Università di Milano Andrea Zanzi University of Bonn Andrey Zayakin Moscow State University (MSU) and Institute for Theoretical and Experimental Physics (ITEP), Moscow Konstantinos Zoubos Queen Mary, University of London

  3. Modeling the human body shape in bioimpedance vector measurements.

    PubMed

    Kim, Chul-Hyun; Park, Jae-Hyeon; Kim, Hyeoijin; Chung, Sochung; Park, Seung-Hun

    2010-01-01

    Human body shape, called somatotype, has described physique of humans in health and sports applications, relating anthropometric measurements to fatness, muscularity and linearity in a structured way. Here we propose a new method based on bioelectric impedance vector analysis (BIVA) of R/H and Xc/H to represent the cross-sectional area and the body cell mass in a given surface area (m(2)) respectively. Data from six gymnasts, ten dancers, and five fashion models, groups whose physiques and BMI ranges were distinct from one another, were measured for somatotype and BIVA. The models had highest values of the R/H and gymnasts the lowest. Xc/H was lower in models than in the dancers and gymnasts (p < 0.05). Phase angle was lowest in the models and highest in gymnasts significantly (p < 0.05). Pattern analysis from BIVA corresponded to the calculated anthropometric somatotype supporting the hypothesis that BIA's resistance (R) and reactance (Xc) are meaningful discriminates of body size and function which relate to physique in a purposive way.

  4. Psychometric properties of the Social Physique Anxiety Scale (SPAS-7) in Spanish adolescents.

    PubMed

    Sáenz-Alvarez, Piedad; Sicilia, Álvaro; González-Cutre, David; Ferriz, Roberto

    2013-01-01

    The purpose of this study was to validate the Spanish version of Motl and Conroy's model of the Social Physique Anxiety Scale (SPAS-7). To achieve this goal, a sample of 398 secondary school students was used, and the psychometric properties of the SPAS-7 were examined through different analyses. The results supported the seven-item model, although the item 5 did not show any significant correlation with two items from this model and had a lower factor loading than the rest of items. The structure of the model was invariant across gender and Body Mass Index (BMI). Alpha value over .70 and suitable levels of temporal stability were obtained. Girls and students classified according to the BMI as overweight and obese had higher scores in social physique anxiety than boys and the group classified as underweight and normal range. The findings of this study provided reliability and validity for the SPAS-7 in a Spanish adolescent sample.

  5. [Comparison of cardiopulmonary endurance and muscular fitness in teenagers between Hong Kong and inland cities].

    PubMed

    Hong, Y; Chan, K; Wang, Y

    1997-01-01

    A study on the data of the physique investigated in teenagers was carried out between Hong Kong and inland cities to compare their cardiopulmonary endurance and muscular fitness. Results revealed that cardiopulmonary endurance in school teenagers of both sex at different ages in inland cities was better than that in Hong Kong. Muscular strength and endurance of sports performance of teenagers, except for standing long jump, in Hong Kong were weaker than that in inland cities. It suggests that attention should be paid to the involvement of teenagers in physical education with the increase of people's living standard.

  6. Handbook explaining the fundamentals of nuclear and atomic physics

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  7. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...

  8. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...

  9. The Ongoing Impact of the U.S. Fast Reactor Integral Experiments Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Michael A. Pope; Harold F. McFarlane

    2012-11-01

    The creation of a large database of integral fast reactor physics experiments advanced nuclear science and technology in ways that were unachievable by less capital intensive and operationally challenging approaches. They enabled the compilation of integral physics benchmark data, validated (or not) analytical methods, and provided assurance of future rector designs The integral experiments performed at Argonne National Laboratory (ANL) represent decades of research performed to support fast reactor design and our understanding of neutronics behavior and reactor physics measurements. Experiments began in 1955 with the Zero Power Reactor No. 3 (ZPR-3) and terminated with the Zero Power Physics Reactormore » (ZPPR, originally the Zero Power Plutonium Reactor) in 1990 at the former ANL-West site in Idaho, which is now part of the Idaho National Laboratory (INL). Two additional critical assemblies, ZPR-6 and ZPR-9, operated at the ANL-East site in Illinois. A total of 128 fast reactor assemblies were constructed with these facilities [1]. The infrastructure and measurement capabilities are too expensive to be replicated in the modern era, making the integral database invaluable as the world pushes ahead with development of liquid metal cooled reactors.« less

  10. Dermatoglyphic characters and physique: a correlation study.

    PubMed

    Rothhammer, F; Llop, E; Neel, J V

    1982-01-01

    The association of anthropometrics, particularly hand measurements, with dermatoglyphic characters is quantified. Children with square hands exhibit higher main line indices, a-b ridge counts, and more open atd angles. Adults with broader hands have more arches. Taller individuals with larger hands present higher a-b ridge counts and leaner subjects with long narrow hands, closer atd angles. The correlation of physique and dermatoglyphics is small but if verified, suggests that at early fetal stages, factors responsible for the establishment of dermatoglyphic patterns interact with genetic determinants of adult shape that are already active.

  11. 75 FR 67636 - Physical Protection of Shipments of Irradiated Reactor Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ...-2010-0340; Draft NUREG-0561, Revision 2] RIN 3150-AI64 Physical Protection of Shipments of Irradiated...- 0561, ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This document provides guidance to a licensee or applicant for implementation of proposed 10 CFR 73.37, ``Requirements for Physical...

  12. 78 FR 31821 - Physical Protection of Shipments of Irradiated Reactor Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 [NRC-2010-0340; NRC-2009-0163] RIN 3150-AI64 Physical..., ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This revised document sets forth means... physical protection of spent nuclear fuel (SNF) during transportation by road, rail, and water; and for...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.; Yu, G.; Wang, K.

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecturemore » achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)« less

  14. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    NASA Astrophysics Data System (ADS)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  15. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, J. D.; Briggs, J. B.; Gulliford, J.

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energymore » Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning is the critical experiments with fast reactor fuel rods in water, interesting in terms of justification of nuclear safety during transportation and storage of fresh and spent fuel. These reports provide a detailed review of the experiment, designate the area of their application and include results of calculations on modern systems of constants in comparison with the estimated experimental data.« less

  16. Neutrino Physics with Nuclear Reactors: An Overview

    NASA Astrophysics Data System (ADS)

    Ochoa-Ricoux, J. P.

    Nuclear reactors provide an excellent environment for studying neutrinos and continue to play a critical role in unveiling the secrets of these elusive particles. A rich experimental program with reactor antineutrinos is currently ongoing, and leads the way in precision measurements of several oscillation parameters and in searching for new physics, such as the existence of light sterile neutrinos. Ongoing experiments have also been able to measure the flux and spectral shape of reactor antineutrinos with unprecedented statistics and as a function of core fuel evolution, uncovering anomalies that will lead to new physics and/or to an improved understanding of antineutrino emission from nuclear reactors. The future looks bright, with an aggressive program of next generation reactor neutrino experiments that will go after some of the biggest open questions in the field. This includes the JUNO experiment, the largest liquid scintillator detector ever constructed which will push the limits of this detection technology.

  17. High Maternal Age and Low Pre-Pregnancy Body Mass Index Correlate with Lower Birth Weight of Male Infants.

    PubMed

    Fukuda, Sayuri; Tanaka, Yurika; Harada, Kiyomi; Saruwatari, Ayako; Kitaoka, Kaori; Odani, Kiyoko; Aoi, Wataru; Wada, Sayori; Nishi, Yukari; Oguni, Tatsuya; Asano, Hiroaki; Hagiwara, Nobuko; Higashi, Akane

    2017-02-01

    In Japan, the percentage of leanness has been increasing in young women, and the percentage of low birth weight infants (< 2,500 g) has increased. Moreover, the average age of primiparas rose 3.5 years during the last 30 years. The purpose of this study was to clarify the relationship between maternal age and the influence of maternal pre-pregnancy physique on the neonatal physique of infants. Questionnaires were issued to the participants and collected when they submitted their gestational notifications at their local ward office in Kyoto Prefecture. After delivery, we obtained information on the course of the pregnancy and the neonatal physique of the infants from the participant's maternal passbooks. A total of 454 mothers (age 20 ≥) were analyzed: 161 young mothers (aged 20 to 29 years), 185 mothers (aged 30 to 34 years), and 108 older mothers (age ≥ 35). Overall, the mean rate of leanness (pre-pregnancy BMI < 18.5) was 23.8%. We found that birth weight was significantly lower in female infants, born to lean young mothers, compared to non-lean young mothers, whereas no significant difference was detected in other mothers (age ≥ 30), irrespective of pre-pregnancy BMI. By contrast, male infants, born to older lean mothers (age ≥ 35), showed significantly lower birth weight. Thus, maternal pre-pregnancy BMI exerts differential effects on the fetal growth (neonatal physique), depending on the maternal age and the sex of infants. We need to improve BMI in pre-pregnancy women, especially those in the twenties and 35 years old or over.

  18. The relationship of physique and body composition to strength in a group of physical education students.

    PubMed Central

    Bale, P.

    1980-01-01

    Fifty-three specialist women physical education students were measured anthropometrically and from these measurements somatotype and body composition were estimated. Leg, back and grip strength dynamometers were used to measure strength indices. Arm strength was calculated from each subject's pull-ups and push-ups and lung capacity was measured using a spirometer. The somatotype ratings and percent fat measurements indicate that the P.E. students are generally more muscular and less fat for their age than non-P.E. students. There was a strong relationship between percent fat and the endomorphy rating and a moderate relationship between lean body weight and mesomorphy. The moderate relationship of the strength variables with the muscular rating, whether expressed as mesomorphy or lean body weight, suggests that the higher a subject's muscular component the greater their dynamic strength. Images p193-a PMID:7448485

  19. 75 FR 36126 - Office of New Reactors; Proposed Revision to Standard Review Plan Section 13.6.1, Revision 1 on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0228] Office of New Reactors; Proposed Revision to Standard Review Plan Section 13.6.1, Revision 1 on Physical Security--Combined License and Operating...), Section 13.6.1 on ``Physical Security--Combined License and Operating Reactors,'' (Agencywide Documents...

  20. 76 FR 5102 - Draft NUREG-0561, Revision 2; Physical Protection of Shipments of Irradiated Reactor Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... 3150-AI64 [NRC-2010-0340] Draft NUREG-0561, Revision 2; Physical Protection of Shipments of Irradiated...-0561, ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This document provides guidance on implementing the provisions of proposed 10 CFR Part 73.37, ``Requirements for Physical Protection...

  1. Overview of the 2014 Edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; Jim Gulliford

    2014-10-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.

  2. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.

    PubMed

    Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-08-06

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.

  3. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    PubMed Central

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-01-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R. S.

    The following are specific topics of this paper: 1.There is much creativity in the manner in which Dimensional Generator can be applied to a specific programming task [2]. This paper tells how Dimensional Generator was applied to a reactor-physics task. 2. In this first practical use, Dimensional Generator itself proved not to need change, but a better user interface was found necessary, essentially because the relevance of Dimensional Generator to reactor physics was initially underestimated. It is briefly described. 3. The use of Dimensional Generator helps make reactor-physics source code somewhat simpler. That is explained here with brief examples frommore » BURFEL-PC and WIMSBURF. 4. Most importantly, with the help of Dimensional Generator, all erroneous physical expressions were automatically detected. The errors are detailed here (in spite of the author's embarrassment) because they show clearly, both in theory and in practice, how Dimensional Generator offers quality enhancement of reactor-physics programming. (authors)« less

  5. FOREWORD: 10th Anglo-French Physical Acoustics Conference (AFPAC 2011)

    NASA Astrophysics Data System (ADS)

    Lhémery, Alain; Saffari, Nader

    2012-03-01

    The Anglo-French Physical Acoustics Conference (AFPAC) had its 10th annual meeting in Villa Clythia, Fréjus, France, from 19-21 January 2011. This series of meetings is a collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique. The conference has its loyal supporters whom we wish to thank. It is their loyalty that has made this conference a success. AFPAC alternates between the UK and France and its format has been designed to ensure that it remains a friendly meeting of very high scientific quality, offering a broad spectrum of subjects, welcoming young researchers and PhD students and giving them the opportunity to give their first presentations in an 'international' conference, but with limited pressure. For the third consecutive year AFPAC is followed by the publication of its proceedings in the form of 18 peer-reviewed papers, which cover the most recent research developments in the field of Physical Acoustics in the UK and France. Alain Lhémery CEA, France Nader Saffari UCL, United Kingdom

  6. Club of Rome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-04-18

    Le Club de Rome s'est fait connaître du grand public par la publication du premier ouvrage "Halte à la croissance" qui a fait l'object d'un débat, il y a 2 ans. Le Prof. Tinbergen a commencé par s'adonner à la physique, il est docteur en physique et très tôt il s'est tourné vers les problèmes sociaux économiques. Il est expert auprès des nombreux gouvernements et organisations internationales et il a vu ses travaux couronnés par le prix Nobel en 1969.

  7. Major Events Coordinated Security Solutions Technical Report Closeout (MECSS): The Application of Science and Technology to Reduce Risk for V2010 and G8/G20 Summits

    DTIC Science & Technology

    2010-12-01

    CBRNE), aux infrastructures essentielles, à la surveillance, à la sécurité physique, à la cybernétique et à la socio- psychologie . Le présent rapport...la socio- psychologie . Dans le cadre du projet SCSGE, on a produit plus de 195 rapports scientifiques, fruit des efforts, du dévouement et du...aux infrastructures essentielles, à la surveillance, à la sécurité physique, à la cybernétique et à la socio- psychologie . Le présent rapport

  8. Etude theorique des fluctuations structurales dans les composes organiques a dimensionnalite reduite

    NASA Astrophysics Data System (ADS)

    Dumoulin, Benoit

    Les systemes a dimensionnalite reduite constituent maintenant une branche entiere de la physique de la matiere condensee. Cette derniere s'est developpee rapidement au cours des dernieres annees, avec la decouverte des materiaux organiques qui presentent, justement, des proprietes physiques fortement anisotropes. Cette these presente une etude en trois parties de plusieurs composes organiques qui, bien que tres differents du point de vue de leurs compositions chimiques et de leurs proprietes physiques a haute temperature, subissent tous une instabilite structurale a tres basse temperature. De plus, dans chacun des cas, l'instabilite structurale est precedee d'un important regime fluctuatif a partir duquel les proprietes physiques changent de maniere significative. Notre etude suit un ordre chronologique inverse puisque nous nous attardons en premier lieu au cas de composes recemment decouverts: les composes de la famille des (BCPTTF)2X (X = PF6 , AsF6). Ces derniers sont des isolants magnetiques a la temperature ambiante et subissent une instabilite structurale de type spin-Peierls a une temperature appelee TSP. En particulier, nous nous interessons a l'etude des proprietes physiques de ces systemes dans le regime fluctuatif, qui precede cette instabilite. Notre etude theorique nous permet de comprendre en detail comment ces systemes s'approchent de l'instabilite struturale. Dans la seconde partie de cette these, nous etudions le regime fluctuatif (pre-transitionnel) observe experimentalement dans le compose de (TMTTF)2PF6. Ce compose organique, dont la structure s'apparente aux sels de Bechgaard, subit une instabilite de type spin-Peierls a une temperature T SP = 19K. Bien que ce compose possede la particularite d'etre un bon conducteur a la temperature ambiante, il subit une transition de type Mott-Hubbard a une temperature Trho ≈ 220K et devient alors un isolant magnetique, analogue aux composes de la famille des (BCPTTF)2X. Le regime fluctuatif precedant l'instabilite spin-Peierls apparait ensuite vers 60K. Notre etude theorique montre qu'un modele d'electrons en interaction de type "g-ologie" avec possibilite de processus umklapp permet de bien rendre compte des proprietes physiques de ce systeme. Finalement, la troisieme partie de cette these porte sur l'etude des premiers composes organiques quasi-unidimensionnels a avoir ete synthetises: les composes de la famille du TTF-TCNQ. Notre etude theorique des instabilites structurales que presentent ces composes n'est evidemment pas la premiere. L'originalite de cette derniere est qu'elle tient compte des fortes interactions entre les electrons, presentent dans ces composes. Pour tenir compte de telles interactions, nous avons choisi la formulation "liquide de Luttinger" qui nous permet de mieux traiter ce regimne dit de couplage fort.

  9. Prospective associations of concerns about physique and the development of obesity, binge drinking, and drug use among adolescent boys and young adult men.

    PubMed

    Field, Alison E; Sonneville, Kendrin R; Crosby, Ross D; Swanson, Sonja A; Eddy, Kamryn T; Camargo, Carlos A; Horton, Nicholas J; Micali, Nadia

    2014-01-01

    Relatively little is known about the prevalence of concerns with physique and eating disorders among males and their relation to subsequent adverse outcomes. A broader range of eating disorders needs to be defined to diagnose these illnesses appropriately in males. To investigate whether males with psychiatric symptoms related to disordered eating and concern about physique are more likely to become obese, to start using drugs, to consume alcohol frequently (binge drinking), or to develop high levels of depressive symptoms. The data come from questionnaires sent every 12 to 36 months from 1999 through 2010 to youth in a prospective cohort study, the Growing Up Today Study. The analysis included 5527 males aged 12 to 18 years in 1999 from across the United States who responded to the Growing Up Today Study questionnaires. Development of obesity and high levels of depressive symptoms and initiation of drug use and binge drinking at least monthly. From 1999 through 2011 in at least 1 study year, 9.2% of respondents reported high concerns with muscularity but no bulimic behaviors; 2.4%, high concerns with muscularity and use of supplements, growth hormone derivatives, or anabolic steroids to achieve their desired physique; 2.5%, high concerns with thinness but no bulimic behaviors; and 6.3%, high concerns with thinness and muscularity. For eating disorders, 0.8% had partial- or full-criteria bulimia nervosa or purging disorder and 2.9% had partial or full-criteria binge eating disorder but no association with the outcomes of interest. Infrequent binge eating or purging or overeating without a loss of control were reported by 31.0%. However, independent of age and body mass index, males with high concerns about thinness but not muscularity were more likely to develop high depressive symptoms (odds ratio, 2.72; 95% CI, 1.36-5.44). Males with high concerns about muscularity and thinness were more likely than their peers to use drugs (odds ratio, 2.13; 95% CI, 1.31-3.46), and males with high concerns about muscularity who used supplements and other products to enhance physique were more likely to start binge drinking frequently (2.06; 1.58-2.69) and using drugs (2.16; 1.49-3.11). High concerns with muscularity are relatively common among adolescent boys and young men. Males with these concerns who use potentially unhealthy products to improve their physique are at increased risk of adverse outcomes but may not be recognized by their health care providers as having a weight-related disorder because of the sex-specific presentation.

  10. Motivational and psychological correlates of bodybuilding dependence

    PubMed Central

    EMINI, NEIM N.; BOND, MALCOLM J.

    2014-01-01

    Abstract Background and aims: Exercise may become physically and psychologically maladaptive if taken to extremes. One example is the dependence reported by some individuals who engage in weight training. The current study explored potential psychological, motivational, emotional and behavioural concomitants of bodybuilding dependence, with a particular focus on motives for weight training. Using a path analysis paradigm, putative causal models sought to explain associations among key study variables. Methods: A convenience sample of 101 men aged between 18 and 67 years was assembled from gymnasia in Adelaide, South Australia. Active weight trainers voluntarily completed a questionnaire that included measures of bodybuilding dependence (social dependency, training dependency, and mastery), anger, hostility and aggression, stress and motivations for weight training. Results: Three motives for weight training were identified: mood control, physique anxiety and personal challenge. Of these, personal challenge and mood control were the most directly salient to dependence. Social dependency was particularly relevant to personal challenge, whereas training dependency was associated with both personal challenge and mood control. Mastery demonstrated a direct link with physique anxiety, thus reflecting a unique component of exercise dependence. Conclusions: While it was not possible to determine causality with the available data, the joint roles of variables that influence, or are influenced by, bodybuilding dependence are identified. Results highlight unique motivations for bodybuilding and suggest that dependence could be a result of, and way of coping with, stress manifesting as aggression. A potential framework for future research is provided through the demonstration of plausible causal linkages among these variables. PMID:25317342

  11. Motivational and psychological correlates of bodybuilding dependence.

    PubMed

    Emini, Neim N; Bond, Malcolm J

    2014-09-01

    Exercise may become physically and psychologically maladaptive if taken to extremes. One example is the dependence reported by some individuals who engage in weight training. The current study explored potential psychological, motivational, emotional and behavioural concomitants of bodybuilding dependence, with a particular focus on motives for weight training. Using a path analysis paradigm, putative causal models sought to explain associations among key study variables. A convenience sample of 101 men aged between 18 and 67 years was assembled from gymnasia in Adelaide, South Australia. Active weight trainers voluntarily completed a questionnaire that included measures of bodybuilding dependence (social dependency, training dependency, and mastery), anger, hostility and aggression, stress and motivations for weight training. Three motives for weight training were identified: mood control, physique anxiety and personal challenge. Of these, personal challenge and mood control were the most directly salient to dependence. Social dependency was particularly relevant to personal challenge, whereas training dependency was associated with both personal challenge and mood control. Mastery demonstrated a direct link with physique anxiety, thus reflecting a unique component of exercise dependence. While it was not possible to determine causality with the available data, the joint roles of variables that influence, or are influenced by, bodybuilding dependence are identified. RESULTS highlight unique motivations for bodybuilding and suggest that dependence could be a result of, and way of coping with, stress manifesting as aggression. A potential framework for future research is provided through the demonstration of plausible causal linkages among these variables.

  12. Nutritional recommendations for water polo.

    PubMed

    Cox, Gregory R; Mujika, Iñigo; van den Hoogenband, Cees Rein

    2014-08-01

    Water polo is an aquatic team sport that requires endurance, strength, power, swimming speed, agility, tactical awareness, and specific technical skills, including ball control. Unlike other team sports, few researchers have examined the nutritional habits of water polo athletes or potential dietary strategies that improve performance in water polo match play. Water polo players are typically well muscled, taller athletes; female players display higher levels of adiposity compared with their male counterparts. Positional differences exist: Center players are heavier and have higher body fat levels compared with perimeter players. Knowledge of the physical differences that exist among water polo players offers the advantage of player identification as well as individualizing nutrition strategies to optimize desired physique goals. Individual dietary counseling is warranted to ensure dietary adequacy, and in cases of physique manipulation. Performance in games and during quality workouts is likely to improve by adopting strategies that promote high carbohydrate availability, although research specific to water polo is lacking. A planned approach incorporating strategies to facilitate muscle glycogen refueling and muscle protein synthesis should be implemented following intensified training sessions and matches, particularly when short recovery times are scheduled. Although sweat losses of water polo players are less than what is reported for land-based athletes, specific knowledge allows for appropriate planning of carbohydrate intake strategies for match play and training. Postgame strategies to manage alcohol intake should be developed with input from the senior player group to minimize the negative consequences on recovery and player welfare.

  13. Etudes physiques des mélanges eau-cryoprotecteurs

    NASA Astrophysics Data System (ADS)

    Vassoille, R.; Perez, J.

    The aim of the following review is to present the most important studies concerning the physical properties of water-solutes mixtures used in cryobiology. Cryobiology is a branch of biology which deals with the very low temperature behaviour of cells. This technique is developed today in several directions. The creation of banks of cells and perhaps in a short time of small organs, is the purpose of much research in this domain. Before freezing, living cells are generally put in a solution containing one or more solutes. The role of these solutes is to protect the cells against damage due to crystallization of water (cryoprotectors). The mechanisms of cryoprotection are not well known ; nevertheless the vitreous state formation during cooling is often invoked. So, it is possible to avoid crystallization damage such as mechanical strain (due to an increase of volume of about 10 %) and salt effects (due to osmotic pressure). The conditions in which the vitreous state is obtained, maintained during cooling, storage at low temperature and rewarming can be defined by physical studies presented in the following review. Le présent travail est essentiellement une revue bibliographique des principales études physiques qui ont été réalisées avec des solutions de composés habituellement employés en cryobiologie. La cryobiologie est une branche de la biologie qui s'intéresse au comportement des cellules à basse température. Cette discipline est actuellement en plein développement dans des domaines très divers. Son principal but est la création de banques de cellules de plus en plus complexes avec comme perspective la conservation des organes. Les cellules vivantes sont généralement placées avant congélation dans une solution contenant divers composés dont le rôle est de protéger les cellules contre les effets de la cristallisation de l'eau. L'action protectrice de ces cryoprotecteurs est encore mal connue; cependant, la formation d'un état vitreux lors du refroidissement est souvent invoquée. Ainsi, il est possible d'éviter les dommages liés à la cristallisation : contrainte mécanique due à l'augmentation de volume, effets de sel dus à l'existence d'un gradient de pression osmotique de part et d'autre de la membrane cellulaire. Les conditions d'obtention et de maintien de cet état vitreux lors des opérations de congélation peuvent être définies par des études physiques dont nous proposons une revue.

