Real-Time Distributed Implementation of Interference Alignment with Analog Feedback
2013-01-01
manner as in Figure 5(a). As such, six OFDM symbols are transmitted for our three user 2 × 2 MIMO system. The training does not experience precoding nor...pp. 159170, August 2009. [12] O. E. Ayach, S.W. Peters, and R.W. Heath Jr., ”The feasibility of interference alignment over measured MIMO - OFDM ...A Space-Time Receiver with Joint Synchronization and Interference Cancellation in Asynchronous MIMO - OFDM Systems,” IEEE Transactions on Vehicular
Multimode interference tapered fiber refractive index sensors.
Biazoli, Claudecir R; Silva, Susana; Franco, Marcos A R; Frazão, Orlando; Cordeiro, Cristiano M B
2012-08-20
Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 μm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/refractive index unit in the refractive index range of 1.42-1.43 was attained.
Low-cost and miniaturized 100-Gb/s (2 × 50 Gb/s) PAM-4 TO-packaged ROSA for data center networks.
Kang, Sae-Kyoung; Huh, Joon Young; Lee, Jie Hyun; Lee, Joon Ki
2018-03-05
We design and implement a cost-effective and compact 100-Gb/s (2 × 50 Gb/s) PAM-4 receiver optical sub-assembly (ROSA) by using a TO-can package instead of an expensive box-type package. It consists of an optical demultiplexer, two PIN-PDs and a 2-channel linear transimpedance amplifier. The components are passively aligned and assembled using alignment marks engraved on each part. With a real-time PAM-4 DSP chip, we measured the back-to-back receiver sensitivities of the 100-Gb/s ROSA based on TO-56 to be less than -13.2 dBm for both channels at a bit error rate of 2.4e-4. The crosstalk penalty due to the adjacent channel interference was observed around 0.1 dB.
Parastar, Hadi; Akvan, Nadia
2014-03-13
In the present contribution, a new combination of multivariate curve resolution-correlation optimized warping (MCR-COW) with trilinear parallel factor analysis (PARAFAC) is developed to exploit second-order advantage in complex chromatographic measurements. In MCR-COW, the complexity of the chromatographic data is reduced by arranging the data in a column-wise augmented matrix, analyzing using MCR bilinear model and aligning the resolved elution profiles using COW in a component-wise manner. The aligned chromatographic data is then decomposed using trilinear model of PARAFAC in order to exploit pure chromatographic and spectroscopic information. The performance of this strategy is evaluated using simulated and real high-performance liquid chromatography-diode array detection (HPLC-DAD) datasets. The obtained results showed that the MCR-COW can efficiently correct elution time shifts of target compounds that are completely overlapped by coeluted interferences in complex chromatographic data. In addition, the PARAFAC analysis of aligned chromatographic data has the advantage of unique decomposition of overlapped chromatographic peaks to identify and quantify the target compounds in the presence of interferences. Finally, to confirm the reliability of the proposed strategy, the performance of the MCR-COW-PARAFAC is compared with the frequently used methods of PARAFAC, COW-PARAFAC, multivariate curve resolution-alternating least squares (MCR-ALS), and MCR-COW-MCR. In general, in most of the cases the MCR-COW-PARAFAC showed an improvement in terms of lack of fit (LOF), relative error (RE) and spectral correlation coefficients in comparison to the PARAFAC, COW-PARAFAC, MCR-ALS and MCR-COW-MCR results. Copyright © 2014 Elsevier B.V. All rights reserved.
Selvaprabhu, Poongundran; Chinnadurai, Sunil; Sarker, Md Abdul Latif; Lee, Moon Ho
2018-01-28
In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K -user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K -user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K -user multicell MIMO scheduling and K -user L -cell CEUs partial cooperation algorithms elaborate the generalisation of K -user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes.
2018-01-01
In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K-user multicell MIMO scheduling and K-user L-cell CEUs partial cooperation algorithms elaborate the generalisation of K-user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes. PMID:29382100
[Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].
Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei
2012-08-01
The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.
Cooperative Interference Alignment for the Multiple Access Channel
2015-11-01
Communications. I. INTRODUCTION Conventional wireless networks were previously thought to be interference-limited, where interference is mainly caused by...interference-free capacity for any number of users K at high SNR. This fundamental result showed that wireless networks are not interference-limited as...decoding of the K users’ messages. This is applicable in uplink transmissions in cellular communications, where mobiles transmit independent messages
High Throughput via Cross-Layer Interference Alignment for Mobile Ad Hoc Networks
2013-08-26
MIMO zero-forcing receiver in the presence of channel estimation error,” IEEE Transactions on Wireless Communications , vol. 6 , no. 3, pp. 805–810, Mar...Robert W. Heath, Nachiappan Valliappan. Antenna Subset Modulation for Secure Millimeter-Wave Wireless Communication , IEEE Transactions on...in MIMO Interference Alignment Networks, IEEE Transactions on Wireless Communications , (02 2012): 0. doi: 10.1109/TWC.2011.120511.111088 TOTAL: 2
Molecular alignment dependent electron interference in attosecond ultraviolet photoionization
Yuan, Kai-Jun; Bandrauk, André D.
2015-01-01
We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785
Linear Transceiver Design for Interference Alignment: Complexity and Computation
2010-07-01
restriction on the choice of beamforming vector of node b. Thus, for any fixed transmit node b in H , there are multiple restriction sets, each...signal space can be chosen. The receive nodes in H can achieve interference alignment if and only if these restricted sets of one-dimensional signal...total number of restriction sets is at most linear in the number of edges in H and each restriction set contains at most two one-dimensional
Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel.
Selvaprabhu, Poongundran; Chinnadurai, Sunil; Li, Jun; Lee, Moon Ho
2017-08-17
In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K -user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes.
Adaptive limited feedback for interference alignment in MIMO interference channels.
Zhang, Yang; Zhao, Chenglin; Meng, Juan; Li, Shibao; Li, Li
2016-01-01
It is very important that the radar sensor network has autonomous capabilities such as self-managing, etc. Quite often, MIMO interference channels are applied to radar sensor networks, and for self-managing purpose, interference management in MIMO interference channels is critical. Interference alignment (IA) has the potential to dramatically improve system throughput by effectively mitigating interference in multi-user networks at high signal-to-noise (SNR). However, the implementation of IA predominantly relays on perfect and global channel state information (CSI) at all transceivers. A large amount of CSI has to be fed back to all transmitters, resulting in a proliferation of feedback bits. Thus, IA with limited feedback has been introduced to reduce the sum feedback overhead. In this paper, by exploiting the advantage of heterogeneous path loss, we first investigate the throughput of IA with limited feedback in interference channels while each user transmits multi-streams simultaneously, then we get the upper bound of sum rate in terms of the transmit power and feedback bits. Moreover, we propose a dynamic feedback scheme via bit allocation to reduce the throughput loss due to limited feedback. Simulation results demonstrate that the dynamic feedback scheme achieves better performance in terms of sum rate.
Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel
Li, Jun; Lee, Moon Ho
2017-01-01
In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K-user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes. PMID:28817071
Seat, H C; Chawah, P; Cattoen, M; Sourice, A; Plantier, G; Boudin, F; Chéry, J; Brunet, C; Bernard, P; Suleiman, M
2012-07-15
This Letter describes a dual-amplitude modulation technique incorporated into a double reflection extrinsic-type fiber Fabry-Perot interferometer to measure periodic, nonperiodic as well as quasi-static displacements. The modulation scheme simultaneously maintains the interference signal pair in quadrature and provides a reference signal for displacements inferior to a quarter of the source wavelength. The control and phase demodulation of the interferometer carried out via software enable quasi-real-time measurement and facilitates sensor alignment. The sensor system can be exploited in the low frequency range from 10(-3) to ∼500 Hz and has a resolution better than 2.2 nm, targeting applications in geophysics.
Biedermann, Benjamin R.; Wieser, Wolfgang; Eigenwillig, Christoph M.; Palte, Gesa; Adler, Desmond C.; Srinivasan, Vivek J.; Fujimoto, James G.; Huber, Robert
2009-01-01
We demonstrate en face swept source optical coherence tomography (ss-OCT) without requiring a Fourier transformation step. The electronic optical coherence tomography (OCT) interference signal from a k-space linear Fourier domain mode-locked laser is mixed with an adjustable local oscillator, yielding the analytic reflectance signal from one image depth for each frequency sweep of the laser. Furthermore, a method for arbitrarily shaping the spectral intensity profile of the laser is presented, without requiring the step of numerical apodization. In combination, these two techniques enable sampling of the in-phase and quadrature signal with a slow analog-to-digital converter and allow for real-time display of en face projections even for highest axial scan rates. Image data generated with this technique is compared to en face images extracted from a three-dimensional OCT data set. This technique can allow for real-time visualization of arbitrarily oriented en face planes for the purpose of alignment, registration, or operator-guided survey scans while simultaneously maintaining the full capability of high-speed volumetric ss-OCT functionality. PMID:18978919
Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong
2015-01-01
In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303
Compact tracking of surgical instruments through structured markers.
Alberto Borghese, N; Frosio, I
2013-07-01
Virtual and augmented reality surgery calls for reliable and efficient tracking of the surgical instruments in the virtual or real operating theatre. The most diffused approach uses three or more not aligned markers, attached to each instrument and surveyed by a set of cameras. However, the structure required to carry the markers does modify the instrument's mass distribution and can interfere with surgeon movements. To overcome these problems, we propose here a new methodology, based on structured markers, to compute the six degrees of freedom of a surgical instrument. Two markers are attached on the instrument axis and one of them has a stripe painted over its surface. We also introduce a procedure to compute with high accuracy the markers center on the cameras image, even when partially occluded by the instrument's axis or by other structures. Experimental results demonstrate the reliability and accuracy of the proposed approach. The introduction of structured passive markers can open new possibilities to accurate tracking, combining markers detection with real-time image processing.
Complexity Analysis and Algorithms for Optimal Resource Allocation in Wireless Networks
2012-09-01
independent orthogonal signaling such as OFDM . The general formulation will exploit the concept of ‘interference alignment’ which is known to provide...substantial rate gain over OFDM signalling for general interference channels. We have successfully analyzed the complexity to characterize the optimal...categories: PaperReceived Gennady Lyubeznik, Zhi-Quan Luo, Meisam Razaviyayn. On the degrees of freedom achievable through interference alignment in a MIMO
CSI Feedback Reduction for MIMO Interference Alignment
NASA Astrophysics Data System (ADS)
Rao, Xiongbin; Ruan, Liangzhong; Lau, Vincent K. N.
2013-09-01
Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. Most of the existing IA designs require full channel state information (CSI) at the transmitters, which induces a huge CSI signaling cost. Hence it is desirable to improve the feedback efficiency for IA and in this paper, we propose a novel IA scheme with a significantly reduced CSI feedback. To quantify the CSI feedback cost, we introduce a novel metric, namely the feedback dimension. This metric serves as a first-order measurement of CSI feedback overhead. Due to the partial CSI feedback constraint, conventional IA schemes can not be applied and hence, we develop a novel IA precoder / decorrelator design and establish new IA feasibility conditions. Via dynamic feedback profile design, the proposed IA scheme can also achieve a flexible tradeoff between the degree of freedom (DoF) requirements for data streams, the antenna resources and the CSI feedback cost. We show by analysis and simulations that the proposed scheme achieves substantial reductions of CSI feedback overhead under the same DoF requirement in MIMO interference networks.
A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks.
Jiang, Lihui; Wu, Zhilu; Ren, Guanghui; Wang, Gangyi; Zhao, Nan
2015-07-29
Interference alignment (IA) is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs) when the signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL) algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time.
NASA Astrophysics Data System (ADS)
Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing
2018-04-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.
A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan
2015-07-17
Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.
A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan
2015-01-01
Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283
Alignment-stabilized interference filter-tuned external-cavity quantum cascade laser.
Kischkat, Jan; Semtsiv, Mykhaylo P; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Peters, Sven; Masselink, W Ted
2014-12-01
A passively alignment-stabilized external cavity quantum cascade laser (EC-QCL) employing a "cat's eye"-type retroreflector and an ultra-narrowband transmissive interference filter for wavelength selection is demonstrated and experimentally investigated. Compared with conventional grating-tuned ECQCLs, the setup is nearly two orders of magnitude more stable against misalignment of the components, and spectral fluctuation is reduced by one order of magnitude, allowing for a simultaneously lightweight and fail-safe construction, suitable for applications outdoors and in space. It also allows for a substantially greater level of miniaturization and cost reduction. These advantages fit in well with the general properties of modern QCLs in the promise to deliver useful and affordable mid-infrared-light sources for a variety of spectroscopic and imaging applications.
NASA Astrophysics Data System (ADS)
Gao, F.; Chen, Y. J.; Xin, G. G.; Liu, J.; Fu, L. B.
2017-12-01
When electrons tunnel through a barrier formed by the strong laser field and the two-center potential of a diatomic molecule, a double-slit-like interference can occur. However, this interference effect can not be probed directly right now, as it is strongly coupled with other dynamical processes during tunneling. Here, we show numerically and analytically that orthogonally polarized two-color (OTC) laser fields are capable of resolving the interference effect in tunneling, while leaving clear footprints of this effect in photoelectron momentum distributions. Moreover, this effect can be manipulated by changing the relative field strength of OTC fields.
Parallel alignment of bacteria using near-field optical force array for cell sorting
NASA Astrophysics Data System (ADS)
Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.
2017-08-01
This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.
Automated interferometric alignment system for paraboloidal mirrors
Maxey, L.C.
1993-09-28
A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Y; Kim, T; Kang, S
2016-06-15
Purpose: To develop a real-time alignment monitoring system (RAMS) to compensate for the limitations of the conventional room laser based alignment system, and to verify the feasibility of the RAMS. Methods: The RAMS was composed of a room laser sensing array (RLSA), an analog-todigital converter, and a control PC. In the RLSA, seven photodiodes (each in 1 mm width) are arranged in a pattern that the RAMS provides alignment in 1 mm resolution. It works based on detecting laser light aligned on one of photodiodes. When misaligned, the laser would match with different photodiode(s) giving signal at unexpected location. Thus,more » how much displaced can be determined. To verify the reproducibility of the system with respect to time as well as repeated set-ups, temporal reproducibility and repeatability test was conducted. The accuracy of the system was tested by obtaining detection signals with varying laser-match positions. Results: The signal of the RAMS was found to be stable with respect to time. The repeatability test resulted in a maximum coefficient of variance of 1.14%, suggesting that the signal of the RAMS was stable over repeated set-ups. In the accuracy test, signals between when the laser was aligned and notaligned with any of sensors could be distinguished by signal intensity. The signals of not-aligned sensors were always below 75% of the signal of the aligned sensor. It was confirmed that the system could detect 1 mm of movement by monitoring the pattern of signals, and could observe the movement of the system in real-time. Conclusion: We developed a room laser based alignment monitoring system. The feasibility test verified that the system is capable of quantitative alignment monitoring in real time. The system is relatively simple, not expensive, and considered to be easily incorporated into conventional room laser systems for real-time alignment monitoring. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
DOT National Transportation Integrated Search
2010-12-01
In most highway asset management exercises, real estate used in alignments is considered to be an asset class that does not depreciate. Although the treatment of right of way assets as non-depreciable real property may be appropriate as an accounting...
Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons
Hu, F.; Luan, Y.; Fei, Z.; ...
2017-08-14
Here, we report a nanoinfrared (IR) imaging study of the localized plasmon resonance modes of graphene nanoribbons (GNRs) using a scattering-type scanning near-field optical microscope (s-SNOM). By comparing the imaging data of GNRs that are aligned parallel and perpendicular to the in-plane component of the excitation laser field, we observed symmetric and asymmetric plasmonic interference fringes, respectively. Theoretical analysis indicates that the asymmetric fringes are formed due to the interplay between the localized surface plasmon resonance (SPR) mode excited by the GNRs and the propagative surface plasmon polariton (SPP) mode launched by the s-SNOM tip. And with rigorous simulations, wemore » reproduce the observed fringe patterns and address quantitatively the role of the s-SNOM tip on both the SPR and SPP modes. Moreover, we have seen real-space signatures of both the dipole and higher-order SPR modes by varying the ribbon width.« less
Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin
2016-03-04
Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.
A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method
Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin
2016-01-01
Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications. PMID:26959020
Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue.
York, Timothy; Kahan, Lindsey; Lake, Spencer P; Gruev, Viktor
2014-06-01
A technique for creating maps of the direction and strength of fiber alignment in collagenous soft tissues is presented. The method uses a division of focal plane polarimeter to measure circularly polarized light transmitted through the tissue. The architecture of the sensor allows measurement of the retardance and fiber alignment at the full frame rate of the sensor without any moving optics. The technique compares favorably to the standard method of using a rotating polarizer. How the new technique enables real-time capture of the full angular spread of fiber alignment and retardance under various cyclic loading conditions is illustrated.
Automated interferometric alignment system for paraboloidal mirrors
Maxey, L. Curtis
1993-01-01
A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aigning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront.
Novel Real-time Alignment and Calibration of the LHCb detector in Run2
NASA Astrophysics Data System (ADS)
Martinelli, Maurizio;
2017-10-01
LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run2. Data collected at the start of the fill are processed in a few minutes and used to update the alignment parameters, while the calibration constants are evaluated for each run. This procedure improves the quality of the online reconstruction. For example, the vertex locator is retracted and reinserted for stable beam conditions in each fill to be centred on the primary vertex position in the transverse plane. Consequently its position changes on a fill-by-fill basis. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline-selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configuration are discussed, as well as the working procedures of the framework and its performance.
Grouping Influences Output Interference in Short-term Memory: A Mixture Modeling Study.
Kang, Min-Suk; Oh, Byung-Il
2016-01-01
Output interference is a source of forgetting induced by recalling. We investigated how grouping influences output interference in short-term memory. In Experiment 1, the participants were asked to remember four colored items. Those items were grouped by temporal coincidence as well as spatial alignment: two items were presented in the first memory array and two were presented in the second, and the items in both arrays were either vertically or horizontally aligned as well. The participants then performed two recall tasks in sequence by selecting a color presented at a cued location from a color wheel. In the same-group condition, the participants reported both items from the same memory array; however, in the different-group condition, the participants reported one item from each memory array. We analyzed participant responses with a mixture model, which yielded two measures: guess rate and precision of recalled memories. The guess rate in the second recall was higher for the different-group condition than for the same-group condition; however, the memory precisions obtained for both conditions were similarly degraded in the second recall. In Experiment 2, we varied the probability of the same- and different-group conditions with a ratio of 3 to 7. We expected output interference to be higher in the same-group condition than in the different-group condition. This is because items of the other group are more likely to be probed in the second recall phase and, thus, protecting those items during the first recall phase leads to a better performance. Nevertheless, the same pattern of results was robustly reproduced, suggesting grouping shields the grouped items from output interference because of the secured accessibility. We discussed how grouping influences output interference.
Fabrication of aligned magnetic nanoparticles using tobamoviruses.
Kobayashi, Mime; Seki, Munetoshi; Tabata, Hitoshi; Watanabe, Yuichiro; Yamashita, Ichiro
2010-03-10
We used genetically modified tube-shaped tobamoviruses to produce 3 nm aligned magnetic nanoparticles. Amino acid residues facing the central channel of the virus were modified to increase the number of nucleation sites. Energy dispersive X-ray spectroscopy and superconducting quantum interference device analysis suggest that the particles consisted of Co-Pt alloy. The use of tobamovirus mutants is a promising approach to making a variety of components that can be applied to fabricate nanometer-scaled electronic devices.
Wavefront division digital holography
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan
2018-05-01
Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.
Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun
2008-09-15
Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.
Silicon Alignment Pins: An Easy Way to Realize a Wafer-To-Wafer Alignment
NASA Technical Reports Server (NTRS)
Peralta, Alejandro (Inventor); Gill, John J. (Inventor); Toda, Risaku (Inventor); Lin, Robert H. (Inventor); Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Thomas, Bertrand (Inventor); Siles, Jose V. (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor)
2016-01-01
A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Sunghoon; Song, Jeonghyeon; Yoon, Yeo Woong
2016-05-02
A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background gg → γγ. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ~50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. Furthermore,more » we find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by O (1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant.« less
Controllable growth of vertically aligned graphene on C-face SiC
Liu, Yu; Chen, Lianlian; Hilliard, Donovan; ...
2016-10-06
We investigated how to control the growth of vertically aligned graphene on C-face SiC by varying the processing conditions. It is found that, the growth rate scales with the annealing temperature and the graphene height is proportional to the annealing time. Temperature gradient and crystalline quality of the SiC substrates influence their vaporization. The partial vapor pressure is crucial as it can interfere with further vaporization. A growth mechanism is proposed in terms of physical vapor transport. The monolayer character of vertically aligned graphene is verified by Raman and X-ray absorption spectroscopy. With the processed samples, d 0 magnetism ismore » realized and negative magnetoresistance is observed after Cu implantation. We also prove that multiple carriers exist in vertically aligned graphene.« less
Controllable growth of vertically aligned graphene on C-face SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu; Chen, Lianlian; Hilliard, Donovan
We investigated how to control the growth of vertically aligned graphene on C-face SiC by varying the processing conditions. It is found that, the growth rate scales with the annealing temperature and the graphene height is proportional to the annealing time. Temperature gradient and crystalline quality of the SiC substrates influence their vaporization. The partial vapor pressure is crucial as it can interfere with further vaporization. A growth mechanism is proposed in terms of physical vapor transport. The monolayer character of vertically aligned graphene is verified by Raman and X-ray absorption spectroscopy. With the processed samples, d 0 magnetism ismore » realized and negative magnetoresistance is observed after Cu implantation. We also prove that multiple carriers exist in vertically aligned graphene.« less
NASA Astrophysics Data System (ADS)
Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng
2018-01-01
Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.
[Construction and selection of effective mouse Smad6 recombinant lenti-virus interference vectors].
Yu, Jing; Qi, Mengchun; Deng, Jiupeng; Liu, Gang; Chen, Huaiqing
2010-10-01
This experiment was designed to construct mouse Smad6 recombinant RNA interference vectors and determine their interference effects on bone marrow mesenchymal stem cells (BMSCs). Three recombinant Smad6 RNA interference vectors were constructed by molecular clone techniques with a lenti-virus vector expressing green fluorescent protein (GFP), and the correctness of recombinant vectors was verified by DNA sequencing. Mouse BMSCs were used for transfection experiments and BMP-2 was in use for osteogenic induction of MSCs. The transfection efficiency of recombinant vectors was examined by Laser confocal scanning microscope and the interference effect of recombinant vectors on Smad6 gene expression was determined by real-time RT-PCR and Western blot, respectively. Three Smad6 recombinant RNA interference vectors were successfully constructed and their correctness was proved by DNA sequencing. After transfection, GFPs were effectively expressed in MSCs and all of three recombinant vectors gained high transfection efficiency (> 95%). Both real-time PCR and Western blot examination indicated that among three recombinant vectors, No. 2 Svector had the best interference effect and the interference effect was nearly 91% at protein level. In conclusion, Mouse recombinant Smad6 RNA interference (RNAi) vector was successfully constructed and it provided an effective tool for further studies on BMP signal pathways.
A coupled duration-focused architecture for real-time music-to-score alignment.
Cont, Arshia
2010-06-01
The capacity for real-time synchronization and coordination is a common ability among trained musicians performing a music score that presents an interesting challenge for machine intelligence. Compared to speech recognition, which has influenced many music information retrieval systems, music's temporal dynamics and complexity pose challenging problems to common approximations regarding time modeling of data streams. In this paper, we propose a design for a real-time music-to-score alignment system. Given a live recording of a musician playing a music score, the system is capable of following the musician in real time within the score and decoding the tempo (or pace) of its performance. The proposed design features two coupled audio and tempo agents within a unique probabilistic inference framework that adaptively updates its parameters based on the real-time context. Online decoding is achieved through the collaboration of the coupled agents in a Hidden Hybrid Markov/semi-Markov framework, where prediction feedback of one agent affects the behavior of the other. We perform evaluations for both real-time alignment and the proposed temporal model. An implementation of the presented system has been widely used in real concert situations worldwide and the readers are encouraged to access the actual system and experiment the results.
Leave Her out of It: Person-Presentation of Strategies is Harmful for Transfer.
Riggs, Anne E; Alibali, Martha W; Kalish, Charles W
2015-11-01
A common practice in textbooks is to introduce concepts or strategies in association with specific people. This practice aligns with research suggesting that using "real-world" contexts in textbooks increases students' motivation and engagement. However, other research suggests this practice may interfere with transfer by distracting students or leading them to tie new knowledge too closely to the original learning context. The current study investigates the effects on learning and transfer of connecting mathematics strategies to specific people. A total of 180 college students were presented with an example of a problem-solving strategy that was either linked with a specific person (e.g., "Juan's strategy") or presented without a person. Students who saw the example without a person were more likely to correctly transfer the novel strategy to new problems than students who saw the example presented with a person. These findings are the first evidence that using people to present new strategies is harmful for learning and transfer. Copyright © 2015 Cognitive Science Society, Inc.
On the hunt for elusive ``meanings''
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
2012-09-01
The feature article discussed in this forum presents an interesting description of how students work in the context of a virtual world, where they design phenomena that they subsequently investigate by analyzing graphical representations. The study is aligned with the current canon of science education interested in understanding the inter-psychological and intra-psychological determinants of learning. Its main focus is on "meaning making." In this contribution to the forum, I articulate some shortcomings inherent in this theoretical notion, which, in essence, hides rather than reveals the real issues in and of learning. I offer some alternative avenues, both theoretical and methodological, for framing pertinent issues; in so doing, I (endeavor to) open up new avenues for research in science education. In essence, therefore, I offer possible avenues in response to the question, "What more can there be done by science education research?" that would allow us to eschew what I perceive to be hidden contradictions that interfere with making theoretical and practical advances in our field.
Real-time trace ambient ammonia monitor for haze prevention
NASA Astrophysics Data System (ADS)
Nishimura, Katsumi; Sakaguchi, Yuhei; Crosson, Eric; Wahl, Edward; Rella, Chris
2007-05-01
In photolithography, haze prevention is of critical importance to integrated circuit chip manufacturers. Numerous studies have established that the presence of ammonia in the photolithography tool can cause haze to form on optical surfaces resulting in permanent damage to costly deep ultra-violet optics. Ammonia is emitted into wafer fab air by various semiconductor processes including coating steps in the track and CMP. The workers in the clean room also emit a significant amount of ammonia. Chemical filters are typically used to remove airborne contamination from critical locations but their lifetime and coverage cannot offer complete protection. Therefore, constant or periodic monitoring of airborne ammonia at parts-per-trillion (ppt) levels is critical to insure the integrity of the lithography process. Real time monitoring can insure that an accidental ammonia release in the clean room is detected before any optics is damaged. We have developed a transportable, highly accurate, highly specific, real-time trace gas monitor that detects ammonia using Cavity Ring-Down Spectroscopy (CRDS). The trace gas monitor requires no calibration gas standards, and can measure ammonia with 200 ppt sensitivity in five minutes with little or no baseline drift. In addition, the high spectral resolution of CRDS makes the analyzer less susceptible to interference from other gases when compared to other detection methods. In this paper we describe the monitor, focus on its performance, discuss the results of a careful comparison with ion chromatography (IC), and present field data measured inside the aligner and the reticule stocker at a semiconductor fab.
Real-time calibration and alignment of the LHCb RICH detectors
NASA Astrophysics Data System (ADS)
HE, Jibo
2017-12-01
In 2015, the LHCb experiment established a new and unique software trigger strategy with the purpose of increasing the purity of the signal events by applying the same algorithms online and offline. To achieve this, real-time calibration and alignment of all LHCb sub-systems is needed to provide vertexing, tracking, and particle identification of the best possible quality. The calibration of the refractive index of the RICH radiators, the calibration of the Hybrid Photon Detector image, and the alignment of the RICH mirror system, are reported in this contribution. The stability of the RICH performance and the particle identification performance are also discussed.
NASA Astrophysics Data System (ADS)
Pushin, D. A.; Sarenac, D.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Huber, M. G.; Jacobson, D. L.; LaManna, J. M.; Parker, J. D.; Shinohara, T.; Ueno, W.; Wen, H.
2017-04-01
The phenomenon of interference plays a crucial role in the field of precision measurement science. Wave-particle duality has expanded the well-known interference effects of electromagnetic waves to massive particles. The majority of the wave-particle interference experiments require a near monochromatic beam which limits its applications due to the resulting low intensity. Here we demonstrate white beam interference in the far-field regime using a two-phase-grating neutron interferometer and its application to phase-contrast imaging. The functionality of this interferometer is based on the universal moiré effect that allows us to improve upon the standard Lau setup. Interference fringes were observed with monochromatic and polychromatic neutron beams for both continuous and pulsed beams. Far-field neutron interferometry allows for the full utilization of intense neutron sources for precision measurements of gradient fields. It also overcomes the alignment, stability, and fabrication challenges associated with the more familiar perfect-crystal neutron interferometer, as well as avoids the loss of intensity due to the absorption analyzer grating requirement in Talbot-Lau interferometer.
Neural mechanisms of interference control in working memory capacity.
Bomyea, Jessica; Taylor, Charles T; Spadoni, Andrea D; Simmons, Alan N
2018-02-01
The extent to which one can use cognitive resources to keep information in working memory is known to rely on (1) active maintenance of target representations and (2) downregulation of interference from irrelevant representations. Neurobiologically, the global capacity of working memory is thought to depend on the prefrontal and parietal cortices; however, the neural mechanisms involved in controlling interference specifically in working memory capacity tasks remain understudied. In this study, 22 healthy participants completed a modified complex working memory capacity task (Reading Span) with trials of varying levels of interference control demands while undergoing functional MRI. Neural activity associated with interference control demands was examined separately during encoding and recall phases of the task. Results suggested a widespread network of regions in the prefrontal, parietal, and occipital cortices, and the cingulate and cerebellum associated with encoding, and parietal and occipital regions associated with recall. Results align with prior findings emphasizing the importance of frontoparietal circuits for working memory performance, including the role of the inferior frontal gyrus, cingulate, occipital cortex, and cerebellum in regulation of interference demands. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kobayashi, Shunsuke; Mochizuki, Akihiro
The following sections are included: * INTRODUCTION * TUNABLE BIREFRINGENCE LCDs * Nematic Device with Homogeneous Alignment * Nematic Device with Homeotropic Alignment * ELECTRICALLY CONTROLLED BIREFRINGENCE EFFECT LCDs WITH A COMPENSATING CELL OR POLYMER LAYERS * Super Homeotropic LCDs * Black and White STN LCDs * Optical mode interference * Guest-host mode * Double-layered STN * Retardation film compensated STN * DUAL FREQUENCY ADDRESSING LCDs * Application for DSM LCDs * Application for TN LCDs * PI-CELL * CHOLESTERIC-NEMATIC PHASE CHANGE LCDs * Storage Mode LCDs * Stabilized Hysteresis Mode LCDs * THERMALLY ADDRESSED LCDs (CHOLESTERIC) * BISTABLE LCD * WIDE VIEWING ANGLE TN LCDs USING RETARDATION SHEETS * Type 1 Cells * Type 2 Cells * REFERENCES
Wavefront error sensing for LDR
NASA Technical Reports Server (NTRS)
Tubbs, Eldred F.; Glavich, T. A.
1988-01-01
Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.
Does Temporal Integration of Face Parts Reflect Holistic Processing?
Cheung, Olivia S.; Richler, Jennifer J.; Phillips, W. Stewart; Gauthier, Isabel
2011-01-01
We examined whether temporal integration of face parts reflects holistic processing or response interference. Participants learned to name two faces “Fred” and two “Bob”. At test, top and bottom halves of different faces formed composites and were presented briefly separated in time. Replicating prior findings (Singer & Sheinberg, 2006), naming of the target halves for aligned composites was slowed when the irrelevant halves were from faces with a different name compared to that from the original face. However, no interference was observed when the irrelevant halves had identical names as the target halves but came from different learned faces, arguing against a true holistic effect. Instead, response interference was obtained when the target halves briefly preceded the irrelevant halves. Experiment 2 confirmed a double-dissociation between holistic processing vs. response interference for intact faces vs. temporally separated face halves, suggesting that simultaneous presentation of facial information is critical for holistic processing. PMID:21327378
Large-scale fabrication of vertically aligned ZnO nanowire arrays
Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo
2013-02-05
In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.
Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.
Oliveira, Francisco P M; Tavares, João Manuel R S
2013-03-01
This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p < 0.001) than the one obtained using the best solution proposed in our previous work. When applied to align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p < 0.001). The consequences of the temporal alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Real Property § 80.135 What if an agency allows a use of real...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Real Property § 80.135 What if an agency allows a use of real...
Bringing the Brain into Assessment.
ERIC Educational Resources Information Center
Caine, Geoffrey; Caine, Renate Nummela
1999-01-01
Brain research explains why testing for surface knowledge (memorization) reveals relatively little about real, usable knowledge. Assessment must contribute to real-world experience, relate to real-world performance, can never be fully translated into representative symbols or numbers, and can induce both helplessness (interference with meaningful…
ERIC Educational Resources Information Center
Toal, Vincent; Mihaylova, Emilia M.
2009-01-01
This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…
Electrostatically Induced Carbon Nanotube Alignment for Polymer Composite Applications
NASA Astrophysics Data System (ADS)
Chapkin, Wesley Aaron
We have developed a non-invasive technique utilizing polarized Raman spectroscopy to measure changes in carbon nanotube (CNT) alignment in situ and in real time in a polymer matrix. With this technique, we have confirmed the prediction of faster alignment for CNTs in higher electric fields. Real-time polarized Raman spectroscopy also allows us to demonstrate the loss of CNT alignment that occurs after the electric field is removed, which reveals the need for fast polymerization steps or the continued application of the aligning force during polymerization to lock in CNT alignment. Through a study on the effect of polymer viscosity on the rate of CNT alignment, we have determined that shear viscosity serves as the controlling mechanism for CNT rotation. This finding matches literature modeling of rigid rod mobility in a polymer melt and demonstrates that the rotational mobility of CNTs can be explained by a continuum model even though the diameters of single-walled CNTs are 1-2 nm. The viscosity dependence indicates that the manipulation of temperature (and indirectly viscosity) will have a direct effect on the rate of CNT alignment, which could prove useful in expediting the manufacturing of CNT-reinforced composites cured at elevated temperatures. Using real-time polarized Raman spectroscopy, we also demonstrate that electric fields of various strengths lead not only to different speeds of CNT rotation but also to different degrees of alignment. We hypothesize that this difference in achievable alignment results from discrete populations of nanotubes based on their length. The results are then explained by balancing the alignment energy for a given electric field strength with the randomizing thermal energy of the system. By studying the alignment dynamics of different CNT length distributions, we show that different degrees of alignment achieved as a function of the applied electric field strength are directly related to the square of the nanotube length. This finding matches an electrostatic potential energy model for CNT rotation. Lastly, we investigate the effects of conductive carbon fibers on electrostatically induced alignment of CNTs within carbon fiber composites. The relative electric field strength throughout the composite is modeled using COMSOL Multiphysics. We show the ability to generate enhanced electric field gradients within the gaps between carbon fibers for various fiber orientations. Using polarized Raman spectroscopy, increased levels of CNT alignment are observed between carbon fiber tows, which is consistent with the modeled higher electric field strengths in these regions. These findings could potentially lead to the development of carbon fiber composites with CNT additions that selectively enhance the composite properties outside the carbon fiber interphase in the neat epoxy.
3D highway alignment optimization for Brookeville Bypass : final report.
DOT National Transportation Integrated Search
2005-06-01
This study applies the previously developed Highway Alignment Optimization (HAO) : model to the MD 97 Bypass project in Brookeville, Maryland. The objective of this study is to : demonstrate the applicability of the HAO model to a real highway projec...
Temperature dependence of the coherence in polariton condensates
NASA Astrophysics Data System (ADS)
Rozas, E.; Martín, M. D.; Tejedor, C.; Viña, L.; Deligeorgis, G.; Hatzopoulos, Z.; Savvidis, P. G.
2018-02-01
We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zero.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei
2016-03-28
A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less
Formation of nanotunnels inside a resist film in laser interference lithography.
Wei, Qi; Hu, Fanhua; Wang, Liyuan
2015-05-19
A few kinds of 2-diazo-1-naphthoquinone-4-sulfonates of poly(4-hydroxylstyrene) were prepared to form one-component i-line photoresists. In the laser interference lithography experiments of some of the photoresists, nanotunnels were observed to be aligned in the interior of the resist film. The shape and size of the nanotunnels remain virtually unchanged even under an increased exposure dose, indicating that the exposure energy is confined within the tunnel space. The formation of the nanotunnels results from the effect of standing waves and the permeation of developer from the surface deep into the resist films.
Interference Alignment With Partial CSI Feedback in MIMO Cellular Networks
NASA Astrophysics Data System (ADS)
Rao, Xiongbin; Lau, Vincent K. N.
2014-04-01
Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. However, most existing IA designs require full channel state information (CSI) at the transmitters, which would lead to significant CSI signaling overhead. There are two techniques, namely CSI quantization and CSI feedback filtering, to reduce the CSI feedback overhead. In this paper, we consider IA processing with CSI feedback filtering in MIMO cellular networks. We introduce a novel metric, namely the feedback dimension, to quantify the first order CSI feedback cost associated with the CSI feedback filtering. The CSI feedback filtering poses several important challenges in IA processing. First, there is a hidden partial CSI knowledge constraint in IA precoder design which cannot be handled using conventional IA design methodology. Furthermore, existing results on the feasibility conditions of IA cannot be applied due to the partial CSI knowledge. Finally, it is very challenging to find out how much CSI feedback is actually needed to support IA processing. We shall address the above challenges and propose a new IA feasibility condition under partial CSIT knowledge in MIMO cellular networks. Based on this, we consider the CSI feedback profile design subject to the degrees of freedom requirements, and we derive closed-form trade-off results between the CSI feedback cost and IA performance in MIMO cellular networks.
A novel design measuring method based on linearly polarized laser interference
NASA Astrophysics Data System (ADS)
Cao, Yanbo; Ai, Hua; Zhao, Nan
2013-09-01
The interferometric method is widely used in the precision measurement, including the surface quality of the large-aperture mirror. The laser interference technology has been developing rapidly as the laser sources become more and more mature and reliable. We adopted the laser diode as the source for the sake of the short coherent wavelength of it for the optical path difference of the system is quite shorter as several wavelengths, and the power of laser diode is sufficient for measurement and safe to human eye. The 673nm linearly laser was selected and we construct a novel form of interferometric system as we called `Closed Loop', comprised of polarizing optical components, such as polarizing prism and quartz wave plate, the light from the source split by which into measuring beam and referencing beam, they've both reflected by the measuring mirror, after the two beams transforming into circular polarization and spinning in the opposite directions we induced the polarized light synchronous phase shift interference technology to get the detecting fringes, which transfers the phase shifting in time domain to space, so that we did not need to consider the precise-controlled shift of optical path difference, which will introduce the disturbance of the air current and vibration. We got the interference fringes from four different CCD cameras well-alignment, and the fringes are shifted into four different phases of 0, π/2, π, and 3π/2 in time. After obtaining the images from the CCD cameras, we need to align the interference fringes pixel to pixel from different CCD cameras, and synthesis the rough morphology, after getting rid of systematic error, we could calculate the surface accuracy of the measuring mirror. This novel design detecting method could be applied into measuring the optical system aberration, and it would develop into the setup of the portable structural interferometer and widely used in different measuring circumstances.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.
Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios
NASA Astrophysics Data System (ADS)
Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.
2014-12-01
The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.
SNPServer: a real-time SNP discovery tool.
Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David
2005-07-01
SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.
