Sample records for real option-based simulation

  1. Flexibility and Project Value: Interactions and Multiple Real Options

    NASA Astrophysics Data System (ADS)

    Čulík, Miroslav

    2010-06-01

    This paper is focused on a project valuation with embedded portfolio of real options including their interactions. Valuation is based on the criterion of Net Present Value on the simulation basis. Portfolio includes selected types of European-type real options: option to expand, contract, abandon and temporarily shut down and restart a project. Due to the fact, that in reality most of the managerial flexibility takes the form of portfolio of real options, selected types of options are valued not only individually, but also in combination. The paper is structured as follows: first, diffusion models for forecasting of output prices and variable costs are derived. Second, project value is estimated on the assumption, that no real options are present. Next, project value is calculated with the presence of selected European-type options; these options and their impact on project value are valued first in isolation and consequently in different combinations. Moreover, intrinsic value evolution of given real options with respect to the time of exercising is analysed. In the end, results are presented graphically; selected statistics and risk measures (Value at Risk, Expected Shortfall) of the NPV's distributions are calculated and commented.

  2. Study on Amortization Time and Rationality in Real Estate Investment

    NASA Astrophysics Data System (ADS)

    Li, Yancang; Zhou, Shujing; Suo, Juanjuan

    Amortization time and rationality has been discussed a lot in real estate investment research. As the price of real estate is driven by Geometric Brown Motion (GBM), whether the mortgagors should amortize in advance has become a key issue in amortization time research. This paper presents a new method to solve the problem by using the optimal stopping time theory and option pricing theory models. We discuss the option value in amortizing decision based on this model. A simulation method is used to test this method.

  3. The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems

    EPA Science Inventory

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and sh...

  4. Real options analysis for land use management: Methods, application, and implications for policy.

    PubMed

    Regan, Courtney M; Bryan, Brett A; Connor, Jeffery D; Meyer, Wayne S; Ostendorf, Bertram; Zhu, Zili; Bao, Chenming

    2015-09-15

    Discounted cash flow analysis, including net present value is an established way to value land use and management investments which accounts for the time-value of money. However, it provides a static view and assumes passive commitment to an investment strategy when real world land use and management investment decisions are characterised by uncertainty, irreversibility, change, and adaptation. Real options analysis has been proposed as a better valuation method under uncertainty and where the opportunity exists to delay investment decisions, pending more information. We briefly review the use of discounted cash flow methods in land use and management and discuss their benefits and limitations. We then provide an overview of real options analysis, describe the main analytical methods, and summarize its application to land use investment decisions. Real options analysis is largely underutilized in evaluating land use decisions, despite uncertainty in policy and economic drivers, the irreversibility and sunk costs involved. New simulation methods offer the potential for overcoming current technical challenges to implementation as demonstrated with a real options simulation model used to evaluate an agricultural land use decision in South Australia. We conclude that considering option values in future policy design will provide a more realistic assessment of landholder investment decision making and provide insights for improved policy performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Faster than Real-Time Dynamic Simulation for Large-Size Power System with Detailed Dynamic Models using High-Performance Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Jin, Shuangshuang; Chen, Yousu

    This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less

  6. A microcomputer based traffic evacuation modeling system for emergency planning application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, A.K.

    1994-12-01

    Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuate to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option. and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in thismore » paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less

  7. JSC interactive basic accounting system

    NASA Technical Reports Server (NTRS)

    Spitzer, J. F.

    1978-01-01

    Design concepts for an interactive basic accounting system (IBAS) are considered in terms of selecting the design option which provides the best response at the lowest cost. Modeling the IBAS workload and applying this workload to a U1108 EXEC 8 based system using both a simulation model and the real system is discussed.

  8. Applications and requirements for real-time simulators in ground-test facilities

    NASA Technical Reports Server (NTRS)

    Arpasi, Dale J.; Blech, Richard A.

    1986-01-01

    This report relates simulator functions and capabilities to the operation of ground test facilities, in general. The potential benefits of having a simulator are described to aid in the selection of desired applications for a specific facility. Configuration options for integrating a simulator into the facility control system are discussed, and a logical approach to configuration selection based on desired applications is presented. The functional and data path requirements to support selected applications and configurations are defined. Finally, practical considerations for implementation (i.e., available hardware and costs) are discussed.

  9. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  10. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  11. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-08-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  12. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  13. FUN3D Manual: 13.2

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  14. FUN3D Manual: 12.6

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  15. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  16. FUN3D Manual: 12.5

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; hide

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 12.4

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; hide

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 13.1

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 13.3

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2018-01-01

    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. Option pricing: a flexible tool to disseminate shared savings contracts.

    PubMed

    Friedberg, Mark W; Buendia, Anthony M; Lauderdale, Katherine E; Hussey, Peter S

    2013-08-01

    Due to volatility in healthcare costs, shared savings contracts can create systematic financial losses for payers, especially when contracting with smaller providers. To improve the business case for shared savings, we calculated the prices of financial options that payers can "sell" to providers to offset these losses. Using 2009 to 2010 member-level total cost of care data from a large commercial health plan, we calculated option prices by applying a bootstrap simulation procedure. We repeated these simulations for providers of sizes ranging from 500 to 60,000 patients and for shared savings contracts with and without key design features (minimum savings thresholds,bonus caps, cost outlier truncation, and downside risk) and under assumptions of zero, 1%, and 2% real cost reductions due to the shared savings contracts. Assuming no real cost reduction and a 50% shared savings rate, per patient option prices ranged from $225 (3.1% of overall costs) for 500-patient providers to $23 (0.3%) for 60,000-patient providers. Introducing minimum savings thresholds, bonus caps, cost outlier truncation, and downside risk reduced these option prices. Option prices were highly sensitive to the magnitude of real cost reductions. If shared savings contracts cause 2% reductions in total costs, option prices fall to zero for all but the smallest providers. Calculating the prices of financial options that protect payers and providers from downside risk can inject flexibility into shared savings contracts, extend such contracts to smaller providers, and clarify the tradeoffs between different contract designs, potentially speeding the dissemination of shared savings.

  3. A Methodology for Improving the Shipyard Planning Process: Using KVA Analysis, Risk Simulation and Strategic Real Options

    DTIC Science & Technology

    2006-09-30

    allocated to intangible assets. With Proctor & Gamble’s $53.5 billion acquisition of Gillette , $31.5 billion or 59% of the total purchase price was... outsourcing , alliances, joint ventures) • Compound Option (platform options) • Sequential Options (stage-gate development, R&D, phased...Comparisons • RO/KVA could enhance outsourcing comparisons between the Government’s Most Efficient Organization (MEO) and private-sector

  4. From market games to real-world markets

    NASA Astrophysics Data System (ADS)

    Jefferies, P.; Hart, M. L.; Hui, P. M.; Johnson, N. F.

    2001-04-01

    This paper uses the development of multi-agent market models to present a unified approach to the joint questions of how financial market movements may be simulated, predicted, and hedged against. We first present the results of agent-based market simulations in which traders equipped with simple buy/sell strategies and limited information compete in speculatory trading. We examine the effect of different market clearing mechanisms and show that implementation of a simple Walrasian auction leads to unstable market dynamics. We then show that a more realistic out-of-equilibrium clearing process leads to dynamics that closely resemble real financial movements, with fat-tailed price increments, clustered volatility and high volume autocorrelation. We then show that replacing the `synthetic' price history used by these simulations with data taken from real financial time-series leads to the remarkable result that the agents can collectively learn to identify moments in the market where profit is attainable. Hence on real financial data, the system as a whole can perform better than random. We then employ the formalism of Bouchaud in conjunction with agent based models to show that in general risk cannot be eliminated from trading with these models. We also show that, in the presence of transaction costs, the risk of option writing is greatly increased. This risk, and the costs, can however be reduced through the use of a delta-hedging strategy with modified, time-dependent volatility structure.

  5. Application of tabu search to deterministic and stochastic optimization problems

    NASA Astrophysics Data System (ADS)

    Gurtuna, Ozgur

    During the past two decades, advances in computer science and operations research have resulted in many new optimization methods for tackling complex decision-making problems. One such method, tabu search, forms the basis of this thesis. Tabu search is a very versatile optimization heuristic that can be used for solving many different types of optimization problems. Another research area, real options, has also gained considerable momentum during the last two decades. Real options analysis is emerging as a robust and powerful method for tackling decision-making problems under uncertainty. Although the theoretical foundations of real options are well-established and significant progress has been made in the theory side, applications are lagging behind. A strong emphasis on practical applications and a multidisciplinary approach form the basic rationale of this thesis. The fundamental concepts and ideas behind tabu search and real options are investigated in order to provide a concise overview of the theory supporting both of these two fields. This theoretical overview feeds into the design and development of algorithms that are used to solve three different problems. The first problem examined is a deterministic one: finding the optimal servicing tours that minimize energy and/or duration of missions for servicing satellites around Earth's orbit. Due to the nature of the space environment, this problem is modeled as a time-dependent, moving-target optimization problem. Two solution methods are developed: an exhaustive method for smaller problem instances, and a method based on tabu search for larger ones. The second and third problems are related to decision-making under uncertainty. In the second problem, tabu search and real options are investigated together within the context of a stochastic optimization problem: option valuation. By merging tabu search and Monte Carlo simulation, a new method for studying options, Tabu Search Monte Carlo (TSMC) method, is developed. The theoretical underpinnings of the TSMC method and the flow of the algorithm are explained. Its performance is compared to other existing methods for financial option valuation. In the third, and final, problem, TSMC method is used to determine the conditions of feasibility for hybrid electric vehicles and fuel cell vehicles. There are many uncertainties related to the technologies and markets associated with new generation passenger vehicles. These uncertainties are analyzed in order to determine the conditions in which new generation vehicles can compete with established technologies.

  6. The Clinical Health Economics System Simulation (CHESS): a teaching tool for systems- and practice-based learning.

    PubMed

    Voss, John D; Nadkarni, Mohan M; Schectman, Joel M

    2005-02-01

    Academic medical centers face barriers to training physicians in systems- and practice-based learning competencies needed to function in the changing health care environment. To address these problems, at the University of Virginia School of Medicine the authors developed the Clinical Health Economics System Simulation (CHESS), a computerized team-based quasi-competitive simulator to teach the principles and practical application of health economics. CHESS simulates treatment costs to patients and society as well as physician reimbursement. It is scenario based with residents grouped into three teams, each team playing CHESS using differing (fee-for-service or capitated) reimbursement models. Teams view scenarios and select from two or three treatment options that are medically justifiable yet have different potential cost implications. CHESS displays physician reimbursement and patient and societal costs for each scenario as well as costs and income summarized across all scenarios extrapolated to a physician's entire patient panel. The learners are asked to explain these findings and may change treatment options and other variables such as panel size and case mix to conduct sensitivity analyses in real time. Evaluations completed in 2003 by 68 (94%) CHESS resident and faculty participants at 19 U.S. residency programs preferred CHESS to a traditional lecture-and-discussion format to learn about medical decision making, physician reimbursement, patient costs, and societal costs. Ninety-eight percent reported increased knowledge of health economics after viewing the simulation. CHESS demonstrates the potential of computer simulation to teach health economics and other key elements of practice- and systems-based competencies.

  7. Real Option Cost Vulnerability Analysis of Electrical Infrastructure

    NASA Astrophysics Data System (ADS)

    Prime, Thomas; Knight, Phil

    2015-04-01

    Critical infrastructure such as electricity substations are vulnerable to various geo-hazards that arise from climate change. These geo-hazards range from increased vegetation growth to increased temperatures and flood inundation. Of all the identified geo-hazards, coastal flooding has the greatest impact, but to date has had a low probability of occurring. However, in the face of climate change, coastal flooding is likely to occur more often due to extreme water levels being experienced more frequently due to sea-level rise (SLR). Knowing what impact coastal flooding will have now and in the future on critical infrastructure such as electrical substations is important for long-term management. Using a flood inundation model, present day and future flood events have been simulated, from 1 in 1 year events up to 1 in 10,000 year events. The modelling makes an integrated assessment of impact by using sea-level and surge to simulate a storm tide. The geographical area the model covers is part of the Northwest UK coastline with a range of urban and rural areas. The ensemble of flood maps generated allows the identification of critical infrastructure exposed to coastal flooding. Vulnerability has be assessed using an Estimated Annual Damage (EAD) value. Sampling SLR annual probability distributions produces a projected "pathway" for SLR up to 2100. EAD is then calculated using a relationship derived from the flood model. Repeating the sampling process allows a distribution of EAD up to 2100 to be produced. These values are discounted to present day values using an appropriate discount rate. If the cost of building and maintain defences is also removed from this a Net Present Value (NPV) of building the defences can be calculated. This distribution of NPV can be used as part of a cost modelling process involving Real Options, A real option is the right but not obligation to undertake investment decisions. In terms of investment in critical infrastructure resilience this means that a real option can be deferred or exercised depending on the climate future that has been realised. The real option value is defined as the maximum positive NPV value that is found across the range of potential SLR "futures". Real Options add value in that flood defences may not be built when there is real value in doing so. The cost modelling output is in the form of an accessible database that has detailed real option values varying spatially across the model domain (for each critical infrastructure) and temporally up to 2100. The analysis has shown that in 2100, 8.2% of the substations analysed have a greater than a 1 in 2 chance of exercising the real option to build flood defences against coastal flooding. The cost modelling tool and flood maps that have been developed will help stakeholders in deciding where and when to invest in mitigating against coastal flooding.

  8. A microcomputer based traffic evacuation modeling system for emergency planning application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, A.K.

    1995-12-31

    The US Army stockpiles unitary chemical weapons, both as bulk chemicals and as munitions, at eight major sites in the United States. The continued storage and disposal of the chemical stockpile has the potential for accidental releases of toxic gases that could escape the installation boundaries and pose a threat to the civilian population in the vicinity. Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuatemore » to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option, and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in this paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less

  9. Cost-effective and low-technology options for simulation and training in neonatology.

    PubMed

    Bruno, Christie J; Glass, Kristen M

    2016-11-01

    The purpose of this review is to explore low-cost options for simulation and training in neonatology. Numerous cost-effective options exist for simulation and training in neonatology. Lower cost options are available for teaching clinical skills and procedural training in neonatal intubation, chest tube insertion, and pericardiocentesis, among others. Cost-effective, low-cost options for simulation-based education can be developed and shared in order to optimize the neonatal simulation training experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Making real options really work.

    PubMed

    van Putten, Alexander B; MacMillan, Ian C

    2004-12-01

    As a way to value growth opportunities, real options have had a difficult time catching on with managers. Many CFOs believe the method ensures the overvaluation of risky projects. This concern is legitimate, but abandoning real options as a valuation model isn't the solution. Companies that rely solely on discounted cash flow (DCF) analysis underestimate the value of their projects and may fail to invest enough in uncertain but highly promising opportunities. CFOs need not--and should not--choose one approach over the other. Far from being a replacement for DCF analysis, real options are an essential complement, and a project's total value should encompass both. DCF captures a base estimate of value; real options take into account the potential for big gains. This is not to say that there aren't problems with real options. As currently applied, they focus almost exclusively on the risks associated with revenues, ignoring the risks associated with a project's costs. It's also true that option valuations almost always ignore assets that an initial investment in a subsequently abandoned project will often leave the company. In this article, the authors present a simple formula for combining DCF and option valuations that addresses these two problems. Using an integrated approach, managers will, in the long run, select better projects than their more timid competitors while keeping risk under control. Thus, they will outperform their rivals in both the product and the capital markets.

  11. Compact, self-contained enhanced-vision system (EVS) sensor simulator

    NASA Astrophysics Data System (ADS)

    Tiana, Carlo

    2007-04-01

    We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.

  12. Guide to analyzing investment options using TWIGS.

    Treesearch

    Charles R Blinn; Dietmar W. Rose; Monique L. Belli

    1988-01-01

    Describes methods for analyzing economic return of simulated stand management alternatives in TWIGS. Defines and discusses net present value, equivalent annual income, soil expectation value, and real vs. nominal analyses. Discusses risk and sensitivity analysis when comparing alternatives.

  13. Pricing and simulation for real estate index options: Radial basis point interpolation

    NASA Astrophysics Data System (ADS)

    Gong, Pu; Zou, Dong; Wang, Jiayue

    2018-06-01

    This study employs the meshfree radial basis point interpolation (RBPI) for pricing real estate derivatives contingent on real estate index. This method combines radial and polynomial basis functions, which can guarantee the interpolation scheme with Kronecker property and effectively improve accuracy. An exponential change of variables, a mesh refinement algorithm and the Richardson extrapolation are employed in this study to implement the RBPI. Numerical results are presented to examine the computational efficiency and accuracy of our method.

  14. The Fundamental Uncertainty of Business: Real Options

    NASA Astrophysics Data System (ADS)

    Dyer, James S.

    The purpose of this paper is to discuss the manner in which uncertainty is currently evaluated in business, with an emphasis on economic measures. In recent years, the accepted approach for the valuation of capital investment decisions has become one based on the theory of real options. From the standpoint of this workshop, the interesting aspect of real options is its focus on the flexibility of management to respond to changes in the environment as a feature of an alternative that has unique value, known as "option value." While this may not be surprising to most participants in this workshop, it does represent a radical change in traditional thinking about risk in business, where efforts have primarily been focused on the elimination of risk when possible.

  15. Nonlinear Schrödinger approach to European option pricing

    NASA Astrophysics Data System (ADS)

    Wróblewski, Marcin

    2017-05-01

    This paper deals with numerical option pricing methods based on a Schrödinger model rather than the Black-Scholes model. Nonlinear Schrödinger boundary value problems seem to be alternatives to linear models which better reflect the complexity and behavior of real markets. Therefore, based on the nonlinear Schrödinger option pricing model proposed in the literature, in this paper a model augmented by external atomic potentials is proposed and numerically tested. In terms of statistical physics the developed model describes the option in analogy to a pair of two identical quantum particles occupying the same state. The proposed model is used to price European call options on a stock index. the model is calibrated using the Levenberg-Marquardt algorithm based on market data. A Runge-Kutta method is used to solve the discretized boundary value problem numerically. Numerical results are provided and discussed. It seems that our proposal more accurately models phenomena observed in the real market than do linear models.

  16. Application of Real Options Theory to DoD Software Acquisitions

    DTIC Science & Technology

    2009-08-01

    words.) The traditional real options valuation methodology, when enhanced and properly formulated around a proposed or existing software investment...Std 239-18 - ii - THIS PAGE INTENTIONALLY LEFT BLANK - iii - Abstract The traditional real options valuation ...founder and CEO of Real Options Valuation , Inc., a consulting, training, and software development firm specializing in strategic real options

  17. Water Resources Planning under Uncertainty: A "Real Options" Approach

    NASA Astrophysics Data System (ADS)

    Jeuland, M. A.; Whittington, D.

    2011-12-01

    This research develops a real options approach for planning new water resources developments, in infrastructure construction and system operation, under uncertainty. The approach treats the planning problem as a series of staged decisions - the selection of new projects; their scale, timing and sequencing; and finally their operating rules - each of which is characterized by varying levels of irreversibility. The performance of different configurations of the system is then assessed along the various dimensions of the decision space, using simulation methods. The methodology is then made operational using an existing hydrological simulation model that can be used to study the example of hydropower development options in the Blue Nile in Ethiopia. The model includes physical linkages between climate change and system hydrology, and allows users to test the sensitivity of the basin-wide economic consequences of dams, which consist of energy generation, changes in irrigation crop-water demand, the value of flood control, and other basin-wide impacts, to climate change or changes in runoff, as well as to other uncertainties. The analysis shows that, from an economic perspective, there is no single optimal system configuration across a range of future climate conditions deemed plausible for this basin. For example, small infrastructures perform best in scenarios with reduced runoff into the river, whereas large ones are best when runoff increases. The real options framework therefore becomes useful for helping to identify configurations that are both more robust to poor outcomes and still contain sufficient flexibility to capture high upside benefits should favorable future conditions arise. The framework could readily be extended to explore a range of features that could be usefully built into water resources projects more generally, to improve the long-term economic performance of such investments.

  18. Real options approach to inter-sectoral migration of U.S.farm labor

    Treesearch

    Gulcan Onel; Barry K. Goodwin

    2014-01-01

    The core of the literature on inter-sectoral labor migration is based on net present value models of investment in which individuals are assumed to migrate to take advantage of positive wage differentials. In this article, we argue that a real options approach, taken together with the adjustment costs associated with sectoral relocation, may provide a basis for...

  19. Simple, stable and reliable modeling of gas properties of organic working fluids in aerodynamic designs of turbomachinery for ORC and VCC

    NASA Astrophysics Data System (ADS)

    Kawakubo, T.

    2016-05-01

    A simple, stable and reliable modeling of the real gas nature of the working fluid is required for the aerodesigns of the turbine in the Organic Rankine Cycle and of the compressor in the Vapor Compression Cycle. Although many modern Computational Fluid Dynamics tools are capable of incorporating real gas models, simulations with such a gas model tend to be more time-consuming than those with a perfect gas model and even can be unstable due to the simulation near the saturation boundary. Thus a perfect gas approximation is still an attractive option to stably and swiftly conduct a design simulation. In this paper, an effective method of the CFD simulation with a perfect gas approximation is discussed. A method of representing the performance of the centrifugal compressor or the radial-inflow turbine by means of each set of non-dimensional performance parameters and translating the fictitious perfect gas result to the actual real gas performance is presented.

