Sample records for readout system based

  1. ALICE inner tracking system readout electronics prototype testing with the CERN "Giga Bit Transceiver''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.

  2. ALICE inner tracking system readout electronics prototype testing with the CERN "Giga Bit Transceiver''

    DOE PAGES

    Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.; ...

    2016-12-28

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.

  3. ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

    NASA Astrophysics Data System (ADS)

    Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.

    2016-12-01

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.

  4. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures

    NASA Astrophysics Data System (ADS)

    Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina

    2017-09-01

    Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.

  5. Performance study of large area encoding readout MRPC

    NASA Astrophysics Data System (ADS)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  6. An optical fiber-based flexible readout system for micro-pattern gas detectors

    NASA Astrophysics Data System (ADS)

    Li, C.; Feng, C. Q.; Zhu, D. Y.; Liu, S. B.; An, Q.

    2018-04-01

    This paper presents an optical fiber-based readout system that is intended to provide a general purpose multi-channel readout solution for various Micro-Pattern Gas Detectors (MPGDs). The proposed readout system is composed of several front-end cards (FECs) and a data collection module (DCM). The FEC exploits the capability of an existing 64-channel generic TPC readout ASIC chip, named AGET, to implement 256 channels readout. AGET offers FEC a large flexibility in gain range (4 options from 120 fC to 10 pC), peaking time (16 options from 50 ns to 1 us) and sampling freqency (100 MHz max.). The DCM contains multiple 1 Gbps optical fiber serial link interfaces that allow the system scaling up to 1536 channels with 6 FECs and 1 DCM. Further scaling up is possible through cascading of multiple DCMs, by configuring one DCM as a master while other DCMs in slave mode. This design offers a rapid readout solution for different application senario. Tests indicate that the nonlinearity of each channel is less than 1%, and the equivalent input noise charge is typically around 0.7 fC in RMS (root mean square), with a noise slope of about 0.01 fC/pF. The system level trigger rate limit is about 700 Hz in all channel readout mode. When in hit channel readout mode, supposing that typically 10 percent of channels are fired, trigger rate can go up to about 7 kHz. This system has been tested with Micromegas detector and GEM detector, confirming its capability in MPGD readout. Details of hardware and FPGA firmware design, as well as system performances, are described in the paper.

  7. Optical elements design of optical pick-up with characteristics of read-out spot for high density optical storage

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Ma, Jianshe; Liu, Lin; Pan, Longfa; Zhang, Jianyong; Lu, Junhui

    2005-09-01

    It is well known that the optical pick-up (OPU) plays a very important role in optical storage system. And the quality of OPU can be measured by the characteristics of OPU read-out spot for high density optical storage. Therefore this paper mainly designs an OPU model for high density optical storage to study the characteristics of OPU read-out spot. Firstly it analyses the optical read-out principle in OPU and contrives an optical read-out system based on the hereinbefore theory. In this step it chiefly designs the grating, splitter, collimator lens and objective lens. Secondly based on the aberrations analysis and theory involved by the splitter, the collimator lens and the optical lens, the paper uses the software CODE V to calculate the aberrations and to optimize the optical read-out system. Then the author can receive an ideal OPU read-out spot for high density optical storage and obtain the characteristics of the ideal OPU read-out spot. At the same time this paper analyses some influence factors which can directly affect the characteristics of the OPU read-out spot. Thirdly according to the up data the author practically manufactures a real optical pick-up to validate the hereinbefore designed optical read-out system. And it uses the Optical Spot Analyzer to get the image of the read-out spot. Comparing the ideal image to the actual image of the designed optical read-out system, the author finds out that the upwards analyses and design is suitable for high density storage and can be used in the actual production. And the author also receives the conclusion that the mostly influences on characteristics of OPU read-out spot for high density optical storage factors is not only the process of designing the grating, splitter, collimator lens and objective lens, but also the assembling work precision

  8. An application specific integrated circuit based multi-anode microchannel array readout system

    NASA Technical Reports Server (NTRS)

    Smeins, Larry G.; Stechman, John M.; Cole, Edward H.

    1991-01-01

    Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.

  9. X-ray imaging using amorphous selenium: photoinduced discharge (PID) readout for digital general radiography.

    PubMed

    Rowlands, J A; Hunter, D M

    1995-12-01

    Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.

  10. Spectral contents readout of birefringent sensor

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.

    1989-01-01

    The technical objective of this research program was to develop a birefringent sensor, capable of measuring strain/stress up to 2000 F and a readout system based on Spectral Contents analysis. As a result of the research work, a data acquisition system was developed, capable of measuring strain birefringence in a sensor at 2000 F, with multi-point static and dynamic capabilities. The system uses a dedicated spectral analyzer for evaluation of stress-birefringence and a PC-based readout. Several sensor methods were evaluated. Fused silica was found most satisfactory. In the final evaluation, measurements were performed up to 2000 F and the system performance exceeded expectations.

  11. Embedded controller for GEM detector readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  12. Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Pühlhofer, G.; Bauer, C.; Eisenkolb, F.; Florin, D.; Föhr, C.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Koziol, J.; Lahmann, R.; Manalaysay, A.; Marszalek, A.; Rajda, P. J.; Reimer, O.; Romaszkan, W.; Rupinski, M.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Weitzel, Q.; Winiarski, K.; Zietara, K.

    2014-07-01

    The FlashCam project is preparing a camera prototype around a fully digital FADC-based readout system, for the medium sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The FlashCam design is the first fully digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for digitization and triggering, and a high performance camera server as back end. It provides the option to easily implement different types of trigger algorithms as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. The readout of the front end modules into the camera server is Ethernet-based using standard Ethernet switches and a custom, raw Ethernet protocol. In the current implementation of the system, data transfer and back end processing rates of 3.8 GB/s and 2.4 GB/s have been achieved, respectively. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several ten kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, mechanically detached from the front end modules. It interfaces to the digital readout system via analogue signal transmission. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. By now, a 144-pixel mini-camera" setup, fully equipped with photomultipliers, PDP electronics, and digitization/ trigger electronics, has been realized and extensively tested. Preparations for a full-scale, 1764 pixel camera mechanics and a cooling system are ongoing. The paper describes the status of the project.

  13. Frequency division multiplexed readout of TES detectors with baseband feedback

    NASA Astrophysics Data System (ADS)

    den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.

    2012-09-01

    SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.

  14. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    PubMed

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.

  15. A paralleled readout system for an electrical DNA-hybridization assay based on a microstructured electrode array

    NASA Astrophysics Data System (ADS)

    Urban, Matthias; Möller, Robert; Fritzsche, Wolfgang

    2003-02-01

    DNA analytics is a growing field based on the increasing knowledge about the genome with special implications for the understanding of molecular bases for diseases. Driven by the need for cost-effective and high-throughput methods for molecular detection, DNA chips are an interesting alternative to more traditional analytical methods in this field. The standard readout principle for DNA chips is fluorescence based. Fluorescence is highly sensitive and broadly established, but shows limitations regarding quantification (due to signal and/or dye instability) and the need for sophisticated (and therefore high-cost) equipment. This article introduces a readout system for an alternative detection scheme based on electrical detection of nanoparticle-labeled DNA. If labeled DNA is present in the analyte solution, it will bind on complementary capture DNA immobilized in a microelectrode gap. A subsequent metal enhancement step leads to a deposition of conductive material on the nanoparticles, and finally an electrical contact between the electrodes. This detection scheme offers the potential for a simple (low-cost as well as robust) and highly miniaturizable method, which could be well-suited for point-of-care applications in the context of lab-on-a-chip technologies. The demonstrated apparatus allows a parallel readout of an entire array of microstructured measurement sites. The readout is combined with data-processing by an embedded personal computer, resulting in an autonomous instrument that measures and presents the results. The design and realization of such a system is described, and first measurements are presented.

  16. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Editor)

    1992-01-01

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  17. Robustifying twist-and-turn entanglement with interaction-based readout

    NASA Astrophysics Data System (ADS)

    Mirkhalaf, Safoura S.; Nolan, Samuel P.; Haine, Simon A.

    2018-05-01

    The use of multiparticle entangled states has the potential to drastically increase the sensitivity of atom interferometers and atomic clocks. The twist-and-turn (TNT) Hamiltonian can create multiparticle entanglement much more rapidly than the ubiquitous one-axis twisting Hamiltonian in the same spin system. In this paper, we consider the effects of detection noise—a key limitation in current experiments—on the metrological usefulness of nonclassical states generated under TNT dynamics. We also consider a variety of interaction-based readouts to maximize their performance. Interestingly, the optimum interaction-based readout is not the obvious case of perfect time reversal.

  18. The Phase-2 electronics upgrade of the ATLAS liquid argon calorimeter system

    NASA Astrophysics Data System (ADS)

    Vachon, B.

    2018-03-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.

  19. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  20. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    PubMed Central

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-01-01

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors. PMID:28368355

  1. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.

    PubMed

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-04-03

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  2. Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture.

    PubMed

    Narayanan, Balaji; Hardie, Russell C; Muse, Robert A

    2005-06-10

    Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.

  3. A real-time spectrum acquisition system design based on quantum dots-quantum well detector

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Guo, F. M.

    2016-01-01

    In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.

  4. Progress on the FDM Development at SRON: Toward 160 Pixels

    NASA Astrophysics Data System (ADS)

    den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.

    2014-08-01

    SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.

  5. Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    NASA Astrophysics Data System (ADS)

    Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.

    2018-02-01

    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.

  6. Central FPGA-based destination and load control in the LHCb MHz event readout

    NASA Astrophysics Data System (ADS)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  7. Development of 3He LPSDs and read-out system for the SANS spectrometer at CPHS

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Gong, H.; Shao, B. B.; Wang, X. W.; Zhang, Y.; Pang, B. B.

    2014-01-01

    The Compact Pulsed Hadron Source (CPHS) is a 13-MeV proton-linac-driven neutron source under construction in Tsinghua University. Time-of-flight (TOF) small-angle neutron scattering (SANS) spectrometer is one of the first instruments to be built. It is designed to use linear position-sensitive detectors (LPSDs) of 3He gas proportional counters to cover a 1 m×1 m area. Prototypical LPSDs (Φ = 12 mm, L=1 m) have been made and read-out system is developed based on charge division. This work describes the in-house fabrication of the prototypical LPSDs and design of the read-out system including front-end electronics and data acquisition (DAQ) system. Key factors of the front-end electronics are studied and optimized with PSPICE simulation. DAQ system is designed based on VME bus architecture and FPGA Mezzanine Card (FMC) standard with high flexibility and extendibility. Preliminary experiments are carried out and the results are present and discussed.

  8. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerstedt, Henrik; Muschter, Steffen; Drake, Gary

    The Tile Calorimeter at ATLAS [1] is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links,more » will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new readout system will be installed in one slice of the ATLAS Tile Calorimeter. This will allow the proposed upgrade to be thoroughly evaluated well before the planned 2023 deployment in all slices, especially with regard to long term reliability. Different firmware strategies alongside with their integration in the demonstrator are presented in the context of high reliability protection against hardware malfunction and radiation induced errors.« less

  9. Development of a Crosstalk Suppression Algorithm for KID Readout

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmin; Ishitsuka, H.; Oguri, S.; Suzuki, J.; Tajima, O.; Tomita, N.; Won, Eunil; Yoshida, M.

    2018-06-01

    The GroundBIRD telescope aims to detect B-mode polarization of the cosmic microwave background radiation using the kinetic inductance detector array as a polarimeter. For the readout of the signal from detector array, we have developed a frequency division multiplexing readout system based on a digital down converter method. These techniques in general have the leakage problems caused by the crosstalks. The window function was applied in the field programmable gate arrays to mitigate the effect of these problems and tested it in algorithm level.

  10. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    NASA Astrophysics Data System (ADS)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  11. Image processing system design for microcantilever-based optical readout infrared arrays

    NASA Astrophysics Data System (ADS)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  12. A data transmission method for particle physics experiments based on Ethernet physical layer

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun

    2015-11-01

    Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)

  13. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    PubMed

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

  14. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  15. Digital signal processing for the ATLAS/LUCID detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    Both the detector and the associated read-out electronics have been improved in order to cope with the LHC luminosity increase foreseen for RUN 2 and RUN 3. The new operating conditions require a careful tuning of the read-out electronics in order to optimize the signal-to-noise ratio. The new read-out electronics will allow the use of digital filtering of the photo multiplier tube signals. In this talk, we will present the first results that we obtained in the optimization of the signal-to-noise ratio. In addition, we will introduce the next steps to adapt this system to high performance read-out chains formore » low energy gamma rays. Such systems are based, for instance, on Silicon Drift Detector devices and can be used in applications at Free-Electron-Laser facilities such as the XFEL under construction at DESY. (authors)« less

  16. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-01

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  17. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    NASA Astrophysics Data System (ADS)

    Koestner, Stefan

    2009-09-01

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  18. Implementation of the Timepix ASIC in the Scalable Readout System

    NASA Astrophysics Data System (ADS)

    Lupberger, M.; Desch, K.; Kaminski, J.

    2016-09-01

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  19. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  20. Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.

    2014-06-01

    We have realized a frequency-domain multiplexing technique for the readout of large metallic magnetic calorimeter detector arrays. It is based on non-hysteretic single-junction SQUIDs and allows for a simultaneous readout of hundreds or thousands of detectors by using a single cryogenic high electron mobility transistor amplifier and two coaxial cables that are routed from room-temperature to the detector array. We discuss the working principle of the multiplexer and present details about our prototype multiplexer design. We show that fabricated devices are fully operational and that characteristic SQUID parameters such as the input sensitivity of the SQUID or the resonance frequency of the readout circuit can be predicted with confidence. Our best device so far has shown a magnetic flux white noise level of 1.4 m which can in future be reduced by an optimization of the fabrication processes as well as an improved microwave readout system.

  1. A PCIe Gen3 based readout for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Bellato, M.; Collazuol, G.; D'Antone, I.; Durante, P.; Galli, D.; Jost, B.; Lax, I.; Liu, G.; Marconi, U.; Neufeld, N.; Schwemmer, R.; Vagnoni, V.

    2014-06-01

    The architecture of the data acquisition system foreseen for the LHCb upgrade, to be installed by 2018, is devised to readout events trigger-less, synchronously with the LHC bunch crossing rate at 40 MHz. Within this approach the readout boards act as a bridge between the front-end electronics and the High Level Trigger (HLT) computing farm. The baseline design for the LHCb readout is an ATCA board requiring dedicated crates. A local area standard network protocol is implemented in the on-board FPGAs to read out the data. The alternative solution proposed here consists in building the readout boards as PCIe peripherals of the event-builder servers. The main architectural advantage is that protocol and link-technology of the event-builder can be left open until very late, to profit from the most cost-effective industry technology available at the time of the LHC LS2.

  2. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    PubMed

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.

  3. The TOTEM DAQ based on the Scalable Readout System (SRS)

    NASA Astrophysics Data System (ADS)

    Quinto, Michele; Cafagna, Francesco S.; Fiergolski, Adrian; Radicioni, Emilio

    2018-02-01

    The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC's Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ˜ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC's Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.

  4. Readout of the upgraded ALICE-ITS

    NASA Astrophysics Data System (ADS)

    Szczepankiewicz, A.; ALICE Collaboration

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  5. Readout Circuits for Noise Compensation in ISFET Sensory System

    NASA Astrophysics Data System (ADS)

    Das, M. P.; Bhuyan, M.; Talukdar, C.

    2015-12-01

    This paper presents two different noise reduction techniques for ion sensitive field effect transistor (ISFET) readout configuration and their comparison. The proposed circuit configurations are immune to the noise generated from the ISFET sensory system and particularly to the low frequency pH dependent 1/ f electrochemical noise. The methods used under this study are compensation of noise by differential OPAMP based and Wheatstone bridge circuit, where two identical commercial ISFET sensors were used. The statistical and frequency analysis of the data generated by this two methods were compared for different pH value ranging from pH 2 to 10 at room temperature, and it is found that the readout circuits are able to compensate the noise to a great extent.

  6. Upgrade of the TOTEM DAQ using the Scalable Readout System (SRS)

    NASA Astrophysics Data System (ADS)

    Quinto, M.; Cafagna, F.; Fiergolski, A.; Radicioni, E.

    2013-11-01

    The main goals of the TOTEM Experiment at the LHC are the measurements of the elastic and total p-p cross sections and the studies of the diffractive dissociation processes. At LHC, collisions are produced at a rate of 40 MHz, imposing strong requirements for the Data Acquisition Systems (DAQ) in terms of trigger rate and data throughput. The TOTEM DAQ adopts a modular approach that, in standalone mode, is based on VME bus system. The VME based Front End Driver (FED) modules, host mezzanines that receive data through optical fibres directly from the detectors. After data checks and formatting are applied in the mezzanine, data is retransmitted to the VME interface and to another mezzanine card plugged in the FED module. The VME bus maximum bandwidth limits the maximum first level trigger (L1A) to 1 kHz rate. In order to get rid of the VME bottleneck and improve scalability and the overall capabilities of the DAQ, a new system was designed and constructed based on the Scalable Readout System (SRS), developed in the framework of the RD51 Collaboration. The project aims to increase the efficiency of the actual readout system providing higher bandwidth, and increasing data filtering, implementing a second-level trigger event selection based on hardware pattern recognition algorithms. This goal is to be achieved preserving the maximum back compatibility with the LHC Timing, Trigger and Control (TTC) system as well as with the CMS DAQ. The obtained results and the perspectives of the project are reported. In particular, we describe the system architecture and the new Opto-FEC adapter card developed to connect the SRS with the FED mezzanine modules. A first test bench was built and validated during the last TOTEM data taking period (February 2013). Readout of a set of 3 TOTEM Roman Pot silicon detectors was carried out to verify performance in the real LHC environment. In addition, the test allowed a check of data consistency and quality.

  7. A Medipix3 readout system based on the National Instruments FlexRIO card and using the LabVIEW programming environment

    NASA Astrophysics Data System (ADS)

    Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.

    2011-01-01

    Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.

  8. Time and position sensitive single photon detector for scintillator read-out

    NASA Astrophysics Data System (ADS)

    Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.

    2012-02-01

    We have developed a photon counting detector system for combined neutron and γ radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy γ radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate γ energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).

  9. Highly multiplexed signal readout for a time-of-flight positron emission tomography detector based on silicon photomultipliers.

    PubMed

    Cates, Joshua W; Bieniosek, Matthew F; Levin, Craig S

    2017-01-01

    Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu 1.8 Gd 0.2 SiO 5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.

  10. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    NASA Astrophysics Data System (ADS)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  11. Design and test of data acquisition systems for the Medipix2 chip based on PC standard interfaces

    NASA Astrophysics Data System (ADS)

    Fanti, Viviana; Marzeddu, Roberto; Piredda, Giuseppina; Randaccio, Paolo

    2005-07-01

    We describe two readout systems for hybrid detectors using the Medipix2 single photon counting chip, developed within the Medipix Collaboration. The Medipix2 chip (256×256 pixels, 55 μm pitch) has an active area of about 2 cm 2 and is bump-bonded to a pixel semiconductor array of silicon or other semiconductor material. The readout systems we are developing are based on two widespread standard PC interfaces: parallel port and USB (Universal Serial Bus) version 1.1. The parallel port is the simplest PC interface even if slow and the USB is a serial bus interface present nowadays on all PCs and offering good performances.

  12. Hyper Suprime-Cam: development of the CCD readout electronics

    NASA Astrophysics Data System (ADS)

    Nakaya, Hidehiko; Uchida, Tomohisa; Miyatake, Hironao; Fujimori, Hiroki; Mineo, Sogo; Aihara, Hiroaki; Furusawa, Hisanori; Kamata, Yukiko; Karoji, Hiroshi; Kawanomoto, Satoshi; Komiyama, Yutaka; Miyazaki, Satoshi; Morokuma, Tomoki; Obuchi, Yoshiyuki; Okura, Yuki; Tanaka, Manobu; Tanaka, Yoko; Uraguchi, Fumihiro; Utsumi, Yosuke

    2010-07-01

    Hyper Suprime-Cam (HSC) employs 116 of 2k×4k CCDs with 464 signal outputs in total. The image size exceeds 2 GBytes, and the data can be readout every 10 seconds which results in the data rate of 210 Mbytes / sec. The data is digitized to 16-bit. The readout noise of the electronics at the readout time of 20 seconds is ~0.9 ADU, and the one with CCD is ~1.5 ADU which corresponds to ~4.5 e. The linearity error fits within +/- 0.5 % up to 150,000 e. The CCD readout electronics for HSC was newly developed based on the electronics for Suprime-Cam. The frontend electronics (FEE) is placed in the vacuum dewar, and the backend electronics (BEE) is mounted on the outside of the dewar on the prime focus unit. The FEE boards were designed to minimize the outgas and to maximize the heat transfer efficiency to keep the vacuum of the dewar. The BEE boards were designed to be simple and small as long as to achieve the readout time within 10 seconds. The production of the system has been finished, and the full set of the boards are being tested with several CCDs installed in the HSC dewar. We will show the system design, performance, and the current status of the development.

  13. Fast ADC based multichannel acquisition system for the GEM detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Czarski, T.; Chernyshova, M.; Dominik, W.; Jakubowska, K.; Karpinski, L.; Kierzkowski, K.; Pozniak, K.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.

    2012-05-01

    A novel approach to the Gas Electron Multiplier1 (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators, and analogue FIFOs,[ the method developed uses simultaneously sampling high speed ADCs and advanced FPGA-based processing logic to estimate the energy of every single photon. Such method is applied to every GEM strip signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, where higher order reflections need to be identified and rejected. For the purpose of the detector readout, a novel conception of the measurement platform was developed.

  14. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.

  15. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  16. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration

    2008-03-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.

  17. A reconfigurable image tube using an external electronic image readout

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  18. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  19. Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator

    NASA Astrophysics Data System (ADS)

    Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.

    2016-12-01

    We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.

  20. Half-State Readout In Vertical-Bloch-Line Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.

    1994-01-01

    Potentially narrow margins of chirality-based chopping of magnetic stripes avoided. Half-state readout is experimental method of readout in Vertical-Bloch-Line (VBL) memory. Based on differential deflections of magnetic stripe domains in which data bits stored. To give meaning to explanation of half-state readout, see "Vertical-Bloch-Line Memory" (NPO-18467).

  1. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  2. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    NASA Astrophysics Data System (ADS)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  3. Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Lin, Z. R.; Inomata, K.; Koshino, K.; Oliver, W. D.; Nakamura, Y.; Tsai, J. S.; Yamamoto, T.

    2014-07-01

    The parametric phase-locked oscillator (PPLO) is a class of frequency-conversion device, originally based on a nonlinear element such as a ferrite ring, that served as a fundamental logic element for digital computers more than 50 years ago. Although it has long since been overtaken by the transistor, there have been numerous efforts more recently to realize PPLOs in different physical systems such as optical photons, trapped atoms, and electromechanical resonators. This renewed interest is based not only on the fundamental physics of nonlinear systems, but also on the realization of new, high-performance computing devices with unprecedented capabilities. Here we realize a PPLO with Josephson-junction circuitry and operate it as a sensitive phase detector. Using a PPLO, we demonstrate the demodulation of a weak binary phase-shift keying microwave signal of the order of a femtowatt. We apply PPLO to dispersive readout of a superconducting qubit, and achieved high-fidelity, single-shot and non-destructive readout with Rabi-oscillation contrast exceeding 90%.

  4. The IBL readout system

    NASA Astrophysics Data System (ADS)

    Dopke, J.; Falchieri, D.; Flick, T.; Gabrielli, A.; Kugel, A.; Mättig, P.; Morettini, P.; Polini, A.; Schroer, N.

    2011-01-01

    The first upgrade for the ATLAS Pixel Detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer, built from new electronics, an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth, but also compatible with the existing system to be integrated into it. This paper describes the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  5. Recent developments for the upgrade of the LHCb readout system

    NASA Astrophysics Data System (ADS)

    Cachemiche, J. P.; Y Duval, P.; Hachon, F.; Le Gac, R.; Réthoré, F.

    2013-02-01

    The upgraded LHCb readout system aims at a trigger-free readout of the entire detector at the bunch-crossing rate. This implies a major architectural change for the readout system that must capture the data at 40 MHz instead of 1 MHz. One of the key components of this upgrade system is the readout board. The LHCb collaboration has chosen to evaluate the ATCA architecture as form-factor for the readout board. The readout system architecture relies on a unique board able to satisfy all the requirements for data transmission, timing and fast control as well as experiment control system. A generic ATCA carrier board has been developped. It is equipped with four dense AMC mezzanines able to interface a total of 144 bidirectional optical links at up to 10 Gbits/s. This board embeds 4 high end Stratix V GX devices for data processing and a programmable set of commutation functions allowing to reconfigure the connectivity of the system in a flexible way. The overall architecture will be presented and how the cards map over each functionality. First results and measurements will be described in particular those related to the use of new highly integrated optical devices. At last we will present the incremental development methodology used in this project.

  6. Looking at Earth from space: Direct readout from environmental satellites

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  7. Optimization of the microcable and detector parameters towards low noise in the STS readout system

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.

    2015-09-01

    Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.

  8. Physical evaluation of a needle photostimulable phosphor based CR mammography system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Nicholas W.; Lemmens, Kim; Bosmans, Hilde

    2012-02-15

    Purpose: Needle phosphor based computed radiography (CR) systems promise improved image quality compared to powder phosphor based CR units for x-ray screening mammography. This paper compares the imaging performance of needle CR cassettes, powder based CR cassettes and a well established amorphous selenium (a-Se) based flat panel based mammography system, using consistent beam qualities. Methods: Detector performance was assessed using modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE). Mammography system performance was assessed against levels from the European Guidelines, including threshold gold thickness (c-d), relative signal difference to noise (SdNR) and mean glandular dose,more » for automatic exposure control settings suggested by the manufacturers. The needle based Agfa HM5.0 CR detector was compared against the single sided readout Agfa MM3.0R and dual sided readout Fuji Profect CS powder CR plates using a 28 kV Mo/Rh spectrum, while a 28 kV W/Rh spectrum was used to compare the Agfa HM5.0 against the Siemens MAMMOMAT Inspiration a-Se based system. Results: MTF at 5 mm{sup -1} was 0.16 and 0.24 for the needle CR detector in the fast and slow scan directions, respectively, indicating a slight improvement ({approx}20%) over the two powder CR systems but remained 50% lower than the result at 5 mm{sup -1} for the a-Se detector ({approx}0.55). Structured screen noise was lower for the needle phosphor compared to the powder plates. CR system gain, estimated from the measured absorption fraction and NNPS results, was 6.3 for the (single sided) needle phosphor and 5.1 and 7.2 for the single sided and dual sided powder phosphor systems. Peak DQE at {approx}100 {mu}Gy was 0.47 for the needle system compared to peak DQE figures of 0.33 and 0.46 for the single sided readout powder plates and dual sided readout plates. The high frequency DQE (at 5 mm{sup -1}) was 0.19 for the needle CR plates, a factor of approximately 3 greater than for the powder CR plates. At 28 kV W/Rh, 2 mm Al, peak DQE for the needle CR system was 0.45 against a value of 0.50 for the a-Se detector. The needle CR detector reached the Acceptable limit for 0.1 mm details in the European Guidelines at a mean glandular dose (MGD) of approximately 1.31 mGy imaged at 28 kV Mo/Rh, compared to figures of 2.19 and 1.43 mGy for the single sided and dual sided readout powder CR systems. The a-Se detector could reach the limit at 0.65 mGy using a 28 kV W/Rh spectrum, while the needle CR system required 1.09 mGy for the same spectrum. Conclusions: Imaging performance for the needle CR phosphor technology, characterized using MTF and DQE and threshold gold thickness demonstrated a clear improvement compared to both single and dual sided reading powder phosphor based CR systems.« less

  9. A cylindrical SPECT camera with de-centralized readout scheme

    NASA Astrophysics Data System (ADS)

    Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.

    2001-09-01

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  10. Ultra-low magnetic field apparatus for a cryogenic gyroscope

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Van Kann, F. J.

    1978-01-01

    An ultralow magnetic field apparatus for earth-based testing of a cryogenic gyroscope system designed for a satellite test of general relativity is described. The magnetic field apparatus makes use of a superconducting lead shield while also maintaining sufficient mechanical stability to obtain a gyroscope readout sensitivity of one arcsec over a limited range. A gyroscope environment of 2.3 times 10 to the minus seventh power gauss has been attained with the magnetic field shielding technique. The magnetic field apparatus is to be used with a three-axis London moment readout system.

  11. Tunable mechanical monolithic sensor with interferometric readout for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2008-03-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve both for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result, for example, is that the measured natural resonance frequency of the instrument is 70 mHz with a Q = 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of mHz with a more refined mechanical tuning. Results on the readout system based on polarimetric homodyne Michelson interferometer is discussed.

  12. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  13. Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.

    2017-07-01

    The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

  14. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout †

    PubMed Central

    Ni, Yang

    2018-01-01

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout. PMID:29443903

  15. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout.

    PubMed

    Ni, Yang

    2018-02-14

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout.

  16. Readout systems for inner detectors at the LHC and SLHC

    NASA Astrophysics Data System (ADS)

    Issever, Cigdem

    2006-12-01

    A general overview of the optoelectronic readout and control systems of the ATLAS and CMS inner detectors is given. The talk will also cover challenges and issues of future optoelectronic readout systems at the upgraded LHC (SLHC). First results of radiation tests of VCSELs and optical fibres which were irradiated up to SLHC fluences will be presented.

  17. Monitoring the CMS strip tracker readout system

    NASA Astrophysics Data System (ADS)

    Mersi, S.; Bainbridge, R.; Baulieu, G.; Bel, S.; Cole, J.; Cripps, N.; Delaere, C.; Drouhin, F.; Fulcher, J.; Giassi, A.; Gross, L.; Hahn, K.; Mirabito, L.; Nikolic, M.; Tkaczyk, S.; Wingham, M.

    2008-07-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system.

  18. Silicon photonics for neuromorphic information processing

    NASA Astrophysics Data System (ADS)

    Bienstman, Peter; Dambre, Joni; Katumba, Andrew; Freiberger, Matthias; Laporte, Floris; Lugnan, Alessio

    2018-02-01

    We present our latest results on silicon photonics neuromorphic information processing based a.o. on techniques like reservoir computing. We will discuss aspects like scalability, novel architectures for enhanced power efficiency, as well as all-optical readout. Additionally, we will touch upon new machine learning techniques to operate these integrated readouts. Finally, we will show how these systems can be used for high-speed low-power information processing for applications like recognition of biological cells.

  19. Reusable conductimetric array of interdigitated microelectrodes for the readout of low-density microarrays.

    PubMed

    Mallén, Maria; Díaz-González, María; Bonilla, Diana; Salvador, Juan P; Marco, María P; Baldi, Antoni; Fernández-Sánchez, César

    2014-06-17

    Low-density protein microarrays are emerging tools in diagnostics whose deployment could be primarily limited by the cost of fluorescence detection schemes. This paper describes an electrical readout system of microarrays comprising an array of gold interdigitated microelectrodes and an array of polydimethylsiloxane microwells, which enabled multiplexed detection of up to thirty six biological events on the same substrate. Similarly to fluorescent readout counterparts, the microarray can be developed on disposable glass slide substrates. However, unlike them, the presented approach is compact and requires a simple and inexpensive instrumentation. The system makes use of urease labeled affinity reagents for developing the microarrays and is based on detection of conductivity changes taking place when ionic species are generated in solution due to the catalytic hydrolysis of urea. The use of a polydimethylsiloxane microwell array facilitates the positioning of the measurement solution on every spot of the microarray. Also, it ensures the liquid tightness and isolation from the surrounding ones during the microarray readout process, thereby avoiding evaporation and chemical cross-talk effects that were shown to affect the sensitivity and reliability of the system. The performance of the system is demonstrated by carrying out the readout of a microarray for boldenone anabolic androgenic steroid hormone. Analytical results are comparable to those obtained by fluorescent scanner detection approaches. The estimated detection limit is 4.0 ng mL(-1), this being below the threshold value set by the World Anti-Doping Agency and the European Community. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  1. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    NASA Astrophysics Data System (ADS)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  2. Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    NASA Astrophysics Data System (ADS)

    Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew

    2014-07-01

    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.

  3. A front-end readout mixed chip for high-efficiency small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Ollivier-Henry, N.; Berst, J. D.; Colledani, C.; Hu-Guo, Ch.; Mbow, N. A.; Staub, D.; Guyonnet, J. L.; Hu, Y.

    2007-02-01

    Today, the main challenge of Positron Emission Tomography (PET) systems dedicated to small animal imaging is to obtain high detection efficiency and a highly accurate localization of radioisotopes. If we focus only on the PET characteristics such as the spatial resolution, its accuracy depends on the design of detector and on the electronics readout system as well. In this paper, we present a new design of such readout system with full custom submicrometer CMOS implementation. The front end chip consists of two main blocks from which the energy information and the time stamp with subnanosecond resolution can be obtained. In our A Multi-Modality Imaging System for Small Animal (AMISSA) PET system design, a matrix of LYSO crystals has to be read at each end by a 64 channels multianode photomultiplier tube. A specific readout electronic has been developed at the Hubert Curien Multidisciplinary Institute (IPHC, France). The architecture of this readout for the energy information detection is composed of a low-noise preamplifier, a CR-RC shaper and an analogue memory. In order to obtain the required dynamic range from 15 to 650 photoelectrons with good linearity, a current mode approach has been chosen for the preamplifier. To detect the signal with a temporal resolution of 1 ns, a comparator with a very low threshold (˜0.3 photoelectron) has been implemented. It gives the time reference of arrival signal coming from the detector. In order to obtain the time coincidence with a temporal resolution of 1 ns, a Time-to-Digital Converter (TDC) based on a Delay-Locked-Loop (DLL) has been designed. The chip is fabricated with AMS 0.35 μm process. The ASIC architecture and some simulation results will be presented in the paper.

  4. A radiation-tolerant electronic readout system for portal imaging

    NASA Astrophysics Data System (ADS)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  5. Splitter board for steamer tube readout at the SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchetta, N.; Bisello, D.; Castro, A.

    1989-10-01

    This paper presents a controller board designed as a part of the data acquisition system for the readout of limited streamer tube strips in the warm iron calorimeter for the SLD detector. The board controls the data readout and allows for remote setting and diagnostic of the system.