Yuan, Dajun; Lin, Wei; Guo, Rui; Wong, C P; Das, Suman
2012-06-01
Scalable fabrication of carbon nanotube (CNT) bundles is essential to future advances in several applications. Here, we report on the development of a simple, two-step method for fabricating vertically aligned and periodically distributed CNT bundles and periodically porous CNT films at the sub-micron scale. The method involves laser interference ablation (LIA) of an iron film followed by CNT growth via iron-catalyzed chemical vapor deposition. CNT bundles with square widths ranging from 0.5 to 1.5 µm in width, and 50-200 µm in length, are grown atop the patterned catalyst over areas spanning 8 cm(2). The CNT bundles exhibit a high degree of control over square width, orientation, uniformity, and periodicity. This simple scalable method of producing well-placed and oriented CNT bundles demonstrates a high application potential for wafer-scale integration of CNT structures into various device applications, including IC interconnects, field emitters, sensors, batteries, and optoelectronics, etc.
Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki
2015-03-23
Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.
Chavez-Burbano, Patricia; Rabadan, Jose; Perez-Jimenez, Rafael
2017-01-01
Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios. PMID:28677613
Chavez-Burbano, Patricia; Guerra, Victor; Rabadan, Jose; Rodríguez-Esparragón, Dionisio; Perez-Jimenez, Rafael
2017-07-04
Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios.
Spatio-temporal alignment of pedobarographic image sequences.
Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S
2011-07-01
This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P < 0.001) than the linear temporal model. This article represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images.
Generation of helical Ince-Gaussian beams: beam-shaping with a liquid crystal display
NASA Astrophysics Data System (ADS)
Davis, Jeffrey A.; Bentley, Joel B.; Bandres, Miguel A.; Gutiérrez-Vega, Julio C.
2006-08-01
We review the three types of laser beams - Hermite-Gaussian (HG), Laguerre-Gaussian (LG) and the newly discovered Ince-Gaussian (IG) beams. We discuss the helical forms of the LG and IG beams that consist of linear combinations of the even and odd solutions and form a number of vortices that are useful for optical trapping applications. We discuss how to generate these beams by encoding the desired amplitude and phase onto a single parallel-aligned liquid crystal display (LCD). We introduce a novel interference technique where we generate both the object and reference beams using a single LCD and show the vortex interference patterns.
Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging
NASA Astrophysics Data System (ADS)
Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji
1999-12-01
Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.
Fingerprint extraction from interference destruction terahertz spectrum.
Xiong, Wei; Shen, Jingling
2010-10-11
In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.
Real-time single-molecule imaging of quantum interference.
Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus
2012-03-25
The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.
Real-time single-molecule imaging of quantum interference
NASA Astrophysics Data System (ADS)
Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus
2012-05-01
The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the ``most beautiful experiment in physics''. Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.
Real-space mapping of Fano interference in plasmonic metamolecules.
Alonso-Gonzalez, Pablo; Schnell, Martin; Sarriugarte, Paulo; Sobhani, Heidar; Wu, Chihhui; Arju, Nihal; Khanikaev, Alexander; Golmar, Federico; Albella, Pablo; Arzubiaga, Libe; Casanova, Felix; Hueso, Luis E; Nordlander, Peter; Shvets, Gennady; Hillenbrand, Rainer
2011-09-14
An unprecedented control of the spectral response of plasmonic nanoantennas has recently been achieved by designing structures that exhibit Fano resonances. This new insight is paving the way for a variety of applications, such as biochemical sensing and surface-enhanced Raman spectroscopy. Here we use scattering-type near-field optical microscopy to map the spatial field distribution of Fano modes in infrared plasmonic systems. We observe in real space the interference of narrow (dark) and broad (bright) plasmonic resonances, yielding intensity and phase toggling between different portions of the plasmonic metamolecules when either their geometric sizes or the illumination wavelength is varied.
Simulation of exposure and alignment for nanoimprint lithography
NASA Astrophysics Data System (ADS)
Deng, Yunfei; Neureuther, Andrew R.
2002-07-01
Rigorous electromagnetic simulation with TEMPEST is used to examine the exposure and alignment processes for nano-imprint lithography with attenuating thin-film molds. Parameters in the design of topographical features of the nano-imprint system and material choices of the components are analyzed. The small feature size limits light transmission through the feature. While little can be done with auxiliary structures to attract light into small holes, the use of an absorbing material with a low real part of the refractive index such as silver helps mitigates the problem. Results on complementary alignment marks shows that the small transmission through the metal layer and the vertical separation of two alignment marks create the leakage equivalent to 1 nm misalignment but satisfactory alignment can be obtained by measuring alignment signals over a +/- 30 nm range.
Interference effect on a heavy Higgs resonance signal in the γ γ and Z Z channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jeonghyeon; Yoon, Yeo Woong; Jung, Sunghoon
2016-03-24
The resonance-continuum interference is usually neglected when the width of a resonance is small compared to the resonance mass. We reexamine this standard by studying the interference effects in high-resolution decay channels, γγ and ZZ, of the heavy Higgs boson H in nearly aligned two-Higgs-doublet models. For the H with a sub-percent width-to-mass ratio, we find that, in the parameter space where the LHC 14 TeV ZZ resonance search can be sensitive, the interference effects can modify the ZZ signal rate by O(10)% and the exclusion reach by O(10) GeV. In other parameter space where the ZZ or γγ signalmore » rate is smaller, the LHC 14 TeV reach is absent, but a resonance shape can be much more dramatically changed. In particular, the γγ signal rate can change by O(100)%. Relevant to such parameter space, we suggest variables that can characterize a general resonance shape. Furthermore, we also illustrate the relevance of the width on the interference by adding nonstandard decay modes of the heavy Higgs boson.« less
Improved Phase-Mask Fabrication of Fiber Bragg Gratings
NASA Technical Reports Server (NTRS)
Grant, Joseph; Wang, Ying; Sharma, Anup
2004-01-01
An improved method of fabrication of Bragg gratings in optical fibers combines the best features of two prior methods: one that involves the use of a phase mask and one that involves interference between the two coherent laser beams. The improved method affords flexibility for tailoring Bragg wavelengths and bandwidths over wide ranges. A Bragg grating in an optical fiber is a periodic longitudinal variation in the index of refraction of the fiber core. The spatial period (Bragg wavelength) is chosen to obtain enhanced reflection of light of a given wavelength that would otherwise propagate relatively unimpeded along the core. Optionally, the spatial period of the index modulation can be made to vary gradually along the grating (such a grating is said to be chirped ) in order to obtain enhanced reflection across a wavelength band, the width of which is determined by the difference between the maximum and minimum Bragg wavelengths. In the present method as in both prior methods, a Bragg grating is formed by exposing an optical fiber to an ultraviolet-light interference field. The Bragg grating coincides with the pattern of exposure of the fiber core to ultraviolet light; in other words, the Bragg grating coincides with the interference fringes. Hence, the problem of tailoring the Bragg wavelength and bandwidth is largely one of tailoring the interference pattern and the placement of the fiber in the interference pattern. In the prior two-beam interferometric method, a single laser beam is split into two beams, which are subsequently recombined to produce an interference pattern at the location of an optical fiber. In the prior phase-mask method, a phase mask is used to diffract a laser beam mainly into two first orders, the interference between which creates the pattern to which an optical fiber is exposed. The prior two-beam interferometric method offers the advantage that the period of the interference pattern can be adjusted to produce gratings over a wide range of Bragg wavelengths, but offers the disadvantage that success depends on precise alignment and high mechanical stability. The prior phase-mask method affords the advantages of compactness of equipment and relative insensitivity to both misalignment and vibration, but does not afford adjustability of the Bragg wavelength. The present method affords both the flexibility of the prior two-beam interferometric method and the compactness and stability of the prior phase-mask method. In this method (see figure), a laser beam propagating along the x axis is normally incident on a phase mask that lies in the (y,z) plane. The phase of light propagating through the mask is modulated with a spatial periodicity, p, along the y axis chosen to diffract the laser light primarily to first order at the angle . (The zero-order laser light propagating along the x axis can be used for alignment and thereafter suppressed during exposure of the fiber.) The diffracted light passes through a concave cylindrical lens, which converts the flat diffracted wave fronts to cylindrical ones, as though the light emanated from a line source. Then two parallel flat mirrors recombine the diffracted beams to form an interference field equivalent to that of two coherent line sources at positions A and B (virtual sources). The interference pattern is a known function of the parameters of the apparatus and of position (x,y) in the interference field. Hence, the tilt, wavelength, and chirp of the Bragg grating can be chosen through suitable adjustments of the apparatus and/or of the position and orientation of the optical fiber. In particular, the Bragg wavelength can be adjusted by moving the fiber along the x axis, and the bandwidth can be modified over a wide range by changing the fiber tilt angle or by moving the phase mask and/or the fiber. Alignment is easy because the zero-order beam defines the x axis. The interference is relatively stable and insensitive to the mechanical vibration because of the gh symmetry and compactness of the apparatus, the fixed positions of the mirrors and lens, and the consequent fixed positions of the two virtual line sources, which are independent of the translations of the phase mask and the laser relative to the lens.
Study on the position accuracy of a mechanical alignment system
NASA Astrophysics Data System (ADS)
Cai, Yimin
In this thesis, we investigated the precision level and established the baseline achieved by a mechanical alignment system using datums and reference surfaces. The factors which affect the accuracy of mechanical alignment system were studied and methodology was developed to suppress these factors so as to reach its full potential precision. In order to characterize the mechanical alignment system quantitatively, a new optical position monitoring system by using quadrant detectors has been developed in this thesis, it can monitor multi-dimensional degrees of mechanical workpieces in real time with high precision. We studied the noise factors inside the system and optimized the optical system. Based on the fact that one of the major limiting noise factors is the shifting of the laser beam, a noise cancellation technique has been developed successfully to suppress this noise, the feasibility of an ultra high resolution (<20 A) for displacement monitoring has been demonstrated. Using the optical position monitoring system, repeatability experiment of the mechanical alignment system has been conducted on different kinds of samples including steel, aluminum, glass and plastics with the same size 100mm x 130mm. The alignment accuracy was studied quantitatively rather than qualitatively before. In a controlled environment, the alignment precision can be improved 5 folds by securing the datum without other means of help. The alignment accuracy of an aluminum workpiece having reference surface by milling is about 3 times better than by shearing. Also we have found that sample material can have fairly significant effect on the alignment precision of the system. Contamination trapped between the datum and reference surfaces in mechanical alignment system can cause errors of registration or reduce the level of manufacturing precision. In the thesis, artificial and natural dust particles were used to simulate the real situations and their effects on system precision have been investigated. In this experiment, we discovered two effective cleaning processes.
Detection of Catechol by Potentiometric-Flow Injection Analysis in the Presence of Interferents
ERIC Educational Resources Information Center
Lunsford, Suzanne K.; Widera, Justyna; Zhang, Hong
2007-01-01
This article describes an undergraduate analytical chemistry experiment developed to teach instrumental lab skills while incorporating common interferents encountered in the real-world analysis of catechol. The lab technique incorporates potentiometric-flow injection analysis on a dibenzo-18-crown-6 dual platinum electrode to detect catechol in…
Accountability or Authenticity? The Alignment of Professional Development and Teacher Evaluation
ERIC Educational Resources Information Center
Su, Yahui; Feng, Liyia; Hsu, Chang-Hui
2017-01-01
The alignment of professional development and teacher evaluation has been a growing concern in teacher professional development practices. The issue of how teacher evaluation can help authentic professional development is important in that teachers only learn what is real, useful and valuable to them. Based on our reflections on current…
Alignment of dynamic networks.
Vijayan, V; Critchlow, D; Milenkovic, T
2017-07-15
Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems' static network representations, as is currently done. For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. http://nd.edu/∼cone/DynaMAGNA++/ . tmilenko@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Vijayan, V.; Critchlow, D.; Milenković, T.
2017-01-01
Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poliakov, Alexander; Couronne, Olivier
2002-11-04
Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suite of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program tomore » find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less
Blank, Hartmut
2005-02-01
Traditionally, the causes of interference phenomena were sought in "real" or "hard" memory processes such as unlearning, response competition, or inhibition, which serve to reduce the accessibility of target items. I propose an alternative approach which does not deny the influence of such processes but highlights a second, equally important, source of interference-the conversion (Tulving, 1983) of accessible memory information into memory performance. Conversion is conceived as a problem-solving-like activity in which the rememberer tries to find solutions to a memory task. Conversion-based interference effects are traced to different conversion processes in the experimental and control conditions of interference designs. I present a simple theoretical model that quantitatively predicts the resulting amount of interference. In two paired-associate learning experiments using two different types of memory tests, these predictions were corroborated. Relations of the present approach to traditional accounts of interference phenomena and implications for eyewitness testimony are discussed.
A Method for the Alignment of Heterogeneous Macromolecules from Electron Microscopy
Shatsky, Maxim; Hall, Richard J.; Brenner, Steven E.; Glaeser, Robert M.
2009-01-01
We propose a feature-based image alignment method for single-particle electron microscopy that is able to accommodate various similarity scoring functions while efficiently sampling the two-dimensional transformational space. We use this image alignment method to evaluate the performance of a scoring function that is based on the Mutual Information (MI) of two images rather than one that is based on the cross-correlation function. We show that alignment using MI for the scoring function has far less model-dependent bias than is found with cross-correlation based alignment. We also demonstrate that MI improves the alignment of some types of heterogeneous data, provided that the signal to noise ratio is relatively high. These results indicate, therefore, that use of MI as the scoring function is well suited for the alignment of class-averages computed from single particle images. Our method is tested on data from three model structures and one real dataset. PMID:19166941
CCD filter and transform techniques for interference excision
NASA Technical Reports Server (NTRS)
Borsuk, G. M.; Dewitt, R. N.
1976-01-01
The theoretical and some experimental results of a study aimed at applying CCD filter and transform techniques to the problem of interference excision within communications channels were presented. Adaptive noise (interference) suppression was achieved by the modification of received signals such that they were orthogonal to the recently measured noise field. CCD techniques were examined to develop real-time noise excision processing. They were recursive filters, circulating filter banks, transversal filter banks, an optical implementation of the chirp Z transform, and a CCD analog FFT.
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert
1998-01-01
An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.
Real-time Java simulations of multiple interference dielectric filters
NASA Astrophysics Data System (ADS)
Kireev, Alexandre N.; Martin, Olivier J. F.
2008-12-01
An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk. Program summaryProgram title: Transmittance Catalogue identifier: AEBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5778 No. of bytes in distributed program, including test data, etc.: 90 474 Distribution format: tar.gz Programming language: Java Computer: Developed on PC-Pentium platform Operating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OS RAM: Variable Classification: 18 Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter. Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool. Running time: Real-time simulations
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Real Property § 80.135 What if an agency allows a use...
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Real Property § 80.135 What if an agency allows a use...
Control techniques to improve Space Shuttle solid rocket booster separation
NASA Technical Reports Server (NTRS)
Tomlin, D. D.
1983-01-01
The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.
Understanding Beam Alignment in a Coherent Lidar System
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2015-01-01
Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.
ERIC Educational Resources Information Center
Cheng, Xue Jun; McCarthy, Callum J.; Wang, Tony S. L.; Palmeri, Thomas J.; Little, Daniel R.
2018-01-01
Upright faces are thought to be processed more holistically than inverted faces. In the widely used composite face paradigm, holistic processing is inferred from interference in recognition performance from a to-be-ignored face half for upright and aligned faces compared with inverted or misaligned faces. We sought to characterize the nature of…
NASA Technical Reports Server (NTRS)
Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)
2006-01-01
An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.
A sounding rocket program in extreme and far ultraviolet interferometry
NASA Technical Reports Server (NTRS)
Chakrabarti, S.
1994-01-01
A self-compensating, all reflection interferometric (SCARI) spectrometer was developed that can provide high resolution measurements of spectral features at any wavelength. Several mechanical components were developed that aid the instrument's performance at the short wavelength range. Examples include an optical bench and modular removable precision mechanisms for alignment. Upon alignment and lock down of the interferometer with the latter, the device is removed to minimize weight. A ray-trace code was developed to simulate the instrument's performance. Interference patterns were obtained at the shortest wavelength: the hydrogen Lyman alpha (1216 A). A laboratory instrument was developed that will be flown aboard a Black Brant sounding rocket to study the very local interstellar medium.
Research on the method of precise alignment technology of atmospheric laser communication
NASA Astrophysics Data System (ADS)
Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan; Ma, Shi-wei; Chen, Jian
2016-10-01
Atmosphere laser communication takes advantage of laser as the carrier transmitting the voice, data, and image information in the atmosphere. Because of its high reliability, strong anti-interference ability, the advantages of easy installation, it has great potential and development space in the communications field. In the process of establish communication, the capture, targeting and tracking of the communication signal is the key technology. This paper introduce a method of targeting the signal spot in the process of atmosphere laser communication, which through the way of making analog signal addition and subtraction directly and normalized to obtain the target azimuth information to drive the servo system to achieve precise alignment of tracking.
A Coarse Alignment Method Based on Digital Filters and Reconstructed Observation Vectors
Xu, Xiang; Xu, Xiaosu; Zhang, Tao; Li, Yao; Wang, Zhicheng
2017-01-01
In this paper, a coarse alignment method based on apparent gravitational motion is proposed. Due to the interference of the complex situations, the true observation vectors, which are calculated by the apparent gravity, are contaminated. The sources of the interference are analyzed in detail, and then a low-pass digital filter is designed in this paper for eliminating the high-frequency noise of the measurement observation vectors. To extract the effective observation vectors from the inertial sensors’ outputs, a parameter recognition and vector reconstruction method are designed, where an adaptive Kalman filter is employed to estimate the unknown parameters. Furthermore, a robust filter, which is based on Huber’s M-estimation theory, is developed for addressing the outliers of the measurement observation vectors due to the maneuver of the vehicle. A comprehensive experiment, which contains a simulation test and physical test, is designed to verify the performance of the proposed method, and the results show that the proposed method is equivalent to the popular apparent velocity method in swaying mode, but it is superior to the current methods while in moving mode when the strapdown inertial navigation system (SINS) is under entirely self-contained conditions. PMID:28353682
NASA Technical Reports Server (NTRS)
Thomas, N. L.; Chisel, D. M.
1976-01-01
The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.
Compatibility of booster seats and vehicles in the U.S. market.
Bing, Julie A; Agnew, Amanda M; Bolte, John H
2018-05-19
The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems. Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters. Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes. This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.
2.4-3.2 GHz robust self-injecting injection-locked phase-locked loop
NASA Astrophysics Data System (ADS)
Yang, Jincheng; Zhang, Zhao; Qi, Nan; Liu, Liyuan; Liu, Jian; Wu, Nanjian
2018-04-01
In this paper, we propose a robust self-injecting injection-locked phase-locked loop (SI-ILPLL). It adopts a phase alignment loop (PAL) based on a subsampling phase frequency detector to align the phase between the injected pulse and the voltage-controlled oscillator (VCO) output. With the proposed phase frequency detector, the PAL performs phase alignment and the pulse generator can self-inject pulses into the VCO for injection locking. The subsampling phase detection and self-injection locking techniques can suppress the phase noise of the SI-ILPLL. The SI-ILPLL shows excellent robustness to environmental interference. The SI-ILPLL is implemented in 65 nm CMOS technology. It occupies an active area of 0.7 mm2. The measured root-mean-square (RMS) jitters at 3.2 GHz output without and with injection locking are 216 and 131 fs, respectively. When the supply voltage varies from 1.17 to 1.23 V and the temperature varies from 0 to 80 °C, the maximum jitter variation of all the output frequencies is less than 50 fs. The measured results demonstrate that even when a large interference appears at the supply voltage and unlocks the SI-ILPLL, the SI-ILPLL can self-recover its injection-locked state rapidly after the disturbance disappears, whereas the conventional ILPLL cannot self-recover its locked state after losing it. The power consumption of the SI-ILPLL is 7.4 mW under a 1.2 V supply voltage. The SI-ILPLL achieves a figure of merit (FOM) of -249 dB.
Treangen, Todd J; Ondov, Brian D; Koren, Sergey; Phillippy, Adam M
2014-01-01
Whole-genome sequences are now available for many microbial species and clades, however existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The Harvest suite is open-source and freely available from: http://github.com/marbl/harvest.
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
NASA Astrophysics Data System (ADS)
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.
Phillips, John B; Youmans, Paul W; Muheim, Rachel; Sloan, Kelly A; Landler, Lukas; Painter, Michael S; Anderson, Christopher R
2013-01-01
Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.
Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed ‘Plus’ Water Maze
Phillips, John B.; Youmans, Paul W.; Muheim, Rachel; Sloan, Kelly A.; Landler, Lukas; Painter, Michael S.; Anderson, Christopher R.
2013-01-01
Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673
NASA Astrophysics Data System (ADS)
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
NASA Astrophysics Data System (ADS)
Feng, Di; Fang, Qimeng; Huang, Huaibo; Zhao, Zhengqi; Song, Ningfang
2017-12-01
The development and implementation of a practical instrument based on an embedded technique for autofocus and polarization alignment of polarization maintaining fiber is presented. For focusing efficiency and stability, an image-based focusing algorithm fully considering the image definition evaluation and the focusing search strategy was used to accomplish autofocus. For improving the alignment accuracy, various image-based algorithms of alignment detection were developed with high calculation speed and strong robustness. The instrument can be operated as a standalone device with real-time processing and convenience operations. The hardware construction, software interface, and image-based algorithms of main modules are described. Additionally, several image simulation experiments were also carried out to analyze the accuracy of the above alignment detection algorithms. Both the simulation results and experiment results indicate that the instrument can achieve the accuracy of polarization alignment <±0.1 deg.
NASA Astrophysics Data System (ADS)
Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.
2017-08-01
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
ERIC Educational Resources Information Center
Mohr, Cory
2008-01-01
With approximately 2,500 students dropping out of U.S. high schools every day, there exists a need to align classroom instruction with corresponding "real world" applications. In order to keep students' motivation high and help ensure high levels of validity in instruction, core curriculum instructors and career and technical education (CTE)…
PROPER: global protein interaction network alignment through percolation matching.
Kazemi, Ehsan; Hassani, Hamed; Grossglauser, Matthias; Pezeshgi Modarres, Hassan
2016-12-12
The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of biological systems. Network alignment can be used to transfer biological knowledge between species. Although different PPI-network alignment algorithms were introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high biological and structural similarities among PPI networks is still challenging. In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER. Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER performs well based on several different comparison criteria. We highlight that PROPER has high potential in further applications such as detecting biological pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch .
Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO₂.
Zhang, Daoyu; Yang, Minnan; Dong, Shuai
2015-11-21
Titanium dioxide materials have been studied intensively and extensively for photocatalytic applications. A long-standing open question is the energy band alignment of rutile and anatase TiO2 phases, which can affect the photocatalytic process in the composite system. There are basically two contradictory viewpoints about the alignment of these two TiO2 phases supported by the respective experiments: (1) straddling type and (2) staggered type. In this work, our DFT plus U calculations show that the perfect rutile(110) and anatase(101) surfaces have the straddling type band alignment, whereas the surfaces with defects can turn the band alignment into the staggered type. The electric dipoles induced by defects are responsible for the reversal of band alignment. Thus the defects introduced during the preparation and post-treatment processes of materials are probably the answer to the above open question regarding the band alignment, which can be considered in real practice to tune the photocatalytic activity of materials.
Acoustic Nondestructive Evaluation of Aircraft Paneling Using Piezoelectric Sensors
2012-12-01
Electromagnetic Materials Team of the U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Clinical Trials Monitoring Branch, for...connected to this clip. This electrical connection ensures single-point grounding, which has been implemented to avoid electromagnetic interference...waveform of each sensor features an electromagnetic pick-up signature that is aligned with the transduced signal but phase shifted by 180. We know to
2017-01-01
The diversity of microbiota is best explored by understanding the phylogenetic structure of the microbial communities. Traditionally, sequence alignment has been used for phylogenetic inference. However, alignment-based approaches come with significant challenges and limitations when massive amounts of data are analyzed. In the recent decade, alignment-free approaches have enabled genome-scale phylogenetic inference. Here we evaluate three alignment-free methods: ACS, CVTree, and Kr for phylogenetic inference with 16s rRNA gene data. We use a taxonomic gold standard to compare the accuracy of alignment-free phylogenetic inference with that of common microbiome-wide phylogenetic inference pipelines based on PyNAST and MUSCLE alignments with FastTree and RAxML. We re-simulate fecal communities from Human Microbiome Project data to evaluate the performance of the methods on datasets with properties of real data. Our comparisons show that alignment-free methods are not inferior to alignment-based methods in giving accurate and robust phylogenic trees. Moreover, consensus ensembles of alignment-free phylogenies are superior to those built from alignment-based methods in their ability to highlight community differences in low power settings. In addition, the overall running times of alignment-based and alignment-free phylogenetic inference are comparable. Taken together our empirical results suggest that alignment-free methods provide a viable approach for microbiome-wide phylogenetic inference. PMID:29136663
Interference between face and non-face domains of perceptual expertise: a replication and extension
Curby, Kim M.; Gauthier, Isabel
2014-01-01
As car expertise increases, so does interference between the visual processing of faces and that of cars; this suggests performance trade-offs across domains of real-world expertise. Such interference between expert domains has been previously revealed in a relatively complex design, interleaving 2-back part-judgment task with faces and cars (Gauthier et al., 2003). However, the basis of this interference is unclear. Experiment 1A replicated the finding of interference between faces and cars, as a function of car expertise. Experiments 1B and 2 investigated the mechanisms underlying this effect by (1) providing baseline measures of performance and (2) assessing the specificity of this interference effect. Our findings support the presence of expertise-dependent interference between face and non-face domains of expertise. However, surprisingly, it is in the condition where faces are processed among cars with a disrupted configuration where expertise has a greater influence on faces. This finding highlights how expertise-related processing changes also occur for transformed objects of expertise and that such changes can also drive interference across domains of expertise. PMID:25346702
Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, Gopal; Santra, Robin; Department of Physics, University of Hamburg, D-20355 Hamburg
2013-04-07
Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixturemore » of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.« less
Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets
NASA Astrophysics Data System (ADS)
Dixit, Gopal; Santra, Robin
2013-04-01
Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)], 10.1073/pnas.1202226109. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.
Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets.
Dixit, Gopal; Santra, Robin
2013-04-07
Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.
MPI investigation for 40G NRZ link with low-RL cable assemblies
NASA Astrophysics Data System (ADS)
Satake, Toshiaki; Berdinskikh, Tatiana; Thongdaeng, Rutsuda; Faysanyo, Pitak; Gurreri, Michael
2017-01-01
Bit Error Ratio (BER) dependence on received power was studied for 40Gb/s NRZ short optical fiber transmission, including a series of four low return loss (RL 21dB) and low insertion loss (IL 0.1dB) connections. The calculated power penalty (PP) was 0.15dB for BER 10-11. Although the fiber length was within DFB laser's coherent length of 100m and the multi path interference (MPI) value was 34.3dB, no PP of BER was observed. There was no PP due to low MPI probably because the polarization of the signal pulses were not aligned for optical interference, indicating that NRZ systems have a high resistance to MPI.
Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.
Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre
2014-06-15
We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.
An IMU-to-Body Alignment Method Applied to Human Gait Analysis.
Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo
2016-12-10
This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.
Pennycook, Gordon; Rand, David G
2018-06-20
Why do people believe blatantly inaccurate news headlines ("fake news")? Do we use our reasoning abilities to convince ourselves that statements that align with our ideology are true, or does reasoning allow us to effectively differentiate fake from real regardless of political ideology? Here we test these competing accounts in two studies (total N = 3446 Mechanical Turk workers) by using the Cognitive Reflection Test (CRT) as a measure of the propensity to engage in analytical reasoning. We find that CRT performance is negatively correlated with the perceived accuracy of fake news, and positively correlated with the ability to discern fake news from real news - even for headlines that align with individuals' political ideology. Moreover, overall discernment was actually better for ideologically aligned headlines than for misaligned headlines. Finally, a headline-level analysis finds that CRT is negatively correlated with perceived accuracy of relatively implausible (primarily fake) headlines, and positively correlated with perceived accuracy of relatively plausible (primarily real) headlines. In contrast, the correlation between CRT and perceived accuracy is unrelated to how closely the headline aligns with the participant's ideology. Thus, we conclude that analytic thinking is used to assess the plausibility of headlines, regardless of whether the stories are consistent or inconsistent with one's political ideology. Our findings therefore suggest that susceptibility to fake news is driven more by lazy thinking than it is by partisan bias per se - a finding that opens potential avenues for fighting fake news. Copyright © 2018 Elsevier B.V. All rights reserved.
Interference problems for nongeostationary satellites
NASA Technical Reports Server (NTRS)
Sollfrey, W.
1984-01-01
The interference problems faced by nongeostationary satellites may be of major significance. A general discussion indicates the scope of the problems and describes several configurations of importance. Computer programs are described, which are employed by NASA/JPL and the U.S. Air Force Satellite Control Facility to provide interference-free scheduling of commands and data transmission. Satellite system mission planners are not concerned with the precise prediction of interference episodes, but rather with the expected total amount of interference, the mean and maximum duration of events, and the mean spacing between episodes. The procedures in the theory of probability developed by the author which permit calculation of such quantities are described and applied to several real cases. It may be anticipated that the problems will become steadily worse in the future as more and more data transmissions attempt to occupy the same frequency band.
Effective real estate management helps IDSs meet strategic objectives.
Campobasso, F D
2000-05-01
As IDSs expand their healthcare delivery networks, they acquire an increasingly diverse array of real estate assets. Managing these assets effectively requires a comprehensive real estate strategy. To develop such a strategy, the IDS should form a strategic real estate planning team. The team's role should be to conduct market research; assess the strategic value of the IDS's real estate portfolio; recommend strategies for disposing of unnecessary, underperforming, or mis-aligned assets; evaluate new real estate acquisitions or development projects that may be required to achieve the organization's mission and/or protect market share; and recommend a financing approach that fits the real estate strategy.
Real-time diesel particulate monitor for underground mines.
Noll, James; Janisko, Samuel; Mischler, Steven E
The standard method for determining diesel particulate matter (DPM) exposures in underground metal/ nonmetal mines provides the average exposure concentration for an entire working shift, and several weeks might pass before results are obtained. The main problem with this approach is that it only indicates that an overexposure has occurred rather than providing the ability to prevent an overexposure or detect its cause. Conversely, real-time measurement would provide miners with timely information to allow engineering controls to be deployed immediately and to identify the major factors contributing to any overexposures. Toward this purpose, the National Institute for Occupational Safety and Health (NIOSH) developed a laser extinction method to measure real-time elemental carbon (EC) concentrations (EC is a DPM surrogate). To employ this method, NIOSH developed a person-wearable instrument that was commercialized in 2011. This paper evaluates this commercial instrument, including the calibration curve, limit of detection, accuracy, and potential interferences. The instrument was found to meet the NIOSH accuracy criteria and to be capable of measuring DPM concentrations at levels observed in underground mines. In addition, it was found that a submicron size selector was necessary to avoid interference from mine dust and that cigarette smoke can be an interference when sampling in enclosed cabs.
NASA Technical Reports Server (NTRS)
Middlebrook, Ann M.; Berland, Brian S.; George, Steven M.; Tolbert, Margaret A.; Toon, Owen B.
1994-01-01
The infrared spectra of nitric-acid/ice films representative of polar stratospheric clouds (PSCs) were collected with simultaneous optical interference measurements to determine the real refractive indices at lambda = 632 nm. Ice and amphorous nitric-acid/ice films were prepared by condensation of water and nitric acid vapors onto a wedged Al2O3 substrate. The real refractive indices of these films were determined from the optical interference of a reflected helium-neon laser during film growth. The indices of the amphorous films varied smoothly from n = 1.30 for ice to n = 1.49 for nitric acid, similar to observations in previous work. We were unable to obtain the refractive index of crystlline films during adsorption because of optical scattering caused by surface roughness. Therefore crystlline nitric acid hydrate films were prepared by annealing amphorous nitric-acid/ice films. Further heating caused desorption of the crystalline hydrate films. During desorption, the refractive indices for ice, NAM (nitric acid monohydrate), alpha- and beta-NAT (nitric acid trihydrate) films were measured using the optical interference technique. In agreement with earlier data, the real refractive indices for ice and NAM determined in desorption were n = 1.30 +/- 0.01 and n = 1.53 +/- 0.03, respectively. The real refractive indices for alpha- and beta-NAT were found to be n = 1.51 +/- 0.01 and n greater than or equal to 1.46, respectively. Our measurements also suggest that the shape of crystalline nitric acid particles may depend on whether they nucleate from the liquid or by vapor deposition. If confirmed by future studies, this observation may provide a means of distinguishing the nucleation mechanism of crystalline PSCs.
NASA Technical Reports Server (NTRS)
Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.
1992-01-01
Simple light-meter circuit used to position knife edge of schlieren optical system to block exactly half light. Enables operator to check quickly position of knife edge between tunnel runs to ascertain whether or not in alignment. Permanent measuring system made part of each schlieren system. If placed in unused area of image plane, or in monitoring beam from mirror knife edge, provides real-time assessment of alignment of schlieren system.
STELLAR: fast and exact local alignments
2011-01-01
Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882
Evaluation of two glucose meters and interference corrections for screening neonatal hypoglycemia.
Wada, Yuka; Nakamura, Tomoo; Kaneshige, Masao; Takahashi, Shigehiro; Fujinaga, Hideshi; Tsukamoto, Keiko; Ito, Yushi; Sago, Haruhiko
2015-08-01
Many neonatal intensive care and maternal units still use self-monitoring of blood glucose (SMBG) devices as a tool to aid diagnosis despite the introduction of point-of-care testing (POCT) devices, which are known to have higher accuracy. We evaluated the performance of two glucose meters, the StatStrip (Nova Biomedical), a POCT device, and the Medisafe Mini (Terumo), an SMBG device, to detect hypoglycemia in neonates. In addition, we evaluated the interference of hematocrit, acetaminophen and ascorbic acid. Whole blood samples were drawn from neonates who were at risk of hypoglycemia and analyzed with the StatStrip and Medisafe Mini. The results were further confirmed with blood gas analyzers ABL825 and BM6050. To evaluate the interference of hematocrit, acetaminophen and ascorbic acid, concentrated solutions of glucose and interfering substances were gravimetrically prepared and analyzed. Among the 222 blood samples analyzed, results from the StatStrip were more closely aligned to those of the ABL825 at all levels of glucose than the Medisafe Mini. StatStrip appears to be unaffected by hematocrit, ascorbic acid or acetaminophen. We recommend its use in neonates in hospital. Further studies are required to identify other interference effects. © 2014 Japan Pediatric Society.
Contrast matching of line gratings obtained with NXE3XXX and EUV- interference lithography
NASA Astrophysics Data System (ADS)
Tasdemir, Zuhal; Mochi, Iacopo; Olvera, Karen Garrido; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Fallica, Roberto; Vockenhuber, Michaela; Ekinci, Yasin
2017-10-01
Extreme UV lithography (EUVL) has gained considerable attention for several decades as a potential technology for the semiconductor industry and it is now close to being adopted in high-volume manufacturing. At Paul Scherrer Institute (PSI), we have focused our attention on EUV resist performance issues by testing available high-performance EUV resists in the framework of a joint collaboration with ASML. For this purpose, we use the grating-based EUV-IL setup installed at the Swiss Light Source (SLS) at PSI, in which a coherent beam with 13.5 nm wavelength is used to produce a periodic aerial image with virtually 100% contrast and large depth of focus. Interference lithography is a relatively simple technique and it does not require many optical components, therefore the unintended flare is minimized and the aerial image is well-defined sinusoidal pattern. For the collaborative work between PSI and ASML, exposures are being performed on the EUV-IL exposure tool at PSI. For better quantitative comparison to the NXE scanner results, it is targeted to determine the actual NILS of the EUV-IL exposure tool at PSI. Ultimately, any resist-related metrology must be aligned and compared with the performance of EUV scanners. Moreover, EUV-IL is a powerful method for evaluating the resist performance and a resist which performs well with EUV-IL, shows, in general, also good performance with NXE scanners. However, a quantitative prediction of the performance based on EUV-IL measurements has not been possible due to the differences in aerial image formation. In this work, we aim to study the performance of EUV resists with different aerial images. For this purpose, after the real interference pattern exposure, we overlay a flat field exposure to emulate different levels of contrast. Finally, the results are compared with data obtained from EUV scanner. This study will enable not only match the data obtained from EUV- IL at PSI with the performance of NXE scanners, but also a better understanding of resist fundamentals by studying the effects of the aerial image on resist performance by changing the aerial image contrast in a controlled manner using EUV-IL.
ERIC Educational Resources Information Center
Wolfe, Joanna
2008-01-01
Recent research on annotation interfaces provides provocative evidence that anchored, annotation-based discussion environments may lead to better conversations about a text. However, annotation interfaces raise complicated tradeoffs regarding screen real estate and positioning. It is argued that solving this screen real estate problem requires…
NASA Technical Reports Server (NTRS)
Hinedi, S.; Polydoros, A.
1988-01-01
The authors present and analyze a frequency-noncoherent two-lag autocorrelation statistic for the wideband detection of random BPSK signals in noise-plus-random-multitone interference. It is shown that this detector is quite robust to the presence or absence of interference and its specific parameter values, contrary to the case of an energy detector. The rule assumes knowledge of the data rate and the active scenario under H0. It is concluded that the real-time autocorrelation domain and its samples (lags) are a viable approach for detecting random signals in dense environments.
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh (Inventor); Takano, Nobuyuki (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Ostlund, Patrick N. (Inventor)
2017-01-01
A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.
Development of a Grazing Incidence X-Ray Interferometer
NASA Technical Reports Server (NTRS)
Shipley, Ann; Cash, Webster; Osterman, Steve; Joy, Marshall; Carter, James
1999-01-01
A grazing incidence x-ray interferometer design capable of micro-arcsecond level resolution is discussed. This practical design employs a Michelson Stellar interferometer approach to create x-ray interference fringes without the use of Wolter style optics or diffraction crystals. Design solutions accommodating alignment, vibration, and thermal constraints are reviewed. We present the development and demonstration of a working experiment along with tolerance studies, data analysis, and results.
Yan, Xiaoqian; Young, Andrew W; Andrews, Timothy J
2017-12-01
The aim of this study was to investigate the causes of the own-race advantage in facial expression perception. In Experiment 1, we investigated Western Caucasian and Chinese participants' perception and categorization of facial expressions of six basic emotions that included two pairs of confusable expressions (fear and surprise; anger and disgust). People were slightly better at identifying facial expressions posed by own-race members (mainly in anger and disgust). In Experiment 2, we asked whether the own-race advantage was due to differences in the holistic processing of facial expressions. Participants viewed composite faces in which the upper part of one expression was combined with the lower part of a different expression. The upper and lower parts of the composite faces were either aligned or misaligned. Both Chinese and Caucasian participants were better at identifying the facial expressions from the misaligned images, showing interference on recognizing the parts of the expressions created by holistic perception of the aligned composite images. However, this interference from holistic processing was equivalent across expressions of own-race and other-race faces in both groups of participants. Whilst the own-race advantage in recognizing facial expressions does seem to reflect the confusability of certain emotions, it cannot be explained by differences in holistic processing.
Predictability of orthodontic movement with orthodontic aligners: a retrospective study.