  20. Simulation Studies of Satellite Laser CO2 Mission Concepts

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.

    2011-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.

  1. Mii School: New 3D Technologies Applied in Education to Detect Drug Abuses and Bullying in Adolescents

    NASA Astrophysics Data System (ADS)

    Carmona, José Alberto; Espínola, Moisés; Cangas, Adolfo J.; Iribarne, Luis

    Mii School is a 3D school simulator developed with Blender and used by psychology researchers for the detection of drugs abuses, bullying and mental disorders in adolescents. The school simulator created is an interactive video game where the players, in this case the students, have to choose, along 17 scenes simulated, the options that better define their personalities. In this paper we present a technical characteristics description and the first results obtained in a real school.

  2. Using real options analysis to support strategic management decisions

    NASA Astrophysics Data System (ADS)

    Kabaivanov, Stanimir; Markovska, Veneta; Milev, Mariyan

    2013-12-01

    Decision making is a complex process that requires taking into consideration multiple heterogeneous sources of uncertainty. Standard valuation and financial analysis techniques often fail to properly account for all these sources of risk as well as for all sources of additional flexibility. In this paper we explore applications of a modified binomial tree method for real options analysis (ROA) in an effort to improve decision making process. Usual cases of use of real options are analyzed with elaborate study on the applications and advantages that company management can derive from their application. A numeric results based on extending simple binomial tree approach for multiple sources of uncertainty are provided to demonstrate the improvement effects on management decisions.

  3. A mathematical analysis of the Janus combat simulation weather effects models and sensitivity analysis of sky-to-ground brightness ratio on target detection

    NASA Astrophysics Data System (ADS)

    Shorts, Vincient F.

    1994-09-01

    The Janus combat simulation offers the user a wide variety of weather effects options to employ during the execution of any simulation run, which can directly influence detection of opposing forces. Realistic weather effects are required if the simulation is to accurately reproduce 'real world' results. This thesis examines the mathematics of the Janus weather effects models. A weather effect option in Janus is the sky-to-ground brightness ratio (SGR). SGR affects an optical sensor's ability to detect targets. It is a measure of the sun angle in relation to the horizon. A review of the derivation of SGR is performed and an analysis of SGR's affect on the number of optical detections and detection ranges is performed using an unmanned aerial vehicle (UAV) search scenario. For comparison, the UAV's are equipped with a combination of optical and thermal sensors.

  4. A serial digital data communications device. [for real time flight simulation

    NASA Technical Reports Server (NTRS)

    Fetter, J. L.

    1977-01-01

    A general purpose computer peripheral device which is used to provide a full-duplex, serial, digital data transmission link between a Xerox Sigma computer and a wide variety of external equipment, including computers, terminals, and special purpose devices is reported. The interface has an extensive set of user defined options to assist the user in establishing the necessary data links. This report describes those options and other features of the serial communications interface and its performance by discussing its application to a particular problem.

  5. Rainfall-Runoff Parameters Uncertainity

    NASA Astrophysics Data System (ADS)

    Heidari, A.; Saghafian, B.; Maknoon, R.

    2003-04-01

    Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.

  6. Interset: A natural language interface for teleoperated robotic assembly of the EASE space structure

    NASA Technical Reports Server (NTRS)

    Boorsma, Daniel K.

    1989-01-01

    A teleoperated robot was used to assemble the Experimental Assembly of Structures in Extra-vehicular activity (EASE) space structure under neutral buoyancy conditions, simulating a telerobot performing structural assembly in the zero gravity of space. This previous work used a manually controlled teleoperator as a test bed for system performance evaluations. From these results several Artificial Intelligence options were proposed. One of these was further developed into a real time assembly planner. The interface for this system is effective in assembling EASE structures using windowed graphics and a set of networked menus. As the problem space becomes more complex and hence the set of control options increases, a natural language interface may prove to be beneficial to supplement the menu based control strategy. This strategy can be beneficial in situations such as: describing the local environment, maintaining a data base of task event histories, modifying a plan or a heuristic dynamically, summarizing a task in English, or operating in a novel situation.

  7. ARC-VM: An architecture real options complexity-based valuation methodology for military systems-of-systems acquisitions

    NASA Astrophysics Data System (ADS)

    Domercant, Jean Charles

    The combination of today's national security environment and mandated acquisition policies makes it necessary for military systems to interoperate with each other to greater degrees. This growing interdependency results in complex Systems-of-Systems (SoS) that only continue to grow in complexity to meet evolving capability needs. Thus, timely and affordable acquisition becomes more difficult, especially in the face of mounting budgetary pressures. To counter this, architecting principles must be applied to SoS design. The research objective is to develop an Architecture Real Options Complexity-Based Valuation Methodology (ARC-VM) suitable for acquisition-level decision making, where there is a stated desire for more informed tradeoffs between cost, schedule, and performance during the early phases of design. First, a framework is introduced to measure architecture complexity as it directly relates to military SoS. Development of the framework draws upon a diverse set of disciplines, including Complexity Science, software architecting, measurement theory, and utility theory. Next, a Real Options based valuation strategy is developed using techniques established for financial stock options that have recently been adapted for use in business and engineering decisions. The derived complexity measure provides architects with an objective measure of complexity that focuses on relevant complex system attributes. These attributes are related to the organization and distribution of SoS functionality and the sharing and processing of resources. The use of Real Options provides the necessary conceptual and visual framework to quantifiably and traceably combine measured architecture complexity, time-valued performance levels, as well as programmatic risks and uncertainties. An example suppression of enemy air defenses (SEAD) capability demonstrates the development and usefulness of the resulting architecture complexity & Real Options based valuation methodology. Different portfolios of candidate system types are used to generate an array of architecture alternatives that are then evaluated using an engagement model. This performance data is combined with both measured architecture complexity and programmatic data to assign an acquisition value to each alternative. This proves useful when selecting alternatives most likely to meet current and future capability needs.

  8. Real options analysis for photovoltaic project under climate uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Kyeongseok; Kim, Sejong; Kim, Hyoungkwan

    2016-08-01

    The decision on photovoltaic project depends on the level of climate environments. Changes in temperature and insolation affect photovoltaic output. It is important for investors to consider future climate conditions for determining investments on photovoltaic projects. We propose a real options-based framework to assess economic feasibility of photovoltaic project under climate change. The framework supports investors to evaluate climate change impact on photovoltaic projects under future climate uncertainty.

  9. Toward a new modeling of international economics: An attempt to reformulate an international trade model based on real option theory

    NASA Astrophysics Data System (ADS)

    Fujita, Yasunori

    2007-09-01

    Reformulation of economics by physics has been carried out intensively to reveal many features of the asset market, which were missed in the classical economic theories. The present paper attempts to shed new light on this field. That is, this paper aims at reformulating the international trade model by making use of the real option theory. Based on such a stochastic dynamic model, we examine how the fluctuation of the foreign exchange rate makes effect on the welfare of the exporting country.

  10. Building occupancy simulation and data assimilation using a graph-based agent-oriented model

    NASA Astrophysics Data System (ADS)

    Rai, Sanish; Hu, Xiaolin

    2018-07-01

    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.

  11. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.

  12. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  13. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Astrophysics Data System (ADS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-11-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  14. Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  15. An Interactive Real-time Decision Support System for Leachate Irrigation on Evapotranspiration Landfill Covers

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Landfill disposal is still the most common and economical practice for municipal solid waste in most countries. However, heavily polluted leachate generated by excess rainwater percolating through the landfill waste is the major drawback of this practice. Evapotranspiration (ET) cover systems are increasingly being used as alternative cover systems to minimize percolation by evapotranspiration. Leachate recirculation is one of the least expensive options for leachate treatment. The combination of ET cover systems and leachate recirculation can be an economical and environment-friendly practice for landfill leachate management. An interactive real-time decision support system is being developed to better manage leachate irrigation using historical and forecasting weather data, and real time soil moisture data. The main frame of this system includes soil water modules, and plant-soil modules. An inverse simulation module is also included to calibrate certain parameters based on observed data when necessary. It would be an objectives-oriented irrigation management tool to minimize landfill operation costs and negative environmental impacts.

  16. 32 CFR 644.168 - Exercise of options.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Exercise of options. 644.168 Section 644.168... ESTATE HANDBOOK Acquisition Procurement of Options Prior to Real Estate Directives (military) § 644.168 Exercise of options. Upon issuance of a real estate directive for acquisition of the optioned real property...

  17. A Primer on Applying Monte Carlo Simulation, Real Options Analysis, Knowledge Value Added, Forecasting, and Portfolio Optimization

    DTIC Science & Technology

    2010-02-08

    popular pastime. Even in Biblical accounts, Roman soldiers cast lots for Christ’s robes. In earlier times, chance was something that occurred in nature...with the advent of blazing fast computing technology, our modern world of uncertainty can be explained with much more elegance through

  18. A Microprocessor-Based Real-Time Simulator of a Turbofan Engine

    DTIC Science & Technology

    1988-01-01

    NASA AVSCOM Technical Memorandum 100889 Technical Report 88-C-011 Lfl A Microprocessor-Based Real-Time Simulator of a Turbofan Engine CD I Jonathan S...Accession For NTIS GRA&I A MICROPROCESSOR-BASED REAL-TIME SIMULATOR DTIC TABUnannounced OF A TURBOFAN ENGINE Justifiaation, Jonathan S. Litt Propulsion...the F100 engine without augmentation (without afterburning). HYTESS is a simplified simulation written in FORTRAN of a generalized turbofan engine . To

  19. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients

    PubMed Central

    2010-01-01

    Background Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine. Methods The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks. Results The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability. Conclusions The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies. PMID:20584307

  20. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients.

    PubMed

    Hesse, Stefan; Waldner, Andreas; Tomelleri, Christopher

    2010-06-28

    Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine. The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks. The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability. The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies.

  1. Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2004-03-01

    The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

  2. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    PubMed

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  3. Vernier caliper and micrometer computer models using Easy Java Simulation and its pedagogical design features—ideas for augmenting learning with real instruments

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Tiang Ning, Hwee

    2014-09-01

    This paper presents the customization of Easy Java Simulation models, used with actual laboratory instruments, to create active experiential learning for measurements. The laboratory instruments are the vernier caliper and the micrometer. Three computer model design ideas that complement real equipment are discussed. These ideas involve (1) a simple two-dimensional view for learning from pen and paper questions and the real world; (2) hints, answers, different scale options and the inclusion of zero error; (3) assessment for learning feedback. The initial positive feedback from Singaporean students and educators indicates that these tools could be successfully shared and implemented in learning communities. Educators are encouraged to change the source code for these computer models to suit their own purposes; they have creative commons attribution licenses for the benefit of all.

  4. Real-time visual simulation of APT system based on RTW and Vega

    NASA Astrophysics Data System (ADS)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  5. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  6. Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry

    NASA Astrophysics Data System (ADS)

    Wang, Mulan Xiaofeng

    My dissertation concentrates on several aspects of supply chain management and economic valuation of real options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportations, ocean LNG shipping logistics, and downstream storage. Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied in this thesis. Chapter 2 studies how to value U.S. natural gas pipeline network transport contracts as real options. It is common for natural gas shippers to value and manage contracts by simple adaptations of financial spread option formulas that do not fully account for the implications of the capacity limits and the network structure that distinguish these contracts. In contrast, we show that these operational features can be fully captured and integrated with financial considerations in a fairly easy and managerially significant manner by a model that combines linear programming and simulation. We derive pathwise estimators for the so called deltas and structurally characterize them. We interpret them in a novel fashion as discounted expectations, under a specific weighing distribution, of the amounts of natural gas to be procured/marketed when optimally using pipeline capacity. Based on the actual prices of traded natural gas futures and basis swaps, we show that an enhanced version of the common approach employed in practice can significantly underestimate the true value of natural gas pipeline network capacity. Our model also exhibits promising financial (delta) hedging performance. Thus, this model emerges as an easy to use and useful tool that natural gas shippers can employ to support their valuation and delta hedging decisions concerning natural gas pipeline network transport capacity contracts. Moreover, the insights that follow from our data analysis have broader significance and implications in terms of the management of real options beyond our specific application. Motivated by current developments in the LNG industry, Chapter 3 studies the operations of LNG supply chains facing both supply and price risk. To model the supply uncertainty, we employ a closed-queuing-network (CQN) model to represent upstream LNG production and shipping, via special oceans-going tankers, to a downstream re-gasification facility in the U.S, which sells natural gas into the wholesale spot market. The CQN shipping model analytically generates the unloaded amount probability distribution. Price uncertainty is captured by the spot price, which experiences both volatility and significant seasonality, i.e., higher prices in winter. We use a trinomial lattice to model the price uncertainty, and calibrate to the extended forward curves. Taking the outputs from the CQN model and the spot price model as stochastic inputs, we formulate a real option inventory-release model to study the benefit of optimally managing a downstream LNG storage facility. This allows characterization of the structure of the optimal inventory management policy. An interesting finding is that when it is optimal to sell, it is not necessarily optimal to sell the entire available inventory. The model can be used by LNG players to value and manage the real option to store LNG at a re-gasification facility, and is easy to be implemented. For example, this model is particularly useful to value leasing contracts for portions of the facility capacity. Real data is used to assess the value of the real option to store LNG at the downstream re-gasification facility, and, contrary to what has been claimed by some practitioners, we find that it has significant value (several million dollars). Chapter 4 studies the importance of modeling the shipping variability when valuing and managing a downstream LNG storage facility. The shipping model presented in Chapter 3 uses a "rolling forward" method to generate the independent and identically distributed (i.i.d.) unloaded amount in each decision period. We study the merit of the i.i.d. assumption by using simulation and developing an upper bound. We show that the model, which uses the i.i.d. unloaded amount, provides a good estimation of the storage value, and yields a near optimal inventory control policy. We also test the performance of a model that uses constant throughput to determine the inventory release policy. This model performs worse than the model of Chapter 3 for storage valuation purposes, but can be used to suggest the optimal inventory control policy, especially when the ratio of flow rate to storage size is high, i.e., storage is scarce. Chapter 5 summarizes the contributions of this thesis.

  7. Space-filling designs for computer experiments: A review

    DOE PAGES

    Joseph, V. Roshan

    2016-01-29

    Improving the quality of a product/process using a computer simulator is a much less expensive option than the real physical testing. However, simulation using computationally intensive computer models can be time consuming and therefore, directly doing the optimization on the computer simulator can be infeasible. Experimental design and statistical modeling techniques can be used for overcoming this problem. This article reviews experimental designs known as space-filling designs that are suitable for computer simulations. In the review, a special emphasis is given for a recently developed space-filling design called maximum projection design. Furthermore, its advantages are illustrated using a simulation conductedmore » for optimizing a milling process.« less

  8. Space-filling designs for computer experiments: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, V. Roshan

    Improving the quality of a product/process using a computer simulator is a much less expensive option than the real physical testing. However, simulation using computationally intensive computer models can be time consuming and therefore, directly doing the optimization on the computer simulator can be infeasible. Experimental design and statistical modeling techniques can be used for overcoming this problem. This article reviews experimental designs known as space-filling designs that are suitable for computer simulations. In the review, a special emphasis is given for a recently developed space-filling design called maximum projection design. Furthermore, its advantages are illustrated using a simulation conductedmore » for optimizing a milling process.« less

  9. A DG approach to the numerical solution of the Stein-Stein stochastic volatility option pricing model

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Tichý, T.

    2017-12-01

    Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.

  10. Building an intelligent tutoring system for procedural domains

    NASA Technical Reports Server (NTRS)

    Warinner, Andrew; Barbee, Diann; Brandt, Larry; Chen, Tom; Maguire, John

    1990-01-01

    Jobs that require complex skills that are too expensive or dangerous to develop often use simulators in training. The strength of a simulator is its ability to mimic the 'real world', allowing students to explore and experiment. A good simulation helps the student develop a 'mental model' of the real world. The closer the simulation is to 'real life', the less difficulties there are transferring skills and mental models developed on the simulator to the real job. As graphics workstations increase in power and become more affordable they become attractive candidates for developing computer-based simulations for use in training. Computer based simulations can make training more interesting and accessible to the student.

  11. Design and implementation of laser target simulator in hardware-in-the-loop simulation system based on LabWindows/CVI and RTX

    NASA Astrophysics Data System (ADS)

    Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong

    2016-11-01

    In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.

  12. Simulation in the Service of Design - Asking the Right Questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donn, Michael; Selkowitz, Stephen; Bordass, Bill

    2009-03-01

    This paper proposes an approach to the creation of design tools that address the real information needs of designers in the early stages of design of nonresidential buildings. Traditional simplified design tools are typically too limited to be of much use, even in conceptual design. The proposal is to provide access to the power of detailed simulation tools, at a stage in design when little is known about the final building, but at a stage also when the freedom to explore options is greatest. The proposed approach to tool design has been derived from consultation with design analysis teams asmore » part of the COMFEN tool development. The paper explores how tools like COMFEN have been shaped by this consultation and how requests from these teams for real-world relevance might shape such tools in the future, drawing into the simulation process the lessons from Post Occupancy Evaluation (POE) of buildings.« less

  13. DABAM: an open-source database of X-ray mirrors metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele

    2016-04-20

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less

  14. DABAM: an open-source database of X-ray mirrors metrology

    PubMed Central

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-01-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database. PMID:27140145

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less

  16. DABAM: An open-source database of X-ray mirrors metrology

    DOE PAGES

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; ...

    2016-05-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less

  17. DABAM: an open-source database of X-ray mirrors metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less

  18. DABAM: An open-source database of X-ray mirrors metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less

  19. The effect of improving task representativeness on capturing nurses’ risk assessment judgements: a comparison of written case simulations and physical simulations

    PubMed Central

    2013-01-01

    Background The validity of studies describing clinicians’ judgements based on their responses to paper cases is questionable, because - commonly used - paper case simulations only partly reflect real clinical environments. In this study we test whether paper case simulations evoke similar risk assessment judgements to the more realistic simulated patients used in high fidelity physical simulations. Methods 97 nurses (34 experienced nurses and 63 student nurses) made dichotomous assessments of risk of acute deterioration on the same 25 simulated scenarios in both paper case and physical simulation settings. Scenarios were generated from real patient cases. Measures of judgement ‘ecology’ were derived from the same case records. The relationship between nurses’ judgements, actual patient outcomes (i.e. ecological criteria), and patient characteristics were described using the methodology of judgement analysis. Logistic regression models were constructed to calculate Lens Model Equation parameters. Parameters were then compared between the modeled paper-case and physical-simulation judgements. Results Participants had significantly less achievement (ra) judging physical simulations than when judging paper cases. They used less modelable knowledge (G) with physical simulations than with paper cases, while retaining similar cognitive control and consistency on repeated patients. Respiration rate, the most important cue for predicting patient risk in the ecological model, was weighted most heavily by participants. Conclusions To the extent that accuracy in judgement analysis studies is a function of task representativeness, improving task representativeness via high fidelity physical simulations resulted in lower judgement performance in risk assessments amongst nurses when compared to paper case simulations. Lens Model statistics could prove useful when comparing different options for the design of simulations used in clinical judgement analysis. The approach outlined may be of value to those designing and evaluating clinical simulations as part of education and training strategies aimed at improving clinical judgement and reasoning. PMID:23718556

  20. Agent-based modeling: Methods and techniques for simulating human systems

    PubMed Central

    Bonabeau, Eric

    2002-01-01

    Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407

  1. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general computing workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed to demonstrate the ability of an expert system to autonomously control the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. Integration options are explored and several possible solutions are presented.

  2. Efficient option valuation of single and double barrier options

    NASA Astrophysics Data System (ADS)

    Kabaivanov, Stanimir; Milev, Mariyan; Koleva-Petkova, Dessislava; Vladev, Veselin

    2017-12-01

    In this paper we present an implementation of pricing algorithm for single and double barrier options using Mellin transformation with Maximum Entropy Inversion and its suitability for real-world applications. A detailed analysis of the applied algorithm is accompanied by implementation in C++ that is then compared to existing solutions in terms of efficiency and computational power. We then compare the applied method with existing closed-form solutions and well known methods of pricing barrier options that are based on finite differences.

  3. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  4. An evaluation of different setups for simulating lighting characteristics

    NASA Astrophysics Data System (ADS)

    Salters, Bart; Murdoch, Michael; Sekulovksi, Dragan; Chen, Shih-Han; Seuntiens, Pieter

    2012-03-01

    The advance of technology continuously enables new luminaire designs and concepts. Evaluating such designs has traditionally been done using actual prototypes, in a real environment. The iterations needed to build, verify, and improve luminaire designs incur substantial costs and slow down the design process. A more attractive way is to evaluate designs using simulations, as they can be made cheaper and quicker for a wider variety of prototypes. However, the value of such simulations is determined by how closely they predict the outcome of actual perception experiments. In this paper, we discuss an actual perception experiment including several lighting settings in a normal office environment. The same office environment also has been modeled using different software tools, and photo-realistic renderings have been created of these models. These renderings were subsequently processed using various tonemapping operators in preparation for display. The total imaging chain can be considered a simulation setup, and we have executed several perception experiments on different setups. Our real interest is in finding which imaging chain gives us the best result, or in other words, which of them yields the closest match between virtual and real experiment. To answer this question, first of all an answer has to be found to the question, "which simulation setup matches the real world best?" As there is no unique, widely accepted measure to describe the performance of a certain setup, we consider a number of options and discuss the reasoning behind them along with their advantages and disadvantages.