  14. Influence of subject presentation on interpretation of body composition change after 6 months of self-selected training and diet in athletic males.

    PubMed

    Kerr, Ava D; Slater, Gary J; Byrne, Nuala M

    2018-06-01

    High precision body composition assessment methods accurately monitor physique traits in athletes. The acute impact of subject presentation (ad libitum food and fluid intake plus physical activity) on body composition estimation using field and laboratory methods has been quantified, but the impact on interpretation of longitudinal change is unknown. This study evaluated the impact of athlete presentation (standardised versus non-standardised) on interpretation of change in physique traits over time. Thirty athletic males (31.2 ± 7.5 years; 182.2 ± 6.5 cm; 91.7 ± 10.3 kg; 27.6 ± 2.6 kg/m 2 ) underwent two testing sessions on 1 day including surface anthropometry, dual-energy X-ray absorptiometry (DXA), bioelectrical impedance spectroscopy (BIS) and air displacement plethysmography (via the BOD POD), with combinations of these used to establish three-compartment (3C) and four-compartment (4C) models. Tests were conducted after an overnight fast (BASEam) and ~ 7 h later after ad libitum food/fluid and physical activity (BASEpm). This procedure was repeated 6 months later (POSTam and POSTpm). Magnitude of changes in the mean was assessed by standardisation. After 6 months of self-selected training and diet, standardised presentation testing (BASEam to POSTam) identified trivial changes from the smallest worthwhile effect (SWE) in fat-free mass (FFM) and fat mass (FM) for all methods except for BIS (FM) where there was a large change (7.2%) from the SWE. Non-standardised follow-up testing (BASEam to POSTpm) showed trivial changes from the SWE except for small changes in FFM (BOD POD) of 1.1%, and in FM (3C and 4C models) of 6.4 and 3.5%. Large changes from the SWE were found in FFM (BIS, 3C and 4C models) of 2.2, 1.8 and 1.8% and in FM (BIS) of 6.4%. Non-standardised presentation testing (BASEpm to POSTpm) identified trivial changes from the SWE in FFM except for BIS which was small (1.1%). A moderate change from the SWE was found for BOD POD (3.3%) and large for BIS (9.4%) in FM estimations. Changes in body composition utilising non-standardised presentation were more substantial and often in the opposite direction to those identified using standardised presentation, causing misinterpretation of change in physique traits. Standardised presentation prior to body composition assessment for athletic populations should be advocated to enhance interpretation of true change.

  15. Research and Engineering Operation, Irradiation Processing Department monthly record report, May 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, T.W.

    1965-06-04

    Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less

  16. 10 CFR 73.35 - Requirements for physical protection of irradiated reactor fuel (100 grams or less) in transit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fuel (100 grams or less) in transit. 73.35 Section 73.35 Energy NUCLEAR REGULATORY COMMISSION... Transit § 73.35 Requirements for physical protection of irradiated reactor fuel (100 grams or less) in... quantity of irradiated reactor fuel weighing 100 grams (0.22 pounds) or less in net weight of irradiated...

  17. Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations

    DOE PAGES

    Palmiotti, Giuseppe; Salvatores, Massimo

    2012-01-01

    The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.

  18. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    DOE PAGES

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...

    2014-06-30

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less

  20. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...

  1. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...

  2. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...

  3. The protective role of general self-determination against 'thin ideal' media exposure on women's body image and eating-related concerns.

    PubMed

    Mask, Lisa; Blanchard, Céline M

    2011-04-01

    Women's responses to 'thin ideal' media pending their level of general self-determination (GSD) were examined. High and low GSD women (N = 99) viewed a 'thin physique salient' (TPS) video or a 'thin physique non-salient' (TPNS) video. Following exposure to the TPS video, perceptions of pressure from the media to be thin, body dissatisfaction, and concerns over quantity of food were greater for low but not high GSD women. However, high GSD women reported greater concerns over the quality of food they eat following exposure to the TPNS video. Prevention efforts aimed at enhancing GSD are discussed.

  4. Club of Rome

    ScienceCinema

    None

    2017-12-09

    Le Club de Rome s'est fait connaître du grand public par la publication du premier ouvrage "Halte à la croissance" qui a fait l'object d'un débat, il y a 2 ans. Le Prof. Tinbergen a commencé par s'adonner à la physique, il est docteur en physique et très tôt il s'est tourné vers les problèmes sociaux économiques. Il est expert auprès des nombreux gouvernements et organisations internationales et il a vu ses travaux couronnés par le prix Nobel en 1969.

  5. Mesure de coefficients d'absorption de plasmas créés par laser nanoseconde

    NASA Astrophysics Data System (ADS)

    Thais, F.; Chenais-Popovics, C.; Eidmann, K.; Bastiani, S.; Blenski, T.; Gilleron, F.

    2005-06-01

    La mesure des coefficients d'absorption dans les plasmas chauds est particulièrement utile dans le domaine de la fusion par confinement inertiel ainsi que dans divers contextes en astrophysique. Le développement des calculs de physique atomique qui y sont associés repose sur des hypothèses qu'il est nécessaire de vérifier dans la plus large gamme possible de conditions physiques. Nous présentons ici la méthode de mesure et d'analyse employée en nous appuyant sur l'exemple des cibles multicouches nickel/aluminium.

  6. Role of Physique on Probability of Injury to the Low Back

    NASA Astrophysics Data System (ADS)

    Shaibani, Saami J.

    2009-03-01

    In a related study of the response of the upper and lower cervical spine[1], there was some correlation between a change in physique and the potential for injury to the neck during automotive events. A similar undertaking in this research on the lumbar spine and sacral spine revealed a much more marked effect, namely an increase in injury potential to the low back when weight is increased. Although there were some exceptions to this, the overall trend was distinct. This is perhaps to be expected when one considers that most additional weight at the same height tends to be located in the center or lower torso. However, it is first time in any comparable analysis of injury causation that there has been a more noticeable pattern for the low back than the neck. The latter was more pronounced with environment geometry, as seen when the height of the seat back was varied. Such changeability again reinforces previous findings that injury outcomes for individual patients cannot always be predicted by what happens in general. 1. http://meetings.aps.org/link/BAPS.2007.MAR.K1.2 (Role of physique on probability of injury to the neck).

  7. The Social Physique Anxiety Scale: an example of the potential consequence of negatively worded items in factorial validity studies.

    PubMed

    Motl, R W; Conroy, D E; Horan, P M

    2000-01-01

    Social physique anxiety (SPA) based on Hart, Leary, and Rejeski's (1989) Social Physique Anxiety Scale (SPAS) was originally conceptualized to be a unidimensional construct. Empirical evidence on the factorial validity of the SPAS has been contradictory, yielding both one- and two-factor models. The two-factor model, which consists of separate factors associated with positively and negatively worded items, has stimulated an ongoing debate about the dimensionality and content of the SPAS. The present study employed confirmatory factor analysis (CFA) to examine whether the two-factor solution to the 12-item SPAS was substantively meaningful or a methodological artifact. Results of the CFAs, which were performed on responses from four different samples (Eklund, Kelley, and Wilson, 1997; Eklund, Mack, and Hart, 1996), supported the existence of a single substantive SPA factor underlying responses to the 12-item SPAS. There were, in addition, method effects associated with the negatively worded items that could be modeled to achieve good fit. Therefore, it was concluded that a single substantive factor and a non-substantive method effect primarily related to the negatively worded items best represented the 12-item SPAS.

  8. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  9. Memorial for Walter E. Meyerhof

    NASA Astrophysics Data System (ADS)

    Eichler, Jörg

    2007-08-01

    Walter Meyerhof, one of the leading figures in the field of ion-atom collisions, passed away on May 27, 2006. He was 84 years old. He was born in Kiel, Germany, in the same year that his father, Otto Meyerhof, won the Nobel Prize in Medicine for his discovery of energetically important cycles in biological processes. Following his flight from Hitler-Germany in 1938, Walter Meyerhof studied from 1939-1940 at the Ecole de Physique et Chimie Industrielles in Paris, but when France too fell under Nazi occupation, he had to escape once again. In an exciting odyssey via Spain and Portugal he finally reached the United States. He received a doctorate degree in physics at the University of Pennsylvania in Philadelphia in 1946 with a thesis in solid-state physics. In the same year, he became Assistant Professor at the University of Illinois and in 1949 at Stanford University. In 1952 he was promoted to Associate Professor and in 1959 to Full Professor. From 1970 to 1977 he served as a Chairman of the Stanford Physics Department (see Fig. 1).

  10. Higgsless approach to electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Grojean, Christophe

    2007-11-01

    Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left-right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models. To cite this article: C. Grojean, C. R. Physique 8 (2007).

  11. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  12. Reactor Application for Coaching Newbies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-06-17

    RACCOON is a Moose based reactor physics application designed to engage undergraduate and first-year graduate students. The code contains capabilities to solve the multi group Neutron Diffusion equation in eigenvalue and fixed source form and will soon have a provision to provide simple thermal feedback. These capabilities are sufficient to solve example problems found in Duderstadt & Hamilton (the typical textbook of senior level reactor physics classes). RACCOON does not contain any advanced capabilities as found in YAK.

  13. 78 FR 69139 - Physical Security-Design Certification and Operating Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... scheduled to close on October 30, 2013. The Nuclear Energy Institute (NEI) submitted a letter on October 9... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Physical Security--Design Certification and Operating Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan--draft section...

  14. Thermal-hydraulic interfacing code modules for CANDU reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  15. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected tomore » come from increasingly diverse educational and experiential backgrounds.« less

  16. DE-NE0008277_PROTEUS final technical report 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, Andreas

    This project details re-evaluations of experiments of gas-cooled fast reactor (GCFR) core designs performed in the 1970s at the PROTEUS reactor and create a series of International Reactor Physics Experiment Evaluation Project (IRPhEP) benchmarks. Currently there are no gas-cooled fast reactor (GCFR) experiments available in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). These experiments are excellent candidates for reanalysis and development of multiple benchmarks because these experiments provide high-quality integral nuclear data relevant to the validation and refinement of thorium, neptunium, uranium, plutonium, iron, and graphite cross sections. It would be cost prohibitive to reproduce suchmore » a comprehensive suite of experimental data to support any future GCFR endeavors.« less

  17. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  18. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  19. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  20. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  1. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  2. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  3. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, John A., E-mail: turnerja@ornl.gov; Clarno, Kevin; Sieger, Matt

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goalsmore » and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.« less

  4. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less

  5. Physics of reactor safety. Quarterly report, January--March 1977. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-06-01

    This report summarizes work done on reactor safety, Monte Carlo analysis of safety-related critical assembly experiments, and planning of DEMI safety-related critical experiments. Work on reactor core thermal-hydraulics is also included.

  6. Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.-T.

    2006-11-17

    A laboratory has been constructed by the TEXONO Collaboration at the Kuo-Sheng Reactor Power Plant in Taiwan to study low energy neutrino physics. A limit on the neutrino magnetic moment of {mu}{nu}({nu}-bare) < 7.2 x 10-11 {mu}B at 90% confidence level has been achieved from measurements with a high-purity germanium detector, as well as the electron neutrinos ({nu}{sub e}) produced from nuclear power reactors has been studied. Other research program at Kuo-Sheng are surveyed.

  7. Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Jaradat, Safwan Qasim Mohammad

    Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.

  8. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. Themore » objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.« less

  9. Special Issue on "Instanton Counting: Moduli Spaces, Representation Theory, and Integrable Systems"

    NASA Astrophysics Data System (ADS)

    Bruzzo, Ugo; Sala, Francesco

    2016-11-01

    This special issue of the Journal of Geometry and Physics collects some papers that were presented during the workshop ;Instanton Counting: Moduli Spaces, Representation Theory, and Integrable Systems; that took place at the Lorentz Center in Leiden, The Netherlands, from 16 to 20 June 2014. The workshop was supported by the Lorentz Center, the ;Geometry and Quantum Theory; Cluster, Centre Européen pour les Mathématiques, la Physique et leurs Interactions (Lille, France), Laboratoire Angevin de Recherche en Mathématiques (Angers, France), SISSA (Trieste, Italy), and Foundation Compositio (Amsterdam, the Netherlands). We deeply thank all these institutions for making the workshop possible. We also thank the other organizers of the workshop, Professors Dimitri Markushevich, Vladimir Rubtsov and Sergey Shadrin, for their efforts and great collaboration.

  10. Physiscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaumer, Olivier

    2010-10-22

    Peut-on survivre à une décharge de 100000 volts? Le corps humain est-il conducteur? Qu'est-ce la charge électrique? L'air est-il conducteur? Quel est le meilleur conducteur connu? Autant de question que l'on se posera durant cette découverte de la physique et le l'électricité, par une approche originale, ludique et participative. Venez glisser en lévitation sur une trottinette supraconductrice! [Can we survive a discharge of 100,000 volts? Is the human body conductive? What is the electric charge? Is the air conductive? What is the best known driver? As much question as one will ask during this discovery of the physics and the electricity, bymore » an original, playful and participative approach. Come levitate on a superconducting scooter!]« less

  11. Statistical model of quiet Sun coronal heating (French Title: Modèle statistique de chauffage de la couronne solaire calme)

    NASA Astrophysics Data System (ADS)

    Podladchikova, O.

    2002-02-01

    The high temperature of the solar corona is still a puzzling problem of solar physics. However, the recent observations of satellites SoHO, Yohkoh or TRACE seem to indicate that the processes responsible for the heating of the closed regions are situated in the low corona or in the chromosphere, thus close to the sun surface, and are associated to the direct currents dissipation. Statistical data analysis suggest that the heating mechanisms result thus from numerous events of current layers dissipation of small scale and weak energy, on the resolution limit of modern instruments. We propose a statistical lattice model, resulting from an approach more physical than self-organized criticality, constituted by a magnetic energy source at small scales and by dissipation mechanisms of the currents, which can be associated either to magnetic reconnection or to anomalous resistivity. The various types of sources and mechanisms of dissipation allow to study their influence on the statistical properties of the system, in particular on the energy dissipation. With the aim of quantifying this behavior and allowing detailed comparisons between models and observations, analysis techniques little used in solar physics, such as the singular values decomposition, entropies, or Pearson technique of PDF classification are introduced and applied to the study of the spatial and temporal properties of the model. La température anormalement élevée de la couronne reste un des problèmes majeurs de la physique solaire. Toutefois, les observations récentes des satellites SoHO, Yohkoh ou TRACE semblent indiquer que les processus responsables du chauffage des régions fermées se situent dans la basse couronne ou dans la chromosphère, donc proches de la surface solaire, et sont associés à la dissipation de couches de courant continu. L'analyse statistique de données suggère que les mécanismes de chauffage résulteraient donc de nombreux événements de dissipation de couches de courant de petite échelle et de faible énergie, àla limite de la résolution des instruments modernes. Nous proposons un modèle statistique sur réseau, résultant d'une approche plus physique que la criticalité auto-organisée, constitué d'une source d'énergie magnétique de petite échelle et de mécanismes de dissipation des courants, qui peuvent être associés soit à la reconnection magnétique soit à la résistivité anormale. Les différents types de sources et de mécanismes de dissipation permettent d'étudier leur influence sur les propriétés statistiques du système, en particulier sur l'énergie dissipée. Dans le but de quantifier ces comportements et de permettre des comparaisons approfondies entres les modèles et les observations, des techniques d'analyse peu utilisées en physique solaire, telles que la décomposition en valeurs singulières, des entropies, ou la technique de Pearson de classification des densités de probabilité, sont introduites et appliquées `a l'étude des propriétés spatiales et temporelles du modèle.

  12. Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions

    NASA Astrophysics Data System (ADS)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-04-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.

  13. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Shemon, E. R.; Yu, Y. Q.

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models ofmore » a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.« less

  14. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zeromore » $$\\theta_{13}$$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.« less

  15. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.

  16. The role of self-determined motivation in the understanding of exercise-related behaviours, cognitions and physical self-evaluations.

    PubMed

    Thøgersen-Ntoumani, Cecilie; Ntoumanis, Nikos

    2006-04-01

    Grounded in self-determination theory (Deci & Ryan, 1985), the purpose of the present study was to examine whether amotivation, self-determined and controlling types of motivation could predict a range of exercise-related behaviours, cognitions and physical self-evaluations. Exercisers (n = 375) from ten health clubs in the North of England completed questionnaires measuring exercise motivation, exercise stages of change, number of relapses from exercise, future intention to exercise, barriers self-efficacy, physical self-worth and social physique anxiety. Controlling for age and sex, multiple and logistic regression analyses supported our hypotheses by showing self-determined motivation (i.e. intrinsic motivation and identified regulation) to predict more adaptive behavioural, cognitive and physical self-evaluation patterns than external regulation and amotivation. Introjected regulation was related to both adaptive and maladaptive outcomes. Furthermore, a multivariate analysis of variance revealed that exercisers in the maintenance stage of change displayed significantly more self-determined motivation to exercise than those in the preparation and action stages. The results illustrate the importance of promoting self-determined motivation in exercisers to improve the quality of their experiences, as well as to foster their exercise behaviour. Future research should examine the mechanisms that promote self-determined motivation in exercise.

  17. Coupled reactors analysis: New needs and advances using Monte Carlo methodology

    DOE PAGES

    Aufiero, M.; Palmiotti, G.; Salvatores, M.; ...

    2016-08-20

    Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated with the Avery theory that allows a physics understanding of the main features of these systems. However, the complex geometries that are often encountered in association with coupled reactors, require a detailed geometry description that can be easily provided by modern Monte Carlo (MC) codes. This implies a MC calculation of the coupling parameters defined by Avery and of the sensitivity coefficients that allow further detailed physics analysis. The results presented in this paper show that the MC code SERPENT has been successfully modifed tomore » meet the required capabilities.« less

  18. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  19. 76 FR 48184 - Exelon Nuclear, Peach Bottom Atomic Power Station, Unit 1; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... nuclear reactor facility. PBAPS Unit 1 was a high-temperature, gas-cooled reactor that was operated from... the safeguards contingency plan.'' Part 73 of 10 CFR, ``Physical Protection of Plant and Materials... physical protection system which will have capabilities for the protection of special nuclear material at...

  20. Plasma Physics Lab and the Tokamak Fusion Test Reactor, 1989

    ScienceCinema

    None

    2018-01-16

    From the Princeton University Archives: Promotional video about the Plasma Physics Lab and the new Tokamak Fusion Test Reactor (TFTR), with footage of the interior, machines, and scientists at work. This film is discussed in the audiovisual blog of the Seeley G. Mudd Manuscript Library, which holds the archives of Princeton University.

  1. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    ERIC Educational Resources Information Center

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…

  2. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, John A.; Clarno, Kevin; Sieger, Matt

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less

  3. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    DOE PAGES

    Turner, John A.; Clarno, Kevin; Sieger, Matt; ...

    2016-09-08

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less

  4. Implicit time-integration method for simultaneous solution of a coupled non-linear system

    NASA Astrophysics Data System (ADS)

    Watson, Justin Kyle

    Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).

  5. CONVERTING FROM BATCH TO CONTINUOUS INTENSIFIED PROCESSING IN THE STT? REACTOR

    EPA Science Inventory


    The fluid dynamics, the physical dimensions and characteristics of the reaction zones of continuous process intensification reactors are often quite different from those of the batch reactors they replace. Understanding these differences is critical to the successful transit...

  6. Comprehensive Experiments on Subcritical Assemblies of Cascade Reactor Systems

    NASA Astrophysics Data System (ADS)

    Zavyalov, N. V.; Il'kaev, R. I.; Kolesov, V. F.; Ivanin, I. A.; Zhitnik, A. K.; Kuvshinov, M. I.; Nefedov, Yu. Ya.; Punin, V. T.; Tel'nov, A. V.; Khoruzhi, V. Kh.

    2017-12-01

    Cascade reactors attract particular attention because of their capability of improving the parameters of pulsed reactors and achieving the feasibility of electronuclear facilities. The paper presents the results of three series of experiments on uranium-neptunium cascade assemblies at the Institute of Nuclear and Radiation Physics of the All-Russian Research Institute of Experimental Physics conducted in 2003-2004. The experiments confirmed theoretical conclusions on positive properties of cascade blankets and effectiveness of using neptunium-237 as a means of creating a one-sided connection between the sections.

  7. Lung function in children in relation to ethnicity, physique and socio-economic factors

    PubMed Central

    Lum, Sooky; Bountziouka, Vassiliki; Sonnappa, Samatha; Wade, Angie; Cole, Tim J; Harding, Seeromanie; Wells, Jonathan CK; Griffiths, Chris; Treleaven, Philip; Bonner, Rachel; Kirkby, Jane; Lee, Simon; Raywood, Emma; Legg, Sarah; Sears, Dave; Cottam, Philippa; Feyeraband, Colin; Stocks, Janet

    2015-01-01

    Question Can ethnic differences in spirometry be attributed to differences in physique and socio-economic factors? Methods Assessments were undertaken in 2171 London primary school-children on two occasions a year apart whenever possible, as part of the Size and Lung function In Children study. Measurements included spirometry, detailed anthropometry, 3-D photonic scanning for regional body shape, body composition, information on ethnic ancestry, birth and respiratory history, socio-economic circumstances and tobacco smoke exposure. Results Technically acceptable spirometry was obtained from 1901 children (mean age: 8.3yrs (range: 5.2-11.8yrs), 46% boys, 35% White; 29% Black-African origin; 24% South-Asian; 12% Other/mixed) on 2767 test occasions. After adjusting for sex, age and height, FEV1 was 1.32, 0.89 and 0.51 z-score units lower in Black, South-Asian and Other ethnicity children respectively, when compared with White children, with similar decrements for FVC (p<0.001 for all). Although further adjustment for sitting height and chest width reduced differences attributable to ethnicity by up to 16%, significant differences persisted after adjusting for all potential determinants including socio-economic circumstances. Answer Ethnic differences in spirometric lung function persist despite adjusting for a wide range of potential determinants, including body physique and socio-economic circumstances, emphasising the need to use ethnic-specific equations when interpreting results. PMID:26493801

  8. Nuclear Reactor Safety--The APS Submits its Report

    ERIC Educational Resources Information Center

    Physics Today, 1975

    1975-01-01

    Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)

  9. Body mass prediction from skeletal frame size in elite athletes.

    PubMed

    Ruff, C B

    2000-12-01

    Body mass can be estimated from measures of skeletal frame size (stature and bi-iliac (maximum pelvic) breadth) fairly accurately in modern human populations. However, it is not clear whether such a technique will lead to systematic biases in body mass estimation when applied to earlier hominins. Here the stature/bi-iliac method is tested, using data available for modern Olympic and Olympic-caliber athletes, with the rationale that these individuals may be more representative of the general physique and degree of physical conditioning characteristic of earlier populations. The average percent prediction error of body mass among both male and female athletes is less than 3%, with males slightly underestimated and females slightly overestimated. Among males, the ratio of shoulder to hip (biacromial/bi-iliac) breadth is correlated with prediction error, while lower limb/trunk length has only a weak inconsistent effect. In both sexes, athletes in "weight" events (e.g. , shot put, weight-lifting), which emphasize strength, are underestimated, while those in more endurance-related events (e.g., long distance running) are overestimated. It is likely that the environmental pressures facing earlier hominins would have favored more generalized physiques adapted for a combination of strength, speed, agility, and endurance. The events most closely approximating these requirements in Olympic athletes are the decathlon, pentathlon, and wrestling, all of which have average percent prediction errors of body mass of 5% or less. Thus, "morphometric" estimation of body mass from skeletal frame size appears to work reasonably well in both "normal" and highly athletic modern humans, increasing confidence that the technique will also be applicable to earlier hominins. Copyright 2000 Wiley-Liss, Inc.