Lombardo, Luca; Arreghini, Angela; Ramina, Fabio; Huanca Ghislanzoni, Luis T; Siciliani, Giuseppe
2017-11-13
The aim of this study was to evaluate the predictability of F22 aligners (Sweden & Martina, Due Carrare, Italy) in guiding teeth into the positions planned using digital orthodontic setup. Sixteen adult patients (6 males and 10 females, mean age 28 years 7 months) were selected, and a total of 345 teeth were analysed. Pre-treatment, ideal post-treatment-as planned on digital setup-and real post-treatment models were analysed using VAM software (Vectra, Canfield Scientific, Fairfield, NJ, USA). Prescribed and real rotation, mesiodistal tip and vestibulolingual tip were calculated for each tooth and, subsequently, analysed by tooth type (right and left upper and lower incisors, canines, premolars and molars) to identify the mean error and accuracy of each type of movement achieved with the aligner with respect to those planned using the setup. The mean predictability of movements achieved using F22 aligners was 73.6%. Mesiodistal tipping showed the most predictability, at 82.5% with respect to the ideal; this was followed by vestibulolingual tipping (72.9%) and finally rotation (66.8%). In particular, mesiodistal tip on the upper molars and lower premolars were achieved with the most predictability (93.4 and 96.7%, respectively), while rotation on the lower canines was the least efficaciously achieved (54.2%). Without the use of auxiliaries, orthodontic aligners are unable to achieve programmed movement with 100% predictability. In particular, although tipping movements were efficaciously achieved, especially at the molars and premolars, rotation of the lower canines was an extremely unpredictable movement.
NASA Astrophysics Data System (ADS)
Schäfer, Björn Malte; Merkel, Philipp M.
2017-09-01
This paper describes intrinsic ellipticity correlations between galaxies, their statistical properties, their observability with future surveys and their interference with weak gravitational lensing measurements. Using an angular-momentum-based, quadratic intrinsic alignment model we derive correlation functions of the ellipticity components and project them to yield the four non-zero angular ellipticity spectra C^ɛ _E(ℓ), C^ɛ _B(ℓ), C^ɛ _C(ℓ) and C^ɛ _S(ℓ) in their generalization to tomographic surveys. For a Euclid-like survey, these spectra would have amplitudes smaller than the weak lensing effect on non-linear structures, but would constitute an important systematics. Computing estimation biases for cosmological parameters derived from an alignment-contaminated survey suggests biases of +5σw for the dark energy equation of state parameter w, -20σ _{Ω _m} for the matter density Ωm and -12σ _{σ _8} for the spectrum normalization σ8. Intrinsic alignments yield a signal that is easily observable with a survey similar to Euclid: while not independent, significances for estimates of each of the four spectra reach values of tens of σ if weak lensing and shape noise are considered as noise sources, which suggests relative uncertainties on alignment parameters at the percent level, implying that galaxy alignment mechanisms can be investigated by future surveys.
Interference with electrons: from thought to real experiments
NASA Astrophysics Data System (ADS)
Matteucci, Giorgio
2013-11-01
The two-slit interference experiment is usually adopted to discuss the superposition principle applied to radiation and to show the peculiar wave behaviour of material particles. Diffraction and interference of electrons have been demonstrated using, as interferometry devices, a hole, a slit, double hole, two-slits, an electrostatic biprism etc. A number of books, short movies and lectures on the web try to popularize the mysterious behaviour of electrons on the basis of Feynman thought experiment which consists of a Young two-hole interferometer equipped with a detector to reveal single electrons. A short review is reported regarding, i) the pioneering attempts carried out to demonstrate that interference patterns could be obtained with single electrons through an interferometer and, ii) recent experiments, which can be considered as the realization of the thought electron interference experiments adopted by Einstein-Bohr and subsequently by Feynman to discuss key features of quantum physics.
Zheng, Qi; Grice, Elizabeth A
2016-10-01
Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.
Pan, Xiao-Ben; Wei, Lai; Han, Jin-Chao; Gao, Yan
2008-01-01
Fluorescence quantitative real-time PCR (FQ-PCR) is a recently developed technique increasingly used for clinical diagnosis by detection of hepatitis B virus (HBV) DNA in serum. FQ-PCR is also used in scientific research for detection of HBV DNA in cell culture. Understanding potential FQ-PCR interference factors can improve the accuracy of HBV DNA quantification in cell culture medium. HBV positive serum was diluted with culture medium to produce three test groups with HBV DNA levels of 5 x 10(7) copies/ml (high), 5 x 10(5) copies/ml (medium), and 5 x 10(3) copies/ml (low). Chromosome DNA was extracted from HepG2 cells and then added to high, medium, and low group samples at final concentrations of 0, 12.5, 25, 50, and 100 microg/ml. The samples were quantified by FQ-PCR and data were evaluated using statistical software. No marked changes were seen in the quantitative curves for high level HBV DNA samples when the samples were supplemented with 0-100 microg/ml of chromosome DNA. Interference was observed in medium level samples when 50 and 100 microg/ml of chromosome DNA was added. Interference was also observed in low level HBV DNA samples when the concentration of added chromosome DNA was greater than 25 microg/ml. The interference was eliminated when samples were digested by DNase I prior to PCR detection. In Conclusions, the presence of cellular chromosome DNA can interfere with the detection of HBV DNA by FQ-PCR. Removal of cellular chromosome DNA from culture media prior to FQ-PCR is necessary for reliable HBV DNA quantitative detection. (c) 2007 Wiley-Liss, Inc.
Improve homology search sensitivity of PacBio data by correcting frameshifts.
Du, Nan; Sun, Yanni
2016-09-01
Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hu, Jialu; Kehr, Birte; Reinert, Knut
2014-02-15
Owing to recent advancements in high-throughput technologies, protein-protein interaction networks of more and more species become available in public databases. The question of how to identify functionally conserved proteins across species attracts a lot of attention in computational biology. Network alignments provide a systematic way to solve this problem. However, most existing alignment tools encounter limitations in tackling this problem. Therefore, the demand for faster and more efficient alignment tools is growing. We present a fast and accurate algorithm, NetCoffee, which allows to find a global alignment of multiple protein-protein interaction networks. NetCoffee searches for a global alignment by maximizing a target function using simulated annealing on a set of weighted bipartite graphs that are constructed using a triplet approach similar to T-Coffee. To assess its performance, NetCoffee was applied to four real datasets. Our results suggest that NetCoffee remedies several limitations of previous algorithms, outperforms all existing alignment tools in terms of speed and nevertheless identifies biologically meaningful alignments. The source code and data are freely available for download under the GNU GPL v3 license at https://code.google.com/p/netcoffee/.
Fast alignment-free sequence comparison using spaced-word frequencies.
Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard
2014-07-15
Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.
ERIC Educational Resources Information Center
DeBay, Dennis J.
2013-01-01
To explore student mathematical self-efficacy and understanding of graphical data, this dissertation examines students solving real-world problems in their neighborhood, mediated by professional urban planning technologies. As states and schools are working on the alignment of the Common Core State Standards for Mathematics (CCSSM), traditional…
Lionberger, David R; Weise, Jennifer; Ho, David M; Haddad, John L
2008-06-01
Forty-six primary total knee arthroplasties were performed using either an electromagnetic (EM) or infrared (IR) navigation system. In this IRB-approved study, patients were evaluated clinically and for accuracy using spiral computed tomographic imaging and 36-in standing radiographs. Although EM navigation was subject to metal interference, it was not as drastic as line-of-sight interference with IR navigation. Mechanical alignment was ideal in 92.9% of EM and 90.0% of IR cases based on spiral computed tomographic imaging and 100% of EM and 95% of IR cases based on x-ray. Individual measurements of component varus/valgus and sagittal measurements showed EM to be equivalent to IR, with both systems producing subdegree accuracy in 95% of the readings.
Speech recognition by bilateral cochlear implant users in a cocktail-party setting
Loizou, Philipos C.; Hu, Yi; Litovsky, Ruth; Yu, Gongqiang; Peters, Robert; Lake, Jennifer; Roland, Peter
2009-01-01
Unlike prior studies with bilateral cochlear implant users which considered only one interferer, the present study considered realistic listening situations wherein multiple interferers were present and in some cases originating from both hemifields. Speech reception thresholds were measured in bilateral users unilaterally and bilaterally in four different spatial configurations, with one and three interferers consisting of modulated noise or competing talkers. The data were analyzed in terms of binaural benefits including monaural advantage (better-ear listening) and binaural interaction. The total advantage (overall spatial release) received was 2–5 dB and was maintained with multiple interferers present. This advantage was dominated by the monaural advantage, which ranged from 1 to 6 dB and was largest when the interferers were mostly energetic. No binaural-interaction benefit was found in the present study with either type of interferer (speech or noise). While the total and monaural advantage obtained for noise interferers was comparable to that attained by normal-hearing listeners, it was considerably lower for speech interferers. This suggests that bilateral users are less capable of taking advantage of binaural cues, in particular, under conditions of informational masking. Furthermore, the use of noise interferers does not adequately reflect the difficulties experienced by bilateral users in real-life situations. PMID:19173424
Iridescent clouds and distorted coronas.
Laven, Philip
2017-07-01
Near-forward scattering of sunlight generates coronas and iridescence on clouds. Coronas are caused by diffraction, whereas iridescence is less easily explained. Iridescence often appears as bands of color aligned with the edges of clouds or as apparently random patches of color on clouds. This paper suggests that iridescence is due to interference between light that has been diffracted by a spherical droplet of water and light that has been transmitted through the same droplet.
Feasibility study of patient motion monitoring by using tactile array sensors
NASA Astrophysics Data System (ADS)
Kim, Tae-Ho; Kang, Seong-Hee; Kim, Dong-Su; Cho, Min-Seok; Kim, Kyeong-Hyeon; Suh, Tae-Suk; Kim, Siyong
2015-07-01
An ideal alignment method based on the external anatomical surface of the patient should consider the entire region of interest. However, optical-camera-based systems cannot blindly monitor such areas as the patient's back, for example. Furthermore, collecting enough information to correct the associated deformation error is impossible. The study aim is to propose a new patient alignment method using tactile array sensors that can measure the distributed pressure profiles along the contact surface. The TactArray system includes one sensor, a signal-conditioning device (USB drive/interface electronics, power supply, and cables), and a PC. The tactile array sensor was placed between the patient's back and the treatment couch, and the deformations at different location on the patient's back were evaluated. Three healthy male volunteers were enrolled in this study, and pressure profile distributions (PPDs) were obtained with and without immobilization. After the initial pretreatment setup using the laser alignment system, the PPD of the patient's back was acquired. The results were obtained at four different times and included a reference PPD dataset. The contact area and the center-of-pressure value were also acquired based on the PPD data for a more elaborate quantitative data analysis. To evaluate the clinical feasibility of using the proposed alignment method for reducing the deformation error, we implemented a real-time self-correction procedure. Despite the initial alignment, we confirmed that PPD variations existed in both cases of the volunteer studies (with and without the use of the immobilization tool). Additionally, we confirmed that the contact area and the center of pressure varied in both cases, and those variations were observed in all three volunteers. With the proposed alignment method and the real-time selfcorrection procedure, the deformation error was significantly reduced. The proposed alignment method can be used to account for the limitation of the camera-based system and to improve the accuracy of the external surface-based patient setup.
Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M
2012-01-01
In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.
The Map in Our Head Is Not Oriented North: Evidence from a Real-World Environment.
Brunyé, Tad T; Burte, Heather; Houck, Lindsay A; Taylor, Holly A
2015-01-01
Like most physical maps, recent research has suggested that cognitive maps of familiar environments may have a north-up orientation. We demonstrate that north orientation is not a necessary feature of cognitive maps and instead may arise due to coincidental alignment between cardinal directions and the built and natural environment. Experiment 1 demonstrated that pedestrians have difficulty pointing north while navigating a familiar real-world environment with roads, buildings, and green spaces oriented oblique to cardinal axes. Instead, north estimates tended to be parallel or perpendicular to roads. In Experiment 2, participants did not demonstrate privileged memory access when oriented toward north while making relative direction judgments. Instead, retrieval was fastest and most accurate when orientations were aligned with roads. In sum, cognitive maps are not always oriented north. Rather, in some real-world environments they can be oriented with respect to environment-specific features, serving as convenient reference systems for organizing and using spatial memory.
Real-time 3D change detection of IEDs
NASA Astrophysics Data System (ADS)
Wathen, Mitch; Link, Norah; Iles, Peter; Jinkerson, John; Mrstik, Paul; Kusevic, Kresimir; Kovats, David
2012-06-01
Road-side bombs are a real and continuing threat to soldiers in theater. CAE USA recently developed a prototype Volume based Intelligence Surveillance Reconnaissance (VISR) sensor platform for IED detection. This vehicle-mounted, prototype sensor system uses a high data rate LiDAR (1.33 million range measurements per second) to generate a 3D mapping of roadways. The mapped data is used as a reference to generate real-time change detection on future trips on the same roadways. The prototype VISR system is briefly described. The focus of this paper is the methodology used to process the 3D LiDAR data, in real-time, to detect small changes on and near the roadway ahead of a vehicle traveling at moderate speeds with sufficient warning to stop the vehicle at a safe distance from the threat. The system relies on accurate navigation equipment to geo-reference the reference run and the change-detection run. Since it was recognized early in the project that detection of small changes could not be achieved with accurate navigation solutions alone, a scene alignment algorithm was developed to register the reference run with the change detection run prior to applying the change detection algorithm. Good success was achieved in simultaneous real time processing of scene alignment plus change detection.
An IMU-to-Body Alignment Method Applied to Human Gait Analysis
Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo
2016-01-01
This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis. PMID:27973406
Real-time sensing of optical alignment
NASA Technical Reports Server (NTRS)
Stier, Mark T.; Wissinger, Alan B.
1988-01-01
The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment.
Ohoyama, H; Matsuura, Y
2011-10-13
The atomic alignment effect has been studied for the dissociative energy transfer reaction of metal carbonyls (Fe(CO)(5), Ni(CO)(4)) with the oriented Ar ((3)P(2), M(J) = 2). The emission intensity from the excited metal products (Fe*, Ni*) has been measured as a function of the atomic alignment in the collision frame. The selectivity of the atomic orbital alignment of Ar ((3)P(2), M(J) = 2) (rank 2 moment, a(2)) is found to be opposite for the two reaction systems; the Fe(CO)(5) reaction is favorable at the Π configuration (positive a(2)), while the Ni(CO)(4) reaction is favorable at the Σ configuration (negative a(2)). Moreover, a significant spin alignment effect (rank 4 moment, a(4)) is recognized only in the Ni(CO)(4) reaction. The atomic alignment effect turns out to be essentially different between the two reaction systems; the Fe(CO)(5) reaction is controlled by the configuration of the half-filled 3p atomic orbital of Ar ((3)P(2)) in the collision frame (L dependence), whereas the Ni(CO)(4) reaction is controlled by the configuration of the total angular moment J (including spin) of Ar ((3)P(2)) in the collision frame (J dependence). As the origin of J dependence observed only in the Ni(CO)(4) reaction, the correlation (and/or the interference) between two electron exchange processes via the electron rearrangements is proposed.
Zheng, Qi; Grice, Elizabeth A.
2016-01-01
Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155
A View from UMBC: Using Real-Time Labor-Market Data to Evaluate Professional Program Opportunities
ERIC Educational Resources Information Center
Steele, Christopher; Goldberger, Susan; Restuccia, Dan
2013-01-01
Continuing and professional education units are faced with the constant need to keep pace with dynamic labor markets when assessing program offerings and content. Real-time labor-market data derived from detailed analysis of online job postings offers a new tool for more easily aligning programs to local labor-market demand. The authors describe a…
Strategies for healthcare facilities, construction, and real estate management.
Lee, James G
2012-05-01
Adventist HealthCare offers the following lessons learned in improving the value of healthcare facilities, construction, and real estate management: Use an integrated approach. Ensure that the objectives of the approach align the hospital or health system's mission and values. Embrace innovation. Develop a plan that applies to the whole organization, rather than specific business units. Ensure commitment of senior leaders.
Ultrafast Microscopy of Spin-Momentum-Locked Surface Plasmon Polaritons.
Dai, Yanan; Dąbrowski, Maciej; Apkarian, Vartkess A; Petek, Hrvoje
2018-06-26
Using two-photon photoemission electron microscopy (2P-PEEM) we image the polarization dependence of coupling and propagation of surface plasmon polaritons (SPPs) launched from edges of a triangular, micrometer size, single-crystalline Ag crystal by linearly or circularly polarized light. 2P-PEEM records interferences between the optical excitation field and SPPs it creates with nanofemto space-time resolution. Both the linearly and circularly polarized femtosecond light pulses excite spatially asymmetric 2PP yield distributions, which are imaged. We attribute the asymmetry for linearly polarized light to the relative alignments of the laser polarization and triangle edges, which affect the efficiency of excitation of the longitudinal component of the SPP field. For circular polarization, the asymmetry is caused by matching of the spin angular momenta (SAM) of light and the transverse SAM of SPPs. Moreover, we show that the interference patterns recorded in the 2P-PEEM images are cast by phase shifts and amplitudes for coupling of light into the longitudinal and transverse components of SPP fields. While the interference patterns depend on the excitation polarization, nanofemto movies show that the phase and group velocities of SPPs are independent of SAM of light in time-reversal invariant media. Simulations of the wave interference reproduce the polarization and spin-dependent coupling of optical pulses into SPPs.
Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi
2016-01-28
High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm{sup 2} in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. Themore » wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.« less
Munger, Steven C.; Raghupathy, Narayanan; Choi, Kwangbom; Simons, Allen K.; Gatti, Daniel M.; Hinerfeld, Douglas A.; Svenson, Karen L.; Keller, Mark P.; Attie, Alan D.; Hibbs, Matthew A.; Graber, Joel H.; Chesler, Elissa J.; Churchill, Gary A.
2014-01-01
Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. PMID:25236449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.
2004-10-28
We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.
Integration of multiple theories for the simulation of laser interference lithography processes
NASA Astrophysics Data System (ADS)
Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung
2017-11-01
The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.
Integration of multiple theories for the simulation of laser interference lithography processes.
Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung
2017-11-24
The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.
Dreischarf, Marcel; Pries, Esther; Bashkuev, Maxim; Putzier, Michael; Schmidt, Hendrik
2016-03-21
The individual lumbar lordosis and lumbar motion have been identified to play an important role in pathogenesis of low back pain and are essential references for preoperative planning and postoperative evaluation. The clinical "gold-standard" for measuring lumbar lordosis and its motion are radiological "snap-shots" taken while standing and during upper-body flexion and extension. The extent to which these clinically assessed values characterise lumbar alignment and its motion in daily life merits discussion. A non-invasive measurement-system was employed to measure lumbar lordosis and lumbar motion in 208 volunteers (age: 20-74yrs; ♀/♂: 115/93). For an initial short-term measurement, comparable with the clinical "snap-shot", lumbar lordosis and its motion were assessed while standing and during flexion and extension. Subsequently, volunteers were released to their daily lives while wearing the device, and measurements were performed during the following 24h. The average lumbar lordosis during 24h (8.0°) differed significantly from the standardised measurement while standing (33.3°). Ranges of motion were significantly different throughout the day compared to standing measurements. The influence of the factors age and gender on lordosis and its motion resulted in conflicting results between long- and short-term-measurements. In conclusion, results of short-term examinations differ considerably from the average values during real-life. These findings might be important for surgical planning and increase the awareness of the biomechanical challenges that spinal structures and implants face in real-life. Furthermore, long-term assessments of spinal alignment and motion during daily life can provide valid data on spinal function and can reveal the importance of influential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications
NASA Astrophysics Data System (ADS)
Guan, Xun
Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light communication (VLC) by adopting PNC, with a newly proposed phase-aligning method. PNC could improve the throughput at the bottlenecking relay node in a VLC system, and the proposed phase aligning method can improve the BER performance. The second part of this thesis discusses another interference-assisted technology in communication, that is, non-orthogonal multiple access (NOMA). NOMA multiplexes signals from multiple users in another dimension: power domain, with a non-orthogonal multiplexing in other dimensions such as time, frequency and code. Three schemes are proposed in this part. The first and the second schemes both realize NOMA in VLC, with different multiuser detection (MUD) techniques and a proposed phase pre-distortion method. Although both can decrease the system BER compared to conventional NOMA, the scheme using joint detection (JD) outperforms the one using successive interference cancellation (SIC). The third scheme investigated in this part is a combination of NOMA and a multicarrier precoding (MP) technology based on an orthogonal circulant transform matrix (OCT). This combination can avoid the complicated adaptive bit loading or electronic equalization, making NOMA more attractive in a practical system.
Ionosphere/microwave beam interaction study. [satellite solar energy conversion
NASA Technical Reports Server (NTRS)
Duncan, L. M.; Gordon, W. E.
1977-01-01
A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.
Visualizing Sound: Demonstrations to Teach Acoustic Concepts
NASA Astrophysics Data System (ADS)
Rennoll, Valerie
Interference, a phenomenon in which two sound waves superpose to form a resultant wave of greater or lower amplitude, is a key concept when learning about the physics of sound waves. Typical interference demonstrations involve students listening for changes in sound level as they move throughout a room. Here, new tools are developed to teach this concept that provide a visual component, allowing individuals to see changes in sound level on a light display. This is accomplished using a microcontroller that analyzes sound levels collected by a microphone and displays the sound level in real-time on an LED strip. The light display is placed on a sliding rail between two speakers to show the interference occurring between two sound waves. When a long-exposure photograph is taken of the light display being slid from one end of the rail to the other, a wave of the interference pattern can be captured. By providing a visual component, these tools will help students and the general public to better understand interference, a key concept in acoustics.
NASA Astrophysics Data System (ADS)
Gromakov, E. I.; Gazizov, A. T.; Lukin, V. P.; Chimrov, A. V.
2017-01-01
The paper analyses efficiency (interference resistance) of standard TT, TN, IT networks in control links of automatic control systems (ACS) of technical processes (TP) of oil and gas production. Electromagnetic compatibility (EMC) is a standard term used to describe the interference in grounding circuits. Improved EMC of ACS TP can significantly reduce risks and costs of malfunction of equipment that could have serious consequences. It has been proved that an IT network is the best type of grounds for protection of ACS TP in real life conditions. It allows reducing the interference down to the level that is stated in standards of oil and gas companies.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen
2016-01-01
Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aboussouan, Pierre; Alibart, Olivier; Ostrowsky, Daniel B.
We report on a two-photon interference experiment in a quantum relay configuration using two picosecond regime periodically poled lithium niobate (PPLN) waveguide based sources emitting paired photons at 1550 nm. The results show that the picosecond regime associated with a guided-wave scheme should have important repercussions for quantum relay implementations in real conditions, essential for improving both the working distance and the efficiency of quantum cryptography and networking systems. In contrast to already reported regimes, namely, femtosecond and CW, it allows achieving a 99% net visibility two-photon interference while maintaining a high effective photon pair rate using only standard telecommore » components and detectors.« less
Roos, Peter; Quraishi, Qudsia; Cundiff, Steven; Bhat, Ravi; Sipe, J
2003-08-25
We use two mutually coherent, harmonically related pulse trains to experimentally characterize quantum interference control (QIC) of injected currents in low-temperature-grown gallium arsenide. We observe real-time QIC interference fringes, optimize the QIC signal fidelity, uncover critical signal dependences regarding beam spatial position on the sample, measure signal dependences on the fundamental and second harmonic average optical powers, and demonstrate signal characteristics that depend on the focused beam spot sizes. Following directly from our motivation for this study, we propose an initial experiment to measure and ultimately control the carrier-envelope phase evolution of a single octave-spanning pulse train using the QIC phenomenon.
Real-time driver fatigue detection based on face alignment
NASA Astrophysics Data System (ADS)
Tao, Huanhuan; Zhang, Guiying; Zhao, Yong; Zhou, Yi
2017-07-01
The performance and robustness of fatigue detection largely decrease if the driver with glasses. To address this issue, this paper proposes a practical driver fatigue detection method based on face alignment at 3000 FPS algorithm. Firstly, the eye regions of the driver are localized by exploiting 6 landmarks surrounding each eye. Secondly, the HOG features of the extracted eye regions are calculated and put into SVM classifier to recognize the eye state. Finally, the value of PERCLOS is calculated to determine whether the driver is drowsy or not. An alarm will be generated if the eye is closed for a specified period of time. The accuracy and real-time on testing videos with different drivers demonstrate that the proposed algorithm is robust and obtain better accuracy for driver fatigue detection compared with some previous method.
NASA Astrophysics Data System (ADS)
Ye, Liu; Hu, GuiYu; Li, AiXia
2011-01-01
We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
A Sea-Sky Line Detection Method for Unmanned Surface Vehicles Based on Gradient Saliency.
Wang, Bo; Su, Yumin; Wan, Lei
2016-04-15
Special features in real marine environments such as cloud clutter, sea glint and weather conditions always result in various kinds of interference in optical images, which make it very difficult for unmanned surface vehicles (USVs) to detect the sea-sky line (SSL) accurately. To solve this problem a saliency-based SSL detection method is proposed. Through the computation of gradient saliency the line features of SSL are enhanced effectively, while other interference factors are relatively suppressed, and line support regions are obtained by a region growing method on gradient orientation. The SSL identification is achieved according to region contrast, line segment length and orientation features, and optimal state estimation of SSL detection is implemented by introducing a cubature Kalman filter (CKF). In the end, the proposed method is tested on a benchmark dataset from the "XL" USV in a real marine environment, and the experimental results demonstrate that the proposed method is significantly superior to other state-of-the-art methods in terms of accuracy rate and real-time performance, and its accuracy and stability are effectively improved by the CKF.
NASA Astrophysics Data System (ADS)
Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.
2018-02-01
Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.
2011-01-01
Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598
Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp
2011-08-18
Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.
2009-01-01
and J. A. Lewis, "Microperiodic structures - Direct writing of three-dimensional webs ," Nature, vol. 428, pp. 386-386, 2004. [9] M. Campbell, D. N...of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers , vol. 44, pp. 6355-6367, 2005. [75] P. Cloetens, W. Ludwig, J... paper screen on the sample holder and marking the beam position. If the central beam is properly aligned, the spot on the screen remains at the
TotalReCaller: improved accuracy and performance via integrated alignment and base-calling.
Menges, Fabian; Narzisi, Giuseppe; Mishra, Bud
2011-09-01
Currently, re-sequencing approaches use multiple modules serially to interpret raw sequencing data from next-generation sequencing platforms, while remaining oblivious to the genomic information until the final alignment step. Such approaches fail to exploit the full information from both raw sequencing data and the reference genome that can yield better quality sequence reads, SNP-calls, variant detection, as well as an alignment at the best possible location in the reference genome. Thus, there is a need for novel reference-guided bioinformatics algorithms for interpreting analog signals representing sequences of the bases ({A, C, G, T}), while simultaneously aligning possible sequence reads to a source reference genome whenever available. Here, we propose a new base-calling algorithm, TotalReCaller, to achieve improved performance. A linear error model for the raw intensity data and Burrows-Wheeler transform (BWT) based alignment are combined utilizing a Bayesian score function, which is then globally optimized over all possible genomic locations using an efficient branch-and-bound approach. The algorithm has been implemented in soft- and hardware [field-programmable gate array (FPGA)] to achieve real-time performance. Empirical results on real high-throughput Illumina data were used to evaluate TotalReCaller's performance relative to its peers-Bustard, BayesCall, Ibis and Rolexa-based on several criteria, particularly those important in clinical and scientific applications. Namely, it was evaluated for (i) its base-calling speed and throughput, (ii) its read accuracy and (iii) its specificity and sensitivity in variant calling. A software implementation of TotalReCaller as well as additional information, is available at: http://bioinformatics.nyu.edu/wordpress/projects/totalrecaller/ fabian.menges@nyu.edu.
NASA Technical Reports Server (NTRS)
Monford, Leo G. (Inventor)
1990-01-01
Improved techniques are provided for alignment of two objects. The present invention is particularly suited for three-dimensional translation and three-dimensional rotational alignment of objects in outer space. A camera 18 is fixedly mounted to one object, such as a remote manipulator arm 10 of the spacecraft, while the planar reflective surface 30 is fixed to the other object, such as a grapple fixture 20. A monitor 50 displays in real-time images from the camera, such that the monitor displays both the reflected image of the camera and visible markings on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm 10 manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.
Improved docking alignment system
NASA Technical Reports Server (NTRS)
Monford, Leo G. (Inventor)
1988-01-01
Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.
Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.
2015-06-01
We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growthmore » in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.« less
Quantum versus simulated annealing in wireless interference network optimization.
Wang, Chi; Chen, Huo; Jonckheere, Edmond
2016-05-16
Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking-more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.
Quantum versus simulated annealing in wireless interference network optimization
Wang, Chi; Chen, Huo; Jonckheere, Edmond
2016-01-01
Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056
Quantum versus simulated annealing in wireless interference network optimization
NASA Astrophysics Data System (ADS)
Wang, Chi; Chen, Huo; Jonckheere, Edmond
2016-05-01
Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.
Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang
2006-01-01
Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074
Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard
2010-03-31
Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.
Evolutionary distances in the twilight zone--a rational kernel approach.
Schwarz, Roland F; Fletcher, William; Förster, Frank; Merget, Benjamin; Wolf, Matthias; Schultz, Jörg; Markowetz, Florian
2010-12-31
Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.
Cryo-EM image alignment based on nonuniform fast Fourier transform.
Yang, Zhengfan; Penczek, Pawel A
2008-08-01
In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.
NASA Technical Reports Server (NTRS)
Lee, Michael
1995-01-01
Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.
Cryo-EM Image Alignment Based on Nonuniform Fast Fourier Transform
Yang, Zhengfan; Penczek, Pawel A.
2008-01-01
In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform Fast Fourier Transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis. PMID:18499351
Real-time trichromatic holographic interferometry: preliminary study
NASA Astrophysics Data System (ADS)
Albe, Felix; Bastide, Myriam; Desse, Jean-Michel; Tribillon, Jean-Louis H.
1998-08-01
In this paper we relate our preliminary experiments on real- time trichromatic holographic interferometry. For this purpose a CW `white' laser (argon and krypton of Coherent- Radiation, Spectrum model 70) is used. This laser produces about 10 wavelengths. A system consisting of birefringent plates and polarizers allows to select a trichromatic TEM00 triplet: blue line ((lambda) equals 476 nm, 100 mW), green line ((lambda) equals 514 nm, 100 mW) and red line ((lambda) equals 647 nm, 100 mW). In a first stage we recorded a trichromatic reflection hologram with a separate reference beam on a single-layer silver-halide panchromatic plate (PFG 03C). After processing, the hologram is put back into the original recording set-up, as in classical experiments on real-time monochromatic holographic interferometry. So we observe interference fringes between the 3 reconstructed waves and the 3 actual waves. The interference fringes of the phenomenon are observed on a screen and recorded by a video camera at 25 frames per second. A color video film of about 3 minutes of duration is presented. Some examples related to phase objects are presented (hot airflow from a candle, airflow from a hand). The actual results show the possibility of using this technique to study, in real time, aerodynamic wakes and mechanical deformation.
NASA Astrophysics Data System (ADS)
Luque, Pablo; Mántaras, Daniel A.; Fidalgo, Eloy; Álvarez, Javier; Riva, Paolo; Girón, Pablo; Compadre, Diego; Ferran, Jordi
2013-12-01
The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre-road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Y; Walston, S
Purpose: To evaluate the use of 3D optical surface imaging as a new surrogate for respiratory motion gated deep-inspiration breath-hold (DIBH) technique for left breast cancer patients. Methods: Patients with left-sided breast cancer after lumpectomy or mastectomy were selected as candidates for DIBH technique for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH CTs to determine whether DIBH was beneficial in reducing heart doses. The Real-time Position Management (RPM) system was used to acquire patient's breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB andmore » DIBH CTs were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT. Results: Reduction in heart dose can be achieved for left-sided breast patients using DIBH. Results showed that RPM has poor correlation with target position, as determined by the MV Cine imaging. This indicates that RPM may not be an adequate surrogate in defining the breath-hold level when used alone. Alternatively, the AlignRT surface imaging demonstrated a better correlation with the actual CW excursion during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommend threshold of ±3 mm and 5 mm, respectively. Conclusion: 3D optical surface imaging serves as a superior target surrogate for the left breast treatment when compared to RPM. Working together with the realtime MV Cine imaging, they ensure accurate patient setup and dose delivery, while minimizing the imaging dose to patients.« less
Zheng, Yi-Bao; Zhang, Zhi-Min; Liang, Yi-Zeng; Zhan, De-Jian; Huang, Jian-Hua; Yun, Yong-Huan; Xie, Hua-Lin
2013-04-19
Chromatography has been established as one of the most important analytical methods in the modern analytical laboratory. However, preprocessing of the chromatograms, especially peak alignment, is usually a time-consuming task prior to extracting useful information from the datasets because of the small unavoidable differences in the experimental conditions caused by minor changes and drift. Most of the alignment algorithms are performed on reduced datasets using only the detected peaks in the chromatograms, which means a loss of data and introduces the problem of extraction of peak data from the chromatographic profiles. These disadvantages can be overcome by using the full chromatographic information that is generated from hyphenated chromatographic instruments. A new alignment algorithm called CAMS (Chromatogram Alignment via Mass Spectra) is present here to correct the retention time shifts among chromatograms accurately and rapidly. In this report, peaks of each chromatogram were detected based on Continuous Wavelet Transform (CWT) with Haar wavelet and were aligned against the reference chromatogram via the correlation of mass spectra. The aligning procedure was accelerated by Fast Fourier Transform cross correlation (FFT cross correlation). This approach has been compared with several well-known alignment methods on real chromatographic datasets, which demonstrates that CAMS can preserve the shape of peaks and achieve a high quality alignment result. Furthermore, the CAMS method was implemented in the Matlab language and available as an open source package at http://www.github.com/matchcoder/CAMS. Copyright © 2013. Published by Elsevier B.V.
Transportable and vibration-free full-field low-coherent quantitative phase microscope
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Yamada, Hidenao; Goto, Kentaro; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio
2018-02-01
We developed a transportable Linnik-type full-field low-coherent quantitative phase microscope that is able to compensate for optical path length (OPL) disturbance due to environmental mechanical noises. Though two-beam interferometers such as Linnik ones suffer from unstable OPL difference, we overcame this problem with a mechanical feedback system based on digital signal-processing that controls the OPL difference in sub-nanometer resolution precisely with a feedback bandwidth of 4 kHz. The developed setup has a footprint of 200 mm by 200 mm, a height of 500 mm, and a weight of 4.5 kilograms. In the transmission imaging mode, cells were cultured on a reflection-enhanced glass-bottom dish, and we obtained interference images sequentially while performing stepwise quarter-wavelength phase-shifting. Real-time image processing, including retrieval of the unwrapped phase from interference images and its background correction, along with the acquisition of interference images, was performed on a laptop computer. Emulation of the phase contrast (PhC) images and the differential interference contrast (DIC) images was also performed in real time. Moreover, our setup was applied for full-field cell membrane imaging in the reflection mode, where the cells were cultured on an anti-reflection (AR)-coated glass-bottom dish. The phase and intensity of the light reflected by the membrane revealed the outer shape of the cells independent of the refractive index. In this paper, we show imaging results on cultured cells in both transmission and reflection modes.
NASA Astrophysics Data System (ADS)
Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.
2016-06-01
Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.
Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
NASA Astrophysics Data System (ADS)
Taulu, S.; Simola, J.
2006-04-01
Limitations of traditional magnetoencephalography (MEG) exclude some important patient groups from MEG examinations, such as epilepsy patients with a vagus nerve stimulator, patients with magnetic particles on the head or having magnetic dental materials that cause severe movement-related artefact signals. Conventional interference rejection methods are not able to remove the artefacts originating this close to the MEG sensor array. For example, the reference array method is unable to suppress interference generated by sources closer to the sensors than the reference array, about 20-40 cm. The spatiotemporal signal space separation method proposed in this paper recognizes and removes both external interference and the artefacts produced by these nearby sources, even on the scalp. First, the basic separation into brain-related and external interference signals is accomplished with signal space separation based on sensor geometry and Maxwell's equations only. After this, the artefacts from nearby sources are extracted by a simple statistical analysis in the time domain, and projected out. Practical examples with artificial current dipoles and interference sources as well as data from real patients demonstrate that the method removes the artefacts without altering the field patterns of the brain signals.
Robust through-the-wall radar image classification using a target-model alignment procedure.
Smith, Graeme E; Mobasseri, Bijan G
2012-02-01
A through-the-wall radar image (TWRI) bears little resemblance to the equivalent optical image, making it difficult to interpret. To maximize the intelligence that may be obtained, it is desirable to automate the classification of targets in the image to support human operators. This paper presents a technique for classifying stationary targets based on the high-range resolution profile (HRRP) extracted from 3-D TWRIs. The dependence of the image on the target location is discussed using a system point spread function (PSF) approach. It is shown that the position dependence will cause a classifier to fail, unless the image to be classified is aligned to a classifier-training location. A target image alignment technique based on deconvolution of the image with the system PSF is proposed. Comparison of the aligned target images with measured images shows the alignment process introducing normalized mean squared error (NMSE) ≤ 9%. The HRRP extracted from aligned target images are classified using a naive Bayesian classifier supported by principal component analysis. The classifier is tested using a real TWRI of canonical targets behind a concrete wall and shown to obtain correct classification rates ≥ 97%. © 2011 IEEE
Novel Semi-Parametric Algorithm for Interference-Immune Tunable Absorption Spectroscopy Gas Sensing
Michelucci, Umberto; Venturini, Francesca
2017-01-01
One of the most common limits to gas sensor performance is the presence of unwanted interference fringes arising, for example, from multiple reflections between surfaces in the optical path. Additionally, since the amplitude and the frequency of these interferences depend on the distance and alignment of the optical elements, they are affected by temperature changes and mechanical disturbances, giving rise to a drift of the signal. In this work, we present a novel semi-parametric algorithm that allows the extraction of a signal, like the spectroscopic absorption line of a gas molecule, from a background containing arbitrary disturbances, without having to make any assumption on the functional form of these disturbances. The algorithm is applied first to simulated data and then to oxygen absorption measurements in the presence of strong fringes.To the best of the authors’ knowledge, the algorithm enables an unprecedented accuracy particularly if the fringes have a free spectral range and amplitude comparable to those of the signal to be detected. The described method presents the advantage of being based purely on post processing, and to be of extremely straightforward implementation if the functional form of the Fourier transform of the signal is known. Therefore, it has the potential to enable interference-immune absorption spectroscopy. Finally, its relevance goes beyond absorption spectroscopy for gas sensing, since it can be applied to any kind of spectroscopic data. PMID:28991161
Vijayakumar, A; Rosen, Joseph
2017-06-12
Recording digital holograms without wave interference simplifies the optical systems, increases their power efficiency and avoids complicated aligning procedures. We propose and demonstrate a new technique of digital hologram acquisition without two-wave interference. Incoherent light emitted from an object propagates through a random-like coded phase mask and recorded directly without interference by a digital camera. In the training stage of the system, a point spread hologram (PSH) is first recorded by modulating the light diffracted from a point object by the coded phase masks. At least two different masks should be used to record two different intensity distributions at all possible axial locations. The various recorded patterns at every axial location are superposed in the computer to obtain a complex valued PSH library cataloged to its axial location. Following the training stage, an object is placed within the axial boundaries of the PSH library and the light diffracted from the object is once again modulated by the same phase masks. The intensity patterns are recorded and superposed exactly as the PSH to yield a complex hologram of the object. The object information at any particular plane is reconstructed by a cross-correlation between the complex valued hologram and the appropriate element of the PSH library. The characteristics and the performance of the proposed system were compared with an equivalent regular imaging system.
Singh, Aditya; Bhatia, Prateek
2016-12-01
Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read "*.ab1" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28.
On-board error correction improves IR earth sensor accuracy
NASA Astrophysics Data System (ADS)
Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.
1989-10-01
Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.
Speech Cues Contribute to Audiovisual Spatial Integration
Bishop, Christopher W.; Miller, Lee M.