  6. Fast modular data acquisition system for GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.

    2014-11-01

    A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.

  7. A feasibility study of a data acquisition system for a silicon strip detector with a digital readout scheme

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirokazu; Ikeda, Mitsuo; Inaba, Susumu; Tanaka, Manobu

    1993-06-01

    We describe a prototype data acquisition system for a silicon strip detector, which has been developed in terms of a digital readout scheme. The system consists of a master timing generator, readout controller, and a detector emulator card on which we use custom VLSI shift registers with operating clock frequency of 30 MHz.

  8. A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability.

    PubMed

    Liu, Dan; Li, Xingrui; Zhou, Junkai; Liu, Shibo; Tian, Tian; Song, Yanling; Zhu, Zhi; Zhou, Leiji; Ji, Tianhai; Yang, Chaoyong

    2017-10-15

    Enzyme-linked immunosorbent assay (ELISA) is a popular laboratory technique for detection of disease-specific protein biomarkers with high specificity and sensitivity. However, ELISA requires labor-intensive and time-consuming procedures with skilled operators and spectroscopic instrumentation. Simplification of the procedures and miniaturization of the devices are crucial for ELISA-based point-of-care (POC) testing in resource-limited settings. Here, we present a fully integrated, instrument-free, low-cost and portable POC platform which integrates the process of ELISA and the distance readout into a single microfluidic chip. Based on manipulation using a permanent magnet, the process is initiated by moving magnetic beads with capture antibody through different aqueous phases containing ELISA reagents to form bead/antibody/antigen/antibody sandwich structure, and finally converts the molecular recognition signal into a highly sensitive distance readout for visual quantitative bioanalysis. Without additional equipment and complicated operations, our integrated ELISA-Chip with distance readout allows ultrasensitive quantitation of disease biomarkers within 2h. The ELISA-Chip method also showed high specificity, good precision and great accuracy. Furthermore, the ELISA-Chip system is highly applicable as a sandwich-based platform for the detection of a variety of protein biomarkers. With the advantages of visual analysis, easy operation, high sensitivity, and low cost, the integrated sample-in-answer-out ELISA-Chip with distance readout shows great potential for quantitative POCT in resource-limited settings. Copyright © 2017. Published by Elsevier B.V.

  9. Wireless data transmission for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  10. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Real, Diego; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocolmore » used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.« less

  11. Prototype readout electronics and silicon strip detector study for the silicon tracking system at compressed baryonic matter experiment

    NASA Astrophysics Data System (ADS)

    Kasiński, Krzysztof; Szczygieł, Robert; Gryboś, Paweł

    2011-10-01

    This paper presents the prototype detector readout electronics for the STS (Silicon Tracking System) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The emphasis has been put on the strip detector readout chip and its interconnectivity with detector. Paper discusses the impact of the silicon strip detector and interconnection cable construction on the overall noise of the system and architecture of the TOT02 readout ASIC. The idea and problems of the double-sided silicon detector usage are also presented.

  12. Construction and Performance Studies of Large Resistive Micromegas Quadruplets

    NASA Astrophysics Data System (ADS)

    Farina, E.; Iengo, P.; Bianco, M.; Sidiropoulou, O.; Kuger, F.; Sekhniaidze, G.; Vergain, M.; Wotschack, J.; Danielsson, H.; Degrange, J.; De Oliveira, R.; Schott, M.; Lin, Tai-Hua; Valderanis, C.; Düdder, A.

    2018-02-01

    In view of the use of Micromegas detectors for the upgrade of the ATLAS muon system, two detector quadruplets with an area of 0.3 m2 per plane serving as prototypes for future ATLAS chambers have been constructed. They are based on the resistive-strip technology and thus spark tolerant. The detectors were built in a modular way. The quadruplets consist of two double-sided readout panels and three support (or drift) panels equipped with the micromesh and the drift electrode. The panels are bolted together such that the detector can be opened and cleaned, if required. Two of the readout planes are equipped with readout strips inclined by 1.5 degree. In this talk, we present the results of detailed performance studies based on X-Ray and cosmic ray measurements as well as measurements with 855 MeV electrons at the MAMI accelerator. In particular, results on reconstruction efficiencies, track resolution and gain homogeneity is presented.

  13. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGES

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less

  14. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    NASA Astrophysics Data System (ADS)

    Claus, R.; ATLAS Collaboration

    2016-07-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  15. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    NASA Astrophysics Data System (ADS)

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.

  16. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGES

    Bartoldus, R.; Claus, R.; Garelli, N.; ...

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less

  17. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  18. Late Quaternary to Holocene Geology, Geomorphology and Glacial History of Dawson Creek and Surrounding area, Northeast British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Henry, Edward Trowbridge

    Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.

  19. The HADES-RICH upgrade using Hamamatsu H12700 MAPMTs with DiRICH FEE + Readout

    NASA Astrophysics Data System (ADS)

    Patel, V.; Traxler, M.

    2018-03-01

    The High Acceptance Di-Electron Spectrometer (HADES) is operational since the year 2000 and uses a hadron blind RICH detector for electron identification. The RICH photon detector is currently replaced by Hamamatsu H12700 MAPMTs with a readout system based on the DiRICH front-end module. The electronic readout chain is being developed as a joint effort of the HADES-, CBM- and PANDA collaborations and will also be used in the photon detectors for the upcoming Compressed Baryonic Matter (CBM) and PANDA experiments at FAIR . This article gives a brief overview on the photomultipliers and their quality assurance test measurements, as well as first measurements of the new DiRICH front-end module in final configurations.

  20. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts

    PubMed Central

    van Thriel, Christoph; Westerink, Remco; Beste, Christian; Bale, Ambuja S.; Lein, Pamela J.; Leist, Marcel

    2011-01-01

    The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can results in neurobehavioural alterations, and these have been be used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-D-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically-induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243

  1. A high-speed DAQ framework for future high-level trigger and event building clusters

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Ardila Perez, L. E.; Balzer, M.; Dritschler, T.; Kopmann, A.; Mohr, H.; Rota, L.; Vogelgesang, M.; Weber, M.

    2017-03-01

    Modern data acquisition and trigger systems require a throughput of several GB/s and latencies of the order of microseconds. To satisfy such requirements, a heterogeneous readout system based on FPGA readout cards and GPU-based computing nodes coupled by InfiniBand has been developed. The incoming data from the back-end electronics is delivered directly into the internal memory of GPUs through a dedicated peer-to-peer PCIe communication. High performance DMA engines have been developed for direct communication between FPGAs and GPUs using "DirectGMA (AMD)" and "GPUDirect (NVIDIA)" technologies. The proposed infrastructure is a candidate for future generations of event building clusters, high-level trigger filter farms and low-level trigger system. In this paper the heterogeneous FPGA-GPU architecture will be presented and its performance be discussed.

  2. Read-out electronics for DC squid magnetic measurements

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

  3. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Bassini, R.; van den Berg, A. M.; Ellinghaus, F.; Frekers, D.; Hannen, V. M.; Häupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Krüsemann, B.; Rakers, S.; Sohlbach, H.; Wörtche, H. J.

    1999-11-01

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0°. For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore themore » architecture of larger systems such as those currently in use at LHC experiments.« less

  5. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    NASA Astrophysics Data System (ADS)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  6. Photonic content-addressable memory system that uses a parallel-readout optical disk

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Ashok V.; Marchand, Philippe J.; Yayla, Gökçe; Esener, Sadik C.

    1995-11-01

    We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 \\times 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.

  7. A noninterference blade vibration measurement system for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Watkins, William B.; Chi, Ray M.

    1987-06-01

    A noninterfering blade vibration system has been demonstrated in tests of a gas turbine first stage fan. Conceptual design of the system, including its theory, design of case mounted probes, and data acquisition and signal processing hardware was done in a previous effort. The current effort involved instrumentation of an engine fan stage with strain gages; data acquisition using shaft-mounted reference and case-mounted optical probes; recording of data on a wideband tape recorder; and posttest processing using off-line analysis in a facility computer and a minicomputer-based readout system designed for near- real-time readout. Results are presented in terms of true blade vibration frequencies, time and frequency dependent vibration amplitudes and comparison of the optical noninterference results with strain gage readings.

  8. A Low-Power Thermal-Based Sensor System for Low Air Flow Detection

    PubMed Central

    Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.

    2016-01-01

    Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186

  9. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor.

    PubMed

    Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong

    2016-11-08

    The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg 2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg 2+ , which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg 2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg 2+ concentration in the range of 1 ng/mL-32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg 2+ . The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  10. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor

    PubMed Central

    Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong

    2016-01-01

    The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg2+, which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg2+ concentration in the range of 1 ng/mL–32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg2+. The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment. PMID:27834794

  11. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  12. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  13. On-ground characterization of the Euclid's CCD273-based readout chain

    NASA Astrophysics Data System (ADS)

    Szafraniec, Magdalena; Azzollini, R.; Cropper, M.; Pottinger, S.; Khalil, A.; Hailey, M.; Hu, D.; Plana, C.; Cutts, A.; Hunt, T.; Kohley, R.; Walton, D.; Theobald, C.; Sharples, R.; Schmoll, J.; Ferrando, P.

    2016-07-01

    Euclid is a medium class European Space Agency mission scheduled for launch in 2020. The goal of the survey is to examine the nature of Dark Matter and Dark Energy in the Universe. One of the cosmological probes used to analyze Euclid's data, the weak lensing technique, measures the distortions of galaxy shapes and this requires very accurate knowledge of the system point spread function (PSF). Therefore, to ensure that the galaxy shape is not affected, the detector chain of the telescope's VISible Instrument (VIS) needs to meet specific performance performance requirements. Each of the 12 VIS readout chains consisting of 3 CCDs, readout electronics (ROE) and a power supply unit (RPSU) will undergo a rigorous on-ground testing to ensure that these requirements are met. This paper reports on the current status of the warm and cold testing of the VIS Engineering Model readout chain. Additionally, an early insight to the commissioning of the Flight Model calibration facility and program is provided.

  14. A versatile localization system for microscopic multiparametric analysis of cells.

    PubMed

    Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P

    1983-03-01

    A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.

  15. Dual-Readout Immunochromatographic Assay by Utilizing MnO 2 Nanoflowers as the Unique Colorimetric/Chemiluminescent Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Hui; Lu, Qian; Wang, Wenwen

    Manganese dioxide nanoflowers (MnO2 NFs) were synthesized and utilized as a dual readout probe to develop a novel immunochromatographic test strip (ITS) for detecting pesticide residues using chlorpyrifos as the model analyte. MnO2 NFs-labeled antibody for chlorpyrifos was employed as the signal tracer for conducting the ITS. After 10-min competitive immunoreaction, the tracer antibody was captured by the immobilized immunogen on test line in the test strip, resulting in the accumulation of MnO2 NFs. The accumulation of MnO2 NFs led to the appearance of brown color on the test line, which could be easily observed by the naked eye asmore » a qualitative readout. Moreover, MnO2 NFs showed a remarkably enhancing effect on the luminol-H2O2 chemiluminescent (CL) system. Unlike peroxidase-like nanomaterials, the enhancing mechanism of MnO2 NFs was based on its oxidant activity to decompose H2O2 for forming reactive oxygen species. After initiating the CL system in the test zone, strong CL signal was collected as a quantitative readout to sensitively detect chlorpyrifos. Under optimal conditions, the linear range of chlorpyrifos was 0.1–50 ng/mL with a low detection limit of 0.033 ng/mL (S/N = 3). The reliability of the dual-readout ITS was successfully demonstrated by the application on traditional Chinese medicine and environmental water samples. Due to the simultaneous rapid-qualitative and sensitive-quantitative detection, the dual-readout protocol provides a promising strategy for rapid screening and field assay on various areas such as environmental monitoring, food safety and point-of-care testing.« less

  16. SNDR Limits of Oscillator-Based Sensor Readout Circuits.

    PubMed

    Cardes, Fernando; Quintero, Andres; Gutierrez, Eric; Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis

    2018-02-03

    This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.

  17. Fast, high-fidelity readout of multiple qubits

    NASA Astrophysics Data System (ADS)

    Bronn, N. T.; Abdo, B.; Inoue, K.; Lekuch, S.; Córcoles, A. D.; Hertzberg, J. B.; Takita, M.; Bishop, L. S.; Gambetta, J. M.; Chow, J. M.

    2017-05-01

    Quantum computing requires a delicate balance between coupling quantum systems to external instruments for control and readout, while providing enough isolation from sources of decoherence. Circuit quantum electrodynamics has been a successful method for protecting superconducting qubits, while maintaining the ability to perform readout [1, 2]. Here, we discuss improvements to this method that allow for fast, high-fidelity readout. Specifically, the integration of a Purcell filter, which allows us to increase the resonator bandwidth for fast readout, the incorporation of a Josephson parametric converter, which enables us to perform high-fidelity readout by amplifying the readout signal while adding the minimum amount of noise required by quantum mechanics, and custom control electronics, which provide us with the capability of fast decision and control.

  18. Subelectron readout noise focal plane arrays for space imaging

    NASA Astrophysics Data System (ADS)

    Atlas, Gene; Wadsworth, Mark

    2004-01-01

    Readout noise levels of under 1 electron have long been a goal for the FPA community. In the quest to enhance the FPA sensitivity, various approaches have been attempted ranging from the exotic Photo-multiplier tubes, Image Intensifier tubes, Avalanche photo diodes, and now the on-chip avalanche charge amplification technologies from the CCD manufacturers. While these techniques reduce the readout noise, each offers a set of compromises that negatively affect the overall performance of the sensor in parameters such as power dissipation, dynamic range, uniformity or system complexity. In this work, we overview the benefits and tradeoffs of each approach, and introduce a new technique based on ImagerLabs" exclusive HIT technology which promises sub-electron read noise and other benefits without the tradeoffs of the other noise reduction techniques.

  19. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  20. Front-end electronics development for TPC detector in the MPD/NICA project

    NASA Astrophysics Data System (ADS)

    Cheremukhina, G.; Movchan, S.; Vereschagin, S.; Zaporozhets, S.

    2017-06-01

    The article is aimed at describing the development status, measuring results and design changes of the TPC front-end electronics. The TPC is placed in the middle of Multi-Purpose Detector (MPD) and provides tracing and identifying of charged particles in the pseudorapidity range |η| < 1.2. The readout system is one of the most complex parts of the TPC. The electronics of each readout chamber is an independent system. The whole system contains 95232 channels, 1488 64-channel—front-end cards (FEC), 24 readout control units (RCU). The front-end electronics (FEE) is based on ASICs, FPGAs and high-speed serial links. The concept of the TPC front-end electronics has been motivated from one side—by the requirements concerning the NICA accelerator complex which will operate at the luminosity up to 1027 cm-2 s-1 for Au79+ ions over the energy range of 4 < √SNN < 11 GeV with the trigger rate up to 7 kHz and from the other side—by the requirements of the 4-π geometry to minimize the substance on the end-caps of the TPC.

  1. Medipix2 as a tool for proton beam characterization

    NASA Astrophysics Data System (ADS)

    Bisogni, M. G.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Lojacono, P.; Piliero, M. A.; Romano, F.; Rosso, V.; Sipala, V.; Stefanini, A.

    2009-08-01

    Proton therapy is a technique used to deliver a highly accurate and effective dose for the treatment of a variety of tumor diseases. The possibility to have an instrument able to give online information could reduce the time necessary to characterize the proton beam. To this aim we propose a detection system for online proton beam characterization based on the Medipix2 chip. Medipix2 is a detection system based on a single event counter read-out chip, bump-bonded to silicon pixel detector. The read-out chip is a matrix of 256×256 cells, 55×55 μm 2 each. To demonstrate the capabilities of Medipix2 as a proton detector, we have used a 62 MeV flux proton beam at the CATANA beam line of the LNS-INFN laboratory. The measurements performed confirmed the good imaging performances of the Medipix2 system also for the characterization of proton beams.

  2. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    NASA Astrophysics Data System (ADS)

    Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).

  3. A system for characterization of DEPFET silicon pixel matrices and test beam results

    NASA Astrophysics Data System (ADS)

    Furletov, Sergey; DEPFET Collaboration

    2011-02-01

    The DEPFET pixel detector offers first stage in-pixel amplification by incorporating a field effect transistor in the high resistivity silicon substrate. In this concept, a very small input capacitance can be realized thus allowing for low noise measurements. This makes DEPFET sensors a favorable technology for tracking in particle physics. Therefore a system with a DEPFET pixel matrix was developed to test DEPFET performance for an application as a vertex detector for the Belle II experiment. The system features a current based, row-wise readout of a DEPFET pixel matrix with a designated readout chip, steering chips for matrix control, a FPGA based data acquisition board, and a dedicated software package. The system was successfully operated in both test beam and lab environment. In 2009 new DEPFET matrices have been characterized in a 120 GeV pion beam at the CERN SPS. The current status of the DEPFET system and test beam results are presented.

  4. SiPM based readout system for PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.

    2013-08-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20-100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.

  5. Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications

    NASA Astrophysics Data System (ADS)

    Franke, M.; Leubner, S.; Dubavik, A.; George, A.; Savchenko, T.; Pini, C.; Frank, P.; Melnikau, D.; Rakovich, Y.; Gaponik, N.; Eychmüller, A.; Richter, A.

    2017-04-01

    Microfluidic devices present the basis of modern life sciences and chemical information processing. To control the flow and to allow optical readout, a reliable sensor material that can be easily utilized for microfluidic systems is in demand. Here, we present a new optical readout system for pH sensing based on pH sensitive, photoluminescent glutathione capped cadmium telluride quantum dots that are covalently immobilized in a poly(acrylate) hydrogel. For an applicable pH sensing the generated hybrid material is integrated in a microfluidic sensor chip setup. The hybrid material not only allows in situ readout, but also possesses valve properties due to the swelling behavior of the poly(acrylate) hydrogel. In this work, the swelling property of the hybrid material is utilized in a microfluidic valve seat, where a valve opening process is demonstrated by a fluid flow change and in situ monitored by photoluminescence quenching. This discrete photoluminescence detection (ON/OFF) of the fluid flow change (OFF/ON) enables upcoming chemical information processing.

  6. BAW sensor readout circuit based on Pierce oscillator architecture

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Yin, Xi-Yang; Han, Bin; Wang, Yu-Hang

    2017-10-01

    Bulk Acoustic Wave Resonators (BAWRs) have been well developed both as filters and as high sensitivity sensors in recent years. In contrast to traditional megahertz quartz resonators, BAWRs offer significant increases in resonant frequency, typically operating in gigahertz regimes. This translates into a potential sensitivity increase of more than three orders of magnitude over traditional QCM (Quartz Crystal Microbalance) devices. Given the micrometer-scale size of BAW sensor-head, read-out circuitry can monolithic integrated with this GHz transducer is urgently needed to produce small, robust, and inexpensive sensor systems. A BAW sensor read-out circuit prototype based on Pierce oscillator architecture is fulfilled in this paper. Based on the differential measurement scheme, two uniform BAWRs are used to constitute two BAW oscillators as a reference and a measurement branch respectively. The resonant frequency shift caused by the measurand is obtained by mixing and filtering the two oscillator signals. Then, the intermediate signal is amplified, shaped and converted to a digital one. And a FPGA is used for frequency detection. Taking 2 GHz BAW mass sensor as a case study, deign procedure are given in details. Simulation and experimental results reveal a 0-99 MHz frequency shift measurement range. Main factors affecting phase noise of the BAW oscillator (i.e. mainly frequency stability of the BAW sensor readout circuit) are also discussed for further optimizations.

  7. Superconducting thin-film gyroscope readout for Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Lockhart, James M.; Cheung, W. Stephen; Gill, Dale K.

    1987-01-01

    The high-resolution gyroscope readout system for the Stanford Gravity Probe-B experiment, whose purpose is to measure two general relativistic precessions of gyroscopes in earth orbit, is described. In order to achieve the required resolution in angle (0.001 arcsec), the readout system combines high-precision mechanical fabrication and measurement techniques with superconducting thin-film technology, ultralow magnetic fields, and SQUID detectors. The system design, performance limits achievable with current technology, and the results of fabrication and laboratory testing to date are discussed.

  8. The Flash ADC system and PMT waveform reconstruction for the Daya Bay experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yongbo; Chang, Jinfan; Cheng, Yaping; Chen, Zhang; Hu, Jun; Ji, Xiaolu; Li, Fei; Li, Jin; Li, Qiuju; Qian, Xin; Jetter, Soeren; Wang, Wei; Wang, Zheng; Xu, Yu; Yu, Zeyuan

    2018-07-01

    To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved.

  9. Optoelectronic associative recall using motionless-head parallel readout optical disk

    NASA Astrophysics Data System (ADS)

    Marchand, P. J.; Krishnamoorthy, A. V.; Ambs, P.; Esener, S. C.

    1990-12-01

    High data rates, low retrieval times, and simple implementation are presently shown to be obtainable by means of a motionless-head 2D parallel-readout system for optical disks. Since the optical disk obviates mechanical head motions for access, focusing, and tracking, addressing is performed exclusively through the disk's rotation. Attention is given to a high-performance associative memory system configuration which employs a parallel readout disk.

  10. IRAC test report. Gallium doped silicon band 2: Read noise and dark current

    NASA Technical Reports Server (NTRS)

    Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey

    1987-01-01

    A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.

  11. Innovative multi-cantilever array sensor system with MOEMS read-out

    NASA Astrophysics Data System (ADS)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  12. Fast wire per wire X-ray data acquisition system for time-resolved small angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.

    2000-04-01

    Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.

  13. CATAVIÑA: new infrared camera for OAN-SPM

    NASA Astrophysics Data System (ADS)

    Iriarte, Arturo; Cruz-González, Irene; Martínez, Luis A.; Tinoco, Silvio; Lara, Gerardo; Ruiz, Elfego; Sohn, Erika; Bernal, Abel; Angeles, Fernando; Moreno, Arturo; Murillo, Francisco; Langarica, Rosalía; Luna, Esteban; Salas, Luis; Cajero, Vicente

    2006-06-01

    CATAVIÑA is a near-infrared camera system to be operated in conjunction with the existing multi-purpose nearinfrared optical bench "CAMALEON" in OAN-SPM. Observing modes include direct imaging, spectroscopy, Fabry- Perot interferometry and polarimetry. This contribution focuses on the optomechanics and detector controller description of CATAVIÑA, which is planned to start operating later in 2006. The camera consists of an 8 inch LN2 dewar containing a 10 filter carousel, a radiation baffle and the detector circuit board mount. The system is based on a Rockwell 1024x1024 HgCdTe (HAWAII-I) FPA, operating in the 1 to 2.5 micron window. The detector controller/readout system was designed and developed at UNAM Instituto de Astronomia. It is based on five Texas Instruments DSK digital signal processor (DSP) modules. One module generates the detector and ADC-system control, while the remaining four are in charge of the acquisition of each of the detector's quadrants. Each DSP has a built-in expanded memory module in order to store more than one image. The detector read-out and signal driver subsystems are mounted onto the dewar in a "back-pack" fashion, each containing four independent pre-amplifiers, converters and signal drivers, that communicate through fiber optics with their respective DSPs. This system has the possibility of programming the offset input voltage and converter gain. The controller software architecture is based on a client/server model. The client sends commands through the TCP/IP protocol and acquires the image. The server consists of a microcomputer with an embedded Linux operating system, which runs the main program that receives the user commands and interacts with the timing and acquisition DSPs. The observer's interface allows for several readout and image processing modes.

  14. Comparison of two optimized readout chains for low light CIS

    NASA Astrophysics Data System (ADS)

    Boukhayma, A.; Peizerat, A.; Dupret, A.; Enz, C.

    2014-03-01

    We compare the noise performance of two optimized readout chains that are based on 4T pixels and featuring the same bandwidth of 265kHz (enough to read 1Megapixel with 50frame/s). Both chains contain a 4T pixel, a column amplifier and a single slope analog-to-digital converter operating a CDS. In one case, the pixel operates in source follower configuration, and in common source configuration in the other case. Based on analytical noise calculation of both readout chains, an optimization methodology is presented. Analytical results are confirmed by transient simulations using 130nm process. A total input referred noise bellow 0.4 electrons RMS is reached for a simulated conversion gain of 160μV/e-. Both optimized readout chains show the same input referred 1/f noise. The common source based readout chain shows better performance for thermal noise and requires smaller silicon area. We discuss the possible drawbacks of the common source configuration and provide the reader with a comparative table between the two readout chains. The table contains several variants (column amplifier gain, in-pixel transistor sizes and type).

  15. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  16. An OS9-UNIX data acquisition system with ECL readout

    NASA Astrophysics Data System (ADS)

    Ziem, P.; Beschorner, C.; Bohne, W.; Drescher, B.; Friese, T.; Kiehne, T.; Kluge, Ch.

    1996-02-01

    A new data acquisition system has been developed at the Hahn-Meitner-Institut to handle almost 550 parameters of nuclear physics experiments. The system combines a UNIX host running a portable data buffer router and a VME front-end based on the OS9 real time operating system. Different kinds of pulse analyzers are located in several CAMAC crates which are controlled by the VME system via a VICbus connection. Data readout is performed by means of an ECL daisy chain. Besides controlling CAMAC the main purpose of the VME front-end is event data formatting and histogramming. Using TCP/IP services, the UNIX host receives formatted data packages for data storage and display. During a beam time at the antiproton accelerator LEAR/CERN, the PS208 experiment has accumulated about 100 Gbyte of event data [2

  17. An OS9-UNIX data acquisition system with ECL readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziem, P.; Beschorner, C.; Bohne, W.

    1996-02-01

    A new data acquisition system has been developed at the Hahn-Meitner-Institut to handle almost 550 parameters of nuclear physics experiments. The system combines a UNIX host running a portable data buffer router and a VME front-end based on the OS9 real time operating system. Different kinds of pulse analyzers are located in several CAMAC crates which are controlled by the VME system via a VICbus connection. Data readout is performed by means of an ECL daisy chain. Besides controlling CAMAC the main purpose of the VME front-end is event data formatting and histogramming. Using TCP/IP services, the UNIX host receivesmore » formatted data packages for data storage and display. During a beam time at the antiproton accelerator LEAR/CERN, the PS208 experiment has accumulated about 100 Gbyte of event data.« less

  18. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Gao, W.; Liu, H.; Gan, B.; Hu, Y.

    2014-05-01

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e- to 180,000e-, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e- at zero farad plus 5.4 e- per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.

  19. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.

    2016-07-01

    Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.

  20. Characteristics of Various Photodiode Structures in CMOS Technology with Monolithic Signal Processing Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sourav; Chandratre, V. B.; Sukhwani, Menka

    2011-10-20

    Monolithic optical sensor with readout electronics are needed in optical communication, medical imaging and scintillator based gamma spectroscopy system. This paper presents the design of three different CMOS photodiode test structures and two readout channels in a commercial CMOS technology catering to the need of nuclear instrumentation. The three photodiode structures each of 1 mm{sup 2} with readout electronics are fabricated in 0.35 um, 4 metal, double poly, N-well CMOS process. These photodiode structures are based on available P-N junction of standard CMOS process i.e. N-well/P-substrate, P+/N-well/P-substrate and inter-digitized P+/N-well/P-substrate. The comparisons of typical characteristics among three fabricated photo sensorsmore » are reported in terms of spectral sensitivity, dark current and junction capacitance. Among the three photodiode structures N-well/P-substrate photodiode shows higher spectral sensitivity compared to the other two photodiode structures. The inter-digitized P+/N-well/P-substrate structure has enhanced blue response compared to N-well/P-substrate and P+/N-well/P-substrate photodiode. Design and test results of monolithic readout electronics, for three different CMOS photodiode structures for application related to nuclear instrumentation, are also reported.« less

  1. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    NASA Astrophysics Data System (ADS)

    Valero, A.; Tile Calorimeter System, ATLAS

    2017-10-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  2. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  3. Proposed control tower and cockpit visibility readouts based on an airport-aircraft information flow system

    DOT National Transportation Integrated Search

    1971-07-01

    The problem of displaying visibility information to both : controller and pilot is discussed in the context of visibility : information flow in the airport-aircraft system. : The optimum amount of visibility information, as well as its : rate of flow...

  4. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    NASA Technical Reports Server (NTRS)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  5. Enhancements to a superconducting quantum interference device (SQUID) multiplexer readout and control system

    NASA Astrophysics Data System (ADS)

    Forgione, Joshua B.; Benford, Dominic J.; Buchanan, Ernest D.; Moseley, S. H., Jr.; Rebar, Joyce; Shafer, Richard A.

    2004-10-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA's Goddard Space Flight Center acquired a Mark III system and subsequently designed upgrades to suit our and our collaborators' purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided 'hooks' in the Mark III system to allow readout of signals from outside the Mark III system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  6. Development of new data acquisition system for COMPASS experiment

    NASA Astrophysics Data System (ADS)

    Bodlak, M.; Frolov, V.; Jary, V.; Huber, S.; Konorov, I.; Levit, D.; Novy, J.; Salac, R.; Virius, M.

    2016-04-01

    This paper presents development and recent status of the new data acquisiton system of the COMPASS experiment at CERN with up to 50 kHz trigger rate and 36 kB average event size during 10 second period with beam followed by approximately 40 second period without beam. In the original DAQ, the event building is performed by software deployed on switched computer network, moreover the data readout is based on deprecated PCI technology; the new system replaces the event building network with a custom FPGA-based hardware. The custom cards are introduced and advantages of the FPGA technology for DAQ related tasks are discussed. In this paper, we focus on the software part that is mainly responsible for control and monitoring. The most of the system can run as slow control; only readout process has realtime requirements. The design of the software is built on state machines that are implemented using the Qt framework; communication between remote nodes that form the software architecture is based on the DIM library and IPBus technology. Furthermore, PHP and JS languages are used to maintain system configuration; the MySQL database was selected as storage for both configuration of the system and system messages. The system has been design with maximum throughput of 1500 MB/s and large buffering ability used to spread load on readout computers over longer period of time. Great emphasis is put on data latency, data consistency, and even timing checks which are done at each stage of event assembly. System collects results of these checks which together with special data format allows the software to localize origin of problems in data transmission process. A prototype version of the system has already been developed and tested the new system fulfills all given requirements. It is expected that the full-scale version of the system will be finalized in June 2014 and deployed on September provided that tests with cosmic run succeed.

  7. Proposal to upgrade the MIPP data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, W.; Carey, D.; Johnstone, C.

    2005-03-01

    The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost effective scheme of upgrading the MIPP data acquisition speed to 3000 Hz.

  8. LUMOS--A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range.

    PubMed

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M; Revsbech, Niels-Peter; Glud, Ronnie N; Canfield, Donald E; Klimant, Ingo

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized "sensing chemistry" that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented.

  9. LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range

    PubMed Central

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M.; Revsbech, Niels-Peter; Glud, Ronnie N.; Canfield, Donald E.; Klimant, Ingo

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized “sensing chemistry” that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented. PMID:26029920

  10. Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis

    NASA Astrophysics Data System (ADS)

    Köhring, M.; Pohlkötter, A.; Willer, U.; Angelmahr, M.; Schade, W.

    2011-01-01

    A photoacoustic trace gas sensor based on an optical read-out method of a quartz tuning fork is shown. Instead of conventional piezoelectric signal read-out, as applied in well-known quartz-enhanced photoacoustic spectroscopy (QEPAS), an interferometric read-out method for measurement of the tuning fork's oscillation is presented. To demonstrate the potential of the optical read-out of tuning forks in photoacoustics, a comparison between the performances of a sensor with interferometric read-out and conventional QEPAS with piezoelectric read-out is reported. The two sensors show similar characteristics. The detection limit (L) for the optical read-out is determined to be L opt=(2598±84) ppm (1 σ) compared to L elec=(2579±78) ppm (1 σ) for piezoelectric read-out. In both cases the detection limit is defined by the thermal noise of the tuning fork.

  11. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    PubMed

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  12. Optimal CCD readout by digital correlated double sampling

    NASA Astrophysics Data System (ADS)

    Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.

    2016-01-01

    Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.

  13. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    NASA Astrophysics Data System (ADS)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  14. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  15. Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Masahiro; Nakano, Toshiyuki; Komatani, Ryosuke; Kawahara, Hiroaki

    2017-10-01

    Automatic nuclear emulsion readout systems have seen remarkable progress since the original idea was developed almost 40 years ago. After the success of its full application to a large-scale neutrino experiment, OPERA, a much faster readout system, the hyper-track selector (HTS), has been developed. HTS, which has an extremely wide-field objective lens, reached a scanning speed of 4700 cm^2/h, which is nearly 100 times faster than the previous system and therefore strongly promotes many new experimental projects. We will describe the concept, specifications, system structure, and achieved performance in this paper.

  16. Performance of the NOνA Data Acquisition and Trigger Systems for the full 14 kT Far Detector

    NASA Astrophysics Data System (ADS)

    Norman, A.; Davies, G. S.; Ding, P. F.; Dukes, E. C.; Duyan, H.; Frank, M. J.; R. C. Group; Habig, A.; Henderson, W.; Niner, E.; Mina, R.; Moren, A.; Mualem, L.; Oksuzian, Y.; Rebel, B.; Shanahan, P.; Sheshukov, A.; Tamsett, M.; Tomsen, K.; Vinton, L.; Wang, Z.; Zamorano, B.; Zirnstien, J.

    2015-12-01

    The NOvA experiment uses a continuous, free-running, dead-timeless data acquisition system to collect data from the 14 kT far detector. The DAQ system readouts the more than 344,000 detector channels and assembles the information into an raw unfiltered high bandwidth data stream. The NOvA trigger systems operate in parallel to the readout and asynchronously to the primary DAQ readout/event building chain. The data driven triggering systems for NOvA are unique in that they examine long contiguous time windows of the high resolution readout data and enable the detector to be sensitive to a wide range of physics interactions from those with fast, nanosecond scale signals up to processes with long delayed coincidences between hits which occur at the tens of milliseconds time scale. The trigger system is able to achieve a true 100% live time for the detector, making it sensitive to both beam spill related and off-spill physics.

  17. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  18. Study of spacecraft direct readout meteorological systems

    NASA Technical Reports Server (NTRS)

    Bartlett, R.; Elam, W.; Hoedemaker, R.