  10. Anthropometric Profiles of Elite Open-Water Swimmers.

    PubMed

    Shaw, Gregory; Mujika, Iñigo

    2018-01-01

    Reports detailing the physiques of open-water (OW) swimmers are limited. Data from anthropometric screening around competition provides a unique opportunity to describe the current physical attributes of elite OW swimmers peaking for international competition. Anthropometric screening was undertaken on a group of Australian and French OW swimmers as part of performance monitoring within 2 wk of the 2015 FINA World Championships. Height, mass, and sum of 7 skinfolds were measured using ISAK standardized measurement techniques by 2 trained anthropometrists. Data were collated and compared with previously published data on OW and pool swimmers. French swimmers had lower skinfolds (57.3 ± 6.1 vs 80.5 ± 21.3 mm, P = .0258), were lighter (64.7 ± 10.8 vs 74.6 ± 11.8 kg, P = .013), and had lower lean-mass index (LMI) (34.7 ± 7.3 vs 38.2 ± 8.8, P = .035) than Australian swimmers. Male and female OW swimmers had skinfolds similar to their contemporary OW swimmers but were lower than earlier reports of OW swimmers; however, they were higher than those of pool swimmers. Male and female OW swimmers had 9% and 6% lower LMI, respectively, than pool swimmers. Lower body mass and LMI were correlated with better World Championships finishing positions (R 2  = .46, P = .0151, and R 2  = .45, P = .0177, respectively). These data are a unique report of elite OW swimmers' physiques around international competition and demonstrate a potential morphological optimization in OW swimmers that warrants further investigation in larger populations.

  11. Standard interface files and procedures for reactor physics codes, version III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, B.M.

    Standards and procedures for promoting the exchange of reactor physics codes are updated to Version-III status. Standards covering program structure, interface files, file handling subroutines, and card input format are included. The implementation status of the standards in codes and the extension of the standards to new code areas are summarized. (15 references) (auth)

  12. A Special Topic From Nuclear Reactor Dynamics for the Undergraduate Physics Curriculum

    ERIC Educational Resources Information Center

    Sevenich, R. A.

    1977-01-01

    Presents an intuitive derivation of the point reactor equations followed by formulation of equations for inverse and direct kinetics which are readily programmed on a digital computer. Suggests several computer simulations involving the effect of control rod motion on reactor power. (MLH)

  13. An Introduction to the Issues

    ERIC Educational Resources Information Center

    Primack, Joel

    1975-01-01

    The reactor safety controversy is reviewed in light of the United States Atomic Energy Commission's Reactor Safety Study and the Report to the American Physical Society by the Study Group on Light Water Reactor Safety. Areas of agreement and disagreement are identified and implications for national policy are explored. (BT)

  14. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  15. Le syndrome des enfants battus: aspects cliniques et radiologiques

    PubMed Central

    Jlalia, Zied; Znaigui, Talel; Smida, Mahmoud

    2016-01-01

    La maltraitance physique des enfants ou le syndrome des enfants battus est responsable de plus de 75.000 décès par an en France. Ce problème de santé publique reste sous diagnostiqué en Tunisie et dans le monde. Le chemin a été laborieux pour la reconnaissance du syndrome des enfants battus dans certaines sociétés même occidentales. Nous avons voulus exposer ce problème aux praticiens afin qu'il soit mieux diagnostiqué et pris en charge. La maltraitance physique des enfants est appelée à tort syndrome de Silverman qui ne regroupe en fait que les lésions squelettiques chez ces enfants tels que les fractures. Mots clés: Fracture, maltraitance, enfant, neuro-radiologie PMID:27642408

  16. Dependency of the Reynolds number on the water flow through the perforated tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Závodný, Zdenko, E-mail: zdenko.zavodny@stuba.sk; Bereznai, Jozef, E-mail: jozef.bereznai@stuba.sk; Urban, František

    Safe and effective loading of nuclear reactor fuel assemblies demands qualitative and quantitative analysis of the relationship between the coolant temperature in the fuel assembly outlet, measured by the thermocouple, and the mean coolant temperature profile in the thermocouple plane position. It is not possible to perform the analysis directly in the reactor, so it is carried out using measurements on the physical model, and the CFD fuel assembly coolant flow models. The CFD models have to be verified and validated in line with the temperature and velocity profile obtained from the measurements of the cooling water flowing in themore » physical model of the fuel assembly. Simplified physical model with perforated central tube and its validated CFD model serve to design of the second physical model of the fuel assembly of the nuclear reactor VVER 440. Physical model will be manufactured and installed in the laboratory of the Institute of Energy Machines, Faculty of Mechanical Engineering of the Slovak University of Technology in Bratislava.« less

  17. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.

  18. Foreword

    NASA Astrophysics Data System (ADS)

    Villain, Jacques

    2017-01-01

    The present issue of the Comptes Rendus Physique aims to provide the scientific reader with an opportunity to become acquainted with current scientific trends that have been distinguished by prizes of the French Academy of Sciences.

  19. Physiscope

    ScienceCinema

    Gaumer, Olivier

    2018-05-24

    Peut-on survivre à une décharge de 100000 volts? Le corps humain est-il conducteur? Qu'est-ce la charge électrique? L'air est-il conducteur? Quel est le meilleur conducteur connu? Autant de question que l'on se posera durant cette découverte de la physique et le l'électricité, par une approche originale, ludique et participative. Venez glisser en lévitation sur une trottinette supraconductrice! [Can we survive a discharge of 100,000 volts? Is the human body conductive? What is the electric charge? Is the air conductive? What is the best known driver? As much question as one will ask during this discovery of the physics and the electricity, by an original, playful and participative approach. Come levitate on a superconducting scooter!

  20. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  1. What older adolescents expect from physical activity: Implicit cognitions regarding health and appearance outcomes.

    PubMed

    McFadden, K; Berry, T R; McHugh, T F; Rodgers, W M

    2018-04-01

    To explore older adolescents' reflective and impulsive thoughts about health- and social/appearance-related physical activity (PA) outcomes and investigate how those thoughts relate to their PA behavior. One hundred and forty-four undergraduate students (109 women; 35 men) aged 17-19 years (M = 18.11, SD = 0.65) participated in this study in October 2015. Participants completed a Go/No-go Association Task that assessed automaticity of associations between PA words and either health outcomes or social/appearance outcomes. Questionnaires assessing PA behavior, attitudes, outcome expectations, and body image were also completed. Participants demonstrated a positive automatic association between PA and social/appearance outcomes, F(1, 136) = 4.403, p < .05, η 2 = .031, but they showed no difference in their associations between PA and desirable or undesirable health outcomes, F(1, 136) = 2.405, p = .123, η 2 = .017. Older adolescents implicitly attend to the social/appearance outcomes of PA more than potential health outcomes, indicating that social recognition and a desirable physique may be the key PA motivators for adolescents.

  2. Small Reactor for Deep Space Exploration

    ScienceCinema

    none,

    2018-06-06

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  3. Reactor monitoring using antineutrino detectors

    NASA Astrophysics Data System (ADS)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  4. Synchronized fusion development considering physics, materials and heat transfer

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Liu, Y.; Duan, X. R.; Xu, M.; Li, Q.; Feng, K. M.; Zheng, G. Y.; Li, Z. X.; Wang, X. Y.; Li, B.; Zhang, G. S.

    2017-12-01

    Significant achievements have been made in the last 60 years in the development of fusion energy with the tokamak configuration. Based on the accumulated knowledge, the world is embarking on the construction and operation of ITER (International Thermonuclear Experimental Reactor) with a production of 500 MWf fusion power and the demonstration of physics Q  =  10. ITER will demonstrate D-T burn physics for a duration of a few hundred seconds to prepare for the next long-burn or steady state nuclear testing tokamak operating at much higher neutron fluence. With the evolution into a steady state nuclear device, such as the China Fusion Engineering Test Reactor (CFETR), it is necessary to examine the boundary conditions imposed by the combined development of tokamak physics, fusion materials and fusion technology for a reactor. The development of ferritic steel alloys as the structural material suitable for use at high neutron fluence leads to the use of helium as the most likely reactor coolant. This points to the fundamental technology limitation on the removal of chamber wall maximum heat flux at around 1 MW m-2 and an average heat flux of 0.1 MW m-2 for the next test reactor. Future reactor performance will then depend on the control of spatial and temporal edge heat flux peaking in order to increase the average heat flux to the chamber wall. With these severe material and technological limitations, system studies were used to scope out a few robust steady state synchronized fusion reactor (SFR) designs. As an example, a low fusion power design at 131.6 MWf, which can satisfy steady state design requirements, would have a major radius of 5.5 m and minor radius of 1.6 m. Such a design with even more advanced structural materials like W f/W composite could allow higher performance and provide a net electrical production of 62 MWe. These can be incorporated into the CFETR program.

  5. Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis

    PubMed Central

    2014-01-01

    Background There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Results Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave® (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons’ staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Conclusions Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased enzyme accessibility. Pretreatment reactors using physical force to disrupt cell walls increase the effectiveness of the pretreatment process. PMID:24713111

  6. Drive for leanness and health-related behavior within a social/cultural perspective.

    PubMed

    Tod, David; Edwards, Christian; Hall, Gareth

    2013-09-01

    We examined relationships between drive for leanness and perceived media pressure to change appearance, internalization of an ideal physique, exercise frequency, and dieting. Men and women (N=353) completed the Drive for Leanness Scale, the Sociocultural Attitudes Toward Appearance Questionnaire-3, the Eating Attitudes Test-26, and a demographic inventory. Drive for leanness was significantly correlated with athletic internalization (.52), pressure to attain an ideal physique (.25), exercise frequency (.36), and dieting (.25). Structural equation modeling revealed a good fitting model (χ(2)=2.85, p<.241; CFI=.99; NNFI=.98; RMSEA=.04; SRMR=.02) with internalization predicting drive for leanness, which in turn predicted dieting and exercise. Results reveal social/cultural theory helps enhance the understanding of the drive for leanness and its relationship with health-related behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Promotion of Healthy Weight-Control Practices in Young Athletes.

    PubMed

    Carl, Rebecca L; Johnson, Miriam D; Martin, Thomas J

    2017-09-01

    Children and adolescents may participate in sports that favor a particular body type. Some sports, such as gymnastics, dance, and distance running, emphasize a slim or lean physique for aesthetic or performance reasons. Participants in weight-class sports, such as wrestling and martial arts, may attempt weight loss so they can compete at a lower weight class. Other sports, such as football and bodybuilding, highlight a muscular physique; young athletes engaged in these sports may desire to gain weight and muscle mass. This clinical report describes unhealthy methods of weight loss and gain as well as policies and approaches used to curb these practices. The report also reviews healthy strategies for weight loss and weight gain and provides recommendations for pediatricians on how to promote healthy weight control in young athletes. Copyright © 2017 by the American Academy of Pediatrics.

  8. Body size and physique among Canadians of First Nation and European ancestry.

    PubMed

    Katzmarzyk, P T; Malina, R M

    1999-02-01

    The purpose of this study was to compare body size and physique among Canadians of Aboriginal (First Nation [FN]) and European ancestry (EA) from the northern Ontario communities of Temagami and Bear Island. The sample consisted of 130 FN and 494 EA participants including adults (20-75 years: 214 men, 234 women) and youth (5-19 years: 97 boys, 79 girls). Indicators of body size and physique included stature, the sitting height-to-stature ratio (SSR), body mass, BMI, estimated upper-arm muscle area, biacromial, bicristal, biepicondylar, and bicondylar breadths, and the Heath-Carter anthropometric somatotype (endomorphy, mesomorphy, and ectomorphy). There were few differences in body size between FN and EA, with the exception of adult females. Adult FN females were significantly heavier and had greater bone breadths than EA women (P < 0.001). On the other hand, somatotype differed significantly between EA and FN by age and sex, except for 5-19-year-old females. Among boys and men, FN had greater endomorphy (P < 0.03), whereas FN men also had lower ectomorphy (P < 0.01). Among women, FN were significantly more endomorphic and mesomorphic and less ectomorphic (P < 0.001). Although results for 5-19-year-old females were not significant, they were in the same direction as the other groups (greater endomorphy). Forward stepwise discriminant function analyses indicated that endomorphy was the most important discriminator between FN and EA by age and sex.

  9. Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Khuwaileh, Bassam

    High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).

  10. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  11. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  12. PREFACE: 11th Anglo-French Physical Acoustics Conference (AFPAC 2012)

    NASA Astrophysics Data System (ADS)

    Saffari, Nader; Lhémery, Alain; Lowe, Mike

    2013-08-01

    The 11th Anglo-French Physical Acoustics Conference (AFPAC) was held in Brighton, UK on 18-20 January 2012. This event, which is an annual collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique, successfully achieved its main aim of being a small, friendly meeting of high scientific quality, welcoming younger researchers and PhD students and covering a broad range of subjects in Acoustics. The participants heard 44 excellent presentations covering an exciting and diverse range of subjects, from audio acoustics to guided waves in composites and from phononic crystals to ultrasound surgery. As is the custom at these meetings, four prominent invited speakers set the pace for the event; these were Keith Attenborough (The Open University, UK), Claire Prada (Institut Langevin, France), David Moore (University of Nottingham, UK) and Philippe Roux (IS Terre, France). The submission of manuscripts for publication in the proceedings was, as in previous years, on a voluntary basis and in these proceedings we present 11 peer reviewed papers. Due to some unforeseen problems there has been a longer than planned delay in preparing these proceedings, for which the Editors sincerely apologise to the authors and the community. Nader Saffari, Mike Lowe and Alain Lhémery

  13. Physical-chemical treatment of wastes: a way to close turnover of elements in LSS

    NASA Astrophysics Data System (ADS)

    Kudenko, Yu A.; Gribovskaya, I. V.; Zolotukhin, I. G.

    2000-05-01

    "Man-plants-physical-chemical unit" system designed for space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O 2, N 2, CO 2, NH 3, H 2. At the reactor's output hydrogen and oxygen were catalyzed into water, NH 3 was converted in a water trap into NH 4 and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components.

  14. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  15. Fundamental interactions involving neutrons and neutrinos: reactor-based studies led by Petersburg Nuclear Physics Institute (National Research Centre 'Kurchatov Institute') [PNPI (NRC KI)

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2015-11-01

    Neutrons of very low energy ( ˜ 10-7 eV), commonly known as ultracold, are unique in that they can be stored in material and magnetic traps, thus enhancing methodical opportunities to conduct precision experiments and to probe the fundamentals of physics. One of the central problems of physics, of direct relevance to the formation of the Universe, is the violation of time invariance. Experiments searching for the nonzero neutron electric dipole moment serve as a time invariance test, and the use of ultracold neutrons provides very high measurement precision. Precision neutron lifetime measurements using ultracold neutrons are extremely important for checking ideas on the early formation of the Universe. This paper discusses problems that arise in studies using ultracold neutrons. Also discussed are the currently highly topical problem of sterile neutrinos and the search for reactor antineutrino oscillations at distances of 6-12 meters from the reactor core. The field reviewed is being investigated at multiple facilities globally. The present paper mainly concentrates on the results of PNPI-led studies at WWR-M PNPI (Gatchina), ILL (Grenoble), and SM-3 (Dimitrovgrad) reactors, and also covers the results obtained during preparation for research at the PIK reactor which is under construction.

  16. Nuclear power industry: Tendencies in the world and Ukraine

    NASA Astrophysics Data System (ADS)

    Babenko, V. A.; Jenkovszky, L. L.; Pavlovych, V. N.

    2007-11-01

    This review deals with new trends in nuclear reactors physics. It opens by an easily understood introduction to nuclear fission energy physics, starting with some history, including the achievements of the Kharkov nuclear physics school. Attention has been given to the development of fission theory, the Strutinsky theory, and the possible use of "nonstandard" fissile elements. The evolution of the design of nuclear reactors, including the merits and demerits of various structures used worldwide, is given in detail. A detailed description of nuclear power plants operating in Ukraine and their (large!) contribution to Ukraine's total electricity production as compared with other countries is presented. A comparative evaluation of different energy sources influencing environment contamination and the pollution caused by the Chernobyl accident are presented. The lessons of the Chernobyl accident are summarized, including the features of the shelter ("Sarkofag") covering the remaining of the power plant fourth block and some examples of calculations of the radioactive evolution of the station's fuel-containing mass (by authors of the present review). The evolution of traditional nuclear reactors designs set forth under the separate heading of next-generation reactors including new projects such as subcritical assemblies controlled by an external beam of particles (neutrons and protons). The Feoktistov reactor operation and the possibility of its realization are discussed among the new ideas.

  17. Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highlymore » detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.« less

  18. Double Chooz and a history of reactor θ 13 experiments

    DOE PAGES

    Suekane, Fumihiko; Junqueira de Castro Bezerra, Thiago

    2016-04-11

    This is a contribution paper from the Double Chooz (DC) experiment to the special issue of Nuclear Physics B on the topics of neutrino oscillations, celebrating the recent Nobel prize to Profs. T. Kajita and A.B. McDonald. DC is a reactor neutrino experiment which measures the last neutrino mixing angle θ 13. In addition, the DC group presented an indication of disappearance of the reactor neutrinos at a baseline of similar to 1 km for the first time in 2011 and is improving the measurement of θ 13. DC is a pioneering experiment of this research field. In accordance withmore » the nature of this special issue, physics and history of the reactor-θ 13 experiments, as well as the Double Chooz experiment and its neutrino oscillation analyses, are reviewed.« less

  19. Double Chooz and a history of reactor θ 13 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suekane, Fumihiko; Junqueira de Castro Bezerra, Thiago

    This is a contribution paper from the Double Chooz (DC) experiment to the special issue of Nuclear Physics B on the topics of neutrino oscillations, celebrating the recent Nobel prize to Profs. T. Kajita and A.B. McDonald. DC is a reactor neutrino experiment which measures the last neutrino mixing angle θ 13. In addition, the DC group presented an indication of disappearance of the reactor neutrinos at a baseline of similar to 1 km for the first time in 2011 and is improving the measurement of θ 13. DC is a pioneering experiment of this research field. In accordance withmore » the nature of this special issue, physics and history of the reactor-θ 13 experiments, as well as the Double Chooz experiment and its neutrino oscillation analyses, are reviewed.« less

  20. Reactor Testing and Qualification: Prioritized High-level Criticality Testing Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    Researchers at the Idaho National Laboratory (INL) were tasked with reviewing possible criticality testing needs to support development of the fission surface power system reactor design. Reactor physics testing can provide significant information to aid in development of technologies associated with small, fast spectrum reactors that could be applied for non-terrestrial power systems, leading to eventual system qualification. Several studies have been conducted in recent years to assess the data and analyses required to design and build a space fission power system with high confidence that the system will perform as designed [Marcille, 2004a, 2004b; Weaver, 2007; Parry et al.,more » 2008]. This report will provide a summary of previous critical tests and physics measurements that are potentially applicable to the current reactor design (both those that have been benchmarked and those not yet benchmarked), summarize recent studies of potential nuclear testing needs for space reactor development and their applicability to the current baseline fission surface power (FSP) system design, and provide an overview of a suite of tests (separate effects, sub-critical or critical) that could fill in the information database to improve the accuracy of physics modeling efforts as the FSP design is refined. Some recommendations for tasks that could be completed in the near term are also included. Specific recommendations on critical test configurations will be reserved until after the sensitivity analyses being conducted by Los Alamos National Laboratory (LANL) are completed (due August 2011).« less

  1. Joining the yellow hub: Uses of the Simple Application Messaging Protocol in Space Physics analysis tools

    NASA Astrophysics Data System (ADS)

    Génot, V.; André, N.; Cecconi, B.; Bouchemit, M.; Budnik, E.; Bourrel, N.; Gangloff, M.; Dufourg, N.; Hess, S.; Modolo, R.; Renard, B.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.

    2014-11-01

    The interest for data communication between analysis tools in planetary sciences and space physics is illustrated in this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search and cataloging. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualizations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities.

  2. Summary of ORSphere critical and reactor physics measurements

    NASA Astrophysics Data System (ADS)

    Marshall, Margaret A.; Bess, John D.

    2017-09-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.

  3. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  4. Hanford Atomic Products Operation monthly report for February 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-02-21

    This is the monthly report for the Hanford Laboratories Operation, February, 1956. Metallurgy, reactors fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations are discussed.

  5. Hanford Laboratories monthly activities report, March 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  6. Hanford Laboratories Operation monthly activities report, September 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1960-10-15

    This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  7. Hanford Laboratories monthly activities report, August 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1963-09-16

    This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  8. Hanford Laboratories Operation monthly activities report, November 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1962-12-14

    This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  9. Empirical estimation of the arrival time of ICME Shocks

    NASA Astrophysics Data System (ADS)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  10. Analyse d'un programme d'electromecanique en ses concepts et principes physiques: Methode et application

    NASA Astrophysics Data System (ADS)

    Gagnon, Richard; Besançon, Jacques; Jean, Pascale

    1989-09-01

    In many Western countries there is growing interest in the usefulness of scientific knowledge in vocational and technical training. Moreover, there is an increasing tendency in these countries to formulate objectives within teaching programmes, in order to come closer to the real tasks of the world of work. To determine what knowledge is required, a general method of analysing objective-based vocational training programmes was developed. This allows the identification of the minimum scientific and mathematical concepts and principles which are necessary to reach the learning objectives, and the establishment of their relative significance and the requisite level of detail. It has been used to determine the essential physical concepts of the industrial mechanics section (625 hours) of a programme on the electromechanics of automated systems. The results reveal the existence of 41 concepts needed for a total of 2,452.5 hours. A limited group of these is of particular importance.

  11. An off-line method to characterize the fission product release from uranium carbide-target prototypes developed for SPIRAL2 project

    NASA Astrophysics Data System (ADS)

    Hy, B.; Barré-Boscher, N.; Özgümüs, A.; Roussière, B.; Tusseau-Nenez, S.; Lau, C.; Cheikh Mhamed, M.; Raynaud, M.; Said, A.; Kolos, K.; Cottereau, E.; Essabaa, S.; Tougait, O.; Pasturel, M.

    2012-10-01

    In the context of radioactive ion beams, fission targets, often based on uranium compounds, have been used for more than 50 years at isotope separator on line facilities. The development of several projects of second generation facilities aiming at intensities two or three orders of magnitude higher than today puts an emphasis on the properties of the uranium fission targets. A study, driven by Institut de Physique Nucléaire d'Orsay (IPNO), has been started within the SPIRAL2 project to try and fully understand the behavior of these targets. In this paper, we have focused on five uranium carbide based targets. We present an off-line method to characterize their fission product release and the results are examined in conjunction with physical characteristics of each material such as the microstructure, the porosity and the chemical composition.

  12. Studying fundamental physics using quantum enabled technologies with trapped molecular ions

    NASA Astrophysics Data System (ADS)

    Segal, D. M.; Lorent, V.; Dubessy, R.; Darquié, B.

    2018-03-01

    The text below was written during two visits that Daniel Segal made at Université Paris 13. Danny stayed at Laboratoire de Physique des Lasers the summers of 2008 and 2009 to participate in the exploration of a novel lead in the field of ultra-high resolution spectroscopy. Our idea was to probe trapped molecular ions using Quantum Logic Spectroscopy (QLS) in order to advance our understanding of a variety of fundamental processes in nature. At that time, QLS, a ground-breaking spectroscopic technique, had only been demonstrated with atomic ions. Our ultimate goals were new approaches to the observation of parity violation in chiral molecules and tests of time variations of the fundamental constants. This text is the original research proposal written eight years ago. We have added a series of notes to revisit it in the light of what has been since realized in the field.