2011-01-01
Speech is the most important form of human communication but ambient sounds and competing talkers often degrade its acoustics. Fortunately the brain can use visual information, especially its highly precise spatial information, to improve speech comprehension in noisy environments. Previous studies have demonstrated that audiovisual integration depends strongly on spatiotemporal factors. However, some integrative phenomena such as McGurk interference persist even with gross spatial disparities, suggesting that spatial alignment is not necessary for robust integration of audiovisual place-of-articulation cues. It is therefore unclear how speech-cues interact with audiovisual spatial integration mechanisms. Here, we combine two well established psychophysical phenomena, the McGurk effect and the ventriloquist's illusion, to explore this dependency. Our results demonstrate that conflicting spatial cues may not interfere with audiovisual integration of speech, but conflicting speech-cues can impede integration in space. This suggests a direct but asymmetrical influence between ventral ‘what’ and dorsal ‘where’ pathways. PMID:21909378
Demonstrating Broadband Billion-to-One Contrast with the Visible Nulling Coronagraph
NASA Technical Reports Server (NTRS)
Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter, III; Miller, Ian J.; Bolcar, Matthew R.; Clampin, Mark; Helmbrecht, Michael A.; Mallik, Udayan
2015-01-01
The key to broadband operation of the Visible Nulling Coronagraph (VNC) is achieving a condition of quasi- achromatic destructive interference between combined beams. Here we present efforts towards meeting this goal using Fresnel rhombs in each interferometric arm as orthogonally aligned half wave phase retarders. The milestone goal of the demonstration is to achieve 1 × 10-9 contrast at 2/D over a 40 nm bandpass centered at 633 nm. Rhombs have been designed and fabricated, and a multi-step approach to alignment using coarse positioners for each rhomb and pair has been developed to get within range of piezo stages used for fine positioning. The previously demonstrated narrowband VNC sensing and control approach that uses a segmented deformable mirror is being adapted to broadband to include fine positioning of the piezo-mounted rhombs, all demonstrated in a low-pressure environment.
Vertically aligned carbon nanotube probes for monitoring blood cholesterol
NASA Astrophysics Data System (ADS)
Roy, Somenath; Vedala, Harindra; Choi, Wonbong
2006-02-01
Detection of blood cholesterol is of great clinical significance. The amperometric detection technique was used for the enzymatic assay of total cholesterol. Multiwall carbon nanotubes (MWNTs), vertically aligned on a silicon platform, promote heterogeneous electron transfer between the enzyme and the working electrode. Surface modification of the MWNT with a biocompatible polymer, polyvinyl alcohol (PVA), converted the hydrophobic nanotube surface into a highly hydrophilic one, which facilitates efficient attachment of biomolecules. The fabricated working electrodes showed a linear relationship between cholesterol concentration and the output signal. The efficacy of the multiwall carbon nanotubes in promoting heterogeneous electron transfer was evident by distinct electrochemical peaks and higher signal-to-noise ratio as compared to the Au electrode with identical enzyme immobilization protocol. The selectivity of the cholesterol sensor in the presence of common interferents present in human blood, e.g. uric acid, ascorbic acid and glucose, is also reported.
A black body absorber from vertically aligned single-walled carbon nanotubes
Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji
2009-01-01
Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498
Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks.
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2013-06-01
Wireless body area networks (WBANs) are cyber-physical systems (CPS) that have emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance including depleting the energy of WBAN nodes more quickly, and even eventually jeopardize people's lives due to unreliable (caused by the interference) healthcare data collections. Therefore, It is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs due to their ignoring the social nature of WBANs. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people's social interaction information. Our major contributions include: (1) model the inter-WBANs interference, and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; (2) develop social interaction detection and prediction algorithms for people carrying WBANs; (3) develop a power control game based on the social interaction information to maximize the system's utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks.
Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2014-01-01
Wireless body area networks (WBANs) are cyber-physical systems (CPS) that have emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance including depleting the energy of WBAN nodes more quickly, and even eventually jeopardize people’s lives due to unreliable (caused by the interference) healthcare data collections. Therefore, It is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs due to their ignoring the social nature of WBANs. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people’s social interaction information. Our major contributions include: (1) model the inter-WBANs interference, and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; (2) develop social interaction detection and prediction algorithms for people carrying WBANs; (3) develop a power control game based on the social interaction information to maximize the system’s utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks. PMID:25436180
Aligning incentives in supply chains.
Narayanan, V G; Raman, Ananth
2004-11-01
Most companies don't worry about the behavior of their supply chain partners. Instead, they expect the supply chain to work efficiently without interference, as if guided by Adam Smith's famed invisible hand. In their study of more than 50 supply networks, V.G. Narayanan and Ananth Raman found that companies often looked out for their own interests and ignored those of their network partners. Consequently, supply chains performed poorly. Those results aren't shocking when you consider that supply chains extend across several functions and many companies, each with its own priorities and goals. Yet all those functions and firms must pull in the same direction for a chain to deliver goods and services to consumers quickly and cost-effectively. According to the authors, a supply chain works well only if the risks, costs, and rewards of doing business are distributed fairly across the network. In fact, misaligned incentives are often the cause of excess inventory, stock-outs, incorrect forecasts, inadequate sales efforts, and even poor customer service. The fates of all supply chain partners are interlinked: If the firms work together to serve consumers, they will all win. However, they can do that only if incentives are aligned. Companies must acknowledge that the problem of incentive misalignment exists and then determine its root cause and align or redesign incentives. They can improve alignment by, for instance, adopting revenue-sharing contracts, using technology to track previously hidden information, or working with intermediaries to build trust among network partners. It's also important to periodically reassess incentives, because even top-performing networks find that changes in technology or business conditions alter the alignment of incentives.
NASA Astrophysics Data System (ADS)
Newman, J. S.; Beattie, K. R.
1985-03-01
This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-07-10
Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54.more » The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.« less
NASA Astrophysics Data System (ADS)
Onishi, Toshikazu; Imafuji, Osamu; Fukuhisa, Toshiya; Mochida, Atsunori; Kobayashi, Yasuhiro; Yuri, Masaaki; Itoh, Kunio; Shimizu, Hirokazu
2001-11-01
Monolithically integrated 780-nm-band and 650-nm-band self-sustained pulsating (SSP) lasers, which are desirable for simplified optical pickups in digital versatile disk (DVD) systems, have been developed for the first time. The real refractive index guided self-aligned (RISA) waveguide structure is adapted to reduce absorption loss in the current blocking layers. In order to obtain stable SSP, a saturable absorber formed in the active layer outside the current stripe, and a saturable absorbing layer above the active layer are utilized for the 780-nm-band and 650-nm-band laser diodes (LDs), respectively. Relative intensity noise less than -130 dB/Hz is maintained at temperatures of up to 80°C at an output power of 7 mW for the 650 nm band and 10 mW for the 780 nm band, which suggests that stable SSP operations have been realized.
Optical analysis of AlGaInP laser diodes with real refractive index guided self-aligned structure
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhu, Xiaopeng; Ye, Xiaojun; Kang, Xiangning; Cao, Qing; Guo, Liang; Chen, Lianghui
2004-05-01
Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.
Hall, Gunnsteinn; Liang, Wenxuan; Li, Xingde
2017-10-01
Collagen fiber alignment derived from second harmonic generation (SHG) microscopy images can be important for disease diagnostics. Image processing algorithms are needed to robustly quantify the alignment in images with high sensitivity and reliability. Fourier transform (FT) magnitude, 2D power spectrum, and image autocorrelation have previously been used to extract fiber information from images by assuming a certain mathematical model (e.g. Gaussian distribution of the fiber-related parameters) and fitting. The fitting process is slow and fails to converge when the data is not Gaussian. Herein we present an efficient constant-time deterministic algorithm which characterizes the symmetricity of the FT magnitude image in terms of a single parameter, named the fiber alignment anisotropy R ranging from 0 (randomized fibers) to 1 (perfect alignment). This represents an important improvement of the technology and may bring us one step closer to utilizing the technology for various applications in real time. In addition, we present a digital image phantom-based framework for characterizing and validating the algorithm, as well as assessing the robustness of the algorithm against different perturbations.
The chromokinesin Kid is required for maintenance of proper metaphase spindle size.
Tokai-Nishizumi, Noriko; Ohsugi, Miho; Suzuki, Emiko; Yamamoto, Tadashi
2005-11-01
The human chromokinesin Kid/kinesin-10, a plus end-directed microtubule (MT)-based motor with both microtubule- and DNA-binding domains, is required for proper chromosome alignment at the metaphase plate. Here, we performed RNA interference experiments to deplete endogenous Kid from HeLa cells and confirmed defects in metaphase chromosome arm alignment in Kid-depleted cells. In addition, we noted a shortening of the spindle length, resulting in a pole-to-pole distance only 80% of wild type. The spindle microtubule-bundles with which Kid normally colocalize became less robust. Rescue of the two Kid deficiency phenotypes-imprecise chromosome alignment at metaphase and shortened spindles- exhibited distinct requirements. Mutants lacking either the DNA-binding domain or the MT motor ATPase failed to rescue the former defect, whereas rescue of the shortened spindle phenotype required neither activity. Kid also exhibits microtubule bundling activity in vitro, and rescue of the shortened spindle phenotype and the bundling activity displayed similar domain requirements, except that rescue required a coiled-coil domain not needed for bundling. These results suggest that distinct from its role in chromosome movement, Kid contributes to spindle morphogenesis by mediating spindle microtubules stabilization.
The Chromokinesin Kid Is Required for Maintenance of Proper Metaphase Spindle SizeD⃞
Tokai-Nishizumi, Noriko; Ohsugi, Miho; Suzuki, Emiko; Yamamoto, Tadashi
2005-01-01
The human chromokinesin Kid/kinesin-10, a plus end-directed microtubule (MT)-based motor with both microtubule- and DNA-binding domains, is required for proper chromosome alignment at the metaphase plate. Here, we performed RNA interference experiments to deplete endogenous Kid from HeLa cells and confirmed defects in metaphase chromosome arm alignment in Kid-depleted cells. In addition, we noted a shortening of the spindle length, resulting in a pole-to-pole distance only 80% of wild type. The spindle microtubule-bundles with which Kid normally colocalize became less robust. Rescue of the two Kid deficiency phenotypes—imprecise chromosome alignment at metaphase and shortened spindles— exhibited distinct requirements. Mutants lacking either the DNA-binding domain or the MT motor ATPase failed to rescue the former defect, whereas rescue of the shortened spindle phenotype required neither activity. Kid also exhibits microtubule bundling activity in vitro, and rescue of the shortened spindle phenotype and the bundling activity displayed similar domain requirements, except that rescue required a coiled-coil domain not needed for bundling. These results suggest that distinct from its role in chromosome movement, Kid contributes to spindle morphogenesis by mediating spindle microtubules stabilization. PMID:16176979
ERIC Educational Resources Information Center
Azasu, Samuel; Berggren, Björn
2015-01-01
The purpose of the paper is to describe and analyse efforts to integrate research into teaching in a postgraduate degree program in real estate management. The long term goals of the changes were to increase graduation rates as well as the quality of dissertations. In order to validate our findings, the data for this paper emanate from a three…
Automatic Radiated Susceptibility Test System for Payload Equipment
NASA Technical Reports Server (NTRS)
Ngo, Hoai T.; Sturman, John C.; Sargent, Noel B.
1995-01-01
An automatic radiated susceptibility test system (ARSTS) was developed for NASA Lewis Research Center's Electro-magnetic Interference laboratory. According to MSFC-SPEC 521B, any electrical or electronic equipment that will be transported by the spacelab and space shuttle must be tested for susceptibility to electromagnetic interference. This state-of-the-art automatic test system performs necessary calculations; analyzes, processes, and records a great quantity of measured data; and monitors the equipment being tested in real-time and with minimal user intervention. ARSTS reduces costly test time, increases test accuracy, and provides reliable test results.
NASA Technical Reports Server (NTRS)
Loh, Yin C.; Boster, John; Hwu, Shian; Watson, John C.; deSilva, Kanishka; Piatek, Irene (Technical Monitor)
1999-01-01
The Wireless Video System (WVS) provides real-time video coverage of astronaut extra vehicular activities during International Space Station (ISS) assembly. The ISS wireless environment is unique due to the nature of the ISS structure and multiple RF interference sources. This paper describes how the system was developed to combat multipath, blockage, and interference using an automatic antenna switching system. Critical to system performance is the selection of receiver antenna installation locations determined using Uniform Geometrical Theory of Diffraction (GTD) techniques.
NASA Technical Reports Server (NTRS)
Seshadri, K.; Rosner, D. E.
1985-01-01
An application of an optical polarization technique in a combustion environment is demonstrated by following, in real-time, growth rates of boric oxide condensate on heated platinum ribbons exposed to seeded propane-air combustion gases. The results obtained agree with the results of earlier interference measurements and also with theoretical chemical vapor deposition predictions. In comparison with the interference method, the polarization technique places less stringent requirements on surface quality, which may justify the added optical components needed for such measurements.
Real-time Optical Alignment and Diagnostic System (ROADS)
NASA Technical Reports Server (NTRS)
1972-01-01
The ultimate and most frequent usage of ROADS will be the alignment of subassemblies (collector and collimator) prior to their installation in a chamber. The system as designed has inherent associated capabilities well applied to acceptance testing of the No. 4 mirror, prediction of in-chamber performance, generation of a catalog of test results and other data, providing data for the plotting of isointensity lines, and other applications which are discussed. The ROADS system will collect, process, display, analyze, and retain data as required for components, partial subassemblies, complete subassemblies, complete modules, and multimodular arrays.
Dotsinsky, Ivan
2005-01-01
Background Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Method Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. Results The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. Conclusion The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression. PMID:16309558
Dotsinsky, Ivan
2005-11-26
Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression.
Use artificial neural network to align biological ontologies.
Huang, Jingshan; Dang, Jiangbo; Huhns, Michael N; Zheng, W Jim
2008-09-16
Being formal, declarative knowledge representation models, ontologies help to address the problem of imprecise terminologies in biological and biomedical research. However, ontologies constructed under the auspices of the Open Biomedical Ontologies (OBO) group have exhibited a great deal of variety, because different parties can design ontologies according to their own conceptual views of the world. It is therefore becoming critical to align ontologies from different parties. During automated/semi-automated alignment across biological ontologies, different semantic aspects, i.e., concept name, concept properties, and concept relationships, contribute in different degrees to alignment results. Therefore, a vector of weights must be assigned to these semantic aspects. It is not trivial to determine what those weights should be, and current methodologies depend a lot on human heuristics. In this paper, we take an artificial neural network approach to learn and adjust these weights, and thereby support a new ontology alignment algorithm, customized for biological ontologies, with the purpose of avoiding some disadvantages in both rule-based and learning-based aligning algorithms. This approach has been evaluated by aligning two real-world biological ontologies, whose features include huge file size, very few instances, concept names in numerical strings, and others. The promising experiment results verify our proposed hypothesis, i.e., three weights for semantic aspects learned from a subset of concepts are representative of all concepts in the same ontology. Therefore, our method represents a large leap forward towards automating biological ontology alignment.
The Power Plant Operating Data Based on Real-time Digital Filtration Technology
NASA Astrophysics Data System (ADS)
Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie
2018-03-01
Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.
Determining thin film properties by fitting optical transmittance
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Cogan, S. F.
1990-08-01
The optical transmission spectra of rf sputtered tungsten oxide films on glass substrates were modeled to determine absorption edge behavior, film thickness, and index of refraction. Removal of substrate reflection and absorption phenomena from the experimental spectra allowed direct examination of thin film optical characteristics. The interference fringe pattern allows determination of the film thickness and the dependence of the real index of refraction on wavelength. Knowledge of the interference fringe behavior in the vicinity of the absorption edge was found essential to unambiguous determination of the optical band gap. In particular, the apparently random deviations commonly observed in the extrapolation of as-acquired data are eliminated by explicitly considering interference fringe phenomena. The multivariable optimization fitting scheme employed allows air-film-substrate reflection losses to be compensated without making reflectance measurements.
VANLO - Interactive visual exploration of aligned biological networks
Brasch, Steffen; Linsen, Lars; Fuellen, Georg
2009-01-01
Background Protein-protein interaction (PPI) is fundamental to many biological processes. In the course of evolution, biological networks such as protein-protein interaction networks have developed. Biological networks of different species can be aligned by finding instances (e.g. proteins) with the same common ancestor in the evolutionary process, so-called orthologs. For a better understanding of the evolution of biological networks, such aligned networks have to be explored. Visualization can play a key role in making the various relationships transparent. Results We present a novel visualization system for aligned biological networks in 3D space that naturally embeds existing 2D layouts. In addition to displaying the intra-network connectivities, we also provide insight into how the individual networks relate to each other by placing aligned entities on top of each other in separate layers. We optimize the layout of the entire alignment graph in a global fashion that takes into account inter- as well as intra-network relationships. The layout algorithm includes a step of merging aligned networks into one graph, laying out the graph with respect to application-specific requirements, splitting the merged graph again into individual networks, and displaying the network alignment in layers. In addition to representing the data in a static way, we also provide different interaction techniques to explore the data with respect to application-specific tasks. Conclusion Our system provides an intuitive global understanding of aligned PPI networks and it allows the investigation of key biological questions. We evaluate our system by applying it to real-world examples documenting how our system can be used to investigate the data with respect to these key questions. Our tool VANLO (Visualization of Aligned Networks with Layout Optimization) can be accessed at . PMID:19821976
Envelope filter sequence to delete blinks and overshoots.
Merino, Manuel; Gómez, Isabel María; Molina, Alberto J
2015-05-30
Eye movements have been used in control interfaces and as indicators of somnolence, workload and concentration. Different techniques can be used to detect them: we focus on the electrooculogram (EOG) in which two kinds of interference occur: blinks and overshoots. While they both draw bell-shaped waveforms, blinks are caused by the eyelid, whereas overshoots occur due to target localization error and are placed on saccade. They need to be extracted from the EOG to increase processing effectiveness. This paper describes off- and online processing implementations based on lower envelope for removing bell-shaped noise; they are compared with a 300-ms-median filter. Techniques were analyzed using two kinds of EOG data: those modeled from our own design, and real signals. Using a model signal allowed to compare filtered outputs with ideal data, so that it was possible to quantify processing precision to remove noise caused by blinks, overshoots, and general interferences. We analyzed the ability to delete blinks and overshoots, and waveform preservation. Our technique had a high capacity for reducing interference amplitudes (>97%), even exceeding median filter (MF) results. However, the MF obtained better waveform preservation, with a smaller dependence on fixation width. The proposed technique is better at deleting blinks and overshoots than the MF in model and real EOG signals.
Frequency Management for Electromagnetic Continuous Wave Conductivity Meters.
Mazurek, Przemyslaw; Putynkowski, Grzegorz
2016-04-07
Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter's working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real-time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications.
Real-time sonography to estimate muscle thickness: comparison with MRI and CT.
Dupont, A C; Sauerbrei, E E; Fenton, P V; Shragge, P C; Loeb, G E; Richmond, F J
2001-05-01
We investigated the feasibility of using real-time sonography to measure muscle thickness. Clinically, this technique would be used to measure the thickness of human muscles in which intramuscular microstimulators have been implanted to treat or prevent disuse atrophy. Porcine muscles were implanted with microstimulators and imaged with sonography, MRI, and CT to assess image artifacts created by the microstimulators and to design protocols for image alignment between methods. Sonography and MRI were then used to image the deltoid and supraspinatus muscles of 6 healthy human subjects. Microstimulators could be imaged with all 3 methods, producing only small imaging artifacts. Muscle-thickness measurements agreed well between methods, particularly when external markers were used to precisely align the imaging planes. The correlation coefficients for sonographic and MRI measurements were 0.96 for the supraspinatus and 0.97 for the deltoid muscle. Repeated sonographic measurements had a low coefficient of variation: 2.3% for the supraspinatus and 3.1% for the deltoid muscle. Real-time sonography is a relatively simple and inexpensive method of accurately measuring muscle thickness as long as the operator adheres to a strict imaging protocol and avoids excessive pressure with the transducer. Copyright 2001 John Wiley & Sons, Inc.
A nucleolar protein RRS1 contributes to chromosome congression.
Gambe, Arni E; Matsunaga, Sachihiro; Takata, Hideaki; Ono-Maniwa, Rika; Baba, Akiko; Uchiyama, Susumu; Fukui, Kiichi
2009-06-18
We report here the functional analysis of human Regulator of Ribosome Synthesis 1 (RRS1) protein during mitosis. We demonstrate that RRS1 localizes in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. RNA interference experiments revealed that RRS1-depleted cells show abnormalities in chromosome alignment and spindle organization, which result in mitotic delay. RRS1 knockdown also perturbs the centromeric localization of Shugoshin 1 and results in premature separation of sister chromatids. Our results suggest that a nucleolar protein RRS1 contributes to chromosome congression.
Physician alignment strategies and real estate.
Czerniak, Thomas A
2012-06-01
When addressing locations of facilities after acquiring physician practices, hospitals should: Acknowledge the hospital's ambulatory plan is the driver rather than real estate assumed with the physician practices, Review the hospital ambulatory service plan for each submarket, Review the location of facilities within the service area and their proximity to one another, Sublease or sell existing facilities that are not appropriate, Ensure that the size and characteristics of each facility in the market are appropriate and consistent with the hospital's image.
Electromagnetic interference in cardiac rhythm management devices.
Sweesy, Mark W; Holland, James L; Smith, Kerry W
2004-01-01
Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.
Phase compensation with fiber optic surface profile acquisition and reconstruction system
NASA Astrophysics Data System (ADS)
Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting
2015-02-01
A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.
CCD Camera Lens Interface for Real-Time Theodolite Alignment
NASA Technical Reports Server (NTRS)
Wake, Shane; Scott, V. Stanley, III
2012-01-01
Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.
Grechkin, Timofey Y.; Chihak, Benjamin J.; Cremer, James F.; Kearney, Joseph K.; Plumert, Jodie M.
2014-01-01
This investigation examined how children and adults negotiate a challenging perceptual-motor problem with significant real-world implications – bicycling across two lanes of opposing traffic. Twelve- and 14-year-olds and adults rode a bicycling simulator through an immersive virtual environment. Participants crossed intersections with continuous cross traffic coming from opposing directions. Opportunities for crossing were divided into aligned (far gap opens with or before near gap) and rolling (far gap opens after near gap) gap pairs. Children and adults preferred rolling to aligned gap pairs, though this preference was stronger for adults than for children. Crossing aligned versus rolling gap pairs produced substantial differences in direction of travel, speed of crossing, and timing of entry into the near and far lanes. For both aligned and rolling gap pairs, children demonstrated less skill than adults in coordinating self and object movement. These findings have implications for understanding perception-action-cognition links and for understanding risk factors underlying car-bicycle collisions. PMID:22924952
Stellmack, Mark A.; Byrne, Andrew J.; Viemeister, Neal F.
2010-01-01
When different components of a stimulus carry different binaural information, processing of binaural information in a target component is often affected. The present experiments examine whether such interference is affected by amplitude modulation and the relative phase of modulation of the target and distractors. In all experiments, listeners attempted to discriminate interaural time differences of a target stimulus in the presence of distractor stimuli with ITD=0. In Experiment 1, modulation of the distractors but not the target reduced interference between components. In Experiment 2, synthesized musical notes exhibited little binaural interference when there were slight asynchronies between different streams of notes (31 or 62 ms). The remaining experiments suggested that the reduction in binaural interference in the previous experiments was due neither to the complex spectra of the synthesized notes nor to greater detectability of the target in the presence of modulated distractors. These data suggest that this interference is reduced when components are modulated in ways that result in the target appearing briefly in isolation, not because of segregation cues. These data also suggest that modulation and asynchronies between modulators that might be encountered in real-world listening situations are adequate to reduce binaural interference to inconsequential levels. PMID:20815459
Tang, Kujin; Lu, Yang Young; Sun, Fengzhu
2018-01-01
Horizontal gene transfer (HGT) plays an important role in the evolution of microbial organisms including bacteria. Alignment-free methods based on single genome compositional information have been used to detect HGT. Currently, Manhattan and Euclidean distances based on tetranucleotide frequencies are the most commonly used alignment-free dissimilarity measures to detect HGT. By testing on simulated bacterial sequences and real data sets with known horizontal transferred genomic regions, we found that more advanced alignment-free dissimilarity measures such as CVTree and [Formula: see text] that take into account the background Markov sequences can solve HGT detection problems with significantly improved performance. We also studied the influence of different factors such as evolutionary distance between host and donor sequences, size of sliding window, and host genome composition on the performances of alignment-free methods to detect HGT. Our study showed that alignment-free methods can predict HGT accurately when host and donor genomes are in different order levels. Among all methods, CVTree with word length of 3, [Formula: see text] with word length 3, Markov order 1 and [Formula: see text] with word length 4, Markov order 1 outperform others in terms of their highest F 1 -score and their robustness under the influence of different factors.
Aligning ERP systems with companies' real needs: an `Operational Model Based' method
NASA Astrophysics Data System (ADS)
Mamoghli, Sarra; Goepp, Virginie; Botta-Genoulaz, Valérie
2017-02-01
Enterprise Resource Planning (ERP) systems offer standard functionalities that have to be configured and customised by a specific company depending on its own requirements. A consistent alignment is therefore an essential success factor of ERP projects. To manage this alignment, an 'Operational Model Based' method is proposed. It is based on the design and the matching of models, and conforms to the modelling views and constructs of the ISO 19439 and 19440 enterprise-modelling standards. It is characterised by: (1) a predefined design and matching order of the models; (2) the formalisation, in terms of modelling constructs, of alignment and misalignment situations; and (3) their association with a set of decisions in order to mitigate the misalignment risk. Thus, a comprehensive understanding of the alignment management during ERP projects is given. Unlike existing methods, this one includes decisions related to the organisational changes an ERP system can induce, as well as criteria on which the best decision can be based. In this way, it provides effective support and guidance to companies implementing ERP systems, as the alignment process is detailed and structured. The method is applied on the ERP project of a Small and Medium Enterprise, showing that it can be used even in contexts where the ERP project expertise level is low.
Optical add/drop filter for wavelength division multiplexed systems
Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.
2002-01-01
An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.
NASA Astrophysics Data System (ADS)
Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath
2014-07-01
The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.
NASA Astrophysics Data System (ADS)
Sasaki, Tomoyuki; Okuyama, Hiroki; Sakamoto, Moritsugu; Noda, Kohei; Okamoto, Hiroyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi
2017-04-01
We fabricated a terahertz (THz) polarization converter using a twisted nematic (TN) liquid crystal (LC) cell. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) films coated on quartz glass substrates were used as electrode layers in the TN LC cell. The PEDOT/PSS films were rubbed unidirectionally using a rayon cloth to align the nematic LC, thereby also serving as an alignment layer. The azimuthal surface anchoring strength of the PEDOT/PSS films was measured to be 5 × 10-4 J/m2 using the Néel wall method, which is similar to that of typical polymeric alignment layers. The optical constants of the PEDOT/PSS film in the THz range were also characterized using the Drude-Smith model, and the results indicated that the PEDOT/PSS films could be used both as transparent electrodes in the THz range and as alignment layers for the LC. The electro-optical properties of the fabricated TN LC cell were also investigated using a polarized visible laser and THz time-domain spectroscopic system. In particular, the transmission spectra and polarization conversion property of the TN LC cell in the THz range were theoretically analyzed based on a stratified model that considers optical anisotropy, absorption, and multiple interference. This work substantiates the advantages of TN LC cells with rubbed PEDOT/PSS films useful for THz polarization converters with electrical tunability.
Detection of deoxynivalenol using biolayer interferometry
USDA-ARS?s Scientific Manuscript database
Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...
Active control for stabilization of neoclassical tearing modesa)
NASA Astrophysics Data System (ADS)
Humphreys, D. A.; Ferron, J. R.; La Haye, R. J.; Luce, T. C.; Petty, C. C.; Prater, R.; Welander, A. S.
2006-05-01
This work describes active control algorithms used by DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] to stabilize and maintain suppression of 3/2 or 2/1 neoclassical tearing modes (NTMs) by application of electron cyclotron current drive (ECCD) at the rational q surface. The DIII-D NTM control system can determine the correct q-surface/ECCD alignment and stabilize existing modes within 100-500ms of activation, or prevent mode growth with preemptive application of ECCD, in both cases enabling stable operation at normalized beta values above 3.5. Because NTMs can limit performance or cause plasma-terminating disruptions in tokamaks, their stabilization is essential to the high performance operation of ITER [R. Aymar et al., ITER Joint Central Team, ITER Home Teams, Nucl. Fusion 41, 1301 (2001)]. The DIII-D NTM control system has demonstrated many elements of an eventual ITER solution, including general algorithms for robust detection of q-surface/ECCD alignment and for real-time maintenance of alignment following the disappearance of the mode. This latter capability, unique to DIII-D, is based on real-time reconstruction of q-surface geometry by a Grad-Shafranov solver using external magnetics and internal motional Stark effect measurements. Alignment is achieved by varying either the plasma major radius (and the rational q surface) or the toroidal field (and the deposition location). The requirement to achieve and maintain q-surface/ECCD alignment with accuracy on the order of 1cm is routinely met by the DIII-D Plasma Control System and these algorithms. We discuss the integrated plasma control design process used for developing these and other general control algorithms, which includes physics-based modeling and testing of the algorithm implementation against simulations of actuator and plasma responses. This systematic design/test method and modeling environment enabled successful mode suppression by the NTM control system upon first-time use in an experimental discharge.
Talker Localization Based on Interference between Transmitted and Reflected Audible Sound
NASA Astrophysics Data System (ADS)
Nakayama, Masato; Nakasako, Noboru; Shinohara, Toshihiro; Uebo, Tetsuji
In many engineering fields, distance to targets is very important. General distance measurement method uses a time delay between transmitted and reflected waves, but it is difficult to estimate the short distance. On the other hand, the method using phase interference to measure the short distance has been known in the field of microwave radar. Therefore, we have proposed the distance estimation method based on interference between transmitted and reflected audible sound, which can measure the distance between microphone and target with one microphone and one loudspeaker. In this paper, we propose talker localization method based on distance estimation using phase interference. We expand the distance estimation method using phase interference into two microphones (microphone array) in order to estimate talker position. The proposed method can estimate talker position by measuring the distance and direction between target and microphone array. In addition, talker's speech is regarded as a noise in the proposed method. Therefore, we also propose combination of the proposed method and CSP (Cross-power Spectrum Phase analysis) method which is one of the DOA (Direction Of Arrival) estimation methods. We evaluated the performance of talker localization in real environments. The experimental result shows the effectiveness of the proposed method.
NON-HOMOGENEOUS POISSON PROCESS MODEL FOR GENETIC CROSSOVER INTERFERENCE.
Leu, Szu-Yun; Sen, Pranab K
2014-01-01
The genetic crossover interference is usually modeled with a stationary renewal process to construct the genetic map. We propose two non-homogeneous, also dependent, Poisson process models applied to the known physical map. The crossover process is assumed to start from an origin and to occur sequentially along the chromosome. The increment rate depends on the position of the markers and the number of crossover events occurring between the origin and the markers. We show how to obtain parameter estimates for the process and use simulation studies and real Drosophila data to examine the performance of the proposed models.
Method for protein structure alignment
Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus
2005-02-22
This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.
Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko
2017-01-11
A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.
Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection.
Jafadideh, Alireza Talesh; Asl, Babak Mohammadzadeh
2018-04-27
Adaptive minimum variance based beamformers (MVB) have been successfully applied to magnetoencephalogram (MEG) and electroencephalogram (EEG) data to localize brain activities. However, the performance of these beamformers falls down in situations where correlated or interference sources exist. To overcome this problem, we propose indirect dominant mode rejection (iDMR) beamformer application in brain source localization. This method by modifying measurement covariance matrix makes MVB applicable in source localization in the presence of correlated and interference sources. Numerical results on both EEG and MEG data demonstrate that presented approach accurately reconstructs time courses of active sources and localizes those sources with high spatial resolution. In addition, the results of real AEF data show the good performance of iDMR in empirical situations. Hence, iDMR can be reliably used for brain source localization especially when there are correlated and interference sources.
Real time microcontroller implementation of an adaptive myoelectric filter.
Bagwell, P J; Chappell, P H
1995-03-01
This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.
NASA Technical Reports Server (NTRS)
Mielke, Roland; Dcunha, Ivan; Alvertos, Nicolas
1994-01-01
In the final phase of the proposed research a complete top to down three dimensional object recognition scheme has been proposed. The various three dimensional objects included spheres, cones, cylinders, ellipsoids, paraboloids, and hyperboloids. Utilizing a newly developed blob determination technique, a given range scene with several non-cluttered quadric surfaces is segmented. Next, using the earlier (phase 1) developed alignment scheme, each of the segmented objects are then aligned in a desired coordinate system. For each of the quadric surfaces based upon their intersections with certain pre-determined planes, a set of distinct features (curves) are obtained. A database with entities such as the equations of the planes and angular bounds of these planes has been created for each of the quadric surfaces. Real range data of spheres, cones, cylinders, and parallelpipeds have been utilized for the recognition process. The developed algorithm gave excellent results for the real data as well as for several sets of simulated range data.
Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim
2012-01-01
Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272
Simpson, Austin J; Todd, Andrew R
2017-09-01
Reasoning about what other people see, know, and want is essential for navigating social life. Yet, even neurodevelopmentally healthy adults make perspective-taking errors. Here, we examined how the group membership of perspective-taking targets (ingroup vs. outgroup) affects processes underlying visual perspective-taking. In three experiments using two bases of group identity (university affiliation and minimal groups), interference from one's own differing perspective (i.e., egocentric intrusion) was stronger when responding from an ingroup versus an outgroup member's perspective. Spontaneous perspective calculation, as indexed by interference from another's visual perspective when reporting one's own (i.e., altercentric intrusion), did not differ across target group membership in any of our experiments. Process-dissociation analyses, which aim to isolate automatic processes underlying altercentric-intrusion effects, further revealed negligible effects of target group membership on perspective calculation. Meta-analytically, however, there was suggestive evidence that shared group membership facilitates responding from others' perspectives when self and other perspectives are aligned. Copyright © 2017 Elsevier B.V. All rights reserved.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, Sumanth; Stallard, Brian R.
1998-01-01
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, S.; Stallard, B.R.
1998-03-10
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.
Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.
Manjappa, Manukumara; Turaga, Shuvan Prashant; Srivastava, Yogesh Kumar; Bettiol, Andrew Anthony; Singh, Ranjan
2017-06-01
Dark mode in metamaterials has become a vital component in determining the merit of the Fano type of interference in the system. Its strength dictates the enhancement and suppression in the amplitude and Q-factors of resulting resonance features. In this work, we experimentally probe the effect of strong near-field coupling on the strength of the dark mode in a concentrically aligned bright resonator and a dark split ring resonator (SRR) system exhibiting the classical analog of the electromagnetically induced transparency effect. An enhanced strong magnetic field between the bright-dark resonators destructively interferes with the inherent magnetic field of the dark mode to completely annihilate its effect in the coupled system. Moreover, the observed annihilation effect in the dark mode has a direct consequence on the disappearance of the SRR effect in the proposed system, wherein under the strong magnetic interactions, the LC resonance feature of the split ring resonator becomes invisible to the incident terahertz wave.
Resonance Frequency Tuning of a Double Ring Resonator in GaInAsP/InP: Experiment and Simulation
NASA Astrophysics Data System (ADS)
Rabus, Dominik Gerhard; Hamacher, Michael; Heidrich, Helmut
2002-02-01
A racetrack shaped double ring resonator (DRR) filter is demonstrated with radii of 200 μm. The double ring resonator contains two -3 dB multimode interference (MMI) couplers for I/O coupling and a -13 dB codirectional coupler in between the rings. A free spectral range of 50 GHz has been realized. A simulation model has been developed to describe the DRR. As fabrication tolerances do not allow the realization of two identical rings with required nm-circumference accuracy in the resonator, a frequency alignment of the resonator is indispensable. The resonance frequency tuning is performed thermally using platinum resistors which have been placed on top of the waveguides in both rings. An on-off ratio increase has been achieved of more than 3 dB, resulting in a total on-off ratio larger than 18 dB. The frequency alignment is inevitable in the case of multiple coupled micro ring resonators.
Angular and Intensity Dependent Spectral Modulations in High Harmonics from N2
NASA Astrophysics Data System (ADS)
McFarland, Brian; Farrell, Joseph; Bucksbaum, Philip; Guehr, Markus
2009-05-01
The spectral amplitude and phase modulation of high harmonics (HHG) in molecules provides important clues to molecular structure and dynamics in strong laser fields. We have studied these effects in aligned N2. Earlier results of HHG experiments claimed that the spectral amplitude modulation was predominantly due to geometrical interference between the recombining electron and the highest occupied molecular orbital (HOMO) [1]. We report evidence that contradicts this simple view. We observe a phase jump accompanied by a spectral minimum for HHG in aligned N2. The minimum shifts to lower harmonics as the angle between the molecular axis and harmonic generation polarization increases, and shifts to higher harmonics with increasing harmonic generation intensity. The features observed cannot be fully explained by a geometrical model. We discuss alternative explanations involving multi orbital effects [2]. [0pt] [1] Lein et al., Phys. Rev. A, 66, 023805 (2002) [2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)
Recombination Proteins Mediate Meiotic Spatial Chromosome Organization and Pairing
Storlazzi, Aurora; Gargano, Silvana; Ruprich-Robert, Gwenael; Falque, Matthieu; David, Michelle; Kleckner, Nancy; Zickler, Denise
2010-01-01
SUMMARY Meiotic chromosome pairing involves not only recognition of homology but also juxtaposition of entire chromosomes in a topologically regular way. Analysis of filamentous fungus Sordaria macrospora reveals that recombination proteins Mer3, Msh4 and Mlh1 play direct roles in all of these aspects, in advance of their known roles in recombination. Absence of Mer3 helicase results in interwoven chromosomes, thereby revealing the existence of features that specifically ensure “entanglement avoidance”. Entanglements that remain at zygotene, i.e. “interlockings”, require Mlh1 for resolution, likely to eliminate constraining recombinational connections. Patterns of Mer3 and Msh4 foci along aligned chromosomes show that the double-strand breaks mediating homologous alignment have spatially separated ends, one localized to each partner axis, and that pairing involves interference among developing interhomolog interactions. We propose that Mer3, Msh4 and Mlh1 execute all of these roles during pairing by modulating the state of nascent double-strand break/partner DNA contacts within axis-associated recombination complexes. PMID:20371348
Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS).
He, Xiaolong; Datta, Anurup; Nam, Woongsik; Traverso, Luis M; Xu, Xianfan
2016-10-10
Controlled fabrication of single and multiple nanostructures far below the diffraction limit using a method based on laser induced periodic surface structure (LIPSS) is presented. In typical LIPSS, multiple lines with a certain spatial periodicity, but often not well-aligned, were produced. In this work, well-controlled and aligned nanowires and nanogrooves with widths as small as 40 nm and 60 nm with desired orientation and length are fabricated. Moreover, single nanowire and nanogroove were fabricated based on the same mechanism for forming multiple, periodic structures. Combining numerical modeling and AFM/SEM analyses, it was found these nanostructures were formed through the interference between the incident laser radiation and the surface plasmons, the mechanism for forming LIPSS on a dielectric surface using a high power femtosecond laser. We expect that our method, in particular, the fabrication of single nanowires and nanogrooves could be a promising alternative for fabrication of nanoscale devices due to its simplicity, flexibility, and versatility.
Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS)
He, Xiaolong; Datta, Anurup; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan
2016-01-01
Controlled fabrication of single and multiple nanostructures far below the diffraction limit using a method based on laser induced periodic surface structure (LIPSS) is presented. In typical LIPSS, multiple lines with a certain spatial periodicity, but often not well-aligned, were produced. In this work, well-controlled and aligned nanowires and nanogrooves with widths as small as 40 nm and 60 nm with desired orientation and length are fabricated. Moreover, single nanowire and nanogroove were fabricated based on the same mechanism for forming multiple, periodic structures. Combining numerical modeling and AFM/SEM analyses, it was found these nanostructures were formed through the interference between the incident laser radiation and the surface plasmons, the mechanism for forming LIPSS on a dielectric surface using a high power femtosecond laser. We expect that our method, in particular, the fabrication of single nanowires and nanogrooves could be a promising alternative for fabrication of nanoscale devices due to its simplicity, flexibility, and versatility. PMID:27721428
Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver
NASA Technical Reports Server (NTRS)
Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.
2012-01-01
Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.
NASA Astrophysics Data System (ADS)
Novianti, T.; Sadikin, M.; Widia, S.; Juniantito, V.; Arida, E. A.
2018-03-01
Development of unidentified specific gene is essential to analyze the availability these genes in biological process. Identification unidentified specific DNA of HIF 1α genes is important to analyze their contribution in tissue regeneration process in lizard tail (Hemidactylus platyurus). Bioinformatics and PCR techniques are relatively an easier method to identify an unidentified gene. The most widely used method is BLAST (Basic Local Alignment Sequence Tools) method for alignment the sequences from the other organism. BLAST technique is online software from website https://blast.ncbi.nlm.nih.gov/Blast.cgi that capable to generate the similar sequences from closest kinship to distant kindship. Gecko japonicus is a species that it has closest kinship with H. platyurus. Comparing HIF 1 α gene sequence of G. japonicus with the other species used multiple alignment methods from Mega7 software. Conserved base areas were identified using Clustal IX method. Primary DNA of HIF 1 α gene was design by Primer3 software. HIF 1α gene of lizard (H. platyurus) was successfully amplified using a real-time PCR machine by primary DNA that we had designed from Gecko japonicus. Identification unidentified gene of HIF 1a lizard has been done successfully with multiple alignment method. The study was conducted by analyzing during the growth of tail on day 1, 3, 5, 7, 10, 13 and 17 of lizard tail after autotomy. Process amplification of HIF 1α gene was described by CT value in real time PCR machine. HIF 1α expression of gene is quantified by Livak formula. Chi-square statistic test is 0.000 which means that there is a different expression of HIF 1 α gene in every growth day treatment.
Approximate matching of regular expressions.
Myers, E W; Miller, W
1989-01-01
Given a sequence A and regular expression R, the approximate regular expression matching problem is to find a sequence matching R whose optimal alignment with A is the highest scoring of all such sequences. This paper develops an algorithm to solve the problem in time O(MN), where M and N are the lengths of A and R. Thus, the time requirement is asymptotically no worse than for the simpler problem of aligning two fixed sequences. Our method is superior to an earlier algorithm by Wagner and Seiferas in several ways. First, it treats real-valued costs, in addition to integer costs, with no loss of asymptotic efficiency. Second, it requires only O(N) space to deliver just the score of the best alignment. Finally, its structure permits implementation techniques that make it extremely fast in practice. We extend the method to accommodate gap penalties, as required for typical applications in molecular biology, and further refine it to search for sub-strings of A that strongly align with a sequence in R, as required for typical data base searches. We also show how to deliver an optimal alignment between A and R in only O(N + log M) space using O(MN log M) time. Finally, an O(MN(M + N) + N2log N) time algorithm is presented for alignment scoring schemes where the cost of a gap is an arbitrary increasing function of its length.
Multiple alignment-free sequence comparison
Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine
2013-01-01
Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418
14 CFR 1204.503 - Delegation of authority to grant easements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... interfere with NASA operations. (2) Monetary or other benefit, including any interest in real property, is..., limitations, benefits, burdens, terms, or conditions necessary to protect the interests of the United States... Engineers. In exercising the authority herein granted, the Directors of Field Installations, under the...
Wideband Channel Modeling in Real Atmospheric Environments with Experimental Evaluation
2013-04-01
5] D. F. Gingras and P. Gerstoft. 1997. “The Effect of Propagation on Wideband DS - CDMA Systems in the Suburban Environment,” The First IEEE...are commonly used in spread spectrum communication systems such as Code Division Multiple Access ( CDMA ) systems. Narrowband interference mitigation
Holographic interferometry imaging monitoring of photodynamic (PDT) reactions in gelatin biophantom
NASA Astrophysics Data System (ADS)
Davidenko, N.; Mahdi, H.; Zheng, X.; Davidenko, I.; Pavlov, V.; Kuranda, N.; Chuprina, N.; Studzinsky, S.; Pandya, A.; Karia, H.; Tajouri, S.; Dervenis, M.; Gergely, C.; Douplik, A.
2018-01-01
Heat and photochemical reactions with human hemoglobin and photosensitizer were monitored by holography interference method in gelatin phantom. The method has successfully facilitated monitoring the reactions as a highresolution refraction index mapping in real time video regime. Methylene Blue was exploited as a photosensitizer.
LHCb detector and trigger performance in Run II
NASA Astrophysics Data System (ADS)
Francesca, Dordei
2017-12-01
The LHCb detector is a forward spectrometer at the LHC, designed to perform high precision studies of b- and c- hadrons. In Run II of the LHC, a new scheme for the software trigger at LHCb allows splitting the triggering of events into two stages, giving room to perform the alignment and calibration in real time. In the novel detector alignment and calibration strategy for Run II, data collected at the start of the fill are processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. This allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The larger timing budget, available in the trigger, allows to perform the same track reconstruction online and offline. This enables LHCb to achieve the best reconstruction performance already in the trigger, and allows physics analyses to be performed directly on the data produced by the trigger reconstruction. The novel real-time processing strategy at LHCb is discussed from both the technical and operational point of view. The overall performance of the LHCb detector on the data of Run II is presented as well.
Liu, Yao; Yang, Guang; Ji, Huanzhong; Xiang, Tao; Luo, En; Zhou, Shaobing
2017-06-01
Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.
Automatic Alignment of Displacement-Measuring Interferometer
NASA Technical Reports Server (NTRS)
Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer
2006-01-01
A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.
Vacuum-Compatible Wideband White Light and Laser Combiner Source System
NASA Technical Reports Server (NTRS)
Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.
2010-01-01
For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.
A 3-D mixed-reality system for stereoscopic visualization of medical dataset.
Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco
2009-11-01
We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice.
A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation
NASA Astrophysics Data System (ADS)
Barnbaum, Cecilia; Bradley, Richard F.
1998-11-01
Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have built a prototype adaptive canceler that consists of two receivers: the primary channel (input from the main beam of the telescope) and a separate reference channel. The primary channel receives the desired astronomical signal corrupted by RFI (radio-frequency interference) coming in the sidelobes of the main beam. A separate reference antenna is designed to receive only the RFI. The reference channel input is processed using a digital adaptive filter and then subtracted from the primary channel input, producing the system output. The weighting coefficients of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the canceler locks onto the RFI, and the filter adjusts itself to minimize the effect of the RFI at the system output. We have designed the adaptive canceler with an intermediate frequency (IF) of 40 MHz. This prototype system will ultimately be functional with a variety of radio astronomy receivers in the microwave band. We have also built a prototype receiver centered at 100 MHz (in the FM broadcast band) to test the adaptive canceler with actual interferers, which are well characterized. The initial laboratory tests of the adaptive canceler are encouraging, with attenuation of strong frequency-modulated (FM) interference to 72 dB (a factor of more than 10 million), which is at the performance limit of our measurements. We also consider requirements of the system and the RFI environment for effective adaptive canceling.
Developments in Scanning Hall Probe Microscopy
NASA Astrophysics Data System (ADS)
Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David
2009-05-01
Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.
Surface-mount sapphire interferometric temperature sensor.
Zhu, Yizheng; Wang, Anbo
2006-08-20
A fiber-optic high-temperature sensor is demonstrated by bonding a 45 degrees -polished single-crystal sapphire fiber on the surface of a sapphire wafer, whose optical thickness is temperature dependent and measured by white-light interferometry. A novel adhesive-free coupling between the silica and sapphire fibers is achieved by fusion splicing, and its performance is characterized. The sensor's interference signal is investigated for its dependence on angular alignment between the fiber and the wafer. A prototype sensor is tested to 1,170 degrees C with a resolution of 0.4 degrees C, demonstrating excellent potential for high-temperature measurement.
NASA Astrophysics Data System (ADS)
Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.
2017-12-01
Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)
Vadillo, Miguel A; Orgaz, Cristina; Luque, David; Cobos, Pedro L; López, Francisco J; Matute, Helena
2013-05-01
Current associative theories of contingency learning assume that inhibitory learning plays a part in the interference between outcomes. However, it is unclear whether this inhibitory learning results in the inhibition of the outcome representation or whether it simply counteracts previous excitatory learning so that the outcome representation is neither activated nor inhibited. Additionally, these models tend to conceptualize inhibition as a relatively transient and cue-dependent state. However, research on retrieval-induced forgetting suggests that the inhibition of representations is a real process that can be relatively independent of the retrieval cue used to access the inhibited information. Consistent with this alternative view, we found that interference between outcomes reduces the retrievability of the target outcome even when the outcome is associated with a novel (non-inhibitory) cue. This result has important theoretical implications for associative models of interference and shows that the empirical facts and theories developed in studies of retrieval-induced forgetting might be relevant in contingency learning and vice versa. © 2012 The British Psychological Society.
Modeling discrete and continuous entities with fractions and decimals.
Rapp, Monica; Bassok, Miriam; DeWolf, Melissa; Holyoak, Keith J
2015-03-01
When people use mathematics to model real-life situations, their use of mathematical expressions is often mediated by semantic alignment (Bassok, Chase, & Martin, 1998): The entities in a problem situation evoke semantic relations (e.g., tulips and vases evoke the functionally asymmetric "contain" relation), which people align with analogous mathematical relations (e.g., the noncommutative division operation, tulips/vases). Here we investigate the possibility that semantic alignment is also involved in the comprehension and use of rational numbers (fractions and decimals). A textbook analysis and results from two experiments revealed that both mathematic educators and college students tend to align the discreteness versus continuity of the entities in word problems (e.g., marbles vs. distance) with distinct symbolic representations of rational numbers--fractions versus decimals, respectively. In addition, fractions and decimals tend to be used with nonmetric units and metric units, respectively. We discuss the importance of the ontological distinction between continuous and discrete entities to mathematical cognition, the role of symbolic notations, and possible implications of our findings for the teaching of rational numbers. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films
NASA Astrophysics Data System (ADS)
Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.
2016-05-01
We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (<10-3) in the frequency range considered due to a very small perpendicular conductivity. The microwave impedance of a vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.
Joint Processing of Envelope Alignment and Phase Compensation for Isar Imaging
NASA Astrophysics Data System (ADS)
Chen, Tao; Jin, Guanghu; Dong, Zhen
2018-04-01
Range envelope alignment and phase compensation are spilt into two isolated parts in the classical methods of translational motion compensation in Inverse Synthetic Aperture Radar (ISAR) imaging. In classic method of the rotating object imaging, the two reference points of the envelope alignment and the Phase Difference (PD) estimation are probably not the same point, making it difficult to uncouple the coupling term by conducting the correction of Migration Through Resolution Cell (MTRC). In this paper, an improved approach of joint processing which chooses certain scattering point as the sole reference point is proposed to perform with utilizing the Prominent Point Processing (PPP) method. With this end in view, we firstly get the initial image using classical methods from which a certain scattering point can be chose. The envelope alignment and phase compensation using the selected scattering point as the same reference point are subsequently conducted. The keystone transform is thus smoothly applied to further improve imaging quality. Both simulation experiments and real data processing are provided to demonstrate the performance of the proposed method compared with classical method.
A fast, robust algorithm for power line interference cancellation in neural recording.
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-04-01
Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. The proposed algorithm features a highly robust operation, fast adaptation to interference variations, significant SNR improvement, low computational complexity and memory requirement and straightforward parameter adjustment. These features render the algorithm suitable for wearable and implantable sensor applications, where reliable and real-time cancellation of the interference is desired.
A fast, robust algorithm for power line interference cancellation in neural recording
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-04-01
Objective. Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. Approach. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. Main results. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. Significance. The proposed algorithm features a highly robust operation, fast adaptation to interference variations, significant SNR improvement, low computational complexity and memory requirement and straightforward parameter adjustment. These features render the algorithm suitable for wearable and implantable sensor applications, where reliable and real-time cancellation of the interference is desired.
Femtosecond laser inscription of optical circuits in the cladding of optical fibers
NASA Astrophysics Data System (ADS)
Grenier, Jason R.
The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters and couplers were fabricated with coupling ratios from 2% to 50% over a broad 350 nm bandwidth across the telecommunication band. Laser-induced birefringence was harnessed to generate polarization dependent MMI devices for strong polarization filtering (24 dB isolation), or polarization selective taps with up to 50% tapping efficiency over a 25 nm bandwidth. This dissertation is therefore the first demonstration of femtosecond laser direct writing as a flexible and monolithic means of embedding and integrating highly functional optical circuit devices within the cladding of optical fibers that can interconnect efficiently with the pre-existing fiber core waveguide. These developments represent a significant technological advancement for creating new 3D photonic integrated microsystems within the cladding of optical fibers and underpins a new technological platform of fiber cladding photonics.
Cook, Greg W; LaPuma, Peter T; Hook, Gary L; Eckenrode, Brian A
2010-11-01
Ion mobility spectrometry (IMS) is a valued field detection technology because of its speed and high sensitivity, but IMS cannot easily resolve analytes of interest within mixtures. Coupling gas chromatography (GC) to IMS adds a separation capability to resolve complex matrices. A GC-IONSCAN® operated in IMS and GC⁄ IMS modes was evaluated with combinations of five explosives and four interferents. In 100 explosive/interferent combinations, IMS yielded 21 false positives while GC⁄ IMS substantially reduced the occurrence of false positives to one. In addition, the results indicate that through redesign or modification of the preconcentrator there would be significant advantages to using GC⁄ IMS, such as enhancement of the linear dynamic range (LDR) in some situations. By balancing sensitivity with LDR, GC⁄ IMS could prove to be a very advantageous tool when addressing real world complex mixture situations.
Nanoscale surface characterization using laser interference microscopy
NASA Astrophysics Data System (ADS)
Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.
2018-03-01
Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.
Diffraction phase microscopy realized with an automatic digital pinhole
NASA Astrophysics Data System (ADS)
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Zhang, Zhimin; Liu, Xu
2017-12-01
We report a novel approach to diffraction phase microscopy (DPM) with automatic pinhole alignment. The pinhole, which serves as a spatial low-pass filter to generate a uniform reference beam, is made out of a liquid crystal display (LCD) device that allows for electrical control. We have made DPM more accessible to users, while maintaining high phase measurement sensitivity and accuracy, through exploring low cost optical components and replacing the tedious pinhole alignment process with an automatic pinhole optical alignment procedure. Due to its flexibility in modifying the size and shape, this LCD device serves as a universal filter, requiring no future replacement. Moreover, a graphic user interface for real-time phase imaging has been also developed by using a USB CMOS camera. Experimental results of height maps of beads sample and live red blood cells (RBCs) dynamics are also presented, making this system ready for broad adaption to biological imaging and material metrology.
NASA Astrophysics Data System (ADS)
Zhuk, D. I.; Denisyuk, I. Yu.; Gutner, I. E.
2015-07-01
A way to construct a holographic indicator of the position of the central axis of a distant object based on recording a transmission hologram in a layer of photosensitive material and forming a remote real image before a light source is considered. A light source with a holographically formed marker designed for visual guidance to the object axis; it can be used to simplify aircraft landing on a glide path, preliminary visual alignment of large coaxial details of various machines, etc. Specific features of the scheme of recording a holographic marker and the reconstruction of its image are considered. The possibility of forming a remote holographic image marker, which can be aligned with a simultaneously operating reference laser system for determining the direction to an object and its optical axis, has been demonstrated experimentally.
Bayesian comparison of protein structures using partial Procrustes distance.
Ejlali, Nasim; Faghihi, Mohammad Reza; Sadeghi, Mehdi
2017-09-26
An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.
Evaluation of mathematical algorithms for automatic patient alignment in radiosurgery.
Williams, Kenneth M; Schulte, Reinhard W; Schubert, Keith E; Wroe, Andrew J
2015-06-01
Image registration techniques based on anatomical features can serve to automate patient alignment for intracranial radiosurgery procedures in an effort to improve the accuracy and efficiency of the alignment process as well as potentially eliminate the need for implanted fiducial markers. To explore this option, four two-dimensional (2D) image registration algorithms were analyzed: the phase correlation technique, mutual information (MI) maximization, enhanced correlation coefficient (ECC) maximization, and the iterative closest point (ICP) algorithm. Digitally reconstructed radiographs from the treatment planning computed tomography scan of a human skull were used as the reference images, while orthogonal digital x-ray images taken in the treatment room were used as the captured images to be aligned. The accuracy of aligning the skull with each algorithm was compared to the alignment of the currently practiced procedure, which is based on a manual process of selecting common landmarks, including implanted fiducials and anatomical skull features. Of the four algorithms, three (phase correlation, MI maximization, and ECC maximization) demonstrated clinically adequate (ie, comparable to the standard alignment technique) translational accuracy and improvements in speed compared to the interactive, user-guided technique; however, the ICP algorithm failed to give clinically acceptable results. The results of this work suggest that a combination of different algorithms may provide the best registration results. This research serves as the initial groundwork for the translation of automated, anatomy-based 2D algorithms into a real-world system for 2D-to-2D image registration and alignment for intracranial radiosurgery. This may obviate the need for invasive implantation of fiducial markers into the skull and may improve treatment room efficiency and accuracy. © The Author(s) 2014.
De La Fuente, Rabindranath; Viveiros, Maria M; Wigglesworth, Karen; Eppig, John J
2004-08-01
ATRX is a centromeric heterochromatin binding protein belonging to the SNF2 family of helicase/ATPases with chromatin remodeling activity. Mutations in the human ATRX gene result in X-linked alpha-thalassaemia with mental retardation (ATRX) syndrome and correlate with changes in methylation of repetitive DNA sequences. We show here that ATRX also functions to regulate key stages of meiosis in mouse oocytes. At the germinal vesicle (GV) stage, ATRX was found associated with the perinucleolar heterochromatin rim in transcriptionally quiescent oocytes. Phosphorylation of ATRX during meiotic maturation is dependent upon calcium calmodulin kinase (CamKII) activity. Meiotic resumption also coincides with deacetylation of histone H4 at lysine 5 (H4K5 Ac) while ATRX and histone H3 methylated on lysine 9 (H3K9) remained bound to the centromeres and interstitial regions of condensing chromosomes, respectively. Inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) disrupted ATRX binding to the centromeres of hyperacetylated chromosomes resulting in abnormal chromosome alignments at metaphase II (MII). Similarly, while selective ablation of ATRX by antibody microinjection and RNA interference (RNAi) had no effect on the progression of meiosis, it had severe consequences for the alignment of chromosomes on the metaphase II spindle. These results suggest that genome-wide epigenetic modifications such as global histone deacetylation are essential for the binding of ATRX to centromeric heterochromatin. Moreover, centromeric ATRX is required for correct chromosome alignment and organization of a bipolar meiotic metaphase II spindle.
Preventing bee mortality with RNA interference
USDA-ARS?s Scientific Manuscript database
We present a real world example of the successful use of an RNAi product for disease control. RNAi increased bee health in the presence of the bee viral pathogen, IAPV. The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsib...
Net Photorefractive Gain In Gallium Arsenide
NASA Technical Reports Server (NTRS)
Liu, Tsuen-Hsi; Cheng, Li-Jen
1990-01-01
Prerequisite includes applied electric field. Electric field applied to GaAs crystal in which two infrared beams interfere. Depending on quality of sample and experimental conditions, net photorefractive gain obtained. Results offer possibility of new developments in real-time optical processing of signals by use of near-infrared lasers of low power.
Narrowband Interference Suppression in Spread Spectrum Communication Systems
1995-12-01
receiver input. As stated earlier, these waveforms must be sampled to obtain the discrete time sequences. The sampling theorem states: A bandlimited...From the FFT chips, the data is passed to a Plessey PDSP16330 Pythagoras Processor. The 16330 is a high-speed digital CMOS IC that converts real and
Designing Interference-Robust Wireless Mesh Networks Using a Defender-Attacker-Defender Model
2015-02-01
solution does not provide more network flow than the undefended attacker’s solution. (However, our tool stores alternate, runner -up solutions that often...approximate real WMNs. 51 LIST OF REFERENCES Alderson, D.L., Brown, G.G., & Carlyle, W.M. (2014). Assessing and improving operational resilience
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... Systems Redesign and the PACT Demo Lab innovations and will inform the redesign and demo lab innovations in real time. It will also gather information on patient characteristics and their experiences with... Patient Aligned Care Teams (PACT) Systems Redesign, document patients' and their informal caregivers...
Coordination in Coteaching: Producing Alignment in Real Time
ERIC Educational Resources Information Center
Roth, Wolff-Michael; Tobin, Kenneth; Carambo, Cristobal; Dalland, Chris
2005-01-01
In coteaching, two or more teachers take collective responsibility for enacting a curriculum together with their students. Past research provided some indication that in the course of coteaching, not only the teaching practices of the partners become increasingly alike but also do unconsciously produced ways of moving about the classroom, hand…
The Role of Technology in Gifted Students' Motivation
ERIC Educational Resources Information Center
Housand, Brian C.; Housand, Angela M.
2012-01-01
Although technology by itself may not be motivating, a relationship seems to exist between the opportunities that technology presents and motivation for gifted students. When technology use aligns with authentic or "real-world" applications, motivation can be enhanced. This article explores the overlap between factors that have historically been…
Problem Based Learning in Science
ERIC Educational Resources Information Center
Pepper, Coral
2009-01-01
Problem based learning (PBL) is a recognised teaching and learning strategy used to engage students in deep rather than surface learning. It is also viewed as a successful strategy to align university courses with the real life professional work students are expected to undertake on graduation (Biggs, 2003). Problem based learning is practised…
77 FR 74647 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
... an AFM tip to measure the electromagnetic near-field of optical antennas, plasmonics in metals and... field-aligned Ion Cyclotron RF antenna, which is used to automatically follow the load variation in real time and make the antenna system load tolerant. The instrument's unique specifications are its...
ERIC Educational Resources Information Center
Wilson, Stephanie; Zamberlan, Lisa
2012-01-01
In the competitive market of higher education, government funding agencies consider universities accountable for ensuring a better alignment between educational processes, graduate capabilities and real world employability. Workforce leaders have developed new expectations about the capabilities of graduating students, expecting to employ…
Are Elementary Teacher Education Programs the Real Problem of Unqualified Teachers?
ERIC Educational Resources Information Center
Weitman, Catheryn J.; Colbert, Ronald P.
This paper describes 10 factors that impact misguided perceptions of teacher preparation and teacher quality, especially elementary teachers prepared in highly-structured, university-based teacher preparation programs: (1) the offshoot of P-12 preparation, prior to attending postsecondary programs; (2) alignment of certification tests to state…
Translating the Dietary Guidelines for Americans 2010 to Bring About Real Behavior Change
USDA-ARS?s Scientific Manuscript database
Food scientists and nutrition scientists (dietitians and nutrition communicators) are tasked with creating strategies to more closely align the American food supply and the public's diet with the Dietary Guidelines for Americans (DGA). This paper is the result of 2 expert dialogues to address this m...
ERIC Educational Resources Information Center
Parker, Caroline E.; Stylinski, Cathlyn D.; Bonney, Christina R.; Schillaci, Rebecca; McAuliffe, Carla
2015-01-01
Technology applications aligned with science, technology, engineering, and math (STEM) workplace practices can engage students in real-world pursuits but also present dramatic challenges for classroom implementation. We examined the impact of teacher professional development focused on incorporating these workplace technologies in the classroom.…
Sector-Based Detection for Hands-Free Speech Enhancement in Cars
NASA Astrophysics Data System (ADS)
Lathoud, Guillaume; Bourgeois, Julien; Freudenberger, Jürgen
2006-12-01
Adaptation control of beamforming interference cancellation techniques is investigated for in-car speech acquisition. Two efficient adaptation control methods are proposed that avoid target cancellation. The "implicit" method varies the step-size continuously, based on the filtered output signal. The "explicit" method decides in a binary manner whether to adapt or not, based on a novel estimate of target and interference energies. It estimates the average delay-sum power within a volume of space, for the same cost as the classical delay-sum. Experiments on real in-car data validate both methods, including a case with[InlineEquation not available: see fulltext.] km/h background road noise.
Gemi: PCR Primers Prediction from Multiple Alignments
Sobhy, Haitham; Colson, Philippe
2012-01-01
Designing primers and probes for polymerase chain reaction (PCR) is a preliminary and critical step that requires the identification of highly conserved regions in a given set of sequences. This task can be challenging if the targeted sequences display a high level of diversity, as frequently encountered in microbiologic studies. We developed Gemi, an automated, fast, and easy-to-use bioinformatics tool with a user-friendly interface to design primers and probes based on multiple aligned sequences. This tool can be used for the purpose of real-time and conventional PCR and can deal efficiently with large sets of sequences of a large size. PMID:23316117
Soft X-ray Foucault test: A path to diffraction-limited imaging
NASA Astrophysics Data System (ADS)
Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.
1994-08-01
We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.
[Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].
Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing
2012-08-01
Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.
Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.
Li, Yun; Ho, K C; Popescu, Mihail
2014-03-01
Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.
NASA Technical Reports Server (NTRS)
Stanewsky, E.; Freimuth, P.
1989-01-01
A comparison of results from conventional and adaptive wall wind tunnels with regard to Reynolds number effects was carried out. The special objective of this comparison was to confirm or reject earlier conclusions, soley based on conventional wind tunnel results, concerning the influence of viscous effects on the characteristics of partially open wind tunnel walls, hence wall interference. The following postulations could be confirmed: (1) certain classes of supercritical airfoils exhibit a non-linear increase in lift which is, at least in part, related to viscous-inviscid interactions on the airfoil. This non-linear lift characteristic can erroneously be suppressed by sidewall interference effects in addition to being affected by changes in Reynolds number. Adaptive walls seem to relieve the influence of sidewall interference; (2) the degree of (horizontal) wall interference effects can be significantly affected by changes in Reynolds number, thus appearing as true Reynolds number effects; (3) perforated wall characteristics seem much more susceptible to viscous changes than the characteristics of slotted walls; here, blockage interference may be most severely influenced by viscous changes; and (4) real Reynolds number effects are present on the CAST 10-2/DOA 2 airfoil; they were shown to be appreciable also by the adaptive wall wind tunnel tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Dr. Yanhua; McCandless, Andrew Bascom
The main objective of this project is to improve the performance and reliability of sensor networks in the smart grid through an active interference cancellation technique that can effectively eliminate broadband electromagnetic interference (EMI) and radio frequency interference (RFI). This noise cancellation provides real-time monitoring the RF environment and automatically optimization of the signal fidelity. To determine the feasibility of the proposed technique and quantify the level of improvement in key system parameters, such as data rate, signal bandwidth, and cost saving, the tasks carried out during Phase I were 1) defining the problem statement, 2) developing a design thatmore » will solve the sensors’ reliably problem, 3) carrying out initial testing with a prototype, and 4) developing an integrated photonic chip version that could be built in a follow-on Phase II effort. The technology demonstration was successfully proven the feasibility of a mission assured photonic sensor system (MAPSS) that will address a major interference problem in smart grid deployments. The significant results demonstrated from bench-top testing show that the technology is capable of maintaining the error free communication link in the presence of various type of interference. The technology’s wideband performance in GHz is also verified and would be suitable for sensors deploying throughout the smart grid system.« less
Cheong, Jadeera P.G.; Lay, Brendan; Razman, Rizal
2016-01-01
This study attempted to present conditions that were closer to the real-world setting of team sports. The primary purpose was to examine the effects of blocked, random and game-based training practice schedules on the learning of the field hockey trap, close dribble and push pass that were practiced in combination. The secondary purpose was to investigate the effects of predictability of the environment on the learning of field hockey sport skills according to different practice schedules. A game-based training protocol represented a form of random practice in an unstable environment and was compared against a blocked and a traditional random practice schedule. In general, all groups improved dribble and push accuracy performance during the acquisition phase when assessed in a closed environment. In the retention phase, there were no differences between the three groups. When assessed in an open skills environment, all groups improved their percentage of successful executions for trapping and passing execution, and improved total number of attempts and total number of successful executions for both dribbling and shooting execution. Between-group differences were detected for dribbling execution with the game-based group scoring a higher number of dribbling successes. The CI effect did not emerge when practicing and assessing multiple sport skills in a closed skill environment, even when the skills were practiced in combination. However, when skill assessment was conducted in a real-world situation, there appeared to be some support for the CI effect. Key points The contextual interference effect was not supported when practicing several skills in combination when the sports skills were assessed in a closed skill environment. There appeared to be some support for the contextual interference effect when sports skills were assessed in an open skill environment, which were similar to a real game situation. A game-based training schedule can be used as an alternative practice schedule as it displayed superior learning compared to a blocked practice schedule when assessed by the game performance test (real-world setting). The game-based training schedule also matched the blocked and random practice schedules in the other tests. PMID:26957940
Cheong, Jadeera P G; Lay, Brendan; Razman, Rizal
2016-03-01
This study attempted to present conditions that were closer to the real-world setting of team sports. The primary purpose was to examine the effects of blocked, random and game-based training practice schedules on the learning of the field hockey trap, close dribble and push pass that were practiced in combination. The secondary purpose was to investigate the effects of predictability of the environment on the learning of field hockey sport skills according to different practice schedules. A game-based training protocol represented a form of random practice in an unstable environment and was compared against a blocked and a traditional random practice schedule. In general, all groups improved dribble and push accuracy performance during the acquisition phase when assessed in a closed environment. In the retention phase, there were no differences between the three groups. When assessed in an open skills environment, all groups improved their percentage of successful executions for trapping and passing execution, and improved total number of attempts and total number of successful executions for both dribbling and shooting execution. Between-group differences were detected for dribbling execution with the game-based group scoring a higher number of dribbling successes. The CI effect did not emerge when practicing and assessing multiple sport skills in a closed skill environment, even when the skills were practiced in combination. However, when skill assessment was conducted in a real-world situation, there appeared to be some support for the CI effect. Key pointsThe contextual interference effect was not supported when practicing several skills in combination when the sports skills were assessed in a closed skill environment.There appeared to be some support for the contextual interference effect when sports skills were assessed in an open skill environment, which were similar to a real game situation.A game-based training schedule can be used as an alternative practice schedule as it displayed superior learning compared to a blocked practice schedule when assessed by the game performance test (real-world setting). The game-based training schedule also matched the blocked and random practice schedules in the other tests.
Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.
Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y
2018-04-17
Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.
A numerical study of some potential sources of error in side-by-side seismometer evaluations
Holcomb, L. Gary
1990-01-01
This report presents the results of a series of computer simulations of potential errors in test data, which might be obtained when conducting side-by-side comparisons of seismometers. These results can be used as guides in estimating potential sources and magnitudes of errors one might expect when analyzing real test data. First, the derivation of a direct method for calculating the noise levels of two sensors in a side-by-side evaluation is repeated and extended slightly herein. This bulk of this derivation was presented previously (see Holcomb 1989); it is repeated here for easy reference.This method is applied to the analysis of a simulated test of two sensors in a side-by-side test in which the outputs of both sensors consist of white noise spectra with known signal-tonoise ratios (SNR's). This report extends this analysis to high SNR's to determine the limitations of the direct method for calculating the noise levels at signal-to-noise levels which are much higher than presented previously (see Holcomb 1989). Next, the method is used to analyze a simulated test of two sensors in a side-by-side test in which the outputs of both sensors consist of bandshaped noise spectra with known signal-tonoise ratios. This is a much more realistic representation of real world data because the earth's background spectrum is certainly not flat.Finally, the results of the analysis of simulated white and bandshaped side-by-side test data are used to assist in interpreting the analysis of the effects of simulated azimuthal misalignment in side-by-side sensor evaluations. A thorough understanding of azimuthal misalignment errors is important because of the physical impossibility of perfectly aligning two sensors in a real world situation. The analysis herein indicates that alignment errors place lower limits on the levels of system noise which can be resolved in a side-by-side measurement It also indicates that alignment errors are the source of the fact that real data noise spectra tend to follow the earth's background spectra in shape.
Clustering of reads with alignment-free measures and quality values.
Comin, Matteo; Leoni, Andrea; Schimd, Michele
2015-01-01
The data volume generated by Next-Generation Sequencing (NGS) technologies is growing at a pace that is now challenging the storage and data processing capacities of modern computer systems. In this context an important aspect is the reduction of data complexity by collapsing redundant reads in a single cluster to improve the run time, memory requirements, and quality of post-processing steps like assembly and error correction. Several alignment-free measures, based on k-mers counts, have been used to cluster reads. Quality scores produced by NGS platforms are fundamental for various analysis of NGS data like reads mapping and error detection. Moreover future-generation sequencing platforms will produce long reads but with a large number of erroneous bases (up to 15 %). In this scenario it will be fundamental to exploit quality value information within the alignment-free framework. To the best of our knowledge this is the first study that incorporates quality value information and k-mers counts, in the context of alignment-free measures, for the comparison of reads data. Based on this principles, in this paper we present a family of alignment-free measures called D (q) -type. A set of experiments on simulated and real reads data confirms that the new measures are superior to other classical alignment-free statistics, especially when erroneous reads are considered. Also results on de novo assembly and metagenomic reads classification show that the introduction of quality values improves over standard alignment-free measures. These statistics are implemented in a software called QCluster (http://www.dei.unipd.it/~ciompin/main/qcluster.html).
Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis
Wang, Feng; Cao, Shiyu; Yan, Ruxia; Wang, Zewei; Wang, Dan; Yang, Haifeng
2017-01-01
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique. PMID:29160798
NASA Astrophysics Data System (ADS)
Pakhotin, I. P.; Mann, I. R.; Lysak, R. L.; Knudsen, D. J.; Gjerloev, J. W.; Rae, I. J.; Forsyth, C.; Murphy, K. R.; Miles, D. M.; Ozeke, L. G.; Balasis, G.
2018-01-01
High-resolution multispacecraft Swarm data are used to examine magnetosphere-ionosphere coupling during a period of northward interplanetary magnetic field (IMF) on 31 May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 s apart along track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave
Yoon, Jai-Woong; Park, Young-Guk; Park, Chun-Joo; Kim, Do-Il; Lee, Jin-Ho; Chung, Nag-Kun; Choe, Bo-Young; Suh, Tae-Suk; Lee, Hyoung-Koo
2007-11-01
The stationary grid commonly used with a digital x-ray detector causes a moiré interference pattern due to the inadequate sampling of the grid shadows by the detector pixels. There are limitations with the previous methods used to remove the moiré such as imperfect electromagnetic interference shielding and the loss of image information. A new method is proposed for removing the moiré pattern by integrating a carbon-interspaced high precision x-ray grid with high grid line uniformity with the detector for frequency matching. The grid was aligned to the detector by translating and rotating the x-ray grid with respect to the detector using microcontrolled alignment mechanism. The gap between the grid and the detector surface was adjusted with micrometer precision to precisely match the projected grid line pitch to the detector pixel pitch. Considering the magnification of the grid shadows on the detector plane, the grids were manufactured such that the grid line frequency was slightly higher than the detector sampling frequency. This study examined the factors that affect the moiré pattern, particularly the line frequency and displacement. The frequency of the moiré pattern was found to be sensitive to the angular displacement of the grid with respect to the detector while the horizontal translation alters the phase but not the moiré frequency. The frequency of the moiré pattern also decreased with decreasing difference in frequency between the grid and the detector, and a moiré-free image was produced after complete matching for a given source to detector distance. The image quality factors including the contrast, signal-to-noise ratio and uniformity in the images with and without the moiré pattern were investigated.
Transmission electron microscopy: direct observation of crystal structure in refractory ceramics.
Shaw, T M; Thomas, G
1978-11-10
Using high-resolution multibeam interference techniques in the transmission electron microscope, images have been obtained that make possible a real-space structure analysis of a beryllium-silicon-nitrogen compound. The results illustrate the usefulness of lattice imaging in the analysis of local crystal structure in these technologically promising ceramic materials.
Giving Literacy, Learning Literacy: Service-Learning and School Book Drives
ERIC Educational Resources Information Center
Walker, Anne B.
2015-01-01
Service-learning can provide a range of literacy learning experiences for children as they work to solve real world problems and engage in inquiry, collaboration and reflection. Rather than being an extracurricular activity, service-learning projects are designed to meet standards and align with existing curriculum. This article explores how…
Education Research Priorities: A Collective View.
ERIC Educational Resources Information Center
International Development Research Centre, Ottawa (Ontario).
Emphasis of this report on education research in developing countries and priorities for future research is on providing better education to more people (many of whom live in rural areas) in spite of severe resource constraints. The need to involve policymakers in the research process and align research more closely with real needs is discussed.…
USDA-ARS?s Scientific Manuscript database
Food scientists and nutrition scientists (dietitians and nutrition communicators) are tasked with creating strategies to more closely align the American food supply and the public's diet with the Dietary Guidelines for Americans (DGA). This paper is the result of 2 expert dialogues to address this m...
Finding the Discipline: Assessing Student Activity in "Second Life"
ERIC Educational Resources Information Center
Grant, Scott; Clerehan, Rosemary
2011-01-01
For the second-language learner, the affordances of a virtual world have the potential to confer benefits conventionally aligned with real world experiences. However, little is known about the pedagogical benefits linked to the specific characteristics of the virtual world, let alone the issues arising for staff hoping to assess students'…
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1983-01-01
The theoretical development of a simple and consistent method for removing the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation of the velocities in an imaginary infinite extension of the real wind-tunnel flow is obtained and evaluated on a closed contour dividing the real and imaginary flow. The contour consists of the upper and lower effective wind-tunnel walls (wall plus boundary-layer displacement thickness) and upstream and downstream boundaries perpendicular to the axial tunnel flow. The resulting integral expressions for the streamwise and normal perturbation velocities on the contour are integrated by assuming a linear variation of the velocities between data-measurement stations along the contour. In an iterative process, the velocity components calculated on the upper and lower boundaries are then used to correct the shape of the wall to remove the interference. Convergence of the technique is shown numerically for the cases of a circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible flow. Experimental convergence at a transonic Mach number is demonstrated by using an NACA 0012 airfoil at zero lift.
Gasohol Quality Control for Real Time Applications by Means of a Multimode Interference Fiber Sensor
Rodríguez Rodríguez, Adolfo J.; Baldovino-Pantaleón, Oscar; Domínguez Cruz, Rene F.; Zamarreño, Carlos R.; Matías, Ignacio R.; May-Arrioja, Daniel A.
2014-01-01
In this work we demonstrate efficient quality control of a variety of gasoline and ethanol (gasohol) blends using a multimode interference (MMI) fiber sensor. The operational principle relies on the fact that the addition of ethanol to the gasohol blend reduces the refractive index (RI) of the gasoline. Since MMI sensors are capable of detecting small RI changes, the ethanol content of the gasohol blend is easily determined by tracking the MMI peak wavelength response. Gasohol blends with ethanol contents ranging from 0% to 50% has been clearly identified using this device, which provides a linear response with a maximum sensitivity of 0.270 nm/% EtOH. The sensor can also distinguish when water incorporated in the blend has exceeded the maximum volume tolerated by the gasohol blend, which is responsible for phase separation of the ethanol and gasoline and could cause serious engine failures. Since the MMI sensor is straightforward to fabricate and does not require any special coating it is a cost effective solution for real time and in-situ monitoring of the quality of gasohol blends. PMID:25256111
Ollis, Stewart; Button, Chris; Fairweather, Malcolm
2005-03-01
The contextual interference (CI) effect has been investigated through practice schedule manipulations within both basic and applied studies. Despite extensive research activity there is little conclusive evidence regarding the optimal practice structure of real world manipulative tasks in professional training settings. The present study therefore assessed the efficacy of practising simple and complex knot-tying skills in professional fire-fighters training. Forty-eight participants were quasi-randomly assigned to various practice schedules along the CI continuum. Twenty-four participants were students selected for their novice knot-tying capabilities and 24 were experienced fire-fighters who were more 'experienced knot-tiers'. They were assessed for skill acquisition, retention and transfer effects having practiced tying knots classified as simple or complex. Surprisingly, high levels of CI scheduling enhance learning for novices even when practising a complex task. The findings also revealed that CI benefits are most apparent as learners engage in tasks high in transfer distality. In conclusion, complexity and experience are mediating factors influencing the potency of the CI training effect in real-world settings.