    1973-01-01

    Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link.

  19. The PAUCam readout electronics system

    NASA Astrophysics Data System (ADS)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  20. SNDR Limits of Oscillator-Based Sensor Readout Circuits

    PubMed Central

    Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis

    2018-01-01

    This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms. PMID:29401646

  1. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  2. Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler.

    PubMed

    Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen

    2012-07-15

    We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.

  3. Highly multiplexed signal readout for a time-of-flight positron emission tomography detector based on silicon photomultipliers

    PubMed Central

    Cates, Joshua W.; Bieniosek, Matthew F.; Levin, Craig S.

    2017-01-01

    Abstract. Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system’s back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a 4×4 array of SensL MicroFC-30035 SiPMs coupled to 2.9×2.9×20  mm3 Lu1.8Gd0.2SiO5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of 198±2  ps FWHM between the 16-pixel multiplexed detector array and a 2.9×2.9×20  mm3 LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance. PMID:28382312

  4. An energy-efficient readout circuit for resonant sensors based on ring-down measurement

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Pertijs, M. A. P.; Karabacak, D. M.

    2013-02-01

    This paper presents an energy-efficient readout circuit for resonant sensors that operates based on a transient measurement method. The resonant sensor is driven at a frequency close to its resonance frequency by an excitation source that can be intermittently disconnected, causing the sensor to oscillate at its resonance frequency with exponentially decaying amplitude. By counting the zero crossings of this ring-down response, the interface circuit can detect the resonance frequency. In contrast with oscillator-based readout, the presented readout circuit is readily able to detect quality factor (Q) of the resonator from the envelope of the ring-down response, and can be used even in the presence of large parasitic capacitors. A prototype of the readout circuit has been integrated in 0.35 μm CMOS technology, and consumes only 36 μA from a 3.3 V supply during a measurement time of 2 ms. The resonance frequency and quality factor of a micro-machined SiN resonator obtained using this prototype are in good agreement with results obtained using impedance analysis. Furthermore, a clear transient response is observed to ethanol flow using the presented readout, demonstrating the use of this technique in sensing applications.

  5. Modeling high signal-to-noise ratio in a novel silicon MEMS microphone with comb readout

    NASA Astrophysics Data System (ADS)

    Manz, Johannes; Dehe, Alfons; Schrag, Gabriele

    2017-05-01

    Strong competition within the consumer market urges the companies to constantly improve the quality of their devices. For silicon microphones excellent sound quality is the key feature in this respect which means that improving the signal-to-noise ratio (SNR), being strongly correlated with the sound quality is a major task to fulfill the growing demands of the market. MEMS microphones with conventional capacitive readout suffer from noise caused by viscous damping losses arising from perforations in the backplate [1]. Therefore, we conceived a novel microphone design based on capacitive read-out via comb structures, which is supposed to show a reduction in fluidic damping compared to conventional MEMS microphones. In order to evaluate the potential of the proposed design, we developed a fully energy-coupled, modular system-level model taking into account the mechanical motion, the slide film damping between the comb fingers, the acoustic impact of the package and the capacitive read-out. All submodels are physically based scaling with all relevant design parameters. We carried out noise analyses and due to the modular and physics-based character of the model, were able to discriminate the noise contributions of different parts of the microphone. This enables us to identify design variants of this concept which exhibit a SNR of up to 73 dB (A). This is superior to conventional and at least comparable to high-performance variants of the current state-of-the art MEMS microphones [2].

  6. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.

  7. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  8. The Level 0 Pixel Trigger system for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Kluge, A.; Krivda, M.; ALICE Silicon Pixel Detector project

    2007-01-01

    The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is compact, modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers and 12 deserializer chips closely packed in small area receiver boards. Alternative solutions with multi-channel G-Link deserializers implemented directly in programmable hardware devices were investigated. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper.

  9. A multiball read-out for the spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Giganon, A.; Giomataris, I.; Gros, M.; Katsioulas, I.; Navick, X. F.; Tsiledakis, G.; Savvidis, I.; Dastgheibi-Fard, A.; Brossard, A.

    2017-12-01

    We present a novel concept of proportional gas amplification for the read-out of the spherical proportional counter. The standard single-ball read-out presents limitations for large diameter spherical detectors and high-pressure operations. We have developed a multi-ball read-out system which consists of several balls placed at a fixed distance from the center of the spherical vessel. Such a module can tune the volume electric field at the desired value and can also provide detector segmentation with individual ball read-out. In the latter case, the large volume of the vessel becomes a spherical time projection chamber with 3D capabilities.

  10. Discrete wavelength selection for the optical readout of a metamaterial biosensing system for glucose concentration estimation via a support vector regression model.

    PubMed

    Teutsch, T; Mesch, M; Giessen, H; Tarin, C

    2015-01-01

    In this contribution, a method to select discrete wavelengths that allow an accurate estimation of the glucose concentration in a biosensing system based on metamaterials is presented. The sensing concept is adapted to the particular application of ophthalmic glucose sensing by covering the metamaterial with a glucose-sensitive hydrogel and the sensor readout is performed optically. Due to the fact that in a mobile context a spectrometer is not suitable, few discrete wavelengths must be selected to estimate the glucose concentration. The developed selection methods are based on nonlinear support vector regression (SVR) models. Two selection methods are compared and it is shown that wavelengths selected by a sequential forward feature selection algorithm achieves an estimation improvement. The presented method can be easily applied to different metamaterial layouts and hydrogel configurations.

  11. PANDORA, a large volume low-energy neutron detector with real-time neutron-gamma discrimination

    NASA Astrophysics Data System (ADS)

    Stuhl, L.; Sasano, M.; Yako, K.; Yasuda, J.; Baba, H.; Ota, S.; Uesaka, T.

    2017-09-01

    The PANDORA (Particle Analyzer Neutron Detector Of Real-time Acquisition) system, which was developed for use in inverse kinematics experiments with unstable isotope beams, is a neutron detector based on a plastic scintillator coupled to a digital readout. PANDORA can be used for any reaction study involving the emission of low energy neutrons (100 keV-10 MeV) where background suppression and an increased signal-to-noise ratio are crucial. The digital readout system provides an opportunity for pulse shape discrimination (PSD) of the detected particles as well as intelligent triggering based on PSD. The figure of merit results of PANDORA are compared to the data in literature. Using PANDORA, 91 ± 1% of all detected neutrons can be separated, while 91 ± 1% of the detected gamma rays can be excluded, reducing the gamma ray background by one order of magnitude.

  12. Design of a wideband CMOS impedance spectroscopy ASIC analog front-end for multichannel biosensor interfaces.

    PubMed

    Valente, Virgilio; Dai Jiang; Demosthenous, Andreas

    2015-08-01

    This paper presents the preliminary design and simulation of a flexible and programmable analog front-end (AFE) circuit with current and voltage readout capabilities for electric impedance spectroscopy (EIS). The AFE is part of a fully integrated multifrequency EIS platform. The current readout comprises of a transimpedance stage and an automatic gain control (AGC) unit designed to accommodate impedance changes larger than 3 order of magnitude. The AGC is based on a dynamic peak detector that tracks changes in the input current over time and regulates the gain of a programmable gain amplifier in order to optimise the signal-to-noise ratio. The system works up to 1 MHz. The voltage readout consists of a 2 stages of fully differential current-feedback instrumentation amplifier which provide 100 dB of CMRR and a programmable gain up to 20 V/V per stage with a bandwidth in excess of 10MHz.

  13. Data management software concept for WEST plasma measurement system

    NASA Astrophysics Data System (ADS)

    Zienkiewicz, P.; Kasprowicz, G.; Byszuk, A.; Wojeński, A.; Kolasinski, P.; Cieszewski, R.; Czarski, T.; Chernyshova, M.; Pozniak, K.; Zabolotny, W.; Juszczyk, B.; Mazon, D.; Malard, P.

    2014-11-01

    This paper describes the concept of data management software for the multichannel readout system for the GEM detector used in WEST Plasma experiment. The proposed system consists of three separate communication channels: fast data channel, diagnostics channel, slow data channel. Fast data channel is provided by the FPGA with integrated ARM cores providing direct readout data from Analog Front Ends through 10GbE with short, guaranteed intervals. Slow data channel is provided by multiple, fast CPUs after data processing with detailed readout data with use of GNU/Linux OS and appropriate software. Diagnostic channel provides detailed feedback for control purposes.

  14. Fabrication techniques for superconducting readout loops

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    Procedures for the fabrication of superconducting readout loops out of niobium on glass substrates were developed. A computer program for an existing fabrication system was developed. Both positive and negative resist procedures for the production of the readout loops were investigated. Methods used to produce satisfactory loops are described and the various parameters affecting the performance of the loops are analyzed.

  15. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  16. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  17. Skeletal status and soft tissue composition in astronauts. Tissue and fluid changes by radionuclide absorptiometry in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Mazess, R. B.; Wilson, C. R.

    1973-01-01

    A device has been constructed and tested which provides immediate readout of bone mineral content and bone width from absorptiometric scans with low energy radionuclides. The basis of this analog system is a logarithmic converter-integrator coupled with a precision linear ratemeter. The system provided accurate and reliable results on standards and ashed bone sections. Clinical measurements were made on about 100 patients with the direct readout system, and these were highly correlated with the results from digital scan data on the same patients. The direct readout system has been used successfully in field studies and surveys as well as for clinical observations.

  18. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.

    PubMed

    Taylor, Adam B; Kim, Jooho; Chon, James W M

    2012-02-27

    In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.

  19. A pixelated charge readout for Liquid Argon Time Projection Chambers

    NASA Astrophysics Data System (ADS)

    Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Hänni, R.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; von Rohr, C. Rudolf; Sinclair, J.; Stocker, F.; Tognina, C.; Weber, M.

    2018-02-01

    Liquid Argon Time Projection Chambers (LArTPCs) are ideally suited to perform long-baseline neutrino experiments aiming to measure CP violation in the lepton sector, and determine the ordering of the three neutrino mass eigenstates. LArTPCs have used projective wire readouts for charge detection since their conception in 1977. However, wire readouts are notoriously fragile and therefore a limiting factor in the design of any large mass detectors. Furthermore, a wire readout also introduces intrinsic ambiguities in event reconstruction. Within the ArgonCube concept—the liquid argon component of the DUNE near detector—we are developing a pixelated charge readout for LArTPCs. Pixelated charge readout systems represent the single largest advancement in the sensitivity of LArTPCs. They are mechanically robust and provide direct 3D readout, serving to minimise reconstruction ambiguities, enabling more advanced triggers, further reducing event pile-up and improving background rejection. This article presents first results from a pixelated LArTPC prototype built and operated in Bern.

  20. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    NASA Astrophysics Data System (ADS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of state-of-the-art DC-SQUID-based multiplexers.

  1. Large Format, Background Limited Arrays of Kinetic Inductance Detectors for Sub-mm Astronomy

    NASA Astrophysics Data System (ADS)

    Baselmans, Jochem

    2018-01-01

    We present the development of large format imaging arrays for sub-mm astronomy based upon microwave Kinetic Inductance detectors and their read-out. In particular we focus on the arrays developed for the A-MKID instrument for the APEX telescope. AMKID contains 2 focal plane arrays, covering a field of view of 15?x15?. One array is optimized for the 350 GHz telluric window, the other for the 850 GHz window. Both arrays are constructed from four 61 x 61 mm detector chips, each of which contains up to 3400 detectors and up to 880 detectors per readout line. The detectors are lens antenna coupled MKIDs made from NbTiN and Aluminium that reach photon noise limited sensitivity in combination with a high optical coupling. The lens-antenna radiation coupling enables the use of 4K optics and Lyot stop due to the intrinsic directivity of the detector beam, allowing a simple cryogenic architecture. We discuss the pixel design and verification, detector packaging and the array performance. We will also discuss the readout system, which is a combination of a digital and analog back-end that can read-out up to 4000 pixels simultaneously using frequency division multiplexing.

  2. High-Density Near-Field Readout over 50 GB Capacity Using Solid Immersion Lens with High Refractive Index

    NASA Astrophysics Data System (ADS)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Ishimoto, Tsutomu; Nakaoki, Ariyoshi

    2003-02-01

    We have investigated high-density near-field readout using a solid immersion lens with a high refractive index. By using a glass material with a high refractive index of 2.08, we developed an optical pick-up with the effective numerical aperture of 1.8. We could observe a clear eye pattern for a 50 GB capacity disc in 120 mm diameter. We confirmed that the near-field readout system is promising method of realizing a high-density optical disc system.

  3. Implementation of a Readout Circuit on SOI Technology for the Signal Conditioning of a Neutron Detector in Harsh Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Krit, S.; Coulie-Castellani, K.; Rahajandraibe, W.

    2015-07-01

    A transistor level implementation of the analog block of a readout system on SOI process is presented here. This system is dedicated to the signal conditioning of a neutron detector in harsh environment. The different parts of the readout circuits are defined. The harsh environment constraints (crossing particle effect, high temperatures) are also detailed and modeled in the circuit in order to test and evaluate the characteristics of the designed block when working under these conditions. (authors)

  4. Neutron radiographic viewing system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development and application of a neutron radiographic viewing system for use in nondestructive testing applications is considered. The system consists of a SEC vidicon camera, neutron image intensifier system, disc recorder, and TV readout. Neutron bombardment of the subject is recorded by an image converter and passed through an optical system into the SEC vidicon. The vidicon output may be stored, or processed for visual readout.

  5. Fast Low-Cost Multiple Sensor Readout System

    DOEpatents

    Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary

    2004-04-06

    A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.

  6. A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    NASA Astrophysics Data System (ADS)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-01

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  7. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  8. An FPGA-based data acquisition system for directional dark matter detection

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Nicoloff, Catherine; Sanaullah, Ahmed; Sridhar, Arvind; Herbordt, Martin; Battat, James; Battat Lab at Wellesley College Team; CAAD Lab at Boston University Team

    2017-01-01

    Directional dark matter detection is a powerful tool in the search for dark matter. Low-pressure gas TPCs are commonly used for directional detection, and dark-matter-induced recoils are mm long. These tracks can be reconstructed by micropatterned readouts. Because large detector volumes are needed, a cost-effective data acquisition system capable of scaling to large channel counts (105 or 106) is required. The Directional Recoil Identification From Tracks (DRIFT) collaboration has pioneered the use of TPCs for directional detection. We employ a negative ion gas with drift speed comparable to the electron drift speed in liquid argon (LAr). We aim to use electronics developed for million-channel readouts in large LAr neutrino detectors. We have built a prototype Micromegas-based directional detector with 103 channels. A FPGA-based back-end system (BE) receives a 12 Gbps data stream from eight ASIC-based front-end boards (FE), each with 128 detector channels. The BE buffers 3 μs of pretrigger data for all channels in DRAM, and streams triggered data to a host PC. We will describe the system architecture and present preliminary measurements from the DAQ. We acknowledge the support of the Research Corporation for Science Advancement, the NSF and the Massachusetts Space Grant Consortium.

  9. 75 FR 82372 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ..., Argonne LLC, 9700 South Cass Ave., Lemont, IL 60439. Instrument: Pilatus 100K Pixel Detector System... efficiency (no readout noise and direct detection scheme), high dynamic range (20-bits), and fast readout.... Instrument: Pilatus 300K Pixel Detector System. Manufacturer: Dectris Ltd., Switzerland. Intended Use: The...

  10. Two-dimensional ultrahigh-density X-ray optical memory.

    PubMed

    Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H

    2007-01-01

    Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in paper, one may choose optimally the incident radiation wavelength, as well as the angle of incidence of X-ray micro beams, appropriate for proposed digital data read-out procedure.

  11. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    PubMed

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  12. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    NASA Astrophysics Data System (ADS)

    Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.

    2017-09-01

    Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  13. The design, status and performance of the ZEUS central tracking detector electronics

    NASA Astrophysics Data System (ADS)

    Cussans, D. G.; Fawcett, H. F.; Foster, B.; Gilmore, R. S.; Heath, G. P.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Gingrich, D. M.; Harnew, N.; Hallam-Baker, P.; Nash, J.; Khatri, T.; Shield, P. D.; McArthur, I.; Topp-Jorgensen, S.; Wilson, F. F.; Allen, D.; Baird, S. A.; Carter, R.; Galagardera, S.; Gibson, M. D.; Hatley, R. S.; Jeffs, M.; Milborrow, R.; Morissey, M.; Quinton, S. P. H.; White, D. J.; Lane, J.; Nixon, G.; Postranecky, M.; Jamdagni, A. K.; Marcou, C.; Miller, D. B.; Toudup, L.

    1992-05-01

    The readout system developed for the ZEUS central trackign detector (CDT) is described. The CTD is required to provide an accurate measurement of the sagitta and energy loss of charged particles as well as provide fast trigger information. This must be carried out in the HERA environment in which beams cross every 96 ns. The first two aims are achieved by digitizing chamber pulses using a pipelined 104 MHz FADC system. The trigger uses a fast determination of the difference in the arrival times of a pulse at each end of the CTD. It processes this data and gives information to the ZEUS global first level trigger. The modules are housed in custom-built racks and crates and read out using a DAQ system based on Transputer readout controllers. These also monitor data quality and produce data for the ZEUS second level Trigger.

  14. The Silicon Tracking System of the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Teklishyn, Maksym

    2018-03-01

    The Silicon Tracking System (STS) is the central detector in the Compressed Baryonic Matter (CBM) experiment at FAIR. Operating in the 1Tm dipole magnetic field, the STS will enable pile-up free detection and momentum measurement of the charged particles originating from beam-target nuclear interactions at rates up to 10 MHz. The STS consists of 8 tracking stations based on double-sided silicon micro-strip sensors equipped with fast, self-triggering read-out electronics. With about two million read-out channels, the STS will deliver a high-rate stream of time-stamped data that is transferred to a computing farm for on-line event determination and analysis. The functional building block is a detector module consisting of a sensor, micro-cables and two front-end electronics boards. In this contribution, the development status of the STS components and the system integration is discussed and an outlook on the detector construction is given.

  15. ATLAS Tile Calorimeter calibration and monitoring systems

    NASA Astrophysics Data System (ADS)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  16. A molecular quantum spin network controlled by a single qubit.

    PubMed

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  17. The Phase-II ATLAS ITk pixel upgrade

    NASA Astrophysics Data System (ADS)

    Terzo, S.

    2017-07-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase-II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 m2 of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| <4. Supporting structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide circulated in thin-walled titanium pipes embedded in the structures. Planar, 3D, and CMOS sensors are being investigated to identify the optimal technology, which may be different for the various layers. The RD53 Collaboration is developing the new readout chip. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system. A readout speed of up to 5 Gb/s per data link will be needed in the innermost layers going down to 640 Mb/s for the outermost. Because of the very high radiation level inside the detector, the first part of the transmission has to be implemented electrically, with signals converted for optical transmission at larger radii. Extensive tests are being carried out to prove the feasibility of implementing serial powering, which has been chosen as the baseline for the ITk pixel system due to the reduced material in the servicing cables foreseen for this option.

  18. Web-based DAQ systems: connecting the user and electronics front-ends

    NASA Astrophysics Data System (ADS)

    Lenzi, Thomas

    2016-12-01

    Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.

  19. Development of FEB Test Platform for ATLAS New Small Wheel Upgrade

    NASA Astrophysics Data System (ADS)

    Lu, Houbing; Hu, Kun; Wang, Xu; Li, Feng; Han, Liang; Jin, Ge

    2016-10-01

    This concept of test platform is based on the test requirements of the front-end board (FEB) which is developed for the phase I upgrade of the small Thin Gap Chamber(sTGC) detector on New Small Wheel(NSW) of ATLAS. The front-end electronics system of sTGC consists of 1,536 FEBs with about 322,000 readout of strips, wires and pads in total. A test platform for FEB with up to 256 channels has been designed to keep the testing efficiency at a controllable level. We present the circuit model architecture of the platform, and its functions and implementation as well. The firmware based on Field Programmable Gate Array (FPGA) and the software based on PC have been developed, and basic test methods have been established. FEB readout measurements have been performed in analog injection from the test platform, which will provide a fast and efficient test method for the production of FEB.

  20. Readout architecture for sub-nanosecond resolution TDC

    NASA Astrophysics Data System (ADS)

    Marteau, J.; Carlus, B.; Gardien, S.; Girerd, C.; Ianigro, J.-C.; Montorio, J.-L.; Gibert, D.; Nicollin, F.

    2012-04-01

    The DIAPHANE project is pluri-disciplinary collaboration between particle physicists and geophysicists to perform the tomography of large geological structure mainly devoted to the study of active volcanoes. The detector used for this tomography, hereafter referred to as telescope, uses a standard, robust, cost-effective and well-known technology based on solid plastic scintillator readout by photomultiplier(s) (either multichannel pixelized PM or silicon PM). The electronics system is built on the concept of autonomous, triggerless, smart sensor directly connected on a standard fast Ethernet network. First radiographies have been performed on the Mont-Terri underground laboratory (St-Ursanne, Switzerland) and on the active volcano of La Soufrière (Guadeloupe, Lesser Antilles, France). We present an upgrade of the readout architecture allowing to embed a sub-nanosecond resolution TDC within the existing programmable logic to help in the background rejection (rear flux, random coincidences) and to improve the detection purity and the radiography quality. First results obtained are also presented and briefly discussed.

  1. Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    NASA Astrophysics Data System (ADS)

    Fabbri, A.; Falco, M. D.; De Notaristefani, F.; Galasso, M.; Marinelli, M.; Orsolini Cencelli, V.; Tortora, L.; Verona, C.; Verona Rinati, G.

    2013-02-01

    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.

  2. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    NASA Astrophysics Data System (ADS)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  3. Echo planar imaging at 4 Tesla with minimum acoustic noise.

    PubMed

    Tomasi, Dardo G; Ernst, Thomas

    2003-07-01

    To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.

  4. Fast Readout Architectures for Large Arrays of Digital Pixels: Examples and Applications

    PubMed Central

    Gabrielli, A.

    2014-01-01

    Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas. PMID:24778588

  5. WE-AB-207A-03: A CBCT Head Scanner for Point-Of-Care Imaging of Intracranial Hemorrhage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J; Sisniega, A; Zbijewski, W

    Purpose: This work reports the design, development, and first technical assessment of a cone-beam CT (CBCT) scanner developed specifically for imaging of acute intracranial hemorrhage (ICH) at the point of care, with target applications in diagnosis and monitoring of traumatic brain injury, stroke, and postsurgical hemorrhage. Methods: System design employed a task-based image quality model to quantify the influence of factors such as additive noise and high-gain (HG) detector readout on ICH detectability. Three bowtie filters with varying bare-beam attenuation strength and curvature were designed to enable HG readout without detector saturation, and a polyenergetic gain correction was developed tomore » minimize artifacts from bowtie flood-field calibration. Image reconstruction used an iterative penalized weighted least squares (PWLS) method with artifact correction including Monte Carlo scatter estimation, Joseph-Spital beam hardening correction, and spatiotemporal deconvolution of detector glare and lag. Radiation dose was characterized for half-scan and full-scan protocols at various kV, and imaging performance was assessed in a head phantom presenting simulated ICH with diameter ranging 2–12 mm. Results: The image quality model guided system design and was validated by measurements on a CBCT imaging bench. Compared to low-gain readout without a bowtie filter, the combination of HG readout and a modest bowtie improved the contrast-to-noise ratio (CNR per unit square-root dose) by 20% in the center of the image but degraded noise performance near the periphery (20% reduction in CNR). Low-frequency bowtie artifacts (∼100 HU magnitude) were corrected by the polyenergetic gain correction. Image reconstructions on the prototype scanner demonstrate clear visibility of the smallest ICH insert (2 mm diameter) in both HG readout (with a bowtie) and dual-gain readout (without bowtie). Conclusion: Technical assessment of the prototype scanner suggests the capability for reliable visualization of small (2 mm), low-contrast (50 HU) ICH at <20 mGy dose and motivates translation to clinical studies, now underway. Xiaohui Wang and David Foos (co-authors) are employees of Carestream Health. Research funding support from Carestream Health.« less

  6. A fast embedded readout system for large-area Medipix and Timepix systems

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Balzer, M.; Smale, S.; Hartmann, J.; Bormann, D.; Hamann, E.; Cecilia, A.; Zuber, M.; Koenig, T.; Zwerger, A.; Weber, M.; Fiederle, M.; Baumbach, T.

    2014-05-01

    In this work we present a novel readout electronics for an X-ray sensor based on a Si crystal bump-bonded to an array of 3 × 2 Medipix ASICs. The pixel size is 55 μm × 55 μm with a total number of ~ 400k pixels and a sensitive area of 42 mm × 28 mm. The readout electronics operate Medipix-2 MXR or Timepix ASICs with a clock speed of 125 MHz. The data acquisition system is centered around an FPGA and each of the six ASICs has a dedicated I/O port for simultaneous data acquisition. The settings of the auxiliary devices (ADCs and DACs) are also processed in the FPGA. Moreover, a high-resolution timer operates the electronic shutter to select the exposure time from 8 ns to several milliseconds. A sophisticated trigger is available in hardware and software to synchronize the acquisition with external electro-mechanical motors. The system includes a diagnostic subsystem to check the sensor temperature and to control the cooling Peltier cells and a programmable high-voltage generator to bias the crystal. A network cable transfers the data, encapsulated into the UDP protocol and streamed at 1 Gb/s. Therefore most notebooks or personal computers are able to process the data and to program the system without a dedicated interface. The data readout software is compatible with the well-known Pixelman 2.x running both on Windows and GNU/Linux. Furthermore the open architecture encourages users to write their own applications. With a low-level interface library which implements all the basic features, a MATLAB or Python script can be implemented for special manipulations of the raw data. In this paper we present selected images taken with a microfocus X-ray tube to demonstrate the capability to collect the data at rates up to 120 fps corresponding to 0.76 Gb/s.

  7. Proposed differential-frequency-readout system by hysteretic Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.Z.; Duncan, R.V.

    1992-10-01

    The Josephson relation {ital V}={ital nh}{nu}/2{ital e} has been verified experimentally to 3 parts in 10{sup 19} (A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)). Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model (W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)) of Josephsonmore » junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 {mu}m (D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)). The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step.« less

  8. Sources of noise in magneto-optical readout

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.

    1991-01-01

    The various sources of noise which are often encountered in magneto-optical readout systems are analyzed. Although the focus is on magneto-optics, most sources of noise are common among the various optical recording systems and one can easily adapt the results to other media and systems. A description of the magneto-optical readout system under consideration is given, and the standard methods and the relevant terminology of signal and noise measurement are described. The characteristics of thermal noise, which originates in the electronic circuitry of the readout system, are described. The most fundamental of all sources of noise, the shot noise, is considered, and a detailed account of its statistical properties is given. Shot noise, which is due to random fluctuations in photon arrival times, is an ever-present noise in optical detection. Since the performance of magneto-optical recording devices in use today is approaching the limit imposed by the shot noise, it is important that the reader have a good grasp of this particular source of noise. A model for the laser noise is described, and measurement results which yield numerical values for the strength of the laser power fluctuations are presented. Spatial variations of the disk reflectivity and random depolarization phenomena also contribute to the overall level of noise in readout; these and related issues are treated. Numerical simulation results describing some of the more frequently encountered sources of noise which accompany the recorded waveform itself, namely, jitter noise and signal-amplitude fluctuation noise are presented.

  9. The next generation balloon-borne large aperture submillimeter telescope (BLAST-TNG)

    NASA Astrophysics Data System (ADS)

    Dober, Bradley Jerald

    Large areas of astrophysics, such as precision cosmology, have benefited greatly from large maps and datasets, yielded by telescopes of ever-increasing number and ability. However, due to the unique challenges posed by submillimeter polarimetry, the study of molecular cloud dynamics and star formation remain stunted. Previously, polarimetry data was limited to a few vectors on only the brightest areas of molecular clouds. This made drawing statistically-driven conclusions a daunting task. However, the successful flight of the Balloon-born Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) generated maps with thousands of independent polarization measurements of molecular clouds, and ushered in a new era of empirical modeling of molecular cloud dynamics. Now that the potential benefits from large-scale maps of magnetic fields in molecular clouds had been identified, a successor that would truly unlock the secrets must be born. The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG), the successor to BLASTPol, has the ability to make larger and more detailed maps of magnetic fields in molecular clouds. It will push the field of star formation into a statistics-driven, empirical realm. With these large, detailed datasets, astronomers will be able to find new relationships between the dust dynamics and the magnetic fields. The field will surge to a new level of understanding. One of the key enabling technologies of BLAST-TNG is its three arrays of polarization-sensitive Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting RLC circuits with a resonant frequency that shifts proportionally to the amount of incident radiation. The key feature of MKIDs is that thousands of detectors, each with their own unique resonant frequency, can be coupled to the same readout line. This technology will be able to drive the production of large-scale monolithic arrays, containing tens or hundreds of thousands of detectors, resulting in an ever-increasing rate of scientific progress. The current limiting factor that determines how many MKIDs can be placed on the same readout line is the bandwidth and processing limitations of the readout hardware. BLAST-TNG has pushed this technology forward by implementing the first Reconfigurable Open-Architecture Computing Hardware (ROACH2) based readout system. This has significantly raised the processing abilities of the MKID readout electronics, enabling over 1000 MKIDs to be read out on a single line. It is also the first ever ROACH (1 or 2) based system to ever be flown on a long duration balloon (LDB) payload. This thesis documents the first-ever deployment of MKIDs on a balloon payload. This is a significant technological step towards an MKID-based satellite payload. This thesis overviews the balloon payload, details the underlying detector physics, catalogs the detector and full-scale array development, and ends with the room-temperature readout electronics.

  10. Controller and data acquisition system for SIDECAR ASIC driven HAWAII detectors

    NASA Astrophysics Data System (ADS)

    Ramaprakash, Anamparambu; Burse, Mahesh; Chordia, Pravin; Chillal, Kalpesh; Kohok, Abhay; Mestry, Vilas; Punnadi, Sujit; Sinha, Sakya

    2010-07-01

    SIDECAR is an Application Specific Integrated Circuit (ASIC), which can be used for control and data acquisition from near-IR HAWAII detectors offered by Teledyne Imaging Sensors (TIS), USA. The standard interfaces provided by Teledyne are COM API and socket servers running under MS Windows platform. These interfaces communicate to the ASIC (and the detector) through an intermediate card called JWST ASIC Drive Electronics (JADE2). As part of an ongoing programme of several years, for developing astronomical focal plane array (CCDs, CMOS and Hybrid) controllers and data acquisition systems (CDAQs), IUCAA is currently developing the next generation controllers employing Virtex-5 family FPGA devices. We present here the capabilities which are built into these new CDAQs for handling HAWAII detectors. In our system, the computer which hosts the application programme, user interface and device drivers runs on a Linux platform. It communicates through a hot-pluggable USB interface (with an optional optical fibre extender) to the FPGA-based card which replaces the JADE2. The FPGA board in turn, controls the SIDECAR ASIC and through it a HAWAII-2RG detector, both of which are located in a cryogenic test Dewar set up which is liquid nitrogen cooled. The system can acquire data over 1, 4, or 32 readout channels, with or without binning, at different speeds, can define sub-regions for readout, offers various readout schemes like Fowler sampling, up-theramp etc. In this paper, we present the performance results obtained from a prototype system.

  11. Cavity-Enhanced Optical Readout of a Single Solid-State Spin

    NASA Astrophysics Data System (ADS)

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo

    2018-05-01

    We demonstrate optical readout of a single spin using cavity quantum electrodynamics. The spin is based on a single trapped electron in a quantum dot that has a poor branching ratio of 0.43. Selectively coupling one of the optical transitions of the quantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables spin readout by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin-readout fidelity of 0.61. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.

  12. Studies of Avalanche Photodiodes (APDS) as Readout Devices for Scintillating Fibers for High Energy Gamma-Ray Astronomy Telescopes

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Shera, Suzanne; Shamo, Denis

    1998-01-01

    New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive area diameter) and output in the 1-5 volt range. If successful, this feasibility study will make possible the development of a scintillating fiber detector with unsurpassed sensitivity, extremely low power usage, a crucial factor of merit for space based sensors and telescopes.

  13. Design issues of a low cost lock-in amplifier readout circuit for an infrared detector

    NASA Astrophysics Data System (ADS)

    Scheepers, L.; Schoeman, J.

    2014-06-01

    In the past, high resolution thermal sensors required expensive cooling techniques making the early thermal imagers expensive to operate and cumbersome to transport, limiting them mainly to military applications. However, the introduction of uncooled microbolometers has overcome many of earlier problems and now shows great potential for commercial optoelectric applications. The structure of uncooled microbolometer sensors, especially their smaller size, makes them attractive in low cost commercial applications requiring high production numbers with relatively low performance requirements. However, the biasing requirements of these microbolometers cause these sensors to generate a substantial amount of noise on the output measurements due to self-heating. Different techniques to reduce this noise component have been attempted, such as pulsed biasing currents and the use of blind bolometers as common mode reference. These techniques proved to either limit the performance of the microbolometer or increase the cost of their implementation. The development of a low cost lock-in amplifier provides a readout technique to potentially overcome these challenges. High performance commercial lock-in amplifiers are very expensive. Using this as a readout circuit for a microbolometer will take away from the low manufacturing cost of the detector array. Thus, the purpose of this work was to develop a low cost readout circuit using the technique of phase sensitive detection and customizing this as a readout circuit for microbolometers. The hardware and software of the readout circuit was designed and tested for improvement of the signal-to-noise ratio (SNR) of the microbolometer signal. An optical modulation system was also developed in order to effectively identify the desired signal from the noise with the use of the readout circuit. A data acquisition and graphical user interface sub system was added in order to display the signal recovered by the readout circuit. The readout circuit was able to enhance the SNR of the microbolometer signal significantly. It was shown that the quality of the phase sensitive detector plays a significant role in the effectiveness of the readout circuit to improve the SNR.

  14. VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, J. R.; Joshi, Joshi,S.; Liu, Liu,

    In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture includingmore » pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.« less

  15. Large Format CMOS-based Detectors for Diffraction Studies

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Nix, J. C.; Achterkirchen, T. G.; Westbrook, E. M.