  13. "Your body is your business card": Bodily capital and health authority in the fitness industry.

    PubMed

    Hutson, David J

    2013-08-01

    Although scholars have noted the connection between appearance and assumptions of health, the degree to which these assumptions matter for establishing authority in social interaction remains less clear. Using a theoretical framework involving "bodily capital"--that is, the value generated from appearance, attractiveness, and physical ability--I investigate the role of appearance in the U.S. fitness industry. Drawing on data from interviews with 26 personal trainers and 25 clients between 2010 and 2011, I find that a trainer's fit-appearing physique imbues their interactions with a degree of moral and health authority. This corporeal credibility engenders trust among clients and allows exercise to be understood as a form of health work. The implications for academics and medical practitioners reach beyond the gym setting and extend recent research linking appearance to health, authority, and medical credibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  15. Evulvalution: the portrayal of women's external genitalia and physique across time and the current barbie doll ideals.

    PubMed

    Schick, Vanessa R; Rima, Brandi N; Calabrese, Sarah K

    2011-01-01

    Media images of the female body commonly represent reigning appearance ideals of the era in which they are published. To date, limited documentation of the genital appearance ideals in mainstream media exists. Analysis 1 sought to describe genital appearance ideals (i.e., mons pubis and labia majora visibility, labia minora size and color, and pubic hair style) and general physique ideals (i.e., hip, waist, and bust size, height, weight, and body mass index [BMI]) across time based on 647 Playboy Magazine centerfolds published between 1953 and 2007. Analysis 2 focused exclusively on the genital appearance ideals embodied by models in 185 Playboy photographs published between 2007 and 2008. Taken together, results suggest the perpetuation of a "Barbie Doll" ideal characterized by a low BMI, narrow hips, a prominent bust, and hairless, undefined genitalia resembling those of a prepubescent female.

  16. Nuclear physics research operation. Monthly report, November 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, J.E.

    1958-12-10

    This report is a summary of projects worked on in support of the production reactors at Hanford. The projects include criticality studies, from tasks associated with fuel element reprocessing to shipments of slightly enriched uranium. They include studies of neutron cross sections for different reactions and neutron flux measurements in different reactor locations, as well as design studies for future reactor projects.

  17. AGC 2 Irradiated Material Properties Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  18. AGC 2 Irradiation Creep Strain Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William E.; Rohrbaugh, David T.; Swank, W. David

    2016-08-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  19. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  20. Core follow calculation with the nTRACER numerical reactor and verification using power reactor measurement data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Y. S.; Joo, H. G.; Yoon, J. I.

    The nTRACER direct whole core transport code employing the planar MOC solution based 3-D calculation method, the subgroup method for resonance treatment, the Krylov matrix exponential method for depletion, and a subchannel thermal/hydraulic calculation solver was developed for practical high-fidelity simulation of power reactors. Its accuracy and performance is verified by comparing with the measurement data obtained for three pressurized water reactor cores. It is demonstrated that accurate and detailed multi-physic simulation of power reactors is practically realizable without any prior calculations or adjustments. (authors)

  1. Hanford Laboratories monthly activities report, February 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  2. Hanford Atomic Products Operation monthly report for June 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-07-28

    This is the monthly report for the Hanford Atomic Products Operation, June, 1955. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  3. Hanford Atomic Products Operation monthly report, January 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-02-24

    This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  4. Introduction to D-He(3) fusion reactors

    NASA Technical Reports Server (NTRS)

    Vlases, G. C.; Steinhauer, L. C.

    1989-01-01

    A review and evaluation of D-He(3) fusion reactor technology is presented. The advantages and disadvantages of the D-He(3) and D-T reactor cycles are outlined and compared. In addition, the general design features of D-He(3) tokamaks and field reversed configuration (FRC) reactors are described and the relative merits of each are compared. It is concluded that both tokamaks and FRC's offer certain advantages, and that the ultimate decision as to which to persue for terrestrial power generation will depend heavily on how the physics performance of each of them develops over the next few years. It is clear that the D-He(3) fuel cycle offers marked advantages over the D-T cycle. Although the physics requirements for D-He(3) are more demanding, the overwhelming advantages resulting from the two order of magnitude reduction of neutron flux are expected to lead to a shorter time to commercialization than for the D-T cycle.

  5. RELAP-7 Software Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less

  6. Introduction to D-He(3) fusion reactors

    NASA Astrophysics Data System (ADS)

    Vlases, G. C.; Steinhauer, L. C.

    1989-07-01

    A review and evaluation of D-He(3) fusion reactor technology is presented. The advantages and disadvantages of the D-He(3) and D-T reactor cycles are outlined and compared. In addition, the general design features of D-He(3) tokamaks and field reversed configuration (FRC) reactors are described and the relative merits of each are compared. It is concluded that both tokamaks and FRC's offer certain advantages, and that the ultimate decision as to which to persue for terrestrial power generation will depend heavily on how the physics performance of each of them develops over the next few years. It is clear that the D-He(3) fuel cycle offers marked advantages over the D-T cycle. Although the physics requirements for D-He(3) are more demanding, the overwhelming advantages resulting from the two order of magnitude reduction of neutron flux are expected to lead to a shorter time to commercialization than for the D-T cycle.

  7. Virtual environments simulation in research reactor

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  8. Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Fiorina; N. E. Stauff; F. Franceschini

    2013-12-01

    The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associatedmore » with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.« less

  9. Validation of High-Fidelity Reactor Physics Models for Support of the KJRR Experimental Campaign in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, David W.; Nielsen, Joseph W.; Norman, Daren R.

    The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be wellmore » outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.« less

  10. Neutron Resonance Theory for Nuclear Reactor Applications: Modern Theory and Practices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Richard N.; Blomquist, Roger N.; Leal, Luiz C.

    2016-09-24

    The neutron resonance phenomena constitute one of the most fundamental subjects in nuclear physics as well as in reactor physics. It is the area where the concepts of nuclear interaction and the treatment of the neutronic balance in reactor fuel lattices become intertwined. The latter requires the detailed knowledge of resonance structures of many nuclides of practical interest to the development of nuclear energy. The most essential element in reactor physics is to provide an accurate account of the intricate balance between the neutrons produced by the fission process and neutrons lost due to the absorption process as well asmore » those leaking out of the reactor system. The presence of resonance structures in many major nuclides obviously plays an important role in such processes. There has been a great deal of theoretical and practical interest in resonance reactions since Fermi’s discovery of resonance absorption of neutrons as they were slowed down in water. The resonance absorption became the center of attention when the question was raised as to the feasibility of the self-sustaining chain reaction in a natural uranium-fueled system. The threshold of the nuclear era was crossed almost eighty years ago when Fermi and Szilard observed that a substantial reduction in resonance absorption is possible if the uranium was made into the form of lumps instead of a homogeneous mixture with water. In the West, the first practical method for estimating the resonance escape probability in a reactor cell was pioneered by Wigner et al in early forties.« less

  11. Hanford Laboratories Operation monthly activities report, August 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1959-09-15

    This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.

  12. Hanford Laboratories Operation monthly activities report, September 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1961-10-16

    This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  13. VIEW OF 77710A REACTOR WING, LOOKING NORTH, SHOWING DOOR TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF 777-10A REACTOR WING, LOOKING NORTH, SHOWING DOOR TO PROCESS DEVELOPMENT PILE ROOM AND LABORATORY WING ON RIGHT IN BACKGROUND - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  14. ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lell, R. M.; Schaefer, R. W.; McKnight, R. D.

    Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less

  15. High-Temperature Gas-Cooled Test Reactor Point Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  16. SHIPPINGPORT OPERATIONS FROM POWER OPERATION AFTER FIRST REFUELING TO SECOND REFUELING, MAY 6, 1960 TO AUGUST 16, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    A report of Shippingport operation during Seed 2 lifetime is presented. The information is primarily confined to the nuclear portion of the operation. A general review of station performance is given along with details of reactor physics, reactor thermal and hydraulic performance, reactor plant performance and modifications, operational chemistry, and radioactive contamination experience. (J.R.D.)

  17. Analysis of granular flow in a pebble-bed nuclear reactor.

    PubMed

    Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z

    2006-08-01

    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

  18. D-He-3 spherical torus fusion reactor system study

    NASA Astrophysics Data System (ADS)

    Macon, William A., Jr.

    1992-04-01

    This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.

  19. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, J. D.; Gauld, I. C.; Gulliford, J.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Projectmore » (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.« less

  20. Summary of ORSphere Critical and Reactor Physics Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.

    In the early 1970s Dr. John T. Mihalczo (team leader), J. J. Lynn, and J. R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVAmore » I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is summary summarize all the critical and reactor physics measurements evaluations and, when possible, to compare them to GODIVA experiment results.« less

  1. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  2. Applications of nuclear physics

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  3. Applications of nuclear physics

    DOE PAGES

    Hayes-Sterbenz, Anna Catherine

    2017-01-10

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  4. Applications of nuclear physics.

    PubMed

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  5. Applications of nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  6. PREFACE Spectral and transport properties of quantum systems: in memory of Pierre Duclos (1948-2010) Spectral and transport properties of quantum systems: in memory of Pierre Duclos (1948-2010)

    NASA Astrophysics Data System (ADS)

    2010-11-01

    This issue is devoted to our colleague and friend Pierre Duclos who passed away suddenly and prematurely in Prague on 12 January this year. We want to honour his memory in the way he would have liked, by collecting fresh and original work from his area of interest. Pierre Duclos was born on 8 January 1948 in Paris. He started as an engineering student but also attended graduate courses at the Centre de Physique Théorique (CPT) in Marseille, which inspired him to change his path and pursue the professional career of a researcher. He joined the Mathematical Physics team at CPT and obtained a position at the University of Toulon, where he later became a full professor. He was never solitary; always being full of energy and a smart and sociable person, he started and maintained many international collaborations and organized numerous conferences and seminars. In the early eighties he had strong ties with the Free and Technical Universities of Berlin. From the beginning of the nineties, he collaborated with coleagues in Prague, Bucharest, Santiago de Chile, and more recently also in Aalborg and Dublin. His scientific interests were wide, with a focus on mathematical methods of quantum theory. He made important contributions to our understanding of multiple-well Schrödinger operators, geometrically-induced properties of quantum waveguides, spectra of Wannier-Stark systems, dynamics with time-periodic perturbations, and transport in mesoscopic systems, to name his most significant results. We choose for this issue the title `Spectral and transport properties of quantum systems' which cover the subjects of most papers to which his colleagues, and often coauthors, contributed. We have also included a few other papers with topics related to Pierre's work. We are glad we were able to gather a numerous collection of papers which in our view represent interesting new developments. A few of them are works which bear Pierre's signature and have been completed by his collaborators. Moreover, we are aware of several other works which their authors dedicated to Pierre's memory but which for some reason or another did not make it to this issue. A list of these papers can be found at the end of the preface. This multitude of memorial papers shows that Pierre was popular not only as a colleague, coauthor, and teacher, but also as a person. Those who had the good fortune to work with him will always recall his blend of hard-working habits, strong views, and human warmth, which made him so unique. He will be remembered with gratitude and admiration by all who knew him well. We will miss him a lot. Jean-Michel Combes, Université du Sud Toulon-Var and Centre de Physique Théorique, CNRS Marseille, France Pavel Exner, Doppler Institute and Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences Valentin A Zagrebnov, Université de la Mediterranée and Centre de Physique Théorique, CNRS Marseille, France Guest Editors Other works dedicated to Pierre's memory: Aschbacher W, Barbaroux J-M, Faupin J and Guillot J-C 2010 Spectral theory for a mathematical model of weak interactions: the decay of the intermediate bosons W+/-. II Annales Henri Poincaré at press Bellissard J and Palmer I 2009 The Jewett-Krieger construction for tilings arXiv:0906.2997 Gesztesy F and Zinchenko M 2010 Symmetrized perturbation determinants and applications to boundary data maps and Krein-type resolvent formulas arXiv:1007.4605 Kostrykin V, Potthoff J and Schrader R 2010 Brownian motions on metric graphs: Feller Brownian motions on intervals revisited arXiv:1008.3761 Stollmann P 2010 From uncertainty principles to Wegner estimates Math. Phys. Anal. Geom. 13 145-57

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less

  8. Hanford Atomic Products Operation monthly report for March 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-04-20

    This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.

  9. A Course in Chemical Reactor Design.

    ERIC Educational Resources Information Center

    Takoudis, Christos G.

    1983-01-01

    Presents course outline, topics covered, and final project (doubling as a take home final exam) for a one-semester, interdisciplinary course on the design and behavior of chemical reactors. Interplay of chemical and physical rate processes is stressed in the course. (JM)

  10. Temperature measuring analysis of the nuclear reactor fuel assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, F., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Kučák, L., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Bereznai, J., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuelmore » assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.« less

  11. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  12. Babcock and Wilcox assessment of the Pratt and Whitney XNR2000

    NASA Technical Reports Server (NTRS)

    Westerman, Kurt O.; Scoles, Stephen W.; Jensen, R. R.; Rodes, J. R.; Ales, M. W.

    1993-01-01

    Babcock & Wilcox performed four subtasks related to the assessment of the Pratt & Whitney XNR2000 nuclear reactor as follows: (1) cermet fuel element fabricability assessment; (2) mechanical design review of the reactor system; (3) neutronic analysis review; and (4) safety assessment. The results of the mechanical and physics reviews have been integrated into the reactor design. The results of the fuel and safety assessments are presented.

  13. Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor.

    PubMed

    Cai, Chun-guang; Zhu, Nan-wen; Liu, Jun-shen; Wang, Zhen-peng; Cai, Wei-min

    2004-01-01

    Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor (SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.

  14. VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15’, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  15. Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less

  16. Physical models and primary design of reactor based slow positron source at CMRR

    NASA Astrophysics Data System (ADS)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  17. 78 FR 59981 - Proposed Revision to Physical Security-Standard Design Certification and Operating Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... the Standard Review Plan (SRP), concerning the physical security reviews of design certification... NRC staff with the physical security review of applications for design certifications, incorporate... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Proposed Revision to Physical Security--Standard...

  18. VIEW OF 77710A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF 777-10A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO THE PROCESS DEVELOPMENT PILE ROOM. BUILDING 305-A IN BACKGROUND ON LEFT - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  19. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    ERIC Educational Resources Information Center

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  20. Neutrino mass hierarchy and precision physics with medium-baseline reactors: Impact of energy-scale and flux-shape uncertainties

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.

    2015-11-01

    Nuclear reactors provide intense sources of electron antineutrinos, characterized by few-MeV energy E and unoscillated spectral shape Φ (E ). High-statistics observations of reactor neutrino oscillations over medium-baseline distances L ˜O (50 ) km would provide unprecedented opportunities to probe both the long-wavelength mass-mixing parameters (δ m2 and θ12) and the short-wavelength ones (Δ mee 2 and θ13), together with the subtle interference effects associated with the neutrino mass hierarchy (either normal or inverted). In a given experimental setting—here taken as in the JUNO project for definiteness—the achievable hierarchy sensitivity and parameter accuracy depend not only on the accumulated statistics but also on systematic uncertainties, which include (but are not limited to) the mass-mixing priors and the normalizations of signals and backgrounds. We examine, in addition, the effect of introducing smooth deformations of the detector energy scale, E →E'(E ), and of the reactor flux shape, Φ (E )→Φ'(E ), within reasonable error bands inspired by state-of-the-art estimates. It turns out that energy-scale and flux-shape systematics can noticeably affect the performance of a JUNO-like experiment, both on the hierarchy discrimination and on precision oscillation physics. It is shown that a significant reduction of the assumed energy-scale and flux-shape uncertainties (by, say, a factor of 2) would be highly beneficial to the physics program of medium-baseline reactor projects. Our results also shed some light on the role of the inverse-beta decay threshold, of geoneutrino backgrounds, and of matter effects in the analysis of future reactor oscillation data.

  1. Investigation report: H Reactor mischarging incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinther, A.P.

    1964-05-01

    All cold reactor start-up procedures require the vertical safety rods (VSR) to be withdrawn in pairs with specific waiting periods between each pair withdrawal. This rod withdrawal procedure will assure an early and safe detection of reactor criticality should reactor reactivity conditions be different than predicted so that proper corrective actions can be taken. During the paired VSR removal of H reactor on April 17, 1964, while preparing for reactor start-up, an extremely low level rising period was detected with six VSR's still in the reactor. The withdrawn VSR's were promptly re-inserted. During the next several days other process difficultiesmore » were encountered. H Processing personnel began investigating the possibility that a number of process tubes might have been mischarged; one shift's charging effort appeared to be suspect as longitudinal peaking appeared nearly twice as severe as normal in the distorted region. Following verification of a charging error in the suspect group of 171 tubes, that group of tubes was discharged and recharged with the proper charge make-up. On April 24, during VSR removal for start-up, low level criticality was detected with three VSR's still in the unit. The VSR's were re-inserted and Operational Physics analysis requested. Following installation of additional poisoning, the Operational Physics analysis uncovered a reactivity prediction error related to the prior operation with the skewed flux distribution. However, in this case, as on April 17, the procedural paired VSR withdrawal provided safe detection of the criticality condition in adequate time to take prompt corrective action. A successful reactor start-up was then achieved later on April 24, and reactor operation has been normal since that time. 4 figs.« less

  2. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertyurek, Ugur; Gauld, Ian C.

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  3. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE PAGES

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  4. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less

  5. The Application of the SPASE Metadata Standard in the U.S. and Worldwide

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; King, T. A.; Roberts, D.

    2012-12-01

    The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has not needed any structural modifications since January 2011 . The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. While we anticipate additional modifications to the model in the future to accommodate simulation and model data, these changes will not affect the data descriptions already generated for instrument-related datasets. Examples of SPASE descriptions can be viewed at http://www.spase-group.org/registry/explorer and data can be located using SPASE concepts by searching the Virtual Space Physics Observatory (http://vspo.gsfc.nasa.gov/websearch/dispatcher) for data of interest.

  6. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures.

    PubMed

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  7. Eating attitudes, self-esteem and social physique anxiety among Iranian females who participate in fitness programs.

    PubMed

    Gargari, B P; Khadem-Haghighian, M; Taklifi, E; Hamed-Behzad, M; Shahraki, M

    2010-03-01

    Today, women's participation in sports has substantially increased. This growth has been accompanied by concerns about health risks, as eating disorders, and psychological features, as self-esteem (SE) and social physique anxiety (SPA). The purpose of this study was to determine disordered eating attitudes and their relation to SE, SPA, as well as body weight, and body mass index (BMI), in Iranian females who participate in fitness programs. Subjects were 250 females, aged 14-51 years, who participated in fitness programs. Eating attitude test-26 (EAT-26), Rosenberg's self esteem scale (RSES), and social physique anxiety scale (SPAS), were used. Body weight and height were measured, and then Body Mass Index (BMI) was calculated. According to BMI cut-offs, 36% of subjects were overweight or obese. 28.4% and 19.6% of subjects were disordered eating attitudes (EAT-26>or=20) and low self-esteem (RSES<15), respectively. Disordered eating attitude subjects had lower SE and higher SPA, body weight and BMI than normal subjects (P<0.05). The low SE group had higher SPAS than normal one (P<0.02). In bivariate analysis, EAT-26 score was correlated negatively with RSES (r=-0.13, P<0.04) and positively with body weight, BMI, and SPAS (r=0.40, 0.42, and 0.47, respectively, P<0.001). SPAS had positive correlation with body weight and BMI (r=0.22, 0.19, It can be concluded that disordered eating attitudes are prevalent among Iranian females who participate in fitness programs. In this group, high SPA, body weight and BMI, and low SE accompany disordered eating attitudes.

  8. Epidemiological investigation of physique situation for birth high-risk children aged 9-15 years in Chengdu, Southwest China.

    PubMed

    Xiong, F; Yang, F; Huo, T Z; Li, P; Mao, M

    2014-01-01

    As the intrauterine environment can effect children's growth and development, this study aimed to explore the relationship between birth high-risk and physique situation of 9 to 15-year-old children by cross-sectional investigation, and to provide clues for the monitoring, prevention, and treatment of growth deviation in children. This study recruited 7,194 students aged 9 to 15 years in primary and junior schools. Their parents were asked to complete the birth situation questionnaire. Measurements included height, weight, and body mass index (BMI). Birth high-risk infant was defined according to the gestational age and birth weight. Growth deviation was classified as underweight, short stature, overweight, and obesity. The prevalence of all kinds of growth deviations in preterm, full-term, and post-term birth groups were similar, the same as the physique situation at school age among both sexes. The incidence of small for gestational age (SGA) was 6.23%, when at school age, part of SGA had catch-up growth. However, the prevalence of underweight and short stature for SGA was highest in three groups. The weight and height at school age in SGA group was less than that in appropriate for gestational age (AGA) and large for gestational age (LGA) groups. The prevalence of overweight and obesity for LGA and macrosomia were highest in three groups. At school age, the weight in macrosomia and LGA groups was higher than that in the other groups. Longitudinal height and weight development and growth of children with birth high-risk are different from normal children. In order to improve healthy situation, more attention should be paid to height and weight development of those children with birth high-risk at school age, even in pre-school age. Prevention may already begin during pregnancy.

  9. Equipment for neutron measurements at VR-1 Sparrow training reactor.

    PubMed

    Kolros, Antonin; Huml, Ondrej; Kríz, Martin; Kos, Josef

    2010-01-01

    The VR-1 sparrow reactor is an experimental nuclear facility for training, student education and teaching purposes. The sparrow reactor is an educational platform for the basic experiments at the reactor physic and dosimetry. The aim of this article is to describe the new experimental equipment EMK310 features and possibilities for neutron detection by different gas filled detectors at VR-1 reactor. Among the EMK310 equipment typical attributes belong precise set-up, simple control, resistance to electromagnetic interference, high throughput (counting rate), versatility and remote controllability. The methods for non-linearity correction of pulse neutron detection system and reactimeter application are presented. Copyright 2009. Published by Elsevier Ltd.

  10. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.M. McEligot; K. G. Condie; G. E. McCreery

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less

  11. Neutron flux and power in RTP core-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less

  12. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a nationalmore » scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.« less

  13. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  14. Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormon, S.; Fallot, M., E-mail: fallot@subatech.in2p3.fr; Bui, V.-M.

    This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {supmore » 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.« less

  15. 10 CFR 72.180 - Physical protection plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...

  16. 10 CFR 72.180 - Physical protection plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...

  17. 10 CFR 72.180 - Physical protection plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...

  18. 10 CFR 72.180 - Physical protection plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...

  19. 10 CFR 72.180 - Physical protection plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...

  20. Current Physics Research: Part I.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1980-01-01

    This article is a preview of the book, "Physics News in 1980." Five research areas are reviewed: high energy particle accelerators, fusion reactors, solar cells, astrophysics, and gauge theories. (Author/DS)

  1. Effects of Age and Sex on the Development of Personal Space Schemata Towards Body Build

    ERIC Educational Resources Information Center

    Lerner, Richard M.; And Others

    1975-01-01

    This study assessed personal space schemata of children towards stimulus figures representing male and female body build stereotypes. Greater spatial distances were used towards the Endomorph than other physique types and significant sex differences were found. (GO)

  2. The obesity penalty in the labor market using longitudinal Canadian data.

    PubMed

    Chu, Filmer; Ohinmaa, Arto

    2016-12-01

    A Canadian study of weight discrimination also known as the obesity wage-penalty. This paper adds to the limited Canadian literature while also introducing a causal model, which can be applied to future Canadian studies. A general working-class sample group is utilized with personal income, which removes many biases introduced in other studies. The evidence suggests that a 1-unit increase in lagged BMI is associated with a 0.7% decrease in personal for obese Canadian females. Similar to other studies, the male results are inconsistent. The evidence brought forward in this study can provide an effective financial incentive for health promotion among Canadians for law and policy makers. Beyond health reasons, these results can also be applied as empirical evidence of gender discrimination based on body image perception. The evidence suggests that male physique is not a contributing factor in income, but larger female physique is associated with lower personal income. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Variability in body size and shape of UK offshore workers: A cluster analysis approach.