  5. Evaluating State Options for Reducing Medicaid Churning

    PubMed Central

    Swartz, Katherine; Short, Pamela Farley; Graefe, Deborah R.; Uberoi, Namrata

    2015-01-01

    Medicaid churning - the constant exit and re-entry of beneficiaries as their eligibility changes - has long been a problem for both Medicaid administrators and recipients. Churning will continue under the Affordable Care Act, because despite new federal rules, Medicaid eligibility will continue to be based on current monthly income. We developed a longitudinal simulation model to evaluate four policy options for modifying or extending Medicaid eligibility to reduce churning. The simulations suggest that two options, extending Medicaid eligibility either to the end of a calendar year or for twelve months after enrollment, would be far more effective in reducing churning than the other options of a three-month extension or eligibility based on projected annual income. States should consider implementation of the option that best balances costs, including both administration and services, with improved health of Medicaid enrollees. PMID:26153313

  6. A radiation-free mixed-reality training environment and assessment concept for C-arm-based surgery.

    PubMed

    Stefan, Philipp; Habert, Séverine; Winkler, Alexander; Lazarovici, Marc; Fürmetz, Julian; Eck, Ulrich; Navab, Nassir

    2018-06-25

    The discrepancy of continuously decreasing opportunities for clinical training and assessment and the increasing complexity of interventions in surgery has led to the development of different training and assessment options like anatomical models, computer-based simulators or cadaver trainings. However, trainees, following training, assessment and ultimately performing patient treatment, still face a steep learning curve. To address this problem for C-arm-based surgery, we introduce a realistic radiation-free simulation system that combines patient-based 3D printed anatomy and simulated X-ray imaging using a physical C-arm. To explore the fidelity and usefulness of the proposed mixed-reality system for training and assessment, we conducted a user study with six surgical experts performing a facet joint injection on the simulator. In a technical evaluation, we show that our system simulates X-ray images accurately with an RMSE of 1.85 mm compared to real X-ray imaging. The participants expressed agreement with the overall realism of the simulation, the usefulness of the system for assessment and strong agreement with the usefulness of such a mixed-reality system for training of novices and experts. In a quantitative analysis, we furthermore evaluated the suitability of the system for the assessment of surgical skills and gather preliminary evidence for validity. The proposed mixed-reality simulation system facilitates a transition to C-arm-based surgery and has the potential to complement or even replace large parts of cadaver training, to provide a safe assessment environment and to reduce the risk for errors when proceeding to patient treatment. We propose an assessment concept and outline the steps necessary to expand the system into a test instrument that provides reliable and justified assessments scores indicative of surgical proficiency with sufficient evidence for validity.

  7. 32 CFR 644.168 - Exercise of options.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Exercise of options. 644.168 Section 644.168... Exercise of options. Upon issuance of a real estate directive for acquisition of the optioned real property, the District or Division Engineer will exercise the option and proceed with the acquisition in...

  8. 32 CFR 644.168 - Exercise of options.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Exercise of options. 644.168 Section 644.168... Exercise of options. Upon issuance of a real estate directive for acquisition of the optioned real property, the District or Division Engineer will exercise the option and proceed with the acquisition in...

  9. 32 CFR 644.168 - Exercise of options.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Exercise of options. 644.168 Section 644.168... Exercise of options. Upon issuance of a real estate directive for acquisition of the optioned real property, the District or Division Engineer will exercise the option and proceed with the acquisition in...

  10. 32 CFR 644.168 - Exercise of options.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Exercise of options. 644.168 Section 644.168... Exercise of options. Upon issuance of a real estate directive for acquisition of the optioned real property, the District or Division Engineer will exercise the option and proceed with the acquisition in...

  11. A real options approach to biotechnology investment policy-the case of developing a Campylobacter vaccine to poultry.

    PubMed

    Lund, Mogens; Jensen, Jørgen Dejgård

    2016-06-01

    The aim of the article is to identify and analyse public-private incentives for the development and marketing of new animal vaccines within a real options methodological framework, and to investigate how real options methodology can be utilized to support economic incentives for vaccine development in a cost-effective way. The development of a vaccine against Campylobacter jejuni in poultry is applied as a case study. Employing the real options methodology, the net present value of the vaccine R&D project becomes larger than a purely probabilistic expected present value throughout the different stages of the project - and the net present value becomes larger, when more types of real options are taken into consideration. The insight from the real options analysis reveals opportunities for new policies to promote the development of animal vaccines. One such approach might be to develop schemes combining stage-by-stage optimized subsidies in the individual development stages, with proper account taken of investors'/developers' economic incentives to proceed, sell or cancel the project in the respective stages. Another way of using the real options approach to support the development of desirable animal vaccines could be to issue put options for the vaccine candidate, enabling vaccine developers to hedge against the economic risk from market volatility. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. An ill-posed problem for the Black-Scholes equation for a profitable forecast of prices of stock options on real market data

    NASA Astrophysics Data System (ADS)

    Klibanov, Michael V.; Kuzhuget, Andrey V.; Golubnichiy, Kirill V.

    2016-01-01

    A new empirical mathematical model for the Black-Scholes equation is proposed to forecast option prices. This model includes new interval for the price of the underlying stock, new initial and new boundary conditions. Conventional notions of maturity time and strike prices are not used. The Black-Scholes equation is solved as a parabolic equation with the reversed time, which is an ill-posed problem. Thus, a regularization method is used to solve it. To verify the validity of our model, real market data for 368 randomly selected liquid options are used. A new trading strategy is proposed. Our results indicates that our method is profitable on those options. Furthermore, it is shown that the performance of two simple extrapolation-based techniques is much worse. We conjecture that our method might lead to significant profits of those financial insitutions which trade large amounts of options. We caution, however, that further studies are necessary to verify this conjecture.

  13. Simulation-Based Abdominal Ultrasound Training - A Systematic Review.

    PubMed

    Østergaard, M L; Ewertsen, C; Konge, L; Albrecht-Beste, E; Bachmann Nielsen, M

    2016-06-01

    The aim is to provide a complete overview of the different simulation-based training options for abdominal ultrasound and to explore the evidence of their effect. This systematic review was performed according to the PRISMA guidelines and Medline, Embase, Web of Science, and the Cochrane Library was searched. Articles were divided into three categories based on study design (randomized controlled trials, before-and-after studies and descriptive studies) and assessed for level of evidence using the Oxford Centre for Evidence Based Medicine (OCEBM) system and for bias using the Cochrane Collaboration risk of bias assessment tool. Seventeen studies were included in the analysis: four randomized controlled trials, eight before-and-after studies with pre- and post-test evaluations, and five descriptive studies. No studies scored the highest level of evidence, and 14 had the lowest level. Bias was high for 11 studies, low for four, and unclear for two. No studies used a test with established evidence of validity or examined the correlation between obtained skills on the simulators and real-life clinical skills. Only one study used blinded assessors. The included studies were heterogeneous in the choice of simulator, study design, participants, and outcome measures, and the level of evidence for effect was inadequate. In all studies simulation training was equally or more beneficial than other instructions or no instructions. Study designs had significant built-in bias and confounding issues; therefore, further research should be based on randomized controlled trials using tests with validity evidence and blinded assessors. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Geographically distributed real-time digital simulations using linear prediction

    DOE PAGES

    Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank; ...

    2016-07-04

    Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less

  15. Geographically distributed real-time digital simulations using linear prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank

    Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less

  16. Stock and option portfolio using fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Sumarti, Novriana; Wahyudi, Nanang

    2014-03-01

    Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.

  17. The Importance and Satisfaction of Collaborative Innovation for Strategic Entrepreneurship

    ERIC Educational Resources Information Center

    Tsai, I-Chang; Lei, Han-Sheng

    2016-01-01

    Building on network, learning, resource-based and real options theories, collaborative innovation through the sharing of ideas, knowledge, expertise, and opportunities can enable both small and large firms to successfully engage in strategic entrepreneurship. We use the real case of a research-oriented organization and its incubator for analysis…

  18. Placing the power of real options analysis into the hands of natural resource managers - taking the next step.

    PubMed

    Nelson, Rohan; Howden, Mark; Hayman, Peter

    2013-07-30

    This paper explores heuristic methods with potential to place the analytical power of real options analysis into the hands of natural resource managers. The complexity of real options analysis has led to patchy or ephemeral adoption even by corporate managers familiar with the financial-market origins of valuation methods. Intuitively accessible methods for estimating the value of real options have begun to evolve, but their evaluation has mostly been limited to researcher-driven applications. In this paper we work closely with Bush Heritage Australia to evaluate the potential of real options analysis to support the intuitive judgement of conservation estate managers in covenanting land with uncertain future conservation value due to climate change. The results show that modified decision trees have potential to estimate the option value of covenanting individual properties while time and ongoing research resolves their future conservation value. Complementing this, Luehrman's option space has potential to assist managers with limited budgets to increase the portfolio value of multiple properties with different conservation attributes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Predicting pedestrian flow: a methodology and a proof of concept based on real-life data.

    PubMed

    Davidich, Maria; Köster, Gerta

    2013-01-01

    Building a reliable predictive model of pedestrian motion is very challenging: Ideally, such models should be based on observations made in both controlled experiments and in real-world environments. De facto, models are rarely based on real-world observations due to the lack of available data; instead, they are largely based on intuition and, at best, literature values and laboratory experiments. Such an approach is insufficient for reliable simulations of complex real-life scenarios: For instance, our analysis of pedestrian motion under natural conditions at a major German railway station reveals that the values for free-flow velocities and the flow-density relationship differ significantly from widely used literature values. It is thus necessary to calibrate and validate the model against relevant real-life data to make it capable of reproducing and predicting real-life scenarios. In this work we aim at constructing such realistic pedestrian stream simulation. Based on the analysis of real-life data, we present a methodology that identifies key parameters and interdependencies that enable us to properly calibrate the model. The success of the approach is demonstrated for a benchmark model, a cellular automaton. We show that the proposed approach significantly improves the reliability of the simulation and hence the potential prediction accuracy. The simulation is validated by comparing the local density evolution of the measured data to that of the simulated data. We find that for our model the most sensitive parameters are: the source-target distribution of the pedestrian trajectories, the schedule of pedestrian appearances in the scenario and the mean free-flow velocity. Our results emphasize the need for real-life data extraction and analysis to enable predictive simulations.

  20. [Lack of correlation between performances in a simulator and in reality].

    PubMed

    Konge, Lars; Bitsch, Mikael

    2010-12-13

    Simulation-based training provides obvious benefits for patients and doctors in education. Frequently, virtual reality simulators are expensive and evidence for their efficacy is poor, particularly as a result of studies with poor methodology and few test participants. In medical simulated training- and evaluation programmes it is always a question of transfer to the real clinical world. To illustrate this problem a study comparing the test performance of persons on a bowling simulator with their performance in a real bowling alley was conducted. Twenty-five test subjects played two rounds of bowling on a Nintendo Wii and 25 days later on a real bowling alley. Correlations of the scores in the first and second round (test-retest-reliability) and of the scores on the simulator and in reality (criterion validation) were studied and there was tested for any difference between female and male performance. The intraclass correlation coefficient equalled 0.76, i.e. the simulator fairly accurately measured participant performance. In contrast to this there was absolutely no correlation between participants' real bowling abilities and their scores on the simulator (Pearson's r = 0.06). There was no significant difference between female and male abilities. Simulation-based testing and training must be based on evidence. More studies are needed to include an adequate number of subjects. Bowling competence should not be based on Nintendo Wii measurements. Simulated training- and evaluation programmes should be validated before introduction, to ensure consistency with the real world.

  1. Cost-effectiveness analysis of unsafe abortion and alternative first-trimester pregnancy termination strategies in Nigeria and Ghana.

    PubMed

    Hu, Delphine; Grossman, Daniel; Levin, Carol; Blanchard, Kelly; Adanu, Richard; Goldie, Sue J

    2010-06-01

    To explore the policy implications of increasing access to safe abortion in Nigeria and Ghana, we developed a computer-based decision analytic model which simulates induced abortion and its potential complications in a cohort of women, and comparatively assessed the cost-effectiveness of unsafe abortion and three first-trimester abortion modalities: hospital-based dilatation and curettage, hospital- and clinic-based manual vacuum aspiration (MVA), and medical abortion using misoprostol (MA). Assuming all modalities are equally available, clinic-based MVA is the most cost-effective option in Nigeria. If clinic-based MVA is not available, MA is the next best strategy. Conversely, in Ghana, MA is the most cost-effective strategy, followed by clinic-based MVA if MA is not available. From a real world policy perspective, increasing access to safe abortion in favor over unsafe abortion is the single most important factor in saving lives and societal costs, and is more influential than the actual choice of safe abortion modality.

  2. An IMU-to-Body Alignment Method Applied to Human Gait Analysis.

    PubMed

    Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo

    2016-12-10

    This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.

  3. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  4. Feasibility study of the neutron dose for real-time image-guided proton therapy: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kim, Jin Sung; Shin, Jung Suk; Kim, Daehyun; Shin, Eunhyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-07-01

    Two full rotating gantries with different nozzles (multipurpose nozzle with MLC, scanning dedicated nozzle) for a conventional cyclotron system are installed and being commissioned for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to use Monte Carlo simulation to investigate the neutron dose equivalent per therapeutic dose, H/D, for X-ray imaging equipment under various treatment conditions. At first, we investigated the H/D for various modifications of the beamline devices (scattering, scanning, multi-leaf collimator, aperture, compensator) at the isocenter and at 20, 40 and 60 cm distances from the isocenter, and we compared our results with those of other research groups. Next, we investigated the neutron dose at the X-ray equipment used for real-time imaging under various treatment conditions. Our investigation showed doses of 0.07 ~ 0.19 mSv/Gy at the X-ray imaging equipment, depending on the treatment option and interestingly, the 50% neutron dose reduction was observed due to multileaf collimator during proton scanning treatment with the multipurpose nozzle. In future studies, we plan to measure the neutron dose experimentally and to validate the simulation data for X-ray imaging equipment for use as an additional neutron dose reduction method.

  5. A Simulation Environment for Benchmarking Sensor Fusion-Based Pose Estimators.

    PubMed

    Ligorio, Gabriele; Sabatini, Angelo Maria

    2015-12-19

    In-depth analysis and performance evaluation of sensor fusion-based estimators may be critical when performed using real-world sensor data. For this reason, simulation is widely recognized as one of the most powerful tools for algorithm benchmarking. In this paper, we present a simulation framework suitable for assessing the performance of sensor fusion-based pose estimators. The systems used for implementing the framework were magnetic/inertial measurement units (MIMUs) and a camera, although the addition of further sensing modalities is straightforward. Typical nuisance factors were also included for each sensor. The proposed simulation environment was validated using real-life sensor data employed for motion tracking. The higher mismatch between real and simulated sensors was about 5% of the measured quantity (for the camera simulation), whereas a lower correlation was found for an axis of the gyroscope (0.90). In addition, a real benchmarking example of an extended Kalman filter for pose estimation from MIMU and camera data is presented.

  6. A mathematical simulation model of the CH-47B helicopter, volume 2

    NASA Technical Reports Server (NTRS)

    Weber, J. M.; Liu, T. Y.; Chung, W.

    1984-01-01

    A nonlinear simulation model of the CH-47B helicopter, was adapted for use in a simulation facility. The model represents the specific configuration of the variable stability CH-47B helicopter. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatley-Bailey equations, steady state flapping dynamics and included in the model of the option for simulation of external suspension, slung load equations of motion. Validation of the model was accomplished by static and dynamic data from the original Boeing Vertol mathematical model and flight test data. The model is appropriate for use in real time piloted simulation and is implemented on the ARC Sigma IX computer where it may be operated with a digital cycle time of 0.03 sec.

  7. Field programmable gate array-assigned complex-valued computation and its limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang

    We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.

  8. The design of real time infrared image generation software based on Creator and Vega

    NASA Astrophysics Data System (ADS)

    Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu

    2013-09-01

    Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.

  9. Incorporation of Outcome-Based Contract Requirements in a Real Options Approach for Maintenance Planning

    DTIC Science & Technology

    2016-04-30

    focus on novel onshore/offshore and small/large scale wind turbine designs for expanding their operational range and increasing their efficiency at...of maintenance options created by the implementation of PHM in wind turbines . When an RUL is predicted for a subsystem, there are multiple choices...The section titled Example— Wind Turbine With an Outcome-Based Contract presents a case study for a PHM enabled wind turbine with and without an

  10. Remarks on a financial inverse problem by means of Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Cuomo, Salvatore; Di Somma, Vittorio; Sica, Federica

    2017-10-01

    Estimating the price of a barrier option is a typical inverse problem. In this paper we present a numerical and statistical framework for a market with risk-free interest rate and a risk asset, described by a Geometric Brownian Motion (GBM). After approximating the risk asset with a numerical method, we find the final option price by following an approach based on sequential Monte Carlo methods. All theoretical results are applied to the case of an option whose underlying is a real stock.

  11. Instance-Based Learning: Integrating Sampling and Repeated Decisions from Experience

    ERIC Educational Resources Information Center

    Gonzalez, Cleotilde; Dutt, Varun

    2011-01-01

    In decisions from experience, there are 2 experimental paradigms: sampling and repeated-choice. In the sampling paradigm, participants sample between 2 options as many times as they want (i.e., the stopping point is variable), observe the outcome with no real consequences each time, and finally select 1 of the 2 options that cause them to earn or…

  12. A high fidelity real-time simulation of a small turboshaft engine

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.

    1988-01-01

    A high-fidelity component-type model and real-time digital simulation of the General Electric T700-GE-700 turboshaft engine were developed for use with current generation real-time blade-element rotor helicopter simulations. A control system model based on the specification fuel control system used in the UH-60A Black Hawk helicopter is also presented. The modeling assumptions and real-time digital implementation methods particular to the simulation of small turboshaft engines are described. The validity of the simulation is demonstrated by comparison with analysis-oriented simulations developed by the manufacturer, available test data, and flight-test time histories.

  13. MO-B-BRC-04: MRI-Based Prostate HDR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourtada, F.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  14. MO-B-BRC-02: Ultrasound Based Prostate HDR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  15. Acquiring Enterprise Systems as a Portfolio of Real Options

    DTIC Science & Technology

    2012-04-30

    expanded beyond valuing individual projects by the real options method to the valuation of a portfolio of options. Bardhan , Bagchi, and Soustad (2004... Bardhan , I., Bagchi, S., & Soustad, R. (2004). Prioritizing a portfolio of information technology investment projects. Journal of Management

  16. The timing of adoption of positron emission tomography: a real options approach.

    PubMed

    Pertile, Paolo; Torri, Emanuele; Flor, Luciano; Tardivo, Stefano

    2009-09-01

    This paper presents the economic evaluation from a hospital's perspective of the investment in positron emission tomography, adopting a real options approach. The installation of this equipment requires a major capital outlay, while uncertainty on several key variables is substantial. The value of several timing strategies, including sequential investment, is determined taking into account that future decisions will be based on the information available at that time. The results show that adopting this approach may have an impact on the timing of investment, because postponing the investment may be optimal even when the Expected Net Present Value of the project is positive.

  17. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    PubMed Central

    Polyak, Stephen T.; von Davier, Alina A.; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses. PMID:29238314

  18. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills.

    PubMed

    Polyak, Stephen T; von Davier, Alina A; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  19. Real-Time Speech-to-Text Services. [A Report of the] National Task Force on Quality of Services in the Postsecondary Education of Deaf and Hard of Hearing Students.

    ERIC Educational Resources Information Center

    Stinson, Michael; Eisenberg, Sandy; Horn, Christy; Larson, Judy; Levitt, Harry; Stuckless, Ross

    This report describes and discusses several applications of new computer-based technologies which enable postsecondary students with deafness or hearing impairments to read the text of the language being spoken by the instructor and fellow students virtually in real time. Two current speech-to-text options are described: (1) steno-based systems in…

  20. Integrated Portfolio Analysis: Return on Investment and Real Options Analysis of Intelligence Information Systems (Cryptologic Carry On Program)

    DTIC Science & Technology

    2006-09-30

    unlimited. Prepared for: Naval Postgraduate School, Monterey, California 93943 Integrated Portfolio Analysis : Return on Investment and Real Options... Analysis of Intelligence Information Systems (Cryptologic Carry On Program) 30 September 2006 by LCDR Cesar G. Rios, Jr., Naval Postgraduate...October 2005 – 30 September 2006 4. TITLE AND SUBTITLE Integrated Portfolio Analysis : Return on Investment and Real Options Analysis of Intelligence

  1. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    NASA Astrophysics Data System (ADS)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  2. Checking in: Location Services for Libraries

    ERIC Educational Resources Information Center

    Rethlefsen, Melissa L.

    2010-01-01

    As always in real estate, everything in technology these days seems to be about location. From Google's recent addition of a "nearby" location limit to its suite of search options to the spate of location-based mobile apps and social networks, physical proximity has become the linchpin of a trend to connect technology to the real world. In this…

  3. Mission Simulation of Space Lidar Measurements for Seasonal and Regional CO2 Variations

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan; Collatz, G. J.; Mao, J.; Abshire, J. B.; Sun, X.; Weaver, C. J.