Neumann, M; Cuvillon, L; Breton, E; de Matheli, M
2013-01-01
Recently, a workflow for magnetic resonance (MR) image plane alignment based on tracking in real-time MR images was introduced. The workflow is based on a tracking device composed of 2 resonant micro-coils and a passive marker, and allows for tracking of the passive marker in clinical real-time images and automatic (re-)initialization using the microcoils. As the Kalman filter has proven its benefit as an estimator and predictor, it is well suited for use in tracking applications. In this paper, a Kalman filter is integrated in the previously developed workflow in order to predict position and orientation of the tracking device. Measurement noise covariances of the Kalman filter are dynamically changed in order to take into account that, according to the image plane orientation, only a subset of the 3D pose components is available. The improved tracking performance of the Kalman extended workflow could be quantified in simulation results. Also, a first experiment in the MRI scanner was performed but without quantitative results yet.
Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V
2009-11-18
Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.
Electromagnetic characteristics of systems of prolate and oblate ellipsoids
NASA Astrophysics Data System (ADS)
Karimi, Pouyan; Amiri-Hezaveh, Amirhossein; Ostoja-Starzewski, Martin; Jin, Jian-Ming
2017-11-01
The present study suggests a novel model for simulating electromagnetic characteristics of spheroidal nanofillers. The electromagnetic interference shielding efficiency of prolate and oblate ellipsoids in the X-band frequency range is studied. Different multilayered nanocomposite configurations incorporating carbon nanotubes, graphene nanoplatelets, and carbon blacks are fabricated and tested. The best performance for a specific thickness is observed for the multilayered composite with a gradual increase in the thickness and electrical conductivity of layers. The simulation results based on the proposed model are shown to be in good agreement with the experimental data. The effect of filler alignment on shielding efficiency is also studied by using the nematic order parameter. The ability of a nanocomposite to shield the incident power is found to decrease by increasing alignment especially for high volume fractions of prolate fillers. The interaction of the electromagnetic wave and the fillers is mainly affected by the polarization of the electric field; when the electric field is perpendicular to the equatorial axis of a spheroid, the interaction is significantly reduced and results in a lower shielding efficiency. Apart from the filler alignment, size polydispersity is found to have a significant effect on reflected and transmitted powers. It is demonstrated that the nanofillers with a higher aspect ratio mainly contribute to the shielding performance. The results are of interest in both shielding structures and microwave absorbing materials.
Bueno, Ericka M.; Saeidi, Nima; Melotti, Suzanna
2009-01-01
The in vitro production of highly organized collagen fibrils by corneal keratocytes in a three-dimensional scaffold-free culture system presents a unique opportunity for the direct observation of organized matrix formation. The objective of this investigation was to develop such a culture system in a glass substrate (for optical accessibility) and to directly examine the effect of reducing serum and/or increasing insulin on the stratification and secretion of aligned matrix by fourth- to fifth-passage bovine corneal stromal keratocytes. Medium concentrations of 0%, 1%, or 10% fetal bovine serum and 0% or 1% insulin–transferrin–selenium were investigated. High-resolution differential interference contrast microscopy, quick-freeze/deep-etch, and conventional transmission electron microscopy were used to monitor the evolution, morphology, and ultrastructure of the cell–matrix constructs. In a medium containing 1% each of serum and insulin–transferrin–selenium, stromal cells stratified and secreted abundant and locally aligned matrix, generating the thickest cell–matrix constructs (allowing handling with forceps). The results of this study have the potential to significantly advance the field of developmental functional engineering of load-bearing tissues by (i) elucidating cues that modulate in vitro cell secretion of organized matrix and (ii) establishing an optically accessible cell culture system for investigating the mechanism of cell secretion of aligned collagen fibrils. PMID:19480568
NASA Astrophysics Data System (ADS)
Ramos, Antonio L. L.; Shao, Zhili; Holthe, Aleksander; Sandli, Mathias F.
2017-05-01
The introduction of the System-on-Chip (SoC) technology has brought exciting new opportunities for the development of smart low cost embedded systems spanning a wide range of applications. Currently available SoC devices are capable of performing high speed digital signal processing tasks in software while featuring relatively low development costs and reduced time-to-market. Unmanned aerial vehicles (UAV) are an application example that has shown tremendous potential in an increasing number of scenarios, ranging from leisure to surveillance as well as in search and rescue missions. Video capturing from UAV platforms is a relatively straightforward task that requires almost no preprocessing. However, that does not apply to audio signals, especially in cases where the data is to be used to support real-time decision making. In fact, the enormous amount of acoustic interference from the surroundings, including the noise from the UAVs propellers, becomes a huge problem. This paper discusses a real-time implementation of the NLMS adaptive filtering algorithm applied to enhancing acoustic signals captured from UAV platforms. The model relies on a combination of acoustic sensors and a computational inexpensive algorithm running on a digital signal processor. Given its simplicity, this solution can be incorporated into the main processing system of an UAV using the SoC technology, and run concurrently with other required tasks, such as flight control and communications. Simulations and real-time DSP-based implementations have shown significant signal enhancement results by efficiently mitigating the interference from the noise generated by the UAVs propellers as well as from other external noise sources.
Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de
2014-01-01
The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.
Wong, Simon W; Niazi, Ahtsham U; Chin, Ki J; Chan, Vincent W
2013-01-01
The SonixGPS® is an electromagnetic needle tracking system for ultrasound-guided needle intervention. Both current and predicted needle tip position are displayed on the ultrasound screen in real-time, facilitating needle-beam alignment and guidance to the target. This case report illustrates the use of the SonixGPS system for successful performance of real-time ultrasound-guided spinal anesthesia in a patient with difficult spinal anatomy. A 67-yr-old male was admitted to our hospital to undergo revision of total right hip arthroplasty. His four previous arthroplasties for hip revision were performed under general anesthesia because he had undergone L3-L5 instrumentation for spinal stenosis. The L4-L5 interspace was viewed with the patient in the left lateral decubitus position. A 19G 80-mm proprietary needle (Ultrasonix Medical Corp, Richmond, BC, Canada) was inserted and directed through the paraspinal muscles to the ligamentum flavum in plane to the ultrasound beam. A 120-mm 25G Whitacre spinal needle was then inserted through the introducer needle in a conventional fashion. Successful dural puncture was achieved on the second attempt, as indicated by a flow of clear cerebrospinal fluid. The patient tolerated the procedure well, and the spinal anesthetic was adequate for the duration of the surgery. The SonixGPS is a novel technology that can reduce the technical difficulty of real-time ultrasound-guided neuraxial blockade. It may also have applications in other advanced ultrasound-guided regional anesthesia techniques where needle-beam alignment is critical.
Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan
2017-01-01
This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546
IMPROVING THE EFFECTIVENESS AND EFFICIENCY OF EVIDENCE PRODUCTION FOR HEALTH TECHNOLOGY ASSESSMENT.
Facey, Karen; Henshall, Chris; Sampietro-Colom, Laura; Thomas, Sarah
2015-01-01
Health Technology Assessment (HTA) needs to address the challenges posed by high cost, effective technologies, expedited regulatory approaches, and the opportunities provided by collaborative real-world evaluation of technologies. The Health Technology Assessment International (HTAi) Policy Forum met to consider these issues and the implications for evidence production to inform HTA. This paper shares their discussion to stimulate further debate. A background paper, presentations, group discussions, and stakeholder role play at the 2015 HTAi Policy Forum meeting informed this paper. HTA has an important role to play in helping improve evidence production and ensuring that the health service is ready to adopt effective technologies. It needs to move from simply informing health system decisions to also working actively to align stakeholder expectations about realistic evidence requirements. Processes to support dialogue over the health technology life cycle need to be developed that are mindful of limited resources, operate across jurisdictions and learn from past processes. Collaborations between health technology developers and health systems in different countries should be encouraged to develop evidence that will inform decision making. New analytical techniques emerging for real-world data should be harnessed to support modeling for HTA. A paradigm shift (to "Health Innovation System 2.0") is suggested where HTA adopts a more central, proactive role to support alignment within and amongst stakeholders over the whole life cycle of the technology. This could help ensure that evidence production is better aligned with patient and health system needs and so is more effective and efficient.
Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes
NASA Technical Reports Server (NTRS)
Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.
1999-01-01
Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.
Park, Yongwoo; Malacarne, Antonio; Azaña, José
2011-02-28
A simple, highly accurate measurement technique for real-time monitoring of the group delay (GD) profiles of photonic dispersive devices over ultra-broad spectral bandwidths (e.g. an entire communication wavelength band) is demonstrated. The technique is based on time-domain self-interference of an incoherent light pulse after linear propagation through the device under test, providing a measurement wavelength range as wide as the source spectral bandwidth. Significant enhancement in the signal-to-noise ratio of the self-interference signal has been observed by use of a relatively low-noise incoherent light source as compared with the theoretical estimate for a white-noise light source. This fact combined with the use of balanced photo-detection has allowed us to significantly reduce the number of profiles that need to be averaged to reach a targeted GD measurement accuracy, thus achieving reconstruction of the device GD profile in real time. We report highly-accurate monitoring of (i) the group-delay ripple (GDR) profile of a 10-m long chirped fiber Bragg grating over the full C band (~42 nm), and (ii) the group velocity dispersion (GVD) and dispersion slope (DS) profiles of a ~2-km long dispersion compensating fiber module over an ~72-nm wavelength range, both captured at a 15 frames/s video rate update, with demonstrated standard deviations in the captured GD profiles as low as ~1.6 ps.
Drali, Rezak; Boutellis, Amina; Raoult, Didier; Rolain, Jean Marc; Brouqui, Philippe
2013-01-01
Body louse or head louse? Once removed from their environment, body and head lice are indistinguishable. Neither the morphological criteria used since the mid-18th century nor the various genetic studies conducted since the advent of molecular biology tools have allowed body lice and head lice to be differentiated. In this work, using a portion of the Phum_PHUM540560 gene from the body louse, we aimed to develop a multiplex real-time polymerase chain reaction (PCR) assay to differentiate between body and head lice in a single reaction. A total of 142 human lice were collected from mono-infested hosts from 13 countries on five continents. We first identified the louse clade using a cytochrome b (CYTB) PCR sequence alignment. We then aligned a fragment of the Phum_PHUM540560 gene amplified from head and body lice to design-specific TaqMan(©) FAM- and VIC-labeled probes. All the analyzed lice were Clade A lice. A total of 22 polymorphisms between the body and head lice were characterized. The multiplex real-time PCR analysis enabled the body and head lice to be distinguished in two hours. This method is simple, with 100% specificity and sensitivity. We confirmed that the Phum_PHUM540560 gene is a useful genetic marker for the study of lice.
Wang, Yun-Liang; Dong, Feng-Lin; Yang, Jian; Li, Zhi; Zhi, Qiao-Ming; Zhao, Xin; Yang, Yong; Li, De-Chun; Shen, Xiao-Chun; Zhou, Jin
2015-01-01
Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NC- PANC-1, and si-PANC-1 cells, respectively. After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.
Analysis of Modified SMI Method for Adaptive Array Weight Control. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dilsavor, Ronald Louis
1989-01-01
An adaptive array is used to receive a desired signal in the presence of weak interference signals which need to be suppressed. A modified sample matrix inversion (SMI) algorithm controls the array weights. The modification leads to increased interference suppression by subtracting a fraction of the noise power from the diagonal elements of the covariance matrix. The modified algorithm maximizes an intuitive power ratio criterion. The expected values and variances of the array weights, output powers, and power ratios as functions of the fraction and the number of snapshots are found and compared to computer simulation and real experimental array performance. Reduced-rank covariance approximations and errors in the estimated covariance are also described.
RFI Detection and Mitigation using Independent Component Analysis as a Pre-Processor
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Gholian, Armen; Bradley, Damon C.; Wong, Mark; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.
2016-01-01
Radio-frequency interference (RFI) has negatively impacted scientific measurements of passive remote sensing satellites. This has been observed in the L-band radiometers Soil Moisture and Ocean Salinity (SMOS), Aquarius and more recently, Soil Moisture Active Passive (SMAP). RFI has also been observed at higher frequencies such as K band. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements. This work explores the use of Independent Component Analysis (ICA) as a blind source separation (BSS) technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
Molecular matter waves - tools and applications
NASA Astrophysics Data System (ADS)
Juffmann, Thomas; Sclafani, Michele; Knobloch, Christian; Cheshnovsky, Ori; Arndt, Markus
2013-05-01
Fluorescence microscopy allows us to visualize the gradual emergence of a deterministic far-field matter-wave diffraction pattern from stochastically arriving single molecules. We create a slow beam of phthalocyanine molecules via laser desorption from a glass window. The small source size provides the transverse coherence required to observe an interference pattern in the far-field behind an ultra-thin nanomachined grating. There the molecules are deposited onto a quartz window and can be imaged in situ and in real time with single molecule sensitivity. This new setup not only allows for a textbook demonstration of quantum interference, but also enables quantitative explorations of the van der Waals interaction between molecules and material gratings.
Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI
NASA Astrophysics Data System (ADS)
Olyaee, Saeed; Hamedi, Samaneh
2011-02-01
In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.
Genetic algorithms for protein threading.
Yadgari, J; Amir, A; Unger, R
1998-01-01
Despite many years of efforts, a direct prediction of protein structure from sequence is still not possible. As a result, in the last few years researchers have started to address the "inverse folding problem": Identifying and aligning a sequence to the fold with which it is most compatible, a process known as "threading". In two meetings in which protein folding predictions were objectively evaluated, it became clear that threading as a concept promises a real breakthrough, but that much improvement is still needed in the technique itself. Threading is a NP-hard problem, and thus no general polynomial solution can be expected. Still a practical approach with demonstrated ability to find optimal solutions in many cases, and acceptable solutions in other cases, is needed. We applied the technique of Genetic Algorithms in order to significantly improve the ability of threading algorithms to find the optimal alignment of a sequence to a structure, i.e. the alignment with the minimum free energy. A major progress reported here is the design of a representation of the threading alignment as a string of fixed length. With this representation validation of alignments and genetic operators are effectively implemented. Appropriate data structure and parameters have been selected. It is shown that Genetic Algorithm threading is effective and is able to find the optimal alignment in a few test cases. Furthermore, the described algorithm is shown to perform well even without pre-definition of core elements. Existing threading methods are dependent on such constraints to make their calculations feasible. But the concept of core elements is inherently arbitrary and should be avoided if possible. While a rigorous proof is hard to submit yet an, we present indications that indeed Genetic Algorithm threading is capable of finding consistently good solutions of full alignments in search spaces of size up to 10(70).
Characterization and Mitigation of Radio Frequency Interference in PolSAR Data
NASA Astrophysics Data System (ADS)
Tao, Mingliang; Zhou, Feng; Zhang, Zijing
2017-11-01
Polarimetric synthetic aperture radar (PolSAR) is a very important instrument for active remote sensing. However, it is common to find that PolSAR echoes are often contaminated by incoherent electromagnetic interference, which is referred to as radio frequency interference (RFI). The analysis of RFI signatures and its influence on PolSAR data seems to be lacking in existing literatures, especially for PolSAR post products, such as the polarimetric decomposition parameters and clustering result. The goal of this paper is to reveal the link between RFI and polarization, as well as to analyze the impact of interference on PolSAR image and its post products. Qualitative and quantitative analyses of the adverse impact of RFI on the real measured NASA/Jet Propulsion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar data set are illustrated from two perspectives, that is, evaluation of imaging quality and interpretation of scattering mechanisms. The point target response and effective number of looks are evaluated for assessing the distortion to focusing quality. Further, we discussed the characteristics of ultra wideband RFI and proposed a mitigation method using nonnegative matrix factorization along azimuth direction. The experimental results indicate the effectiveness of the proposed method.
Dasgupta, Amitava; Kidd, Laura; Poindexter, Brian J; Bick, Roger J
2010-08-01
Hawthorn is an herb indicated for treating cardiac illness. Because a patient taking digoxin may also take hawthorn, we investigated potential interference of hawthorn in serum digoxin measurements using immunoassays as well as pharmacodynamic interaction between hawthorn and digoxin. Hawthorn contains alkaloids that are structurally similar to digoxin and may interfere with serum digoxin measurement using immunoassays. In addition, hawthorn has cardioactive properties similar to digoxin. To study potential pharmacodynamic interaction between hawthorn and digoxin. The effects of hawthorn extract on serum digoxin measurements using Digoxin III (Abbott Laboratories, Abbott Park, Illinois) and the Tina-Quant digoxin assay (Roche Diagnostics, Indianapolis, Indiana) were investigated using 2 different brands of extract. To study the pharmacodynamic interaction between hawthorn and digoxin, we used an isolated adult rat cardiomyocyte system, measuring calcium transients by real-time fluorescence spectrophotometry. Hawthorn interfered only with the Digoxin III immunoassay but had no effect on the Tina-Quant assay. Both hawthorn extracts increased intracellular calcium levels, but the lack of additive response with digoxin suggests both may bind to the same site of Na, K adenosine triphosphatase. Because of interference of hawthorn with a digoxin immunoassay and pharmacodynamic interaction with digoxin, a patient receiving digoxin should avoid hawthorn.
Infant-Mother Acoustic-Prosodic Alignment and Developmental Risk.
Seidl, Amanda; Cristia, Alejandrina; Soderstrom, Melanie; Ko, Eon-Suk; Abel, Emily A; Kellerman, Ashleigh; Schwichtenberg, A J
2018-06-19
One promising early marker for autism and other communicative and language disorders is early infant speech production. Here we used daylong recordings of high- and low-risk infant-mother dyads to examine whether acoustic-prosodic alignment as well as two automated measures of infant vocalization are related to developmental risk status indexed via familial risk and developmental progress at 36 months of age. Automated analyses of the acoustics of daylong real-world interactions were used to examine whether pitch characteristics of one vocalization by the mother or the child predicted those of the vocalization response by the other speaker and whether other features of infants' speech in daylong recordings were associated with developmental risk status or outcomes. Low-risk and high-risk dyads did not differ in the level of acoustic-prosodic alignment, which was overall not significant. Further analyses revealed that acoustic-prosodic alignment did not predict infants' later developmental progress, which was, however, associated with two automated measures of infant vocalizations (daily vocalizations and conversational turns). Although further research is needed, these findings suggest that automated measures of vocalizations drawn from daylong recordings are a possible early identification tool for later developmental progress/concerns. https://osf.io/cdn3v/.
Evaluation of microRNA alignment techniques
Kaspi, Antony; El-Osta, Assam
2016-01-01
Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164
Stamatakis, Alexandros; Ott, Michael
2008-12-27
The continuous accumulation of sequence data, for example, due to novel wet-laboratory techniques such as pyrosequencing, coupled with the increasing popularity of multi-gene phylogenies and emerging multi-core processor architectures that face problems of cache congestion, poses new challenges with respect to the efficient computation of the phylogenetic maximum-likelihood (ML) function. Here, we propose two approaches that can significantly speed up likelihood computations that typically represent over 95 per cent of the computational effort conducted by current ML or Bayesian inference programs. Initially, we present a method and an appropriate data structure to efficiently compute the likelihood score on 'gappy' multi-gene alignments. By 'gappy' we denote sampling-induced gaps owing to missing sequences in individual genes (partitions), i.e. not real alignment gaps. A first proof-of-concept implementation in RAXML indicates that this approach can accelerate inferences on large and gappy alignments by approximately one order of magnitude. Moreover, we present insights and initial performance results on multi-core architectures obtained during the transition from an OpenMP-based to a Pthreads-based fine-grained parallelization of the ML function.
Melanie Klein and countertransference: a note on some archival material.
Hinshelwood, R D
2008-01-01
Five pages of notes were found in the Melanie Klein Archives at the Wellcome Library that concern her views on countertransference in 1953. Because of the paucity of references to countertransference in Klein's published writings these Notes fill in out knowledge. Her views were provoked by the work her students were doing in their experimental analyses of schizophrenic patients. Apocryphal stories suggest that Klein remained aligned with Freud's view of countertransference as simply interference. The Notes confirm that, whilst there is some truth to that, she did have a more sophisticated and nuanced view of the unconscious relations between analyst and analysand.
NASA Technical Reports Server (NTRS)
Evans-Flynn, Erin; Gregory, Kevin; Arsintescu, Lucia; Whitmire, Alexandra; Leveton, Lauren B.; Vessey, William
2015-01-01
Sleep loss, circadian desynchronization, and work overload occur to some extent for ground and flight crews, prior to and during spaceflight missions. Ground evidence indicates that such risk factors may lead to performance decrements and adverse health outcomes, which could potentially compromise mission objectives. Efforts are needed to identify the environmental and mission conditions that interfere with sleep and circadian alignment, as well as individual differences in vulnerability and resiliency to sleep loss and circadian desynchronization. Specifically, this report highlights a collection of new evidence to better characterize the risk and reveals new gaps in this risk.
Standing wave contributions to the linear interference effect in stratosphere-troposphere coupling
NASA Astrophysics Data System (ADS)
Watt-Meyer, Oliver; Kushner, Paul
2014-05-01
A body of literature by Hayashi and others [Hayashi 1973, 1977, 1979; Pratt, 1976] developed a decomposition of the wavenumber-frequency spectrum into standing and travelling waves. These techniques directly decompose the power spectrum—that is, the amplitudes squared—into standing and travelling parts. This, incorrectly, does not allow for a term representing the covariance between these waves. We propose a simple decomposition based on the 2D Fourier transform which allows one to directly compute the variance of the standing and travelling waves, as well as the covariance between them. Applying this decomposition to geopotential height anomalies in the Northern Hemisphere winter, we show the dominance of standing waves for planetary wavenumbers 1 through 3, especially in the stratosphere, and that wave-1 anomalies have a significant westward travelling component in the high-latitude (60N to 80N) troposphere. Variations in the relative zonal phasing between a wave anomaly and the background climatological wave pattern—the "linear interference" effect—are known to explain a large part of the planetary wave driving of the polar stratosphere in both hemispheres. While the linear interference effect is robust across observations, models of varying degrees of complexity, and in response to various types of perturbations, it is not well understood dynamically. We use the above-described decomposition into standing and travelling waves to investigate the drivers of linear interference. We find that the linear part of the wave activity flux is primarily driven by the standing waves, at all vertical levels. This can be understood by noting that the longitudinal positions of the antinodes of the standing waves are typically close to being aligned with the maximum and minimum of the background climatology. We discuss implications for predictability of wave activity flux, and hence polar vortex strength variability.
A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions
Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan; ...
2017-04-24
Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less
A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan
Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less
Incorporating evolution of transcription factor binding sites into annotated alignments.
Bais, Abha S; Grossmann, Stefen; Vingron, Martin
2007-08-01
Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do not explicitly consider this.Additionally, prediction of conserved binding sites is carried out in a multi-step approach that segregates alignment from TFBS annotation. In this paper, we demonstrate how the simultaneous alignment and annotation approach of SimAnn can be further extended to incorporate TFBS evolutionary relationships. We study how alignments and binding site predictions interplay at varying evolutionary distances and for various profile qualities.
High-field magnetoconductance in Anderson insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaknin, A.; Frydman, A.; Ovadyahu, Z.
1996-11-01
We report on high-field magnetoconductance measurements made on indium-oxide films as a function of temperature and static disorder. Special emphasis is given to the strong-localization regime where the magnetoconductance reveals a negative contribution associated with a spin-alignment mechanism in addition to the positive contribution associated with orbital, quantum-coherence effects. While the overall features of the theoretically expected effects are observed in our experiments, they depart in certain ways from the detailed predictions. We discuss the merits and shortcomings of current models to describe them, in particular, as they apply to the regime where the localized wave functions become larger thanmore » the Bohr radius. The main results of this paper are both quantum interference and spin effects contribute to the magnetoconductance throughout the entire range studied. In the limit of very strong disorder, the quantum interference effects are faithfully described by the Nguyen {ital et} {ital al}. model. The spin effects, on the other hand, show only qualitative agreement with current models which are unable to account for the saturation field being insensitive to changes in disorder. {copyright} {ital 1996 The American Physical Society.}« less
Yeh, Yi-Jou; Black, Adam J; Akkin, Taner
2013-10-10
We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.
Kuchel, Philip W; Shishmarev, Dmitry; Puckeridge, Max; Levitt, Malcolm H; Naumann, Christoph; Chapman, Bogdan E
2015-12-01
(133)Cs nuclear magnetic resonance (NMR) spectroscopy was conducted on (133)Cs(+) in gelatin hydrogels that were either relaxed or stretched. Stretching generated a septet from this spin-7/2 nucleus, and its nuclear magnetic relaxation was studied via z-spectra, and two-dimensional nuclear Overhauser (NOESY) spectroscopy. Various spectral features were well simulated by using Mathematica and the software package SpinDynamica. Spectra of CsCl in suspensions of human erythrocytes embedded in gelatin gel showed separation of the resonances from the cation inside and outside the cells. Upon stretching the sample, the extracellular (133)Cs(+) signal split into a septet, while the intracellular peak was unchanged, revealing different alignment/ordering properties of the environment inside and around the cells. Differential interference contrast light microscopy confirmed that the cells were stretched when the overall sample was elongated. Analysis of the various spectral features of (133)Cs(+) reported here opens up applications of this K(+) congener for studies of cation-handling by metabolically-active cells and tissues in aligned states. Copyright © 2015 Elsevier Inc. All rights reserved.
Interferometric surface mapping with variable sensitivity.
Jaerisch, W; Makosch, G
1978-03-01
In the photolithographic process, presently employed for the production of integrated circuits, sets of correlated masks are used for exposing the photoresist on silicon wafers. Various sets of masks which are printed in different printing tools must be aligned correctly with respect to the structures produced on the wafer in previous process steps. Even when perfect alignment is considered, displacements and distortions of the printed wafer patterns occur. They are caused by imperfections of the printing tools or/and wafer deformations resulting from high temperature processes. Since the electrical properties of the final integrated circuits and therefore the manufacturing yield depend to a great extent on the precision at which such patterns are superimposed, simple and fast overlay measurements and flatness measurements as well are very important in IC-manufacturing. A simple optical interference method for flatness measurements will be described which can be used under manufacturing conditions. This method permits testing of surface height variations by nearly grazing light incidence by absence of a physical reference plane. It can be applied to polished surfaces and rough surfaces as well.
Wavelet analysis of poorly-focused ultrasonic signal of pressure tube inspection in nuclear industry
NASA Astrophysics Data System (ADS)
Zhao, Huan; Gachagan, Anthony; Dobie, Gordon; Lardner, Timothy
2018-04-01
Pressure tube fabrication and installment challenges combined with natural sagging over time can produce issues with probe alignment for pressure tube inspection of the primary circuit of CANDU reactors. The ability to extract accurate defect depth information from poorly focused ultrasonic signals would reduce additional inspection procedures, which leads to a significant time and cost saving. Currently, the defect depth measurement protocol is to simply calculate the time difference between the peaks of the echo signals from the tube surface and the defect from a single element probe focused at the back-wall depth. When alignment issues are present, incorrect focusing results in interference within the returning echo signal. This paper proposes a novel wavelet analysis method that employs the Haar wavelet to decompose the original poorly focused A-scan signal and reconstruct detailed information based on a selected high frequency component range within the bandwidth of the transducer. Compared to the original signal, the wavelet analysis method provides additional characteristic defect information and an improved estimate of defect depth with errors less than 5%.
Robust group-wise rigid registration of point sets using t-mixture model
NASA Astrophysics Data System (ADS)
Ravikumar, Nishant; Gooya, Ali; Frangi, Alejandro F.; Taylor, Zeike A.
2016-03-01
A probabilistic framework for robust, group-wise rigid alignment of point-sets using a mixture of Students t-distribution especially when the point sets are of varying lengths, are corrupted by an unknown degree of outliers or in the presence of missing data. Medical images (in particular magnetic resonance (MR) images), their segmentations and consequently point-sets generated from these are highly susceptible to corruption by outliers. This poses a problem for robust correspondence estimation and accurate alignment of shapes, necessary for training statistical shape models (SSMs). To address these issues, this study proposes to use a t-mixture model (TMM), to approximate the underlying joint probability density of a group of similar shapes and align them to a common reference frame. The heavy-tailed nature of t-distributions provides a more robust registration framework in comparison to state of the art algorithms. Significant reduction in alignment errors is achieved in the presence of outliers, using the proposed TMM-based group-wise rigid registration method, in comparison to its Gaussian mixture model (GMM) counterparts. The proposed TMM-framework is compared with a group-wise variant of the well-known Coherent Point Drift (CPD) algorithm and two other group-wise methods using GMMs, using both synthetic and real data sets. Rigid alignment errors for groups of shapes are quantified using the Hausdorff distance (HD) and quadratic surface distance (QSD) metrics.
Working memory training may increase working memory capacity but not fluid intelligence.
Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W
2013-12-01
Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.
Dorval, A D; Christini, D J; White, J A
2001-10-01
We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.
Neurophysiological correlates of post-hypnotic alexia: a controlled study with Stroop test.
Casiglia, Edoardo; Schiff, Sami; Facco, Enrico; Gabbana, Amos; Tikhonoff, Valérie; Schiavon, Laura; Bascelli, Anna; Avdia, Marsel; Tosello, Maria Teresa; Rossi, Augusto Mario; Haxhi Nasto, Hilda; Guidotti, Federica; Giacomello, Margherita; Amodio, Piero
2010-01-01
To clarify whether hypnotically-induced alexia was able to reduce the Stroop effect due to color/word interference, 12 volunteers (6 with high and 6 with low hypnotizability according to Stanford Hypnotic Susceptibility Scale Form C) underwent a Stroop test consisting of measuring, both in basal conditions and during post-hypnotic alexia, the reaction times (RT) at appearance of a colored word indicating a color. In basal conditions, RT were greater in case of incongruence. In highly hypnotizable participants, the interference was less pronounced during post-hypnotic alexia (-34%, p = 0.03). During alexia, late positive complexamplitude was also greater for congruent than incongruent conditions (p < 0.03), and cardiovascular response to stress was less pronounced as well. In participants showing low hypnotizability, no reduction of Stroop effect was detected during post-hypnotic alexia. Posthypnotic alexia is therefore a real and measurable phenomenon, capable of reducing the color-word interference and the haemodynamic effects of the Stroop test.
Gennaro, Sylvain D.; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V.; Maier, Stefan A.; Oulton, Rupert F.
2014-01-01
Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663
Apparatus and method for laser beam diagnosis
Salmon, Jr., Joseph T.
1991-01-01
An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.
Apparatus and method for laser beam diagnosis
Salmon, J.T. Jr.
1991-08-27
An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.
Quasiparticle interference in the heavy-fermion superconductor CeCoIn5
NASA Astrophysics Data System (ADS)
Akbari, Alireza; Thalmeier, Peter; Eremin, Ilya
2011-10-01
We investigate the quasiparticle interference in the heavy fermion superconductor CeCoIn5 as a direct method to confirm the d-wave gap symmetry. The ambiguity between dxy and dx2-y2 symmetry remaining from earlier specific heat and thermal transport investigations has been resolved in favor of the latter by the observation of a spin resonance that can occur only in dx2-y2 symmetry. However, these methods are all indirect and depend considerably on theoretical interpretation. Here we propose that quasiparticle interference (QPI) spectroscopy by scanning tunneling microscopy (STM) can give a direct fingerprint of the superconducting gap in real space that may lead to a definite conclusion on its symmetry for CeCoIn5 and related 115 compounds. The QPI pattern for both magnetic and nonmagnetic impurities is calculated for the possible d-wave symmetries and characteristic differences are found that may be identified by use of the STM method.
Butler, Christopher John; Yang, Po-Ya; Sankar, Raman; Lien, Yen-Neng; Lu, Chun-I; Chang, Luo-Yueh; Chen, Chia-Hao; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong
2016-09-28
Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.
DNA sequence alignment by microhomology sampling during homologous recombination
Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick
2015-01-01
Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365
NASA Astrophysics Data System (ADS)
Samson, Arnaud; Thibaudeau, Christian; Bouchard, Jonathan; Gaudin, Émilie; Paulin, Caroline; Lecomte, Roger; Fontaine, Réjean
2018-05-01
A fully automated time alignment method based on a positron timing probe was developed to correct the channel-to-channel coincidence time dispersion of the LabPET II avalanche photodiode-based positron emission tomography (PET) scanners. The timing probe was designed to directly detect positrons and generate an absolute time reference. The probe-to-channel coincidences are recorded and processed using firmware embedded in the scanner hardware to compute the time differences between detector channels. The time corrections are then applied in real-time to each event in every channel during PET data acquisition to align all coincidence time spectra, thus enhancing the scanner time resolution. When applied to the mouse version of the LabPET II scanner, the calibration of 6 144 channels was performed in less than 15 min and showed a 47% improvement on the overall time resolution of the scanner, decreasing from 7 ns to 3.7 ns full width at half maximum (FWHM).
Group sparse multiview patch alignment framework with view consistency for image classification.
Gui, Jie; Tao, Dacheng; Sun, Zhenan; Luo, Yong; You, Xinge; Tang, Yuan Yan
2014-07-01
No single feature can satisfactorily characterize the semantic concepts of an image. Multiview learning aims to unify different kinds of features to produce a consensual and efficient representation. This paper redefines part optimization in the patch alignment framework (PAF) and develops a group sparse multiview patch alignment framework (GSM-PAF). The new part optimization considers not only the complementary properties of different views, but also view consistency. In particular, view consistency models the correlations between all possible combinations of any two kinds of view. In contrast to conventional dimensionality reduction algorithms that perform feature extraction and feature selection independently, GSM-PAF enjoys joint feature extraction and feature selection by exploiting l(2,1)-norm on the projection matrix to achieve row sparsity, which leads to the simultaneous selection of relevant features and learning transformation, and thus makes the algorithm more discriminative. Experiments on two real-world image data sets demonstrate the effectiveness of GSM-PAF for image classification.
Stepwise detection of recombination breakpoints in sequence alignments.
Graham, Jinko; McNeney, Brad; Seillier-Moiseiwitsch, Françoise
2005-03-01
We propose a stepwise approach to identify recombination breakpoints in a sequence alignment. The approach can be applied to any recombination detection method that uses a permutation test and provides estimates of breakpoints. We illustrate the approach by analyses of a simulated dataset and alignments of real data from HIV-1 and human chromosome 7. The presented simulation results compare the statistical properties of one-step and two-step procedures. More breakpoints are found with a two-step procedure than with a single application of a given method, particularly for higher recombination rates. At higher recombination rates, the additional breakpoints were located at the cost of only a slight increase in the number of falsely declared breakpoints. However, a large proportion of breakpoints still go undetected. A makefile and C source code for phylogenetic profiling and the maximum chi2 method, tested with the gcc compiler on Linux and WindowsXP, are available at http://stat-db.stat.sfu.ca/stepwise/ jgraham@stat.sfu.ca.
DUK - A Fast and Efficient Kmer Based Sequence Matching Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingkun; Copeland, Alex; Han, James
2011-03-21
A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmermore » hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.« less
Intergenerational Pattern of Interference and Internally-Motivated Changes in Cajun French
ERIC Educational Resources Information Center
Dubois, Sylvie; Noetzel, Sibylle
2005-01-01
We examine the variable use of locative prepositions in Cajun French, adding two dimensions to existing studies: real-time evidence, adding a diachronic descriptive perspective, and a methodological tool, measuring the degree of exposure to French (MDI). The goal of this paper is to determine the origins and the directions of language change…
Blindness to Curvature and Blindness to Illusory Curvature.
Bertamini, Marco; Kitaoka, Akiyoshi
2018-01-01
We compare two versions of two known phenomena, the Curvature blindness and the Kite mesh illusions, to highlight how similar manipulations lead to blindness to curvature and blindness to illusory curvature, respectively. The critical factor is a change in luminance polarity; this factor interferes with the computation of curvature along the contour, for both real and illusory curvature.
Engineering High Assurance Distributed Cyber Physical Systems
2015-01-15
decisions: number of interacting agents and co-dependent decisions made in real-time without causing interference . To engineer a high assurance DART...environment specification, architecture definition, domain-specific languages, design patterns, code - generation, analysis, test-generation, and simulation...include synchronization between the models and source code , debugging at the model level, expression of the design intent, and quality of service
ERIC Educational Resources Information Center
Milfort, Myriam; Kelley, Jeremy
2012-01-01
With funding from the Joyce and Lumina foundations, Jobs for the Future (JFF) launched Credentials that Work to help postsecondary institutions, regions, and states align their occupational training programs to changing market demands. This initiative incorporates innovations in real-time labor market information in guiding institutions to better…
ERIC Educational Resources Information Center
Wefer, Stephen H.
2003-01-01
"Name That Gene" is a simple classroom activity that incorporates bioinformatics (available biological information) into the classroom using "Basic Logical Alignment Search Tool (BLAST)." An excellent classroom activity involving bioinformatics and "BLAST" has been previously explored using sequences from bacteria, but it is tailored for college…
The Workplace Learner: How to Align Training Initiatives with Individual Learning Competencies.
ERIC Educational Resources Information Center
Rothwell, William J.
This book explains how work organizations can create a workplace climate that encourages real-time, on-the-job learning and development of competent workplace learners, who are wiling and able to seize the initiative for identifying their own learning experiences and evaluating the results. The following are among the topics discussed: (1) the…
Pightling, Arthur W.; Petronella, Nicholas; Pagotto, Franco
2014-01-01
The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps) are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i) depth of sequencing coverage, ii) choice of reference-guided short-read sequence assembler, iii) choice of reference genome, and iv) whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT), using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming). We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers should test a variety of conditions to achieve optimal results. PMID:25144537
Kapnoula, Efthymia C.; McMurray, Bob
2016-01-01
Language learning is generally described as a problem of acquiring new information (e.g., new words). However, equally important are changes in how the system processes known information. For example, a wealth of studies has suggested dramatic changes over development in how efficiently children recognize familiar words, but it is unknown what kind of experience-dependent mechanisms of plasticity give rise to such changes in real-time processing. We examined the plasticity of the language processing system by testing whether a fundamental aspect of spoken word recognition, lexical interference, can be altered by experience. Adult participants were trained on a set of familiar words over a series of 4 tasks. In the high-competition (HC) condition, tasks were designed to encourage coactivation of similar words (e.g., net and neck) and to require listeners to resolve this competition. Tasks were similar in the low-competition (LC) condition, but did not enhance this competition. Immediately after training, interlexical interference was tested using a visual world paradigm task. Participants in the HC group resolved interference to a fuller degree than those in the LC group, demonstrating that experience can shape the way competition between words is resolved. TRACE simulations showed that the observed late differences in the pattern of interference resolution can be attributed to differences in the strength of lexical inhibition. These findings inform cognitive models in many domains that involve competition/interference processes, and suggest an experience-dependent mechanism of plasticity that may underlie longer term changes in processing efficiency associated with both typical and atypical development. PMID:26709587
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-05-01
Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-01-01
Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913
Guo, Yuanhao; Batra, Saurabh; Chen, Yuwei; Wang, Enmin; Cakmak, Miko
2016-07-20
A roll to roll continuous processing method is developed for vertical alignment ("Z" alignment) of barium titanate (BaTiO3) nanoparticle columns in polystyrene (PS)/toluene solutions. This is accomplished by applying an electric field to a two-layer solution film cast on a carrier: one is the top sacrificial layer contacting the electrode and the second is the polymer solution dispersed with BaTiO3 particles. Flexible Teflon coated mesh is utilized as the top electrode that allows the evaporation of solvent through the openings. The kinetics of particle alignment and chain buckling is studied by the custom-built instrument measuring the real time optical light transmission during electric field application and drying steps. The nanoparticles dispersed in the composite bottom layer form chains due to dipole-dipole interaction under an applied electric field. In relatively weak electric fields, the particle chain axis tilts away from electric field direction due to bending caused by the shrinkage of the film during drying. The use of strong electric fields leads to maintenance of alignment of particle chains parallel to the electric field direction overcoming the compression effect. At the end of the process, the surface features of the top porous electrodes are imprinted at the top of the top sacrificial layer. By removing this layer a smooth surface film is obtained. The nanocomposite films with "Z" direction alignment of BaTiO3 particles show substantially increased dielectric permittivity in the thickness direction for enhancing the performance of capacitors.