    PubMed

    Stewart, Arthur; Ledingham, Robert; Williams, Hector

    2017-01-01

    Male UK offshore workers have enlarged dimensions compared with UK norms and knowledge of specific sizes and shapes typifying their physiques will assist a range of functions related to health and ergonomics. A representative sample of the UK offshore workforce (n = 588) underwent 3D photonic scanning, from which 19 extracted dimensional measures were used in k-means cluster analysis to characterise physique groups. Of the 11 resulting clusters four somatotype groups were expressed: one cluster was muscular and lean, four had greater muscularity than adiposity, three had equal adiposity and muscularity and three had greater adiposity than muscularity. Some clusters appeared constitutionally similar to others, differing only in absolute size. These cluster centroids represent an evidence-base for future designs in apparel and other applications where body size and proportions affect functional performance. They also constitute phenotypic evidence providing insight into the 'offshore culture' which may underpin the enlarged dimensions of offshore workers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Self-compassion: a potential resource for young women athletes.

    PubMed

    Mosewich, Amber D; Kowalski, Kent C; Sabiston, Catherine M; Sedgwick, Whitney A; Tracy, Jessica L

    2011-02-01

    Self-compassion has demonstrated many psychological benefits (Neff, 2009). In an effort to explore self-compassion as a potential resource for young women athletes, we explored relations among self-compassion, proneness to self-conscious emotions (i.e., shame, guilt-free shame, guilt, shame-free guilt, authentic pride, and hubristic pride), and potentially unhealthy self-evaluative thoughts and behaviors (i.e., social physique anxiety, obligatory exercise, objectified body consciousness, fear of failure, and fear of negative evaluation). Young women athletes (N = 151; Mage = 15.1 years) participated in this study. Self-compassion was negatively related to shame proneness, guilt-free shame proneness, social physique anxiety, objectified body consciousness, fear of failure, and fear of negative evaluation. In support of theoretical propositions, self-compassion explained variance beyond self-esteem on shame proneness, guilt-free shame proneness, shame-free guilt proneness, objectified body consciousness, fear of failure, and fear of negative evaluation. Results suggest that, in addition to self-esteem promotion, self-compassion development may be beneficial in cultivating positive sport experiences for young women.

  5. Marked for life? A prospective study of tattoos on appearance anxiety and dissatisfaction, perceptions of uniqueness, and self-esteem.

    PubMed

    Swami, Viren

    2011-06-01

    Previous studies on psychosocial aspects of tattooing have not examined prospective changes in self- and body-related attitudes as a result of obtaining a tattoo. In the present study, 82 British residents obtaining their first tattoo completed measures of state appearance anxiety and dissatisfaction prior to, and immediately after, obtaining a tattoo. They also completed measures of trait body appreciation, distinctive appearance investment, self-ascribed uniqueness, social physique anxiety, and self-esteem before obtaining a tattoo and three weeks later. Results showed that both women and men had significantly lower appearance anxiety and dissatisfaction immediately after obtaining their tattoo, and significantly higher body appreciation, distinctive appearance investment, self-ascribed uniqueness, and self-esteem after three weeks. Women reported greater social physique anxiety after three weeks, whereas men reported lower anxiety. These results are discussed in relation to the positive impacts of obtaining body art and the mainstreaming of tattooing in Western societies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Nutrition for winter sports.

    PubMed

    Meyer, Nanna L; Manore, Melinda M; Helle, Christine

    2011-01-01

    Winter sports are played in cold conditions on ice or snow and often at moderate to high altitude. The most important nutritional challenges for winter sport athletes exposed to environmental extremes include increased energy expenditure, accelerated muscle and liver glycogen utilization, exacerbated fluid loss, and increased iron turnover. Winter sports, however, vary greatly regarding their nutritional requirements due to variable physiological and physique characteristics, energy and substrate demands, and environmental training and competition conditions. What most winter sport athletes have in common is a relatively lean physique and high-intensity training periods, thus they require greater energy and nutrient intakes, along with adequate food and fluid before, during, and after training. Event fuelling is most challenging for cross-country skiers competing in long events, ski jumpers aiming to reduce their body weight, and those winter sport athletes incurring repeated qualification rounds and heats. These athletes need to ensure carbohydrate availability throughout competition. Finally, winter sport athletes may benefit from dietary and sport supplements; however, attention should be paid to safety and efficacy if supplementation is considered.

  7. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less

  8. Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility

    DTIC Science & Technology

    1986-01-01

    Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and

  9. VERAIn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, Srdjan

    2015-02-16

    CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less

  10. The physique and body composition of students studying physical education: a preliminary report.

    PubMed

    Smolarczyk, Marcin; Wiśniewski, Andrzej; Czajkowska, Anna; Kęska, Anna; Tkaczyk, Joanna; Milde, Katarzyna; Norkowski, Henryk; Gajewski, Jan; Trajdos, Adam; Majchrzak, Anna

    2012-01-01

    Young people who study physical education are a priori regarded as having proper body structure and body composition. This assumption cannot be confirmed in the subject literature. To determine the basic auxological parameters in youth who study physical education. 235 first-year students studying physical education were examined: 32% women (n=74) and 68% men (n=161). The students' body height, weight, waist, and hip circumference were measured. Body composition (bioimpedance method), specifying the body fat percentage (FM%) and fat free mass (FFM%) was also assessed. The mean normalized height of the female body was 0.48±1.07 SDS, and for the male body 0.51±1.04 SDS. The mean normalized weight for women was 0.4±0.94 SDS, and for men it was 0.83±0.9 SDS. The mean fat percentage in the body composition of women and men was, respectively, 21.5±5.06, ranging from 10.16% to 35.06%, and 12.5±3.97, ranging from 4.36% to 22.28%. In one-third of the women, the percentage of fat in the body composition was higher than 25%. 1. Young people who choose to study physical education and physical culture are characterized by greater height and greater body weight than the general population, regardless of gender. 2. Short persons study physical education less often than tall individuals. 3. The greater body weight observed in the majority of students studying physical education, in comparison to that of the general population, was caused by a dominant percentage of lean body mass in body composition; unexpectedly, however, some women were observed to have relatively high fat content. 4. Use of the body mass index and waist-hip ratio was not a sufficiently sensitive screening examination to detect fatness in physically active young adults; therefore, it should not substitute for the determination of fat content in body composition.

  11. Computer modeling and simulators as part of university training for NPP operating personnel

    NASA Astrophysics Data System (ADS)

    Volman, M.

    2017-01-01

    This paper considers aspects of a program for training future nuclear power plant personnel developed by the NPP Department of Ivanovo State Power Engineering University. Computer modeling is used for numerical experiments on the kinetics of nuclear reactors in Mathcad. Simulation modeling is carried out on the computer and full-scale simulator of water-cooled power reactor for the simulation of neutron-physical reactor measurements and the start-up - shutdown process.

  12. Analysis of the uncertainties in the physical calculations of water-moderated power reactors of the VVER type by the parameters of models of preparing few-group constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryukhin, V. V., E-mail: bryuhin@yandex.ru; Kurakin, K. Yu.; Uvakin, M. A.

    The article covers the uncertainty analysis of the physical calculations of the VVER reactor core for different meshes of the reference values of the feedback parameters (FBP). Various numbers of nodes of the parametric axes of FBPs and different ranges between them are investigated. The uncertainties of the dynamic calculations are analyzed using RTS RCCA ejection as an example within the framework of the model with the boundary conditions at the core inlet and outlet.

  13. Reactor physics teaching and research in the Swiss nuclear engineering master

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  14. Reactor monitoring with Neutrinos

    NASA Astrophysics Data System (ADS)

    Cribier, Michel

    2011-12-01

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  15. VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WESTSOUTHWEST, BASEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WEST-SOUTHWEST, BASEMENT LEVEL -15’. EDGE O FRESONANCE TEST REACTOR (RTR), LATER KNOWN AS LATTICE TEST REACTOR (LTR), VISIBLE TO RIGHT OF PDP TANK - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  16. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  17. Study of physical conditions in protoplanetary disks by interferometry. Theory, instrumentation and first observations. -- étude des conditions physiques dans les disques protoplanétaires par interférométrie. Théorie, instrumentation et premières observations.

    NASA Astrophysics Data System (ADS)

    Malbet, Fabien

    2007-10-01

    Les étoiles se forment lors de l'effondrement de nuages de gaz et de poussière. Dans l'environnement proche de l'étoile naissante la matière se concentre dans un plan équatorial que l'on appelle disque protoplanétaire. Les astronomes pensent que les planètes se forment au sein de cette masse de gaz et de poussière orbitant autour de l'étoile. Pour sonder ces disques à des échelles correspondant aux orbites des futures planètes, il convient d'observer dans l'infrarouge à très haute résolution spatiale. L'interférométrie infrarouge est donc un outil idéal pour étudier les conditions physiques des disques protoplanétaires. Dans ce mémoire, je décris les premiers pas de l'interférométrie infrarouge, depuis la mise au point des petits interféromètres PTI et IOTA jusqu'à la construction de l'instrument AMBER au foyer de l'interféromètre du VLT. Je décris aussi les résultats d'une piste de recherche technologique particulièrement attrayante dans le cas de l'interférométrie infrarouge et issue des technologies des autoroutes de l'information: l'optique intégrée appliquée à la combinaison de plusieurs faisceaux en astronomie. Je montre ensuite comment à partir des observations obtenues à partir de ces instruments, il est possible de contraindre la physique des disques autour des étoiles jeunes. Gráce à la résolution spectrale nouvellement disponible sur ces instruments, pour la première fois nous pouvons séparer des phénomènes physiques aussi différents que l'accrétion de matière sur l'étoile et l'éjection de particules par des vents dont l'origine précise est encore mal connue. Les résultats présentés dans ce mémoire ont été obtenus principalement à partir d'observations sur les systèmes jeunes FU Ori et MWC 297 effectuées par AMBER sur le VLTI, mais aussi par les petits interféromètres infrarouges PTI et IOTA. Je développe aussi les travaux de modélisation de la structure verticale des disques associés afin de montrer la richesse des renseignements obtenus. Finalement je trace les contours d'un programme de recherche qui permettra tout d'abord de maximiser le retour astrophysique sur un instrument comme le VLTI, puis d'obtenir de premières images interférométriques de ces environnements circumstellaires. Je propose aussi la réalisation d'un instrument de seconde génération qui permettra de fournir des images interférométriques détaillées de ces sources compactes par synthèse d'ouverture. Stars are forming when clouds of gas and dust collapse. In the close environment of the new star, the matter is concentrated in an equatorial plane which is called protoplanetary disk. The astronomers think that planets are formed within this mass of gas and dust orbiting around the star. To probe these disks at scales corresponding to the orbits of the future planets, it is necessary to observe at very high spatial resolution in the infrared wavelength domain. Infrared interferometry is therefore an ideal tool to study the physical conditions in protoplanetary disks. In this document, I describe the first steps of infrared interferometry, from the beginning of the small interferometers PTI and IOTA until the construction of the AMBER instrument at the focus of the VLT Interferometer. I describe also the results of a technological research track, particularly attractive in the case of infrared interferometry, and coming from the information freeway: the integrated optics applies to the combination of several beams in astronomy. I show then how from observations obtained from these instruments, it is possible to constrain the physics of disks around young stars. Thanks to the spectral resolution recently available on these instruments, for the first time, we can separate the physical phenomena as different as accretion of matter onto the star and the ejection of particles by winds whose precise origin is still not well known. The results presented in this document were obtained mainly from observations on the young systems FU Ori and MWC 297 and performed by AMBER on the VLTI, but also by the small infrared interferometers PTI and IOTA. I tackle also the modeling of the vertical structure of those disks in order to show the wealth of obtained information. Finally I draw the contours of a research program that will allow first the VLTI astrophysical return to be maximized, and then the first interferometric images of these circumstellar environments to be obtained. I also propose to build a second generation instrument for the VLTI which will bring detailed interferometric images by aperture synthesis of these compact sources.

  18. Calendar of Selected Aeronautical and Space Meetings (Calendrier des Manifestations Aeronautiques et Spatiales (Selection)).

    DTIC Science & Technology

    1983-07-01

    Structures, Matiriaux et Micanique appliquie 51 08 - Physique de l’Atmosphire et Environnement terrestre 70 09 - Information, Documentation et...78712 US VDE Verband Deutscher Elektrotechniker: Zentralstelle Tagungen, Stresemannallee 21, D-6000 Frankfurt am Main 70 GE WEC World Energy Conference

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, G.A.

    For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitionedmore » the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)« less

  20. Decommissioning the physics laboratory, building 777-10A, at the Savannah River Site (SRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musall, John C.; Cope, Jeff L.

    2008-01-15

    SRS recently completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft{sup 2} laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers, who face similar decommissioning challenges. Building 777-10A, located at the south end of SRS's A/M-Area, was built in 1953 and had a gross area of {approx}48,000 ft{sup 2}. Building 777-10A had two main areas: a west wing, which housed four experimental reactors and associated equipment; and an east wing, which housed laboratories, and shops, offices. The reactors were located in two separate areas: one area housed the Process Development Pile (PDP) reactor and the Lattice Test Reactor (LTR), while the second area housed the Standard Pile (SP) and the Sub-critical Experiment (SE) reactors. The west wing had five levels: three below and three above grade (floor elevations of -37', -28', -15', 0', +13'/+16' and +27' (roof elevation of +62')), while the east wing had two levels: one below and one above grade (floor elevations of -15' and 0' (roof elevation of +16')). Below-grade exterior walls were constructed of reinforced concrete, {approx}1' thick. In general, above-grade exterior walls were steel frames covered by insulation and corrugated, asbestos-cement board. The two interior walls around the PDP/LTR were reinforced concrete {approx}5' thick and {approx}30' high, while the SP/SE reactors resided in a reinforced, concrete cell with 3.5'-6' thick walls/roof. All other interior walls were constructed of metal studs covered with either asbestos-cement or gypsum board. In general, the floors were constructed of reinforced concrete on cast-in-place concrete beams below-grade and concrete on metal beams above-grade. The roofs were flat concrete slabs on metal beams. Building 777-10A was an important SRS research and development location. The reactors helped determine safe operational limits and loading patterns for fuel used in the SRS production reactors, and supported various low power reactor physics studies. All four reactors were shut down and de-inventoried in the 1970's. The building was DD and R 2007, Chattanooga, Tennessee, September 16-19, 2007 169 subsequently used by various SRS organizations for office space, audio/visual studio, and computer network hub. SRS successfully decommissioned Building 777-10A over a thirty month period at a cost of {approx}more » $$14 M ({approx}$$290/ft{sup 2}). The decommissioning was a complex and difficult effort due to the building's radiological contamination, height, extensive basement, and thick concrete walls. Extensive planning and extensive hazard analysis (e.g. of structural loads/modifications leading to unplanned collapse) ensured the decommissioning was completed safely and without incident. The decommissioning met contract standards for residual contamination and physical/chemical hazards, and was the last in a series of decommissioning projects that prepared the lower A/M-Area for SRS's environmental restoration program.« less

  1. PREFACE: 31st European Physical Society Conference on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee chaired by Henry Hutchinson (RAL, Chilton), and to the Plasma Physics and Controlled Fusion journal team (Institute of Physics Publishing, Bristol), for their work on this conference. At the 2004 European Physical Society Conference on Plasma Physics, plenary invited speakers whose talks spanned the entire field were followed, each day, by multiple parallel sessions which also included invited talks. Invited speakers in both these categories were asked to contribute papers to this special issue (the contributed papers at this conference, and at all recent conferences in this series, are archived at http://epsppd.epfl.ch). The Programme Committee is very grateful to the many invited speakers who have responded positively to this request. Invited papers appear here in their order of presentation during the week beginning 28 June 2004; this ordering provides an echo of the character of the conference, as it was experienced by those who took part. Programme Committee 2004 Professor Richard Dendy UKAEA Culham Division, UK Chairman and guest editor Dr Jean-Luc Dorier Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland (Co-ordinator of dusty plasmas and guest editor) Professor Jürgen Meyer-ter-Vehn Max-Planck-Institut für Quantenoptik, Garching, Germany (Co-ordinator of laser-plasma interaction and beam plasma physics and guest editor) Dr Peter Norreys Rutherford Appleton Laboratory, Chilton, UK (Scientific Secretary and guest editor) Dr Emilia R Solano CIEMAT Laboratorio Nacional de Fusión, Madrid, Spain ( Co-ordinator of magnetic confinement fusion and guest editor) Dr Shalom Eliezer Soreq Nuclear Research Centre, Israel Dr Wim Goedheer FOM-Instituut voor Plasmafysica, Rijnhuizen, Netherlands Professor Henry Hutchinson Rutherford Appleton Laboratory, Chilton, UK Professor John Kirk Max-Planck-Institut für Kernphysik, Heidelberg, Germany Dr Raymond Koch Ecole Royale Militaire/Koninklijke Militaire School, Brussels, Belgium Professor Gerrit Kroesen Technische Universiteit Eindhoven, Netherlands Dr Martin Lampe Naval Research Laboratory, Washington DC, USA Dr Jo Lister Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland Dr Paola Mantica Istituto di Fisica del Plasma, Milan, Italy Professor Tito Mendonca Instituto Superior Tecnico, Lisbon, Portugal Dr Patrick Mora École Polytechnique, Palaiseau, France Professor Lennart Stenflo Umeå Universitet, Sweden Professor Paul Thomas CEA Cadarache, Saint-Paul-lez-Durance, France Professor Friedrich Wagner Max-Planck-Institut fr Plasmaphysik, Garching, Germany Professor Hannspeter Winter Technische Universität Wien, Austria

  2. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  3. CDPP Tools in the IMPEx infrastructure

    NASA Astrophysics Data System (ADS)

    Gangloff, Michel; Génot, Vincent; Bourrel, Nataliya; Hess, Sébastien; Khodachenko, Maxim; Modolo, Ronan; Kallio, Esa; Alexeev, Igor; Al-Ubaidi, Tarek; Cecconi, Baptiste; André, Nicolas; Budnik, Elena; Bouchemit, Myriam; Dufourg, Nicolas; Beigbeder, Laurent

    2014-05-01

    The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of plasma data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search, cataloguing, and 3DView (http://3dview.cdpp.eu/) which provides immersive visualisations in planetary environments and is further developed to include simulation and observational data. Both tools implement the IMPEx protocol (http://impexfp7.oeaw.ac.at/) to give access to outputs of simulation runs and models in planetary sciences from several providers like LATMOS, FMI , SINP; prototypes have also been built to access some UCLA and CCMC simulations. These tools and their interaction will be presented together with the IMPEx simulation data model (http://impex.latmos.ipsl.fr/tools/DataModel.htm) used for the interface to model databases.

  4. Influence du traitement ionisant par rayonnement γ sur le pouvoir antioxydant de fractions polyphénoliques issues de substances d'origine végétale

    NASA Astrophysics Data System (ADS)

    Stuyck, S.; Connaulte, J.; Lesgards, G.; Prost, M.; Raffi, J.

    1998-04-01

    Ionizing radiation of vegetables is a cleaning up and preservation physical treatment which consists in submitting them to γ radiation, X radiation or electrons beam. This study deals with the influence of γ radiation on antioxidative effect of vegetables polyphenolic parts. In that purpose, we use a simple biological test based on erythrocytes haemolysis. Le traitement ionisant des produits végétaux est un procédé physique d'assainissement et de conservation qui consiste à les soumettre à l'action de rayonnements γ, de rayons X ou de faisceaux d'électrons. Ce travail porte sur l'étude de l'influence des rayonnements γ sur le pouvoir antioxydant de fractions polyphénoliques issues de substances d'origine végétale. Pour cela, un test biologique basé sur l'hémolyse d'érythrocytes est utilisé.

  5. Observational astrophysics.

    NASA Astrophysics Data System (ADS)

    Léna, P.; Lebrun, F.; Mignard, F.

    This book is the 2nd edition of an English translation published in 1988 (45.003.105) of the French original "Astrophysique: Méthodes physiques de l'observation" published in 1986 (42.003.048). Written specifically for physicists and graduate students in astronomy, this textbook focuses on astronomical observation and on the basic physical principles that astronomers use to conceive, build and exploit their instruments at their ultimate limits in sensitivity or resolution. This second edition has been entirely restructured and almost doubled in size, in order to improve its clarity and to account for the great progress achieved in the last 15 years. It deals with ground-based and space-based astronomy and their respective fields. It presents the new generation of giant ground-based telescopes, with the new methods of optical interferometry and adaptive optics, and also the ambitious concepts behind planned space missions for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spectrum and touches upon the "new astronomies" becoming possible with gravitational waves and neutrinos.

  6. Perceived autonomy support, motivation regulations and the self-evaluative tendencies of student dancers.

    PubMed

    Quested, Eleanor; Duda, Joan L

    2011-03-01

    Limited research has considered the social-environmental and motivational processes predictive of self evaluations and body-related concerns. Evidence suggests that low self-esteem, poor body evaluations, and associated anxieties are particularly prevalent among the student dance population. Grounded in self-determination theory (SDT), this study examined the relationships among perceptions of autonomy support, motivation regulations, and self-evaluations of body-related concerns in the context of vocational dance. Three hundred and ninety-two dancers completed questionnaires regarding their perceptions of autonomy support in their dance school, reasons for engaging in dance, self-esteem, social physique anxiety (SPA), and body dissatisfaction. Structural equation modeling analyses revealed that perceived autonomy support predicted intrinsic motivation (+) and amotivation (-). Extrinsic regulation positively predicted SPA. Amotivation mediated the associations between perceptions of autonomy support and dancers' self-esteem, SPA, and body dissatisfaction. The utility of SDT in understanding predictors of self-worth, physical evaluations, and associated concerns was supported. Moreover, this study provides preliminary evidence supporting the applicability of SDT in dance contexts.

  7. Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.

    PubMed

    Merk, B; Litskevich, D; Gregg, R; Mount, A R

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Sterbentz, James W.; Snoj, Luka

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  9. Physics From the News -- Fukushima Daiichi: Radiation Doses and Dose Rates

    NASA Astrophysics Data System (ADS)

    Bartlett, A. A.

    2011-09-01

    The nuclear disaster that was triggered by the Japanese earthquake and the following tsunami of March 11, 2011, continues to be the subject of a great deal of news coverage. The tsunami caused severe damage to the nuclear power reactors at Fukushima Daiichi, and this led to the escape of unknown quantities of radioactive material from the damaged fuel rods in the reactors and from the associated storage facilities for the fuel rods that had been removed from the reactors.

  10. Health Physics State of the RA-1 Reactor, Period Between 1-1-62 and 10-8- 62. Report No. 87; ESTADO RADIOSANIT ARIO DEL REACTOR R.A. 1, PERIODO COMPRENDIDO ENTRE EL 1-1-62 Y EL 10-8-62. Informe No. 87

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaspar, R.; Moll, O.; Hermelo, C.

    1963-01-01

    The methods used to measure the irradiation levels and the radiation exposure of personnel of the RA-1 reactor are described. The criteria used to evaluate the risks from this exposure are reported. Typical graphs are shown of the radiation levels measured in the control room. (J.S.R.)

  11. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  12. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  13. Horizontal baffle for nuclear reactors

    DOEpatents

    Rylatt, John A.

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  14. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  15. Steady State Advanced Tokamak (SSAT): The mission and the machine

    NASA Astrophysics Data System (ADS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.

  16. Solar Power

    ScienceCinema

    None

    2017-12-09

    Le Prof. Broda, Prof. de Biochimie, Physique et Radiochimie à l'Université de Vienne, ville où il est né et où il a étudié, fait une brillante carrière accadémique et nous parle de l'énergie solaire.

  17. Teenage Nutrition and Physique.

    ERIC Educational Resources Information Center

    Huenemann, Ruth L.; And Others

    Body size, composition, and conformation in a teen-age population, and associated factors were studied to obtain useful data for planning programs in public health nutrition. This book describes the purpose, methods, and findings of this four-year longitudinal and cross-sectional study conducted in Berkeley, California, during the years 1961 to…

  18. 2007 international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Abstracts and available papers presented at the meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2008-07-15

    The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.