    2010-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric [82 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to the Active Sensing of [82 over Nights, Days, and Seasons (ASCENDS) recommended by the US National Academy of Sciences Decadal Survey of Earth Science and Applications from Space. One prerequisite for meaningful quantitative sensor evaluation is realistic CO2 process modeling across a wide range of scales, i.e., does the model have representative spatial and temporal gradients? Examples of model comparison with data will be shown. Another requirement is a relatively complete description of the atmospheric and surface state, which we have obtained from meteorological data assimilation and satellite measurements from MODIS and [ALIPS0. We use radiative transfer model calculations, an instrument model with representative errors ' and a simple retrieval approach to complete the cycle from "nature" run to "pseudo-data" CO2, Several mission and instrument configuration options are examined/ and the sensitivity to key design variables is shown. We use the simulation framework to demonstrate that within reasonable technological assumptions for the system performance, relatively high measurement precision can be obtained, but errors depend strongly on environmental conditions as well as instrument specifications. Examples are also shown of how the resulting pseudo - measurements might be used to address key carbon cycle science questions.

  4. Interrater Reliability of the Power Mobility Road Test in the Virtual Reality-Based Simulator-2.

    PubMed

    Kamaraj, Deepan C; Dicianno, Brad E; Mahajan, Harshal P; Buhari, Alhaji M; Cooper, Rory A

    2016-07-01

    To assess interrater reliability of the Power Mobility Road Test (PMRT) when administered through the Virtual Reality-based SIMulator-version 2 (VRSIM-2). Within-subjects repeated-measures design. Participants interacted with VRSIM-2 through 2 display options (desktop monitor vs immersive virtual reality screens) using 2 control interfaces (roller system vs conventional movement-sensing joystick), providing 4 different driving scenarios (driving conditions 1-4). Participants performed 3 virtual driving sessions for each of the 2 display screens and 1 session through a real-world driving course (driving condition 5). The virtual PMRT was conducted in a simulated indoor office space, and an equivalent course was charted in an open space for the real-world assessment. After every change in driving condition, participants completed a self-reported workload assessment questionnaire, the Task Load Index, developed by the National Aeronautics and Space Administration. A convenience sample of electric-powered wheelchair (EPW) athletes (N=21) recruited at the 31st National Veterans Wheelchair Games. Not applicable. Total composite PMRT score. The PMRT had high interrater reliability (intraclass correlation coefficient [ICC]>.75) between the 2 raters in all 5 driving conditions. Post hoc analyses revealed that the reliability analyses had >80% power to detect high ICCs in driving conditions 1 and 4. The PMRT has high interrater reliability in conditions 1 and 4 and could be used to assess EPW driving performance virtually in VRSIM-2. However, further psychometric assessment is necessary to assess the feasibility of administering the PMRT using the different interfaces of VRSIM-2. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Image formation simulation for computer-aided inspection planning of machine vision systems

    NASA Astrophysics Data System (ADS)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  6. The cognitive and neural basis of option generation and subsequent choice.

    PubMed

    Kaiser, Stefan; Simon, Joe J; Kalis, Annemarie; Schweizer, Sophie; Tobler, Philippe N; Mojzisch, Andreas

    2013-12-01

    Decision-making research has thoroughly investigated how people choose from a set of externally provided options. However, in ill-structured real-world environments, possible options for action are not defined by the situation but have to be generated by the agent. Here, we apply behavioral analysis (Study 1) and functional magnetic resonance imaging (Study 2) to investigate option generation and subsequent choice. For this purpose, we employ a new experimental task that requires participants to generate options for simple real-world scenarios and to subsequently decide among the generated options. Correlational analysis with a cognitive test battery suggests that retrieval of options from long-term memory is a relevant process during option generation. The results of the fMRI study demonstrate that option generation in simple real-world scenarios recruits the anterior prefrontal cortex. Furthermore, we show that choice behavior and its neural correlates differ between self-generated and externally provided options. Specifically, choice between self-generated options is associated with stronger recruitment of the dorsal anterior cingulate cortex. This impact of option generation on subsequent choice underlines the need for an expanded model of decision making to accommodate choice between self-generated options.

  7. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  8. Estimating and validating harvesting system production through computer simulation

    Treesearch

    John E. Baumgras; Curt C. Hassler; Chris B. LeDoux

    1993-01-01

    A Ground Based Harvesting System Simulation model (GB-SIM) has been developed to estimate stump-to-truck production rates and multiproduct yields for conventional ground-based timber harvesting systems in Appalachian hardwood stands. Simulation results reflect inputs that define harvest site and timber stand attributes, wood utilization options, and key attributes of...

  9. The improved business valuation model for RFID company based on the community mining method.

    PubMed

    Li, Shugang; Yu, Zhaoxu

    2017-01-01

    Nowadays, the appetite for the investment and mergers and acquisitions (M&A) activity in RFID companies is growing rapidly. Although the huge number of papers have addressed the topic of business valuation models based on statistical methods or neural network methods, only a few are dedicated to constructing a general framework for business valuation that improves the performance with network graph (NG) and the corresponding community mining (CM) method. In this study, an NG based business valuation model is proposed, where real options approach (ROA) integrating CM method is designed to predict the company's net profit as well as estimate the company value. Three improvements are made in the proposed valuation model: Firstly, our model figures out the credibility of the node belonging to each community and clusters the network according to the evolutionary Bayesian method. Secondly, the improved bacterial foraging optimization algorithm (IBFOA) is adopted to calculate the optimized Bayesian posterior probability function. Finally, in IBFOA, bi-objective method is used to assess the accuracy of prediction, and these two objectives are combined into one objective function using a new Pareto boundary method. The proposed method returns lower forecasting error than 10 well-known forecasting models on 3 different time interval valuing tasks for the real-life simulation of RFID companies.

  10. The improved business valuation model for RFID company based on the community mining method

    PubMed Central

    Li, Shugang; Yu, Zhaoxu

    2017-01-01

    Nowadays, the appetite for the investment and mergers and acquisitions (M&A) activity in RFID companies is growing rapidly. Although the huge number of papers have addressed the topic of business valuation models based on statistical methods or neural network methods, only a few are dedicated to constructing a general framework for business valuation that improves the performance with network graph (NG) and the corresponding community mining (CM) method. In this study, an NG based business valuation model is proposed, where real options approach (ROA) integrating CM method is designed to predict the company’s net profit as well as estimate the company value. Three improvements are made in the proposed valuation model: Firstly, our model figures out the credibility of the node belonging to each community and clusters the network according to the evolutionary Bayesian method. Secondly, the improved bacterial foraging optimization algorithm (IBFOA) is adopted to calculate the optimized Bayesian posterior probability function. Finally, in IBFOA, bi-objective method is used to assess the accuracy of prediction, and these two objectives are combined into one objective function using a new Pareto boundary method. The proposed method returns lower forecasting error than 10 well-known forecasting models on 3 different time interval valuing tasks for the real-life simulation of RFID companies. PMID:28459815

  11. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1988-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic and algorithmic needs. Both of these needs could be met using a general purpose workstation running both symbolic and algorithmic codes, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed by the NASA Ames Research Center in conjunction with the Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. The integration options and several possible solutions are presented.

  12. Decision analysis and drug development portfolio management: uncovering the real options value of your projects.

    PubMed

    Rosati, Nicoletta

    2002-04-01

    Project selection and portfolio management are particularly challenging in the pharmaceutical industry due to the high risk - high stake nature of the drug development process. In the recent years, scholars and industry experts have agreed that traditional Net-Present-Value evaluation of the projects fails to capture the value of managerial flexibility, and encouraged adopting a real options approach to recover the missed value. In this paper, we take a closer look at the drug development process and at the indices currently used to rank projects. We discuss the economic value of information and of real options arising in drug development and present decision analysis as an ideal framework for the implementation of real options valuation.

  13. A multi-GPU real-time dose simulation software framework for lung radiotherapy.

    PubMed

    Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A

    2012-09-01

    Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was <1%. Our analyses show that the framework applied to deformable lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.

  14. The Implications of Real Options on ERP-Enabled Adoption

    ERIC Educational Resources Information Center

    Nwankpa, Joseph K.

    2012-01-01

    Current research on Enterprise Resource Planning (ERP) systems and real options focuses on valuation and justification issues that manager's face prior to project approval with existing literature attempting to demonstrate that ERP systems as technology positioning investments have option-like characteristics thus making such ERP systems…

  15. Pricing real estate index options under stochastic interest rates

    NASA Astrophysics Data System (ADS)

    Gong, Pu; Dai, Jun

    2017-08-01

    Real estate derivatives as new financial instruments are not merely risk management tools but also provide a novel way to gain exposure to real estate assets without buying or selling the physical assets. Although real estate derivatives market has exhibited a rapid development in recent years, the valuation challenge of real estate derivatives remains a great obstacle for further development in this market. In this paper, we derive a partial differential equation contingent on a real estate index in a stochastic interest rate environment and propose a modified finite difference method that adopts the non-uniform grids to solve this problem. Numerical results confirm the efficiency of the method and indicate that constant interest rate models lead to the mispricing of options and the effects of stochastic interest rates on option prices depend on whether the term structure of interest rates is rising or falling. Finally, we have investigated and compared the different effects of stochastic interest rates on European and American option prices.

  16. Simulation of groundwater flow and analysis of the effects of water-management options in the North Platte Natural Resources District, Nebraska

    USGS Publications Warehouse

    Peterson, Steven M.; Flynn, Amanda T.; Vrabel, Joseph; Ryter, Derek W.

    2015-08-12

    The calibrated groundwater-flow model was used with the Groundwater-Management Process for the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model, MODFLOW–2005, to provide a tool for the NPNRD to better understand how water-management decisions could affect stream base flows of the North Platte River at Bridgeport, Nebr., streamgage in a future period from 2008 to 2019 under varying climatic conditions. The simulation-optimization model was constructed to analyze the maximum increase in simulated stream base flow that could be obtained with the minimum amount of reductions in groundwater withdrawals for irrigation. A second analysis extended the first to analyze the simulated base-flow benefit of groundwater withdrawals along with application of intentional recharge, that is, water from canals being released into rangeland areas with sandy soils. With optimized groundwater withdrawals and intentional recharge, the maximum simulated stream base flow was 15–23 cubic feet per second (ft3/s) greater than with no management at all, or 10–15 ft3/s larger than with managed groundwater withdrawals only. These results indicate not only the amount that simulated stream base flow can be increased by these management options, but also the locations where the management options provide the most or least benefit to the simulated stream base flow. For the analyses in this report, simulated base flow was best optimized by reductions in groundwater withdrawals north of the North Platte River and in the western half of the area. Intentional recharge sites selected by the optimization had a complex distribution but were more likely to be closer to the North Platte River or its tributaries. Future users of the simulation-optimization model will be able to modify the input files as to type, location, and timing of constraints, decision variables of groundwater withdrawals by zone, and other variables to explore other feasible management scenarios that may yield different increases in simulated future base flow of the North Platte River.

  17. Ranking of options of real estate use by expert assessments mathematical processing

    NASA Astrophysics Data System (ADS)

    Lepikhina, O. Yu; Skachkova, M. E.; Mihaelyan, T. A.

    2018-05-01

    The article is devoted to the development of the real estate assessment concept. In conditions of multivariate using of the real estate method based on calculating, the integral indicator of each variant’s efficiency is proposed. In order to calculate weights of criteria of the efficiency expert method, Analytic hierarchy process and its mathematical support are used. The method allows fulfilling ranking of alternative types of real estate use in dependence of their efficiency. The method was applied for one of the land parcels located on Primorsky district in Saint Petersburg.

  18. Real-time electron dynamics for massively parallel excited-state simulations

    NASA Astrophysics Data System (ADS)

    Andrade, Xavier

    The simulation of the real-time dynamics of electrons, based on time dependent density functional theory (TDDFT), is a powerful approach to study electronic excited states in molecular and crystalline systems. What makes the method attractive is its flexibility to simulate different kinds of phenomena beyond the linear-response regime, including strongly-perturbed electronic systems and non-adiabatic electron-ion dynamics. Electron-dynamics simulations are also attractive from a computational point of view. They can run efficiently on massively parallel architectures due to the low communication requirements. Our implementations of electron dynamics, based on the codes Octopus (real-space) and Qball (plane-waves), allow us to simulate systems composed of thousands of atoms and to obtain good parallel scaling up to 1.6 million processor cores. Due to the versatility of real-time electron dynamics and its parallel performance, we expect it to become the method of choice to apply the capabilities of exascale supercomputers for the simulation of electronic excited states.

  19. AEGIS and Ship Self-Defense System (SSDS) Platforms: Using KVA Analysis, Risk Simulation and Strategic Real Options to Assess Operational Effectiveness

    DTIC Science & Technology

    2007-04-30

    numerous reengineering projects and developed a new objective method for objectively measuring the value-added by reengineering. His last assignment...in the corporate world was as the Chief of Consumer Market Research for Telecom Italia in Venice, Italy, where he developed new methods for ...predicting the adoption rates for new interactive multimedia broadband applications. He is Managing Partner for Business Process Auditors, a firm that

  20. 75 FR 1441 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... began trading options on foreign currency pairs on April 17, 2007.\\3\\ The Brazilian real is one of the 19 underlying currencies that have been approved by the SEC for trading.\\4\\ The purpose of this... underlying currencies,\\5\\ with the Brazilian real being assigned a modifier of 10 based on the exchange rate...

  1. A Physics-driven Neural Networks-based Simulation System (PhyNNeSS) for multimodal interactive virtual environments involving nonlinear deformable objects

    PubMed Central

    De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.

    2012-01-01

    Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use. PMID:22629108

  2. 32 CFR 644.165 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ESTATE HANDBOOK Acquisition Procurement of Options Prior to Real Estate Directives (military) § 644.165... options to purchase real estate interests for Army or Air Force military requirements prior to the issuance of a real estate directive. These procedures are applicable to all Division and District Engineers...

  3. An IMU-to-Body Alignment Method Applied to Human Gait Analysis

    PubMed Central

    Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo

    2016-01-01

    This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis. PMID:27973406

  4. North-East Asian Super Grid: Renewable energy mix and economics

    NASA Astrophysics Data System (ADS)

    Breyer, Christian; Bogdanov, Dmitrii; Komoto, Keiichi; Ehara, Tomoki; Song, Jinsoo; Enebish, Namjil

    2015-08-01

    Further development of the North-East Asian energy system is at a crossroads due to severe limitations of the current conventional energy based system. For North-East Asia it is proposed that the excellent solar and wind resources of the Gobi desert could enable the transformation towards a 100% renewable energy system. An hourly resolved model describes an energy system for North-East Asia, subdivided into 14 regions interconnected by high voltage direct current (HVDC) transmission grids. Simulations are made for highly centralized, decentralized and country-wide grids scenarios. The results for total system levelized cost of electricity (LCOE) are 0.065 and 0.081 €/(kW·h) for the centralized and decentralized approaches for 2030 assumptions. The presented results for 100% renewable resources-based energy systems are lower in LCOE by about 30-40% than recent findings in Europe for conventional alternatives. This research clearly indicates that a 100% renewable resources-based energy system is THE real policy option.

  5. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  6. Teaching basic trauma: validating FluoroSim, a digital fluoroscopic simulator for guide-wire insertion in hip surgery.

    PubMed

    Sugand, Kapil; Wescott, Robert A; Carrington, Richard; Hart, Alister; Van Duren, Bernard H

    2018-05-10

    Background and purpose - Simulation is an adjunct to surgical education. However, nothing can accurately simulate fluoroscopic procedures in orthopedic trauma. Current options for training with fluoroscopy are either intraoperative, which risks radiation, or use of expensive and unrealistic virtual reality simulators. We introduce FluoroSim, an inexpensive digital fluoroscopy simulator without the need for radiation. Patients and methods - This was a multicenter study with 26 surgeons in which everyone completed 1 attempt at inserting a guide-wire into a femoral dry bone using surgical equipment and FluoroSim. 5 objective performance metrics were recorded in real-time to assess construct validity. The surgeons were categorized based on the number of dynamic hip screws (DHS) performed: novices (< 10), intermediates (10-39) and experts (≥ 40). A 7-point Likert scale questionnaire assessed the face and content validity of FluoroSim. Results - Construct validity was present for 2 clinically validated metrics in DHS surgery. Experts and intermediates statistically significantly outperformed novices for tip-apex distance and for cut-out rate. Novices took the least number of radiographs. Face and content validity were also observed. Interpretation - FluoroSim discriminated between novice and intermediate or expert surgeons based on tip-apex distance and cut-out rate while demonstrating face and content validity. FluoroSim provides a useful adjunct to orthopedic training. Our findings concur with results from studies using other simulation modalities. FluoroSim can be implemented for education easily and cheaply away from theater in a safe and controlled environment.

  7. PCI-based WILDFIRE reconfigurable computing engines

    NASA Astrophysics Data System (ADS)

    Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.

    1996-10-01

    WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.

  8. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. Themore » integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  9. A Non-Gaussian Stock Price Model: Options, Credit and a Multi-Timescale Memory

    NASA Astrophysics Data System (ADS)

    Borland, L.

    We review a recently proposed model of stock prices, based on astatistical feedback model that results in a non-Gaussian distribution of price changes. Applications to option pricing and the pricing of debt is discussed. A generalization to account for feedback effects over multiple timescales is also presented. This model reproduces most of the stylized facts (ie statistical anomalies) observed in real financial markets.

  10. 75 FR 76930 - Real-Time Public Reporting of Swap Transaction Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 43 RIN 3038-AD08 Real-Time Public Reporting of Swap Transaction Data Correction In proposed rule document 2010-29994 beginning on page 76140 in the...--Additional Real-Time Public Reporting Data Fields for Options, Swaptions and Swaps with Embedded Options...

  11. Simulation of keratoconus observation in photorefraction

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ling; Tan, B.; Baker, K.; Lewis, J. W. L.; Swartz, T.; Jiang, Y.; Wang, M.

    2006-11-01

    In the recent years, keratoconus (KC) has increasingly gained attention due to its treatment options and to the popularity of keratorefractive surgery. This paper investigates the potential of identification of KC using photorefraction (PR), an optical technique that is similar to objective retinoscopy and is commonly used for large-scale ocular screening. Using personalized eye models of both KC and pre-LASIK patients, computer simulations were performed to achieve visualization of this ophthalmic measurement. The simulations are validated by comparing results to two sets of experimental measurements. These PR images show distinguishable differences between KC eyes and eyes that are either normal or ametropic. The simulation technique with personalized modeling can be extended to other ophthalmic instrument developments. It makes possible investigation with the least number of real human subjects. The application is also of great interest in medical training.

  12. Real-time Simulation of Turboprop Engine Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  13. Real-time simulation of ultrasound refraction phenomena using ray-trace based wavefront construction method.

    PubMed

    Szostek, Kamil; Piórkowski, Adam

    2016-10-01

    Ultrasound (US) imaging is one of the most popular techniques used in clinical diagnosis, mainly due to lack of adverse effects on patients and the simplicity of US equipment. However, the characteristics of the medium cause US imaging to imprecisely reconstruct examined tissues. The artifacts are the results of wave phenomena, i.e. diffraction or refraction, and should be recognized during examination to avoid misinterpretation of an US image. Currently, US training is based on teaching materials and simulators and ultrasound simulation has become an active research area in medical computer science. Many US simulators are limited by the complexity of the wave phenomena, leading to intensive sophisticated computation that makes it difficult for systems to operate in real time. To achieve the required frame rate, the vast majority of simulators reduce the problem of wave diffraction and refraction. The following paper proposes a solution for an ultrasound simulator based on methods known in geophysics. To improve simulation quality, a wavefront construction method was adapted which takes into account the refraction phenomena. This technique uses ray tracing and velocity averaging to construct wavefronts in the simulation. Instead of a geological medium, real CT scans are applied. This approach can produce more realistic projections of pathological findings and is also capable of providing real-time simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.

    PubMed

    Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.

  15. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments

    PubMed Central

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoberi, J.

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  17. GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.

    PubMed

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-12-01

    In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources. In this study we developed a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators, which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. The smoke and bleeding simulation were implemented as part of a laparoscopic adjustable gastric banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur noticeable overhead. However, for smoke generation, an input/output (I/O) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited to VR-based surgical simulators. Copyright © 2010 John Wiley & Sons, Ltd.