Sakkhachornphop, Supachai; Barbas, Carlos F; Keawvichit, Rassamee; Wongworapat, Kanlaya; Tayapiwatana, Chatchai
2012-09-01
Integration of the human immunodeficiency virus type 1 (HIV-1) genome into the host chromosome is a vital step in the HIV life cycle. The highly conserved cytosine-adenine (CA) dinucleotide sequence immediately upstream of the cleavage site is crucial for integrase (IN) activity. As this viral enzyme has an important role early in the HIV-1 replication cycle, interference with the IN substrate has become an attractive strategy for therapeutic intervention. We demonstrated that a designed zinc finger protein (ZFP) fused to green fluorescent protein (GFP) targets the 2-long terminal repeat (2-LTR) circle junctions of HIV-1 DNA with nanomolar affinity. We report now that 2LTRZFP-GFP stably transduced into 293T cells interfered with the expression of vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentiviral red fluorescent protein (RFP), as shown by the suppression of RFP expression. We also used a third-generation lentiviral vector and pCEP4 expression vector to deliver the 2LTRZFP-GFP transgene into human T-lymphocytic cells, and a stable cell line for long-term expression studies was selected for HIV-1 challenge. HIV-1 integration and replication were inhibited as measured by Alu-gag real-time PCR and p24 antigen assay. In addition, the molecular activity of 2LTRZFP-GFP was evaluated in peripheral blood mononuclear cells. The results were confirmed by Alu-gag real-time PCR for integration interference. We suggest that the expression of 2LTRZFP-GFP limited viral integration on intracellular immunization, and that it has potential for use in HIV gene therapy in the future.
The role of rehearsal in a novel call center-type task.
Perham, Nick; Banbury, Simon
2012-01-01
Laboratory research has long demonstrated the disruptive effects of background sound to task performance yet the real-world implications of such effects are less well known. We report two experiments that demonstrate the importance of the role of rehearsal to a novel call center-type task. In Experiment 1, performance of a novel train timetable task-in which participants identified four train journeys following presentation of train journey information-was disrupted by realistic office noise. However, in Experiment 2, when the need for rehearsal was reduced by presenting the information and the timetable at the same time, no disruption occurred . Results are discussed in terms of interference-by-process and interference-by-content approaches to short-term memory.
A hybrid nanosensor for TNT vapor detection.
Díaz Aguilar, Alvaro; Forzani, Erica S; Leright, Mathew; Tsow, Francis; Cagan, Avi; Iglesias, Rodrigo A; Nagahara, Larry A; Amlani, Islamshah; Tsui, Raymond; Tao, N J
2010-02-10
Real-time detection of trace chemicals, such as explosives, in a complex environment containing various interferents has been a difficult challenge. We describe here a hybrid nanosensor based on the electrochemical reduction of TNT and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts-per-trillion level TNT in the presence of various interferents within a few minutes.
Research on anti - interference based on GNSS
NASA Astrophysics Data System (ADS)
Yu, Huanran; Liu, Yijun
2017-05-01
Satellite Navigation System has been widely used in military and civil fields. It has all-functional, all-weather, continuity and real-time characteristics, can provide the precise position, velocity and timing information's for the users. The environments where the receiver of satellite navigation system works become more and more complex, and the satellite signals are susceptible to intentional or unintentional interferences, anti-jamming capability has become a key problem of satellite navigation receiver's ability to work normal. In this paper, we study a DOA estimation algorithm based on linear symmetric matrix to improve the anti-jamming capability of the satellite navigation receiver, has great significance to improve the performance of satellite navigation system in complex electromagnetic environment and enhance its applicability in various environments.
Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation
NASA Astrophysics Data System (ADS)
Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.
2016-05-01
Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.
The role of trait mindfulness in the pain experience of adolescents.
Petter, Mark; Chambers, Christine T; McGrath, Patrick J; Dick, Bruce D
2013-12-01
Trait mindfulness appears to mitigate pain among adult clinical populations and has a unique relationship with pain catastrophizing. However, little is understood about this phenomenon among adolescents. The association between trait mindfulness and pain in both real-world and experimental contexts was examined in a community sample of adolescents. Participants were 198 adolescents who completed measures of trait mindfulness, pain catastrophizing, and pain interference, as well as an interview on day-to-day pain before undergoing an acute experimental pain task. Following the task, they provided ratings of pain intensity and state catastrophizing. Results showed that with regard to day-to-day pains, mindfulness was a significant and unique predictor of pain interference, and this relationship was partially mediated by pain catastrophizing. Mindfulness also had an indirect relationship with experimental pain intensity and tolerance. These associations were mediated by catastrophizing during the pain task. These findings highlight the association between trait mindfulness and both real-world and experimental pain and offer insight into how mindfulness may affect pain among youth. Findings are discussed in the context of current psychological models of pediatric pain and future avenues for research. This article highlights the association between trait mindfulness and pain variables among adolescents in both real-world and experimental pain settings. These findings offer further evidence of the unique relationship between trait mindfulness and pain catastrophizing in affecting pain variables across pain contexts and populations. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region.
Li, Guisheng; Cui, Yan; Wang, Hongtao; Kwon, Woo-Saeng; Yang, Deok-Chun
2017-07-01
Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. The mitochondrial NADH dehydrogenase subunit 7 ( nad 7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad 7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.
ERIC Educational Resources Information Center
Hsu, Pi-Shan; Chang, Te-Jeng; Wu, Ming-Hsiung
2009-01-01
The level of learners' expertise has been used as a metric and diagnostic mechanism of instruction. This metric influences mental effort directly according to the applications of cognitive load theory. Cognitive efficiency, an optimal measurement technique of expertise, was developed by Kalyuga and Sweller to replace instructional efficiency in…
Antishadowing and nuclear optics
NASA Astrophysics Data System (ADS)
Białas, A.; CzYżz, W.
1994-05-01
Using standard methods of nuclear optics, we investigate the recent suggestion by Kharzeev and Satz that antishadowing of photons in nuclear matter may be an effect of quantum interference. We show that the Kharzeev-Satz effect is controlled by the real part of the elastic scattering amplitude of the strongly interacting system coupled to the photon and traversing the nucleus. Phenomenological consequences of this observation are discussed.
ERIC Educational Resources Information Center
Sánchez Tapia, Ingrid; Krajcik, Joseph; Reiser, Brian
2018-01-01
We propose a process of contextualization based on seven empirically derived contextualization principles, aiming to provide opportunities for Indigenous Mexican adolescents to learn science in a way that supports them in fulfilling their right to an education aligned with their own culture and values. The contextualization principles we…
Hu, Liang; Ge, Anle; Wang, Xixian; Wang, Shanshan; Yue, Xinpei; Wang, Jie; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng
2018-07-01
Immune response to environmental pathogen invasion is a complex process to prevent host from further damage. For quantitatively understanding immune responses and revealing the pathogenic environmental information, real-time monitoring of such a whole dynamic process with single-animal resolution in well-defined environments is highly desired. In this work, an integrated microfluidic device coupled with worm-based biosensor was proposed for in vivo studies of dynamic immune responses and antibiotics interference in infected C. elegans. Individual worms housed in chambers were exposed to the various pathogens and discontinuously manipulated for imaging with limited influence on physiological activities. The expression of immune responses gene (irg-1) was time-lapse measured in intact worms during pathogen infection. Results demonstrated that irg-1 gene could be induced in the presence of P. aeruginosa strain PA14 in a dose-dependent manner, and the survival of infected worm could be rescued under gentamicin or erythromycin treatments. We expect it to be a versatile platform to facilitate future studies on pathogenesis researches and rapid drug screen using C. elegans disease model. Copyright © 2018 Elsevier B.V. All rights reserved.
Computer simulation of reconstructed image for computer-generated holograms
NASA Astrophysics Data System (ADS)
Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi
2009-02-01
This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.
First LHCb measurement with data from the LHC Run 2
NASA Astrophysics Data System (ADS)
Anderlini, L.; Amerio, S.
2017-01-01
LHCb has recently introduced a novel real-time detector alignment and calibration strategy for the Run 2. Data collected at the start of each LHC fill are processed in few minutes and used to update the alignment. On the other hand, the calibration constants will be evaluated for each run of data taking. An increase in the CPU and disk capacity of the event filter farm, combined with improvements to the reconstruction software, allow for efficient, exclusive selections already in the first stage of the High Level Trigger (HLT1), while the second stage, HLT2, performs complete, offline-quality, event reconstruction. In Run 2, LHCb will collect the largest data sample of charm mesons ever recorded. Novel data processing and analysis techniques are required to maximise the physics potential of this data sample with the available computing resources, taking into account data preservation constraints. In this write-up, we describe the full analysis chain used to obtain important results analysing the data collected in proton-proton collisions in 2015, such as the J/ψ and open charm production cross-sections, and consider the further steps required to obtain real-time results after the LHCb upgrade.
Using string alignment in a query-by-humming system for real world applications
NASA Astrophysics Data System (ADS)
Sailer, Christian
2005-09-01
Though query by humming (i.e., retrieving music or information about music by singing a characteristic melody) has been a popular research topic during the past decade, few approaches have reached a level of usefulness beyond mere scientific interest. One of the main problems is the inherent contradiction between error tolerance and dicriminative power in conventional melody matching algorithms that rely on a melody contour approach to handle intonation or transcription errors. Adopting the string matching/alignment techniques from bioinformatics to melody sequences allows to directly assess the similarity between two melodies. This method takes an MPEG-7 compliant melody sequence (i.e., a list of note intervals and length ratios) as query and evaluates the steps necessary to transform it into the reference sequence. By introducing a musically founded cost-of-replace function and an adequate post processing, this method yields a measure for melodic similarity. Thus it is possible to construct a query by humming system that can properly discriminate between thousands of melodies and still be sufficiently error tolerant to be used by untrained singers. The robustness has been verified in extensive tests and real world applications.
NASA Astrophysics Data System (ADS)
Takayama, Toru; Mochida, Atsunori; Orita, Kenji; Tamura, Satoshi; Ohnishi, Toshikazu; Yuri, Masaaki; Shimizu, Hirokazu
2002-05-01
High-power (>100mW) 820 nm-band distributed Bragg reflector (DBR) laser diodes (LDs) with stable fundamental transverse mode operation and continuous wavelength tuning characteristics have been developed. To obtain high-power LDs with a stable fundamental transverse mode in 820 nm wavelength range, an AlGaAs narrow stripe (2.0 micrometers ) real refractive-index-guided self-aligned (RISA) structure is utilized. In the RISA structure, the index step between inside and outside the stripe region ((Delta) n) can be precisely controlled in the order of 10-3). To maintain a stable fundamental transverse mode up to an output power over 100 mW, (Delta) n is designed to be 4x10-3. Higher-order transverse modes are effectively suppressed by a narrow stripe geometry. Further, to achieve continuous wavelength tuning capability, the three-section LD structure, which consists of the active (700micrometers ), phase control (300micrometers ), and DBR(500micrometers ) sections, is incorporated. Our DBR LDs show a maximum output power over 200mW with a stable fundamental transverse mode, and wavelength tuning characteristics ((Delta) (lambda) ~2nm) under 100 mW CW operation.
Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band
NASA Technical Reports Server (NTRS)
Tarter, J.
1989-01-01
Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.
Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band.
Tarter, J
1989-01-01
Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.
Scholes, Corey; Sahni, Varun; Lustig, Sebastien; Parker, David A; Coolican, Myles R J
2014-03-01
The introduction of patient-specific instruments (PSI) for guiding bone cuts could increase the incidence of malalignment in primary total knee arthroplasty. The purpose of this study was to assess the agreement between one type of patient-specific instrumentation (Zimmer PSI) and the pre-operative plan with respect to bone cuts and component alignment during TKR using imageless computer navigation. A consecutive series of 30 femoral and tibial guides were assessed in-theatre by the same surgeon using computer navigation. Following surgical exposure, the PSI cutting guides were placed on the joint surface and alignment assessed using the navigation tracker. The difference between in-theatre data and the pre-operative plan was recorded and analysed. The error between in-theatre measurements and pre-operative plan for the femoral and tibial components exceeded 3° for 3 and 17% of the sample, respectively, while the error for total coronal alignment exceeded 3° for 27% of the sample. The present results indicate that alignment with Zimmer PSI cutting blocks, assessed by imageless navigation, does not match the pre-operative plan in a proportion of cases. To prevent unnecessary increases in the incidence of malalignment in primary TKR, it is recommended that these devices should not be used without objective verification of alignment, either in real-time or with post-operative imaging. Further work is required to identify the source of discrepancies and validate these devices prior to routine use. II.
The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer
NASA Astrophysics Data System (ADS)
Garner, Andrew J. P.; Müller, Markus P.; Dahlsten, Oscar C. O.
2017-12-01
The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.
The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.
Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O
2017-12-01
The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.
Modulated Acquisition of Spatial Distortion Maps
Volkov, Alexey; Gros, Jerneja Žganec; Žganec, Mario; Javornik, Tomaž; Švigelj, Aleš
2013-01-01
This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial. PMID:23966196
Modulated acquisition of spatial distortion maps.
Volkov, Alexey; Gros, Jerneja Zganec; Zganec, Mario; Javornik, Tomaž; Svigelj, Aleš
2013-08-21
This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial.
Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya
2010-01-01
We experimentally demonstrate linewidth-tolerant real-time 40-Gbit/s(10-Gsymbol/s) 16-quadrature amplitude modulation. We achieved bit-error rates of <10(-9) using an external-cavity laser diode with a linewidth of 200 kHz and <10(-7) using a distributed-feedback laser diode with a linewidth of 30 MHz, thanks to the phase-noise canceling capability provided by self-homodyne detection using a pilot carrier. Pre-equalization based on digital signal processing was employed to suppress intersymbol interference caused by the limited-frequency bandwidth of electrical components.
Measuring the distance between multiple sequence alignments.
Blackburne, Benjamin P; Whelan, Simon
2012-02-15
Multiple sequence alignment (MSA) is a core method in bioinformatics. The accuracy of such alignments may influence the success of downstream analyses such as phylogenetic inference, protein structure prediction, and functional prediction. The importance of MSA has lead to the proliferation of MSA methods, with different objective functions and heuristics to search for the optimal MSA. Different methods of inferring MSAs produce different results in all but the most trivial cases. By measuring the differences between inferred alignments, we may be able to develop an understanding of how these differences (i) relate to the objective functions and heuristics used in MSA methods, and (ii) affect downstream analyses. We introduce four metrics to compare MSAs, which include the position in a sequence where a gap occurs or the location on a phylogenetic tree where an insertion or deletion (indel) event occurs. We use both real and synthetic data to explore the information given by these metrics and demonstrate how the different metrics in combination can yield more information about MSA methods and the differences between them. MetAl is a free software implementation of these metrics in Haskell. Source and binaries for Windows, Linux and Mac OS X are available from http://kumiho.smith.man.ac.uk/whelan/software/metal/.
Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y
2014-12-23
Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.
Allocentric and contra-aligned spatial representations of a town environment in blind people.
Chiesa, Silvia; Schmidt, Susanna; Tinti, Carla; Cornoldi, Cesare
2017-10-01
Evidence concerning the representation of space by blind individuals is still unclear, as sometimes blind people behave like sighted people do, while other times they present difficulties. A better understanding of blind people's difficulties, especially with reference to the strategies used to form the representation of the environment, may help to enhance knowledge of the consequences of the absence of vision. The present study examined the representation of the locations of landmarks of a real town by using pointing tasks that entailed either allocentric points of reference with mental rotations of different degrees, or contra-aligned representations. Results showed that, in general, people met difficulties when they had to point from a different perspective to aligned landmarks or from the original perspective to contra-aligned landmarks, but this difficulty was particularly evident for the blind. The examination of the strategies adopted to perform the tasks showed that only a small group of blind participants used a survey strategy and that this group had a better performance with respect to people who adopted route or verbal strategies. Implications for the comprehension of the consequences on spatial cognition of the absence of visual experience are discussed, focusing in particular on conceivable interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Gatto, Alberto; Torroja-Fungairiño, Carlos; Mazzarotto, Francesco; Cook, Stuart A; Barton, Paul J R; Sánchez-Cabo, Fátima; Lara-Pezzi, Enrique
2014-04-01
Alternative splicing is the main mechanism governing protein diversity. The recent developments in RNA-Seq technology have enabled the study of the global impact and regulation of this biological process. However, the lack of standardized protocols constitutes a major bottleneck in the analysis of alternative splicing. This is particularly important for the identification of exon-exon junctions, which is a critical step in any analysis workflow. Here we performed a systematic benchmarking of alignment tools to dissect the impact of design and method on the mapping, detection and quantification of splice junctions from multi-exon reads. Accordingly, we devised a novel pipeline based on TopHat2 combined with a splice junction detection algorithm, which we have named FineSplice. FineSplice allows effective elimination of spurious junction hits arising from artefactual alignments, achieving up to 99% precision in both real and simulated data sets and yielding superior F1 scores under most tested conditions. The proposed strategy conjugates an efficient mapping solution with a semi-supervised anomaly detection scheme to filter out false positives and allows reliable estimation of expressed junctions from the alignment output. Ultimately this provides more accurate information to identify meaningful splicing patterns. FineSplice is freely available at https://sourceforge.net/p/finesplice/.
Micro ring cavity resonator incorporating total internal reflection mirrors
NASA Astrophysics Data System (ADS)
Kim, Doo Gun; Choi, Woon Kyung; Choi, Young Wan; Yi, Jong Chang; Chung, Youngchul; Dagli, Nadir
2007-02-01
We investigate the properties of a multimode-interference (MMI) coupled micro ring cavity resonator with total-internal-reflection (TIR) mirrors and a semiconductor optical amplifier (SOA). The TIR mirrors were fabricated by the self-aligned process with a loss of 0.7 dB per mirror. The length and width of an MMI are 142 μm and 10 μm, respectively. The resulting free spectral range (FSR) of the resonator was approximately 1.698 nm near 1571 nm and the extinction ratio was about 17 dB. These devices might be useful as optical switching and add-drop filters in a photonic integrated circuit or as small and fast resonator devices.
Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.
Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T
2016-05-15
We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.
Practical gigahertz quantum key distribution robust against channel disturbance.
Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; He, De-Yong; Hui, Cong; Hao, Peng-Lei; Fan-Yuan, Guan-Jie; Wang, Chao; Zhang, Li-Jun; Kuang, Jie; Liu, Shu-Feng; Zhou, Zheng; Wang, Yong-Gang; Guo, Guang-Can; Han, Zheng-Fu
2018-05-01
Quantum key distribution (QKD) provides an attractive solution for secure communication. However, channel disturbance severely limits its application when a QKD system is transferred from the laboratory to the field. Here a high-speed Faraday-Sagnac-Michelson QKD system is proposed that can automatically compensate for the channel polarization disturbance, which largely avoids the intermittency limitations of environment mutation. Over a 50 km fiber channel with 30 Hz polarization scrambling, the practicality of this phase-coding QKD system was characterized with an interference fringe visibility of 99.35% over 24 h and a stable secure key rate of 306 k bits/s over seven days without active polarization alignment.
Miller, Steven C M
2015-06-01
Portable electronic devices play an important role in the management of type 1 diabetes mellitus. Electromagnetic interference from electronic devices has been shown to impair the function of an avalanche transceiver in search mode (but not in transmitting mode). This study investigates the influence of electromagnetic interference from diabetes devices on a searching avalanche beacon. The greatest distance at which an avalanche transceiver (in search mode) could accurately indicate the location of a transmitting transceiver was assessed when portable electronic devices (including an insulin pump and commonly used real-time continuous subcutaneous glucose monitoring system [rtCGMS]) were held in close proximity to each transceiver. The searching transceiver could accurately locate a transmitted signal at a distance of 30 m when used alone. This distance was unchanged by the Dexcom G4 rtCGMS, but was reduced to 10 m when the Medtronic Guardian rtCGMS was held close (within 30 cm) to the receiving beacon. Interference from the Animas Vibe insulin pump reduced this distance to 5 m, impairing the searching transceiver in a manner identical to the effect of a cell phone. Electromagnetic interference produced by some diabetes devices when held within 30 cm of a searching avalanche transceiver can impair the ability to locate a signal. Such interference could significantly compromise the outcome of a companion rescue scenario. Further investigation using other pumps and rtCGMS devices is required to evaluate all available diabetes electronics. Meantime, all electronic diabetes devices including rtCGMS and insulin pumps should not be used within 30 cm of an avalanche transceiver. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Stegmayr, Armin; Fessl, Benjamin; Hörtnagl, Richard; Marcadella, Michael; Perkhofer, Susanne
2013-08-01
The aim of the study was to assess the potential negative impact of cellular phones and digitally enhanced cordless telecommunication (DECT) devices on the quality of static and dynamic scintigraphy to avoid repeated testing in infant and teenage patients to protect them from unnecessary radiation exposure. The assessment was conducted by performing phantom measurements under real conditions. A functional renal-phantom acting as a pair of kidneys in dynamic scans was created. Data were collected using the setup of cellular phones and DECT phones placed in different positions in relation to a camera head to test the potential interference of cellular phones and DECT phones with the cameras. Cellular phones reproducibly interfered with the oldest type of gamma camera, which, because of its single-head specification, is the device most often used for renal examinations. Curves indicating the renal function were considerably disrupted; cellular phones as well as DECT phones showed a disturbance concerning static acquisition. Variable electromagnetic tolerance in different types of γ-cameras could be identified. Moreover, a straightforward, low-cost method of testing the susceptibility of equipment to interference caused by cellular phones and DECT phones was generated. Even though some departments use newer models of γ-cameras, which are less susceptible to electromagnetic interference, we recommend testing examination rooms to avoid any interference caused by cellular phones. The potential electromagnetic interference should be taken into account when the purchase of new sensitive medical equipment is being considered, not least because the technology of mobile communication is developing fast, which also means that different standards of wave bands will be issued in the future.
A multichannel amplitude and relative-phase controller for active sound quality control
NASA Astrophysics Data System (ADS)
Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.
2017-05-01
The enhancement of the sound quality of periodic disturbances for a number of listeners within an enclosure often confronts difficulties given by cross-channel interferences, which arise from simultaneously profiling the primary sound at each error sensor. These interferences may deteriorate the original sound among each listener, which is an unacceptable result from the point of view of sound quality control. In this paper we provide experimental evidence on controlling both amplitude and relative-phase functions of stationary complex primary sounds for a number of listeners within a cavity, attaining amplifications of twice the original value, reductions on the order of 70 dB, and relative-phase shifts between ± π rad, still in a free-of-interference control scenario. To accomplish such burdensome control targets, we have designed a multichannel active sound profiling scheme that bases its operation on exchanging time-domain control signals among the control units during uptime. Provided the real parts of the eigenvalues of persistently excited control matrices are positive, the proposed multichannel array is able to counterbalance cross-channel interferences, while attaining demanding control targets. Moreover, regularization of unstable control matrices is not seen to prevent the proposed array to provide free-of-interference amplitude and relative-phase control, but the system performance is degraded, as a function of the amount of regularization needed. The assessment of Loudness and Roughness metrics on the controlled primary sound proves that the proposed distributed control scheme noticeably outperforms current techniques, since active amplitude- and/or relative-phase-based enhancement of the auditory qualities of a primary sound no longer implies in causing interferences among different positions. In this regard, experimental results also confirm the effectiveness of the proposed scheme on stably enhancing the sound qualities of periodic sounds for multiple listeners within a cavity.
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
NASA Astrophysics Data System (ADS)
Krappig, Reik; Schmitt, Robert
2017-02-01
Present alignment methods already have an accuracy of some microns, allowing in general the fairly precise assembly of multi element optical systems. Nevertheless, they suffer decisive drawbacks, such as the necessity of an iterative process, stepping through all optical surfaces of the system when using autocollimation telescopes. In contrast to these limitations, the wavefront based alignment offers an elegant approach to potentially reach sub-µm accuracy in the alignment within a highly efficient process, that simultaneously acquires and evaluates the best optical solution possible. However, the practical use of these capabilities in corresponding alignment devices needs to take real sensor behavior into account. This publication will especially elaborate on the influence of the sensor properties in relation to the alignment process. The first dominant requirement is a highly stable measurement, since tiny perturbations in the optical system will have an also tiny influence on the wavefront. Secondly, the lateral sampling of the measured wavefront is supposed to be as high as possible, in order to be able to extract higher order Zernike coefficients reliable. The resulting necessity of using the largest sensor area possible conflicts with the requirement to allow a certain lateral displacement of the measured spot, indicating a perturbation. A movement of the sensor with suitable stages in turn leads to additional uncertainties connected to the actuators. Further factors include the SNR-ratio of the sensor as well as multiple measurements, in order to improve data repeatability. This publication will present a procedure of dealing with these relevant influence factors. Depending on the optical system and its properties the optimal adjustment of these parameters is derived.
Quigley, Martin M; Mate, Timothy P; Sylvester, John E
2009-01-01
To evaluate the accuracy, utility, and cost effectiveness of a new electromagnetic patient positioning and continuous, real-time monitoring system, which uses permanently implanted resonant transponders in the target (Calypso 4D Localization System and Beacon transponders, Seattle, WA) to continuously monitor tumor location and movement during external beam radiation therapy of the prostate. This clinical trial studied 43 patients at 5 sites. All patients were implanted with 3 transponders each. In 41 patients, the system was used for initial alignment at each therapy session. Thirty-five patients had continuous monitoring during their radiation treatment. Over 1,000 alignment comparisons were made to a commercially available kV X-ray positioning system (BrainLAB ExacTrac, Munich, Germany). Using decision analysis and Markov processes, the outcomes of patients were simulated over a 5-year period and measured in terms of costs from a payer's perspective and quality-adjusted life years (QALYs). All patients had satisfactory transponder implantations for monitoring purposes. In over 75% of the treatment sessions, the correction to conventional positioning (laser and tattoos) directed by an electromagnetic patient positioning and monitoring system was greater than 5 mm. Ninety-seven percent (34/35) of the patients who underwent continuous monitoring had target motion that exceeded preset limits at some point during the course of their radiation therapy. Exceeding preset thresholds resulted in user intervention at least once during the therapy in 80% of the patients (28/35). Compared with localization using ultrasound, electronic portal imaging devices (EPID), or computed tomography (CT), localization with the electromagnetic patient positioning and monitoring system yielded superior gains in QALYs at comparable costs. Most patients positioned with conventional tattoos and lasers for prostate radiation therapy were found by use of the electromagnetic patient positioning and monitoring system to have alignment errors exceeding 5 mm. Almost all patients undergoing external beam radiation of the prostate have been shown to have target organ movement exceeding 3 mm during radiation therapy delivery. The ability of the electromagnetic technology to monitor tumor target location during the same time as radiation therapy is being delivered allows clinicians to provide real time adaptive radiation therapy for prostate cancer. This permits clinicians to intervene when the prostate moves outside the radiation isocenter, which should decrease adverse events and improve patient outcomes. Additionally, a cost-utility analysis has demonstrated that the electromagnetic patient positioning and monitoring system offers patient outcome benefits at a cost that falls well within the payer's customary willingness to pay (WTP) threshold of $50,000 per QALY.
A Tree Based Self-routing Scheme for Mobility Support in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Yang, Yeon-Mo; Kang, Won-Seok; Kim, Jin-Wook; An, Jinung
Recently, WSNs (Wireless Sensor Networks) with mobile robot is a growing technology that offer efficient communication services for anytime and anywhere applications. However, the tiny sensor node has very limited network resources due to its low battery power, low data rate, node mobility, and channel interference constraint between neighbors. Thus, in this paper, we proposed a tree based self-routing protocol for autonomous mobile robots based on beacon mode and implemented in real test-bed environments. The proposed scheme offers beacon based real-time scheduling for reliable association process between parent and child nodes. In addition, it supports smooth handover procedure by reducing flooding overhead of control packets. Throughout the performance evaluation by using a real test-bed system and simulation, we illustrate that our proposed scheme demonstrates promising performance for wireless sensor networks with mobile robots.
Using response evaluation criteria in solid tumors in real-world evidence cancer research.
Feinberg, Bruce A; Bharmal, Murtuza; Klink, Andrew J; Nabhan, Chadi; Phatak, Hemant
2018-05-31
Real-world evidence of charted treatment responses to cancer drug therapy was compared with medical record derived radiographic measurements of target lesions per Response Evaluation Criteria in Solid Tumors (RECIST). 15 physicians treating 59 metastatic Merkel cell cancer (mMCC) patients contributed patient-level data. A comparison of medical record reported best response with radiographic measurements per RECIST of pre- and post-treatment target lesions. RECIST response rates were significantly lower compared with medical record reported with a concordance of 43.2% (95% CI: 28.0-58.4%). Subjective assessment of tumor response collected via traditional chart abstraction may overestimate benefit and limit the potential role of real-world evidence in value-based care research. The use of target lesion measurements presents an attractive alternative that better aligns with trial results.
Aligning a Receiving Antenna Array to Reduce Interference
NASA Technical Reports Server (NTRS)
Jongeling, Andre P.; Rogstad, David H.
2009-01-01
A digital signal-processing algorithm has been devised as a means of aligning (as defined below) the outputs of multiple receiving radio antennas in a large array for the purpose of receiving a desired weak signal transmitted by a single distant source in the presence of an interfering signal that (1) originates at another source lying within the antenna beam and (2) occupies a frequency band significantly wider than that of the desired signal. In the original intended application of the algorithm, the desired weak signal is a spacecraft telemetry signal, the antennas are spacecraft-tracking antennas in NASA s Deep Space Network, and the source of the wide-band interfering signal is typically a radio galaxy or a planet that lies along or near the line of sight to the spacecraft. The algorithm could also afford the ability to discriminate between desired narrow-band and nearby undesired wide-band sources in related applications that include satellite and terrestrial radio communications and radio astronomy. The development of the present algorithm involved modification of a prior algorithm called SUMPLE and a predecessor called SIMPLE. SUMPLE was described in Algorithm for Aligning an Array of Receiving Radio Antennas (NPO-40574), NASA Tech Briefs Vol. 30, No. 4 (April 2006), page 54. To recapitulate: As used here, aligning signifies adjusting the delays and phases of the outputs from the various antennas so that their relatively weak replicas of the desired signal can be added coherently to increase the signal-to-noise ratio (SNR) for improved reception, as though one had a single larger antenna. Prior to the development of SUMPLE, it was common practice to effect alignment by means of a process that involves correlation of signals in pairs. SIMPLE is an example of an algorithm that effects such a process. SUMPLE also involves correlations, but the correlations are not performed in pairs. Instead, in a partly iterative process, each signal is appropriately weighted and then correlated with a composite signal equal to the sum of the other signals.
Propagation Impact on Modern HF (High Frequency) Communications System Design
1986-03-01
received SNR is maximised and interference avoided. As a general principle, system availability and reliability should be improved by the use of...LECTURE SERIES No. 145 propagation Impact on Modern HF Communications System Design. NORTH ATLANTIC TREATY ORGANIZATION gS ^, DISTRIBUTION ...civil and military communities for high frequency communications. It will discuss concepts of real time channel evaluation , system design, as well as
ERIC Educational Resources Information Center
Hameed, Paikar Fatima Mazhar
2016-01-01
The craziness of English spelling has undeniably perplexed learners, especially in an EFL context as in the Kingdom of Saudi Arabia. In these situations, among other obstacles, learners also have to tackle the perpetual and unavoidable problem of MT interference. Sadly, this perplexity takes the shape of a real problem in the language classroom…
Real-Time Meteorological Battlespace Characterization in Support of Sea Power 21
2011-02-04
32 5.3 LESSONS LEARNED ....................................................................................... 44 6. FUTURE WORK...problem with the SWR alignment, which is sometimes re- set during SWR maintenance (see Section 6 ‘Lessons Learned ’ for a case in point). Fig...ground clutter present (discussed in Section 6 ‘Lessons Learned ’), along with the lowest-tilt, quality controlled velocity. Bottom panel shows the
Self spectrum window method in wigner-ville distribution.
Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun
2005-01-01
Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.
Deason, Vance A.; Telschow, Kenneth L.
2006-10-17
An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.
Self-referenced coherent diffraction x-ray movie of Ångstrom- and femtosecond-scale atomic motion
Glownia, J. M.; Natan, A.; Cryan, J. P.; ...
2016-10-03
Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with a temporal and spatial resolution of 30 fs and 0.3 Å. This high fidelity is due to interference between the nonstationary excitation and the stationary initial charge distribution. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on ångstrom and femtosecond scales. This x-ray interference has not been employed to image internal motion in molecules before. In conclusion, coherent vibrational motion and dispersion, dissociation, and rotationalmore » dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.« less
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2012-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers’ capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. PMID:20677899
Optical fiber sensor technique for strain measurement
Butler, Michael A.; Ginley, David S.
1989-01-01
Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.
Hydrazine monitoring in spacecraft
NASA Technical Reports Server (NTRS)
Cross, J. H.; Beck, S. W.; Limero, T. F.; James, J. T.
1992-01-01
Hydrazine (HZ) and monomethyl hydrazine (MMH) are highly toxic compounds used as fuels in the Space Shuttle Orbiter Main Engines and in its maneuvering and reaction control system. Satellite refueling during a mission may also result in release of hydrazines. During extravehicular activities, the potential exists for hydrazines to contaminate the suit and to be brought into the internal atmosphere inadvertantly. Because of the high toxicity of hydrazines, a very sensitive, reliable, interference-free, and real-time method of measurement is required. A portable ion mobility spectrometer (IMS) has exhibited a low ppb detection limit for hydrazines suggesting a promising technology for the detection of hydrazines in spacecraft air. The Hydrazine Monitor is a modified airborne vapor monitor (AVM) with a custom-built datalogger. This off-the-shelf IMS was developed for the detection of chemical warfare agents on the battlefield. After early evaluations of the AVM for hydrazine measurements showed a serious interference from ammonia, the AVM was modified to measure HZ and MMH in the ppb concentration range without interference from ammonia in the low ppm range. A description of the Hydrazine Monitor and how it functions is presented.
Charge modulation as fingerprints of phase-string triggered interference
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan
2015-07-01
Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high Tc cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t -J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook
2013-12-01
A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.
Real-time monitoring of ischemia inside stomach.
Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep
2013-02-15
The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications. Copyright © 2012 Elsevier B.V. All rights reserved.
The algebra of healthcare reform: hospital-physician economic alignment.
Goodroe, J H; Murphy, D A
1999-01-01
In summary the tertiary care programs in this nation are trapped in a difficult dilemma. On one side is the ongoing reduction in provider revenue driven by real and powerful market forces. On the other side is a traditional payment system governed by necessary laws that inhibit meaningful re-engineering of tertiary care delivery. If a remedy to this situation cannot be created then it is very likely that all aspects of quality as defined earlier will suffer. It is our hope that by very careful construction of a relationship, with attention to applicable statutes and careful measurement of utilization and quality, a limited business alignment of a hospital and a group of tertiary physicians can be approved in the care of Medicare, Medicaid and all federally funded patients.
Sagnac-interferometer-based fresnel flow probe.
Tselikov, A; Blake, J
1998-10-01
We used a near-diffraction-limited flow or light-wave-interaction pipe to produce a Sagnac-interferometer-based Fresnel drag fluid flowmeter capable of detecting extremely small flow rates. An optimized design of the pipe along with the use of a state-of-the-art Sagnac interferometer results in a minimum-detectable water flow rate of 2.4 nl/s [1 drop/(5 h)]. The flowmeter's capability of measuring the water consumption by a small plant in real time has been demonstrated. We then designed an automated alignment system that finds and maintains the optimum fiber-coupling regime, which makes the applications of the Fresnel-drag-based flowmeters practical, especially if the length of the interaction pipe is long. Finally, we have applied the automatic alignment technique to an air flowmeter.
Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Fang-Yuh, E-mail: fangyuhlo@ntnu.edu.tw; Ting, Yi-Chieh; Chou, Kai-Chieh
2015-06-07
Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescencemore » spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.« less
Alignment of the hydrogen molecule under intense laser fields
Lopez, Gary V.; Fournier, Martin; Jankunas, Justin; ...
2017-06-01
Alignment, dissociation and ionization of H 2 molecules in the ground or the electronically excited E,F state of the H 2 molecule are studied and contrasted using the Velocity Mapping Imaging (VMI) technique. Photoelectron images from nonresonant 7-, 8- and 9-photon radiation ionization of H 2 show that the intense laser fields create ponderomotive shifts in the potential energy surfaces and distort the velocity of the emitted electrons that are produced from ionization. Photofragment images of H+ due to the dissociation mechanism that follows the 2-photon excitation into the (E,F; v = 0, J = 0, 1) electronic state showmore » a strong dependence on laser intensity, which is attributed to the high polarizability of the H 2 (E,F) state. For transitions from the J = 0 state, particularly, we observe marked structure in the angular distribution, which we explain as the interference between the prepared J = 0 and Stark-mixed J = 2 rovibrational states of H 2, as the laser intensity increases. Quantification of these effects allows us to extract the molecular polarizability of the H 2 (E,F) state, and yields a value of 103 ± 37 A.U.« less
Alignment of the hydrogen molecule under intense laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Gary V.; Fournier, Martin; Jankunas, Justin
Alignment, dissociation and ionization of H 2 molecules in the ground or the electronically excited E,F state of the H 2 molecule are studied and contrasted using the Velocity Mapping Imaging (VMI) technique. Photoelectron images from nonresonant 7-, 8- and 9-photon radiation ionization of H 2 show that the intense laser fields create ponderomotive shifts in the potential energy surfaces and distort the velocity of the emitted electrons that are produced from ionization. Photofragment images of H+ due to the dissociation mechanism that follows the 2-photon excitation into the (E,F; v = 0, J = 0, 1) electronic state showmore » a strong dependence on laser intensity, which is attributed to the high polarizability of the H 2 (E,F) state. For transitions from the J = 0 state, particularly, we observe marked structure in the angular distribution, which we explain as the interference between the prepared J = 0 and Stark-mixed J = 2 rovibrational states of H 2, as the laser intensity increases. Quantification of these effects allows us to extract the molecular polarizability of the H 2 (E,F) state, and yields a value of 103 ± 37 A.U.« less
Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.
Ye, Dong; Ding, Yajiang; Duan, Yongqing; Su, Jiangtao; Yin, Zhouping; Huang, Yong An
2018-05-01
Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well-patterned microstructures in flexible electronics. Electro-hydrodynamic (EHD) direct-writing technology enables large-scale deposition of highly aligned nanofibers in an additive, noncontact, real-time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground-breaking research progress in the field of EHD direct-writing technology is summarized, including a brief chronology of EHD direct-writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct-written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-subject subspace alignment for non-stationary EEG-based emotion recognition.