  19. Wide-range structurally optimized channel for monitoring the certified power of small-core reactors

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Kovshov, K. N.; Ovchinnikov, M. A.; Pikulina, G. N.; Sokolov, A. B.

    2016-12-01

    The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.

  20. Sensitivity to VSR failure: K pipe break accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meichle, R.H.

    1969-09-12

    Reactor effects of failure of a safety rod to scram can be considered in two major respects: The reduction in total safety system strength which will affect the amount of ``prompt drop`` and subsequent flux decay rate of the average neutron flux-level; and the change in local flux distribution due to the absence of the particular rod which fails to enter the reactor. The purpose of this memorandum is to describe the physical effects involved and to indicate the approximate magnitude of both reactor-wide and localized changes in event of failure of a VSR simultaneous with a K Reactor risermore » accident.« less

  1. Wide-range structurally optimized channel for monitoring the certified power of small-core reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Kovshov, K. N.; Ovchinnikov, M. A.

    The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.

  2. Who will save the tokamak - Harry Potter, Arnold Schwarzenegger, or Shaquille O'Neil?

    NASA Astrophysics Data System (ADS)

    Freidberg, J.; Mangiarotti, F.; Minervini, J.

    2014-10-01

    The tokamak is the current leading contender for a fusion power reactor. The reason for the preeminence of the tokamak is its high quality plasma physics performance relative to other concepts. Even so, it is well known that the tokamak must still overcome two basic physics challenges before becoming viable as a DEMO and ultimately a reactor: (1) the achievement of non-inductive steady state operation, and (2) the achievement of robust disruption free operation. These are in addition to the PMI problems faced by all concepts. The work presented here demonstrates by means of a simple but highly credible analytic calculation that a ``standard'' tokamak cannot lead to a reactor - it is just not possible to simultaneously satisfy all the plasma physics plus engineering constraints. Three possible solutions, some more well-known than others, to the problem are analyzed. These visual image generating solutions are defined as (1) the Harry Potter solution, (2) the Arnold Schwarzenegger solution, and (3) the Shaquille O'Neil solution. Each solution will be described both qualitatively and quantitatively at the meeting.

  3. 12th Anglo-French Physical Acoustics Conference (AFPAC2013)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    The Anglo-French Physical Acoustics Conference (AFPAC) had its 12th annual meeting in Villa Clythia, Fréjus, France, from 16th to 18th January 2013. This series of meetings is a collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique. This year, attendees got the opportunity to see the French Riviera with its Mediterranean vegetation covered by a nice thick snow layer. The participants heard 34 excellent oral presentations and saw 3 posters covering an exciting and diverse range of subjects and of frequencies, from ultrasonic wave propagation in chocolate to metamaterials applied to seismic waves for protecting buildings. Among them, invited talks were given by Pr F A Duck ( Enhanced healing by ultrasound: clinical effects and mechanisms), Pr. J-C Valiére, who actually gave two invited talks ( 1. Measurement of audible acoustic particle velocity using laser: Principles, signal processing and applications, 2. Acoustic pots in ancient and medieval buildings: Literary analysis of ancient texts and comparison with recent observations in French churches), Dr P Huthwaite ( Ultrasonic imaging through the resolution of inverse problems), Dr X Lurton ( Underwater acoustic systems on oceanographic research vessels: principles and applications), Dr S Guenneau ( From platonics to seismic metamaterials). For the fifth consecutive year AFPAC is followed by the publication of its proceedings with 12 peer-reviewed papers which cover the most recent research developments in the field of Physical Acoustics in the UK and France. Alain Lhémery (CEA, France) and Nader Saffari (UCL, United Kingdom) French Riviera 12th AFPAC — Villa Clythia, Fréjus (French Riviera), the 17th of January 2013

  4. Effect of adapted physical activity sessions in the hospital on health-related quality of life for children with cancer: a cross-over randomized trial.

    PubMed

    Speyer, Elodie; Herbinet, Aline; Vuillemin, Anne; Briançon, Serge; Chastagner, Pascal

    2010-12-01

    To assess the efficacy of adapted physical activity (APA) on health-related quality of life (HRQoL) of hospitalized children and adolescents with cancer between 9 and 18 years of age. A two-sequence, four-period cross-over study, Activités Physiques en Oncologie Pédiatrique (APOP), compared hospital stay with APA sessions versus hospital stay without APA sessions on children's HRQoL. Children and parents completed the child and parent forms, respectively, of a HRQoL questionnaire, the Child Health Questionnaire, on the last day of hospitalization. We used mixed linear regression to determine the effect of treatment, of treatment order and whether response to previous treatment influenced HRQoL. Thirty children were included (mean age 13.6 ± 2.9 years; 18 males). Cross-over analysis revealed no effect of period or interaction between APA and period. HRQoL was higher when children practiced than did not practice APA during their hospitalization, as reported by both children and parents, for the dimensions physical functioning (P < 0.0001), role/social-physical (P = 0.001), self-esteem (P < 0.0001), and mental health (P < 0.0001). In addition, APA had a significant effect on the behavior dimension (P = 0.01), as reported by children, and on the bodily pain dimension (P = 0.0004), as reported by parents. The highest significant difference in scores between with and without APA was observed for the self-esteem dimension (P < 0.0001) for both children and parents. APA during hospitalization for children with cancer was associated with better HRQoL for most of the HRQoL psychological and physical dimensions. Whether this effect is specific for children with cancer should be explored.

  5. Cellular Automata

    NASA Astrophysics Data System (ADS)

    Gutowitz, Howard

    1991-08-01

    Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices. Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole. Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.

  6. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    ERIC Educational Resources Information Center

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  7. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.

    Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less

  8. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    DOE PAGES

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; ...

    2017-09-11

    Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less

  9. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE PAGES

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA from use at their institutions. These areas are discussed in this report.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed here.« less

  13. A PRECISION MEASUREMENT OF THE NEUTRINO MIXING ANGLE THETA (SUB 13) USING REACTOR ANTINEUTRINOS AT DAYA BAY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KETTELL, S.; ET AL.

    2006-10-16

    This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90%more » confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.« less

  14. LWR pressure vessel surveillance dosimetry improvement program: LWR power reactor surveillance physics-dosimetry data base compendium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, W.N.

    1985-08-01

    This NRC physics-dosimetry compendium is a collation of information and data developed from available research and commercial light water reactor vessel surveillance program (RVSP) documents and related surveillance capsule reports. The data represents the results of the HEDL least-squares FERRET-SAND II Code re-evaluation of exposure units and values for 47 PWR and BWR surveillance capsules for W, B and W, CE, and GE power plants. Using a consistent set of auxiliary data and dosimetry-adjusted reactor physics results, the revised fluence values for E > 1 MeV averaged 25% higher than the originally reported values. The range of fluence values (new/old)more » was from a low of 0.80 to a high of 2.38. These HEDL-derived FERRET-SAND II exposure parameter values are being used for NRC-supported HEDL and other PWR and BWR trend curve data development and testing studies. These studies are providing results to support Revision 2 of Regulatory Guide 1.99. As stated by Randall (Ra84), the Guide is being updated to reflect recent studies of the physical basis for neutron radiation damage and efforts to correlate damage to chemical composition and fluence.« less

  15. The search for sterile neutrinos at reactors and underground laboratories

    NASA Astrophysics Data System (ADS)

    Langford, Thomas

    2017-01-01

    From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.

  16. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  17. Nuclear and Physical Properties of Dielectrics under Neutron Irradiation in Fast (BN-600) and Fusion (DEMO-S) Reactors

    NASA Astrophysics Data System (ADS)

    Blokhin, D. A.; Chernov, V. M.; Blokhin, A. I.

    2017-12-01

    Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.

  18. Alternate fusion fuels workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached.

  19. a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.

    2009-08-01

    This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.

  20. 10 CFR 73.55 - Requirements for physical protection of licensed activities in nuclear power reactors against...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shall: (i) Design, construct, install and maintain physical barriers as necessary to control access into.... (10) Vehicle control measures. Consistent with the physical protection program design requirements of... maintain vehicle control measures, as necessary, to protect against the design basis threat of radiological...

  1. 10 CFR 73.55 - Requirements for physical protection of licensed activities in nuclear power reactors against...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... shall: (i) Design, construct, install and maintain physical barriers as necessary to control access into.... (10) Vehicle control measures. Consistent with the physical protection program design requirements of... maintain vehicle control measures, as necessary, to protect against the design basis threat of radiological...

  2. 10 CFR 73.55 - Requirements for physical protection of licensed activities in nuclear power reactors against...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shall: (i) Design, construct, install and maintain physical barriers as necessary to control access into.... (10) Vehicle control measures. Consistent with the physical protection program design requirements of... maintain vehicle control measures, as necessary, to protect against the design basis threat of radiological...

  3. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.

    2016-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less

  4. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE PAGES

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...

    2017-01-24

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  5. Measurements of effective delayed neutron fraction in a fast neutron reactor using the perturbation method

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Jun; Yin, Yan-Peng; Fan, Xiao-Qiang; Li, Zheng-Hong; Pu, Yi-Kang

    2016-06-01

    A perturbation method is proposed to obtain the effective delayed neutron fraction β eff of a cylindrical highly enriched uranium reactor. Based on reactivity measurements with and without a sample at a specified position using the positive period technique, the reactor reactivity perturbation Δρ of the sample in β eff units is measured. Simulations of the perturbation experiments are performed using the MCNP program. The PERT card is used to provide the difference dk of effective neutron multiplication factors with and without the sample inside the reactor. Based on the relationship between the effective multiplication factor and the reactivity, the equation β eff = dk/Δρ is derived. In this paper, the reactivity perturbations of 13 metal samples at the designable position of the reactor are measured and calculated. The average β eff value of the reactor is given as 0.00645, and the standard uncertainty is 3.0%. Additionally, the perturbation experiments for β eff can be used to evaluate the reliabilities of the delayed neutron parameters. This work shows that the delayed neutron data of 235U and 238U from G.R. Keepin’s publication are more reliable than those from ENDF-B6.0, ENDF-B7.0, JENDL3.3 and CENDL2.2. Supported by Foundation of Key Laboratory of Neutron Physics, China Academy of Engineering Physics (2012AA01, 2014AA01), National Natural Science Foundation (11375158, 91326104)

  6. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    PubMed

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  7. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical ormore » subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPhEP will be discussed in the full paper, selected benchmarks that have been added to the ICSBEP Handbook will be highlighted, and a preview of the new benchmarks that will appear in the September 2011 edition of the Handbook will be provided. Accomplishments of the IRPhEP will also be highlighted and the future of both projects will be discussed. REFERENCES (1) International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I-IX, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), September 2010 Edition, ISBN 978-92-64-99140-8. (2) International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC(2006)1, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), March 2011 Edition, ISBN 978-92-64-99141-5.« less

  8. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.A.; Turner, D.W.

    1994-12-31

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less

  9. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors.

    PubMed

    Tay, J H; Liu, Q S; Liu, Y

    2002-08-01

    Aerobic granules were cultivated in two column-type sequential aerobic sludge blanket reactors fed with glucose and acetate, respectively. The characteristics of aerobic granules were investigated. Results indicated that the glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density, hydrophobicity, physical strength, microbial activity and storage stability. Substrate component does not seem to be a key factor on the formation of aerobic granules. However, microbial diversity of the granules is closely associated with the carbon sources supplied to the reactors. Compared with the conventional activated sludge flocs, aerobic granules exhibit excellent physical characteristics that would be essential for industrial application. This research provides a complete set of characteristics data of aerobic granules grown on glucose and acetate, which would be useful for further development of aerobic granules-based compact bioreactor for handling high strength organic wastewater.

  10. American Nuclear Society 1994 student conference eastern region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains abstracts from the 1994 American Nuclear Society Student Conference. The areas covered by these abstracts are: fusion and plasma physics; nuclear chemistry; radiation detection; reactor physics; thermal hydraulics; and corrosion science and waste issues.

  11. 10 CFR 110.42 - Export licensing criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... research on or development of any nuclear explosive device. (3) Adequate physical security measures will be... to exports of high-enriched uranium to be used as a fuel or target in a nuclear research or test... can be used in the reactor. (iii) A fuel or target “can be used” in a nuclear research or test reactor...

  12. NUCLEAR REACTORS

    DOEpatents

    Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

    1961-12-01

    An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

  13. Energy from the Atom. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…

  14. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    NASA Astrophysics Data System (ADS)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  15. Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list

    PubMed Central

    Litskevich, D.; Gregg, R.; Mount, A. R.

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604

  16. SAM Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less

  17. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  18. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  19. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  20. Nuclear fuel management optimization using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-07-01

    The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less

  1. Latest progress from the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Daya Bay Collaboration

    2016-05-01

    Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.

  2. Development of the reactor antineutrino detection technology within the iDream project

    NASA Astrophysics Data System (ADS)

    Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.

    2017-12-01

    The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.

  3. Literacy Is More than Books and Pens

    ERIC Educational Resources Information Center

    Roseboro, Anna J. Small

    2012-01-01

    Like parents, educators should prepare their students to do without them. To achieve this they must understand two concepts they hear about in the world of education: multiple intelligences and media literacy. Research on ways people learn and demonstrate knowledge shows that both are as diverse as the physiques of the students. Some of them learn…

  4. Eating Attitudes and Their Psychological Correlates among Turkish Adolescents

    ERIC Educational Resources Information Center

    Bas, Murat; Asci, F. Hulya; Karabudak, Efsun; Kiziltan, Gul

    2004-01-01

    This study examined the eating attitudes and psychological characteristics of Turkish late adolescents. Seven hundred eighty-three university students were administered the Eating Attitudes Test, Rosenberg Self-Esteem Scale, State-Trait Anxiety Inventory, and Social Physique Anxiety Scale. More than one in ten (9.2% of the males and 13.1% of the…

  5. Using Computer-Generated Random Numbers to Calculate the Lifetime of a Comet.

    ERIC Educational Resources Information Center

    Danesh, Iraj

    1991-01-01

    An educational technique to calculate the lifetime of a comet using software-generated random numbers is introduced to undergraduate physiques and astronomy students. Discussed are the generation and eligibility of the required random numbers, background literature related to the problem, and the solution to the problem using random numbers.…

  6. Free Space Optics Communication for Mobile Military Platforms

    DTIC Science & Technology

    2003-12-01

    Federal Communications Commission FDA Food and Drug Administration FOV Field-of-View FSO Free Space Optics FWHM Full Width at Half Maximum Gbps...Physique et de Métrologie des Oscillateurs (LPMO) du CNRS UPR3203, associé à l’Université de Franche -Comté, 15 March 2002 [Schenk 2000] H. Schenk

  7. The new role of scientists

    ScienceCinema

    None

    2017-12-09

    Le D.G. Jentschke fait l'introduction et présente le Prof.Kowarsky, spécialiste en microbiologie, physique nucléaire et une des fondateurs du Cern. Il parle entre autre de l'énergie nucléaire (pacifique)et de remise en questions des valeurs scientifiques et techniques

  8. Calendar of Selected Aeronautical and Space Meetings (Calendrier des Manifestations Aeronautiques et Spatiales (Selection))

    DTIC Science & Technology

    1989-01-01

    Structurces, Matdriaux et MWcanique appliqu&c 53 08 - Physique de U’Atmosph~re et Environnement terrestre 73 09 -Information, Documentation et Informatique 77...CO 80840 US UTIIS University of Tokyo Institute of Industrial Science: 7-22-1 Roppongi, Minato-ku, Tokyo 106 JA VDE Verband Deutscher

  9. Calendar of Selected Aeronautical and Space Meetings, July 1989 (Calendrier des Manifestations Aeronautiques et Spatiales (Selection), Juillet 1989)

    DTIC Science & Technology

    1989-07-01

    Matdriaux et Mcanique appliqude 56 08 - Physique de l’Atmosph6re et Environnement terrestre 76 09 - Information, Documentation et Informatique 82 10...S 917, 12201 Sunrise Valley Drive, Reston, VA 22092 US VDE Verband Deutscher Elektrotechniker: Zentralstelle Tagungen, Stresemannallee 15, D-6000

  10. Calendar of Selected Aeronautical and Space Meetings (Calendrier des Manifestations Aeronautiques et Spatiales (Selection). Juillet-July 1984.

    DTIC Science & Technology

    1984-06-01

    Structures, Mat~riaux et M~canique appliquce 47 08 - Physique de l’Atmnosph~re et Environnement terrestre 62 09 - Information, Documentation et...University Institute of Technology: Box 534,75121 Uppsala SW UW University of Wisconsin: Madison, WI 53706 US VDE Verbend Deutacher Elektroteclker

  11. Nitramine Propellant Ignition and Combustion Research: New Tools and New Directions

    DTIC Science & Technology

    1989-02-01

    promising innovation for the application of laser diagnostics to combustion studies is the use of planar imaging techniques. 13 This allows the...A.M. and Trott , W.M., J. de Physique 48, Colloq. C4, 179-188 (1987) 96. Fontijin, A., Ed. "Gas-Phase Chemiluminescence and Chemi-lonization," North

  12. Stress habituation and alterations in perceived stress predict BMI percentile changes across a school year

    USDA-ARS?s Scientific Manuscript database

    Adolescents experience stressful situations at a high rate during school. Indeed, school is the most common source of stress for teens. This high rate of stress may promote increases in adiposity during a developmental period important for establishing the adult physique. Adiposity gains may be th...

  13. Illustrating the body: Cross-sectional and prospective investigations of the impact of life drawing sessions on body image.

    PubMed

    Swami, Viren

    2016-01-30

    Life drawing sessions, where individuals produce drawings of the human figure from observations of a live model, may contain embodying elements that promote healthier body image. Two pilot studies were conducted to test this hypothesis. In Study 1, 138 individuals recruited from life drawing sessions in London, UK, estimated how many sessions they had attended in their lifetime and completed measures of negative and positive body image. In women, greater attendance was significantly associated with higher body appreciation and lower drive for thinness and social physique anxiety. In men, greater attendance was significantly associated with higher body appreciation, but not drive for muscularity or social physique anxiety. In Study 2, 37 women took part in a life drawing session for the first time. Compared to pre-session scores, participants had significantly more positive state body image and appearance satisfaction after the session. The findings of these studies suggest that life drawing may promote healthier body image, particularly among women, but further research is needed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Search for the Higgs Boson and for Anomalous Quartic Gauge Boson Couplings in the WW Channel with Dielectron Events with the D0 Experiment at the Tevatron; Recherche du boson de Higgs et de couplages de jauge quartiques anormaux dans le canal WW en électrons dans l'expérience D0 au Tevatron (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapon, Emilien

    Le paysage de la physique des particules a subi des changements majeurs entre le début de cette thèse, en septembre 2010, et sa n en juin 2013. On peut notamment qualier l'année 2012 de date-clé dans l'histoire de la physique des particules. En 2012, une nouvelle particule a été découverte au LHC [1, 2], dont la majeure partie de la communauté s'accorde aujourd'hui à dire qu'il s'agit très probablement du boson de Higgs. Cet événement est intervenu peu après une sorte de passage de relais entre le Tevatron, arrêté le 30 septembre 2011, et le LHC, dont les toutes premièresmore » collisions sont intervenues le 23 novembre 2009.« less

  15. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues

    NASA Astrophysics Data System (ADS)

    Dautray, Robert

    2011-06-01

    The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation, etc., radioprotection measures and treatment for the "transuranic" elements. For a long period of time, France was in the forefront of nuclear breeder power generation science, technological research and also in the knowledge base related to breeder reactors. It is in the country's interest to pursue these efforts and this could per se constitute one of the national priorities. Nous sommes naturellement bien conscients de l'énorme problème qui se pose au Japon actuellement comme suite au tremblement de terre et au tsunami de mars 2011 et leurs conséquences, notamment sur des installations électronucléaires. Le texte que nous présentons concerne des conditions totalement générales, indépendantes des problèmes spécifiques de sûreté qu'il faudra, de toute façon, traiter dans le cadre d'un développement éventuel de l'énergie nucléaire.We are aware, of course, of the huge problem that Japan has to deal with the aftermath of the quake and tsunami of March 2011 and their consequences on electronuclear power plants. The text that we present here concerns general physical topics independent of the specific safety problems, general physical topics which will have to be solved in the case of a contingent development of electronuclear power plants.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorelenkov, Nikolai N

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEsmore » (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).« less

  17. Nuclear reactor for breeding U.sup.233

    DOEpatents

    Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin

    1976-01-01

    A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.

  18. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials. {copyright} {ital 1999 American Institute of Physics.}

  19. THE ARMOUR DUST FUELED REACTOR (ADFR). Quarterly Progress Report No. 1 for the Period February 21, 1958 to May 21, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewe, W.E.; Krucoff, D.

    1958-10-31

    Work has begun on the ADFR, a reactor using a new fuel form -- fissionable dust carried in an inent gas. Temperatures in the range 2,000 to 3,000 deg F appear feasible in an all-ceramic system. Experimental study of the fuel form was initiated, and a loop to circulate the fuel dust was constructed. Initial operation is encouraging. Theoretical studies were carried on in the areas of reactor physics, heat transfer, and safety. (auth)

  20. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].

  1. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  2. Vibrations et relaxations dans les molécules biologiques. Apports de la diffusion incohérente inélastique de neutrons

    NASA Astrophysics Data System (ADS)

    Zanotti, J.-M.

    2005-11-01

    Le présent document ne se veut pas un article de revue mais plutôt un élément d'initiation à une technique encore marginale en Biologie. Le lecteur est supposé être un non spécialiste de la diffusion de neutrons poursuivant une thématique à connotation biologique ou biophysique mettant en jeu des phénomènes dynamiques. En raison de la forte section de diffusion incohérente de l'atome d'hydrogène et de l'abondance de cet élément dans les protéines, la diffusion incohérente inélastique de neutrons est une technique irremplaçable pour sonder la dynamique interne des macromolécules biologiques. Après un rappel succinct des éléments théoriques de base, nous décrivons le fonctionnement de différents types de spectromètres inélastiques par temps de vol sur source continue ou pulsée et discutons leurs mérites respectifs. Les deux alternatives utilisées pour décrire la dynamique des protéines sont abordées: (i)l'une en termes de physique statistique, issue de la physique des verres, (ii) la seconde est une interprétation mécanistique. Nous montrons dans ce cas, comment mettre à profit les complémentarités de domaines en vecteur de diffusion et de résolution en énergie de différents spectromètres inélastiques de neutrons (temps de vol, backscattering et spin-écho) pour accéder, à l'aide d'un modèle physique simple, à la dynamique des protéines sur une échelle de temps allant d'une fraction de picoseconde à quelques nanosecondes.

  3. Fluctuations quantiques et instabilites structurales dans les conducteurs a basse dimensionalite

    NASA Astrophysics Data System (ADS)

    Dikande, Alain Moise

    Un engouement particulier s'est manifeste ces dernieres annees pour les systemes electroniques fortement correles, ce en rapport avec l'immense richesse de leurs proprietes physiques. En general, ces proprietes sont induites par la presence d'interactions entre electrons qui, combinees a la structure du reseau moleculaire, donnent parfois lieu a une tres grande variete de phases electroniques et structurales ayant des incidences directes sur les phenomenes de transport dans ces materiaux. Les systemes electroniques couples a un reseau moleculaire et designes systemes electron-phonon font partie de cette classe de materiaux qui ont recemment capte l'attention, en raison notamment de la competition entre plusieurs echelles d'energie dans un environnement caracterise par une forte anisotropie cristalline et une dynamique moleculaire assez importante. En effet, en plus des proprietes electroniques et structurales particulieres la dimensionalite de ces systemes contribue egalement a leur richesse. Ainsi, une tres forte anisotropie structurale peut rehausser de facon considerable l'importance des interactions entre electrons et entre molecules constituant le reseau au point ou la physique du systeme soit regie par de tres fortes fluctuations. Ce dernier contexte est devenu un domaine a part de la physique des systemes fortement correles, a savoir celui des les phenomenes critiques quantiques . Parmi les systemes electron-phonon, on retrouve les composes inorganique KCP et organique TTF-TCNQ decouverts durant les annees 70, et explores en profondeur a cause de leur tendance vers une instabilite du type onde de densite de charge a basse temperature. Ces composes, en general designes systemes de Peierls en reference a l'instabilite de leurs structures electroniques regie par le reseau moleculaire, ont recemment connu un regain d'interet a la lumiere des nouveaux developpements dans les techniques de caracterisation des structures electroniques ainsi que sur le plan de concepts tel le Liquide de Luttinger, propres aux systemes electroniques a une dimension. (Abstract shortened by UMI.)