  18. GPU-based Efficient Realistic Techniques for Bleeding and Smoke Generation in Surgical Simulators

    PubMed Central

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-01-01

    Background In actual surgery, smoke and bleeding due to cautery processes, provide important visual cues to the surgeon which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated effects of bleeding and smoke generation, they are not realistic due to the requirement of real time performance. To be interactive, visual update must be performed at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques since other computationally intensive processes compete for the available CPU resources. Methods In this work, we develop a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. Results The smoke and bleeding simulation were implemented as part of a Laparoscopic Adjustable Gastric Banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur in noticeable overhead. However, for smoke generation, an I/O (Input/Output) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Conclusions Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited in VR-based surgical simulators. PMID:20878651

  19. Simulation-based learning: Just like the real thing

    PubMed Central

    Lateef, Fatimah

    2010-01-01

    Simulation is a technique for practice and learning that can be applied to many different disciplines and trainees. It is a technique (not a technology) to replace and amplify real experiences with guided ones, often “immersive” in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Simulation-based learning can be the way to develop health professionals’ knowledge, skills, and attitudes, whilst protecting patients from unnecessary risks. Simulation-based medical education can be a platform which provides a valuable tool in learning to mitigate ethical tensions and resolve practical dilemmas. Simulation-based training techniques, tools, and strategies can be applied in designing structured learning experiences, as well as be used as a measurement tool linked to targeted teamwork competencies and learning objectives. It has been widely applied in fields such aviation and the military. In medicine, simulation offers good scope for training of interdisciplinary medical teams. The realistic scenarios and equipment allows for retraining and practice till one can master the procedure or skill. An increasing number of health care institutions and medical schools are now turning to simulation-based learning. Teamwork training conducted in the simulated environment may offer an additive benefit to the traditional didactic instruction, enhance performance, and possibly also help reduce errors. PMID:21063557

  20. Simulation-based learning: Just like the real thing.

    PubMed

    Lateef, Fatimah

    2010-10-01

    Simulation is a technique for practice and learning that can be applied to many different disciplines and trainees. It is a technique (not a technology) to replace and amplify real experiences with guided ones, often "immersive" in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Simulation-based learning can be the way to develop health professionals' knowledge, skills, and attitudes, whilst protecting patients from unnecessary risks. Simulation-based medical education can be a platform which provides a valuable tool in learning to mitigate ethical tensions and resolve practical dilemmas. Simulation-based training techniques, tools, and strategies can be applied in designing structured learning experiences, as well as be used as a measurement tool linked to targeted teamwork competencies and learning objectives. It has been widely applied in fields such aviation and the military. In medicine, simulation offers good scope for training of interdisciplinary medical teams. The realistic scenarios and equipment allows for retraining and practice till one can master the procedure or skill. An increasing number of health care institutions and medical schools are now turning to simulation-based learning. Teamwork training conducted in the simulated environment may offer an additive benefit to the traditional didactic instruction, enhance performance, and possibly also help reduce errors.

  1. Extending the range of real time density matrix renormalization group simulations

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  2. Volumetric Real-Time Imaging Using a CMUT Ring Array

    PubMed Central

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods—flash, classic phased array (CPA), and synthetic phased array (SPA)—were used in the study. For SPA imaging, two techniques to improve the image quality—Hadamard coding and aperture weighting—were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming. PMID:22718870

  3. Volumetric real-time imaging using a CMUT ring array.

    PubMed

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  4. The utility of the AusEd driving simulator in the clinical assessment of driver fatigue.

    PubMed

    Desai, Anup V; Wilsmore, Brad; Bartlett, Delwyn J; Unger, Gunnar; Constable, Ben; Joffe, David; Grunstein, Ronald R

    2007-08-01

    Several driving simulators have been developed which range in complexity from PC based driving tasks to advanced "real world" simulators. The AusEd driving simulator is a PC based task, which was designed to be conducive to and test for driver fatigue. This paper describes the AusEd driving simulator in detail, including the technical requirements, hardware, screen and file outputs, and analysis software. Some aspects of the test are standardized, while others can be modified to suit the experimental situation. The AusEd driving simulator is sensitive to performance decrement from driver fatigue in the laboratory setting, potentially making it useful as a laboratory or office based test for driver fatigue risk management. However, more research is still needed to correlate laboratory based simulator performance with real world driving performance and outcomes.

  5. Obesity trend in the United States and economic intervention options to change it: A simulation study linking ecological epidemiology and system dynamics modeling.

    PubMed

    Chen, H-J; Xue, H; Liu, S; Huang, T T K; Wang, Y C; Wang, Y

    2018-05-29

    To study the country-level dynamics and influences between population weight status and socio-economic distribution (employment status and family income) in the US and to project the potential impacts of socio-economic-based intervention options on obesity prevalence. Ecological study and simulation. Using the longitudinal data from the 2001-2011 Medical Expenditure Panel Survey (N = 88,453 adults), we built and calibrated a system dynamics model (SDM) capturing the feedback loops between body weight status and socio-economic status distribution and simulated the effects of employment- and income-based intervention options. The SDM-based simulation projected rising overweight/obesity prevalence in the US in the future. Improving people's income from lower to middle-income group would help control the rising prevalence, while only creating jobs for the unemployed did not show such effect. Improving people from low- to middle-income levels may be effective, instead of solely improving reemployment rate, in curbing the rising obesity trend in the US adult population. This study indicates the value of the SDM as a virtual laboratory to evaluate complex distributive phenomena of the interplay between population health and economy. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. Application of Real Options Theory to DoD Software Acquisitions

    DTIC Science & Technology

    2009-02-20

    Future Combat Systems Program. Washington, DC. U.S. Government Printing Office. Damodaran , A. (2007). Investment Valuation : The Options To Expand... valuation methodology, when enhanced and properly formulated around a proposed or existing software investment employing the spiral development approach...THIS PAGE INTENTIONALLY LEFT BLANK iii ABSTRACT The traditional real options valuation methodology, when enhanced and properly formulated

  7. An Estimation of Profitability of Investment Projects in The Oil and Gas Industry Using Real Options Theory / Ocena Opłacalności Projektów Inwestycyjnych W Przemyśle Naftowym Z Wykorzystaniem Teorii Opcji Realnych

    NASA Astrophysics Data System (ADS)

    Kosowski, Piotr; Stopa, Jerzy

    2012-11-01

    Paper discusses issues relating to the valuation of investment efficiency in the oil and gas industry using a real options theory. The example of investment pricing using real options was depicted and it was confronted with the analysis executed with the use of traditional methods. Indicators commonly used to evaluate profitability of investment projects, based on a discounted cash flow method, have a few significant drawbacks, the most meaningful of which is staticity which means that any changes resulting from a decision process during the time of investment cannot be taken into consideration. In accordance with a methodology that is currently used, investment projects are analysed in a way that all the key decisions are made at the beginning and are irreversible. This approach assumes, that all the cash flows are specified and does not let the fact that during the time of investment there may appear new information, which could change its original form. What is also not analysed is the possibility of readjustment, due to staff managment's decisions, to the current market conditions, by expanding, speeding up/slowing down, abandoning or changing an outline of the undertaking. In result, traditional methods of investment projects valuation may lead to taking wrong decisions, e.g. giving up an owned exploitation licence or untimely liquidation of boreholes, which seem to be unprofitable. Due to all the above-mentioned there appears the necessity of finding some other methods which would let one make real and adequate estimations about investments in a petroleum industry especially when it comes to unconventional resources extraction. One of the methods which has been recently getting more and more approval in a world petroleum economics, is a real options pricing method. A real option is a right (but not an obligation) to make a decision connected with an investment in a specified time or time interval. According to the method a static model of pricing using DCF is no longer used; an investment project is divided into a series of steps and after each one there is a range of possible investment decisions, technical and organizational issues and all the others called `real options'. This lets one take many different varieties of modyfiying a strategy while pricing the project. This also makes it possible to react to the changing inner and outer situation and introducing new information while accomplishing the investment project. Owing to those, the decision process is a continuous operation, what is an actual vision of a real investment project management in the petroleum industry.

  8. Simulation and Real-Time Verification of Video Algorithms on the TI C6400 Using Simulink

    DTIC Science & Technology

    2004-08-20

    SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release...plot estimates over time (scrolling data) Adjust detection threshold (click mouse on graph) Monitor video capture Input video frames Captured frames 12 ...Video App: Surveillance Recording 1 2 7 3 4 9 5 6 11 SL for video Explanation of GUI 12 Target Options8 Build Process 10 13 14 15 16 M-code snippet

  9. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    NASA Astrophysics Data System (ADS)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  10. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.

    PubMed

    Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T

    2015-03-01

    With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.

  11. A novel method to value real options in health care: the case of a multicohort human papillomavirus vaccination strategy.

    PubMed

    Favato, Giampiero; Baio, Gianluca; Capone, Alessandro; Marcellusi, Andrea; Saverio Mennini, Francesco

    2013-07-01

    A large number of economic evaluations have already confirmed the cost-effectiveness of different human papillomavirus (HPV) vaccination strategies. Standard analyses might not capture the full economic value of novel vaccination programs because the cost-effectiveness paradigm fails to take into account the value of active management. Management decisions can be seen as real options, a term used to refer to the application of option pricing theory to the valuation of investments in nonfinancial assets in which much of the value is attributable to flexibility and learning over time. The aim of this article was to discuss the potential advantages shown by using the payoff method in the valuation of the cost-effectiveness of competing HPV immunization programs. This was the first study, to the best of our knowledge, to use the payoff method to determine the real option values of 4 different HPV vaccination strategies targeting female subjects aged 12, 15, 18, and 25 years. The payoff method derives the real option value from the triangular payoff distribution of the project's net present value, which is treated as a triangular fuzzy number. To inform the real option model, cost-effectiveness data were derived from an empirically calibrated Bayesian model designed to assess the cost-effectiveness of a multicohort HPV vaccination strategy in the context of the current cervical cancer screening program in Italy. A net health benefit approach was used to calculate the expected fuzzy net present value for each of the 4 vaccination strategies evaluated. Costs per quality-adjusted life-year gained seemed to be related to the number of cohorts targeted: a single cohort of girls aged 12 years (€10,955 [95% CI, -1,021 to 28,212]) revealed the lowest cost among the 4 alternative strategies evaluated. The real option valuation challenged the cost-effectiveness dominance of a single cohort of 12-year-old girls. The simultaneous vaccination of 2 cohorts of girls aged 12 and 15 years yielded a real option value (€17,723) equivalent to that attributed to a single cohort of 12-year-old girls (€17,460). The payoff method showed distinctive advantages in the valuation of the cost-effectiveness of competing health care interventions, essentially determined by the replacement of the nonfuzzy numbers that are commonly used in cost-effectiveness analysis models, with fuzzy numbers as an input to inform the real option pricing method. The real option approach to value uncertainty makes policy making in health care an evolutionary process and creates a new "space" for decision-making choices. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.

  12. The Use of a Real Life Simulated Problem Based Learning Activity in a Corporate Environment

    ERIC Educational Resources Information Center

    Laurent, Mark A.

    2013-01-01

    This narrative study examines using a real life simulated problem base learning activity during education of clinical staff, which is expected to design and develop clinically correct electronic charting systems. Expertise in healthcare does not readily transcend to the realm of manipulating software to collect patient data that is pertinent to…

  13. A health economic model to determine the long-term costs and clinical outcomes of raising low HDL-cholesterol in the prevention of coronary heart disease.

    PubMed

    Roze, S; Liens, D; Palmer, A; Berger, W; Tucker, D; Renaudin, C

    2006-12-01

    The aim of this study was to describe a health economic model developed to project lifetime clinical and cost outcomes of lipid-modifying interventions in patients not reaching target lipid levels and to assess the validity of the model. The internet-based, computer simulation model is made up of two decision analytic sub-models, the first utilizing Monte Carlo simulation, and the second applying Markov modeling techniques. Monte Carlo simulation generates a baseline cohort for long-term simulation by assigning an individual lipid profile to each patient, and applying the treatment effects of interventions under investigation. The Markov model then estimates the long-term clinical (coronary heart disease events, life expectancy, and quality-adjusted life expectancy) and cost outcomes up to a lifetime horizon, based on risk equations from the Framingham study. Internal and external validation analyses were performed. The results of the model validation analyses, plotted against corresponding real-life values from Framingham, 4S, AFCAPS/TexCAPS, and a meta-analysis by Gordon et al., showed that the majority of values were close to the y = x line, which indicates a perfect fit. The R2 value was 0.9575 and the gradient of the regression line was 0.9329, both very close to the perfect fit (= 1). Validation analyses of the computer simulation model suggest the model is able to recreate the outcomes from published clinical studies and would be a valuable tool for the evaluation of new and existing therapy options for patients with persistent dyslipidemia.

  14. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    PubMed

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Optimal generalized multistep integration formulae for real-time digital simulation

    NASA Technical Reports Server (NTRS)

    Moerder, D. D.; Halyo, N.

    1985-01-01

    The problem of discretizing a dynamical system for real-time digital simulation is considered. Treating the system and its simulation as stochastic processes leads to a statistical characterization of simulator fidelity. A plant discretization procedure based on an efficient matrix generalization of explicit linear multistep discrete integration formulae is introduced, which minimizes a weighted sum of the mean squared steady-state and transient error between the system and simulator outputs.

  16. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  17. Dynamics of Markets

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2004-06-01

    Standard texts and research in economics and finance ignore the absence of evidence from the analysis of real, unmassaged market data to support the notion of Adam Smith's stabilizing Invisible Hand. In stark contrast, this text introduces a new empirically-based model of financial market dynamics that explains the volatility of prices options correctly and clarifies the instability of financial markets. The emphasis is on understanding how real markets behave, not how they hypothetically 'should' behave.

  18. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  19. Observations of Crew Dynamics During Mars Analog Simulations

    NASA Technical Reports Server (NTRS)

    Cusack, Stacy L.

    2009-01-01

    Crewmembers on Mars missions will face new and unique challenges compared to those in close communications proximity to Mission Control centers. Crews on Mars will likely become more autonomous and responsible for their day-to-day planning. These explorers will need to make frequent real time decisions without the assistance of large ground support teams. Ground-centric control will no longer be an option due to the communications delays. As a result of the new decision making model, crew dynamics and leadership styles of future astronauts may become significantly different from the demands of today. As a volunteer for the Mars Society on two Mars analog missions, this presenter will discuss observations made during isolated, surface exploration simulations. The need for careful crew selections, not just based on individual skill sets, but on overall team interactions becomes apparent very quickly when the crew is planning their own days and deciding their own priorities. Even more important is the selection of a Mission Commander who can lead a team of highly skilled individuals with strong and varied opinions in a way that promotes crew consensus, maintains fairness, and prevents unnecessary crew fatigue.

  20. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  1. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.

    2013-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.

  2. High-speed reacting flow simulation using USA-series codes

    NASA Astrophysics Data System (ADS)

    Chakravarthy, S. R.; Palaniswamy, S.

    In this paper, the finite-rate chemistry (FRC) formulation for the USA-series of codes and three sets of validations are presented. USA-series computational fluid dynamics (CFD) codes are based on Unified Solution Algorithms including explicity and implicit formulations, factorization and relaxation approaches, time marching and space marching methodolgies, etc., in order to be able to solve a very wide class of CDF problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Perfect and real gas options are available including equilibrium and nonequilibrium chemistry. This capability has been widely used to study various problems including Space Shuttle exhaust plumes, National Aerospace Plane (NASP) designs, etc. (1) Numerical solutions are presented showing the full range of possible solutions to steady detonation wave problems. (2) Comparison between the solution obtained by the USA code and Generalized Kinetics Analysis Program (GKAP) is shown for supersonic combustion in a duct. (3) Simulation of combustion in a supersonic shear layer is shown to have reasonable agreement with experimental observations.

  3. Generalized Fluid System Simulation Program, Version 5.0-Educational

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  4. An Example-Based Brain MRI Simulation Framework.

    PubMed

    He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L

    2015-02-21

    The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.

  5. Image-based aircraft pose estimation: a comparison of simulations and real-world data

    NASA Astrophysics Data System (ADS)

    Breuers, Marcel G. J.; de Reus, Nico

    2001-10-01

    The problem of estimating aircraft pose information from mono-ocular image data is considered using a Fourier descriptor based algorithm. The dependence of pose estimation accuracy on image resolution and aspect angle is investigated through simulations using sets of synthetic aircraft images. Further evaluation shows that god pose estimation accuracy can be obtained in real world image sequences.

  6. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time

    PubMed Central

    Lu, Yuhua; Liu, Qian

    2018-01-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870

  7. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time.

    PubMed

    Xu, Lang; Lu, Yuhua; Liu, Qian

    2018-02-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.

  8. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  9. Business intelligence modeling in launch operations

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations, and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems.

  10. Business Intelligence Modeling in Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems. The future of business intelligence of space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems.

  11. Virtual Reality Cerebral Aneurysm Clipping Simulation With Real-time Haptic Feedback

    PubMed Central

    Alaraj, Ali; Luciano, Cristian J.; Bailey, Daniel P.; Elsenousi, Abdussalam; Roitberg, Ben Z.; Bernardo, Antonio; Banerjee, P. Pat; Charbel, Fady T.

    2014-01-01

    Background With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. Objective To develop and evaluate the usefulness of a new haptic-based virtual reality (VR) simulator in the training of neurosurgical residents. Methods A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the Immersive Touch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomography angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-D immersive VR environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from three residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Results Residents felt that the simulation would be useful in preparing for real-life surgery. About two thirds of the residents felt that the 3-D immersive anatomical details provided a very close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They believed the simulation is useful for preoperative surgical rehearsal and neurosurgical training. One third of the residents felt that the technology in its current form provided very realistic haptic feedback for aneurysm surgery. Conclusion Neurosurgical residents felt that the novel immersive VR simulator is helpful in their training especially since they do not get a chance to perform aneurysm clippings until very late in their residency programs. PMID:25599200

  12. VTI Driving Simulator: Mathematical Model of a Four-wheeled Vehicle for Simulation in Real Time. VTI Rapport 267A.

    ERIC Educational Resources Information Center

    Nordmark, Staffan

    1984-01-01

    This report contains a theoretical model for describing the motion of a passenger car. The simulation program based on this model is used in conjunction with an advanced driving simulator and run in real time. The mathematical model is complete in the sense that the dynamics of the engine, transmission and steering system is described in some…

  13. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques

    NASA Astrophysics Data System (ADS)

    Wang, P.; Becker, A. A.; Jones, I. A.; Glover, A. T.; Benford, S. D.; Vloeberghs, M.

    2009-08-01

    A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.

  14. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  15. Network approaches for expert decisions in sports.

    PubMed

    Glöckner, Andreas; Heinen, Thomas; Johnson, Joseph G; Raab, Markus

    2012-04-01

    This paper focuses on a model comparison to explain choices based on gaze behavior via simulation procedures. We tested two classes of models, a parallel constraint satisfaction (PCS) artificial neuronal network model and an accumulator model in a handball decision-making task from a lab experiment. Both models predict action in an option-generation task in which options can be chosen from the perspective of a playmaker in handball (i.e., passing to another player or shooting at the goal). Model simulations are based on a dataset of generated options together with gaze behavior measurements from 74 expert handball players for 22 pieces of video footage. We implemented both classes of models as deterministic vs. probabilistic models including and excluding fitted parameters. Results indicated that both classes of models can fit and predict participants' initially generated options based on gaze behavior data, and that overall, the classes of models performed about equally well. Early fixations were thereby particularly predictive for choices. We conclude that the analyses of complex environments via network approaches can be successfully applied to the field of experts' decision making in sports and provide perspectives for further theoretical developments. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Multi-Mission Simulation and Visualization for Real-Time Telemetry Display, Playback and EDL Event Reconstruction

    NASA Technical Reports Server (NTRS)

    Pomerantz, M. I.; Lim, C.; Myint, S.; Woodward, G.; Balaram, J.; Kuo, C.

    2012-01-01

    he Jet Propulsion Laboratory's Entry, Descent and Landing (EDL) Reconstruction Task has developed a software system that provides mission operations personnel and analysts with a real time telemetry-based live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity, physics-based simulation framework and modern game engine-derived 3D visualization system developed in the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL Telemetry Visualization (ETV) system has been used for a variety of projects including NASA's Mars Science Laboratory (MSL), NASA'S Low Density Supersonic Decelerator (LDSD) and JPL's MoonRise Lunar sample return proposal.

  17. StarBase: A Firm Real-Time Database Manager for Time-Critical Applications

    DTIC Science & Technology

    1995-01-01

    Mellon University [IO]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides...simulation studies, StarBase uses a real - time operating system to provide basic real-time functionality and deals with issues beyond transaction...re- source scheduling provided by the underlying real - time operating system . Issues of data contention are dealt with by use of a priority

  18. Validation of a model to evaluate the role of radiographs in the diagnosis and treatment planning of periodontal diseases.

    PubMed

    Tugnait, A; Hirschmann, P N; Clerehugh, V

    2006-08-01

    The purposes of this study were (i) to see if an indirect method of design (paper patients) could be developed for study of change affected by radiographs on diagnostic outcome and planned treatment of periodontal patients and (ii) to investigate the effect of the nature of clinical examination on the value of radiographs in reaching a periodontal diagnosis. Paper cases could allow the design of examiner blind studies where repeatability could be assessed. 201 patients were assigned to one of four groups and clinically assessed according to group specifications. Radiographs were taken. Periodontal diagnoses and treatment plans were drawn up for each patient with and without radiographic information (real patient). Simulated paper transcriptions were made for each subject and diagnoses and treatment plans were again drawn up (paper patient). For many diagnoses and treatment options assessments were similar for real and paper patients. There was substantial agreement between periodontal diagnoses reached from real and paper assessments (kappa=0.68). Greater differences were seen for extractions and periodontal surgery. Paper assessments better replicated real assessments when more thorough clinical examinations were undertaken. The relatively time efficient Group 2 clinical assessment appeared to perform similarly to the extensive Group 4 clinical assessment. The model described may be useful for simulating real patients for studies of this nature. The Group 2 assessment appeared to give sufficient clinical information for patient management and may be an appropriate choice for initial diagnosis and treatment planning of periodontal patients.

  19. Valuing real estate externality-based option in development of transit system projects.

    DOT National Transportation Integrated Search

    2010-03-01

    Capital-intensive transit projects rely on strong public support and availability of funds. While the general : public has become a strong advocate for transit systems, budget shortfalls and financial constraints are still : resulting in delays in pr...