    2013-03-01

    Complementary Metal Oxide Semiconductor (CMOS) devices are rapidly replacing CCD devices in many commercial and medical applications. Recent developments in CMOS fabrication have improved their radiation hardness, device linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large-format (e.g. 10 cm × 15 cm) CMOS devices with a pixel size of 100 μm × 100 μm are now becoming available that can be butted together on three sides so that very large area detector can be made with no dead regions. Like CCD systems our CMOS systems use a GdOS:Tb scintillator plate to convert stopping x-rays into visible light which is then transferred with a fiber-optic plate to the sensitive surface of the CMOS sensor. The amount of light per x-ray on the sensor is much higher in the CMOS system than a CCD system because the fiber optic plate is only 3 mm thick while on a CCD system it is highly tapered and much longer. A CMOS sensor is an active pixel matrix such that every pixel is controlled and readout independently of all other pixels. This allows these devices to be readout while the sensor is collecting charge in all the other pixels. For x-ray diffraction detectors this is a major advantage since image frames can be collected continuously at up 20 Hz while the crystal is rotated. A complete diffraction dataset can be collected over five times faster than with CCD systems with lower radiation exposure to the crystal. In addition, since the data is taken fine-phi slice mode the 3D angular position of diffraction peaks is improved. We have developed a cooled 6 sensor CMOS detector with an active area of 28.2 × 29.5 cm with 100 μm × 100 μm pixels and a readout rate of 20 Hz. The detective quantum efficiency exceeds 60% over the range 8-12 keV. One, two and twelve sensor systems are also being developed for a variety of scientific applications. Since the sensors are butt able on three sides, even larger systems could be built at reasonable cost.

  16. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    PubMed

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  17. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    PubMed Central

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  18. An Integrated Thermal Compensation System for MEMS Inertial Sensors

    PubMed Central

    Chiu, Sheng-Ren; Teng, Li-Tao; Chao, Jen-Wei; Sue, Chung-Yang; Lin, Chih-Hsiou; Chen, Hong-Ren; Su, Yan-Kuin

    2014-01-01

    An active thermal compensation system for a low temperature-bias-drift (TBD) MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG) process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 μm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high performance gyroscope applications, the temperature-dependent characteristics of the micro-gyroscope are discussed. Furthermore, to compensate the TBD of the micro-gyroscope, a thermal compensation system is proposed and integrated in the aforementioned ASIC to actively tune the parameters in the digital trimming mechanism, which is designed in the readout ASIC. Finally, some experimental results demonstrate that the TBD of the micro-gyroscope can be compensated effectively by the proposed compensation system. PMID:24599191

  19. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out.

    PubMed

    Liu, Hong; Crooks, Richard M

    2012-03-06

    We report a battery-powered, microelectrochemical sensing platform that reports its output using an electrochromic display. The platform is fabricated based on paper fluidics and uses a Prussian blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. The integrated metal/air battery powers both the electrochemical sensor and the electrochromic read-out, which are in electrical contact via a paper reservoir. The sample activates the battery and the presence of analyte in the sample initiates the color change of the Prussian blue spot. The entire system is assembled on the lab bench, without the need for cleanroom facilities. The applicability of the device to point-of-care sensing is demonstrated by qualitative detection of 0.1 mM glucose and H(2)O(2) in artificial urine samples.

  20. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Bo; Wei, Tingcun; Gao, Wu

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of themore » whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a power consumption of 8 mW per channel. The linearity error is lower than 1% and the overall gain of the readout channel is 165 V/pC. The crosstalk between the channels is less than 3%. By connecting the readout ASIC to a CdZnTe detector, we obtained a γ-ray spectrum, the energy resolution is 5.1% at the 59.5-keV line of {sup 241}Am source. (authors)« less

  1. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  2. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests.

    PubMed

    Van Dorst, Bieke; Brivio, Monica; Van Der Sar, Elfried; Blom, Marko; Reuvekamp, Simon; Tanzi, Simone; Groenhuis, Roelf; Adojutelegan, Adewole; Lous, Erik-Jan; Frederix, Filip; Stuyver, Lieven J

    2016-04-15

    In this manuscript, a microfluidic detection module, which allows a sensitive readout of biological assays in point-of-care (POC) tests, is presented. The proposed detection module consists of a microfluidic flow cell with an integrated Complementary Metal-Oxide-Semiconductor (CMOS)-based single photon counting optical sensor. Due to the integrated sensor-based readout, the detection module could be implemented as the core technology in stand-alone POC tests, for use in mobile or rural settings. The performance of the detection module was demonstrated in three assays: a peptide, a protein and an antibody detection assay. The antibody detection assay with readout in the detection module proved to be 7-fold more sensitive that the traditional colorimetric plate-based ELISA. The protein and peptide assay showed a lower limit of detection (LLOD) of 200 fM and 460 fM respectively. Results demonstrate that the sensitivity of the immunoassays is comparable with lab-based immunoassays and at least equal or better than current mainstream POC devices. This sensitive readout holds the potential to develop POC tests, which are able to detect low concentrations of biomarkers. This will broaden the diagnostic capabilities at the clinician's office and at patient's home, where currently only the less sensitive lateral flow and dipstick POC tests are implemented. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  4. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  5. The BELLE DAQ system

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh Yamagata; Yamauchi, Masanori; Nakao, Mikihiko; Itoh, Ryosuke; Fujii, Hirofumi

    2000-10-01

    We built a data acquisition system for the BELLE experiment. The system was designed to cope with the average trigger rate up to 500 Hz at the typical event size of 30 kB. This system has five components: (1) the readout sequence controller, (2) the FASTBUS-TDC readout systems using charge-to-time conversion, (3) the barrel shifter event builder, (4) the parallel online computing farm, and (5) the data transfer system to the mass storage. This system has been in operation for physics data taking since June 1999 without serious problems.

  6. Tunneling Statistics for Analysis of Spin-Readout Fidelity

    NASA Astrophysics Data System (ADS)

    Gorman, S. K.; He, Y.; House, M. G.; Keizer, J. G.; Keith, D.; Fricke, L.; Hile, S. J.; Broome, M. A.; Simmons, M. Y.

    2017-09-01

    We investigate spin and charge dynamics of a quantum dot of phosphorus atoms coupled to a radio-frequency single-electron transistor (SET) using full counting statistics. We show how the magnetic field plays a role in determining the bunching or antibunching tunneling statistics of the donor dot and SET system. Using the counting statistics, we show how to determine the lowest magnetic field where spin readout is possible. We then show how such a measurement can be used to investigate and optimize single-electron spin-readout fidelity.

  7. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less

  8. YARR - A PCIe based Readout Concept for Current and Future ATLAS Pixel Modules

    NASA Astrophysics Data System (ADS)

    Heim, Timon

    2017-10-01

    The Yet Another Rapid Readout (YARR) system is a DAQ system designed for the readout of current generation ATLAS Pixel FE-I4 and next generation chips. It utilises a commercial-off-the-shelf PCIe FPGA card as a reconfigurable I/O interface, which acts as a simple gateway to pipe all data from the Pixel modules via the high speed PCIe connection into the host system’s memory. Relying on modern CPU architectures, which enables the usage of parallelised processing in threads and commercial high speed interfaces in everyday computers, it is possible to perform all processing on a software level in the host CPU. Although FPGAs are very powerful at parallel signal processing their firmware is hard to maintain and constrained by their connected hardware. Software, on the other hand, is very portable and upgraded frequently with new features coming at no cost. A DAQ concept which does not rely on the underlying hardware for acceleration also eases the transition from prototyping in the laboratory to the full scale implementation in the experiment. The overall concept and data flow will be outlined, as well as the challenges and possible bottlenecks which can be encountered when moving the processing from hardware to software.

  9. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  10. CGS-MSFSS Project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey-Collard, Patrick

    2015-10-27

    From January 2015 to July 2015, I was doing research at Sandia National Laboratories in Albuquerque, United States. My work there consisted of performing experimental measurements using Sandia’s unique silicon quantum computing platform. The project is about coupling donor spin quantum bits, or qubits, to quantum dots in a silicon nanostructure based on conventional microchip technology. During the project, I devised a new quantum state readout mechanism that allow better, longer lived measurement signals. The measurement (or readout) mechanism is key to any qubit architecture. Next, I was able to demonstrate a quantum manipulation of the two-electron spin states ofmore » the coupled donor and quantum dot system. This constitutes a breakthrough for donor spin qubits in silicon because it could enable larger systems consisting of many qubits. This project will lead to publications in scientific journals, presentations in international conferences, and generates exciting new opportunities for manipulating nature at the nanoscale.« less

  11. Dispersive Readout of Adiabatic Phases

    NASA Astrophysics Data System (ADS)

    Kohler, Sigmund

    2017-11-01

    We propose a protocol for the measurement of adiabatic phases of periodically driven quantum systems coupled to an open cavity that enables dispersive readout. It turns out that the cavity transmission exhibits peaks at frequencies determined by a resonance condition that involves the dynamical and the geometric phase. Since these phases scale differently with the driving frequency, one can determine them by fitting the peak positions to the theoretically expected behavior. For the derivation of the resonance condition and for a numerical study, we develop a Floquet theory for the dispersive readout of ac driven quantum systems. The feasibility is demonstrated for two test cases that generalize Landau-Zener-Stückelberg-Majorana interference to two-parameter driving.

  12. A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure

    NASA Astrophysics Data System (ADS)

    He, -Hau, Jr.; Singamaneni, Srikanth; Ho, Chih H.; Lin, Yen-Hsi; McConney, Michael E.; Tsukruk, Vladimir V.

    2009-02-01

    The combination of design and subsequent fabrication of organic/inorganic nanostructures creates an effective way to combine the favorable traits of both to achieve a desired device performance. We demonstrate a miniature electrical read-out, and a sensitive temperature sensor/switch, based on a ZnO nanobelt/plasma-polymerized benzonitrile bimorph structure. A new read-out technique based on the change in the electric current flowing through the bimorph and the contact pad has been employed, replacing the conventional cumbersome piezoresistive method or tedious optical alignment. The thermal sensor demonstrated here has great prospects for thermal switching and triggered detection owing to the relative ease in the fabrication of arrays and the direct electrical read-out.

  13. Drift chamber readout system of the DIRAC experiment

    NASA Astrophysics Data System (ADS)

    Afanasyev, L.; Karpukhin, V.

    2002-10-01

    A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.

  14. RF Single Electron Transistor Readout Amplifiers for Superconducting Astronomical Detectors for X-Ray to Sub-mm Wavelengths

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl

    2000-01-01

    We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.

  15. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  16. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    PubMed Central

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-01-01

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively. PMID:27792131

  17. Silicon oxynitride-on-glass waveguide array refractometer with wide sensing range and integrated read-out (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Viegas, Jaime; Mayeh, Mona; Srinivasan, Pradeep; Johnson, Eric G.; Marques, Paulo V. S.; Farahi, Faramarz

    2017-02-01

    In this work, a silicon oxynitride-on-silica refractometer is presented, based on sub-wavelength coupled arrayed waveguide interference, and capable of low-cost, high resolution, large scale deployment. The sensor has an experimental spectral sensitivity as high as 3200 nm/RIU, covering refractive indices ranging from 1 (air) up to 1.43 (oils). The sensor readout can be performed by standard spectrometers techniques of by pattern projection onto a camera, followed by optical pattern recognition. Positive identification of the refractive index of an unknown species is obtained by pattern cross-correlation with a look-up calibration table based algorithm. Given the lower contrast between core and cladding in such devices, higher mode overlap with single mode fiber is achieved, leading to a larger coupling efficiency and more relaxed alignment requirements as compared to silicon photonics platform. Also, the optical transparency of the sensor in the visible range allows the operation with light sources and camera detectors in the visible range, of much lower capital costs for a complete sensor system. Furthermore, the choice of refractive indices of core and cladding in the sensor head with integrated readout, allows the fabrication of the same device in polymers, for mass-production replication of disposable sensors.

  18. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose.

    PubMed

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-10-25

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal-oxide-semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm². The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  19. The XGS instrument on-board THESEUS

    NASA Astrophysics Data System (ADS)

    Fuschino, F.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Evangelista, Y.; Elmi, I.; Feroci, M.; Frontera, F.; Rachevski, A.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-10-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated.

  20. TPC status for MPD experiment of NICA project

    NASA Astrophysics Data System (ADS)

    Averyanov, A.; Bazhazhin, A.; Chepurnov, V. F.; Chepurnov, V. V.; Cheremukhina, G.; Chernenko, S.; Fateev, O.; Kiriushin, Yu.; Kolesnikov, A.; Korotkova, A.; Levchanovsky, F.; Lukstins, J.; Movchan, S.; Pilyar, A.; Razin, S.; Ribakov, A.; Samsonov, V.; Vereschagin, S.; Zanevsky, Yu.; Zaporozhets, S.; Zruev, V.

    2017-06-01

    In a frame of the JINR scientific program on study of hot and dense baryonic matter a new accelerator complex Ion Collider fAcility (NICA) based on the Nuclotron-M is under realization. It will operate at luminosity up to 1027 cm-2s-1 for Au79+ ions. Two interaction points are foreseen at NICA for two detectors which will operate simultaneously. One of these detectors, the Multi-Purpose Detector (MPD), is optimized for investigations of heavy-ion collisions. The Time-Projection Chamber (TPC) is the main tracking detector of the MPD central barrel. It is a well-known detector for 3-dimensional tracking and particle identification for high multiplicity events. The conceptual layout of MPD and detailed description of the design and main working parameters of TPC, the readout system based on MWPC and readout electronics as well as the TPC subsystems and tooling for assembling and integration TPC into MPD are presented.

  1. Phase-to-intensity conversion of magnonic spin currents and application to the design of a majority gate

    PubMed Central

    Brächer, T.; Heussner, F.; Pirro, P.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.

    2016-01-01

    Magnonic spin currents in the form of spin waves and their quanta, magnons, are a promising candidate for a new generation of wave-based logic devices beyond CMOS, where information is encoded in the phase of travelling spin-wave packets. The direct readout of this phase on a chip is of vital importance to couple magnonic circuits to conventional CMOS electronics. Here, we present the conversion of the spin-wave phase into a spin-wave intensity by local non-adiabatic parallel pumping in a microstructure. This conversion takes place within the spin-wave system itself and the resulting spin-wave intensity can be conveniently transformed into a DC voltage. We also demonstrate how the phase-to-intensity conversion can be used to extract the majority information from an all-magnonic majority gate. This conversion method promises a convenient readout of the magnon phase in future magnon-based devices. PMID:27905539

  2. New readout integrated circuit using continuous time fixed pattern noise correction

    NASA Astrophysics Data System (ADS)

    Dupont, Bertrand; Chammings, G.; Rapellin, G.; Mandier, C.; Tchagaspanian, M.; Dupont, Benoit; Peizerat, A.; Yon, J. J.

    2008-04-01

    LETI has been involved in IRFPA development since 1978; the design department (LETI/DCIS) has focused its work on new ROIC architecture since many years. The trend is to integrate advanced functions into the CMOS design to achieve cost efficient sensors production. Thermal imaging market is today more and more demanding of systems with instant ON capability and low power consumption. The purpose of this paper is to present the latest developments of fixed pattern noise continuous time correction. Several architectures are proposed, some are based on hardwired digital processing and some are purely analog. Both are using scene based algorithms. Moreover a new method is proposed for simultaneous correction of pixel offsets and sensitivities. In this scope, a new architecture of readout integrated circuit has been implemented; this architecture is developed with 0.18μm CMOS technology. The specification and the application of the ROIC are discussed in details.

  3. Dual-Readout Immunochromatographic Assay by Utilizing MnO2 Nanoflowers as the Unique Colorimetric/Chemiluminescent Probe.

    PubMed

    Ouyang, Hui; Lu, Qian; Wang, Wenwen; Song, Yang; Tu, Xinman; Zhu, Chengzhou; Smith, Jordan N; Du, Dan; Fu, Zhifeng; Lin, Yuehe

    2018-04-17

    Manganese dioxide nanoflowers (MnO 2 NFs) were synthesized and used as a dual readout probe to develop a novel immunochromatographic test strip (ITS) for detecting pesticide residues using chlorpyrifos as the model analyte. MnO 2 NFs-labeled antibody for chlorpyrifos was employed as the signal tracer for conducting the ITS. After 10 min competitive immunoreaction, the tracer antibody was captured by the immobilized immunogen in the test strip, resulting in the captured MnO 2 NFs on test line. The captured MnO 2 NFs led to the appearance of brown color on the test line, which could be easily observed by the naked eye as a qualitative readout. Due to the very slight colorimetric difference of chlorpyrifos at trace concentrations, the semiquantitative readout by naked eyes could not meet the demand of quantitative analysis. MnO 2 NFs showed a significant effect on the luminol-H 2 O 2 chemiluminescent (CL) system, and the CL signal driven by MnO 2 NFs were used to detect the trace concentration of chlorpyrifos quantitatively. 1,3-Diphenylisobenzofuran quenching studies and TMB-H 2 O 2 coloration assays were conducted for studying the enhancing mechanism of MnO 2 NFs, which was based on the oxidant activity to decompose H 2 O 2 for forming reactive oxygen species. Under optimal conditions, the linear range of chlorpyrifos was 0.1-50 ng/mL with a low detection limit of 0.033 ng/mL (S/N = 3). The reliability of the dual-readout ITS was successfully demonstrated by the application on traditional Chinese medicine and environmental water samples. Due to the simultaneous rapid-qualitative and sensitive-quantitative detection, the dual-readout protocol provides a promising strategy for rapid screening and field assay on various areas such as environmental monitoring and food safety.

  4. Read-only high accuracy volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  5. Radio-frequency low-coherence interferometry.

    PubMed

    Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo

    2014-06-15

    A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, R.; Lu, R.; Gong, S.

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speedmore » response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.« less

  7. SPIDR, a general-purpose readout system for pixel ASICs

    NASA Astrophysics Data System (ADS)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit Ethernet links, and in addition provides the slow and fast control for the chip.

  8. High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; D'Anjou, Benjamin; Rudolph, Martin; Jacobson, N. Tobias; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Coish, William A.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    2018-04-01

    The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)-(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. It further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.

  9. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    PubMed Central

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  10. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    NASA Astrophysics Data System (ADS)

    Arefin, Md Shamsul; Bulut Coskun, M.; Alan, Tuncay; Redoute, Jean-Michel; Neild, Adrian; Rasit Yuce, Mehmet

    2014-06-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0-5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  11. On the dynamic readout characteristic of nonlinear super-resolution optical storage

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong

    2013-03-01

    Researchers have developed nonlinear super-resolution optical storage for the past twenty years. However, several concerns remain, including (1) the presence of readout threshold power; (2) the increase of threshold power with the reduction of the mark size, and (3) the increase of the carrier-to-noise ratio (CNR) at the initial stage and then decrease with the increase of readout laser power or laser irradiation time. The present work calculates and analyzes the super-resolution spot formed by the thin film masks and the readout threshold power characteristic according to the derived formula and based on the nonlinear saturable absorption characteristic and threshold of structural change. The obtained theoretical calculation and experimental data answer the concerns regarding the dynamic readout threshold characteristic and CNR dependence on laser power and irradiation time. The near-field optical spot scanning experiment further verifies the super-resolution spot formation produced through the nonlinear thin film masks.

  12. A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc

    2015-06-01

    High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.

  13. Ionization Readout Electronics for SuperCDMS SNOLAB Employing a HEMT Front-End

    NASA Astrophysics Data System (ADS)

    Partridge, R.

    2014-09-01

    The SuperCDMS SNOLAB experiment seeks to deploy 200 kg of cryogenic Ge detectors employing phonon and ionization readout to identify dark matter interactions. One of the design challenges for the experiment is to provide amplification of the high impedance ionization signal while minimizing power dissipation and noise. This paper describes the design and expected performance of the ionization readout being developed for an engineering model of the SuperCDMS SNOLAB Ge Tower System. The readout features the use of a low-noise HEMT front end transistor operating at 4 K to achieve a power dissipation of 100 W per channel, local grounding to minimize noise injection, and biasing circuitry that allows precise control of the HEMT operating point.

  14. Effect-size measures as descriptors of assay quality in high-content screening: A brief review of some available methodologies

    USDA-ARS?s Scientific Manuscript database

    The field of high-content screening (HCS) typically uses measures of screen quality conceived for fairly straightforward high-throughput screening (HTS) scenarios. However, in contrast to HTS, image-based HCS systems rely on multidimensional readouts reporting biological responses associated with co...

  15. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-07

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  16. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors.

    PubMed

    Kawahito, Shoji; Seo, Min-Woong

    2016-11-06

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e - rms ) when compared with the CMS gain of two (2.4 e - rms ), or 16 (1.1 e - rms ).

  17. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    PubMed Central

    Kawahito, Shoji; Seo, Min-Woong

    2016-01-01

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972

  18. A custom readout electronics for the BESIII CGEM detector

    NASA Astrophysics Data System (ADS)

    Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.

    2017-07-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout, and reviewing the first silicon results of the chip prototype.

  19. Readout architecture based on the use of Silicon PhotoMultiplier (SiPM, or MMPC)

    NASA Astrophysics Data System (ADS)

    Marteau, J.; Carlus, B.; Gardien, S.; Girerd, C.; Ianigro, J.-C.; Montorio, J.-L.; Gibert, D.; Nicollin, F.

    2012-04-01

    The DIAPHANE project is pluri-disciplinary collaboration between particle physicists and geophysicists to perform the tomography of large geological structure mainly devoted to the study of active volcanoes. The detector used for this tomography, hereafter referred to as telescope, uses a standard, robust, cost-effective and well-known technology based on solid plastic scintillator readout by photomultiplier(s). The first generation of those telescopes, presently running in the Mont-Terri underground laboratory (St-Ursanne, Switzerland) and on the active volcano of La Soufrière (Guadeloupe, Lesser Antilles, France), uses Hamamatsu H8804-200mod photomultipliers. We present an upgrade of the readout architecture based on the use of Silicon PhotoMultiplier (SiPM, or MMPC) which allows to simplify the optical connections w.r.t. the present design and to benefit from the high photo-dectection efficiency of the SiPM. To ensure an effective increase in the muon detection efficiency one has to optimize the first trigger level and find the best compromise between photostatistics and the tails of the dark noise contributions. Several readout architectures, based or not on dedicated ASICs, are discussed and compared in this article.

  20. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  1. Scalable gamma-ray camera for wide-area search based on silicon photomultipliers array

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Van, Benjamin; Wells, Byron T.; D'Aries, Lawrence J.; Hammig, Mark D.

    2018-03-01

    Portable coded-aperture imaging systems based on scintillators and semiconductors have found use in a variety of radiological applications. For stand-off detection of weakly emitting materials, large volume detectors can facilitate the rapid localization of emitting materials. We describe a scalable coded-aperture imaging system based on 5.02 × 5.02 cm2 CsI(Tl) scintillator modules, each partitioned into 4 × 4 × 20 mm3 pixels that are optically coupled to 12 × 12 pixel silicon photo-multiplier (SiPM) arrays. The 144 pixels per module are read-out with a resistor-based charge-division circuit that reduces the readout outputs from 144 to four signals per module, from which the interaction position and total deposited energy can be extracted. All 144 CsI(Tl) pixels are readily distinguishable with an average energy resolution, at 662 keV, of 13.7% FWHM, a peak-to-valley ratio of 8.2, and a peak-to-Compton ratio of 2.9. The detector module is composed of a SiPM array coupled with a 2 cm thick scintillator and modified uniformly redundant array mask. For the image reconstruction, cross correlation and maximum likelihood expectation maximization methods are used. The system shows a field of view of 45° and an angular resolution of 4.7° FWHM.

  2. Radiation imaging with optically read out GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible scintillating gases and the strong signal amplification factors achieved by MPGDs makes optical readout an attractive alternative to the common concept of electronic readout of radiation detectors. Outstanding signal-to-noise ratios and robustness against electronic noise allow unprecedented imaging capabilities for various applications in fields ranging from high energy physics to medical instrumentation.

  3. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones

    PubMed Central

    2016-01-01

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests. PMID:26900709

  4. Latest generation of ASICs for photodetector readout

    NASA Astrophysics Data System (ADS)

    Seguin-Moreau, N.

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.

  5. The ArDM experiment

    DOE PAGES

    Harańczyk, M.; Amsler, C.; Badertscher, A.; ...

    2010-08-24

    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R & D program, including a 3 l prototype developed to test the charge readout system.

  6. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  7. Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors.

    PubMed

    Ge, Xiaoliang; Theuwissen, Albert J P

    2018-02-27

    This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models.

  8. Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors †

    PubMed Central

    Theuwissen, Albert J. P.

    2018-01-01

    This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models. PMID:29495496

  9. ATLAS Tile calorimeter calibration and monitoring systems

    NASA Astrophysics Data System (ADS)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  10. A low cost instrumentation system to analyze different types of milk adulteration.

    PubMed

    Das, Siuli; Sivaramakrishna, Mulinti; Biswas, Karabi; Goswami, Bhaswati

    2015-05-01

    In this paper, the design of a complete instrumentation system to detect different types of milk adulteration has been reported. A simple to use indicator type readout device is reported which can be used by milk community people. A low cost microcontroller based automatic sensing system is also reported to detect 'synthetic milk', which has been reconstructed after adulterating the milk with 'liquid-whey'. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Development of a front-end analog circuit for multi-channel SiPM readout and performance verification for various PET detector designs

    NASA Astrophysics Data System (ADS)

    Ko, Guen Bae; Yoon, Hyun Suk; Kwon, Sun Il; Lee, Chan Mi; Ito, Mikiko; Hong, Seong Jong; Lee, Dong Soo; Lee, Jae Sung

    2013-03-01

    Silicon photomultipliers (SiPMs) are outstanding photosensors for the development of compact imaging devices and hybrid imaging systems such as positron emission tomography (PET)/ magnetic resonance (MR) scanners because of their small size and MR compatibility. The wide use of this sensor for various types of scintillation detector modules is being accelerated by recent developments in tileable multichannel SiPM arrays. In this work, we present the development of a front-end readout module for multi-channel SiPMs. This readout module is easily extendable to yield a wider detection area by the use of a resistive charge division network (RCN). We applied this readout module to various PET detectors designed for use in small animal PET/MR, optical fiber PET/MR, and double layer depth of interaction (DOI) PET. The basic characteristics of these detector modules were also investigated. The results demonstrate that the PET block detectors developed using the readout module and tileable multi-channel SiPMs had reasonable performance.

  12. Development and tests of MCP based timing and multiplicity detector for MIPs

    NASA Astrophysics Data System (ADS)

    Feofilov, G.; Kondratev, V.; Stolyarov, O.; Tulina, T.; Valiev, F.; Vinogradov, L.

    2017-01-01

    We present summary of technological developments and tests of the MCP based large area detector aimed at precise timing and charged particles multiplicity measurements. Results obtained in course of these developments of isochronous (simultaneity) precise signal readout, passive summation of 1 ns signals, fast (1 GHz) front-end electronics, miniature vacuum systems, etc. could be potentially interesting for a number of future applications in different fields.

  13. A new non-destructive readout by using photo-recovered surface potential contrast

    NASA Astrophysics Data System (ADS)

    Wang, Le; Jin, Kui-Juan; Gu, Jun-Xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-An; Gu, Lin; He, Meng; Lu, Hui-Bin; Yang, Guo-Zhen

    2014-11-01

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory.

  14. Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Karcher, N.; Krömer, O.; Richter, D.; Ahrens, F.; Sander, O.; Kempf, S.; Weber, M.; Enss, C.

    2018-02-01

    To our present best knowledge, microwave SQUID multiplexing (μ MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to 100% as well as a highly linear detector response is based on μ MUXing. Within this paper, we summarize the state of the art in MMC μ MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.

  15. ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.

    2016-03-01

    We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.

  16. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake

    2014-06-14

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexermore » exhibited 1 × 10{sup 4} ≤ Q ≤ 2 × 10{sup 4} and the square root of spectral density of current noise referred to the SQUID input √S{sub I} = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S{sub I} is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √S{sub I} ≤ 5 pA/√Hz, i.e., close to √S{sub I} of state-of-the-art DC-SQUID-based multiplexers.« less

  17. Solution-based circuits enable rapid and multiplexed pathogen detection.

    PubMed

    Lam, Brian; Das, Jagotamoy; Holmes, Richard D; Live, Ludovic; Sage, Andrew; Sargent, Edward H; Kelley, Shana O

    2013-01-01

    Electronic readout of markers of disease provides compelling simplicity, sensitivity and specificity in the detection of small panels of biomarkers in clinical samples; however, the most important emerging tests for disease, such as infectious disease speciation and antibiotic-resistance profiling, will need to interrogate samples for many dozens of biomarkers. Electronic readout of large panels of markers has been hampered by the difficulty of addressing large arrays of electrode-based sensors on inexpensive platforms. Here we report a new concept--solution-based circuits formed on chip--that makes highly multiplexed electrochemical sensing feasible on passive chips. The solution-based circuits switch the information-carrying signal readout channels and eliminate all measurable crosstalk from adjacent, biomolecule-specific microsensors. We build chips that feature this advance and prove that they analyse unpurified samples successfully, and accurately classify pathogens at clinically relevant concentrations. We also show that signature molecules can be accurately read 2  minutes after sample introduction.

  18. MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yiping

    Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less

  19. Architecture of PAU survey camera readout electronics

    NASA Astrophysics Data System (ADS)

    Castilla, Javier; Cardiel-Sas, Laia; De Vicente, Juan; Illa, Joseph; Jimenez, Jorge; Maiorino, Marino; Martinez, Gustavo

    2012-07-01

    PAUCam is a new camera for studying the physics of the accelerating universe. The camera will consist of eighteen 2Kx4K HPK CCDs: sixteen for science and two for guiding. The camera will be installed at the prime focus of the WHT (William Herschel Telescope). In this contribution, the architecture of the readout electronics system is presented. Back- End and Front-End electronics are described. Back-End consists of clock, bias and video processing boards, mounted on Monsoon crates. The Front-End is based on patch panel boards. These boards are plugged outside the camera feed-through panel for signal distribution. Inside the camera, individual preamplifier boards plus kapton cable completes the path to connect to each CCD. The overall signal distribution and grounding scheme is shown in this paper.

  20. Developing LAr Scintillation Light Collection Ideas in the Short Baseline Neutrino Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szelc, A. M.

    2016-02-08

    Scintillation light is becoming the most rapidly developing feature of Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors due to its capability to enhance and expand their physics reach traditionally based on charge readout. The SBND detector, set to be built on the Booster Neutrino Beam Line at Fermilab, is in a unique position to test novel liquid argon scintillation light readout systems in a detector with physics neutrino events. The different ideas under consideration by the collaboration are described, including an array of PMTs detecting direct light, SiPM coupled lightguide bars and a setup which uses PMTs/SiPMS and wavelengthmore » shifter covered reflector foils, as well as their respective strengths and physics foci and the benchmarks used to compare them.« less

  1. Frequency-Domain Multiplexing Readout with a Self-Trigger System for Pulse Signals from Kinetic Inductance Detectors

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Ishino, H.; Kibayashi, A.; Kida, Y.; Hidehira, N.; Komatsu, K.; Hazumi, M.; Sato, N.; Sakai, K.; Yamamori, H.; Hirayama, F.; Kohjiro, S.

    2018-04-01

    We present the development of a frequency-domain multiplexing readout of kinetic inductance detectors (KIDs) for pulse signals with a self-trigger system. The KIDs consist of an array of superconducting resonators that have different resonant frequencies individually, allowing us to read out multiple channels in the frequency domain with a single wire using a microwave-frequency comb. The energy deposited to the resonators break Cooper pairs, changing the kinetic inductance and, hence, the amplitude and the phase of the probing microwaves. For some applications such as X-ray detections, the deposited energy is detected as a pulse signal shaped by the time constants of the quasiparticle lifetime, the resonator quality factor, and the ballistic phonon lifetime in the substrate, ranging from microseconds to milliseconds. A readout system commonly used converts the frequency-domain data to the time-domain data. For the short pulse signals, the data rate may exceed the data transfer bandwidth, as the short time constant pulses require us to have a high sampling rate. In order to overcome this circumstance, we have developed a KID readout system that contains a self-trigger system to extract relevant signal data and reduces the total data rate with a commercial off-the-shelf FPGA board. We have demonstrated that the system can read out pulse signals of 15 resonators simultaneously with about 10 Hz event rate by irradiating α particles from ^{241} Am to the silicon substrate on whose surface aluminum KID resonators are formed.

  2. Resonance Frequency Readout Circuit for a 900 MHz SAW Device

    PubMed Central

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-01-01

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm2. In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time. PMID:28914799

  3. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    PubMed

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  4. Investigation of image distortion due to MCP electronic readout misalignment and correction via customized GUI application

    NASA Astrophysics Data System (ADS)

    Vitucci, G.; Minniti, T.; Tremsin, A. S.; Kockelmann, W.; Gorini, G.

    2018-04-01

    The MCP-based neutron counting detector is a novel device that allows high spatial resolution and time-resolved neutron radiography and tomography with epithermal, thermal and cold neutrons. Time resolution is possible by the high readout speeds of ~ 1200 frames/sec, allowing high resolution event counting with relatively high rates without spatial resolution degradation due to event overlaps. The electronic readout is based on a Timepix sensor, a CMOS pixel readout chip developed at CERN. Currently, a geometry of a quad Timepix detector is used with an active format of 28 × 28 mm2 limited by the size of the Timepix quad (2 × 2 chips) readout. Measurements of a set of high-precision micrometers test samples have been performed at the Imaging and Materials Science & Engineering (IMAT) beamline operating at the ISIS spallation neutron source (U.K.). The aim of these experiments was the full characterization of the chip misalignment and of the gaps between each pad in the quad Timepix sensor. Such misalignment causes distortions of the recorded shape of the sample analyzed. We present in this work a post-processing image procedure that considers and corrects these effects. Results of the correction will be discussed and the efficacy of this method evaluated.

  5. An integrated wire harp and readout electronics inside vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Mou; Nabhiraj, P. Y.