Chai, Xin; Wang, Qisong; Zhao, Yongping; Liu, Xin; Liu, Dan; Bai, Ou
2018-01-01
Emotion recognition based on EEG signals is a critical component in Human-Machine collaborative environments and psychiatric health diagnoses. However, EEG patterns have been found to vary across subjects due to user fatigue, different electrode placements, and varying impedances, etc. This problem renders the performance of EEG-based emotion recognition highly specific to subjects, requiring time-consuming individual calibration sessions to adapt an emotion recognition system to new subjects. Recently, domain adaptation (DA) strategies have achieved a great deal success in dealing with inter-subject adaptation. However, most of them can only adapt one subject to another subject, which limits their applicability in real-world scenarios. To alleviate this issue, a novel unsupervised DA strategy called Multi-Subject Subspace Alignment (MSSA) is proposed in this paper, which takes advantage of subspace alignment solution and multi-subject information in a unified framework to build personalized models without user-specific labeled data. Experiments on a public EEG dataset known as SEED verify the effectiveness and superiority of MSSA over other state of the art methods for dealing with multi-subject scenarios.
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Mostaert, Anika S.; Serpell, Louise C.; Jarvis, Suzanne P.
2008-09-01
We have investigated the surface structure of islet amyloid polypeptide (IAPP) fibrils and α-synuclein protofibrils in liquid by means of frequency modulation atomic force microscopy (FM-AFM). Ångström-resolution FM-AFM imaging of isolated macromolecules in liquid is demonstrated for the first time. Individual β-strands aligned perpendicular to the fibril axis with a spacing of 0.5 nm are resolved in FM-AFM images, which confirms cross-β structure of IAPP fibrils in real space. FM-AFM images also reveal the existence of 4 nm periodic domains along the axis of IAPP fibrils. Stripe features with 0.5 nm spacing are also found in images of α-synuclein protofibrils. However, in contrast to the case for IAPP fibrils, the stripes are oriented 30° from the axis, suggesting the possibility of β-strand alignment in protofibrils different from that in mature fibrils or the regular arrangement of thioflavin T molecules present during the fibril preparation aligned at the surface of the protofibrils.
Alignment and position visualization methods for the biomedical imaging and therapy (BMIT) MRT lift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bree, Michael, E-mail: michael.bree@lightsource.ca; Miller, Denise; Kerr, Graham
The Microbeam Radiation Therapy (MRT) Lift is an eight stage positioning and scanning system at the Canadian Light Source’s BMIT Facility. Alignment of the sample with the beam using the MRT Lift is a time consuming and challenging task. The BMIT Group has developed a Python-based MRT Lift positioning and control program that uses a combination of computational and iterative methods to independently adjust the sample’s X, Y, Z, pitch and roll positions. The program offers “1-Click” alignment of the sample to the beam. Use of a wireframe visualization technique enables even minute movements to be illustrated. Proposed movements andmore » the resulting MRT Lift position can be manually verified before being applied. Optional integration with the SolidWorks modelling platform allows high quality renderings of the MRT Lift in its current or proposed position to be displayed in real time. Human factors principles are incorporated into the program with the objective of delivering easy to use controls for this complex device.« less
NASA Astrophysics Data System (ADS)
Figl, Michael; Rueckert, Daniel; Edwards, Eddie
2009-02-01
The aim of the work described in this paper is registration of a 4D preoperative motion model of the heart to the video view of the patient through the intraoperative endoscope. The heart motion is cyclical and can be modelled using multiple reconstructions of cardiac gated coronary CT. We propose the use of photoconsistency between the two views through the da Vinci endoscope to align to the preoperative heart surface model from CT. The temporal alignment from the video to the CT model could in principle be obtained from the ECG signal. We propose averaging of the photoconsistency over the cardiac cycle to improve the registration compared to a single view. Though there is considerable motion of the heart, after correct temporal alignment we suggest that the remaining motion should be close to rigid. Results are presented for simulated renderings and for real video of a beating heart phantom. We found much smoother sections at the minimum when using multiple phases for the registration, furthermore convergence was found to be better when more phases are used.
NASA Astrophysics Data System (ADS)
Charity, R. J.; Brown, K. W.; Okołowicz, J.; Płoszajczak, M.; Elson, J. M.; Reviol, W.; Sobotka, L. G.; Buhro, W. W.; Chajecki, Z.; Lynch, W. G.; Manfredi, J.; Shane, R.; Showalter, R. H.; Tsang, M. B.; Weisshaar, D.; Winkelbauer, J. R.; Bedoor, S.; Wuosmaa, A. H.
2018-05-01
The sequential two-proton decay of the second excited state in 17Ne, produced by inelastic excitation at intermediate energy, is studied. This state is found to be highly spin aligned, providing another example of a recently discovered alignment mechanism. The fortuitous condition that the second decay step is slightly more energetic than the first, permits the lifetime of the one-proton daughter, the ground state of 16F, to be determined from the magnitude of the final-state interactions between the protons. This new method gave a result [Γ =20.6 (57 ) keV] consistent with that obtained by directly measuring the width of the state [Γ =21.3 (51 ) keV]. This width allows one to determine the continuum coupling constant in this mass region. Real-energy continuum-shell-model studies yield a satisfactory description of both spectra and widths of low-energy resonances in 16F and suggest an unusual large ratio of proton-proton to proton-neutron continuum couplings in the vicinity of the proton drip line.
Portable real-time color night vision
NASA Astrophysics Data System (ADS)
Toet, Alexander; Hogervorst, Maarten A.
2008-03-01
We developed a simple and fast lookup-table based method to derive and apply natural daylight colors to multi-band night-time images. The method deploys an optimal color transformation derived from a set of samples taken from a daytime color reference image. The colors in the resulting colorized multiband night-time images closely resemble the colors in the daytime color reference image. Also, object colors remain invariant under panning operations and are independent of the scene content. Here we describe the implementation of this method in two prototype portable dual band realtime night vision systems. One system provides co-aligned visual and near-infrared bands of two image intensifiers, the other provides co-aligned images from a digital image intensifier and an uncooled longwave infrared microbolometer. The co-aligned images from both systems are further processed by a notebook computer. The color mapping is implemented as a realtime lookup table transform. The resulting colorised video streams can be displayed in realtime on head mounted displays and stored on the hard disk of the notebook computer. Preliminary field trials demonstrate the potential of these systems for applications like surveillance, navigation and target detection.
Precision alignment and calibration of optical systems using computer generated holograms
NASA Astrophysics Data System (ADS)
Coyle, Laura Elizabeth
As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the calibration is a function of the interferometer error and the aspheric departure of the desired test surface. This calibration is most effective at reducing coma and trefoil from figure error or misalignments of the interferometer components. The enhanced calibration can reduce overall measurement uncertainty or allow the budgeted error contribution from another source to be increased. A single set of sphere measurements can be used to calculate calibration maps for closely related aspheres, including segmented primary mirrors for telescopes. A parametric model is developed and compared to the simulated calibration of a case study interferometer.
IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning
2018-01-01
Human body motion analysis based on wearable inertial measurement units (IMUs) receives a lot of attention from both the research community and the and industrial community. This is due to the significant role in, for instance, mobile health systems, sports and human computer interaction. In sensor based activity recognition, one of the major issues for obtaining reliable results is the sensor placement/assignment on the body. For inertial motion capture (joint kinematics estimation) and analysis, the IMU-to-segment (I2S) assignment and alignment are central issues to obtain biomechanical joint angles. Existing approaches for I2S assignment usually rely on hand crafted features and shallow classification approaches (e.g., support vector machines), with no agreement regarding the most suitable features for the assignment task. Moreover, estimating the complete orientation alignment of an IMU relative to the segment it is attached to using a machine learning approach has not been shown in literature so far. This is likely due to the high amount of training data that have to be recorded to suitably represent possible IMU alignment variations. In this work, we propose online approaches for solving the assignment and alignment tasks for an arbitrary amount of IMUs with respect to a biomechanical lower body model using a deep learning architecture and windows of 128 gyroscope and accelerometer data samples. For this, we combine convolutional neural networks (CNNs) for local filter learning with long-short-term memory (LSTM) recurrent networks as well as generalized recurrent units (GRUs) for learning time dynamic features. The assignment task is casted as a classification problem, while the alignment task is casted as a regression problem. In this framework, we demonstrate the feasibility of augmenting a limited amount of real IMU training data with simulated alignment variations and IMU data for improving the recognition/estimation accuracies. With the proposed approaches and final models we achieved 98.57% average accuracy over all segments for the I2S assignment task (100% when excluding left/right switches) and an average median angle error over all segments and axes of 2.91° for the I2S alignment task. PMID:29351262
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, K; Gil, M; Li, G
Purpose: To develop a novel approach to improve cervical spine (c-spine) curvature reproducibility for head and neck (HN) patients using optical surface imaging (OSI) with two regions of interests (ROIs). Methods: The OSI-guided, two-step setup procedure requires two ROIs: ROI-1 of the shoulders and ROI-2 of the face. The neck can be stretched or squeezed in superior-inferior (SI) direction using a specially-designed sliding head support. We hypothesize that when these two ROIs are aligned, the c-spine should fall into a naturally reproducible position under same setup conditions. An anthropomorphous phantom test was performed to examine neck pitch angles comparing withmore » the calculated angles. Three volunteers participated in the experiments, which start with conventional HN setup using skin markers and room lasers. An OSI image and lateral photo-picture were acquired as the references. In each of the three replicate tests, conventional setup was first applied after volunteers got on the couch. ROI-1 was aligned by moving the body, followed by ROI-2 alignment via adjusting head position and orientation under real-time OSI guidance. A final static OSI image and lateral picture were taken to evaluate both anterior and posterior surface alignments. Three degrees of freedom can be adjusted if an open-face mask was applied, including head SI shift using the sliding head support and pitch-and-roll rotations using a commercial couch extension. Surface alignment was analyzed comparing with conventional setup. Results: The neck pitch angle measured by OSI is consistent with the calculated (0.2±0.6°). Volunteer study illustrated improved c-spine setup reproducibility using OSI comparing with conventional setup. ROI alignments with 2mm/1° tolerance are achieved within 3 minutes. Identical knee support is important to achieve ROI-1 pitch alignment. Conclusion: The feasibility of this novel approach has been demonstrated for c-spine curvature setup reproducibility. Further evaluation is necessary with bony alignment variation in patient studies. This study is in part supported by the NIH (U54CA137788).« less
Sakkhachornphop, Supachai; Barbas, Carlos F.; Keawvichit, Rassamee; Wongworapat, Kanlaya
2012-01-01
Abstract Integration of the human immunodeficiency virus type 1 (HIV-1) genome into the host chromosome is a vital step in the HIV life cycle. The highly conserved cytosine–adenine (CA) dinucleotide sequence immediately upstream of the cleavage site is crucial for integrase (IN) activity. As this viral enzyme has an important role early in the HIV-1 replication cycle, interference with the IN substrate has become an attractive strategy for therapeutic intervention. We demonstrated that a designed zinc finger protein (ZFP) fused to green fluorescent protein (GFP) targets the 2-long terminal repeat (2-LTR) circle junctions of HIV-1 DNA with nanomolar affinity. We report now that 2LTRZFP-GFP stably transduced into 293T cells interfered with the expression of vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentiviral red fluorescent protein (RFP), as shown by the suppression of RFP expression. We also used a third-generation lentiviral vector and pCEP4 expression vector to deliver the 2LTRZFP-GFP transgene into human T-lymphocytic cells, and a stable cell line for long-term expression studies was selected for HIV-1 challenge. HIV-1 integration and replication were inhibited as measured by Alu-gag real-time PCR and p24 antigen assay. In addition, the molecular activity of 2LTRZFP-GFP was evaluated in peripheral blood mononuclear cells. The results were confirmed by Alu-gag real-time PCR for integration interference. We suggest that the expression of 2LTRZFP-GFP limited viral integration on intracellular immunization, and that it has potential for use in HIV gene therapy in the future. PMID:22429108
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibata, Rodrigo A.; Martin, Nicolas F.; Ibata, Neil G.
In a recent contribution, Bahl and Baumgardt investigated the incidence of planar alignments of satellite galaxies in the Millennium-II simulation and concluded that vast, thin planes of dwarf galaxies, similar to that observed in the Andromeda galaxy (M31), occur frequently by chance in Λ-cold dark matter cosmology. However, their analysis did not capture the essential fact that the observed alignment is simultaneously radially extended, yet thin, and kinematically unusual. With the caveat that the Millennium-II simulation may not have sufficient mass resolution to identify confidently simulacra of low-luminosity dwarf galaxies, we re-examine that simulation for planar structures, using the samemore » method as employed by Ibata et al. on the real M31 satellites. We find that 0.04% of host galaxies display satellite alignments that are at least as extreme as the observations, when we consider their extent, thickness, and number of members rotating in the same sense. We further investigate the angular momentum properties of the co-planar satellites, and find that the median of the specific angular momentum derived from the line-of-sight velocities in the real M31 structure (1.3 × 10{sup 4} km s{sup –1} kpc) is very high compared to systems drawn from the simulations. This analysis confirms that it is highly unlikely that the observed structure around the Andromeda galaxy is due to a chance occurrence. Interestingly, the few extreme systems that are similar to M31 arise from the accretion of a massive sub-halo with its own spatially concentrated entourage of orphan satellites.« less
SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution
NASA Astrophysics Data System (ADS)
Voorkamp, R.; Verschuuren, M. A.; van Brakel, R.
2016-10-01
Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 - 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and yield. Soft stamps, usually based on silicone rubber, behave fundamentally different compared to rigid stamps on the macro-, micro- and nanometer level. The main limitation of traditional silicones is that they are too soft to support sub-micron features against surface tension based stamp deformation and collapse [4] and handling a soft stamp to achieve accurate feature placement on wafer scales to allow overlay alignment with sub-100nm overlay accuracy.
Sun, Sol Z; Fidalgo, Celia; Barense, Morgan D; Lee, Andy C H; Cant, Jonathan S; Ferber, Susanne
2017-11-01
Interference disrupts information processing across many timescales, from immediate perception to memory over short and long durations. The widely held similarity assumption states that as similarity between interfering information and memory contents increases, so too does the degree of impairment. However, information is lost from memory in different ways. For instance, studied content might be erased in an all-or-nothing manner. Alternatively, information may be retained but the precision might be degraded or blurred. Here, we asked whether the similarity of interfering information to memory contents might differentially impact these 2 aspects of forgetting. Observers studied colored images of real-world objects, each followed by a stream of interfering objects. Across 4 experiments, we manipulated the similarity between the studied object and the interfering objects in circular color space. After interference, memory for object color was tested continuously on a color wheel, which in combination with mixture modeling, allowed for estimation of how erasing and blurring differentially contribute to forgetting. In contrast to the similarity assumption, we show that highly dissimilar interfering items caused the greatest increase in random guess responses, suggesting a greater frequency of memory erasure (Experiments 1-3). Moreover, we found that observers were generally able to resist interference from highly similar items, perhaps through surround suppression (Experiments 1 and 4). Finally, we report that interference from items of intermediate similarity tended to blur or decrease memory precision (Experiments 3 and 4). These results reveal that the nature of visual similarity can differentially alter how information is lost from memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A goal bias in action: The boundaries adults perceive in events align with sites of actor intent.
Levine, Dani; Hirsh-Pasek, Kathy; Pace, Amy; Michnick Golinkoff, Roberta
2017-06-01
We live in a dynamic world comprised of continuous events. Remembering our past and predicting future events, however, requires that we segment these ongoing streams of information in a consistent manner. How is this segmentation achieved? This research examines whether the boundaries adults perceive in events, such as the Olympic figure skating routine used in these studies, align with the beginnings (sources) and endings (goals) of human goal-directed actions. Study 1 showed that a group of experts, given an explicit task with unlimited time to rewatch the event, identified the same subevents as one another, but with greater agreement as to the timing of goals than sources. In Study 2, experts, novices familiarized with the figure skating sequence, and unfamiliarized novices performed an online event segmentation task, marking boundaries as the video progressed in real time. The online boundaries of all groups corresponded with the sources and goals offered by Study 1's experts, with greater alignment of goals than sources. Additionally, expertise, but not mere perceptual familiarity, boosted the alignment of sources and goals. Finally, Study 3, which presented novices with the video played in reverse, indicated, unexpectedly, that even when spatiotemporal cues were disrupted, viewers' perceived event boundaries still aligned with their perception of the actors' intended sources and goals. This research extends the goal bias to event segmentation, and suggests that our spontaneous sensitivity toward goals may allow us to transform even relatively complex and unfamiliar event streams into structured and meaningful representations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Li, Yuanbo; Cui, Xiaoqian; Wang, Hongbei; Zhao, Mengge; Ding, Hongbin
2017-10-01
Digital speckle pattern interferometry (DSPI) can diagnose the topography evolution in real-time, continuous and non-destructive, and has been considered as a most promising technique for Plasma-Facing Components (PFCs) topography diagnostic under the complicated environment of tokamak. It is important for the study of digital speckle pattern interferometry to enhance speckle patterns and obtain the real topography of the ablated crater. In this paper, two kinds of numerical model based on flood-fill algorithm has been developed to obtain the real profile by unwrapping from the wrapped phase in speckle interference pattern, which can be calculated through four intensity images by means of 4-step phase-shifting technique. During the process of phase unwrapping by means of flood-fill algorithm, since the existence of noise pollution, and other inevitable factors will lead to poor quality of the reconstruction results, this will have an impact on the authenticity of the restored topography. The calculation of the quality parameters was introduced to obtain the quality-map from the wrapped phase map, this work presents two different methods to calculate the quality parameters. Then quality parameters are used to guide the path of flood-fill algorithm, and the pixels with good quality parameters are given priority calculation, so that the quality of speckle interference pattern reconstruction results are improved. According to the comparison between the flood-fill algorithm which is suitable for speckle pattern interferometry and the quality-guided flood-fill algorithm (with two different calculation approaches), the errors which caused by noise pollution and the discontinuous of the strips were successfully reduced.
On the feasibility of real-time mapping of the geoelectric field across North America
Love, Jeffrey J.; Rigler, E. Joshua; Kelbert, Anna; Finn, Carol A.; Bedrosian, Paul A.; Balch, Christopher C.
2018-06-08
A review is given of the present feasibility for accurately mapping geoelectric fields across North America in near-realtime by modeling geomagnetic monitoring and magnetotelluric survey data. Should this capability be successfully developed, it could inform utility companies of magnetic-storm interference on electric-power-grid systems. That real-time mapping of geoelectric fields is a challenge is reflective of (1) the spatiotemporal complexity of geomagnetic variation, especially during magnetic storms, (2) the sparse distribution of ground-based geomagnetic monitoring stations that report data in realtime, (3) the spatial complexity of three-dimensional solid-Earth impedance, and (4) the geographically incomplete state of continental-scale magnetotelluric surveys.
Huang, Zhiwei; Teh, Seng Khoon; Zheng, Wei; Mo, Jianhua; Lin, Kan; Shao, Xiaozhuo; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan
2009-03-15
We report an integrated Raman spectroscopy and trimodal (white-light reflectance, autofluorescence, and narrow-band) imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. A special 1.8 mm endoscopic Raman probe with filtering modules is developed, permitting effective elimination of interference of fluorescence background and silica Raman in fibers while maximizing tissue Raman collections. We demonstrate that high-quality in vivo Raman spectra of upper gastrointestinal tract can be acquired within 1 s or subseconds under the guidance of wide-field endoscopic imaging modalities, greatly facilitating the adoption of Raman spectroscopy into clinical research and practice during routine endoscopic inspections.
Out-of-band and adjacent-channel interference reduction by analog nonlinear filters
NASA Astrophysics Data System (ADS)
Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.
2015-12-01
In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components compared to the respective linear filter. Adaptive configurations of NDLs are similarly controlled by a single parameter and are suitable for improving quality of nonstationary signals under time-varying noise conditions. NDLs are designed to be fully compatible with existing linear devices and systems and to be used as an enhancement, or as a low-cost alternative, to the state-of-art interference mitigation methods.
Real-time image mosaicing for medical applications.
Loewke, Kevin E; Camarillo, David B; Jobst, Christopher A; Salisbury, J Kenneth
2007-01-01
In this paper we describe the development of a robotically-assisted image mosaicing system for medical applications. The processing occurs in real-time due to a fast initial image alignment provided by robotic position sensing. Near-field imaging, defined by relatively large camera motion, requires translations as well as pan and tilt orientations to be measured. To capture these measurements we use 5-d.o.f. sensing along with a hand-eye calibration to account for sensor offset. This sensor-based approach speeds up the mosaicing, eliminates cumulative errors, and readily handles arbitrary camera motions. Our results have produced visually satisfactory mosaics on a dental model but can be extended to other medical images.
GraphCrunch 2: Software tool for network modeling, alignment and clustering.
Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša
2011-01-19
Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.
Statkiewicz-Barabach, Gabriela; Olszewski, Jacek; Mergo, Pawel; Urbanczyk, Waclaw.
2017-01-01
We present a comprehensive study of an in-line Mach-Zehnder intermodal interferometer fabricated in a boron-doped two-mode highly birefringent microstructured fiber. We observed different interference signals at the output of the interferometer, related to the intermodal interference of the fundamental and the first order modes of the orthogonal polarizations and a beating of the polarimetric signal related to the difference in the group modal birefringence between the fundamental and the first order modes, respectively. The proposed interferometer was tested for measurements of hydrostatic pressure and temperature for different alignments of the input polarizer with no analyzer at the output. The sensitivities to hydrostatic pressure of the intermodal interference signals for x- and y-polarizations had an opposite sign and were equal to 0.229 nm/MPa and −0.179 nm/MPa, respectively, while the temperature sensitivities for both polarizations were similar and equal 0.020 nm/°C and 0.019 nm/°C. In the case of pressure, for the simultaneous excitation of both polarization modes, we observed a displacement of intermodal fringes with a sensitivity depending on the azimuth of the input polarization state, as well as on the displacement of their envelope with a sensitivity of 2.14 nm/MPa, accompanied by a change in the fringes visibility. Such properties of the proposed interferometer allow for convenient adjustments to the pressure sensitivity of the intermodal fringes and possible applications for the simultaneous interrogation of temperature and pressure. PMID:28718796
Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo
2016-07-19
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .
Statistical alignment: computational properties, homology testing and goodness-of-fit.
Hein, J; Wiuf, C; Knudsen, B; Møller, M B; Wibling, G
2000-09-08
The model of insertions and deletions in biological sequences, first formulated by Thorne, Kishino, and Felsenstein in 1991 (the TKF91 model), provides a basis for performing alignment within a statistical framework. Here we investigate this model.Firstly, we show how to accelerate the statistical alignment algorithms several orders of magnitude. The main innovations are to confine likelihood calculations to a band close to the similarity based alignment, to get good initial guesses of the evolutionary parameters and to apply an efficient numerical optimisation algorithm for finding the maximum likelihood estimate. In addition, the recursions originally presented by Thorne, Kishino and Felsenstein can be simplified. Two proteins, about 1500 amino acids long, can be analysed with this method in less than five seconds on a fast desktop computer, which makes this method practical for actual data analysis.Secondly, we propose a new homology test based on this model, where homology means that an ancestor to a sequence pair can be found finitely far back in time. This test has statistical advantages relative to the traditional shuffle test for proteins.Finally, we describe a goodness-of-fit test, that allows testing the proposed insertion-deletion (indel) process inherent to this model and find that real sequences (here globins) probably experience indels longer than one, contrary to what is assumed by the model. Copyright 2000 Academic Press.
Real-time fuzzy inference based robot path planning
NASA Technical Reports Server (NTRS)
Pacini, Peter J.; Teichrow, Jon S.
1990-01-01
This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.
Real time markerless motion tracking using linked kinematic chains
Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM
2007-08-14
A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.
Dagger on Point: Assessing the Regionally-Aligned Brigade
2013-04-01
missions in support of geographic combatant commanders’ (GCCs) Theater Campaign Plans ( TCPs ).7 Specifically, this EXORD provided direction for...studies of U.S. involvement in BPC and tested a series of validating factors and hypotheses to determine how they held up to real-world case examples55...hampered by other factors . Proposals for a bi-modal Army which include either a permanent Advisory Corps or a specialized Stability and
Strategic Communication in the System for Health
2013-03-01
have borne our share of real crises and even tragedies, every day our Soldiers and their families are protected from injuries , illnesses, and...combat wounds; receive state-of-the-art treatment when prevention fails; and are supported by extraordinarily talented people.”5 And yet, while LTG...design, it “Emulates, nests, and aligns with Army Strategic Planning Guidance (ASPG) Vision and Army Campaign Plan (ACP) end state: Prevent , Shape, Win
Center for Design-Based STEM Education
2013-10-31
focus on "game changing" solutions for STEM education and aligned with the new Next Generation Science Standards ( NGSS ), especially in the...PROJECT NUMBER 5e . TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...2 by the NGSS (i.e., “Science education should reflect the real world interconnections in science” and “seek to illustrate how knowledge and
Long-term viremia and fecal shedding in pups after modified-live canine parvovirus vaccination.
Decaro, Nicola; Crescenzo, Giuseppe; Desario, Costantina; Cavalli, Alessandra; Losurdo, Michele; Colaianni, Maria Loredana; Ventrella, Gianpiero; Rizzi, Stefania; Aulicino, Stefano; Lucente, Maria Stella; Buonavoglia, Canio
2014-06-24
Canine parvovirus (CPV) modified live virus vaccines are able to infect vaccinated dogs replicating in the bloodstream and enteric mucosa. However, the exact duration and extent of CPV vaccine-induced viremia and fecal shedding are not known. With the aim to fill this gap, 26 dogs were administered two commercial vaccines containing a CPV-2 or CPV-2b strain and monitored for 28 days after vaccination. By using real-time PCR, vaccine-induced viremia and shedding were found to be long lasting for both vaccinal strains. Vaccinal CPV-2b shedding was detected for a shorter period than CPV-2 (12 against 19 mean days) but with greater viral loads, whereas viremia occurred for a longer period (22 against 19 mean days) and with higher titers for CPV-2b. Seroconversion appeared as early as 7 and 14 days post-vaccination for CPV-2b and CPV-2 vaccines, respectively. With no vaccine there was any diagnostic interference using in-clinic or hemagglutination test, since positive results were obtained only by fecal real-time PCR testing. The present study adds new insights into the CPV vaccine persistence in the organism and possible interference with diagnostic tests. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Fixed-Lag Kalman Smoother to Filter Power Line Interference in Electrocardiogram Recordings.
Warmerdam, G J J; Vullings, R; Schmitt, L; Van Laar, J O E H; Bergmans, J W M
2017-08-01
Filtering power line interference (PLI) from electrocardiogram (ECG) recordings can lead to significant distortions of the ECG and mask clinically relevant features in ECG waveform morphology. The objective of this study is to filter PLI from ECG recordings with minimal distortion of the ECG waveform. In this paper, we propose a fixed-lag Kalman smoother with adaptive noise estimation. The performance of this Kalman smoother in filtering PLI is compared to that of a fixed-bandwidth notch filter and several adaptive PLI filters that have been proposed in the literature. To evaluate the performance, we corrupted clean neonatal ECG recordings with various simulated PLI. Furthermore, examples are shown of filtering real PLI from an adult and a fetal ECG recording. The fixed-lag Kalman smoother outperforms other PLI filters in terms of step response settling time (improvements that range from 0.1 to 1 s) and signal-to-noise ratio (improvements that range from 17 to 23 dB). Our fixed-lag Kalman smoother can be used for semi real-time applications with a limited delay of 0.4 s. The fixed-lag Kalman smoother presented in this study outperforms other methods for filtering PLI and leads to minimal distortion of the ECG waveform.
A high performance sensor for triaxial cutting force measurement in turning.
Zhao, You; Zhao, Yulong; Liang, Songbo; Zhou, Guanwu
2015-04-03
This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%-0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.
Mentana, Annalisa; Palermo, Carmen; Nardiello, Donatella; Quinto, Maurizio; Centonze, Diego
2013-01-09
In this work the optimization and application of a dual-amperometric biosensor for simultaneous monitoring of glucose and ethanol content, as quality markers in drinks and alcoholic fermentation media, are described. The biosensor is based on glucose oxidase (GOD) and alcohol oxidase (AOD) immobilized by co-cross-linking with bovine serum albumin (BSA) and glutaraldehyde (GLU) both onto a dual gold electrode, modified with a permselective overoxidized polypyrrole film (PPYox). Response, rejection of interferents, and stability of the dual biosensor were optimized in terms of PPYox thickness, BSA, and enzyme loading. The biosensor was integrated in a flow injection system coupled with an at-line microdialysis fiber as a sampling tool. Flow rates inside and outside the fiber were optimized in terms of linear responses (0.01-1 and 0.01-1.5 M) and sensitivities (27.6 ± 0.4 and 31.0 ± 0.6 μA·M(-1)·cm(-2)) for glucose and ethanol. Excellent anti-interference characteristics, the total absence of "cross-talk", and good response stability under operational conditions allowed application of the dual biosensor in accurate real-time monitoring (at least 15 samples/h) of alcoholic drinks, white grape must, and woody biomass.
A High Performance Sensor for Triaxial Cutting Force Measurement in Turning
Zhao, You; Zhao, Yulong; Liang, Songbo; Zhou, Guanwu
2015-01-01
This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning. PMID:25855035
A processing architecture for associative short-term memory in electronic noses
NASA Astrophysics Data System (ADS)
Pioggia, G.; Ferro, M.; Di Francesco, F.; DeRossi, D.
2006-11-01
Electronic nose (e-nose) architectures usually consist of several modules that process various tasks such as control, data acquisition, data filtering, feature selection and pattern analysis. Heterogeneous techniques derived from chemometrics, neural networks, and fuzzy rules used to implement such tasks may lead to issues concerning module interconnection and cooperation. Moreover, a new learning phase is mandatory once new measurements have been added to the dataset, thus causing changes in the previously derived model. Consequently, if a loss in the previous learning occurs (catastrophic interference), real-time applications of e-noses are limited. To overcome these problems this paper presents an architecture for dynamic and efficient management of multi-transducer data processing techniques and for saving an associative short-term memory of the previously learned model. The architecture implements an artificial model of a hippocampus-based working memory, enabling the system to be ready for real-time applications. Starting from the base models available in the architecture core, dedicated models for neurons, maps and connections were tailored to an artificial olfactory system devoted to analysing olive oil. In order to verify the ability of the processing architecture in associative and short-term memory, a paired-associate learning test was applied. The avoidance of catastrophic interference was observed.
Real time radiation dosimeters based on vertically aligned multiwall carbon nanotubes and graphene.
Funaro, Maria; Sarno, Maria; Ciambelli, Paolo; Altavilla, Claudia; Proto, Antonio
2013-02-22
Measurements of the absorbed dose and quality assurance programs play an important role in radiotherapy. Ionization chambers (CIs) are considered the most important dosimeters for their high accuracy, practicality and reliability, allowing absolute dose measurements. However, they have a relative large physical size, which limits their spatial resolution, and require a high bias voltage to achieve an acceptable collection of charges, excluding their use for in vivo dosimetry. In this paper, we propose new real time radiation detectors with electrodes based on graphene or vertically aligned multiwall carbon nanotubes (MWCNTs). We have investigated their charge collection efficiency and compared their performance with electrodes made of a conventional material. Moreover, in order to highlight the effect of nanocarbons, reference radiation detectors were also tested. The proposed dosimeters display an excellent linear response to dose and collect more charge than reference ones at a standard bias voltage, permitting the construction of miniaturized CIs. Moreover, an MWCNT based CI gives the best charge collection efficiency and it enables working also to lower bias voltages and zero volts, allowing in vivo applications. Graphene based CIs show better performance with respect to reference dosimeters at a standard bias voltage. However, at decreasing bias voltage the charge collection efficiency becomes worse if compared to a reference detector, likely due to graphene's semiconducting behavior.
Non-rigid registration for fusion of carotid vascular ultrasound and MRI volumetric datasets
NASA Astrophysics Data System (ADS)
Chan, R. C.; Sokka, S.; Hinton, D.; Houser, S.; Manzke, R.; Hanekamp, A.; Reddy, V. Y.; Kaazempur-Mofrad, M. R.; Rasche, V.
2006-03-01
In carotid plaque imaging, MRI provides exquisite soft-tissue characterization, but lacks the temporal resolution for tissue strain imaging that real-time 3D ultrasound (3DUS) can provide. On the other hand, real-time 3DUS currently lacks the spatial resolution of carotid MRI. Non-rigid alignment of ultrasound and MRI data is essential for integrating complementary morphology and biomechanical information for carotid vascular assessment. We assessed non-rigid registration for fusion of 3DUS and MRI carotid data based on deformable models which are warped to maximize voxel similarity. We performed validation in vitro using isolated carotid artery imaging. These samples were subjected to soft-tissue deformations during 3DUS and were imaged in a static configuration with standard MR carotid pulse sequences. Registration of the source ultrasound sequences to the target MR volume was performed and the mean absolute distance between fiducials within the ultrasound and MR datasets was measured to determine inter-modality alignment quality. Our results indicate that registration errors on the order of 1mm are possible in vitro despite the low-resolution of current generation 3DUS transducers. Registration performance should be further improved with the use of higher frequency 3DUS prototypes and efforts are underway to test those probes for in vivo 3DUS carotid imaging.
Evaluation of a method to shield a welding electron beam from magnetic interference
NASA Technical Reports Server (NTRS)
Wall, W. A.
1976-01-01
It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.
High-pressure needle interface for thermoplastic microfluidics.
Chen, C F; Liu, J; Hromada, L P; Tsao, C W; Chang, C C; DeVoe, D L
2009-01-07
A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.
Master dye laser oscillator including a specific grating assembly for use therein
Davin, James M.
1992-01-01
A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam.
Master dye laser oscillator including a specific grating assembly for use therein
Davin, J.M.
1992-09-01
A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.
NASA Astrophysics Data System (ADS)
Tallant, D. R.; Jungst, R. G.
1981-04-01
A dual base diode laser spectrometer was constructed using off axis reflective optics. The spectrometer was amplitude modulated for direct absorption measurements or frequency modulated to obtain derivative spectra. The spectrometer had: high throughput; was easy to operate and align; provided good dual beam compensation; and had no evidence of the interference effects that were observed in diode laser spectrometers using refractive optics. Unpurged, using second derivative techniques, the instrument measured 108 parts per million CO (10/cm absorption cell, atmospheric pressure broadened) with good signal/noise. With the replacement of marginal instrumental components, the signal/noise was substantially increased. This instrument was developed to monitor the evolution of decomposition gases in sealed containers of small volume at atmospheric pressure.
Solid optical ring interferometer for high-throughput feedback-free spectral analysis and filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrak, B.; Peiris, M.; Muller, A., E-mail: mullera@usf.edu
2015-02-15
We describe a simple and inexpensive optical ring interferometer for use in high-resolution spectral analysis and filtering. It consists of a solid cuboid, reflection-coated on two opposite sides, in which constructive interference occurs for waves in a rhombic trajectory. Due to its monolithic design, the interferometer’s resonance frequencies are insensitive to environmental disturbances over time. Additional advantages are its simplicity of alignment, high-throughput, and feedback-free operation. If desired, it can be stabilized with a secondary laser without disturbance of the primary signal. We illustrate the use of the interferometer for the measurement of the spectral Mollow triplet from a quantummore » dot and characterize its long-term stability for filtering applications.« less
Hinsberger, Stefan; Hüsecken, Kristina; Groh, Matthias; Negri, Matthias; Haupenthal, Jörg; Hartmann, Rolf W
2013-11-14
The bacterial RNA polymerase (RNAP) is a validated target for broad spectrum antibiotics. However, the efficiency of drugs is reduced by resistance. To discover novel RNAP inhibitors, a pharmacophore based on the alignment of described inhibitors was used for virtual screening. In an optimization process of hit compounds, novel derivatives with improved in vitro potency were discovered. Investigations concerning the molecular mechanism of RNAP inhibition reveal that they prevent the protein-protein interaction (PPI) between σ(70) and the RNAP core enzyme. Besides of reducing RNA formation, the inhibitors were shown to interfere with bacterial lipid biosynthesis. The compounds were active against Gram-positive pathogens and revealed significantly lower resistance frequencies compared to clinically used rifampicin.
MATISSE: alignment, integration, and test phase first results
NASA Astrophysics Data System (ADS)
Allouche, F.; Robbe-Dubois, S.; Lagarde, S.; Cruzalèbes, P.; Antonelli, P.; Bresson, Y.; Fantei-Caujolle, Y.; Marcotto, A.; Morel, S.; Beckmann, U.; Bettonvil, F.; Berio, Ph.; Heininger, M.; Lehmitz, M.; Agocs, T.; Brast, R.; Elswijk, E.; Ives, D.; Meixner, K.; Laun, W.; Mellein, M.; Neumann, U.; Bailet, C.; Clausse, J.-M.; Matter, A.; Meilland, A.; Millour, F.; Petrov, R. G.; Accardo, M.; Bristow, P.; Frahm, R.; Glindemann, A.; Gonzáles Herrera, J.-C.; Lizon, J.-L.; Schöller, M.; Graser, U.; Jaffe, W.; Lopez, B.
2016-08-01
MATISSE (Multi AperTure mid-Infrared SpectroScopic Experiment) is the spectro-interferometer for the VLTI of the European Southern Observatory, operating in near and mid-infrared, and combining up to four beams from the unit or the auxiliary telescopes. MATISSE will offer new breakthroughs in the study of circumstellar environments by allowing the multispectral mapping of the material distribution, the gas and essentially the dust. The instrument consists in a warm optical system (WOP) accepting four optical beams and relaying them after a dichroic splitting (for the L and M- and N- spectral bands) to cold optical benches (COB) located in two separate cryostats. The Observatoire de la Côte d'Azur is in charge of the WOP providing the spectral band separation, optical path equalization and modulation, pupil positioning, beam anamorphosis, beam commutation, and calibration. NOVA-ASTRON is in charge of the COB providing the functions of beam selection, reduction of thermal background emission, spatial filtering, pupil transfer, photometry and interferometry splitting, additional beam anamorphosis, spectral filtering, polarization selection, image dispersion, and image combination. The Max Planck Institut für Radio Astronomie is in charge of the operation and performance validation of the two detectors, a HAWAII-2RG from Teledyne for the L- and M- bands and a Raytheon AQUARIUS for the N-band. Both detectors are provided by ESO. The Max Planck Institut für Astronomie is in charge of the electronics and the cryostats for which the requirements on space limitations and vibration stability resulted on very specific and stringent decisions on the design. The integration and test of the COB: the two cryogenic systems, including the cold benches and the detectors, have been conducted at MPIA in parallel with the integration of the WOP at OCA. At the end of 2014, the complete instrument was integrated at OCA. Following this integration, a period of interface and alignment between the COB and the WOP took place resulting in the first interference fringes in the L-band during summer 2015 and the first interference fringes in the N-ban in March 2016. After a period of optimization of both the instrument reliability and the environmental working conditions, the test plan is presently being conducted in order to evaluate the complete performance of the instrument and its compliance with the high-level requirements. The present paper gives the first results of the alignment, integration and test phase of the MATISSE instrument.
Forward Compton scattering with weak neutral current: Constraints from sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorchtein, Mikhail; Zhang, Xilin
2015-06-09
We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. Furthermore, we address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν, 0). For the dispersive γ Z-box correction to the proton’s weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributionsmore » by a factor of two. Finally, the finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.« less
Ultra high frequency imaging acoustic microscope
Deason, Vance A.; Telschow, Kenneth L.
2006-05-23
An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.