  20. Adjustment and validation of a simulation tool for CSP plants based on parabolic trough technology

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Ubani, Nora

    2016-05-01

    The present work presents the validation process carried out for a simulation tool especially designed for the energy yield assessment of concentrating solar plants based on parabolic through (PT) technology. The validation has been carried out by comparing the model estimations with real data collected from a commercial CSP plant. In order to adjust the model parameters used for the simulation, 12 different days were selected among one-year of operational data measured at the real plant. The 12 days were simulated and the estimations compared with the measured data, focusing on the most important variables from the simulation point of view: temperatures, pressures and mass flow of the solar field, gross power, parasitic power, and net power delivered by the plant. Based on these 12 days, the key parameters for simulating the model were properly fixed and the simulation of a whole year performed. The results obtained for a complete year simulation showed very good agreement for the gross and net electric total production. The estimations for these magnitudes show a 1.47% and 2.02% BIAS respectively. The results proved that the simulation software describes with great accuracy the real operation of the power plant and correctly reproduces its transient behavior.

  1. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  2. Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models

    NASA Astrophysics Data System (ADS)

    Giesen, Joachim; Mueller, Klaus; Taneva, Bilyana; Zolliker, Peter

    Conjoint analysis is a family of techniques that originated in psychology and later became popular in market research. The main objective of conjoint analysis is to measure an individual's or a population's preferences on a class of options that can be described by parameters and their levels. We consider preference data obtained in choice-based conjoint analysis studies, where one observes test persons' choices on small subsets of the options. There are many ways to analyze choice-based conjoint analysis data. Here we discuss the intuition behind a classification based approach, and compare this approach to one based on statistical assumptions (discrete choice models) and to a regression approach. Our comparison on real and synthetic data indicates that the classification approach outperforms the discrete choice models.

  3. A study of workstation computational performance for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Cleveland, Jeff I., II

    1995-01-01

    With recent advances in microprocessor technology, some have suggested that modern workstations provide enough computational power to properly operate a real-time simulation. This paper presents the results of a computational benchmark, based on actual real-time flight simulation code used at Langley Research Center, which was executed on various workstation-class machines. The benchmark was executed on different machines from several companies including: CONVEX Computer Corporation, Cray Research, Digital Equipment Corporation, Hewlett-Packard, Intel, International Business Machines, Silicon Graphics, and Sun Microsystems. The machines are compared by their execution speed, computational accuracy, and porting effort. The results of this study show that the raw computational power needed for real-time simulation is now offered by workstations.

  4. Key technology research of HILS based on real-time operating system

    NASA Astrophysics Data System (ADS)

    Wang, Fankai; Lu, Huiming; Liu, Che

    2018-03-01

    In order to solve the problems that the long development cycle of traditional simulation and digital simulation doesn't have the characteristics of real time, this paper designed a HILS(Hardware In the Loop Simulation) system based on the real-time operating platform xPC. This system solved the communication problems between HMI and Simulink models through the MATLAB engine interface, and realized the functions of system setting, offline simulation, model compiling and downloading, etc. Using xPC application interface and integrating the TeeChart ActiveX chart component to realize the monitoring function of real-time target application; Each functional block in the system is encapsulated in the form of DLL, and the data interaction between modules was realized by MySQL database technology. When the HILS system runs, search the address of the online xPC target by means of the Ping command, to establish the Tcp/IP communication between the two machines. The technical effectiveness of the developed system is verified through the typical power station control system.

  5. The Use of Simulation and Cases to Teach Real World Decision Making: Applied Example for Health Care Management Graduate Programs

    ERIC Educational Resources Information Center

    Eisenhardt, Alyson; Ninassi, Susanne Bruno

    2016-01-01

    Many pedagogy experts suggest the use of real world scenarios and simulations as a means of teaching students to apply decision analysis concepts to their field of study. These methods allow students an opportunity to synthesize knowledge, skills, and abilities by presenting a field-based dilemma. The use of real world scenarios and simulations…

  6. Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review

    PubMed Central

    Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.

    2009-01-01

    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508

  7. SutraPlot, a graphical post-processor for SUTRA, a model for ground-water flow with solute or energy transport

    USGS Publications Warehouse

    Souza, W.R.

    1999-01-01

    This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1

  8. Comparison of different strategies in prenatal screening for Down's syndrome: cost effectiveness analysis of computer simulation.

    PubMed

    Gekas, Jean; Gagné, Geneviève; Bujold, Emmanuel; Douillard, Daniel; Forest, Jean-Claude; Reinharz, Daniel; Rousseau, François

    2009-02-13

    To assess and compare the cost effectiveness of three different strategies for prenatal screening for Down's syndrome (integrated test, sequential screening, and contingent screenings) and to determine the most useful cut-off values for risk. Computer simulations to study integrated, sequential, and contingent screening strategies with various cut-offs leading to 19 potential screening algorithms. The computer simulation was populated with data from the Serum Urine and Ultrasound Screening Study (SURUSS), real unit costs for healthcare interventions, and a population of 110 948 pregnancies from the province of Québec for the year 2001. Cost effectiveness ratios, incremental cost effectiveness ratios, and screening options' outcomes. The contingent screening strategy dominated all other screening options: it had the best cost effectiveness ratio ($C26,833 per case of Down's syndrome) with fewer procedure related euploid miscarriages and unnecessary terminations (respectively, 6 and 16 per 100,000 pregnancies). It also outperformed serum screening at the second trimester. In terms of the incremental cost effectiveness ratio, contingent screening was still dominant: compared with screening based on maternal age alone, the savings were $C30,963 per additional birth with Down's syndrome averted. Contingent screening was the only screening strategy that offered early reassurance to the majority of women (77.81%) in first trimester and minimised costs by limiting retesting during the second trimester (21.05%). For the contingent and sequential screening strategies, the choice of cut-off value for risk in the first trimester test significantly affected the cost effectiveness ratios (respectively, from $C26,833 to $C37,260 and from $C35,215 to $C45,314 per case of Down's syndrome), the number of procedure related euploid miscarriages (from 6 to 46 and from 6 to 45 per 100,000 pregnancies), and the number of unnecessary terminations (from 16 to 26 and from 16 to 25 per 100,000 pregnancies). Contingent screening, with a first trimester cut-off value for high risk of 1 in 9, is the preferred option for prenatal screening of women for pregnancies affected by Down's syndrome.

  9. MO-B-BRC-01: Introduction [Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisciandaro, J.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  10. MO-B-BRC-00: Prostate HDR Treatment Planning - Considering Different Imaging Modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  11. Progress on the DPASS project

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Bogatu, I. N.; Svidzinski, V. A.

    2015-11-01

    A novel project to develop Disruption Prediction And Simulation Suite (DPASS) of comprehensive computational tools to predict, model, and analyze disruption events in tokamaks has been recently started at FAR-TECH Inc. DPASS will eventually address the following aspects of the disruption problem: MHD, plasma edge dynamics, plasma-wall interaction, generation and losses of runaway electrons. DPASS uses the 3-D Disruption Simulation Code (DSC-3D) as a core tool and will have a modular structure. DSC is a one fluid non-linear, time-dependent 3D MHD code to simulate dynamics of tokamak plasma surrounded by pure vacuum B-field in the real geometry of a conducting tokamak vessel. DSC utilizes the adaptive meshless technique with adaptation to the moving plasma boundary, with accurate magnetic flux conservation and resolution of the plasma surface current. DSC has also an option to neglect the plasma inertia to eliminate fast magnetosonic scale. This option can be turned on/off as needed. During Phase I of the project, two modules will be developed: the computational module for modeling the massive gas injection and main plasma respond; and the module for nanoparticle plasma jet injection as an innovative disruption mitigation scheme. We will report on this development progress. Work is supported by the US DOE SBIR grant # DE-SC0013727.

  12. Dynamic Staffing and Rescheduling in Software Project Management: A Hybrid Approach.

    PubMed

    Ge, Yujia; Xu, Bin

    2016-01-01

    Resource allocation could be influenced by various dynamic elements, such as the skills of engineers and the growth of skills, which requires managers to find an effective and efficient tool to support their staffing decision-making processes. Rescheduling happens commonly and frequently during the project execution. Control options have to be made when new resources are added or tasks are changed. In this paper we propose a software project staffing model considering dynamic elements of staff productivity with a Genetic Algorithm (GA) and Hill Climbing (HC) based optimizer. Since a newly generated reschedule dramatically different from the initial schedule could cause an obvious shifting cost increase, our rescheduling strategies consider both efficiency and stability. The results of real world case studies and extensive simulation experiments show that our proposed method is effective and could achieve comparable performance to other heuristic algorithms in most cases.

  13. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Traditional expert systems, such as diagnostic and training systems, interact with users only through a keyboard and screen, and are usually symbolic in nature. Expert systems that require access to data bases, complex simulations and real-time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general purpose workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The latter approach was chosen to implement TEXSYS, the thermal expert system, developed by NASA Ames Research Center in conjunction with Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. This paper will explore the integration options, and present several possible solutions.

  14. Dynamic Staffing and Rescheduling in Software Project Management: A Hybrid Approach

    PubMed Central

    Ge, Yujia; Xu, Bin

    2016-01-01

    Resource allocation could be influenced by various dynamic elements, such as the skills of engineers and the growth of skills, which requires managers to find an effective and efficient tool to support their staffing decision-making processes. Rescheduling happens commonly and frequently during the project execution. Control options have to be made when new resources are added or tasks are changed. In this paper we propose a software project staffing model considering dynamic elements of staff productivity with a Genetic Algorithm (GA) and Hill Climbing (HC) based optimizer. Since a newly generated reschedule dramatically different from the initial schedule could cause an obvious shifting cost increase, our rescheduling strategies consider both efficiency and stability. The results of real world case studies and extensive simulation experiments show that our proposed method is effective and could achieve comparable performance to other heuristic algorithms in most cases. PMID:27285420

  15. The study on stage financing model of IT project investment.

    PubMed

    Chen, Si-hua; Xu, Sheng-hua; Lee, Changhoon; Xiong, Neal N; He, Wei

    2014-01-01

    Stage financing is the basic operation of venture capital investment. In investment, usually venture capitalists use different strategies to obtain the maximum returns. Due to its advantages to reduce the information asymmetry and agency cost, stage financing is widely used by venture capitalists. Although considerable attentions are devoted to stage financing, very little is known about the risk aversion strategies of IT projects. This paper mainly addresses the problem of risk aversion of venture capital investment in IT projects. Based on the analysis of characteristics of venture capital investment of IT projects, this paper introduces a real option pricing model to measure the value brought by the stage financing strategy and design a risk aversion model for IT projects. Because real option pricing method regards investment activity as contingent decision, it helps to make judgment on the management flexibility of IT projects and then make a more reasonable evaluation about the IT programs. Lastly by being applied to a real case, it further illustrates the effectiveness and feasibility of the model.

  16. The Study on Stage Financing Model of IT Project Investment

    PubMed Central

    Xu, Sheng-hua; Xiong, Neal N.

    2014-01-01

    Stage financing is the basic operation of venture capital investment. In investment, usually venture capitalists use different strategies to obtain the maximum returns. Due to its advantages to reduce the information asymmetry and agency cost, stage financing is widely used by venture capitalists. Although considerable attentions are devoted to stage financing, very little is known about the risk aversion strategies of IT projects. This paper mainly addresses the problem of risk aversion of venture capital investment in IT projects. Based on the analysis of characteristics of venture capital investment of IT projects, this paper introduces a real option pricing model to measure the value brought by the stage financing strategy and design a risk aversion model for IT projects. Because real option pricing method regards investment activity as contingent decision, it helps to make judgment on the management flexibility of IT projects and then make a more reasonable evaluation about the IT programs. Lastly by being applied to a real case, it further illustrates the effectiveness and feasibility of the model. PMID:25147845

  17. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  18. Comparative cost-effectiveness of Option B+ for prevention of mother-to-child transmission of HIV in Malawi.

    PubMed

    Tweya, Hannock; Keiser, Olivia; Haas, Andreas D; Tenthani, Lyson; Phiri, Sam; Egger, Matthias; Estill, Janne

    2016-03-27

    To estimate the cost-effectiveness of prevention of mother-to-child transmission (MTCT) of HIV with lifelong antiretroviral therapy (ART) for pregnant and breastfeeding women ('Option B+') compared with ART during pregnancy or breastfeeding only unless clinically indicated ('Option B'). Mathematical modelling study of first and second pregnancy, informed by data from the Malawi Option B+ programme. Individual-based simulation model. We simulated cohorts of 10 000 women and their infants during two subsequent pregnancies, including the breastfeeding period, with either Option B+ or B. We parameterized the model with data from the literature and by analysing programmatic data. We compared total costs of antenatal and postnatal care, and lifetime costs and disability-adjusted life-years of the infected infants between Option B+ and Option B. During the first pregnancy, 15% of the infants born to HIV-infected mothers acquired the infection. With Option B+, 39% of the women were on ART at the beginning of the second pregnancy, compared with 18% with Option B. For second pregnancies, the rates MTCT were 11.3% with Option B+ and 12.3% with Option B. The incremental cost-effectiveness ratio comparing the two options ranged between about US$ 500 and US$ 1300 per DALY averted. Option B+ prevents more vertical transmissions of HIV than Option B, mainly because more women are already on ART at the beginning of the next pregnancy. Option B+ is a cost-effective strategy for PMTCT if the total future costs and lost lifetime of the infected infants are taken into account.

  19. On validating remote sensing simulations using coincident real data

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan

    2016-05-01

    The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

  20. Flexible engineering designs for urban water management in Lusaka, Zambia.

    PubMed

    Tembo, Lucy; Pathirana, Assela; van der Steen, Peter; Zevenbergen, Chris

    2015-01-01

    Urban water systems are often designed using deterministic single values as design parameters. Subsequently the different design alternatives are compared using a discounted cash flow analysis that assumes that all parameters remain as-predicted for the entire project period. In reality the future is unknown and at best a possible range of values for design parameters can be estimated. A Monte Carlo simulation could then be used to calculate the expected Net Present Value of project alternatives, as well as so-called target curves (cumulative frequency distribution of possible Net Present Values). The same analysis could be done after flexibilities were incorporated in the design, either by using decision rules to decide about the moment of capacity increase, or by buying Real Options (in this case land) to cater for potential capacity increases in the future. This procedure was applied to a sanitation and wastewater treatment case in Lusaka, Zambia. It included various combinations of on-site anaerobic baffled reactors and off-site waste stabilisation ponds. For the case study, it was found that the expected net value of wastewater treatment systems can be increased by 35-60% by designing a small flexible system with Real Options, rather than a large inflexible system.

  1. Image based SAR product simulation for analysis

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  2. Numerical simulation of a rare winter hailstorm event over Delhi, India on 17 January 2013

    NASA Astrophysics Data System (ADS)

    Chevuturi, A.; Dimri, A. P.; Gunturu, U. B.

    2014-12-01

    This study analyzes the cause of the rare occurrence of a winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, a recent winter hailstorm event on 17 January 2013 (16:00-18:00 UTC) occurring over NCR is investigated. The storm is simulated using the Weather Research and Forecasting (WRF) model with the Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options: hail and graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with a comparative analysis of the two options of GCE microphysics. Upon evaluating the model simulations, it is observed that the hail option shows a more similar precipitation intensity with the Tropical Rainfall Measuring Mission (TRMM) observation than the graupel option does, and it is able to simulate hail precipitation. Using the model-simulated output with the hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on a numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached up to the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of a western disturbance (WD). Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.

  3. Numerical simulation of a winter hailstorm event over Delhi, India on 17 January 2013

    NASA Astrophysics Data System (ADS)

    Chevuturi, A.; Dimri, A. P.; Gunturu, U. B.

    2014-09-01

    This study analyzes the cause of rare occurrence of winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, recent winter hailstorm event on 17 January 2013 (16:00-18:00 UTC) occurring over NCR is investigated. The storm is simulated using Weather Research and Forecasting (WRF) model with Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options, hail or graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with comparative analysis of the two options of GCE microphysics. On evaluating the model simulations, it is observed that hail option shows similar precipitation intensity with TRMM observation than the graupel option and is able to simulate hail precipitation. Using the model simulated output with hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached upto the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of WD. Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.

  4. Using simulation to study difficult clinical issues: prenatal counseling at the threshold of viability across American and Dutch cultures.

    PubMed

    Geurtzen, Rosa; Hogeveen, Marije; Rajani, Anand K; Chitkara, Ritu; Antonius, Timothy; van Heijst, Arno; Draaisma, Jos; Halamek, Louis P

    2014-06-01

    Prenatal counseling at the threshold of viability is a challenging yet critically important activity, and care guidelines differ across cultures. Studying how this task is performed in the actual clinical environment is extremely difficult. In this pilot study, we used simulation as a methodology with 2 aims as follows: first, to explore the use of simulation incorporating a standardized pregnant patient as an investigative methodology and, second, to determine similarities and differences in content and style of prenatal counseling between American and Dutch neonatologists. We compared counseling practice between 11 American and 11 Dutch neonatologists, using a simulation-based investigative methodology. All subjects performed prenatal counseling with a simulated pregnant patient carrying a fetus at the limits of viability. The following elements of scenario design were standardized across all scenarios: layout of the physical environment, details of the maternal and fetal histories, questions and responses of the standardized pregnant patient, and the time allowed for consultation. American subjects typically presented several treatment options without bias, whereas Dutch subjects were more likely to explicitly advise a specific course of treatment (emphasis on partial life support). American subjects offered comfort care more frequently than the Dutch subjects and also discussed options for maximal life support more often than their Dutch colleagues. Simulation is a useful research methodology for studying activities difficult to assess in the actual clinical environment such as prenatal counseling at the limits of viability. Dutch subjects were more directive in their approach than their American counterparts, offering fewer options for care and advocating for less invasive interventions. American subjects were more likely to offer a wider range of therapeutic options without providing a recommendation for any specific option.

  5. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options

    PubMed Central

    Islam, M. R.; Garcia, S. C.; Clark, C. E. F.; Kerrisk, K. L.

    2015-01-01

    One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty. PMID:25924963

  6. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options.

    PubMed

    Islam, M R; Garcia, S C; Clark, C E F; Kerrisk, K L

    2015-05-01

    One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

  7. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  8. Efficient Computation Of Manipulator Inertia Matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Improved method for computation of manipulator inertia matrix developed, based on concept of spatial inertia of composite rigid body. Required for implementation of advanced dynamic-control schemes as well as dynamic simulation of manipulator motion. Motivated by increasing demand for fast algorithms to provide real-time control and simulation capability and, particularly, need for faster-than-real-time simulation capability, required in many anticipated space teleoperation applications.

  9. Real-time liquid-crystal atmosphere turbulence simulator with graphic processing unit.

    PubMed

    Hu, Lifa; Xuan, Li; Li, Dayu; Cao, Zhaoliang; Mu, Quanquan; Liu, Yonggang; Peng, Zenghui; Lu, Xinghai

    2009-04-27

    To generate time-evolving atmosphere turbulence in real time, a phase-generating method for our liquid-crystal (LC) atmosphere turbulence simulator (ATS) is derived based on the Fourier series (FS) method. A real matrix expression for generating turbulence phases is given and calculated with a graphic processing unit (GPU), the GeForce 8800 Ultra. A liquid crystal on silicon (LCOS) with 256x256 pixels is used as the turbulence simulator. The total time to generate a turbulence phase is about 7.8 ms for calculation and readout with the GPU. A parallel processing method of calculating and sending a picture to the LCOS is used to improve the simulating speed of our LC ATS. Therefore, the real-time turbulence phase-generation frequency of our LC ATS is up to 128 Hz. To our knowledge, it is the highest speed used to generate a turbulence phase in real time.

  10. Towards Interactive Medical Content Delivery Between Simulated Body Sensor Networks and Practical Data Center.

    PubMed

    Shi, Xiaobo; Li, Wei; Song, Jeungeun; Hossain, M Shamim; Mizanur Rahman, Sk Md; Alelaiwi, Abdulhameed

    2016-10-01

    With the development of IoT (Internet of Thing), big data analysis and cloud computing, traditional medical information system integrates with these new technologies. The establishment of cloud-based smart healthcare application gets more and more attention. In this paper, semi-physical simulation technology is applied to cloud-based smart healthcare system. The Body sensor network (BSN) of system transmit has two ways of data collection and transmission. The one is using practical BSN to collect data and transmitting it to the data center. The other is transmitting real medical data to practical data center by simulating BSN. In order to transmit real medical data to practical data center by simulating BSN under semi-physical simulation environment, this paper designs an OPNET packet structure, defines a gateway node model between simulating BSN and practical data center and builds a custom protocol stack. Moreover, this paper conducts a large amount of simulation on the real data transmission through simulation network connecting with practical network. The simulation result can provides a reference for parameter settings of fully practical network and reduces the cost of devices and personnel involved.