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10{sup −7} Torr) to make the system much simpler, easy to operate, and measure small beammore » current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.« less

  6. An integrated wire harp and readout electronics inside vacuum.

    PubMed

    Chatterjee, Mou; Nabhiraj, P Y

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10(-7) Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  7. An integrated wire harp and readout electronics inside vacuum

    NASA Astrophysics Data System (ADS)

    Chatterjee, Mou; Nabhiraj, P. Y.

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10-7 Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  8. A preliminary study on the use of FX-Glycine gel and an in-house optical cone beam CT readout for IMRT and RapidArc verification

    NASA Astrophysics Data System (ADS)

    Ravindran, Paul B.; Ebenezer, Suman Babu S.; Winfred, Michael Raj; Amalan, S.

    2017-05-01

    The radiochromic FX gel with Optical CT readout has been investigated by several authors and has shown promising results for 3D dosimetry. One of the applications of the gel dosimeters is their use in 3D dose verification for IMRT and RapidArc quality assurance. Though polymer gel has been used successfully for clinical dose verification, the use of FX gel for clinical dose verification with optical cone beam CT needs further validation. In this work, we have used FX gel and an in- house optical readout system for gamma analysis between the dose matrices of measured dose distribution and a treatment planning system (TPS) calculated dose distribution for a few test cases.

  9. Design of a Multi-Channel Low-Noise Readout ASIC for CdZnTe-Based X-Ray and γ-Ray Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Gan, B.; Wei, T.; Gao, W.; Zheng, R.; Hu, Y.

    2015-10-01

    In this paper, we report on the recent development of a 32-channel low-noise front-end readout ASIC for cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors. Each readout channel includes a charge sensitive amplifier, a CR-RC shaping amplifier and an analog output buffer. The readout ASIC is implemented using TSMC 0.35 - μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 mm ×4.8 mm. At room temperature, the equivalent noise level of a typical channel reaches 133 e- (rms) with the input parasitic capacitance of 0 pF for the average power consumption of 2.8 mW per channel. The linearity error is less than ±2% and the input energy dynamic range of the readout ASIC is from 10 keV to 1 MeV. The crosstalk between the channels is less than 0.4%. By connecting the readout ASIC to a CdZnTe detector, we obtained a γ-ray spectrum, the energy resolution is 1.8% at the 662-keV line of 137Cs source.

  10. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout

    PubMed Central

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Sheng, Jiteng; Shaffer, James P.

    2017-01-01

    We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of 5 μV cm−1 Hz−1/2. A Mach-Zehnder interferometer is used for the homodyne detection. With the increased sensitivity, we investigate the dominant dephasing mechanisms that affect the performance of the sensor. In particular, we present data on power broadening, collisional broadening and transit time broadening. Our results are compared to density matrix calculations. We show that photon shot noise in the signal readout is currently a limiting factor. We suggest that new approaches with superior readout with respect to photon shot noise are needed to increase the sensitivity further. PMID:28218308

  11. A high-speed pnCCD detector system for optical applications

    NASA Astrophysics Data System (ADS)

    Hartmann, R.; Buttler, W.; Gorke, H.; Herrmann, S.; Holl, P.; Meidinger, N.; Soltau, H.; Strüder, L.

    2006-11-01

    Measurements of a frame-store pnCCD detector system, optimized for high-speed applications in the optical and near infrared (NIR) region, will be presented. The device with an image area of 13.5 mm by 13.5 mm and a pixelsize of 51 μm by 51 μm exhibits a readout time faster than 1100 frames per second with an overall electronic noise contribution of less than three electrons. Variable operation modes of the detector system allow for even higher readout speeds by a pixel binning in transfer direction or, at slightly slower readout speeds, a further improvement in noise performance. We will also present the concept of a data acquisition system being able to handle pixel rates of more than 75 megapixel per second. The application of an anti-reflective coating on the ultra-thin entrance window of the back illuminated detector together with the large sensitive volume ensures a high and uniform detection efficiency from the ultra violet to the NIR.

  12. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siwak, N. P.; Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740; Fan, X. Z.

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We havemore » fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.« less

  13. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Cometti, S.

    2018-03-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  14. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-08

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.

  15. Readout electronics for the GEM detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Czarski, T.; Chernyshova, M.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Jakubowska, K.; Karpinski, L.; Kierzkowski, K.; Kudla, I. M.; Pozniak, K.; Rzadkiewicz, J.; Salapa, Z.; Scholz, M.; Zabolotny, W.

    2011-10-01

    A novel approach to the Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators[2],[3] and analogue FIFOs[1], the method developed uses simultaneously sampling high speed ADCs and advanced FPGA-based processing logic to estimate the energy of every single photon. Such method is applied to every GEM strip signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, where higher order reflections need to be identified and rejected[5].

  16. A new data acquisition system for the CMS Phase 1 pixel detector

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  17. Towards an Electrochemical Immunosensor System with Temperature Control for Cytokine Detection.

    PubMed

    Metzner, Julia; Luckert, Katrin; Lemuth, Karin; Hämmerle, Martin; Moos, Ralf

    2018-04-24

    The cytokine interleukin-13 (IL-13) plays a major role in airway inflammation and is a target of new anti-asthmatic drugs. Hence, IL-13 determination could be interesting in assessing therapy success. Thus, in this work an electrochemical immunosensor for IL-13 was developed and integrated into a fluidic system with temperature control for read-out. Therefore, two sets of results are presented. First, the sensor was set up in sandwich format on single-walled carbon nanotube electrodes and was read out by applying the hydrogen peroxide⁻hydroquinone⁻horseradish peroxidase (HRP) system. Second, a fluidic system was built up with an integrated heating function realized by Peltier elements that allowed a temperature-controlled read-out of the immunosensor in order to study the influence of temperature on the amperometric read-out. The sensor was characterized at the temperature optimum of HRP at 30 °C and at 12 °C as a reference for lower performance. These results were compared to a measurement without temperature control. At the optimum operation temperature of 30 °C, the highest sensitivity (slope) was obtained compared to lower temperatures and a limit of detection of 5.4 ng/mL of IL-13 was calculated. Taken together, this approach is a first step towards an automated electrochemical immunosensor platform and shows the potential of a temperature-controlled read-out.

  18. Impedance-based cellular assay technologies: recent advances, future promise.

    PubMed

    McGuinness, Ryan

    2007-10-01

    Cell-based assays are continuing to grow in importance in the drug discovery workflow. Their early introduction holds the promise of limiting attrition in the later, more costly phases of the process. This article reviews recent advances in the development of impedance technologies for label-free cell-based assays. These systems are capable of monitoring endogenous receptor activation, and thus generate more physiologically relevant measures of pharmacological endpoints. Primary cells can be investigated as well, thus producing disease relevant information. Label-free assays significantly decrease assay development efforts and avoid many complications inherent in recombinant readout systems. Impedance-based systems have great potential to advance the utility of cell-based assays as they are applied to drug discovery and pharmacology.

  19. NIR camera and spectrograph SWIMS for TAO 6.5m telescope: array control system and its performance

    NASA Astrophysics Data System (ADS)

    Terao, Yasunori; Motohara, Kentaro; Konishi, Masahiro; Takahashi, Hidenori; Kato, Natsuko M.; Kitagawa, Yutaro; Kobayakawa, Yutaka; Ohashi, Hirofumi; Tateuchi, Ken; Todo, Soya

    2016-08-01

    SWIMS (Simultaneous-color Wide-field Infrared Multi-object Spectrograph) is a near-infrared imager and multi-object spectrograph as one of the first generation instruments for the University of Tokyo Atacama Observatory (TAO) 6.5m telescope. In this paper, we describe an array control system of SWIMS and results of detector noise performance evaluation. SWIMS incorporates four (and eight in future) HAWAII-2RG focal plane arrays for detectors, each driven by readout electronics components: a SIDECAR ASIC and a JADE2 Card. The readout components are controlled by a HAWAII-2RG Testing Software running on a virtual Windows machine on a Linux PC called array control PC. All of those array control PCs are then supervised by a SWIMS control PC. We have developed an "array control software system", which runs on the array control PC to control the HAWAII-2RG Testing Software, and consists of a socket client and a dedicated server called device manager. The client runs on the SWIMS control PC, and the device manager runs on the array control PC. An exposure command, issued by the client on the SWIMS control PC, is sent to the multiple device managers on the array control PCs, and then multiple HAWAII-2RGs are driven simultaneously. Using this system, we evaluate readout noise performances of the detectors, both in a test dewar and in a SWIMS main dewar. In the test dewar, we confirm the readout noise to be 4.3 e- r.m.s. by 32 times multiple sampling when we operate only a single HAWAII-2RG, whereas in the case of simultaneous driving of two HAWAII-2RGs, we still obtain sufficiently low readout noise of 10 e- r.m.s. In the SWIMS main dewar, although there are some differences between the detectors, the readout noise is measured to be 4:1-4:6 e- r.m.s. with simultaneous driving by 64 times multiple sampling, which meets the requirement for background-limited observations in J band of 14 e- r.m.s..

  20. Toward Large FOV High-Resolution X-Ray Imaging Spectrometer: Microwave Multiplexed Readout of 32 TES Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Yoon, Wonsik; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Miniussi, Antoine R.; hide

    2017-01-01

    We performed a small-scale demonstration at GSFC of high-resolution x-ray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space based x-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 50 mK stage of our laboratory ADR. Using a ROACH2 FPGA at room temperature, we simultaneously read out 32 pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to RF SQUIDs. The resonators are spaced 6 MHz apart (at approx. 5.9 GHz) and have quality factors of approximately 15,000. Using flux-ramp modulation frequencies of 160 kHz we have achieved spectral resolutions of 3 eV FWHM on each pixel at 6 keV. We will present the measured system-level noise and maximum slew rates, and briefly describe the implications for future detector and readout design.

  1. Magneto-actuated immunoassay for the detection of Mycobacterium fortuitum in hemodialysis water.

    PubMed

    Brugnera, Michelle Fernanda; Bundalian, Reynaldo; Laube, Tamara; Julián, Esther; Luquin, Marina; Zanoni, Maria Valnice Boldrin; Pividori, Maria Isabel

    2016-06-01

    This paper addresses a sensitive method for the detection of mycobacteria in hemodialysis water samples based on a magneto-actuated immunoassay with optical readout. In this approach, micro (2.8μm) sized magnetic particles were modified with an antibody against the lipoarabinomannan (LAM) located in the mycobacterial cell wall. The system relies on the immunocapturing of the mycobacteria with the tailored antiLAM magnetic particles to pre-concentrate the bacteria from the hemodialysis samples throughout an immunological reaction. The performance of the immunomagnetic separation on the magnetic carrier was evaluated using confocal microscopy to study the binding pattern, as well as a magneto-actuated immunoassay with optical readout for the rapid detection of the bacteria in spiked hemodialysis samples. In this approach, the antiLAM polyclonal antibody was labeled with fluorescein isothiocyanate. The optical readout was achieved by the incubation with a secondary anti-fluorescein antibody labeled with peroxidase as optical reporter. The magneto-actuated immunoassay was able to detect mycobacteria contamination in hemodialysis water at a limit of detection of 13CFUmL(-1) in a total assay time of 3h without any previous culturing pre-enrichment step. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Technique for positioning hologram for balancing large data capacity with fast readout

    NASA Astrophysics Data System (ADS)

    Shimada, Ken-ichi; Hosaka, Makoto; Yamazaki, Kazuyoshi; Onoe, Shinsuke; Ide, Tatsuro

    2017-09-01

    The technical difficulty of balancing large data capacity with a high data transfer rate in holographic data storage systems (HDSSs) is significantly high because of tight tolerances for physical perturbation. From a system margin perspective in terabyte-class HDSSs, the positioning error of a holographic disc should be within about 10 µm to ensure high readout quality. Furthermore, fine control of the positioning should be accomplished within a time frame of about 10 ms for a high data transfer rate of the Gbps class, while a conventional method based on servo control of spindle or sled motors can rarely satisfy the requirement. In this study, a new compensation method for the effect of positioning error, which precisely controls the positioning of a Nyquist aperture instead of a holographic disc, has been developed. The method relaxes the markedly low positional tolerance of a holographic disc. Moreover, owing to the markedly light weight of the aperture, positioning control within the required time frame becomes feasible.

  3. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  4. Toward a reduced-wire readout system for ultrasound imaging.

    PubMed

    Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam

    2014-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.

  5. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    DOE PAGES

    Hasegawa, S.

    2016-04-23

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less

  6. Toward a Reduced-Wire Readout System for Ultrasound Imaging

    PubMed Central

    Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam

    2015-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135

  7. Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment

    DOE PAGES

    Hattori, K.; Akiba, Y.; Arnold, K.; ...

    2016-01-06

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  8. NECTAR: New electronics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Naumann, Christopher Lindsay; Bolmont, J.; Corona, P.; Delagnes, E.; Dzahini, D.; Feinstein, F.; Gascon, D.; Glicenstein, J.-F.; Nayman, P.; Rarbi, F.; Ribo, M.; Sanuy, A.; Siero, X.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium is currently in the preparatory phase for the development of the next-generation Cherenkov Telescope Array (CTA [1]), based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS. To achieve an unprecedented sensitivity and energy range for TeV gamma rays, a new kind of flexible and powerful yet inexpensive front-end hardware will be required for the order of 105 channels of photodetectors in up to 100 telescopes. One possible solution is the NECTAr (New Electronics for the Cherenkov Telescope Array) system, based on the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC for very fast readout performance and a significant reduction of the cost and the lower consumption per channel, while offering a high degree of flexibility both for the triggering and the readout of the telescope. The current status of its development is presented, along with newest results from measurements and simulation studies.

  9. KM3NeT Digital Optical Module electronics

    NASA Astrophysics Data System (ADS)

    Real, Diego

    2016-04-01

    The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3" PMTs into a Low Voltage Digital Signal.

  10. The readout chain for the bar PANDA MVD strip detector

    NASA Astrophysics Data System (ADS)

    Schnell, R.; Brinkmann, K.-Th.; Di Pietro, V.; Kleines, H.; Goerres, A.; Riccardi, A.; Rivetti, A.; Rolo, M. D.; Sohlbach, H.; Zaunick, H.-G.

    2015-02-01

    The bar PANDA (antiProton ANnihilation at DArmstadt) experiment will study the strong interaction in annihilation reactions between an antiproton beam and a stationary gas jet target. The detector will comprise different sub-detectors for tracking, particle identification and calorimetry. The Micro-Vertex Detector (MVD) as the innermost part of the tracking system will allow precise tracking and detection of secondary vertices. For the readout of the double-sided silicon strip sensors a custom-made ASIC is being developed, employing the Time-over-Threshold (ToT) technique for digitization and utilize time-to-digital converters (TDC) to provide a high-precision time stamp of the hit. A custom-made Module Data Concentrator ASIC (MDC) will multiplex the data of all front-ends of one sensor towards the CERN-developed GBT chip set (GigaBit Transceiver). The MicroTCA-based MVD Multiplexer Board (MMB) at the off-detector site will receive and concentrate the data from the GBT links and transfer it to FPGA-based compute nodes for global event building.

  11. The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System

    NASA Astrophysics Data System (ADS)

    Ressler, M. E.; Sukhatme, K. G.; Franklin, B. R.; Mahoney, J. C.; Thelen, M. P.; Bouchet, P.; Colbert, J. W.; Cracraft, Misty; Dicken, D.; Gastaud, R.; Goodson, G. B.; Eccleston, Paul; Moreau, V.; Rieke, G. H.; Schneider, Analyn

    2015-07-01

    We describe the layout and unique features of the focal plane system for MIRI. We begin with the detector array and its readout integrated circuit (combining the amplifier unit cells and the multiplexer), the electronics, and the steps by which the data collection is controlled and the output signals are digitized and delivered to the JWST spacecraft electronics system. We then discuss the operation of this MIRI data system, including detector readout patterns, operation of subarrays, and data formats. Finally, we summarize the performance of the system, including remaining anomalies that need to be corrected in the data pipeline.

  12. Improved image quality using monolithic scintillator detectors with dual-sided readout in a whole-body TOF-PET ring: a simulation study.

    PubMed

    Tabacchini, Valerio; Surti, Suleman; Borghi, Giacomo; Karp, Joel S; Schaart, Dennis R

    2017-02-13

    We have recently built and characterized the performance of a monolithic scintillator detector based on a 32 mm  ×  32 mm  ×  22 mm LYSO:Ce crystal read out by digital silicon photomultiplier (dSiPM) arrays coupled to the crystal front and back surfaces in a dual-sided readout (DSR) configuration. The detector spatial resolution appeared to be markedly better than that of a detector consisting of the same crystal with conventional back-sided readout (BSR). Here, we aim to evaluate the influence of this difference in the detector spatial response on the quality of reconstructed images, so as to quantify the potential benefit of the DSR approach for high-resolution, whole-body time-of-flight (TOF) positron emission tomography (PET) applications. We perform Monte Carlo simulations of clinical PET systems based on BSR and DSR detectors, using the results of our detector characterization experiments to model the detector spatial responses. We subsequently quantify the improvement in image quality obtained with DSR compared to BSR, using clinically relevant metrics such as the contrast recovery coefficient (CRC) and the area under the localized receiver operating characteristic curve (ALROC). Finally, we compare the results with simulated rings of pixelated detectors with DOI capability. Our results show that the DSR detector produces significantly higher CRC and increased ALROC values than the BSR detector. The comparison with pixelated systems indicates that one would need to choose a crystal size of 3.2 mm with three DOI layers to match the performance of the BSR detector, while a pixel size of 1.3 mm with three DOI layers would be required to get on par with the DSR detector.

  13. Design and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry

    NASA Astrophysics Data System (ADS)

    McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P. A. R.; Bryan, S.; Day, P.; Essinger-Hileman, T.; Flanigan, D.; Leduc, H. G.; Limon, M.; Mauskopf, P.; Miller, A.; Tucker, C.

    2018-02-01

    Aims: Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of horn-coupled, dual-polarization LEKIDs optimized for ground-based CMB polarimetry. Our devices are sensitive to two orthogonal polarizations in a single spectral band centered on 150 GHz with Δν/ν = 0.2. The 65 × 65 mm square arrays are designed to be tiled into the focal plane of an optical system. We demonstrate the viability of these dual-polarization LEKIDs with laboratory measurements. Methods: The LEKID modules are tested with an FPGA-based readout system in a sub-kelvin cryostat that uses a two-stage adiabatic demagnetization refrigerator. The devices are characterized using a blackbody and a millimeter-wave source. The polarization properties are measured with a cryogenic stepped half-wave plate. We measure the resonator parameters and the detector sensitivity, noise spectrum, dynamic range, and polarization response. Results: The resonators have internal quality factors approaching 1 × 106. The detectors have uniform response between orthogonal polarizations and a large dynamic range. The detectors are photon-noise limited above 1 pW of absorbed power. The noise-equivalent temperatures under a 3.4 K blackbody load are <100 μK √s. The polarization fractions of detectors sensitive to orthogonal polarizations are >80%. The entire array is multiplexed on a single readout line, demonstrating a multiplexing factor of 128. The array and readout meet the requirements for 4 arrays to be read out simultaneously for a multiplexing factor of 512. Conclusions: This laboratory study demonstrates the first dual-polarization LEKID array optimized specifically for CMB polarimetry and shows the readiness of the detectors for on-sky observations.

  14. Improved image quality using monolithic scintillator detectors with dual-sided readout in a whole-body TOF-PET ring: a simulation study

    NASA Astrophysics Data System (ADS)

    Tabacchini, Valerio; Surti, Suleman; Borghi, Giacomo; Karp, Joel S.; Schaart, Dennis R.

    2017-03-01

    We have recently built and characterized the performance of a monolithic scintillator detector based on a 32 mm  ×  32 mm  ×  22 mm LYSO:Ce crystal read out by digital silicon photomultiplier (dSiPM) arrays coupled to the crystal front and back surfaces in a dual-sided readout (DSR) configuration. The detector spatial resolution appeared to be markedly better than that of a detector consisting of the same crystal with conventional back-sided readout (BSR). Here, we aim to evaluate the influence of this difference in the detector spatial response on the quality of reconstructed images, so as to quantify the potential benefit of the DSR approach for high-resolution, whole-body time-of-flight (TOF) positron emission tomography (PET) applications. We perform Monte Carlo simulations of clinical PET systems based on BSR and DSR detectors, using the results of our detector characterization experiments to model the detector spatial responses. We subsequently quantify the improvement in image quality obtained with DSR compared to BSR, using clinically relevant metrics such as the contrast recovery coefficient (CRC) and the area under the localized receiver operating characteristic curve (ALROC). Finally, we compare the results with simulated rings of pixelated detectors with DOI capability. Our results show that the DSR detector produces significantly higher CRC and increased ALROC values than the BSR detector. The comparison with pixelated systems indicates that one would need to choose a crystal size of 3.2 mm with three DOI layers to match the performance of the BSR detector, while a pixel size of 1.3 mm with three DOI layers would be required to get on par with the DSR detector.

  15. The GANDALF 128-Channel Time-to-Digital Converter

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.

  16. New conversion factors between human and automatic readouts of the CDMAM phantom for CR systems

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Homolka, Peter; Osanna-Elliot, Angelika; Kaar, Marcus; Semtrus, Friedrich; Figl, Michael

    2016-03-01

    Mammography screenings demand for profound image quality (IQ) assessment to guarantee their screening success. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests a contrast detail phantom such as the CDMAM phantom to evaluate IQ. For automatic evaluation a software is provided by the EUREF. As human and automatic readouts differ systematically conversion factors were published by the official reference organisation (EUREF). As we experienced a significant difference for these factors for Computed Radiography (CR) systems we developed an objectifying analysis software which presents the cells including the gold disks randomly in thickness and rotation. This allows to overcome the problem of an inevitable learning effect where observers know the position of the disks in advance. Applying this software, 45 computed radiography (CR) systems were evaluated and the conversion factors between human and automatic readout determined. The resulting conversion factors were compared with the ones resulting from the two methods published by EUREF. We found our conversion factors to be substantially lower than those suggested by EUREF, in particular 1.21 compared to 1.42 (EUREF EU method) and 1.62 (EUREF UK method) for 0.1 mm, and 1.40 compared to 1.73 (EUREF EU) and 1.83 (EUREF UK) for 0.25 mm disc diameter, respectively. This can result in a dose increase of up to 90% using either of these factors to adjust patient dose in order to fulfill image quality requirements. This suggests the need of an agreement on their proper application and limits the validity of the assessment methods. Therefore, we want to stress the need for clear criteria for CR systems based on appropriate studies.

  17. A low-power CMOS readout IC design for bolometer applications

    NASA Astrophysics Data System (ADS)

    Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar

    2017-02-01

    A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.

  18. Nonlinear model for an optical read-only-memory disk readout channel based on an edge-spread function.

    PubMed

    Kobayashi, Seiji

    2002-05-10

    A point-spread function (PSF) is commonly used as a model of an optical disk readout channel. However, the model given by the PSF does not contain the quadratic distortion generated by the photo-detection process. We introduce a model for calculating an approximation of the quadratic component of a signal. We show that this model can be further simplified when a read-only-memory (ROM) disk is assumed. We introduce an edge-spread function by which a simple nonlinear model of an optical ROM disk readout channel is created.

  19. Development and test of the DAQ system for a Micromegas prototype to be installed in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Bianco, M.; Martoiu, S.; Sidiropoulou, O.; Zibell, A.

    2015-12-01

    A Micromegas (MM) quadruplet prototype with an active area of 0.5 m2 that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible Read Out Driver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Software, a dedicated Micromegas segment has been implemented, in order to include the detector inside the main ATLAS DAQ partition. A full set of tests, on the hardware and software aspects, is presented.

  20. Upgrade of the Minos+ Experiment Data Acquisition for the High Energy NuMI Beam Run

    DOE PAGES

    Badgett, William; Hahn, Steve R.; Torretta, Donatella; ...

    2016-03-14

    The Minos+ experiment is an extension of the Minos experiment at a higher energy and more intense neutrino beam, with the data collection having begun in the fall of 2013. The neutrino beam is provided by the Neutrinos from the Main Injector (NuMI) beam-line at Fermi National Accelerator Laboratory (Fermilab). The detector apparatus consists of two main detectors, one underground at Fermilab and the other in Soudan, Minnesota with the purpose of studying neutrino oscillations at a base line of 735 km. The original data acquisition system has been running for several years collecting data from NuMI, but with themore » extended run from 2013, parts of the system needed to be replaced due to obsolescence, reliability problems, and data throughput limitations. Specifically, we have replaced the front-end readout controllers, event builder, and data acquisition computing and trigger processing farms with modern, modular and reliable devices with few single points of failure. The new system is based on gigabit Ethernet TCP/IP communication to implement the event building and concatenation of data from many front-end VME readout crates. The simplicity and partitionability of the new system greatly eases the debugging and diagnosing process. As a result, the new system improves throughput by about a factor of three compared to the old system, up to 800 megabits per second, and has proven robust and reliable in the current run.« less

  1. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    NASA Astrophysics Data System (ADS)

    Senkin, Sergey

    2018-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  2. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-01-01

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments. PMID:27213373

  3. Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator

    DTIC Science & Technology

    1992-12-01

    Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the

  4. A Timing Synchronizer System for Beam Test Setups Requiring Galvanic Isolation

    NASA Astrophysics Data System (ADS)

    Meder, Lukas Dominik; Emschermann, David; Frühauf, Jochen; Müller, Walter F. J.; Becker, Jürgen

    2017-07-01

    In beam test setups detector elements together with a readout composed of frontend electronics (FEE) and usually a layer of field-programmable gate arrays (FPGAs) are being analyzed. The FEE is in this scenario often directly connected to both the detector and the FPGA layer what in many cases requires sharing the ground potentials of these layers. This setup can become problematic if parts of the detector need to be operated at different high-voltage potentials, since all of the FPGA boards need to receive a common clock and timing reference for getting the readout synchronized. Thus, for the context of the compressed baryonic matter experiment a versatile timing synchronizer (TS) system was designed providing galvanically isolated timing distribution links over twisted-pair cables. As an electrical interface the so-called timing data processing board FPGA mezzanine card was created for being mounted onto FPGA-based advanced mezzanine cards for mTCA.4 crates. The FPGA logic of the TS system connects to this card and can be monitored and controlled through IPBus slow-control links. Evaluations show that the system is capable of stably synchronizing the FPGA boards of a beam test setup being integrated into a hierarchical TS network.

  5. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    NASA Astrophysics Data System (ADS)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  6. Multi-element germanium detectors for synchrotron applications

    NASA Astrophysics Data System (ADS)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; Vernon, E.; Pinelli, D.; Dooryhee, E.; Ghose, S.; Caswell, T.; Siddons, D. P.; Miceli, A.; Baldwin, J.; Almer, J.; Okasinski, J.; Quaranta, O.; Woods, R.; Krings, T.; Stock, S.

    2018-04-01

    We have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. We will discuss the technical details of the systems, and present some of the results from them.

  7. A fast, low power and low noise charge sensitive amplifier ASIC for a UV imaging single photon detector

    NASA Astrophysics Data System (ADS)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2017-04-01

    NASA has funded, through their Strategic Astrophysics Technology (SAT) program, the development of a cross strip (XS) microchannel plate (MCP) detector with the intention to increase its technology readiness level (TRL), enabling prototyping for future NASA missions. One aspect of the development is to convert the large and high powered laboratory Parallel Cross Strip (PXS) readout electronics into application specific integrated circuits (ASICs) to decrease their mass, volume, and power consumption (all limited resources in space) and to make them more robust to the environments of rocket launch and space. The redesign also foresees to increase the overall readout event rate, and decrease the noise contribution of the readout system. This work presents the design and verification of the first stage for the new readout system, the 16 channel charge sensitive amplifier ASIC, called the CSAv3. The single channel amplifier is composed of a charge sensitive amplifier (pre-amplifier), a pole zero cancellation circuit and a shaping amplifier. An additional output stage buffer allows polarity selection of the output analog signal. The operation of the amplifier is programmable via serial bus. It provides an equivalent noise charge (ENC) of around 600 e^- and a baseline gain of 10 mV/fC. The full scale pulse shaped output signal is confined within 100 ns, without long recovery tails, enabling up to 10 MHz periodic event rates without signal pile up. This ASIC was designed and fabricated in 130 nm, TSMC CMOS 1.2 V technology. In addition, we briefly discuss the construction of the readout system and plans for the future work.

  8. Noise and spectroscopic performance of DEPMOSFET matrix devices for XEUS

    NASA Astrophysics Data System (ADS)

    Treis, J.; Fischer, P.; Hälker, O.; Herrmann, S.; Kohrs, R.; Krüger, H.; Lechner, P.; Lutz, G.; Peric, I.; Porro, M.; Richter, R. H.; Strüder, L.; Trimpl, M.; Wermes, N.; Wölfel, S.

    2005-08-01

    DEPMOSFET based Active Pixel Sensor (APS) matrix devices, originally developed to cope with the challenging requirements of the XEUS Wide Field Imager, have proven to be a promising new imager concept for a variety of future X-ray imaging and spectroscopy missions like Simbol-X. The devices combine excellent energy resolution, high speed readout and low power consumption with the attractive feature of random accessibility of pixels. A production of sensor prototypes with 64 x 64 pixels with a size of 75 μm x 75 μm each has recently been finished at the MPI semiconductor laboratory in Munich. The devices are built for row-wise readout and require dedicated control and signal processing electronics of the CAMEX type, which is integrated together with the sensor onto a readout hybrid. A number of hybrids incorporating the most promising sensor design variants has been built, and their performance has been studied in detail. A spectroscopic resolution of 131 eV has been measured, the readout noise is as low as 3.5 e- ENC. Here, the dependence of readout noise and spectroscopic resolution on the device temperature is presented.

  9. Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cardoso, S.; Leitao, D. C.; Dias, T. M.; Valadeiro, J.; Silva, M. D.; Chicharo, A.; Silverio, V.; Gaspar, J.; Freitas, P. P.

    2017-06-01

    Magnetoresistive (MR) sensors have been successfully applied in many technologies, in particular readout electronics and smart systems for multiple signal addressing and readout. When single sensors are used, the requirements relate to spatial resolution and localized field sources. The integration of MR sensors in adaptable media (e.g. flexible, stretchable substrates) offers the possibility to merge the magnetic detection with mechanical functionalities. In addition, the precision of a micrometric needle can benefit greatly from the integration of MR sensors with submicrometric resolution. In this paper, we demonstrate through several detailed examples how advanced MR sensors can be integrated with the systems described above, and also with microfluidic technologies. Here, the challenges of handling liquids over a chip combine with those for miniaturization of microelectronics for MR readout. However, when these are overcome, the result is an integrated system with added functionalities, capable of answering the demand in biomedicine and biochemistry for lab-on-a-chip devices.

  10. Improved Signal Chains for Readout of CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Cunningham, Thomas

    2009-01-01

    An improved generic design has been devised for implementing signal chains involved in readout from complementary metal oxide/semiconductor (CMOS) image sensors and for other readout integrated circuits (ICs) that perform equivalent functions. The design applies to any such IC in which output signal charges from the pixels in a given row are transferred simultaneously into sampling capacitors at the bottoms of the columns, then voltages representing individual pixel charges are read out in sequence by sequentially turning on column-selecting field-effect transistors (FETs) in synchronism with source-follower- or operational-amplifier-based amplifier circuits. The improved design affords the best features of prior source-follower-and operational- amplifier-based designs while overcoming the major limitations of those designs. The limitations can be summarized as follows: a) For a source-follower-based signal chain, the ohmic voltage drop associated with DC bias current flowing through the column-selection FET causes unacceptable voltage offset, nonlinearity, and reduced small-signal gain. b) For an operational-amplifier-based signal chain, the required bias current and the output noise increase superlinearly with size of the pixel array because of a corresponding increase in the effective capacitance of the row bus used to couple the sampled column charges to the operational amplifier. The effect of the bus capacitance is to simultaneously slow down the readout circuit and increase noise through the Miller effect.

  11. Interface and protocol development for STS read-out ASIC in the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Zabolotny, Wojciech; Szczygiel, Robert

    2014-11-01

    This paper presents a proposal of a protocol for communication between the read-out integrated circuit for the STS (Silicon Tracking System) and the Data Processing Board (DPB) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The application background, objectives and proposed solution is presented.

  12. Double side read-out technique for mitigation of radiation damage effects in PbWO 4 crystals

    DOE PAGES

    Lucchini, Marco Toliman; Auffray, E.; Benaglia, A.; ...

    2016-04-18

    Test beam results of a calorimetric module based on 3×3×22 cm 3 PbWO 4 crystals, identical to those used in the CMS ECAL Endcaps, read out by a pair of photodetectors coupled to the two opposite sides (front and rear) of each crystal are presented. Nine crystals with different level of induced absorption, from 0 to 20 m -1, have been tested using electrons in the 50–200 GeV energy range. Photomultiplier tubes have been chosen as photodetectors to allow for a precise measurement of highly damaged crystals. The information provided by this double side read-out configuration allows to correct formore » event-by-event fluctuations of the longitudinal development of electromagnetic showers. By strongly mitigating the effect of non-uniform light collection efficiency induced by radiation damage, the double side read-out technique significantly improves the energy resolution with respect to a single side read-out configuration. The non-linearity of the response arising in damaged crystals is also corrected by a double side read-out configuration and the response linearity of irradiated crystals is restored. In high radiation environments at future colliders, as it will be the case for detectors operating during the High Luminosity phase of the Large Hadron Collider, defects can be created inside the scintillator volume leading to a non-uniform response of the calorimetric cell. As a result, the double side read-out technique presented in this study provides a valuable way to improve the performance of calorimeters based on scintillators whose active volumes are characterized by high aspect ratio cells similar to those used in this study.« less

  13. Double side read-out technique for mitigation of radiation damage effects in PbWO 4 crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchini, Marco Toliman; Auffray, E.; Benaglia, A.