  4. Effects of High vs. Low Protein Intake on Body Composition and Maximal Strength in Aspiring Female Physique Athletes Engaging in an 8-Week Resistance Training Program.

    PubMed

    Campbell, Bill I; Aguilar, Danielle; Conlin, Laurin; Vargas, Andres; Schoenfeld, Brad Jon; Corson, Amey; Gai, Chris; Best, Shiva; Galvan, Elfego; Couvillion, Kaylee

    2018-02-06

    Aspiring female physique athletes are often encouraged to ingest relatively high levels of dietary protein in conjunction with their resistance-training programs. However, there is little to no research investigating higher vs. lower protein intakes in this population. This study examined the influence of a high vs. low protein diet in conjunction with an 8-week resistance training program in this population. Seventeen females (21.2±2.1 years; 165.1±5.1 cm; 61±6.1 kg) were randomly assigned to a high protein diet (HP: 2.5g/kg/day; n=8) or a low protein diet (LP: 0.9g/kg/day, n=9) and were assessed for body composition and maximal strength prior to and after the 8-week protein intake and exercise intervention. Fat-free mass (FFM) increased significantly more in the HP group as compared to the LP group (p=0.009), going from 47.1 ± 4.5kg to 49.2 ± 5.4kg (+2.1kg) and from 48.1 ± 2.7kg to 48.7 ± 2 (+0.6kg) in the HP and LP groups, respectively. Fat mass significantly decreased over time in the HP group (14.1 ± 3.6kg to 13.0 ± 3.3kg; p<0.01) but no change was observed in the LP group (13.2 ± 3.7kg to 12.5 ± 3.0kg). While maximal strength significantly increased in both groups, there were no differences in strength improvements between the two groups. In aspiring female physique athletes, a higher protein diet is superior to a lower protein diet in terms of increasing FFM in conjunction with a resistance training program.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  6. Physics in France Circa 1850-1914; its National Organisation, Characteristics and Content.

    NASA Astrophysics Data System (ADS)

    Davis, John L.

    1990-01-01

    Available from UMI in association with The British Library. The thesis begins with an examination of what was understood by the term 'physics' in France circa. 1850. The development of the centralised state educational system and the physics research which was produced within this system in Paris and the provinces, is then considered. Although all the relevant institutions, where some form of physics or physical science was taught, have been examined, the Ecole Polytechnique, and the Ecole Normale Superieure have a particular importance in the early period of this study. As time passed and as a result of reforms put in hand by the republican regime which came out of the defeat of the Franco -Prussian war of 1870-71, the universite system grew in importance, while the role of the Polytechnique declined. The Ecole Normale, the Paris Faculty and the provincial faculties form part of the universite system and participated in its growth. A knowledge of the objectives of the physics courses in these institutions helps in the understanding of the characteristics of physics in France in this period. The central objective was, largely, to produce either science teachers, or (in the case of the Polytechnique), a type of elite 'technocrat', for the state, i.e. men who could communicate clearly, or technically utilise knowledge, which was already established on a firm theoretical basis. This is not to say that research had no place in the institutions of higher education, on the contrary, and this research, carried out by both teachers and students, is examined here to try to relate its form and content to the particular institution in which it was carried out. The role of national organisations like the Societe de physique and the Association Francaise pour l'avancement des sciences in the development of physics in France is also considered, as is the role of the Academie des sciences. The predominantly experimental nature of physics research in France is related to the interests of these organisations, to the requirements of the licence programme, and to the increasingly fierce competition for membership of the physics section of the Academie.

  7. Brookhaven highlights, October 1979-September 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Highlights are given for the research areas of the Brookhaven National Laboratory. These areas include high energy physics, physics and chemistry, life sciences, applied energy science (energy and environment, and nuclear energy), and support activities (including mathematics, instrumentation, reactors, and safety). (GHT)

  8. Coupling Schemes for Multiphysics Reactor Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijay Mahadeven; Jean Ragusa

    2007-11-01

    This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less

  9. MTR WING, TRA604. FIRST FLOOR PLAN. ENTRY LOBBY, MACHINE SHOP, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING, TRA-604. FIRST FLOOR PLAN. ENTRY LOBBY, MACHINE SHOP, INSTRUMENT SHOP, COUNTING ROOM, HEALTH PHYSICS LAB, LABS AND OFFICES, STORAGE, SHIPPING AND RECEIVING. BLAW-KNOX 3150-4-2, 7/1950. INL INDEX NO. 053-604-00-099-100008, REV. 7. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    ERIC Educational Resources Information Center

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  11. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, Gerhard; Bostelmann, F.

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less

  12. Relationship of body mass index to percent body fat and waist circumference among schoolchildren in Japan--the influence of gender and obesity: a population-based cross-sectional study.

    PubMed

    Ochiai, Hirotaka; Shirasawa, Takako; Nishimura, Rimei; Morimoto, Aya; Shimada, Naoki; Ohtsu, Tadahiro; Kujirai, Emiko; Hoshino, Hiromi; Tajima, Naoko; Kokaze, Akatsuki

    2010-08-18

    Although the correlation coefficient between body mass index (BMI) and percent body fat (%BF) or waist circumference (WC) has been reported, studies conducted among population-based schoolchildren to date have been limited in Japan, where %BF and WC are not usually measured in annual health examinations at elementary schools or junior high schools. The aim of the present study was to investigate the relationship of BMI to %BF and WC and to examine the influence of gender and obesity on these relationships among Japanese schoolchildren. Subjects included 3,750 schoolchildren from the fourth and seventh grade in Ina-town, Saitama Prefecture, Japan between 2004 and 2008. Information about subject's age, sex, height, weight, %BF, and WC was collected from annual physical examinations. %BF was measured with a bipedal biometrical impedance analysis device. Obesity was defined by the following two criteria: the obese definition of the Centers for Disease Control and Prevention, and the definition of obesity for Japanese children. Pearson's correlation coefficients between BMI and %BF or WC were calculated separately for sex. Among fourth graders, the correlation coefficients between BMI and %BF were 0.74 for boys and 0.97 for girls, whereas those between BMI and WC were 0.94 for boys and 0.90 for girls. Similar results were observed in the analysis of seventh graders. The correlation coefficient between BMI and %BF varied by physique (obese or non-obese), with weaker correlations among the obese regardless of the definition of obesity; most correlation coefficients among obese boys were less than 0.5, whereas most correlations among obese girls were more than 0.7. On the other hand, the correlation coefficients between BMI and WC were more than 0.8 among boys and almost all coefficients were more than 0.7 among girls, regardless of physique. BMI was positively correlated with %BF and WC among Japanese schoolchildren. The correlations could be influenced by obesity as well as by gender. Accordingly, it is essential to consider gender and obesity when using BMI as a surrogate for %BF and WC for epidemiological use.

  13. Supply of enriched uranium for research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, H.

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel onmore » December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.« less

  14. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, David A.; Stickel, Jonathan J.

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less

  15. Current and future trends for biofilm reactors for fermentation processes.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  16. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    DOE PAGES

    Sievers, David A.; Stickel, Jonathan J.

    2017-10-12

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less

  17. Investigation of materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  18. Multi-physics design and analyses of long life reactors for lunar outposts

    NASA Astrophysics Data System (ADS)

    Schriener, Timothy M.

    Future human exploration of the solar system is likely to include establishing permanent outposts on the surface of the Moon. These outposts will require reliable sources of electrical power in the range of 10's to 100's of kWe to support exploration and resource utilization activities. This need is best met using nuclear reactor power systems which can operate steadily throughout the long ˜27.3 day lunar rotational period, irrespective of location. Nuclear power systems can potentially open up the entire lunar surface for future exploration and development. Desirable features of nuclear power systems for the lunar surface include passive operation, the avoidance of single point failures in reactor cooling and the integrated power system, moderate operating temperatures to enable the use of conventional materials with proven irradiation experience, utilization of the lunar regolith for radiation shielding and as a supplemental neutron reflector, and safe post-operation decay heat removal and storage for potential retrieval. In addition, it is desirable for the reactor to have a long operational life. Only a limited number of space nuclear reactor concepts have previously been developed for the lunar environment, and these designs possess only a few of these desirable design and operation features. The objective of this research is therefore to perform design and analyses of long operational life lunar reactors and power systems which incorporate the desirable features listed above. A long reactor operational life could be achieved either by increasing the amount of highly enriched uranium (HEU) fuel in the core or by improving the neutron economy in the reactor through reducing neutron leakage and parasitic absorption. The amount of fuel in surface power reactors is constrained by the launch safety requirements. These include ensuring that the bare reactor core remains safely subcritical when submerged in water or wet sand and flooded with seawater in the unlikely event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete Element Method (DEM) analysis in lunar gravity. In addition, this research addresses the post-operation storage of the SCoRe and PeBR concepts, below the lunar surface, to determine the time required for the radioactivity in the used fuel to decrease to a low level to allow for its safe recovery. The SCoRe and PeBR concepts are designed to operate at coolant temperatures ≤ 900 K and use conventional stainless steels and superalloys for the structure in the reactor core and power system. They are emplaced below grade on the Moon to take advantage of the regolith as a supplemental neutron reflector and as shielding of the lunar outpost from the reactors' neutron and gamma radiation.

  19. A school investigation into Chernobyl fallout

    NASA Astrophysics Data System (ADS)

    Plant, R. D.

    1988-01-01

    The nuclear power station operating at Chernobyl, just north of Kiev in the Ukraine, USSR, contains four RBMK reactors operating at 1000 MW each. The RBMK reactor is a graphite moderated light water cooled reactor using low enriched uranium fuel. Early on Saturday 26 April 1986 a serious accident occurred to one of the four reactors resulting in the release of radioactive material, some of which was carried by the wind northwards across Poland and Scandinavia. The Ursuline Convent School at Westgate-on-Sea is situated in a small seaside town on the North Kent coast. On 30 April the background count was measured in the physics laboratory of the school using a Mullard ZP1481 Geiger-Muller tube in conjunction with a Panax scaler.

  20. Constitutive Behavior and Modeling of Al-Cu Alloy Systems

    DTIC Science & Technology

    2013-05-01

    Mechanical Threshold of Dynamically Deformed Copper and Nitronic 40 ." Journal de Physique, 1985: 25- 34. Gama, B. A., S. L. Lopatnikov, and J. W. G...38 3. MODIFIED ZERILLI-ARMSTRONG MODEL .................................... 40 3.1 Introduction... 40 3.2 Former Modifications to ZA Model by Zerilli and Armstrong .. 42 3.3 Modifications to ZA Model

  1. An example of a chaotic micromixer: the cross-channel micromixer

    NASA Astrophysics Data System (ADS)

    Dodge, Arash; Jullien, Marie-Caroline; Lee, Yi-Kuen; Niu, X.; Okkels, Fridolin; Tabeling, Patrick

    2004-06-01

    In this article dedicated to micromixing, we concentrate here on a particular micromixer - the 'cross-channel micromixer'. This mixer exploits an oscillatory perturbation to induce chaotic trajectories, favoring mixing. We present here theory, numerical simulations and experiments performed on this system. To cite this article: A. Dodge et al., C. R. Physique 5 (2004).

  2. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  3. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary; Wirth, Brian; Motta, Athur

    The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pind, C.

    The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives formore » heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories.« less

  5. A multi-physics analysis for the actuation of the SSS in opal reactor

    NASA Astrophysics Data System (ADS)

    Ferraro, Diego; Alberto, Patricio; Villarino, Eduardo; Doval, Alicia

    2018-05-01

    OPAL is a 20 MWth multi-purpose open-pool type Research Reactor located at Lucas Heights, Australia. It was designed, built and commissioned by INVAP between 2000 and 2006 and it has been operated by the Australia Nuclear Science and Technology Organization (ANSTO) showing a very good overall performance. On November 2016, OPAL reached 10 years of continuous operation, becoming one of the most reliable and available in its kind worldwide, with an unbeaten record of being fully operational 307 days a year. One of the enhanced safety features present in this state-of-art reactor is the availability of an independent, diverse and redundant Second Shutdown System (SSS), which consists in the drainage of the heavy water reflector contained in the Reflector Vessel. As far as high quality experimental data is available from reactor commissioning and operation stages and even from early component design validation stages, several models both regarding neutronic and thermo-hydraulic approaches have been developed during recent years using advanced calculations tools and the novel capabilities to couple them. These advanced models were developed in order to assess the capability of such codes to simulate and predict complex behaviours and develop highly detail analysis. In this framework, INVAP developed a three-dimensional CFD model that represents the detailed hydraulic behaviour of the Second Shutdown System for an actuation scenario, where the heavy water drainage 3D temporal profiles inside the Reflector Vessel can be obtained. This model was validated, comparing the computational results with experimental measurements performed in a real-size physical model built by INVAP during early OPAL design engineering stages. Furthermore, detailed 3D Serpent Monte Carlo models are also available, which have been already validated with experimental data from reactor commissioning and operating cycles. In the present work the neutronic and thermohydraulic models, available for OPAL reactor, are coupled by means of a shared unstructured mesh geometry definition of relevant zones inside the Reflector Vessel. Several scenarios, both regarding coupled and uncoupled neutronic & thermohydraulic behavior, are presented and analyzed, showing the capabilities to develop and manage advanced modelling that allows to predict multi-physics variables observed when an in-depth performance analysis of a Research Reactor like OPAL is carried out.

  6. Growth at adolescence. Clinical correlates.

    PubMed

    Daniel, W A

    1985-03-01

    Several highly significant changes occur within a relatively short period of time during adolescence. Great alteration in physique, developmental progress in thinking, and psychologic gains toward attaining ego identity take place but not always synchronously. Attention is paid to physical changes because they are visible and are of intense concern to adolescents, but physicians and other professionals should remember cognitive and psychosocial growth are affected by physical growth, and vice versa. Often there is a temporary disequilibrium in the relationship of these three areas of growth, and this can affect one or another part of the developmental pattern. It is therefore necessary to remind ourselves of the diversity of adolescent growth, and of adolescents, when caring for a young patient and be cognizant of growth in areas other than physical. More and more children with congenital or acquired handicaps are living to become adolescents and perhaps adults. Handicaps can be limited to one of the three major areas of growth or involve them all in varying degrees. For example, sickle cell disease, Crohn's disease, or ulcerative colitis may postpone physical growth for a significant period; this lack of pubertal change can affect psychosocial development but usually does not impair cognitive growth. Mental retardation may have no apparent effect on physical growth but can handicap the adolescent's psychosocial development. Growth still occurs in a sequential pattern but often it seems that handicapped youngsters reach a developmental milestone by a series of "detours." Physicians must recognize these lags or differences and try to facilitate progress, promote self-esteem, and provide understanding. Much can be done with anticipatory guidance. Adolescence often provides the opportunity to overcome past damage or, in some instances, to start anew on a more optimal program for physical and psychosocial growth. Young adolescent boys and girls usually look to the physician for factual information and guidance; they long for understanding by an adult outside of the family. If we can successfully fill their expectations, adolescents will be the better for it.

  7. Energy from nuclear fission()

    NASA Astrophysics Data System (ADS)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  8. Operating manual for the Bulk Shielding Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.

  9. Operating manual for the Bulk Shielding Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

  10. Core plasma design of the compact helical reactor with a consideration of the equipartition effect

    NASA Astrophysics Data System (ADS)

    Goto, T.; Miyazawa, J.; Yanagi, N.; Tamura, H.; Tanaka, T.; Sakamoto, R.; Suzuki, C.; Seki, R.; Satake, S.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group

    2018-07-01

    Integrated physics analysis of plasma operation scenario of the compact helical reactor FFHR-c1 has been conducted. The DPE method, which predicts radial profiles in a reactor by direct extrapolation from the reference experimental data, has been extended to implement the equipartition effect. Close investigation of the plasma operation regime has been conducted and a candidate plasma operation point of FFHR-c1 has been identified within the parameter regime that has already been confirmed in LHD experiment in view of MHD equilibrium, MHD stability and neoclassical transport.

  11. Health physics aspects of advanced reactor licensing reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinson, C.S.

    1995-03-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovativemore » design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.« less

  12. PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-04-01

    Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less

  13. Characteristic of molten fluoride salt system LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) as coolant and fuel carrier in molten salt reactor (MSR)

    NASA Astrophysics Data System (ADS)

    Bahri, Che Nor Aniza Che Zainul; Al-Areqi, Wadee'ah Mohd; Ruf, Mohd'Izzat Fahmi Mohd; Majid, Amran Ab.

    2017-01-01

    Interest of fluoride salts have recently revived due to the high temperature application in nuclear reactors. Molten Salt Reactor (MSR) was designed to operate at high temperature in range 700 - 800°C and its fuel is dissolved in a circulating molten fluoride salt mixture. Molten fluoride salts are stable at high temperature, have good heat transfer properties and can dissolve high concentration of actinides and fission product. The aim of this paper was to discuss the physical properties (melting temperature, density and heat capacity) of two systems fluoride salt mixtures i.e; LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) in terms of their application as coolant and fuel solvent in MSR. Both of these salts showed almost same physical properties but different applications in MSR. The advantages and the disadvantages of these fluoride salt systems will be discussed in this paper.

  14. SlimCS—compact low aspect ratio DEMO reactor with reduced-size central solenoid

    NASA Astrophysics Data System (ADS)

    Tobita, K.; Nishio, S.; Sato, M.; Sakurai, S.; Hayashi, T.; Shibama, Y. K.; Isono, T.; Enoeda, M.; Nakamura, H.; Sato, S.; Ezato, K.; Hayashi, T.; Hirose, T.; Ide, S.; Inoue, T.; Kamada, Y.; Kawamura, Y.; Kawashima, H.; Koizumi, N.; Kurita, G.; Nakamura, Y.; Mouri, K.; Nishitani, T.; Ohmori, J.; Oyama, N.; Sakamoto, K.; Suzuki, S.; Suzuki, T.; Tanigawa, H.; Tsuchiya, K.; Tsuru, D.

    2007-08-01

    The concept for a compact DEMO reactor named 'SlimCS' is presented. Distinctive features of the concept are low aspect ratio (A = 2.6) and use of a reduced-size centre solenoid (CS) which has the function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field coil system which contributes to reducing the weight and perhaps lessening the construction cost. Low-A has merits of vertical stability for high elongation (κ) and high normalized beta (βN), which leads to a high power density with reasonable physics requirements. This is because high κ facilitates high nGW (because of an increase in Ip), which allows efficient use of the capacity of high βN. From an engineering aspect, low-A may ensure ease in designing blanket modules robust to electromagnetic forces acting on disruptions. Thus, a superconducting low-A tokamak reactor such as SlimCS can be a promising DEMO concept with physics and engineering advantages.

  15. Delayed neutron spectral data for Hansen-Roach energy group structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.M.; Spriggs, G.D.

    A detailed knowledge of delayed neutron spectra is important in reactor physics. It not only allows for an accurate estimate of the effective delayed neutron fraction {beta}{sub eff} but also is essential to calculating important reactor kinetic parameters, such as effective group abundances and the ratio of {beta}{sub eff} to the prompt neutron generation time. Numerous measurements of delayed neutron spectra for various delayed neutron precursors have been performed and reported in the literature. However, for application in reactor physics calculations, these spectra are usually lumped into one of the traditional six groups of delayed neutrons in accordance to theirmore » half-lives. Subsequently, these six-group spectra are binned into energy intervals corresponding to the energy intervals of a chosen nuclear cross-section set. In this work, the authors present a set of delayed neutron spectra that were formulated specifically to match Keepin`s six-group parameters and the 16-energy-group Hansen-Roach cross sections.« less

  16. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.« less

  17. Numerical Simulation of Measurements during the Reactor Physical Startup at Unit 3 of Rostov NPP

    NASA Astrophysics Data System (ADS)

    Tereshonok, V. A.; Kryakvin, L. V.; Pitilimov, V. A.; Karpov, S. A.; Kulikov, V. I.; Zhylmaganbetov, N. M.; Kavun, O. Yu.; Popykin, A. I.; Shevchenko, R. A.; Shevchenko, S. A.; Semenova, T. V.

    2017-12-01

    The results of numerical calculations and measurements of some reactor parameters during the physical startup tests at unit 3 of Rostov NPP are presented. The following parameters are considered: the critical boron acid concentration and the currents from ionization chambers (IC) during the scram system efficiency evaluation. The scram system efficiency was determined using the inverse point kinetics equation with the measured and simulated IC currents. The results of steady-state calculations of relative power distribution and efficiency of the scram system and separate groups of control rods of the control and protection system are also presented. The calculations are performed using several codes, including precision ones.

  18. The moving-ring field-reversed mirror prototype reactor

    NASA Astrophysics Data System (ADS)

    Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.

    1981-03-01

    A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.

  19. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  20. Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine ▿†

    PubMed Central

    Bürgmann, Helmut; Jenni, Sarina; Vazquez, Francisco; Udert, Kai M.

    2011-01-01

    The microbial population and physicochemical process parameters of a sequencing batch reactor for nitrogen removal from urine were monitored over a 1.5-year period. Microbial community fingerprinting (automated ribosomal intergenic spacer analysis), 16S rRNA gene sequencing, and quantitative PCR on nitrogen cycle functional groups were used to characterize the microbial population. The reactor combined nitrification (ammonium oxidation)/anammox with organoheterotrophic denitrification. The nitrogen elimination rate initially increased by 400%, followed by an extended period of performance degradation. This phase was characterized by accumulation of nitrite and nitrous oxide, reduced anammox activity, and a different but stable microbial community. Outwashing of anammox bacteria or their inhibition by oxygen or nitrite was insufficient to explain reactor behavior. Multiple lines of evidence, e.g., regime-shift analysis of chemical and physical parameters and cluster and ordination analysis of the microbial community, indicated that the system had experienced a rapid transition to a new stable state that led to the observed inferior process rates. The events in the reactor can thus be interpreted to be an ecological regime shift. Constrained ordination indicated that the pH set point controlling cycle duration, temperature, airflow rate, and the release of nitric and nitrous oxides controlled the primarily heterotrophic microbial community. We show that by combining chemical and physical measurements, microbial community analysis and ecological theory allowed extraction of useful information about the causes and dynamics of the observed process instability. PMID:21724875

  1. Statistical study of mirror mode events in the Earth magnetosheath

    NASA Astrophysics Data System (ADS)

    Genot, V.; Budnik, E.; Jacquey, C.; Sauvaud, J.; Dandouras, I.; Lucek, E.

    2006-12-01

    Using a search and classification tool developed at CDPP (Centre de la Physique des Plasmas, http://cdpp.cesr.fr), we investigate the physics of the mirror instability. Indeed both analytical and observational recent studies have shown the paramount importance of this instability in the development of magnetosheath turbulence and its potential role in reconnection. 5 years of Cluster data have been mined by our tool which can be intuitively parametrized and set up with specific constraints on the actual data content. The strength of the method is illustrated by our results concerning the efficiency of different identification procedures. Beyond the presentation of the general mirror mode event distribution in the magnetosheath, some of the key questions we address include : evolution of the wave amplitude with the fractional distance to the boundaries (bow shock/magnetopause), mirror structure behaviour in relation with 1/ local parameters (plasma beta, temperature anisotropy) and 2/ conditioning parameters (solar wind Mach numbers, IMF orientation), tests of theoretical expressions obtained with different closure equations, ... The implications of these results for the mirror mode modelization is discussed.