  11. Using virtual instruments to develop an actuator-based hardware-in-the-loop simulation test-bed for autopilot of unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Yun-Ping; Ju, Jiun-Yan; Liang, Yen-Chu

    2008-12-01

    Since the unmanned aerial vehicles (UAVs) bring forth many innovative applications in scientific, civilian, and military fields, the development of UAVs is rapidly growing every year. The on-board autopilot that reliably performs attitude and guidance control is a vital part for out-of-sight flights. However, the control law in autopilot is designed according to a simplified plant model in which the dynamics of real hardware are usually not taken into consideration. It is a necessity to develop a test-bed including real servos to make real-time control experiments for prototype autopilots, so called hardware-in-the-loop (HIL) simulation. In this paper on the basis of the graphical application software LabVIEW, the real-time HIL simulation system is realized efficiently by the virtual instrumentation approach. The proportional-integral-derivative (PID) controller in autopilot for the pitch angle control loop is experimentally determined by the classical Ziegler-Nichols tuning rule and exhibits good transient and steady-state response in real-time HIL simulation. From the results the differences between numerical simulation and real-time HIL simulation are also clearly presented. The effectiveness of HIL simulation for UAV autopilot design is definitely confirmed

  12. Parallel-distributed mobile robot simulator

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Sekiguchi, Minoru; Watanabe, Nobuo

    1996-06-01

    The aim of this project is to achieve an autonomous learning and growth function based on active interaction with the real world. It should also be able to autonomically acquire knowledge about the context in which jobs take place, and how the jobs are executed. This article describes a parallel distributed movable robot system simulator with an autonomous learning and growth function. The autonomous learning and growth function which we are proposing is characterized by its ability to learn and grow through interaction with the real world. When the movable robot interacts with the real world, the system compares the virtual environment simulation with the interaction result in the real world. The system then improves the virtual environment to match the real-world result more closely. This the system learns and grows. It is very important that such a simulation is time- realistic. The parallel distributed movable robot simulator was developed to simulate the space of a movable robot system with an autonomous learning and growth function. The simulator constructs a virtual space faithful to the real world and also integrates the interfaces between the user, the actual movable robot and the virtual movable robot. Using an ultrafast CG (computer graphics) system (FUJITSU AG series), time-realistic 3D CG is displayed.

  13. A head-to-head hands-on comparison of ERCP mechanical simulator (EMS) and Ex-vivo Porcine Stomach Model (PSM)

    PubMed Central

    Leung, Joseph W; Wang, Dong; Hu, Bing; Lim, Brian

    2011-01-01

    Background ERCP mechanical simulator (EMS) and ex-vivo porcine stomach model (PSM) have been described. No direct comparison was reported on endoscopists' perception regarding their efficacy for ERCP training Objective Comparative assessment of EMS and PSM. Design Questionnaire survey before and after practice. Setting Hands-on practice workshops. Subjects 22 endoscopists with prior experience in 111±225 (mean±SD) ERCP. Interventions Participants performed scope insertion, selective bile duct cannulation with guide wire and insertion of a single biliary stent. Simulated fluoroscopy with external pin-hole camera (EMS), or with additional transillumination (PSM) was used to monitor exchange of accessories. Main outcome measure Participants rated their understanding and confidence before and after hands-on practice, and credibility of each simulator for ERCP training. Comparative efficacy of EMS and PSM for ERCP education was scored (1=not, 10=very) based on pre and post practice surveys: realism (tissue pliability, papilla anatomy, visual/cannulation realism, wire manipulation, simulated fluoroscopy, overall experience); usefulness (assessment of results, supplementing clinical experience, easy for trainees to learn new skills) and application (overall ease of use, prepare trainees to use real instrument and ease of incorporation into training). Results Before hands-on practice, both EMS and PSM received high scores. After practice, there was a significantly greater increase in confidence score for EMS than PSM (p<0.003). Participants found EMS more useful for training (p=0.017). Limitations: Subjective scores. Conclusions Based on head-to-head hands-on comparison, endoscopists considered both EMS and PSM credible options for improving understanding and supplementing clinical ERCP training. EMS is more useful for basic learning. PMID:22163080

  14. Water resources planning under climate change: Assessing the robustness of real options for the Blue Nile

    NASA Astrophysics Data System (ADS)

    Jeuland, Marc; Whittington, Dale

    2014-03-01

    This article presents a methodology for planning new water resources infrastructure investments and operating strategies in a world of climate change uncertainty. It combines a real options (e.g., options to defer, expand, contract, abandon, switch use, or otherwise alter a capital investment) approach with principles drawn from robust decision-making (RDM). RDM comprises a class of methods that are used to identify investment strategies that perform relatively well, compared to the alternatives, across a wide range of plausible future scenarios. Our proposed framework relies on a simulation model that includes linkages between climate change and system hydrology, combined with sensitivity analyses that explore how economic outcomes of investments in new dams vary with forecasts of changing runoff and other uncertainties. To demonstrate the framework, we consider the case of new multipurpose dams along the Blue Nile in Ethiopia. We model flexibility in design and operating decisions—the selection, sizing, and sequencing of new dams, and reservoir operating rules. Results show that there is no single investment plan that performs best across a range of plausible future runoff conditions. The decision-analytic framework is then used to identify dam configurations that are both robust to poor outcomes and sufficiently flexible to capture high upside benefits if favorable future climate and hydrological conditions should arise. The approach could be extended to explore design and operating features of development and adaptation projects other than dams.

  15. Using the PhysX engine for physics-based virtual surgery with force feedback.

    PubMed

    Maciel, Anderson; Halic, Tansel; Lu, Zhonghua; Nedel, Luciana P; De, Suvranu

    2009-09-01

    The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments. In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA's PhysX physics library. Hence, models that are undergoing relatively low-frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real-time tissue response and force feedback. Our simulator integrates a bimanual haptic interface for force feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the laparoscopic adjustable gastric banding (LAGB) procedure as a case study. To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods, which are not always compatible with the interaction level required for such trainers. We have shown that combining different modelling strategies for behaviour, collision and graphics is possible and desirable. Such multimodal environments enable suitable rates to simulate the major steps of the LAGB procedure.

  16. Time Triggered Ethernet System Testing Means and Method

    NASA Technical Reports Server (NTRS)

    Smithgall, William Todd (Inventor); Hall, Brendan (Inventor); Varadarajan, Srivatsan (Inventor)

    2014-01-01

    Methods and apparatus are provided for evaluating the performance of a Time Triggered Ethernet (TTE) system employing Time Triggered (TT) communication. A real TTE system under test (SUT) having real input elements communicating using TT messages with output elements via one or more first TTE switches during a first time interval schedule established for the SUT. A simulation system is also provided having input simulators that communicate using TT messages via one or more second TTE switches with the same output elements during a second time interval schedule established for the simulation system. The first and second time interval schedules are off-set slightly so that messages from the input simulators, when present, arrive at the output elements prior to messages from the analogous real inputs, thereby having priority over messages from the real inputs and causing the system to operate based on the simulated inputs when present.

  17. Real-Time Model and Simulation Architecture for Half- and Full-Bridge Modular Multilevel Converters

    NASA Astrophysics Data System (ADS)

    Ashourloo, Mojtaba

    This work presents an equivalent model and simulation architecture for real-time electromagnetic transient analysis of either half-bridge or full-bridge modular multilevel converter (MMC) with 400 sub-modules (SMs) per arm. The proposed CPU/FPGA-based architecture is optimized for the parallel implementation of the presented MMC model on the FPGA and is beneficiary of a high-throughput floating-point computational engine. The developed real-time simulation architecture is capable of simulating MMCs with 400 SMs per arm at 825 nanoseconds. To address the difficulties of the sorting process implementation, a modified Odd-Even Bubble sorting is presented in this work. The comparison of the results under various test scenarios reveals that the proposed real-time simulator is representing the system responses in the same way of its corresponding off-line counterpart obtained from the PSCAD/EMTDC program.

  18. Real-time dynamics simulation of the Cassini spacecraft using DARTS. Part 1: Functional capabilities and the spatial algebra algorithm

    NASA Technical Reports Server (NTRS)

    Jain, A.; Man, G. K.

    1993-01-01

    This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.

  19. A Lyapunov Function Based Remedial Action Screening Tool Using Real-Time Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Joydeep; Ben-Idris, Mohammed; Faruque, Omar

    This report summarizes the outcome of a research project that comprised the development of a Lyapunov function based remedial action screening tool using real-time data (L-RAS). The L-RAS is an advanced computational tool that is intended to assist system operators in making real-time redispatch decisions to preserve power grid stability. The tool relies on screening contingencies using a homotopy method based on Lyapunov functions to avoid, to the extent possible, the use of time domain simulations. This enables transient stability evaluation at real-time speed without the use of massively parallel computational resources. The project combined the following components. 1. Developmentmore » of a methodology for contingency screening using a homotopy method based on Lyapunov functions and real-time data. 2. Development of a methodology for recommending remedial actions based on the screening results. 3. Development of a visualization and operator interaction interface. 4. Testing of screening tool, validation of control actions, and demonstration of project outcomes on a representative real system simulated on a Real-Time Digital Simulator (RTDS) cluster. The project was led by Michigan State University (MSU), where the theoretical models including homotopy-based screening, trajectory correction using real-time data, and remedial action were developed and implemented in the form of research-grade software. Los Alamos National Laboratory (LANL) contributed to the development of energy margin sensitivity dynamics, which constituted a part of the remedial action portfolio. Florida State University (FSU) and Southern California Edison (SCE) developed a model of the SCE system that was implemented on FSU's RTDS cluster to simulate real-time data that was streamed over the internet to MSU where the L-RAS tool was executed and remedial actions were communicated back to FSU to execute stabilizing controls on the simulated system. LCG Consulting developed the visualization and operator interaction interface, based on specifications provided by MSU. The project was performed from October 2012 to December 2016, at the end of which the L-RAS tool, as described above, was completed and demonstrated. The project resulted in the following innovations and contributions: (a) the L-RAS software prototype, tested on a simulated system, vetted by utility personnel, and potentially ready for wider testing and commercialization; (b) an RTDS-based test bed that can be used for future research in the field; (c) a suite of breakthrough theoretical contributions to the field of power system stability and control; and (d) a new tool for visualization of power system stability margins. While detailed descriptions of the development and implementation of the various project components have been provided in the quarterly reports, this final report provides an overview of the complete project, and is demonstrated using public domain test systems commonly used in the literature. The SCE system, and demonstrations thereon, are not included in this report due to Critical Energy Infrastructure Information (CEII) restrictions.« less

  20. Comparing Real-time Versus Delayed Video Assessments for Evaluating ACGME Sub-competency Milestones in Simulated Patient Care Environments

    PubMed Central

    Stiegler, Marjorie; Hobbs, Gene; Martinelli, Susan M; Zvara, David; Arora, Harendra; Chen, Fei

    2018-01-01

    Background Simulation is an effective method for creating objective summative assessments of resident trainees. Real-time assessment (RTA) in simulated patient care environments is logistically challenging, especially when evaluating a large group of residents in multiple simulation scenarios. To date, there is very little data comparing RTA with delayed (hours, days, or weeks later) video-based assessment (DA) for simulation-based assessments of Accreditation Council for Graduate Medical Education (ACGME) sub-competency milestones. We hypothesized that sub-competency milestone evaluation scores obtained from DA, via audio-video recordings, are equivalent to the scores obtained from RTA. Methods Forty-one anesthesiology residents were evaluated in three separate simulated scenarios, representing different ACGME sub-competency milestones. All scenarios had one faculty member perform RTA and two additional faculty members perform DA. Subsequently, the scores generated by RTA were compared with the average scores generated by DA. Variance component analysis was conducted to assess the amount of variation in scores attributable to residents and raters. Results Paired t-tests showed no significant difference in scores between RTA and averaged DA for all cases. Cases 1, 2, and 3 showed an intraclass correlation coefficient (ICC) of 0.67, 0.85, and 0.50 for agreement between RTA scores and averaged DA scores, respectively. Analysis of variance of the scores assigned by the three raters showed a small proportion of variance attributable to raters (4% to 15%). Conclusions The results demonstrate that video-based delayed assessment is as reliable as real-time assessment, as both assessment methods yielded comparable scores. Based on a department’s needs or logistical constraints, our findings support the use of either real-time or delayed video evaluation for assessing milestones in a simulated patient care environment. PMID:29736352

  1. The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data.

    PubMed

    Sorensen, Mads Solvsten; Mosegaard, Jesper; Trier, Peter

    2009-06-01

    Existing virtual simulators for middle ear surgery are based on 3-dimensional (3D) models from computed tomographic or magnetic resonance imaging data in which image quality is limited by the lack of detail (maximum, approximately 50 voxels/mm3), natural color, and texture of the source material.Virtual training often requires the purchase of a program, a customized computer, and expensive peripherals dedicated exclusively to this purpose. The Visible Ear freeware library of digital images from a fresh-frozen human temporal bone was segmented, and real-time volume rendered as a 3D model of high-fidelity, true color, and great anatomic detail and realism of the surgically relevant structures. A haptic drilling model was developed for surgical interaction with the 3D model. Realistic visualization in high-fidelity (approximately 125 voxels/mm3) and true color, 2D, or optional anaglyph stereoscopic 3D was achieved on a standard Core 2 Duo personal computer with a GeForce 8,800 GTX graphics card, and surgical interaction was provided through a relatively inexpensive (approximately $2,500) Phantom Omni haptic 3D pointing device. This prototype is published for download (approximately 120 MB) as freeware at http://www.alexandra.dk/ves/index.htm.With increasing personal computer performance, future versions may include enhanced resolution (up to 8,000 voxels/mm3) and realistic interaction with deformable soft tissue components such as skin, tympanic membrane, dura, and cholesteatomas-features some of which are not possible with computed tomographic-/magnetic resonance imaging-based systems.

  2. Deriving Tools from Real-time Runs: A New CCMC Support for SEC and AFWA

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions. the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models. and on the transition of appropriate models to space weather forecast centers. As part of the latter activity. the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  3. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices (Ascention Inc.) attached to instrumented gloves (Immersion Inc.) which co-locate the user's hands with hand/forearm representations in the virtual workspace. Force-feedback is possible in a work volume defined by a Phantom Desktop device (SensAble inc.). Graphics are written in OpenGL. The system runs on a 2.2 GHz Pentium 4 PC. The prototype VGX provides astronauts and support personnel with a real-time physically-based VE system to simulate basic research tasks both on Earth and in the microgravity of Space. The immersive virtual environment of the VGX also makes it a useful tool for virtual engineering applications including CAD development, procedure design and simulation of human-system systems in a desktop-sized work volume.

  4. Efficient scatter model for simulation of ultrasound images from computed tomography data

    NASA Astrophysics Data System (ADS)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  5. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  6. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE PAGES

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob; ...

    2017-09-12

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  7. Bridging FPGA and GPU technologies for AO real-time control

    NASA Astrophysics Data System (ADS)

    Perret, Denis; Lainé, Maxime; Bernard, Julien; Gratadour, Damien; Sevin, Arnaud

    2016-07-01

    Our team has developed a common environment for high performance simulations and real-time control of AO systems based on the use of Graphics Processors Units in the context of the COMPASS project. Such a solution, based on the ability of the real time core in the simulation to provide adequate computing performance, limits the cost of developing AO RTC systems and makes them more scalable. A code developed and validated in the context of the simulation may be injected directly into the system and tested on sky. Furthermore, the use of relatively low cost components also offers significant advantages for the system hardware platform. However, the use of GPUs in an AO loop comes with drawbacks: the traditional way of offloading computation from CPU to GPUs - involving multiple copies and unacceptable overhead in kernel launching - is not well suited in a real time context. This last application requires the implementation of a solution enabling direct memory access (DMA) to the GPU memory from a third party device, bypassing the operating system. This allows this device to communicate directly with the real-time core of the simulation feeding it with the WFS camera pixel stream. We show that DMA between a custom FPGA-based frame-grabber and a computation unit (GPU, FPGA, or Coprocessor such as Xeon-phi) across PCIe allows us to get latencies compatible with what will be needed on ELTs. As a fine-grained synchronization mechanism is not yet made available by GPU vendors, we propose the use of memory polling to avoid interrupts handling and involvement of a CPU. Network and Vision protocols are handled by the FPGA-based Network Interface Card (NIC). We present the results we obtained on a complete AO loop using camera and deformable mirror simulators.

  8. Predictive simulation of bidirectional Glenn shunt using a hybrid blood vessel model.

    PubMed

    Li, Hao; Leow, Wee Kheng; Chiu, Ing-Sh

    2009-01-01

    This paper proposes a method for performing predictive simulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shearing in a physically correct manner, and the surface mesh models the surface details of the blood vessel. In this way, the deformation of blood vessels can be computed efficiently and accurately. Our predictive simulation system can produce complex surgical results given a small amount of user inputs. It allows the surgeon to easily explore various surgical options and evaluate them. Tests of the system using bidirectional Glenn shunt (BDG) as an application example show that the results produc by the system are similar to real surgical results.

  9. Real-Time Monitoring of Scada Based Control System for Filling Process

    NASA Astrophysics Data System (ADS)

    Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi

    2008-10-01

    This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.

  10. BEM-based simulation of lung respiratory deformation for CT-guided biopsy.

    PubMed

    Chen, Dong; Chen, Weisheng; Huang, Lipeng; Feng, Xuegang; Peters, Terry; Gu, Lixu

    2017-09-01

    Accurate and real-time prediction of the lung and lung tumor deformation during respiration are important considerations when performing a peripheral biopsy procedure. However, most existing work focused on offline whole lung simulation using 4D image data, which is not applicable in real-time image-guided biopsy with limited image resources. In this paper, we propose a patient-specific biomechanical model based on the boundary element method (BEM) computed from CT images to estimate the respiration motion of local target lesion region, vessel tree and lung surface for the real-time biopsy guidance. This approach applies pre-computation of various BEM parameters to facilitate the requirement for real-time lung motion simulation. The resulting boundary condition at end inspiratory phase is obtained using a nonparametric discrete registration with convex optimization, and the simulation of the internal tissue is achieved by applying a tetrahedron-based interpolation method depend on expert-determined feature points on the vessel tree model. A reference needle is tracked to update the simulated lung motion during biopsy guidance. We evaluate the model by applying it for respiratory motion estimations of ten patients. The average symmetric surface distance (ASSD) and the mean target registration error (TRE) are employed to evaluate the proposed model. Results reveal that it is possible to predict the lung motion with ASSD of [Formula: see text] mm and a mean TRE of [Formula: see text] mm at largest over the entire respiratory cycle. In the CT-/electromagnetic-guided biopsy experiment, the whole process was assisted by our BEM model and final puncture errors in two studies were 3.1 and 2.0 mm, respectively. The experiment results reveal that both the accuracy of simulation and real-time performance meet the demands of clinical biopsy guidance.

  11. The use of integrated focal plane array technologies in laser microsatellite networks

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2004-10-01

    Clustering micro satellites in cooperative fly formation constellations leads to high-performance space systems. The only way to achieve high-speed communication between the satellites is by a laser beam with a narrow divergence angle. In order to make the communication successful three types of focal plane detector arrays are required in the communication terminal: acquisition, tracking and communication detector arrays. The acquisition detector array is used to acquire the neighbor satellite using a wide field-of-view telescope. The tracking detector provides fast, real time and accurate direction location of the neighbor satellite. Based on the information from the acquisition and tracking detectors the receiver and transmitter maintain line of sight. The development of large, fast and very sensitive focal plane detector arrays makes it possible to implement the acquisition, tracking and communication with only one focal plane detector array. By doing so it is possible to reduce dramatically the size, weight, and cost of the optics and electronics which leads to lightweight communication terminals. As a result, the satellites are smaller and lighter, which reduces the space mission cost and increases the booster efficiency. In this paper we will present an overview of the concept of integrated focal plane arrays for laser satellite communication. We also present simulation results based on real system parameters and compare different implementation options.

  12. Comparative cost-effectiveness of Option B+ for prevention of mother to child transmission of HIV in Malawi: Mathematical modelling study

    PubMed Central

    Tweya, Hannock; Keiser, Olivia; Haas, Andreas D.; Tenthani, Lyson; Phiri, Sam; Egger, Matthias; Estill, Janne

    2016-01-01

    Objective To estimate the cost-effectiveness of prevention of mother to child transmission (MTCT) of HIV with lifelong antiretroviral therapy (ART) for pregnant and breastfeeding women (‘Option B+’) compared to ART during pregnancy or breastfeeding only unless clinically indicated (‘Option B’). Design Mathematical modelling study of first and second pregnancy, informed by data from the Malawi Option B+ programme. Methods Individual-based simulation model. We simulated cohorts of 10,000 women and their infants during two subsequent pregnancies, including the breastfeeding period, with either Option B+ or B. We parameterised the model with data from the literature and by analysing programmatic data. We compared total costs of ante-natal and post-natal care, and lifetime costs and disability-adjusted life-years (DALYs) of the infected infants between Option B+ and Option B. Results During the first pregnancy, 15% of the infants born to HIV-infected mothers acquired the infection. With Option B+, 39% of the women were on ART at the beginning of the second pregnancy, compared to 18% with Option B. For second pregnancies, the rates MTCT were 11.3% with Option B+ and 12.3% with Option B. The incremental cost-effectiveness ratio comparing the two options ranged between about US$ 500 and US$ 1300 per DALY averted. Conclusion Option B+ prevents more vertical transmissions of HIV than Option B, mainly because more women are already on ART at the beginning of the next pregnancy. Option B+ is a cost-effective strategy for PMTCT if the total future costs and lost lifetime of the infected infants are taken into account. PMID:26691682

  13. Graphical interface between the CIRSSE testbed and CimStation software with MCS/CTOS

    NASA Technical Reports Server (NTRS)

    Hron, Anna B.

    1992-01-01

    This research is concerned with developing a graphical simulation of the testbed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) and the interface which allows for communication between the two. Such an interface is useful in telerobotic operations, and as a functional interaction tool for testbed users. Creating a simulated model of a real world system, generates inevitable calibration discrepancies between them. This thesis gives a brief overview of the work done to date in the area of workcell representation and communication, describes the development of the CIRSSE interface, and gives a direction for future work in the area of system calibration. The CimStation software used for development of this interface, is a highly versatile robotic workcell simulation package which has been programmed for this application with a scale graphical model of the testbed, and supporting interface menu code. A need for this tool has been identified for the reasons of path previewing, as a window on teleoperation and for calibration of simulated vs. real world models. The interface allows information (i.e., joint angles) generated by CimStation to be sent as motion goal positions to the testbed robots. An option of the interface has been established such that joint angle information generated by supporting testbed algorithms (i.e., TG, collision avoidance) can be piped through CimStation as a visual preview of the path.