    Test beam results of a calorimetric module based on 3×3×22 cm 3 PbWO 4 crystals, identical to those used in the CMS ECAL Endcaps, read out by a pair of photodetectors coupled to the two opposite sides (front and rear) of each crystal are presented. Nine crystals with different level of induced absorption, from 0 to 20 m -1, have been tested using electrons in the 50–200 GeV energy range. Photomultiplier tubes have been chosen as photodetectors to allow for a precise measurement of highly damaged crystals. The information provided by this double side read-out configuration allows to correct formore » event-by-event fluctuations of the longitudinal development of electromagnetic showers. By strongly mitigating the effect of non-uniform light collection efficiency induced by radiation damage, the double side read-out technique significantly improves the energy resolution with respect to a single side read-out configuration. The non-linearity of the response arising in damaged crystals is also corrected by a double side read-out configuration and the response linearity of irradiated crystals is restored. In high radiation environments at future colliders, as it will be the case for detectors operating during the High Luminosity phase of the Large Hadron Collider, defects can be created inside the scintillator volume leading to a non-uniform response of the calorimetric cell. As a result, the double side read-out technique presented in this study provides a valuable way to improve the performance of calorimeters based on scintillators whose active volumes are characterized by high aspect ratio cells similar to those used in this study.« less

  14. High-precision ground-based photometry of exoplanets

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Jayawardhana, Ray

    2013-04-01

    High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana). The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level), this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time) as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  15. Trigger readout electronics upgrade for the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Dinkespiler, B.

    2017-09-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the 2019-2020 shut-down period, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to deliver digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the Back End using a custom serializer and optical converter and 5.12 Gb/s optical links. In order to verify the full functionality of the future Liquid Argon trigger system, a demonstrator set-up has been installed on the ATLAS detector and is operated in parallel to the regular ATLAS data taking during the LHC Run-2 in 2015 and 2016. Noise level and linearity on the energy measurement have been verified to be within our requirements. In addition, we have collected data from 13 TeV proton collisions during the LHC 2015 and 2016 runs, and have observed real pulses from the detector through the demonstrator system. The talk will give an overview of the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance and on the performance of the prototype boards in the demonstrator system based on various measurements with the 13 TeV collision data. Results of the high-speed link test with the prototypes of the final electronic boards will be also reported.

  16. Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR

    PubMed Central

    Bieniosek, MF

    2015-01-01

    The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency (RF) and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog ‘electro-optial’ method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3mm × 3mm × 20mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3ps in electrical mode, 230 +/- 2ps in electro-optical with preamp mode, and 253 +/- 2ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3mm × 3mm × 5mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain. PMID:25905626

  17. Semi-automatic aircraft control system

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor)

    1978-01-01

    A flight control type system which provides a tactile readout to the hand of a pilot for directing elevator control during both approach to flare-out and departure maneuvers. For altitudes above flare-out, the system sums the instantaneous coefficient of lift signals of a lift transducer with a generated signal representing ideal coefficient of lift for approach to flare-out, i.e., a value of about 30% below stall. Error signals resulting from the summation are read out by the noted tactile device. Below flare altitude, an altitude responsive variation is summed with the signal representing ideal coefficient of lift to provide error signal readout.

  18. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    ERIC Educational Resources Information Center

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  19. Novel microwave readout for phase qubits

    NASA Astrophysics Data System (ADS)

    Kumar, Shwetank; Steffen, Matthias; Rothwell, Mary-Beth; Rozen, James; Keefe, George; Ketchen, Mark

    2010-03-01

    We present a novel microwave based readout for a phase qubit which circumvents loss mechanisms that have been shown to impact qubit coherence times. Additionally, this new technique facilitates multiplexing of qubits thereby reducing the number of cryogenic wires required for operating the qubits. The basic operation of the circuit will be discussed and compared with experimental data.

  20. An online proton beam monitor for cancer therapy based on ionization chambers with micro pattern readout

    NASA Astrophysics Data System (ADS)

    Basile, E.; Carloni, A.; Castelluccio, D. M.; Cisbani, E.; Colilli, S.; De Angelis, G.; Fratoni, R.; Frullani, S.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Vacca, G.

    2012-03-01

    A unique compact LINAC accelerator for proton therapy is under development in Italy within the TOP-IMPLART project. The proton beam will reach the kinetic energy of 230 MeV, it will have a widely variable current intensity (0.1-10 μA, with average up to 3.5 nA) associated with a high pulse repetition frequency (1-3.5 μs long pulses at 10-100 Hz). The TOP-IMPLART system will provide a fully active 3+1D dose delivery, that is longitudinal (energy modulation), transverse active spot scanning, and current intensity modulation. These accelerator features will permit a highly conformational dose distribution, which therefore requires an effective, online, beam monitor system with wide dynamic range, good sensitivity, adequate spatial resolution and rapid response. In order to fulfill these requisites a new device is under development for the monitoring of the beam intensity profile, its centroid and direction; it is based on transmission, segmented, ionization chambers with typical active area of 100 × 100 mm2. Micro pattern x/y pad like design has been used for the readout plane in order to maximize the field uniformity, reduce the chamber thickness and obtain both beam coordinates on a single chamber. The chamber prototype operates in ionization region to minimize saturation and discharge effects. Simulations (based on FLUKA) have been carried on to study the perturbation of the chamber on the beam parameters and the effects on the delivered dose (on a water phantom). The charge collected in each channel is integrated by dedicated auto-ranging readout electronics: an original scheme has been developed in order to have an input dynamic range greater than 104 with sensitivity better than 3%. This is achieved by a dynamical adjustment of the integrating capacitance to the signal intensity.

  1. Highly efficient router-based readout algorithm for single-photon-avalanche-diode imagers for time-correlated experiments

    NASA Astrophysics Data System (ADS)

    Cominelli, A.; Acconcia, G.; Caldi, F.; Peronio, P.; Ghioni, M.; Rech, I.

    2018-02-01

    Time-Correlated Single Photon Counting (TCSPC) is a powerful tool that permits to record extremely fast optical signals with a precision down to few picoseconds. On the other hand, it is recognized as a relatively slow technique, especially when a large time-resolved image is acquired exploiting a single acquisition channel and a scanning system. During the last years, much effort has been made towards the parallelization of many acquisition and conversion chains. In particular, the exploitation of Single-Photon Avalanche Diodes in standard CMOS technology has paved the way to the integration of thousands of independent channels on the same chip. Unfortunately, the presence of a large number of detectors can give rise to a huge rate of events, which can easily lead to the saturation of the transfer rate toward the elaboration unit. As a result, a smart readout approach is needed to guarantee an efficient exploitation of the limited transfer bandwidth. We recently introduced a novel readout architecture, aimed at maximizing the counting efficiency of the system in typical TCSPC measurements. It features a limited number of high-performance converters, which are shared with a much larger array, while a smart routing logic provides a dynamic multiplexing between the two parts. Here we propose a novel routing algorithm, which exploits standard digital gates distributed among a large 32x32 array to ensure a dynamic connection between detectors and external time-measurement circuits.

  2. Design of a Multichannel Low-Noise Front-End Readout ASIC Dedicated to CZT Detectors for PET Imaging

    NASA Astrophysics Data System (ADS)

    Gao, W.; Liu, H.; Gan, B.; Wei, T.; Gao, D.; Hu, Y.

    2014-10-01

    In this paper, we present the design and preliminary results of a novel low-noise front-end readout application-specific integrated circuit (ASIC) for a PET imaging system whose objective is to achieve the following performances: the spatial resolution of 1 mm3, the detection efficiency of 15% and the time resolution of 1 ns. A cascode amplifier based on the PMOS input transistor is selected to realize the charge-sensitive amplifier (CSA) for the sake of good noise performances. The output of the CSA is split into two branches. One is connected to a slow shaper for energy measurements. The other is connected to a fast shaper for time acquisition. A novel monostable circuits is designed to adjust the time delay of the trigger signals so that the peak value of the shaped voltages can be sampled and stored. An eight-channel front-end readout prototype chip is designed and implemented in 0.35 μm CMOS process. The die size is 2.286 mm ×2.282 mm. The input range of the ASIC is from 2000 e- to 180000 e-, reflecting to the energy level of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC. The tested result of ENC is 86.5 e- at zero farad plus 9.3 e- per picofarad. The nonlinearity is less than 3%. The crosstalk is less than 2%. The power dissipation is about 3 mW/channel.

  3. Development towards compact nitrocellulose interferometric biochips for dry eye diagnosis based on MMP9, S100A6 and CST4 biomarkers using a Point-of-Care device

    NASA Astrophysics Data System (ADS)

    Santamaría, Beatriz; Laguna, María. Fe; López-Romero, David; López-Hernandez, A.; Sanza, F. J.; Lavín, A.; Casquel, R.; Maigler, M.; Holgado, M.

    2018-02-01

    A novel compact optical biochip based on a thin layer-sensing BICELL surface of nitrocellulose is used for in-situ labelfree detection of dry eye disease (DED). In this work the development of a compact biosensor that allows obtaining quantitative diagnosis with a limited volume of sample is reported. The designed sensors can be analyzed with an optical integrated Point-of-Care read-out system based on the "Increase Relative Optical Power" principle which enhances the performance and Limit of Detection. Several proteins involved with dry eye dysfunction have been validated as biomarkers. Presented biochip analyzes three of those biomarkers: MMP9, S100A6 and CST4. BICELLs based on nitrocellulose permit to immobilize antibodies for each biomarker recognition. The optical response obtained from the biosensor through the readout platform is capable to recognize specifically the desired proteins in the concentrations range for control eye (CE) and dry eye syndrome (DES). Preliminary results obtained will allow the development of a dry eye detection device useful in the area of ophthalmology and applicable to other possible diseases related to the eye dysfunction.

  4. Event-Driven Random-Access-Windowing CCD Imaging System

    NASA Technical Reports Server (NTRS)

    Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William

    2004-01-01

    A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable assembly. The FPGA controller card is connected to the host computer via a standard peripheral component interface (PCI).

  5. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    NASA Astrophysics Data System (ADS)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  6. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  7. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Mitra, J.; Khan, S. A.; Mukherjee, S.; Paul, R.

    2016-03-01

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board.

  8. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes

    NASA Astrophysics Data System (ADS)

    Jang, Munseon; Yun, Kwang-Seok

    2017-12-01

    In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.

  9. LAMBDA 2M GaAs—A multi-megapixel hard X-ray detector for synchrotrons

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Pithan, F.; Sarajlic, M.; Rothkirch, A.; Yu, Y.; Liermann, H. P.; Morgenroth, W.; Winkler, B.; Jenei, Z.; Stawitz, H.; Becker, J.; Graafsma, H.

    2018-01-01

    Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature.

  10. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  11. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  12. An investigation of a PRESAGE® in-vivo dosimeter for brachytherapy

    PubMed Central

    Vidovic, A K; Juang, T; Meltsner, S; Adamovics, J; Chino, J; Steffey, B; Craciunescu, O; Oldham, M

    2014-01-01

    Determining accurate in-vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in-vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm x 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® In-Vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0–15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy·cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (~1mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in-vivo dose verification, although improved sensitivity would be desirable. Advantages include high-resolution, convenience and fast, low-cost readout. PMID:24957850

  13. An investigation of a PRESAGE® in vivo dosimeter for brachytherapy

    NASA Astrophysics Data System (ADS)

    Vidovic, A. K.; Juang, T.; Meltsner, S.; Adamovics, J.; Chino, J.; Steffey, B.; Craciunescu, O.; Oldham, M.

    2014-07-01

    Determining accurate in vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm × 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® in vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with a commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0-15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy ṡ cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (˜1 mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in vivo dose verification, although improved sensitivity would be desirable. Advantages include high-resolution, convenience and fast, low-cost readout.

  14. A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.

    PubMed

    Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2014-01-01

    Together with a charge or voltage amplifier, piezoelectric sensors are commonly used to pick up physiological vibrations from the body. As an alternative to chopper or auto-zero amplifiers, frequency sensing is known in literature to provide advantages of noise immunity, interfacing to digital readout systems as well as tunable range of sensing. A frequency-sensing readout circuit for sensing low voltage signals from piezoelectric sensors is successfully developed and tested in this work. The output voltage of a piezoelectric sensor is fed to a varactor, which is part of an Colpitts LC oscillator. The oscillation frequency is converted into a voltage using a phase locked loop. The circuit is compared to a reference design in terms of linearity, noise and transfer function. The readout has a input-referred noise voltage of 2.24μV/√Hz and consumes 15 mA at 5V supply. Arterial pulse wave signals and the cardiac vibrations from the chest are measured from one subject to show the proof of concept of the proposed readout. The results of this work are intended to contribute towards alternative low noise analog front end designs for piezoelectric sensors.

  15. The upgraded HADES trigger and data acquisition system

    NASA Astrophysics Data System (ADS)

    Michel, J.; Böhmer, M.; Kajetanowicz, M.; Korcyl, G.; Maier, L.; Palka, M.; Stroth, J.; Tarantola, A.; Traxler, M.; Ugur, C.; Yurevich, S.

    2011-12-01

    The HADES experiment is a High Acceptance Di-Electron Spectrometer located at GSI in Darmstadt, Germany. Recently, its trigger and data acquisition system was upgraded. The main goal was to substantially increase the event rate capability by a factor of up to 20 to reach 100 kHz in light and 20 kHz in heavy ion reaction systems. The total data rate written to storage is about 400 MByte/s in peak. In this context, the complete read-out system was exchanged to FPGA-based platforms using optical communication. For data transport a general-purpose real-time network protocol was developed to meet the strong requirements of the system. In particular, trigger information has to reach all front-end modules with latencies of less than 5 μs through up to 10 intermediate hubs in a star-like network setup. Monitoring and slow control features as well as readout and trigger distribution were joined in a single network protocol made up by three virtual channels with inherent arbitration by priority and a typical switching time of 100 ns. The full DAQ system includes about 550 FPGAs distributed over the complete detector system. For control and monitoring a virtual address space spanning the whole network is provided. Data are merged by the network hubs into data streams and passed on to a server farm using an Ethernet infrastructure. Due to the electromagnetic noise environment, several transmission error detection and correction features were included. In collaboration with groups from experiments of the FAIR accelerator complex, further developments based on the versatile hardware and communication protocol are being pursued.

  16. Resistive-strips micromegas detectors with two-dimensional readout

    NASA Astrophysics Data System (ADS)

    Byszewski, M.; Wotschack, J.

    2012-02-01

    Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.

  17. Laser marking of contrast images for optical read-out systems

    NASA Astrophysics Data System (ADS)

    Yulmetova, O. S.; Tumanova, M. A.

    2017-11-01

    In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.

  18. A closed-loop compressive-sensing-based neural recording system.

    PubMed

    Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S; Hsiao, Steven; Tran, Trac D; Yazicioglu, Firat; Etienne-Cummings, Ralph

    2015-06-01

    This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm(2)/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.

  19. Technology of uncooled fast polycrystalline PbSe focal plane arrays in systems for muzzle flash detection

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; PiÄ tkowski, Tadeusz; Polakowski, Henryk; Barela, Jaroslaw; Firmanty, Krzysztof; Trzaskawka, Piotr; Vergara, German; Linares, Rodrigo; Gutierrez, Raul; Fernandez, Carlos; Montojo Supervielle, Maria Teresa

    2014-05-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe 32×32 and 80×80 detectors FPA operating at room temperature (uncooled performance). These sensors, which detect in MWIR (3 - 5 microns region) and are manufactured using proprietary technology from New Infrared Technologies (VPD PbSe - Vapor Phase Deposition of polycrystalline PbSe), can be applied to muzzle flash detection. The system based in the uncooled 80×80 FPA monolithically integrated with the CMOS readout circuitry has allowed image recording with frame rates over 2000 Hz (true snapshot acquisition), whereas the lower density, uncooled 32×32 FPA is suitable for being used in low cost infrared imagers sensitive in the MWIR band with frame rates above 1000 Hz. The FPA detector, read-out electronics and processing electronics (allows the implementation of some algorithms for muzzle flash detection) of both systems are presented. The systems have been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The theoretical analysis of possibility detection of muzzle flash and initial results of testing of some algorithms for muzzle flash detection have been presented too.

  20. A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.

    PubMed

    Shao, Yiping; Yao, Rutao; Ma, Tianyu

    2008-12-01

    The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detection condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.

  1. A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao Yiping; Yao Rutao; Ma Tianyu

    The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detectionmore » condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.« less

  2. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology.

    PubMed

    Padmanabhan, Preethi; Hancock, Bruce; Nikzad, Shouleh; Bell, L Douglas; Kroep, Kees; Charbon, Edoardo

    2018-02-03

    Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e - , obtaining avalanche gains up to 10³. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.

  3. CMOS SiPM with integrated amplifier

    NASA Astrophysics Data System (ADS)

    Schwinger, Alexander; Brockherde, Werner; Hosticka, Bedrich J.; Vogt, Holger

    2017-02-01

    The integration of silicon photomultiplier (SiPM) and frontend electronics in a suitable optoelectronic CMOS process is a promising approach to increase the versatility of single-photon avalanche diode (SPAD)-based singlephoton detectors. By integrating readout amplifiers, the device output capacitance can be reduced to minimize the waveform tail, which is especially important for large area detectors (>10 × 10mm2). Possible architectures include a single readout amplifier for the whole detector, which reduces the output capacitance to 1:1 pF at minimal reduction in detector active area. On the other hand, including a readout amplifier in every SiPM cell would greatly improve the total output capacitance by minimizing the influence of metal routing parasitic capacitance, but requiring a prohibitive amount of detector area. As tradeoff, the proposed detector features one readout amplifier for each column of the detector matrix to allow for a moderate reduction in output capacitance while allowing the electronics to be placed in the periphery of the active detector area. The presented detector with a total size of 1.7 ♢ 1.0mm2 features 400 cells with a 50 μm pitch, where the signal of each column of 20 SiPM cells is summed in a readout channel. The 20 readout channels are subsequently summed into one output channel, to allow the device to be used as a drop-in replacement for commonly used analog SiPMs.

  4. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone

    PubMed Central

    Im, Hyungsoon; Castro, Cesar M.; Shao, Huilin; Liong, Monty; Song, Jun; Pathania, Divya; Fexon, Lioubov; Min, Changwook; Avila-Wallace, Maria; Zurkiya, Omar; Rho, Junsung; Magaoay, Brady; Tambouret, Rosemary H.; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2015-01-01

    The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts. PMID:25870273

  5. TES-Based X-Ray Microcalorimeter Performances Under AC Bias and FDM for Athena

    NASA Technical Reports Server (NTRS)

    Akamatsu, H.; Gottardi, L.; de Vries, C. P.; Adams, J. S.; Bandler, S. R.; Bruijn, M. P.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Gao, J. R.; hide

    2016-01-01

    Athena is a European X-ray observatory, scheduled for launch in 2028. Athena will employ a high-resolution imaging spectrometer called X-ray integral field unit (X-IFU), consisting of an array of 4000 transition edge sensor (TES) microcalorimeter pixels. For the readout of X-IFU, we are developing frequency domain multiplexing, which is the baseline readout system. In this paper, we report on the performance of a TES X-ray calorimeter array fabricated at Goddard Space Flight Center (GSFC) at MHz frequencies for the baseline of X-IFU detector. During single-pixel AC bias characterization, we measured X-ray energy resolutions (at 6 keV) of about 2.9 eV at both 2.3 and 3.7 MHz. Furthermore, in the multiplexing mode, we measured X-ray energy resolutions of about 2.9 eV at 1.3 and 1.7 MHz.

  6. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone.

    PubMed

    Im, Hyungsoon; Castro, Cesar M; Shao, Huilin; Liong, Monty; Song, Jun; Pathania, Divya; Fexon, Lioubov; Min, Changwook; Avila-Wallace, Maria; Zurkiya, Omar; Rho, Junsung; Magaoay, Brady; Tambouret, Rosemary H; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2015-05-05

    The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts.

  7. Automatic readout micrometer

    DOEpatents

    Lauritzen, Ted

    1982-01-01

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  8. Automatic readout micrometer

    DOEpatents

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  9. The readout electronics for Plastic Scintillator Detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Yang, Haibo; Zhao, Hongyun; Su, Hong; Sun, Zhiyu; Yu, Yuhong; JingZhe, Zhang; Wang, XiaoHui; Liu, Jie; Xiao, Guoqing; Ma, Xinwen

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) satellite, which launched in December 2015, is designed to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. Plastic Scintillator Detector (PSD) is one of major part of the satellite payload, which is comprised of a crossed pair of layers with 41 plastic scintillator-strips, each read out from both ends by the same Hamamatsu R4443MOD2 photo-multiplier tubes (PMTs). In order to extend linear dynamic range of detector, PMTs read out each plastic scintillator-strip separately with two dynode pickoffs. Therefore, the readout electronics system comprises of four Front-end boards to receive the pulses from 328 PMTs and implement charge measurement, which is based on the Application Specific Integrated Circuit (ASIC) chip VA160, 16 bits ADC and FPGA. The electronics of the detector has been designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. Various experiments are designed and implemented to check the performance of the electronics, some excellent results has been achieved.According to experimental results analysis, it is proved that the readout electronics works well.

  10. High-Throughput In Vivo Genotoxicity Testing: An Automated Readout System for the Somatic Mutation and Recombination Test (SMART)

    PubMed Central

    Kwak, Jihoon; Genovesio, Auguste; Kang, Myungjoo; Hansen, Michael Adsett Edberg; Han, Sung-Jun

    2015-01-01

    Genotoxicity testing is an important component of toxicity assessment. As illustrated by the European registration, evaluation, authorization, and restriction of chemicals (REACH) directive, it concerns all the chemicals used in industry. The commonly used in vivo mammalian tests appear to be ill adapted to tackle the large compound sets involved, due to throughput, cost, and ethical issues. The somatic mutation and recombination test (SMART) represents a more scalable alternative, since it uses Drosophila, which develops faster and requires less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila wings required for the SMART limits its usage. To overcome this limitation, we have developed an automated SMART readout. It consists of automated imaging, followed by an image analysis pipeline that measures individual wing genotoxicity scores. Finally, we have developed a wing score-based dose-dependency approach that can provide genotoxicity profiles. We have validated our method using 6 compounds, obtaining profiles almost identical to those obtained from manual measures, even for low-genotoxicity compounds such as urethane. The automated SMART, with its faster and more reliable readout, fulfills the need for a high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools we provide should facilitate the optimization and dissemination of our methods. PMID:25830368

  11. Design of a Multi-Channel Front-End Readout ASIC With Low Noise and Large Dynamic Input Range for APD-Based PET Imaging

    NASA Astrophysics Data System (ADS)

    Fang, X. C.; Hu-Guo, Ch.; Ollivier-Henry, N.; Brasse, D.; Hu, Y.

    2010-06-01

    This paper represents the design of a low-noise, wide band multi-channel readout integrated circuit (IC) used as front end readout electronics of avalanche photo diodes (APD) dedicated to a small animal positron emission tomography (PET) system. The first ten-channel prototype chip (APD-Chip) of the analog parts has been designed and fabricated in a 0.35 μm CMOS process. Every channel of the APD_Chip includes a charge-sensitive preamplifier (CSA), a CR-(RC)2 shaper, and an analog buffer. In a channel, the CSA reads charge signals (10 bits dynamic range) from an APD array having 10 pF of capacitance per pixel. A linearized degenerated differential pair which ensures high linearity in all dynamical range is used as the high feedback resistor for preventing pile up of signals. The designed CSA has the capability of compensating automatically up to 200 nA leakage current from the detector. The CR-(RC)2 shaper filters and shapes the output signal of the CSA. An equivalent input noise charge obtained from test is 275 e -+ 10 e-/pF. In this paper the prototype is presented for both its theoretical analysis and its test results.

  12. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  13. Design of the ANTARES LCM-DAQ board test bench using a FPGA-based system-on-chip approach

    NASA Astrophysics Data System (ADS)

    Anvar, S.; Kestener, P.; Le Provost, H.

    2006-11-01

    The System-on-Chip (SoC) approach consists in using state-of-the-art FPGA devices with embedded RISC processor cores, high-speed differential LVDS links and ready-to-use multi-gigabit transceivers allowing development of compact systems with substantial number of IO channels. Required performances are obtained through a subtle separation of tasks between closely cooperating programmable hardware logic and user-friendly software environment. We report about our experience in using the SoC approach for designing the production test bench of the off-shore readout system for the ANTARES neutrino experiment.

  14. High Speed Large Format Photon Counting Microchannel Plate Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.; Craven, C.; Popecki, M.; O'Mahony, A.; Minot, M.

    The development of a new class of microchannel plate technology, using atomic layer deposition (ALD) techniques applied to a borosilicate microcapillary array is enabling the implementation of larger, more stable detectors for Astronomy and remote sensing. Sealed tubes with MCPs with SuperGenII, bialkali, GaAs and GaN photocathodes have been developed to cover a wide range of optical/UV sensing applications. Formats of 18mm and 25mm circular, and 50mm (Planacon) and 20cm square have been constructed for uses from night time remote reconnaissance and biological single-molecule fluorescence lifetime imaging microscopy, to large area focal plane imagers for Astronomy, neutron detection and ring imaging Cherenkov detection. The large focal plane areas were previously unattainable, but the new developments in construction of ALD microchannel plates allow implementation of formats of 20cm or more. Continuing developments in ALD microchannel plates offer improved overall sealed tube lifetime and gain stability, and furthermore show reduced levels of radiation induced background. High time resolution astronomical and remote sensing applications can be addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. Photon counting imaging readouts for these devices vary from cross strip (XS), cross delay line (XDL), to stripline anodes, and pad arrays depending on the intended application. The XS and XDL readouts have been implemented in formats from 22mm, and 50mm to 20cm. Both use MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. XDL readout uses signal propagation delay to encode positions while XS readout uses charge cloud centroiding. Spatial resolution readout of XS detectors can be better than 20 microns FWHM, with good image linearity while using low gain (<10^6), allowing high local counting rates and longer overall tube lifetime. XS tubes with electronics can encode event rates of >5 MHz and event timing accuracy of ~100ps. We will discuss how we are applying these detector system developments for devices in formats of 18mm and 25mm circular, and 50mm and 20cm square. The performance characteristics will be demonstrated along with lifetest data taken over the last year. Implications for ground based instruments to study transient and variable astronomical objects, as well as implementation in satellite instruments for earth atmospheric, planetary and solar observations will be discussed.

  15. Preliminary Assessment of Microwave Readout Multiplexing Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, Mark Philip; Koehler, Katrina Elizabeth; Rabin, Michael W.

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must bemore » operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.« less

  16. Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver

    NASA Astrophysics Data System (ADS)

    Bender, A. N.; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Basu Thakur, R.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Crawford, T. M.; Cukierman, A.; Czaplewski, D. A.; Ding, J.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Groh, J. C.; Guyser, R.; Halverson, N. W.; Harke-Hosemann, A.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Korman, M.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Lendinez, S.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, Ian; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.

    2016-07-01

    The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of 16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.

  17. Fundamental performance determining factors of the ultrahigh-precision space-borne optical metrology system for the LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    Hechenblaikner, Gerald; Flatscher, Reinhold

    2013-05-01

    The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.

  18. Towards a sub 15-dBA optical micromachined microphone

    PubMed Central

    Kim, Donghwan; Hall, Neal A.

    2014-01-01

    Micromachined microphones with grating-based optical-interferometric readout have been demonstrated previously. These microphones are similar in construction to bottom-inlet capacitive microelectromechanical-system (MEMS) microphones, with the exception that optoelectronic emitters and detectors are placed inside the microphone's front or back cavity. A potential advantage of optical microphones in designing for low noise level is the use of highly-perforated microphone backplates to enable low-damping and low thermal-mechanical noise levels. This work presents an experimental study of a microphone diaphragm and backplate designed for optical readout and low thermal-mechanical noise. The backplate is 1 mm × 1 mm and is fabricated in a 2-μm-thick epitaxial silicon layer of a silicon-on-insulator wafer and contains a diffraction grating with 4-μm pitch etched at the center. The presented system has a measured thermal-mechanical noise level equal to 22.6 dBA. Through measurement of the electrostatic frequency response and measured noise spectra, a device model for the microphone system is verified. The model is in-turn used to identify design paths towards MEMS microphones with sub 15-dBA noise floors. PMID:24815250

  19. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 104 simultaneous events can be detected with a spatial resolution of 55 μm, while >103 simultaneous events can be detected with <10 μm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×108 particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10-20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, K.; Akiba, Y.; Arnold, K.

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  1. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  2. Establishing MALDI-TOF as Versatile Drug Discovery Readout to Dissect the PTP1B Enzymatic Reaction.

    PubMed

    Winter, Martin; Bretschneider, Tom; Kleiner, Carola; Ries, Robert; Hehn, Jörg P; Redemann, Norbert; Luippold, Andreas H; Bischoff, Daniel; Büttner, Frank H

    2018-07-01

    Label-free, mass spectrometric (MS) detection is an emerging technology in the field of drug discovery. Unbiased deciphering of enzymatic reactions is a proficient advantage over conventional label-based readouts suffering from compound interference and intricate generation of tailored signal mediators. Significant evolvements of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, as well as associated liquid handling instrumentation, triggered extensive efforts in the drug discovery community to integrate the comprehensive MS readout into the high-throughput screening (HTS) portfolio. Providing speed, sensitivity, and accuracy comparable to those of conventional, label-based readouts, combined with merits of MS-based technologies, such as label-free parallelized measurement of multiple physiological components, emphasizes the advantages of MALDI-TOF for HTS approaches. Here we describe the assay development for the identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors. In the context of this precious drug target, MALDI-TOF was integrated into the HTS environment and cross-compared with the well-established AlphaScreen technology. We demonstrate robust and accurate IC 50 determination with high accordance to data generated by AlphaScreen. Additionally, a tailored MALDI-TOF assay was developed to monitor compound-dependent, irreversible modification of the active cysteine of PTP1B. Overall, the presented data proves the promising perspective for the integration of MALDI-TOF into drug discovery campaigns.

  3. Readout of a 176 pixel FDM system for SAFARI TES arrays

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; den Hartog, R.; Ridder, M.; van der Linden, A. J.; van der Kuur, J.; Gao, J. R.; Jackson, B.

    2016-07-01

    In this paper we present the results of our 176-pixel prototype of the FDM readout system for SAFARI, a TES-based focal-plane instrument for the far-IR SPICA mission. We have implemented the knowledge obtained from the detailed study on electrical crosstalk reported previously. The effect of carrier leakage is reduced by a factor two, mutual impedance is reduced to below 1 nH and mutual inductance is removed. The pixels are connected in stages, one quarter of the array half of the array and the full array, to resolve intermediate technical issues. A semi-automated procedure was incorporated to find all optimal settings for all pixels. And as a final step the complete array has been connected and 132 pixels have been read out simultaneously within the frequency range of 1-3.8MHz with an average frequency separation of 16kHz. The noise was found to be detector limited and was not affected by reading out all pixels in a FDM mode. With this result the concept of using FDM for multiplexed bolometer read out for the SAFARI instrument has been demonstrated.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, S.

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less

  5. Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout

    DOE PAGES

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja; ...

    2016-12-24

    Prototype scintilator+WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Furthermore, light yield of up to 137 photoelectrons per muon per strip has been observed, as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm.

  6. Poster – 13: Evaluation of an in-house CCD camera film dosimetry imaging system for small field deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, Michel; Alexander, Kevin; Olding, Tim

    Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and alsomore » benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV{sub MET}) and whole brain plus metastases (WB+PTV{sub MET}) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV{sub MET} structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV{sub MET} iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV{sub MET} delivery. But, film doses for PTV{sub MET} only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.« less

  7. Three Generations of FPGA DAQ Development for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mayer, Joseph A., II

    The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) tracks a schedule of long physics runs, followed by periods of inactivity known as Long Shutdowns (LS). During these LS phases both the LHC, and the experiments around its ring, undergo maintenance and upgrades. For the LHC these upgrades improve their ability to create data for physicists; the more data the LHC can create the more opportunities there are for rare events to appear that physicists will be interested in. The experiments upgrade so they can record the data and ensure the event won't be missed. Currently the LHC is in Run 2 having completed the first LS of three. This thesis focuses on the development of Field-Programmable Gate Array (FPGA)-based readout systems that span across three major tasks of the ATLAS Pixel data acquisition (DAQ) system. The evolution of Pixel DAQ's Readout Driver (ROD) card is presented. Starting from improvements made to the new Insertable B-Layer (IBL) ROD design, which was part of the LS1 upgrade; to upgrading the old RODs from Run 1 to help them run more efficiently in Run 2. It also includes the research and development of FPGA based DAQs and integrated circuit emulators for the ITk upgrade which will occur during LS3 in 2025.

  8. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks

    PubMed Central

    Patel, Dinshaw J.

    2016-01-01

    SUMMARY This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities. PMID:26931326

  9. Advanced readout methods for superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Di Fulvio, A.

    2018-05-01

    Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Geronimo, G.; Fried, J.; Rehak, P.

    We present an application-specific integrated circuit (ASIC) for high-resolution x-ray spectrometers (XRS). The ASIC reads out signals from pixelated silicon drift detectors (SDDs). The pixel does not have an integrated field effect transistor (FET); rather, readout is accomplished by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW, and offers 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, a novel pile-up rejector, and peak detection with an analog memory. The readout is sparse and based on custom low-power tristatable low-voltage differential signaling (LPT-LVDS). A unit of 64 SDD pixels, read outmore » by four ASICs, covers an area of 12.8 cm{sup 2} and dissipates with the sensor biased about 15 mW/cm{sup 2}. As a tile-based system, the 64-pixel units cover a large detection area. Our preliminary measurements at -44 C show a FWHM of 145 eV at the 5.9 keV peak of a {sup 55}Fe source, and less than 80 eV on a test-pulse line at 200 eV.« less

  11. Development of GEM detector for plasma diagnostics application: simulations addressing optimization of its performance

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.

    2017-12-01

    The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.

  12. A magnetic field compatible graphene transmon

    NASA Astrophysics Data System (ADS)

    Kroll, James G.; Uilhoorn, Willemijn; de Jong, Damaz; Borsoi, Francesco; van der Enden, Kian; Goswami, Srijit; Cassidy, Maja; Kouwenhoven, Leo. P.