  2. Films minces d'oxycarbonates préparés par ablation laser pulsé : du système monocible au système multicible

    NASA Astrophysics Data System (ADS)

    Prellier, W.; Mercey, B.; Allen, J. L.; Tebano, A.; Hamet, J. F.; Hervieu, M.; Raveau, B.

    1998-01-01

    The microstructural study of superconductor thin films with general formula: (CaCuO_2)_m(Ba_2CuO_2CO_3)_n, grown from a single target, has shown that these films exhibited numerous intergrowth phases. Such films can not be used for precise physical studies. To obtain a regular stacking along a growth direction perpendicular to the substrate a multi-target system has to be used. The preliminary results of this study are presented herein. L'étude microstructurale des films minces supraconducteurs de formule générale : (CaCuO_2)_m(Ba_2CuO_2CO_3)_n, déposés à partir d'une seule cible, a montré qu'ils sont formés de nombreuses intercroissances. Ceci les rend pratiquement inutilisables pour des caractérisations physiques fines. Dans cet article sont présentées les étapes de la mise en oeuvre du système multicible nécessaire à la croissance d'un empilement régulier.

  3. [Kallmann syndrome. Fundamentals and two medical histories].

    PubMed

    Hefner, J; Csef, H; Seufert, J

    2009-10-01

    Kallmann syndrome is defined as a combination of isolated hypogonadotropic hypogonadism (IHH), hyposmia or anosmia and several optional neurological or anatomical particularities. The genetically caused illness affects mechanisms of neuronal migration, first of all concerning GnRH-producing neurons and those of the olfactory bulb.The first, nowadays rather seldom case, serves as an example of a patient suffering from grave, especially somatic symptoms of the disease. IHH, anosmia, eunuchoidism (physique, puerile voice, gynecomastia, micropenis, missing secondary sex characteristics) and distinct osteoporosis were verified.With the case of the second patient, late psychosexual sequelae of the syndrome are elucidated. The patient had been treated with testosterone after contracting mumps orchitis in early childhood. The physical development of the second patient progressed well since initiation of hormone substitution; however, infertility was still present. Now he complains of symptoms of depression caused by the separation from his female partner. Intermittent disorders of sexual functions and difficulties in establishing a male sexual identity lowered his self-esteem. Diagnostic and therapeutic capabilities and limits are particularized and items of future concern are emphasized.

  4. Swedish Sonographers' perceptions of ergonomic problems at work and their suggestions for improvement.

    PubMed

    Gemark Simonsen, Jenny; Gard, Gunvor

    2016-09-15

    Sonographers' perceptions of ergonomic and work-related pain problems at work have so far mostly been researched in quantitative studies by questionnaires. There is a need of experience-based research to deepen the knowledge about how sonographers perceive ergonomic problems at work. Therefore, the aim of this qualitative study was to describe sonographers' perceptions of ergonomic problems at work, and their suggestions for improvement strategies. Twenty-two female sonographers were individually interviewed regarding different aspects of their physical working environment. Content analysis was applied. The sonographers perceived different ergonomic problems in their working environment, but to offer patient comfort and to obtain the best possible images were often prioritized over working posture. Echocardiography was considered demanding as the examination is performed with little variation in posture. Ergonomic improvements included reducing the manual handling of the transducer, optimizing the adjustability of equipment, and taking the patient's physique and health into account. As some examinations were perceived to be more ergonomically demanding, variation between examinations was suggested, however, this requires broader skills. Sonography, especially echocardiography is ergonomically demanding but the improvement strategies suggested were perceived useful and applicable.

  5. The Application and Future Direction of the SPASE Metadata Standard in the U.S. and Worldwide

    NASA Astrophysics Data System (ADS)

    King, Todd; Thieman, James; Roberts, D. Aaron

    2013-04-01

    The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has been stable since January 2011. The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. In development are modifications to accommodate simulation and model data, as well as enhancements to describe data accessibility. These additions will add features to describe a broader range of data types. In keeping with a SPASE principle of back-compatibility, these changes will not affect the data descriptions already generated for instrument-related datasets. We also look at the long term commitment by NASA to support the SPASE effort and how SPASE metadata can enable value-added services.

  6. Preparation macroconstants to simulate the core of VVER-1000 reactor

    NASA Astrophysics Data System (ADS)

    Seleznev, V. Y.

    2017-01-01

    Dynamic model is used in simulators of VVER-1000 reactor for training of operating staff and students. As a code for the simulation of neutron-physical characteristics is used DYNCO code that allows you to perform calculations of stationary, transient and emergency processes in real time to a different geometry of the reactor lattices [1]. To perform calculations using this code, you need to prepare macroconstants for each FA. One way of getting macroconstants is to use the WIMS code, which is based on the use of its own 69-group macroconstants library. This paper presents the results of calculations of FA obtained by the WIMS code for VVER-1000 reactor with different parameters of fuel and coolant, as well as the method of selection of energy groups for further calculation macroconstants.

  7. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less

  8. Rotating Fluidized Bed Reactor for Space Nuclear Propulsion. Annual Report; Design Studies and Experimental Results

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.

  9. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less

  10. Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization

    NASA Astrophysics Data System (ADS)

    Blanchet, David; Fontaine, Bruno

    2017-09-01

    The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.

  11. EBT reactor systems analysis and cost code: description and users guide (Version 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoro, R.T.; Uckan, N.A.; Barnes, J.M.

    1984-06-01

    An ELMO Bumpy Torus (EBT) reactor systems analysis and cost code that incorporates the most recent advances in EBT physics has been written. The code determines a set of reactors that fall within an allowed operating window determined from the coupling of ring and core plasma properties and the self-consistent treatment of the coupled ring-core stability and power balance requirements. The essential elements of the systems analysis and cost code are described, along with the calculational sequences leading to the specification of the reactor options and their associated costs. The input parameters, the constraints imposed upon them, and the operatingmore » range over which the code provides valid results are discussed. A sample problem and the interpretation of the results are also presented.« less

  12. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing 235U, 233U, and 232Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-01

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of 235U. It operates in the open-cycle mode involving 233U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  13. AGC-2 Irradiation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas; Windes, William; Swank, W. David

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less

  14. Psychometric Validation of the Brief Adaptation to Disability Scale-Revised for Persons with Spinal Cord Injury in Taiwan

    ERIC Educational Resources Information Center

    Lin, Chen-Ping; Wang, Chia-Chiang; Fujikawa, Mayu; Brooks, Jessica; Eastvold-Walton, Lissa; Maxwell, Kristin; Chan, Fong

    2013-01-01

    Purpose: To examine the measurement structure of the Brief Adaptation to Disability Scale-Revised (B-ADS-R). Measure: A 12-item measure of disability acceptance based on the four value changes (enlarging the scope of values, containing the effects of the disability, subordinating the physique, and transforming comparative-status values to asset…

  15. Low Temperature Quartz Crystal Oscillator Fast Warm-Up Saw Oscillator.

    DTIC Science & Technology

    1981-07-01

    TASK_Q Centre National de la Recherche ScientifiqueARA&WKLI k Laboratoire de Physique et Metrologie des!2 Oscillateurs - 50 Bsnon-F 2 3 32 av. o l...propri6t6s non lin6aires des ondes Alastiques de sur- face : applications aux oscillateurs et aux capteurs A quartz", Thse Besanqon, 1979. (6) D. Hauden, G

  16. Partager : des technologies de pointe au service de la société

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-14

    Médecine, climatologie, métrologie et informatique, les techniques utilisées par le LHC trouvent déjà des répercussions dans d’autres domaines scientifiques. Utilisant des techniques inédites, la physique des particules en fait bénéficier la société toute entière.

  17. Etude vibroacoustique d'un systeme coque-plancher-cavite avec application a un fuselage simplifie

    NASA Astrophysics Data System (ADS)

    Missaoui, Jemai

    L'objectif de ce travail est de developper des modeles semi-analytiques pour etudier le comportement structural, acoustique et vibro-acoustique d'un systeme coque-plancher-cavite. La connection entre la coque et le plancher est assuree en utilisant le concept de rigidite artificielle. Ce concept de modelisation flexible facilite le choix des fonctions de decomposition du mouvement de chaque sous-structure. Les resultats issus de cette etude vont permettre la comprehension des phenomenes physiques de base rencontres dans une structure d'avion. Une approche integro-modale est developpee pour calculer les caracteristiques modales acoustiques. Elle utilise une discretisation de la cavite irreguliere en sous-cavites acoustiques dont les bases de developpement sont connues a priori. Cette approche, a caractere physique, presente l'avantage d'etre efficace et precise. La validite de celle-ci a ete demontree en utilisant des resultats disponibles dans la litterature. Un modele vibro-acoustique est developpe dans un but d'analyser et de comprendre les effets structuraux et acoustiques du plancher dans la configuration. La validite des resultats, en termes de resonance et de fonction de transfert, est verifiee a l'aide des mesures experimentales realisees au laboratoire.

  18. Exercise in middle-aged adults: self-efficacy and self-presentational outcomes.

    PubMed

    McAuley, E; Bane, S M; Mihalko, S L

    1995-07-01

    Whereas self-efficacy expectations have been identified as important determinants of exercise participation patterns, little empirical work that examines efficacy expectations as outcomes of exercise participation or their theoretical relationship to other psychological outcomes associated with exercise has been conducted. In the context of middle-aged males and females, the present study attempted to integrate social cognitive and impression management perspectives with respect to anxiety associated with exercise. Formerly sedentary subjects participated in a 5-month exercise program with assessments of physique anxiety, efficacy, outcome expectations, and anthropometric variables prior to and following the program. Both acute bouts and long-term participation in exercise resulted in significant increases in self-efficacy. In turn, these changes in efficacy and initial positive outcome expectations were significant predictors of reductions in physique anxiety, even when controlling for the influence of gender and reductions in body fat, weight, and circumferences. The findings are discussed in terms of the implications for structure and content of exercise environments and the utility of the proposed theoretical integration. Strategies for enhancing beliefs regarding health and fitness outcomes associated with exercise rather than appearance outcomes may be required to maximize reductions in negative body image.

  19. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    PubMed

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Updates to the Generation of Physics Data Inputs for MAMMOTH Simulations of the Transient Reactor Test Facility - FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; Baker, Benjamin Allen; Schunert, Sebastian

    The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition,more » this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.« less

  1. Minutes of the third annual meeting of the Panel on Reference Nuclear Data. [BNL, October 5, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, T.W.; Stewart, L.; Coyne, J.J.

    1979-05-01

    The major activities of the meeting were as follows: welcome; organization, approval of minutes of the second meeting, and approval of agenda; review of nuclear data compilation and evaluation efforts (national and international efforts, master data files, publications); summary of 1977 panel meeting; definition of reference nuclear data; discussion of specific data needs and possible data center contributions (reactor physics, medicine and biology, controlled thermonuclear reactors and astrophysics); establishment of current interest and future direction of the panel; adjournment. Recommendations and action items are listed. Tables on nuclear data needs in applied physics, medicine and biology, and controlled thermonuclear reactorsmore » and astrophysics are presented. Appendixes include membership lists of various committees, summaries of publication activities, survey results, correspondence, and portions of the documents Proceedings of the Magnetic Fusion Energy Blanket and Shield Workshop and National Needs for Critically Evaluated Physical and Chemical Data. (RWR)« less

  2. Engine management during NTRE start up

    NASA Technical Reports Server (NTRS)

    Bulman, Mel; Saltzman, Dave

    1993-01-01

    The topics are presented in viewgraph form and include the following: total engine system management critical to successful nuclear thermal rocket engine (NTRE) start up; NERVA type engine start windows; reactor power control; heterogeneous reactor cooling; propellant feed system dynamics; integrated NTRE start sequence; moderator cooling loop and efficient NTRE starting; analytical simulation and low risk engine development; accurate simulation through dynamic coupling of physical processes; and integrated NTRE and mission performance.

  3. Production of bio-oil from underutilized forest biomass using an auger reactor

    Treesearch

    H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor

    2015-01-01

    Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425–500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...

  4. Tritium

    DTIC Science & Technology

    2011-11-01

    fusion energy -production processes of the particular type of reactor using a lithium (Li) blanket or related alloys such as the Pb-17Li eutectic. As such, tritium breeding is intimately connected with energy production, thermal management, radioactivity management, materials properties, and mechanical structures of any plausible future large-scale fusion power reactor. JASON is asked to examine the current state of scientific knowledge and engineering practice on the physical and chemical bases for large-scale tritium

  5. Grey water treatment in UASB reactor at ambient temperature.

    PubMed

    Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R

    2007-01-01

    In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.

  6. Long Distance Reactor Antineutrino Flux Monitoring

    NASA Astrophysics Data System (ADS)

    Dazeley, Steven; Bergevin, Marc; Bernstein, Adam

    2015-10-01

    The feasibility of antineutrino detection as an unambiguous and unshieldable way to detect the presence of distant nuclear reactors has been studied. While KamLAND provided a proof of concept for long distance antineutrino detection, the feasibility of detecting single reactors at distances greater than 100 km has not yet been established. Even larger detectors than KamLAND would be required for such a project. Considerations such as light attenuation, environmental impact and cost, which favor water as a detection medium, become more important as detectors get larger. We have studied both the sensitivity of water based detection media as a monitoring tool, and the scientific impact such detectors might provide. A next generation water based detector may be able to contribute to important questions in neutrino physics, such as supernova neutrinos, sterile neutrino oscillations, and non standard electroweak interactions (using a nearby compact accelerator source), while also providing a highly sensitive, and inherently unshieldable reactor monitoring tool to the non proliferation community. In this talk I will present the predicted performance of an experimental non proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674192.

  7. Benchmark Evaluation of the HTR-PROTEUS Absorber Rod Worths (Core 4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Leland M. Montierth

    2014-06-01

    PROTEUS was a zero-power research reactor at the Paul Scherrer Institute (PSI) in Switzerland. The critical assembly was constructed from a large graphite annulus surrounding a central cylindrical cavity. Various experimental programs were investigated in PROTEUS; during the years 1992 through 1996, it was configured as a pebble-bed reactor and designated HTR-PROTEUS. Various critical configurations were assembled with each accompanied by an assortment of reactor physics experiments including differential and integral absorber rod measurements, kinetics, reaction rate distributions, water ingress effects, and small sample reactivity effects [1]. Four benchmark reports were previously prepared and included in the March 2013 editionmore » of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [2] evaluating eleven critical configurations. A summary of that effort was previously provided [3] and an analysis of absorber rod worth measurements for Cores 9 and 10 have been performed prior to this analysis and included in PROTEUS-GCR-EXP-004 [4]. In the current benchmark effort, absorber rod worths measured for Core Configuration 4, which was the only core with a randomly-packed pebble loading, have been evaluated for inclusion as a revision to the HTR-PROTEUS benchmark report PROTEUS-GCR-EXP-002.« less

  8. Test case for VVER-1000 complex modeling using MCU and ATHLET

    NASA Astrophysics Data System (ADS)

    Bahdanovich, R. B.; Bogdanova, E. V.; Gamtsemlidze, I. D.; Nikonov, S. P.; Tikhomirov, G. V.

    2017-01-01

    The correct modeling of processes occurring in the fuel core of the reactor is very important. In the design and operation of nuclear reactors it is necessary to cover the entire range of reactor physics. Very often the calculations are carried out within the framework of only one domain, for example, in the framework of structural analysis, neutronics (NT) or thermal hydraulics (TH). However, this is not always correct, as the impact of related physical processes occurring simultaneously, could be significant. Therefore it is recommended to spend the coupled calculations. The paper provides test case for the coupled neutronics-thermal hydraulics calculation of VVER-1000 using the precise neutron code MCU and system engineering code ATHLET. The model is based on the fuel assembly (type 2M). Test case for calculation of power distribution, fuel and coolant temperature, coolant density, etc. has been developed. It is assumed that the test case will be used for simulation of VVER-1000 reactor and in the calculation using other programs, for example, for codes cross-verification. The detailed description of the codes (MCU, ATHLET), geometry and material composition of the model and an iterative calculation scheme is given in the paper. Script in PERL language was written to couple the codes.

  9. Comparison of two modified coal ash ferric-carbon micro-electrolysis ceramic media for pretreatment of tetracycline wastewater.

    PubMed

    Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu

    2017-05-01

    Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.

  10. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less

  11. Use of high-volume outdoor smog chamber photo-reactors for studying physical and chemical atmospheric aerosol formation and composition

    NASA Astrophysics Data System (ADS)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.

  12. PREFACE: SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor: Devoted to the 75th anniversary of Yu M Ostanevich's birth

    NASA Astrophysics Data System (ADS)

    Gordely, Valentin; Kuklin, Alexander; Balasoiu, Maria

    2012-03-01

    The Second International Workshop 'SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor', devoted to the 75th anniversary of the birth of Professor Yu M Ostanevich (1936-1992), an outstanding neutron physicist and the founder of small-angle neutron scattering (field, group, and instrument) at JINR FLNPh, was held on 27-30 May at the Frank Laboratory of Neutron Physics. The first Workshop was held in October 2006. Research groups from different neutron centers, universities and research institutes across Europe presented more than 35 oral and poster presentations describing scientific and methodological results. Most of them were obtained with the help of the YuMO instrument before the IBR-2 shutdown in 2006. For the last four years the IBR-2 reactor has been shut down for refurbishment. At the end of 2010 the physical launch of the IBR-2M reactor was finally realized. Nowadays the small-angle neutron scattering (SANS) technique is applied to a wide range of scientific problems in condensed matter, soft condensed matter, biology and nanotechnology, and despite the fact that there are currently over 30 SANS instruments in operation worldwide at both reactor and spallation sources, the demand for beam-time is considerably higher than the time available. It must be remembered, however, that as the first SANS machine on a steady-state reactor was constructed at the Institute Laue Langevin, Grenoble, the first SANS instrument on a 'white' neutron pulsed beam was accomplished at the Joint Institute for Nuclear Research at the IBR-30 reactor, beamline N5. During the meeting Yu M Ostanevich's determinative and crucial contribution to the construction of spectrometers at the IBR-2 high-pulsed reactor was presented, as well as his contribution to the development of the time-of-flight (TOF) small-angle scattering technique, and a selection of other scientific areas. His leadership and outstanding scientific achievements in applications of the Mossbauer effect in physics and chemistry, in SANS studies of polyelectrolytes, small molecules, fractals, metallic glasses, macromolecules, polymers, etc., were recognized by a number of awards including the State Prize of the Russian Federation in 2000. The scientific program of the workshop focused on fundamental and methodical research at the YuMO spectrometer and developments of the SANS instrument at the modernized IBR-2M reactor. We recall that the acronym YuMO of the small-angle neutron scattering spectrometer (MURN), was given in honor of Yu M Ostanevich. One of the most important objectives of this user meeting was to discuss the further development possibilities of the YuMO spectrometer with experts, in the frame of a SANS YuMO Round Table, taking into account the specific performance of the modernized YuMO SANS instrument, and the scientific and technical requests of the instrument's users. Highlights on modern achievements in nanoscience, polymers and biology were other significant goals of the meeting. The plenary invited talks were presented by leading scientists in small-angle neutron scattering and soft condensed matter, including members of the Russian Academy of Sciences: Prof. Heinrich Stuhrmann, Prof. Alexei Khokhlov, Prof. Jose Teixeira, Prof. Alexander Ozerin, Prof. Albrecht Wiedenmann, etc. There were 27 oral talks given and 32 posters presented by 92 participants from 12 countries: Czech Republic, Egypt, France, Germany, Hungary, Moldova, Mongolia, Poland, Romania, Russian Federation, Slovak Republic, and Ukraine. The workshop was organized with the financial support of the Frank Laboratory of Neutron Physics (Joint Institute for Nuclear Research), Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH (Romania), Institute of Macromolecular Chemistry AS CR (Czech Republic), and Comenius University (Slovakia). V Gordeliy, A Kuklin and M Balasoiu SANSgroup Participants of the meeting The PDF also contains additional photographs from the meeting.

  13. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  14. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of themore » control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.« less

  15. Reactor physics phenomena in additively manufactured control elements for the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Joseph R.; Petrovic, Bojan; Chandler, David

    Additive manufacturing is under investigation as a novel method of fabricating the control elements (CEs) of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory with greater simplicity, eliminating numerous highly complex fabrication steps and thereby offering potential for significant savings in cost, time, and effort. This process yields a unique CE design with lumped absorbers, a departure from traditionally manufactured CEs with uniformly distributed absorbing material. Here, this study undertakes a neutronics analysis of the impact of additively manufactured CEs on the HFIR core physics, seeking preliminary assessment of the feasibility of their practical use. The resultsmore » of the MCNP transport simulations reveal changes in the HFIR reactor physics arising from geometric and nuclear effects. Absorber lumping in the discrete CEs yields a large volume of unpoisoned material that is not present in the homogeneous design, in turn yielding increases in free thermal flux in the CE absorbing regions and their immediate vicinity. The availability of additional free thermal neutrons in the core yields an increase in fission rate density in the fuel closest to the CEs and a corresponding increase in neutron multiplication on the order of 100 pcm. The absorption behavior exhibited by the discrete CEs is markedly different from the homogeneous CEs due to several competing effects. Self-shielding arising from absorber lumping acts to reduce the effective absorption cross section of the discrete CEs, but this effect is offset by geometric and spectral effects. The operational performance of the discrete CEs is found to be comparable to the homogeneous CEs, with only limited deficiencies in reactivity worth that are expected to be operationally recoverable via limited adjustment of the CE positions and withdrawal rate. On the whole, these results indicate that the discrete CEs perform reasonably similarly to the homogeneous CEs and appear feasible for application in HFIR. In conclusion, the physical phenomena identified in this study provide valuable background for follow-up design studies.« less

  16. Reactor physics phenomena in additively manufactured control elements for the High Flux Isotope Reactor

    DOE PAGES

    Burns, Joseph R.; Petrovic, Bojan; Chandler, David; ...

    2018-02-22

    Additive manufacturing is under investigation as a novel method of fabricating the control elements (CEs) of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory with greater simplicity, eliminating numerous highly complex fabrication steps and thereby offering potential for significant savings in cost, time, and effort. This process yields a unique CE design with lumped absorbers, a departure from traditionally manufactured CEs with uniformly distributed absorbing material. Here, this study undertakes a neutronics analysis of the impact of additively manufactured CEs on the HFIR core physics, seeking preliminary assessment of the feasibility of their practical use. The resultsmore » of the MCNP transport simulations reveal changes in the HFIR reactor physics arising from geometric and nuclear effects. Absorber lumping in the discrete CEs yields a large volume of unpoisoned material that is not present in the homogeneous design, in turn yielding increases in free thermal flux in the CE absorbing regions and their immediate vicinity. The availability of additional free thermal neutrons in the core yields an increase in fission rate density in the fuel closest to the CEs and a corresponding increase in neutron multiplication on the order of 100 pcm. The absorption behavior exhibited by the discrete CEs is markedly different from the homogeneous CEs due to several competing effects. Self-shielding arising from absorber lumping acts to reduce the effective absorption cross section of the discrete CEs, but this effect is offset by geometric and spectral effects. The operational performance of the discrete CEs is found to be comparable to the homogeneous CEs, with only limited deficiencies in reactivity worth that are expected to be operationally recoverable via limited adjustment of the CE positions and withdrawal rate. On the whole, these results indicate that the discrete CEs perform reasonably similarly to the homogeneous CEs and appear feasible for application in HFIR. In conclusion, the physical phenomena identified in this study provide valuable background for follow-up design studies.« less

  17. Integral Full Core Multi-Physics PWR Benchmark with Measured Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forget, Benoit; Smith, Kord; Kumar, Shikhar

    In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevantmore » multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.« less

  18. Advances in modelling of condensation phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUFmore » are described.« less

  19. Physics Teachers Workshop

    ScienceCinema

    Huggins, DaNel; Calhoun, John; Palmer, Alyson; Thorpe, Steve; Vanderveen, Anne

    2017-12-09

    INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

  20. Physics Teachers Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huggins, DaNel; Calhoun, John; Palmer, Alyson

    INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

Top