    Hybrid circuit QED is a key tool for readout and scaling of both semiconductor-based spin and topological quantum computing schemes. However, traditional approaches to circuit QED are incompatible with the strong external magnetic fields required for these qubits. Here we present measurements of a hybrid graphene-based transmon operating at 1 T. The device consists of coplanar waveguide resonators where the NbTiN thin film is patterned with a dense anti-dot lattice to trap Abriskov vortices, resulting in internal quality factors Qi >10^5 up to 6 T. Furthermore, the atomically thin nature of graphene in combination with the high critical field of its superconducting contacts makes it an ideal system for tolerating strong parallel magnetic fields. We combine these circuit elements to realize a magnetic field compatible transmon qubit. An external gate allows us to change the Josephson energy, and study the corresponding change in the resonator-qubit interaction in the dispersive regime. Two tone spectroscopy reveals a gate-tunable qubit peak at 1T. These experiments open up the possibility of fast charge parity measurements in high magnetic fields for readout of Majorana qubits..

  13. Processing inferences derived from event-related potential measures in a monitoring task

    NASA Technical Reports Server (NTRS)

    Horst, R. L.; Munson, R. C.; Ruchkin, D. S.

    1985-01-01

    Event-related potentials (ERPs) were recorded from the scalp of subjects as they monitored changing digital readouts for values that went 'out-of-bounds'. Workload was manipulated by varying the number of readouts that were monitored concurrently. The ERPs elicited by changes in the readouts showed long latency positivities that increased in amplitude, not only with the number of readouts monitored, but also with the number of monitored readouts that were 'in danger' of going out-of-bounds. No effects were found due to the number of nonmonitored readouts 'in danger'. This evidence indicates that subjects (1) selectively attended to the monitored readouts and (2) processed the monitored readouts differently as the readouts approached the out-of-bounds levels to which an overt response was required.

  14. Development of the new trigger for VANDLE neutron detector

    NASA Astrophysics Data System (ADS)

    Hasse, Adam; Taylor, Steven; Daugherty, Hadyn; Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Department of Physics and Astronomy, University of Tennessee, Knoxville, USA.

  15. The NOAO NEWFIRM Data Handling System

    NASA Astrophysics Data System (ADS)

    Zárate, N.; Fitzpatrick, M.

    2008-08-01

    The NOAO Extremely Wide-Field IR Mosaic (NEWFIRM) is a new 1-2.4 micron IR camera that is now being commissioned for the 4m Mayall telescope at Kitt Peak. The focal plane consists of a 2x2 mosaic of 2048x2048 arrays offerring a field-of-view of 27.6' on a side. The use of dual MONSOON array controllers permits very fast readout, a scripting interface allows for highly efficient observing modes. We describe the Data Handling System (DHS) for the NEWFIRM camera which is designed to meet the performance requirements of the instrument as well as the observing environment in which in operates. It is responsible for receiving the data stream from the detector and instrument software, rectifying the image geometry, presenting a real-time display of the image to the user, final assembly of a science-grade image with complete headers, as well as triggering automated pipeline and archival functions. The DHS uses an event-based messaging system to control multiple processes on a distributed network of machines. The asynchronous nature of this processing means the DHS operates independently from the camera readout and the design of the system is inherently scalable to larger focal planes that use a greater number of array controllers. Current status and future plans for the DHS are also discussed.

  16. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells.

    PubMed

    Zhang, Huijie; Oellers, Tobias; Feng, Wenqian; Abdulazim, Tarik; Saw, En Ning; Ludwig, Alfred; Levkin, Pavel A; Plumeré, Nicolas

    2017-06-06

    Microarray technology has shown great potential for various types of high-throughput screening applications. The main read-out methods of most microarray platforms, however, are based on optical techniques, limiting the scope of potential applications of such powerful screening technology. Electrochemical methods possess numerous complementary advantages over optical detection methods, including its label-free nature, capability of quantitative monitoring of various reporter molecules, and the ability to not only detect but also address compositions of individual compartments. However, application of electrochemical methods for the purpose of high-throughput screening remains very limited. In this work, we develop a high-density individually addressable electrochemical droplet microarray (eDMA). The eDMA allows for the detection of redox-active reporter molecules irrespective of their electrochemical reversibility in individual nanoliter-sized droplets. Orthogonal band microelectrodes are arranged to form at their intersections an array of three-electrode systems for precise control of the applied potential, which enables direct read-out of the current related to analyte detection. The band microelectrode array is covered with a layer of permeable porous polymethacrylate functionalized with a highly hydrophobic-hydrophilic pattern, forming spatially separated nanoliter-sized droplets on top of each electrochemical cell. Electrochemical characterization of single droplets demonstrates that the underlying electrode system is accessible to redox-active molecules through the hydrophilic polymeric pattern and that the nonwettable hydrophobic boundaries can spatially separate neighboring cells effectively. The eDMA technology opens the possibility to combine the high-throughput biochemical or living cell screenings using the droplet microarray platform with the sequential electrochemical read-out of individual droplets.

  17. Time-dependent observation of individual cellular binding events to field-effect transistors.

    PubMed

    Schäfer, S; Eick, S; Hofmann, B; Dufaux, T; Stockmann, R; Wrobel, G; Offenhäusser, A; Ingebrandt, S

    2009-01-01

    Electrolyte-gate field-effect transistors (EG-FETs) gained continuously more importance in the field of bioelectronics. The reasons for this are the intrinsic properties of these FETs. Binding of analysts or changes in the electrolyte composition are leading to variations of the drain-source current. Furthermore, due to the signal amplification upon voltage-to-current conversion even small extracellular signals can be detected. Here we report about impedance spectroscopy with an FET array to characterize passive components of a cell attached to the transistor gate. We developed a 16-channel readout system, which provides a simultaneous, lock-in based readout. A test signal of known amplitude and phase was applied via the reference electrode. We monitored the electronic transfer function of the FETs with the attached cell. The resulting frequency spectrum was used to investigate the surface adhesion of individual HEK293 cells. We applied different chemical treatments with either the serinpeptidase trypsin or the ionophor amphotericin B (AmpB). Binding studies can be realized by a time-dependent readout of the lock-in amplifier at a constant frequency. We observed cell detachment upon trypsin activity as well as membrane decomposition induced by AmpB. The results were interpreted in terms of an equivalent electrical circuit model of the complete system. The presented method could in future be applied to monitor more relevant biomedical manipulations of individual cells. Due to the utilization of the silicon technology, our method could be easily up-scaled to many output channels for high throughput pharmacological screening.

  18. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    PubMed

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  19. Readout characteristics of a minute aperture-mounted optical head slider flying above a submicron wide metal patterned medium track

    NASA Astrophysics Data System (ADS)

    Ohkubo, Toshifumi; Hirota, Terunao; Oumi, Manabu; Hirata, Masakazu; Nakajima, Kunio

    2004-10-01

    Advances in a digital network society require both higher densities and higher transfer rates in all sorts of storage devices. In optical recording, the trend toward higher recording density and larger storage capacity requires novel surface recording technologies that would drastically improve recording density. To satisfy these severe requirements, we have already proposed a compact integrated optical head slider assembly for proximity optical recording based on the "near field principle". Using the optical head slider, we have successfully demonstrated readout signals from 200 to 150-nm-long bit patterns at frequency bands up to approximately 10 MHz. However, from the practical point of view, it is quite necessary to evaluate readout signals from patterns of smaller (sub-micron to sub-sub-micron) track width in order to prove high-density recording potential. In this paper, we have investigated tracking accuracy characteristics utilizing sub-micron sized alternate patterns of 1-mm length formed in a straight line in the circumferential direction of the medium. Arranging precisely the head's relative position to these recorded patterns, we have successfully obtained readout signals just crossing the sub-micron line-and-space pattern's boundaries. Assuming that an aperture runs along an accurate trajectory of the arc of a circle, readout signal amplitude variations when crossing the pattern edge at a right angle have precisely predicted. Also, the influences of track width on maximum readout signal intensity and tracking sensitivity are discussed in detail.

  20. Readout for phase qubits without Josephson junctions

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias; Kumar, Shwetank; DiVincenzo, David; Keefe, George; Ketchen, Mark; Rothwell, Mary Beth; Rozen, Jim

    2010-03-01

    We present a readout scheme for phase qubits which eliminates the read-out superconducting quantum interference device so that the entire qubit and measurement circuitry only require a single Josephson junction. Our scheme capacitively couples the phase qubit directly to a transmission line and detects its state after the measurement pulse by determining a frequency shift observable in the forward scattering parameter of the readout microwaves. This readout is extendable to multiple phase qubits coupled to a common readout line and can in principle be used for other flux biased qubits having two quasistable readout configurations.

  1. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kim, J. E.; Lim, H.; Nam, J. W.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Grossan, B.; Huang, M. A.; Jeong, S.; Jung, A.; Kim, M. B.; Kim, S.-W.; Lee, J.; Linder, E. V.; Liu, T.-C.; Na, G. W.; Panasyuk, M. I.; Park, I. H.; Ripa, J.; Reglero, V.; Smoot, G. F.; Svertilov, S.; Vedenkin, N.; Yashin, I.

    2013-07-01

    The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200-650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104-106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecraft's constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test.

  2. A finite state machine read-out chip for integrated surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Rakshit, Sambarta; Iliadis, Agis A.

    2015-01-01

    A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.

  3. Fan-out Estimation in Spin-based Quantum Computer Scale-up.

    PubMed

    Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R

    2017-10-17

    Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.

  4. The E and B EXperiment: EBEX

    NASA Astrophysics Data System (ADS)

    Helson, Kyle

    2014-03-01

    We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis.

  5. DART -- Data acquisition for the next generation of Fermilab fixed target experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleynik, G.; Anderson, J.; Appleton, L.

    1994-02-01

    DART is the name of the data acquisition effort for Fermilab experiments taking data in the '94--'95 time frame and beyond. Its charge is to provide a common system of hardware and software, which can be easily configured and extended to meet the wide range of data acquisition requirements of the experiments. Its strategy is to provide incrementally functional data acquisition systems to the experiments at frequent intervals to support the ongoing DA activities of the experiments. DART is a collaborative development effort between the experimenters and the Fermilab Computing Division. Experiments collaborating in DART cover a range of requirementsmore » from 400 Kbytes/sec event readout using a single DA processor, to 200 Mbytes/sec event readout involving 10 parallel readout streams, 10 VME event building planes and greater than 1,000 MIPs of event filter processing. The authors describe the requirements, architecture, and plans for the project and report on its current status.« less

  6. A prototype optical-CT system for PRESAGE 3D dosimeter readout

    NASA Astrophysics Data System (ADS)

    Miles, Devin; Yoon, Paul; Kodra, Jacob; Adamovics, John; Oldham, Mark

    2017-05-01

    This work introduces the Duke Integrated-lens Optical Scanner (DIOS), a prototype optical-CT system designed for convenient and low-cost readout of PRESAGE 3D dosimeters. A key novelty of the DIOS is the incorporation of a multi-purpose light-collimating tank (the LC-tank). The LC-tank collimates light from a point source, maintains parallel ray geometry through a dosimeter mounted inside the tank, and refocuses emergent light onto a CCD detector. A second purpose is to dramatically reduce the amount of refractive matched fluid required in prior optical-CT scanners. This is achieved by substituting large quantities of refractive-matched fluid with solid RI-matched polyurethane. The advantages of DIOS include eliminating the need for expensive telecentric lenses, and eliminating the impracticality of large volumes of RI matched fluid. The DIOS is potentially more susceptible to stray-light artifacts. Preliminary phantom testing shows promising agreement between PRESAGE/DIOS readout and prior commissioned optical-CT scanners, as well as with Eclipse dose calculations.

  7. Evaluation of an Integrated Read-Out Layer Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Ajamieh, Fayez

    2011-07-01

    This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.

  8. Evaluation of an Integrated Read-Out Layer Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Ajamieh, Fayez; /NIU

    2011-08-18

    This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.

  9. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology †

    PubMed Central

    Hancock, Bruce; Nikzad, Shouleh; Bell, L. Douglas; Kroep, Kees; Charbon, Edoardo

    2018-01-01

    Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e−, obtaining avalanche gains up to 103. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology. PMID:29401655

  10. High resolution upgrade of the ATF damping ring BPM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  11. Solid State Mini-RPV Color Imaging System

    DTIC Science & Technology

    1975-09-12

    completed in the design and construction phase . Con- siderations are now in progress for conducting field tests of the equipment against "real world...Simplified Parallel Injection Configuration 2-21 CID Parallel Injection Configuration 2-23 Element Rate Timing 2-25 Horizontal Input and Phase Line...Timing 2-26 Line Reset /Injection Timing 2-27 Line Rate Timing (Start of Readout) 2-28 Driver A4 Block Diagram 2-31 Element Scan Time Base

  12. Study of the dE/dx resolution of a GEM Readout Chamber prototype for the upgrade of the ALICE TPC

    NASA Astrophysics Data System (ADS)

    Mathis, Andreas

    2018-02-01

    The ALICE Collaboration is planning a major upgrade of its central barrel detectors to be able to cope with the increased LHC luminosity beyond 2020. For the TPC, this implies a replacement of the currently used gated MWPCs (Multi-Wire Proportional Chamber) by GEM (Gas Electron Multiplier) based readout chambers. In order to prove, that the present particle identification capabilities via measurement of the specific energy loss are retained after the upgrade, a prototype of the ALICE IROC (Inner Readout Chamber) has been evaluated in a test beam campaign at the CERN PS. The dE/dx resolution of the prototype has been proven to be fully compatible with the current MWPCs.

  13. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  14. On readout of vibrational qubits using quantum beats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyshlov, Dmytro; Babikov, Dmitri, E-mail: Dmitri.Babikov@mu.edu; Berrios, Eduardo

    2014-12-14

    Readout of the final states of qubits is a crucial step towards implementing quantum computation in experiment. Although not scalable to large numbers of qubits per molecule, computational studies show that molecular vibrations could provide a significant (factor 2–5 in the literature) increase in the number of qubits compared to two-level systems. In this theoretical work, we explore the process of readout from vibrational qubits in thiophosgene molecule, SCCl{sub 2}, using quantum beat oscillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding vibrational states to the electronically excited readout state with variable time-delay pulses. Themore » resulting oscillation of population of the readout state is then detected as a function of time delay. In principle, fitting the quantum beat signal by an analytical expression should allow extracting the values of probability amplitudes and the relative phases of the vibrational qubit states. However, we found that if this procedure is implemented using the standard analytic expression for quantum beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase error, and propose a new analytical expression to correct the phase error. The corrected expression fits the quantum beat signal very accurately, which may permit reading out the final state of vibrational qubits in experiments by combining the analytic fitting expression with numerical modelling of the readout process. The new expression is also useful as a simple model for fitting any quantum beat experiments where more accurate phase information is desired.« less

  15. Code-division-multiplexed readout of large arrays of TES microcalorimeters

    NASA Astrophysics Data System (ADS)

    Morgan, K. M.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.

    2016-09-01

    Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray microcalorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code-division multiplexing circuit based on superconducting quantum interference device (SQUID) amplifiers. The best detector has energy resolution of 2.28 ± 0.12 eV FWHM at 5.9 keV and the array has mean energy resolution of 2.77 ± 0.02 eV over 30 working sensors. The readout channels are sampled sequentially at 160 ns/row, for an effective sampling rate of 5.12 μs/channel. The SQUID amplifiers have a measured flux noise of 0.17 μΦ0/√Hz (non-multiplexed, referred to the first stage SQUID). The multiplexed noise level and signal slew rate are sufficient to allow readout of more than 40 pixels per column, making CDM compatible with requirements outlined for future space missions. Additionally, because the modulated data from the 32 SQUID readout channels provide information on each X-ray event at the row rate, our CDM architecture allows determination of the arrival time of an X-ray event to within 275 ns FWHM with potential benefits in experiments that require detection of near-coincident events.

  16. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  17. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would be fabricated separately.

  18. The 160 TES bolometer read-out using FDM for SAFARI

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.

    2014-07-01

    For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.

  19. Quantum Time Evolution in a Qubit Readout Process with a Josephson Bifurcation Amplifier

    NASA Astrophysics Data System (ADS)

    Nakano, Hayato; Saito, Shiro; Semba, Kouichi; Takayanagi, Hideaki

    2009-06-01

    We analyzed the Josephson bifurcation amplifier (JBA) readout process of a superconducting qubit quantum mechanically by calculating the dynamics of the density operator of a driven nonlinear oscillator and a qubit coupled system during the measurement process. In purely quantum cases, bifurcation is impossible. Introducing decoherence enables us to reproduce the bifurcation with a finite hysteresis. When a qubit is initially in a superposition state, we have observed the qubit-probe (JBA) entangled state, and it is divided into two separable states at the moment the JBA transition begins. This corresponds to “projection.” To readout the measurement result, however, we must wait until the two JBA states are macroscopically well separated. The waiting time is determined by the strength of the decoherence in the JBA.

  20. Catch-Disperse-Release Readout for Superconducting Qubits

    DTIC Science & Technology

    2013-03-01

    adiabatic, a fast high-fidelity qubit readout is possible even in the strongly nonlinear dispersive regime. Interestingly, the Jaynes - Cummings nonlinearity...will be included later) and describe the system by the Jaynes - Cummings (JC) Hamiltonian [7] with a microwave drive (we use ~ = 1) H = ωq(t)σ+σ− + ωra...λeff,0 rotates on the phase plane faster than in the two-level approximation , while λeff,1 rotates slower (some- times even in the opposite

  1. Application of bacteriorhodopsin films in an adaptive-focusing schlieren system

    NASA Astrophysics Data System (ADS)

    Downie, John D.

    1995-09-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  2. Application of Bacteriorhodopsin Films in an Adaptive-Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  3. High-efficiency dynamic routing architecture for the readout of single photon avalanche diode arrays in time-correlated measurements

    NASA Astrophysics Data System (ADS)

    Cominelli, A.; Acconcia, G.; Peronio, P.; Rech, I.; Ghioni, M.

    2017-05-01

    In recent years, the Time-Correlated Single Photon Counting (TCSPC) technique has gained a prominent role in many fields, where the analysis of extremely fast and faint luminous signals is required. In the life science, for instance, the estimation of fluorescence time-constants with picosecond accuracy has been leading to a deeper insight into many biological processes. Although the many advantages provided by TCSPC-based techniques, their intrinsically repetitive nature leads to a relatively long acquisition time, especially when time-resolved images are obtained by means of a single detector, along with a scanning point system. In the last decade, TCSPC acquisition systems have been subjected to a fast trend towards the parallelization of many independent channels, in order to speed up the measure. On one hand, some high-performance multi-module systems have been already made commercially available, but high area and power consumption of each module have limited the number of channels to only some units. On the other hand, many compact systems based on Single Photon Avalanche Diodes (SPAD) have been proposed in literature, featuring thousands of independent acquisition chains on a single chip. The integration of both detectors and conversion electronic in the same pixel area, though, has imposed tight constraints on power dissipation and area occupation of the electronics, resulting in a tradeoff with performance, both in terms of differential nonlinearity and timing jitter. Furthermore, in the ideal case of simultaneous readout of a huge number of channels, the overall data rate can be as high as 100 Gbit/s, which is nowadays too high to be easily processed in real time by a PC. Typical adopted solutions involve an arbitrary dwell time, followed by a sequential readout of the converters, thus limiting the maximum operating frequency of each channel and impairing the measurement speed, which still lies well below the limit imposed by the saturation of the transfer rate towards the elaboration unit. We developed a novel readout architecture, starting from a completely different perspective: considering the maximum data rate we can manage with a PC, a limited set of conversion data is selected and transferred to the elaboration unit during each excitation period, in order to take full advantage of the bus bandwidth toward the PC. In particular, we introduce a smart routing logic, able to dynamically connect a large number of SPAD detectors to a limited set of high-performance external acquisition chains, paving the way for a more efficient use of resources and allowing us to effectively break the tradeoff between integration and performance, which affects the solutions proposed so far. The routing electronic features a pixelated architecture, while 3D-stacking techniques are exploited to connect each SPAD to its dedicated electronic, leading to a minimization of the overall number of interconnections crossing the integrated system, which is one of the main issues in high-density arrays.

  4. Multi-element germanium detectors for synchrotron applications

    DOE PAGES

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; ...

    2018-04-27

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  5. An RFID-based on-lens sensor system for long-term IOP monitoring.

    PubMed

    Hsu, Shun-Hsi; Chiou, Jin-Chern; Liao, Yu-Te; Yang, Tzu-Sen; Kuei, Cheng-Kai; Wu, Tsung-Wei; Huang, Yu-Chieh

    2015-01-01

    In this paper, an RFID-based on-lens sensor system is proposed for noninvasive long-term intraocular pressure monitoring. The proposed sensor IC, fabricated in a 0.18um CMOS process, consists of capacitive sensor readout circuitry, RFID communication circuits, and digital processing units. The sensor IC is integrated with electroplating capacitive sensors and a receiving antenna on the contact lens. The sensor IC can be wirelessly powered, communicate with RFID compatible equipment, and perform IOP measurement using on-lens capacitive sensor continuously from a 2cm distance while the incident power from an RFID reader is 20 dBm. The proposed system is compatible to Gen2 RFID protocol, extending the flexibility and reducing the self-developed firmware efforts.

  6. Multi-element germanium detectors for synchrotron applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  7. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components

    PubMed Central

    Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-01-01

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761

  8. Single-shot spiral imaging at 7 T.

    PubMed

    Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P

    2018-03-25

    The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.

  9. CMOS compatible IR sensors by cytochrome c protein

    NASA Astrophysics Data System (ADS)

    Liao, Chien-Jen; Su, Guo-Dung

    2013-09-01

    In recent years, due to the progression of the semiconductor industrial, the uncooled Infrared sensor - microbolometer has opened the opportunity for achieving low cost infrared imaging systems for both military and commercial applications. Therefore, various fabrication processes and different materials based microbolometer have been developed sequentially. The cytochrome c (protein) thin film has be reported high temperature coefficient of resistance (TCR), which is related to the performance of microbolometer directly. Hence the superior TCR value will increase the performance of microbolometer. In this paper, we introduced a novel fabrication process using aluminum which is compatible with the Taiwan Semiconductor Manufacture Company (TSMC) D35 2P4M process as the main structure material, which benefits the device to integrate with readout integrated circuit (ROIC).The aluminum split structure is suspended by sacrificial layer utilizing the standard photolithography technology and chemical etching. The height and thickness of the structure are already considered. Besides, cytochrome c solutions were ink-jetted onto the aluminum structure by using the inkjet printer, applying precise control of the Infrared absorbing layer. In measurement, incident Infrared radiation can be detected and later the heat can be transmitted to adjacent pads to readout the signal. This approach applies an inexpensive and simple fabrication process and makes the device suitable for integration. In addition, the performance can be further improved with low noise readout circuits.

  10. Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Tan, Ren-Bing; Sun, Jian-Dong; Li, Xin-Xing; Zhou, Yu; Lü, Li; Qin, Hua

    2015-10-01

    An AlGaN/GaN high electron mobility transistor (HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency (RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage Vg, the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector. Project supported by the National Natural Science Foundation of China (Grant No. 61107093), the Suzhou Science and Technology Project, China (Grant No. ZXG2012024), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2012243).

  11. Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Yoshida, J.; Kodama, K.

    2011-03-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  12. Design and performance of the readout electronics chain of the Delphi Forward Ring Imaging Cherenkov Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, P.; Nielsen, B.S.; Formenti, F.

    1992-10-01

    In this paper the Front End Readout electronics chain of the Forward Ring Imaging CHerenkov (FRICH) Detector used at the Delphi experiment of the Large Electron Positron (LEP) collider is presented. The system incorporates a wide band low noise preamplifier, mounted in the proximity of the MultiWire Proportional Chamber, an Amplifying-Discriminating-Multiple-xing FASTBUS unit for further signal amplification, discrimination and channel reduction and a LEP Time Digitizer FASTBUS unit for time digitization. The paper gives a general view of the detector and its electronics with particular emphasis on the novel characteristics and capabilities of the system.

  13. Operational characteristics of Wedge and Strip image readout systems

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Bowyer, S.; Malina, R. F.

    1986-01-01

    Application of the Wedge and Strip readout system in microchannel plate detectors for the Extreme Ultraviolet Explorer and FAUST space astronomy programs is discussed. Anode designs with high resolution (greater than 600 x 600 pixels) in imaging and spectroscopy applications have been developed. Extension of these designs to larger formats (100 mm) with higher resolution (3000 x 3000 pixels) are considered. It is shown that the resolution and imaging are highly stable, and that the flat field performance is essentially limited by photon statistics. Very high speed event response has also been achieved with output pulses having durations of less than 10 nanoseconds.

  14. SpectraCAM SPM: a camera system with high dynamic range for scientific and medical applications

    NASA Astrophysics Data System (ADS)

    Bhaskaran, S.; Baiko, D.; Lungu, G.; Pilon, M.; VanGorden, S.

    2005-08-01

    A scientific camera system having high dynamic range designed and manufactured by Thermo Electron for scientific and medical applications is presented. The newly developed CID820 image sensor with preamplifier-per-pixel technology is employed in this camera system. The 4 Mega-pixel imaging sensor has a raw dynamic range of 82dB. Each high-transparent pixel is based on a preamplifier-per-pixel architecture and contains two photogates for non-destructive readout of the photon-generated charge (NDRO). Readout is achieved via parallel row processing with on-chip correlated double sampling (CDS). The imager is capable of true random pixel access with a maximum operating speed of 4MHz. The camera controller consists of a custom camera signal processor (CSP) with an integrated 16-bit A/D converter and a PowerPC-based CPU running a Linux embedded operating system. The imager is cooled to -40C via three-stage cooler to minimize dark current. The camera housing is sealed and is designed to maintain the CID820 imager in the evacuated chamber for at least 5 years. Thermo Electron has also developed custom software and firmware to drive the SpectraCAM SPM camera. Included in this firmware package is the new Extreme DRTM algorithm that is designed to extend the effective dynamic range of the camera by several orders of magnitude up to 32-bit dynamic range. The RACID Exposure graphical user interface image analysis software runs on a standard PC that is connected to the camera via Gigabit Ethernet.

  15. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    PubMed

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  16. Two-dimensional photon-counting detector arrays based on microchannel array plates

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1975-01-01

    The production of simple and rugged photon-counting detector arrays has been made possible by recent improvements in the performance of the microchannel array plate (MCP) and by the parallel development of compatible electronic readout systems. The construction of proximity-focused MCP arrays of novel design in which photometric information from (n x m) picture elements is read out with a total of (n + m) amplifier and discriminator circuits is described. Results obtained with a breadboard (32 x 32)-element array employing 64 charge-sensitive amplifiers are presented, and the application of systems of this type in spectrometers and cameras for use with ground-based telescopes and on orbiting spacecraft discussed.

  17. Dependency Distance Differences across Interpreting Types: Implications for Cognitive Demand

    PubMed Central

    Liang, Junying; Fang, Yuanyuan; Lv, Qianxi; Liu, Haitao

    2017-01-01

    Interpreting is generally recognized as a particularly demanding language processing task for the cognitive system. Dependency distance, the linear distance between two syntactically related words in a sentence, is an index of sentence complexity and is also able to reflect the cognitive constraints during various tasks. In the current research, we examine the difference in dependency distance among three interpreting types, namely, simultaneous interpreting, consecutive interpreting and read-out translated speech based on a treebank comprising these types of interpreting output texts with dependency annotation. Results show that different interpreting renditions yield different dependency distances, and consecutive interpreting texts entail the smallest dependency distance other than those of simultaneous interpreting and read-out translated speech, suggesting that consecutive interpreting bears heavier cognitive demands than simultaneous interpreting. The current research suggests for the first time that interpreting is an extremely demanding cognitive task that can further mediate the dependency distance of output sentences. Such findings may be due to the minimization of dependency distance under cognitive constraints. PMID:29312027

  18. Physical measurement with in-line fiber Mach-Zehnder interferometer using differential phase white light interferometry

    NASA Astrophysics Data System (ADS)

    Aref, Seyed Hashem

    2017-11-01

    In this letter, the sensitivity to strain, curvature, and temperature of a sensor based on in-line fiber Mach-Zahnder interferometer (IFMZI) is studied and experimentally demonstrated. The sensing structure is simply a section of single mode fiber sandwiched between two abrupt tapers to achieve a compact IFMZI. The phase of interferometer changes with the measurand interaction, which is the basis for considering this structure for sensing. The physical parameter sensitivity of IFMZI sensor has been evaluated using differential white light interferometry (DWLI) technique as a phase read-out system. The differential configuration of the IFMZI sensor is used to achieve a high phase resolving power of ±0.062° for read-out interferometer by means of omission of phase noise of environment perturbations. The sensitivity of the sensor to the strain, curvature, and temperature has been measured 0.0199 degree/με, 757.00 degree/m-1, and 3.25 degree/°C, respectively.

  19. Analysis of the readout of a high rate MWPC

    NASA Astrophysics Data System (ADS)

    Camerini, P.; Grion, N.; Rui, R.; Sheffer, G.; Openshaw, R.

    1990-06-01

    An analytical method to reduce the raw data supplied by a high-speed multiwire proportional chamber (MWPC) is presented. The results obtained with the MWPC and the associated readout system, LeCroy PCOS III, when monitoring a high-intensity flux of positive pions delivered by the M11 channel at TRIUMF are discussed. The method allows the flux intensity, the beam envelope and the detector efficiency to be determined with little uncertainty (few %) at intense particle beams ( > 10 7 particles/s).

  20. Medically relevant assays with a simple smartphone and tablet based fluorescence detection system.

    PubMed

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G; Goldys, Ewa M

    2015-05-20

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis.

  1. Ga:Ge array development

    NASA Technical Reports Server (NTRS)

    Young, Erick T.; Rieke, G. H.; Low, Frank J.; Haller, E. E.; Beeman, J. W.

    1989-01-01

    Work at the University of Arizona and at Lawrence Berkeley Laboratory on the development of a far infrared array camera for the Multiband Imaging Photometer on the Space Infrared Telescope Facility (SIRTF) is discussed. The camera design uses stacked linear arrays of Ge:Ga photoconductors to make a full two-dimensional array. Initial results from a 1 x 16 array using a thermally isolated J-FET readout are presented. Dark currents below 300 electrons s(exp -1) and readout noises of 60 electrons were attained. Operation of these types of detectors in an ionizing radiation environment are discussed. Results of radiation testing using both low energy gamma rays and protons are given. Work on advanced C-MOS cascode readouts that promise lower temperature operation and higher levels of performance than the current J-FET based devices is described.

  2. 3D reconstruction of nuclear reactions using GEM TPC with planar readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihałowicz, Jan Stefan

    2015-02-24

    The research program of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) laboratory under construction in Magurele, Romania facilities the need of developing a gaseous active-target detector providing 3D reconstruction of charged products of nuclear reactions induced by gamma beam. The monoenergetic, high-energy (E{sub γ} > 19 MeV) gamma beam of intensity 10{sup 13}γ/s allows studying nuclear reactions in astrophysics. A Time Projection Chamber with crossed strip readout (eTPC) is proposed as one of the imaging detectors. The special feature of the readout electrode structure is a 2D reconstruction based on the information read out simultaneously from three arrays ofmore » strips that form virtual pixels. It is expected to reach similar spatial resolution as for pixel readout at largely reduced cost of electronics. The paper presents the current progress and first results of the small scale prototype TPC which is a one of implementation steps towards eTPC detector proposed in the Technical Design Report of Charged Particles Detection at ELI-NP.« less

  3. How mechanisms of perceptual decision-making affect the psychometric function

    PubMed Central

    Gold, Joshua I.; Ding, Long

    2012-01-01

    Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the “neurometric” sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. PMID:22609483

  4. Tests of the MICE Electron Muon Ranger frontend electronics with a small scale prototype

    NASA Astrophysics Data System (ADS)

    Bolognini, D.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Giannini, G.; Graulich, J. S.; Lietti, D.; Masciocchi, F.; Prest, M.; Rothenfusser, K.; Vallazza, E.; Wisting, H.

    2011-08-01

    The MICE experiment is being commissioned at RAL to demonstrate the feasibility of the muon ionization cooling technique for future applications such as the Neutrino Factory and the Muon Collider. The cooling will be evaluated by measuring the emittance before and after the cooling channel with two 4 T spectrometers; to distinguish muons from the background, a multi-detector particle identification system is foreseen: three Time of Flight stations, two Cherenkov counters and a calorimetric system consisting of a pre-shower layer and a fully active scintillator detector (EMR) are used to discriminate muons from pions and electrons. EMR consists of 48 planes of triangular scintillating bars coupled to WLS fibers readout by single PMTs on one side and MAPMTs on the other; each plane sensible area is 1 m 2. This article deals with a small scale prototype of the EMR detector which has been used to test the MAPMT frontend electronics based on the MAROC ASIC; the tests with cosmic rays using both an analog mode and a digital readout mode are presented. A very preliminary study on the cross talk problem is also shown.

  5. Developments on a SEM-based X-ray tomography system: Stabilization scheme and performance evaluation

    NASA Astrophysics Data System (ADS)

    Gomes Perini, L. A.; Bleuet, P.; Filevich, J.; Parker, W.; Buijsse, B.; Kwakman, L. F. Tz.

    2017-06-01

    Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (˜60%) and low read-out noise (˜1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.

  6. Building blocks for protein interaction devices

    PubMed Central

    Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them. PMID:20215443

  7. A Ulexite-based animation recording system by random reference patterns

    NASA Astrophysics Data System (ADS)

    Ishii, Yuko; Irisawa, Misako; Takayama, Yoshihisa; Watanabe, Eriko; Kodate, Kashiko

    2006-02-01

    We propose a simple, compact and high-security holographic optical memory system using Ulexite in order to produce random patterns of reference beam. 100 hologram multiplexing was achieved by multiplexing exposure, rotating Ulexite by 0.2 degrees every time with LiNbO 3 crystal as a recording medium. Moreover, with this system, animation readout images can play for approximately 8 seconds by continuous rotation of Ulexite. As a natural stone, the exactly same Ulexite is very difficult to be found or replicated. Basic experimental results show that Ulexite can be used as a security key for its image-reproducibility and BER calculations.

  8. Reducing the Read Noise of HAWAII-2RG Detector Systems with Improved Reference Sampling and Subtraction (IRS2)

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, Donna V.; Xenophontos, Christos

    2012-01-01

    IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.

  9. Radio-frequency measurement in semiconductor quantum computation

    NASA Astrophysics Data System (ADS)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  10. Improved Reference Sampling and Subtraction: A Technique for Reducing the Read Noise of Near-infrared Detector Systems

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Wen, Yiting; Wilson, Donna V.; Xenophontos, Christos

    2017-10-01

    Near-infrared array detectors, like the James Webb Space Telescope (JWST) NIRSpec’s Teledyne’s H2RGs, often provide reference pixels and a reference output. These are used to remove correlated noise. Improved reference sampling and subtraction (IRS2) is a statistical technique for using this reference information optimally in a least-squares sense. Compared with the traditional H2RG readout, IRS2 uses a different clocking pattern to interleave many more reference pixels into the data than is otherwise possible. Compared with standard reference correction techniques, IRS2 subtracts the reference pixels and reference output using a statistically optimized set of frequency-dependent weights. The benefits include somewhat lower noise variance and much less obvious correlated noise. NIRSpec’s IRS2 images are cosmetically clean, with less 1/f banding than in traditional data from the same system. This article describes the IRS2 clocking pattern and presents the equations needed to use IRS2 in systems other than NIRSpec. For NIRSpec, applying these equations is already an option in the calibration pipeline. As an aid to instrument builders, we provide our prototype IRS2 calibration software and sample JWST NIRSpec data. The same techniques are applicable to other detector systems, including those based on Teledyne’s H4RG arrays. The H4RG’s interleaved reference pixel readout mode is effectively one IRS2 pattern.

  11. A High Stability Time Difference Readout Technique of RTD-Fluxgate Sensors

    PubMed Central

    Pang, Na; Cheng, Defu; Wang, Yanzhang

    2017-01-01

    The performance of Residence Times Difference (RTD)-fluxgate sensors is closely related to the time difference readout technique. The noise of the induction signal affects the quality of the output signal of the following circuit and the time difference detection, so the stability of the sensor is limited. Based on the analysis of the uncertainty of the RTD-fluxgate using the Bidirectional Magnetic Saturation Time Difference (BMSTD) readout scheme, the relationship between the saturation state of the magnetic core and the target (DC) magnetic field is studied in this article. It is proposed that combining the excitation and induction signals can provide the Negative Magnetic Saturation Time (NMST), which is a detection quantity used to measure the target magnetic field. Also, a mathematical model of output response between NMST and the target magnetic field is established, which analyzes the output NMST and sensitivity of the RTD-fluxgate sensor under different excitation conditions and is compared to the BMSTD readout scheme. The experiment results indicate that this technique can effectively reduce the noise influence. The fluctuation of time difference is less than ±0.1 μs in a target magnetic field range of ±5 × 104 nT. The accuracy and stability of the sensor are improved, so the RTD-fluxgate using the readout technique of high stability time difference is suitable for detecting weak magnetic fields. PMID:29023409

  12. Reverse Fluorescence Enhancement and Colorimetric Bimodal Signal Readout Immunochromatography Test Strip for Ultrasensitive Large-Scale Screening and Postoperative Monitoring.

    PubMed

    Yao, Yingyi; Guo, Weisheng; Zhang, Jian; Wu, Yudong; Fu, Weihua; Liu, Tingting; Wu, Xiaoli; Wang, Hanjie; Gong, Xiaoqun; Liang, Xing-Jie; Chang, Jin

    2016-09-07

    Ultrasensitive and quantitative fast screening of cancer biomarkers by immunochromatography test strip (ICTS) is still challenging in clinic. The gold nanoparticles (NPs) based ICTS with colorimetric readout enables a quick spectrum screening but suffers from nonquantitative performance; although ICTS with fluorescence readout (FICTS) allows quantitative detection, its sensitivity still deserves more efforts and attentions. In this work, by taking advantages of colorimetric ICTS and FICTS, we described a reverse fluorescence enhancement ICTS (rFICTS) with bimodal signal readout for ultrasensitive and quantitative fast screening of carcinoembryonic antigen (CEA). In the presence of target, gold NPs aggregation in T line induced colorimetric readout, allowing on-the-spot spectrum screening in 10 min by naked eye. Meanwhile, the reverse fluorescence enhancement signal enabled more accurately quantitative detection with better sensitivity (5.89 pg/mL for CEA), which is more than 2 orders of magnitude lower than that of the conventional FICTS. The accuracy and stability of the rFICTS were investigated with more than 100 clinical serum samples for large-scale screening. Furthermore, this rFICTS also realized postoperative monitoring by detecting CEA in a patient with colon cancer and comparing with CT imaging diagnosis. These results indicated this rFICTS is particularly suitable for point-of-care (POC) diagnostics in both resource-rich and resource-limited settings.

  13. Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research

    PubMed Central

    Jensen, Victoria S; Porsgaard, Trine; Lykkesfeldt, Jens; Hvid, Henning

    2016-01-01

    Laboratory rodents are available as either genetically defined inbred strains or genetically undefined outbred stocks. As outbred rodents are generally thought to display a higher level of phenotypic variation compared to inbred strains, it has been argued that experimental studies should preferentially be performed by using inbred rodents. However, very few studies with adequate sample sizes have in fact compared phenotypic variation between inbred strains and outbred stocks of rodents and moreover, these studies have not reached consistent conclusions. The aim of the present study was to compare the phenotypic variation in commonly used experimental readouts within obesity and diabetes research, for four of the most frequently used mouse strains: inbred C57BL/6 and BALB/c and outbred NMRI and CD-1 mice. The variation for all readouts was examined by calculating the coefficient of variation (CV), i.e., the relative variation, including a 95% confidence interval for the CV. We observed that for the majority of the selected readouts, inbred and outbred mice showed comparable phenotypic variation. The observed variation appeared highly influenced by strain choice and type of readout, which suggests that these collectively would serve as more predictive of the phenotypic variation than the more general classification of mice as inbred or outbred based on genetic heterogeneity. PMID:27648148

  14. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    PubMed

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  15. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  16. Extended SWIR imaging sensors for hyperspectral imaging applications

    NASA Astrophysics Data System (ADS)

    Weber, A.; Benecke, M.; Wendler, J.; Sieck, A.; Hübner, D.; Figgemeier, H.; Breiter, R.

    2016-05-01

    AIM has developed SWIR modules including FPAs based on liquid phase epitaxy (LPE) grown MCT usable in a wide range of hyperspectral imaging applications. Silicon read-out integrated circuits (ROIC) provide various integration and readout modes including specific functions for spectral imaging applications. An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance. AIM developed the technology to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for 384x288 and 1024x256 FPAs with 24μm pitch. Results are presented in this paper. The FPAs are integrated into compact dewar cooler configurations using different types of coolers, like rotary coolers, AIM's long life split linear cooler MCC030 or extreme long life SF100 Pulse Tube cooler. The SWIR modules include command and control electronics (CCE) which allow easy interfacing using a digital standard interface. The development status and performance results of AIM's latest MCT SWIR modules suitable for hyperspectral systems and applications will be presented.

  17. A flexible FPGA based QDC and TDC for the HADES and the CBM calorimeters

    NASA Astrophysics Data System (ADS)

    Rost, A.; Galatyuk, T.; Koenig, W.; Michel, J.; Pietraszko, J.; Skott, P.; Traxler, M.

    2017-02-01

    A Charge-to-Digital-Converter (QDC) and Time-to-Digital-Converter (TDC) based on a commercial FPGA (Field Programmable Gate Array) was developed to read out PMT signals of the planned HADES electromagnetic calorimeter (ECAL) at GSI Helmholtzzentrum für Schwerionenforschung GmbH (Darmstadt, Germany). The main idea is to convert the charge measurement of a detector signal into a time measurement, where the charge is encoded in the width of a digital pulse, while the arrival time information is encoded in the leading edge time of the pulse. The PaDiWa-AMPS prototype front-end board for the TRB3 (General Purpose Trigger and Readout Board—version 3) which implements this conversion method was developed and qualified. The already well established TRB3 platform provides the needed precise time measurements and serves as a data acquisition system. We present the read-out concept and the performance of the prototype boards in laboratory and also under beam conditions. First steps have been completed in order to adapt this concept to SiPM signals of the hadron calorimeter in the CBM experiment at the planned FAIR facility (Darmstadt).

  18. Low material budget floating strip Micromegas for ion transmission radiography

    NASA Astrophysics Data System (ADS)

    Bortfeldt, J.; Biebel, O.; Flierl, B.; Hertenberger, R.; Klitzner, F.; Lösel, Ph.; Magallanes, L.; Müller, R.; Parodi, K.; Schlüter, T.; Voss, B.; Zibell, A.

    2017-02-01

    Floating strip Micromegas are high-accuracy and discharge insensitive gaseous detectors, able to track single particles at fluxes of 7 MHz/cm2 with 100 μm resolution. We developed low-material-budget detectors with one-dimensional strip readout, suitable for tracking at highest particle rates as encountered in medical ion transmission radiography or inner tracker applications. Recently we additionally developed Kapton-based floating strip Micromegas with two-dimensional strip readout, featuring an overall thickness of 0.011 X0. These detectors were tested in high-rate proton and carbon-ion beams at the tandem accelerator in Garching and the Heidelberg Ion-Beam Therapy Center, operated with an optimized Ne:CF4 gas mixture. By coupling the Micromegas detectors to a new scintillator based range detector, ion transmission radiographies of PMMA and tissue-equivalent phantoms were acquired. The range detector with 18 layers is read out via wavelength shifting fibers, coupled to a multi-anode photomultiplier. We present the performance of the Micromegas detectors with respect to timing and single plane track reconstruction using the μTPC method. We discuss the range resolution of the scintillator range telescope and present the image reconstruction capabilities of the combined system.

  19. The E and B EXperiment: EBEX

    NASA Astrophysics Data System (ADS)

    Helson, Kyle R.

    2015-08-01

    We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis. We also discuss the next generation of EBEX called EBEX10k, currently in development.

  20. Precision star-tracking telescope

    NASA Technical Reports Server (NTRS)

    Fairbank, W. M.; Everitt, C. W. F.

    1972-01-01

    The design, construction, and preliminary testing of a new high accuracy star tracking telescope for the laboratory model of the Stanford gyro relativity experiment are described. The function of the telescope in the final flight experiment is to define (by reference to a suitable star) a direction in space for comparison with the relativistic precession of a group of gyroscopes. The design of the telescope has been strongly affected by designs for other portions of the overall experiments, for example the gyroscopes, the attitude control system of the satellite, and the instrumentation system used in processing relativity data. Main goals for the star tracker are: (1) independent readout of angular position in two planes; (2) absolute null stability over a one year period of mechanical parts; (3) readout linear to 0.001 arc-seconds over + or - 0.05 arc-second; (4) noise performance leading to a resolution of 0.05 arc-second in 0.1 second observation time of the chosen reference star; and (5) provision for automatic gain control capable of matching the gains of the gyroscopes and telescope readouts to 1% or better.

  1. Prototype AEGIS: A Pixel-Array Readout Circuit for Gamma-Ray Imaging.

    PubMed

    Barber, H Bradford; Augustine, F L; Furenlid, L; Ingram, C M; Grim, G P

    2005-07-31

    Semiconductor detector arrays made of CdTe/CdZnTe are expected to be the main components of future high-performance, clinical nuclear medicine imaging systems. Such systems will require small pixel-pitch and much larger numbers of pixels than are available in current semiconductor-detector cameras. We describe the motivation for developing a new readout integrated circuit, AEGIS, for use in hybrid semiconductor detector arrays, that may help spur the development of future cameras. A basic design for AEGIS is presented together with results of an HSPICE ™ simulation of the performance of its unit cell. AEGIS will have a shaper-amplifier unit cell and neighbor pixel readout. Other features include the use of a single input power line with other biases generated on-board, a control register that allows digital control of all thresholds and chip configurations and an output approach that is compatible with list-mode data acquisition. An 8×8 prototype version of AEGIS is currently under development; the full AEGIS will be a 64×64 array with 300 μm pitch.

  2. Large size three-dimensional video by electronic holography using multiple spatial light modulators

    PubMed Central

    Sasaki, Hisayuki; Yamamoto, Kenji; Wakunami, Koki; Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori

    2014-01-01

    In this paper, we propose a new method of using multiple spatial light modulators (SLMs) to increase the size of three-dimensional (3D) images that are displayed using electronic holography. The scalability of images produced by the previous method had an upper limit that was derived from the path length of the image-readout part. We were able to produce larger colour electronic holographic images with a newly devised space-saving image-readout optical system for multiple reflection-type SLMs. This optical system is designed so that the path length of the image-readout part is half that of the previous method. It consists of polarization beam splitters (PBSs), half-wave plates (HWPs), and polarizers. We used 16 (4 × 4) 4K×2K-pixel SLMs for displaying holograms. The experimental device we constructed was able to perform 20 fps video reproduction in colour of full-parallax holographic 3D images with a diagonal image size of 85 mm and a horizontal viewing-zone angle of 5.6 degrees. PMID:25146685

  3. Large size three-dimensional video by electronic holography using multiple spatial light modulators.

    PubMed

    Sasaki, Hisayuki; Yamamoto, Kenji; Wakunami, Koki; Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori

    2014-08-22

    In this paper, we propose a new method of using multiple spatial light modulators (SLMs) to increase the size of three-dimensional (3D) images that are displayed using electronic holography. The scalability of images produced by the previous method had an upper limit that was derived from the path length of the image-readout part. We were able to produce larger colour electronic holographic images with a newly devised space-saving image-readout optical system for multiple reflection-type SLMs. This optical system is designed so that the path length of the image-readout part is half that of the previous method. It consists of polarization beam splitters (PBSs), half-wave plates (HWPs), and polarizers. We used 16 (4 × 4) 4K×2K-pixel SLMs for displaying holograms. The experimental device we constructed was able to perform 20 fps video reproduction in colour of full-parallax holographic 3D images with a diagonal image size of 85 mm and a horizontal viewing-zone angle of 5.6 degrees.

  4. FPGA based data processing in the ALICE High Level Trigger in LHC Run 2

    NASA Astrophysics Data System (ADS)

    Engel, Heiko; Alt, Torsten; Kebschull, Udo; ALICE Collaboration

    2017-10-01

    The ALICE High Level Trigger (HLT) is a computing cluster dedicated to the online compression, reconstruction and calibration of experimental data. The HLT receives detector data via serial optical links into FPGA based readout boards that process the data on a per-link level already inside the FPGA and provide it to the host machines connected with a data transport framework. FPGA based data pre-processing is enabled for the biggest detector of ALICE, the Time Projection Chamber (TPC), with a hardware cluster finding algorithm. This algorithm was ported to the Common Read-Out Receiver Card (C-RORC) as used in the HLT for RUN 2. It was improved to handle double the input bandwidth and adjusted to the upgraded TPC Readout Control Unit (RCU2). A flexible firmware implementation in the HLT handles both the old and the new TPC data format and link rates transparently. Extended protocol and data error detection, error handling and the enhanced RCU2 data ordering scheme provide an improved physics performance of the cluster finder. The performance of the cluster finder was verified against large sets of reference data both in terms of throughput and algorithmic correctness. Comparisons with a software reference implementation confirm significant savings on CPU processing power using the hardware implementation. The C-RORC hardware with the cluster finder for RCU1 data is in use in the HLT since the start of RUN 2. The extended hardware cluster finder implementation for the RCU2 with doubled throughput is active since the upgrade of the TPC readout electronics in early 2016.

  5. TH-CD-BRA-08: Novel Iron-Based Radiation Reporting Systems as 4D Dosimeters for MR-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose: To compare novel radiation reporting systems utilizing ferric ion (Fe{sup 3+}) reduction versus ferrous ion (Fe{sup 2+}) oxidation in gelatin matrixes for 3D and 4D (3D+time) MR-guided radiation therapy dosimetry. Methods: Dosimeters were irradiated using an integrated 1.5T MRI and 7MV linear accelerator (MR-Linac). Dosimeters were read-out with both a spectrophotometer and the MRI component of the MR-Linac immediately after irradiation. Changes in optical density (OD) were measured using a spectrophotometer; changes in MR signal intensity due to the paramagnetic differences in the iron ions were measured using the MR-Linac in real-time during irradiation (balanced-FFE sequences) and immediately aftermore » irradiation (T{sub 1}-weighted and inversion recovery sequences). Results: Irradiation of Fe{sup 3+} reduction dosimeters resulted in a stable red color with an absorbance peak at 512 nm. The change in OD relative to dose exhibited a linear response up to 100 Gy (R{sup 2}=1.00). T{sub 1}-weighted-MR signal intensity (SI) changed minimally after irradiation with increases of 8.0% for 17 Gy and 9.7% after escalation to 35 Gy compared to the un-irradiated region. Irradiation of Fe{sup 2+} oxidation dosimeters resulted in a stable purple color with absorbance peaks at 440 and 585 nm. The changes in OD, T{sub 1}-weighted-MR SI, and R{sub 1} relative to dose exhibited a linear response up to at least 8 Gy (R{sup 2}=1.00, 0.98, and 0.99) with OD saturation above 40 Gy. The T{sub 1}-weighted-MR SI increased 50.3% for 17 Gy compared to the un-irradiated region. The change in SI was observed in both 2D+time and 4D (3D+time) acquisitions post-irradiation and in real-time during irradiation with a linear increase with respect to dose (R{sup 2}>0.93). Conclusion: The Fe{sup 2+} oxidation-based system was superior as 4D dosimeters for MR-guided radiation therapy due to its higher sensitivity in both optical and MR signal readout and feasibility for real-time 4D dose readout. The Fe{sup 3+} reduction system is recommended for high dose applications. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH-102SPS.« less

  6. A MOdular System for Acquisition, Interface and Control (MOSAIC) of detectors and their related electronics for high energy physics experiment

    NASA Astrophysics Data System (ADS)

    Robertis, G. De; Fanizzi, G.; Loddo, F.; Manzari, V.; Rizzi, M.

    2018-02-01

    In this work the MOSAIC ("MOdular System for Acquisition, Interface and Control") board, designed for the readout and testing of the pixel modules for the silicon tracker upgrade of the ALICE (A Large Ion Collider Experiment) experiment at teh CERN LHC, is described. It is based on an Artix7 Field Programmable Gate Array device by Xilinx and is compliant with the six unit "Versa Modular Eurocard" standard (6U-VME) for easy housing in a standard VMEbus crate from which it takes only power supplies and cooling.

  7. Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits

    NASA Astrophysics Data System (ADS)

    Dong, Lihong; Rong, Xing; Geng, Jianpei; Shi, Fazhan; Li, Zhaokai; Duan, Changkui; Du, Jiangfeng

    2017-11-01

    We propose a novel theoretical scheme of quantum computation. Nuclear spin pairs are utilized to encode decoherence-free (DF) qubits. A nitrogen-vacancy center serves as a quantum actuator to initialize, readout, and quantum control the DF qubits. The realization of CNOT gates between two DF qubits are also presented. Numerical simulations show high fidelities of all these processes. Additionally, we discuss the potential of scalability. Our scheme reduces the challenge of classical interfaces from controlling and observing complex quantum systems down to a simple quantum actuator. It also provides a novel way to handle complex quantum systems.

  8. Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory

    NASA Astrophysics Data System (ADS)

    van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.

    2016-07-01

    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.

  9. Implementation of Arithmetic and Nonarithmetic Functions on a Label-free and DNA-based Platform

    NASA Astrophysics Data System (ADS)

    Wang, Kun; He, Mengqi; Wang, Jin; He, Ronghuan; Wang, Jianhua

    2016-10-01

    A series of complex logic gates were constructed based on graphene oxide and DNA-templated silver nanoclusters to perform both arithmetic and nonarithmetic functions. For the purpose of satisfying the requirements of progressive computational complexity and cost-effectiveness, a label-free and universal platform was developed by integration of various functions, including half adder, half subtractor, multiplexer and demultiplexer. The label-free system avoided laborious modification of biomolecules. The designed DNA-based logic gates can be implemented with readout of near-infrared fluorescence, and exhibit great potential applications in the field of bioimaging as well as disease diagnosis.

  10. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X; Lou, K; Rice University, Houston, TX

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.« less

  11. Design and Assembly of SPT-3G Cold Readout Hardware

    NASA Astrophysics Data System (ADS)

    Avva, J. S.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Thakur, R. Basu; Barron, D.; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Elleflot, T.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Hasegawa, M.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hori, Y.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Nishino, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Rotermund, K.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-05-01

    The third-generation upgrade to the receiver on the South Pole Telescope, SPT-3G, was installed at the South Pole during the 2016-2017 austral summer to measure the polarization of the cosmic microwave background. Increasing the number of detectors by a factor of 10 to ˜ 16,000 required the multiplexing factor to increase to 68 and the bandwidth of the frequency-division readout electronics to span 1.6-5.2 MHz. This increase necessitates low-thermal conductance, low-inductance cryogenic wiring. Our cold readout system consists of planar thin-film aluminum inductive-capacitive resonators, wired in series with the detectors, summed together, and connected to 4K SQUIDs by 10-μm -thick niobium-titanium (NbTi) broadside-coupled striplines. Here, we present an overview of the cold readout electronics for SPT-3G, including assembly details and characterization of electrical and thermal properties of the system. We report, for the NbTi striplines, values of R ≤ 10^{-4} Ω , L = 21 ± 1 nH , and C = 1.47± .02 nF . Additionally, the striplines' thermal conductivity is described by kA = 6.0± 0.3 T^{0.92 ± 0.04} μW mm K^{-1} . Finally, we provide projections for cross talk induced by parasitic impedances from the stripline and find that the median value of percentage cross talk from leakage current is 0.22 and 0.09% from wiring impedance.

  12. Automated drug identification system

    NASA Technical Reports Server (NTRS)

    Campen, C. F., Jr.

    1974-01-01

    System speeds up analysis of blood and urine and is capable of identifying 100 commonly abused drugs. System includes computer that controls entire analytical process by ordering various steps in specific sequences. Computer processes data output and has readout of identified drugs.

  13. Improved apparatus for continuous culture of hydrogen-fixing bacteria

    NASA Technical Reports Server (NTRS)

    Foster, J. F.; Litchfield, J. H.

    1970-01-01

    Improved apparatus permits the continuous culture of Hydrogenomonas eutropha. System incorporates three essential subsystems - /1/ environmentally isolated culture vessel, /2/ analytical system with appropriate sensors and readout devices, /3/ control system with feedback responses to each analytical measurement.

  14. Mu2e Solenoid Field Mapping System Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feher, Sandor; DeLurgio, Patrick M.; Elementi, Luciano

    The Mu2e experiment at Fermilab plans to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. A complex solenoid system and precise knowledge of its magnetic field play a major role in the experimental approach Mu2e has chosen. It is essential to map the solenoid field up to 10 -4 accuracy. This article describes the design of the Field Mapping System Mu2e will use to measure the magnetic field. Two different mechanical mapper systems, a survey based position determination of the in-house calibrated 3D Hall probes, a motion control system,more » and a data acquisition and readout system are presented.« less

  15. Mu2e Solenoid Field Mapping System Design

    DOE PAGES

    Feher, Sandor; DeLurgio, Patrick M.; Elementi, Luciano; ...

    2018-01-11

    The Mu2e experiment at Fermilab plans to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. A complex solenoid system and precise knowledge of its magnetic field play a major role in the experimental approach Mu2e has chosen. It is essential to map the solenoid field up to 10 -4 accuracy. This article describes the design of the Field Mapping System Mu2e will use to measure the magnetic field. Two different mechanical mapper systems, a survey based position determination of the in-house calibrated 3D Hall probes, a motion control system,more » and a data acquisition and readout system are presented.« less

  16. Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.

    2016-12-01

    Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.

  17. Bloch oscillating transistor as the readout element for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Seppä, Heikki; Lindell, Rene; Hakonen, Pertti

    2004-10-01

    In this paper we analyse the properties of the Bloch oscillating transistor as a preamplifier in cryogenic devices. We consider here especially the readout of hot electron bolometers (HEBs) based on Normal-Superconductor-Insulator tunnel junctions, but the results also apply more generally. We show that one can get an equivalent noise voltage below 1 nV/√Hz with a single BOT. By using N BOTs in a parallel array configuration, a further reduction by factor √N may be achieved.

  18. Agricultural Aircraft Aid

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Farmers are increasingly turning to aerial applications of pesticides, fertilizers and other materials. Sometimes uneven distribution of the chemicals is caused by worn nozzles, improper alignment of spray nozzles or system leaks. If this happens, job must be redone with added expense to both the pilot and customer. Traditional pattern analysis techniques take days or weeks. Utilizing NASA's wind tunnel and computer validation technology, Dr. Roth, Oklahoma State University (OSU), developed a system for providing answers within minutes. Called the Rapid Distribution Pattern Evaluation System, the OSU system consists of a 100-foot measurement frame tied in to computerized analysis and readout equipment. System is mobile, delivered by trailer to airfields in agricultural areas where OSU conducts educational "fly-ins." A fly-in typically draws 50 to 100 aerial applicators, researchers, chemical suppliers and regulatory officials. An applicator can have his spray pattern checked. A computerized readout, available in five to 12 minutes, provides information for correcting shortcomings in the distribution pattern.

  19. The AGILE silicon tracker: an innovative /γ-ray instrument for space

    NASA Astrophysics Data System (ADS)

    Prest, M.; Barbiellini, G.; Bordignon, G.; Fedel, G.; Liello, F.; Longo, F.; Pontoni, C.; Vallazza, E.

    2003-03-01

    AGILE (Light Imager for Gamma-ray Astrophysics) is the first small scientific mission of ASI, the Italian Space Agency. It is a light (100kg for the scientific instrument) satellite for the detection of /γ-ray sources in the energy range 30MeV-50GeV within a large field of view (1/4 of the sky). It is planned to be operational in the years 2003-2006, a period in which no other gamma-ray mission in the same energy range is foreseen. AGILE is made of a silicon tungsten tracker, a CsI(Tl) minicalorimeter (1.5X0), an anticoincidence system of segmented plastic scintillators and a X-ray imaging detector sensitive in the 10-40keV range. The tracker consists of 14 planes, each of them made of two layers of 16 single-sided, AC coupled, 410μm thick, 9.5×9.5cm2 silicon detectors with a readout pitch of 242μm and a floating strip. The readout ASIC is the TAA1, an analog-digital, low noise, self-triggering ASIC used in a very low power configuration (<400μW/channel) with full analog readout. The trigger of the satellite is given by the tracker. The total number of readout channels is around 43000. We present a detailed description of the tracker, its trigger and readout logic, its assembly procedures and the prototype performance in several testbeam periods at the CERN PS.

  20. ARNICA and LonGSp: the refurbishment of two near infrared instruments

    NASA Astrophysics Data System (ADS)

    Koshida, Shintaro; Vanzi, Leonardo; Guzman, Dani; Leiva, Rodrigo; Bonati, Marco A.; Avilés, Roberto L.; Baffa, Carlo; Palla, Francesco; Mannucci, Filippo; Shen, Tzu Chiang; Suc, Vincent

    2014-07-01

    ARNICA and LonGSp are two NICMOS based near infrared instruments developed in the 90's by the Astrophysical Observatory of Arcetri. After more than 10 years from decommissioning we refurbished the two instruments with a new read-out electronics and control software. We present the performances of the refurbished systems and compare them with the historic behavior. Both instruments are currently used for testing purposes in the Lab and at the telescope, we present some example applications.

  1. Microlaser-based compact optical neuro-processors (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Paek, Eung Gi; Chan, Winston K.; Zah, Chung-En; Cheung, Kwok-wai; Curtis, L.; Chang-Hasnain, Constance J.

    1992-10-01

    This paper reviews the recent progress in the development of holographic neural networks using surface-emitting laser diode arrays (SELDAs). Since the previous work on ultrafast holographic memory readout system and a robust incoherent correlator, progress has been made in several areas: the use of an array of monolithic `neurons' to reconstruct holographic memories; two-dimensional (2-D) wavelength-division multiplexing (WDM) for image transmission through a single-mode fiber; and finally, an associative memory using time- division multiplexing (TDM). Experimental demonstrations on these are presented.

  2. Application of low-noise CID imagers in scientific instrumentation cameras

    NASA Astrophysics Data System (ADS)

    Carbone, Joseph; Hutton, J.; Arnold, Frank S.; Zarnowski, Jeffrey J.; Vangorden, Steven; Pilon, Michael J.; Wadsworth, Mark V.

    1991-07-01

    CIDTEC has developed a PC-based instrumentation camera incorporating a preamplifier per row CID imager and a microprocessor/LCA camera controller. The camera takes advantage of CID X-Y addressability to randomly read individual pixels and potentially overlapping pixel subsets in true nondestructive (NDRO) as well as destructive readout modes. Using an oxy- nitride fabricated CID and the NDRO readout technique, pixel full well and noise levels of approximately 1*10(superscript 6) and 40 electrons, respectively, were measured. Data taken from test structures indicates noise levels (which appear to be 1/f limited) can be reduced by a factor of two by eliminating the nitride under the preamplifier gate. Due to software programmability, versatile readout capabilities, wide dynamic range, and extended UV/IR capability, this camera appears to be ideally suited for use in spectroscopy and other scientific applications.

  3. US GEOLOGICAL SURVEY'S NATIONAL SYSTEM FOR PROCESSING AND DISTRIBUTION OF NEAR REAL-TIME HYDROLOGICAL DATA.

    USGS Publications Warehouse

    Shope, William G.; ,

    1987-01-01

    The US Geological Survey is utilizing a national network of more than 1000 satellite data-collection stations, four satellite-relay direct-readout ground stations, and more than 50 computers linked together in a private telecommunications network to acquire, process, and distribute hydrological data in near real-time. The four Survey offices operating a satellite direct-readout ground station provide near real-time hydrological data to computers located in other Survey offices through the Survey's Distributed Information System. The computerized distribution system permits automated data processing and distribution to be carried out in a timely manner under the control and operation of the Survey office responsible for the data-collection stations and for the dissemination of hydrological information to the water-data users.

  4. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    PubMed Central

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  5. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    PubMed

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  6. High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D(-) Charge State.

    PubMed

    Watson, T F; Weber, B; House, M G; Büch, H; Simmons, M Y

    2015-10-16

    We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D(+) or D(-) charge state of the donor. By performing read-out at the stable two electron D(0)↔D(-) charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D(+)↔D(0) transition (99.6%). Furthermore, we show that read-out via the D(-) charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of F(I)=99.8%.

  7. Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-01

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro-mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm. PMID:25594598

  8. Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-14

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro -mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.

  9. Hardware for dynamic quantum computing.

    PubMed

    Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A

    2017-10-01

    We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

  10. Central Drift Chamber for Belle-II

    NASA Astrophysics Data System (ADS)

    Taniguchi, N.

    2017-06-01

    The Central Drift Chamber (CDC) is the main device for tracking and identification of charged particles for Belle-II experiment. The Belle-II CDC is cylindrical wire chamber with 14336 sense wires, 2.3 m-length and 2.2 m-diameter. The wire chamber and readout electronics have been completely replaced from the Belle CDC. The new readout electronics system must handle higher trigger rate of 30 kHz with less dead time at the design luminosity of 8 × 1035 cm-2s-1. The front-end electronics are located close to detector and send digitized signal through optical fibers. The Amp-Shaper-Discriminator chips, FADC and FPGA are assembled on a single board. Belle-II CDC with readout electronics has been installed successfully in Belle structure in October 2016. We will present overview of the Belle-II CDC and status of commissioning with cosmic ray.

  11. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  12. Gamma ray spectroscopy employing divalent europium-doped alkaline earth halides and digital readout for accurate histogramming

    DOEpatents

    Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B; Sturm, Benjamin W

    2014-11-11

    A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.

  13. Towards fully analog hardware reservoir computing for speech recognition

    NASA Astrophysics Data System (ADS)

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Haelterman, Marc; Schrauwen, Benjamin; Massar, Serge

    2012-09-01

    Reservoir computing is a very recent, neural network inspired unconventional computation technique, where a recurrent nonlinear system is used in conjunction with a linear readout to perform complex calculations, leveraging its inherent internal dynamics. In this paper we show the operation of an optoelectronic reservoir computer in which both the nonlinear recurrent part and the readout layer are implemented in hardware for a speech recognition application. The performance obtained is close to the one of to state-of-the-art digital reservoirs, while the analog architecture opens the way to ultrafast computation.

  14. High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.

    PubMed

    Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J

    2010-10-22

    We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.

  15. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1993-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  16. Mass sensing based on a circuit cavity electromechanical system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    We present a scheme for mass sensing based on a circuit cavity electromechanical system where a free-standing, flexible aluminium membrane is capacitively coupled to a superconducting microwave cavity. Integration with the microwave cavity enables capacitive readout of the mechanical resonance directly on the chip. A microwave pump field and a second probe field are simultaneously applied to the cavity. The accreted mass landing on the membrane can be measured conveniently by tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. The mass responsivity for the membrane is 0.72 Hz/ag and we demonstrate that frequency shifts induced by adsorption of one hundred 1587 bp DNA molecules can be well resolved in the probe transmission spectrum.

  17. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  18. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  19. How mechanisms of perceptual decision-making affect the psychometric function.

    PubMed

    Gold, Joshua I; Ding, Long

    2013-04-01

    Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the "neurometric" sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. USB 3.0 readout and time-walk correction method for Timepix3 detector

    NASA Astrophysics Data System (ADS)

    Turecek, D.; Jakubek, J.; Soukup, P.

    2016-12-01

    The hybrid particle counting pixel detectors of Medipix family are well known. In this contribution we present new USB 3.0 based interface AdvaDAQ for Timepix3 detector. The AdvaDAQ interface is designed with a maximal emphasis to the flexibility. It is successor of FitPIX interface developed in IEAP CTU in Prague. Its modular architecture supports all Medipix/Timepix chips and all their different readout modes: Medipix2, Timepix (serial and parallel), Medipix3 and Timepix3. The high bandwidth of USB 3.0 permits readout of 1700 full frames per second with Timepix or 8 channel data acquisition from Timepix3 at frequency of 320 MHz. The control and data acquisition is integrated in a multiplatform PiXet software (MS Windows, Mac OS, Linux). In the second part of the publication a new method for correction of the time-walk effect in Timepix3 is described. Moreover, a fully spectroscopic X-ray imaging with Timepix3 detector operated in the ToT mode (Time-over-Threshold) is presented. It is shown that the AdvaDAQ's readout speed is sufficient to perform spectroscopic measurement at full intensity of radiographic setups equipped with nano- or micro-focus X-ray tubes.

Top