  14. Games for Traffic Education: An Experimental Study of a Game-Based Driving Simulator

    ERIC Educational Resources Information Center

    Backlund, Per; Engstrom, Henrik; Johannesson, Mikael; Lebram, Mikael

    2010-01-01

    In this article, the authors report on the construction and evaluation of a game-based driving simulator using a real car as a joystick. The simulator is constructed from off-the-shelf hardware and the simulation runs on open-source software. The feasibility of the simulator as a learning tool has been experimentally evaluated. Results are…

  15. A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery.

    PubMed

    Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu

    2014-12-01

    High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.

  16. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool

    NASA Astrophysics Data System (ADS)

    Lynch, Cheryl L.; Graham, Geoff M.; Popovic, Milos R.

    2011-08-01

    Functional electrical stimulation (FES) applications are frequently evaluated in simulation prior to testing in human subjects. Such simulations are usually based on the typical muscle responses to electrical stimulation, which may result in an overly optimistic assessment of likely real-world performance. We propose a novel method for simulating FES applications that includes non-ideal muscle behaviour during electrical stimulation resulting from muscle fatigue, spasms and tremors. A 'non-idealities' block that can be incorporated into existing FES simulations and provides a realistic estimate of real-world performance is described. An implementation example is included, showing how the non-idealities block can be incorporated into a simulation of electrically stimulated knee extension against gravity for both a proportional-integral-derivative controller and a sliding mode controller. The results presented in this paper illustrate that the real-world performance of a FES system may be vastly different from the performance obtained in simulation using nominal muscle models. We believe that our non-idealities block should be included in future simulations that involve muscle response to FES, as this tool will provide neural engineers with a realistic simulation of the real-world performance of FES systems. This simulation strategy will help engineers and organizations save time and money by preventing premature human testing. The non-idealities block will become available free of charge at www.toronto-fes.ca in late 2011.

  17. A decision analysis approach to climate adaptation: comparing multiple pathways for multi-decadal decision making

    NASA Astrophysics Data System (ADS)

    Lin, B. B.; Little, L.

    2013-12-01

    Policy planners around the world are required to consider the implications of adapting to climatic change across spatial contexts and decadal timeframes. However, local level information for planning is often poorly defined, even though climate adaptation decision-making is made at this scale. This is especially true when considering sea level rise and coastal impacts of climate change. We present a simple approach using sea level rise simulations paired with adaptation scenarios to assess a range of adaptation options available to local councils dealing with issues of beach recession under present and future sea level rise and storm surge. Erosion and beach recession pose a large socioeconomic risk to coastal communities because of the loss of key coastal infrastructure. We examine the well-known adaptation technique of beach nourishment and assess various timings and amounts of beach nourishment at decadal time spans in relation to beach recession impacts. The objective was to identify an adaptation strategy that would allow for a low frequency of management interventions, the maintenance of beach width, and the ability to minimize variation in beach width over the 2010 to 2100 simulation period. 1000 replications of each adaptation option were produced against the 90 year simulation in order to model the ability each adaptation option to achieve the three key objectives. Three sets of adaptation scenarios were identified. Within each scenario, a number of adaptation options were tested. The three scenarios were: 1) Fixed periodic beach replenishment of specific amounts at 20 and 50 year intervals, 2) Beach replenishment to the initial beach width based on trigger levels of recession (5m, 10m, 20m), and 3) Fixed period beach replenishment of a variable amount at decadal intervals (every 10, 20, 30, 40, 50 years). For each adaptation option, we show the effectiveness of each beach replenishment scenario to maintain beach width and consider the implications of more frequent replenishment with that of implementation cost. We determine that a business as usual scenario, where no adaptation is implemented, would lead to an average beach recession of 12.02 meters and a maximum beach recession of 33.23 meters during the period of 2010-2100. The best adaptation option modeled was a fixed replenishment of 5 meters every 20 years leading to 4 replenishment events with an average beach recession of 2.99 meters and a maximum beach recession of 15.02 meters during the period of 2010-2100. The presented simulations explicitly address the uncertainty of future impacts due to sea level rise and storm surge and show a range of options that could be considered by a local council to meet their policy objectives. The simulation runs provide managers the ability to consider the utility of various adaptation options and the timing and costs of implementation. Such information provides an evidence-based practice to decision-making and allows policy makers to transparently make decisions based on best estimates of modeled climate change.

  18. High correlation between performance on a virtual-reality simulator and real-life cataract surgery.

    PubMed

    Thomsen, Ann Sofia Skou; Smith, Phillip; Subhi, Yousif; Cour, Morten la; Tang, Lilian; Saleh, George M; Konge, Lars

    2017-05-01

    To investigate the correlation in performance of cataract surgery between a virtual-reality simulator and real-life surgery using two objective assessment tools with evidence of validity. Cataract surgeons with varying levels of experience were included in the study. All participants performed and videorecorded three standard cataract surgeries before completing a proficiency-based test on the EyeSi virtual-reality simulator. Standard cataract surgeries were defined as: (1) surgery performed under local anaesthesia, (2) patient age >60 years, and (3) visual acuity >1/60 preoperatively. A motion-tracking score was calculated by multiplying average path length and average number of movements from the three real-life surgical videos of full procedures. The EyeSi test consisted of five abstract and two procedural modules: intracapsular navigation, antitremor training, intracapsular antitremor training, forceps training, bimanual training, capsulorhexis and phaco divide and conquer. Eleven surgeons were enrolled. After a designated warm-up period, the proficiency-based test on the EyeSi simulator was strongly correlated to real-life performance measured by motion-tracking software of cataract surgical videos with a Pearson correlation coefficient of -0.70 (p = 0.017). Performance on the EyeSi simulator is significantly and highly correlated to real-life surgical performance. However, it is recommended that performance assessments are made using multiple data sources. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  20. The Decoy Effect as a Nudge: Boosting Hand Hygiene With a Worse Option.

    PubMed

    Li, Meng; Sun, Yan; Chen, Hui

    2018-05-01

    This article provides the first test of the decoy effect as a nudge to influence real-world behavior. The decoy effect is the phenomenon that an additional but worse option can boost the appeal of an existing option. It has been widely demonstrated in hypothetical choices, but its usefulness in real-world settings has been subject to debate. In three longitudinal experiments in food-processing factories, we tested two decoy sanitation options that were worse than the existing sanitizer spray bottle. Results showed that the presence of a decoy, but not an additional copy of the original sanitizer bottle in a different color, drastically increased food workers' hand sanitizer use from the original sanitizer bottle and, consequently, improved workers' passing rate in hand sanitary tests from 60% to 70% to above 90% for 20 days. These findings indicate that the decoy effect can be a powerful nudge technique to influence real-world behavior.

  1. Temporary Employment Contracts in Academia: A Real Option View

    ERIC Educational Resources Information Center

    Brady, Malcolm

    2017-01-01

    This paper examines the strategic use of temporary employment contracts in dealing with supply uncertainty in the form of employee ability that is slow to reveal itself, for example in academia where there exist significant time lags in demonstration of research ability. A temporary contract is modeled as a real option, specifically as a…

  2. An expert system for simulating electric loads aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kukich, George; Dolce, James L.

    1990-01-01

    Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.

  3. An infectious way to teach students about outbreaks.

    PubMed

    Cremin, Íde; Watson, Oliver; Heffernan, Alastair; Imai, Natsuko; Ahmed, Norin; Bivegete, Sandra; Kimani, Teresia; Kyriacou, Demetris; Mahadevan, Preveina; Mustafa, Rima; Pagoni, Panagiota; Sophiea, Marisa; Whittaker, Charlie; Beacroft, Leo; Riley, Steven; Fisher, Matthew C

    2018-06-01

    The study of infectious disease outbreaks is required to train today's epidemiologists. A typical way to introduce and explain key epidemiological concepts is through the analysis of a historical outbreak. There are, however, few training options that explicitly utilise real-time simulated stochastic outbreaks where the participants themselves comprise the dataset they subsequently analyse. In this paper, we present a teaching exercise in which an infectious disease outbreak is simulated over a five-day period and subsequently analysed. We iteratively developed the teaching exercise to offer additional insight into analysing an outbreak. An R package for visualisation, analysis and simulation of the outbreak data was developed to accompany the practical to reinforce learning outcomes. Computer simulations of the outbreak revealed deviations from observed dynamics, highlighting how simplifying assumptions conventionally made in mathematical models often differ from reality. Here we provide a pedagogical tool for others to use and adapt in their own settings. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Treatment cost and life expectancy of diffuse large B-cell lymphoma (DLBCL): a discrete event simulation model on a UK population-based observational cohort.

    PubMed

    Wang, Han-I; Smith, Alexandra; Aas, Eline; Roman, Eve; Crouch, Simon; Burton, Cathy; Patmore, Russell

    2017-03-01

    Diffuse large B-cell lymphoma (DLBCL) is the commonest non-Hodgkin lymphoma. Previous studies examining the cost of treating DLBCL have generally focused on a specific first-line therapy alone; meaning that their findings can neither be extrapolated to the general patient population nor to other points along the treatment pathway. Based on empirical data from a representative population-based patient cohort, the objective of this study was to develop a simulation model that could predict costs and life expectancy of treating DLBCL. All patients newly diagnosed with DLBCL in the UK's population-based Haematological Malignancy Research Network ( www.hmrn.org ) in 2007 were followed until 2013 (n = 271). Mapped treatment pathways, alongside cost information derived from the National Tariff 2013/14, were incorporated into a patient-level simulation model in order to reflect the heterogeneities of patient characteristics and treatment options. The NHS and social services perspective was adopted, and all outcomes were discounted at 3.5 % per annum. Overall, the expected total medical costs were £22,122 for those treated with curative intent, and £2930 for those managed palliatively. For curative chemotherapy, the predicted medical costs were £14,966, £23,449 and £7376 for first-, second- and third-line treatments, respectively. The estimated annual cost for treating DLBCL across the UK was around £88-92 million. This is the first cost modelling study using empirical data to provide 'real world' evidence throughout the DLBCL treatment pathway. Future application of the model could include evaluation of new technologies/treatments to support healthcare decision makers, especially in the era of personalised medicine.

  5. Micromotor-based on-off fluorescence detection of sarin and soman simulants.

    PubMed

    Singh, Virendra V; Kaufmann, Kevin; Orozco, Jahir; Li, Jinxing; Galarnyk, Michael; Arya, Gaurav; Wang, Joseph

    2015-06-30

    Self-propelled micromotor-based fluorescent "On-Off" detection of nerve agents is described. The motion-based assay utilizes Si/Pt Janus micromotors coated with fluoresceinamine toward real-time "on-the-fly" field detection of sarin and soman simulants.

  6. Project coalitions in healthcare construction projects and the application of real options: an exploratory survey.

    PubMed

    van Reedt Dortland, Maartje; Dewulf, Geert; Voordijk, Hans

    2013-01-01

    Exploring the impact of the type of project coalition on types of flexibility by analyzing considered and exercised flexibilities in separated and integrated project coalitions in the design and construction phase and the operations and maintenance phase of a healthcare construction project. Flexibility in healthcare construction projects is increasingly needed in order to deal with growing uncertainties. Until now, little research has been carried out on how and to what extent flexibility is incorporated in different types of project coalitions chosen by healthcare organizations. An exploratory survey was conducted among health organizations in both cure and care. Questions were asked on the position of the real estate department within the organization, the type of project coalitions chosen and the rationale behind this choice, and the extent to which flexibility in terms of a real option was considered and to what extent it had been exercised in a project coalition. Integrated project coalitions pay more attention to flexibility in advance in both the process and the product, but exercise them to a lesser extent than separated project coalitions. The economic feasibility of real options is higher in integrated project coalitions. The study shows that real options thinking is already incorporated in real estate management of healthcare organizations, although more flexibility is considered in advance of the project than is actually realized during and after construction. Built environment, construction, decision making, hospitals, planning.

  7. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling--A pilot study for the Snoqualmie River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.

    2002-01-01

    A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application interface programming should allow the technology developed in the pilot study to be applied to other river systems where NWS forecasts are provided routinely.

  8. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  9. Virtual Cerebral Aneurysm Clipping with Real-Time Haptic Force Feedback in Neurosurgical Education.

    PubMed

    Gmeiner, Matthias; Dirnberger, Johannes; Fenz, Wolfgang; Gollwitzer, Maria; Wurm, Gabriele; Trenkler, Johannes; Gruber, Andreas

    2018-04-01

    Realistic, safe, and efficient modalities for simulation-based training are highly warranted to enhance the quality of surgical education, and they should be incorporated in resident training. The aim of this study was to develop a patient-specific virtual cerebral aneurysm-clipping simulator with haptic force feedback and real-time deformation of the aneurysm and vessels. A prototype simulator was developed from 2012 to 2016. Evaluation of virtual clipping by blood flow simulation was integrated in this software, and the prototype was evaluated by 18 neurosurgeons. In 4 patients with different medial cerebral artery aneurysms, virtual clipping was performed after real-life surgery, and surgical results were compared regarding clip application, surgical trajectory, and blood flow. After head positioning and craniotomy, bimanual virtual aneurysm clipping with an original forceps was performed. Blood flow simulation demonstrated residual aneurysm filling or branch stenosis. The simulator improved anatomic understanding for 89% of neurosurgeons. Simulation of head positioning and craniotomy was considered realistic by 89% and 94% of users, respectively. Most participants agreed that this simulator should be integrated into neurosurgical education (94%). Our illustrative cases demonstrated that virtual aneurysm surgery was possible using the same trajectory as in real-life cases. Both virtual clipping and blood flow simulation were realistic in broad-based but not calcified aneurysms. Virtual clipping of a calcified aneurysm could be performed using the same surgical trajectory, but not the same clip type. We have successfully developed a virtual aneurysm-clipping simulator. Next, we will prospectively evaluate this device for surgical procedure planning and education. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    PubMed

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  11. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots

    PubMed Central

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers. PMID:26999614

  12. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    PubMed

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  13. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    NASA Astrophysics Data System (ADS)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  14. Climate change and the economics of biomass energy feedstocks in semi-arid agricultural landscapes: A spatially explicit real options analysis.

    PubMed

    Regan, Courtney M; Connor, Jeffery D; Raja Segaran, Ramesh; Meyer, Wayne S; Bryan, Brett A; Ostendorf, Bertram

    2017-05-01

    The economics of establishing perennial species as renewable energy feedstocks has been widely investigated as a climate change adapted diversification option for landholders, primarily using net present value (NPV) analysis. NPV does not account for key uncertainties likely to influence relevant landholder decision making. While real options analysis (ROA) is an alternative method that accounts for the uncertainty over future conditions and the large upfront irreversible investment involved in establishing perennials, there have been limited applications of ROA to evaluating land use change decision economics and even fewer applications considering climate change risks. Further, while the influence of spatially varying climate risk on biomass conversion economic has been widely evaluated using NPV methods, effects of spatial variability and climate on land use change have been scarcely assessed with ROA. In this study we applied a simulation-based ROA model to evaluate a landholder's decision to convert land from agriculture to biomass. This spatially explicit model considers price and yield risks under baseline climate and two climate change scenarios over a geographically diverse farming region. We found that underlying variability in primary productivity across the study area had a substantial effect on conversion thresholds required to trigger land use change when compared to results from NPV analysis. Areas traditionally thought of as being quite similar in average productive capacity can display large differences in response to the inclusion of production and price risks. The effects of climate change, broadly reduced returns required for land use change to biomass in low and medium rainfall zones and increased them in higher rainfall areas. Additionally, the risks posed by climate change can further exacerbate the tendency for NPV methods to underestimate true conversion thresholds. Our results show that even under severe drying and warming where crop yield variability is more affected than perennial biomass plantings, comparatively little of the study area is economically viable for conversion to biomass under $200/DM t, and it is not until prices exceed $200/DM t that significant areas become profitable for biomass plantings. We conclude that for biomass to become a valuable diversification option the synchronisation of products and services derived from biomass and the development of markets is vital. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modelling and Simulation for Requirements Engineering and Options Analysis

    DTIC Science & Technology

    2010-05-01

    should be performed to work successfully in the domain; and process-based techniques model the processes that occur in the work domain. There is a crisp ...acad/sed/sedres/ dm /erg/cwa. DRDC Toronto CR 2010-049 39 23. Can the current technique for developing simulation models for assessments

  16. Dataflow computing approach in high-speed digital simulation

    NASA Technical Reports Server (NTRS)

    Ercegovac, M. D.; Karplus, W. J.

    1984-01-01

    New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.

  17. Use of Combined Biogeochemical Model Approaches and Empirical Data to Assess Critical Loads of Nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenn, Mark E.; Driscoll, Charles; Zhou, Qingtao

    2015-01-01

    Empirical and dynamic biogeochemical modelling are complementary approaches for determining the critical load (CL) of atmospheric nitrogen (N) or other constituent deposition that an ecosystem can tolerate without causing ecological harm. The greatest benefits are obtained when these approaches are used in combination. Confounding environmental factors can complicate the determination of empirical CLs across depositional gradients, while the experimental application of N amendments for estimating the CL does not realistically mimic the effects of chronic atmospheric N deposition. Biogeochemical and vegetation simulation models can provide CL estimates and valuable ecosystem response information, allowing for past and future scenario testing withmore » various combinations of environmental factors, pollutants, pollutant control options, land management, and ecosystem response parameters. Even so, models are fundamentally gross simplifications of the real ecosystems they attempt to simulate. Empirical approaches are vital as a check on simulations and CL estimates, to parameterize models, and to elucidate mechanisms and responses under real world conditions. In this chapter, we provide examples of empirical and modelled N CL approaches in ecosystems from three regions of the United States: mixed conifer forest, desert scrub and pinyon- juniper woodland in California; alpine catchments in the Rocky Mountains; and lakes in the Adirondack region of New York state.« less

  18. Complexometric Determination of Mercury Based on a Selective Masking Reaction

    ERIC Educational Resources Information Center

    Romero, Mercedes; Guidi, Veronica; Ibarrolaza, Agustin; Castells, Cecilia

    2009-01-01

    In the first analytical chemistry course, students are introduced to the concepts of equilibrium in water solutions and classical (non-instrumental) analytical methods. Our teaching experience shows that "real samples" stimulate students' enthusiasm for the laboratory work. From this diagnostic, we implemented an optional activity at the end of…

  19. Application of Real Options Theory to Software Engineering for Strategic Decision Making in Software Related Capital Investments

    DTIC Science & Technology

    2008-12-01

    between our current project and the historical projects. Therefore to refine the historical volatility estimate of the previously completed software... historical volatility estimates obtained in the form of beliefs and plausibility based on subjective probabilities that take into consideration unique

  20. Realtime Caption Reporting Curriculum Development--Year Two. Final Report.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    An associate degree program to train real-time caption reporters was developed at Amarillo College in Texas. The competency-based curriculum contained steno caption writer and certified court reporter options. The program featured internships at a local television station, during which students received individual hands-on training conducted by…

  1. Optimal visual simulation of the self-tracking combustion of the infrared decoy based on the particle system

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Duan, Jin; Wang, LiNing; Zhai, Di

    2016-09-01

    The high-efficiency simulation test of military weapons has a very important effect on the high cost of the actual combat test and the very demanding operational efficiency. Especially among the simulative emulation methods of the explosive smoke, the simulation method based on the particle system has generated much attention. In order to further improve the traditional simulative emulation degree of the movement process of the infrared decoy during the real combustion cycle, this paper, adopting the virtual simulation platform of OpenGL and Vega Prime and according to their own radiation characteristics and the aerodynamic characteristics of the infrared decoy, has simulated the dynamic fuzzy characteristics of the infrared decoy during the real combustion cycle by using particle system based on the double depth peeling algorithm and has solved key issues such as the interface, coordinate conversion and the retention and recovery of the Vega Prime's status. The simulation experiment has basically reached the expected improvement purpose, effectively improved the simulation fidelity and provided theoretical support for improving the performance of the infrared decoy.

  2. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation.

    PubMed

    Zhu, Mengchen; Salcudean, Septimiu E

    2011-07-01

    In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.

  3. A simulation model of IT risk on program trading

    NASA Astrophysics Data System (ADS)

    Xia, Bingying; Jiang, Wenbao; Luo, Guangxuan

    2015-12-01

    The biggest difficulty for Program trading IT risk measures lies in the loss of data, in view of this situation, the current scholars approach is collecting court, network and other public media such as all kinds of accident of IT both at home and abroad for data collection, and the loss of IT risk quantitative analysis based on this database. However, the IT risk loss database established by this method can only fuzzy reflect the real situation and not for real to make fundamental explanation. In this paper, based on the study of the concept and steps of the MC simulation, we use computer simulation method, by using the MC simulation method in the "Program trading simulation system" developed by team to simulate the real programming trading and get the IT risk loss of data through its IT failure experiment, at the end of the article, on the effectiveness of the experimental data is verified. In this way, better overcome the deficiency of the traditional research method and solves the problem of lack of IT risk data in quantitative research. More empirically provides researchers with a set of simulation method are used to study the ideas and the process template.

  4. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    NASA Astrophysics Data System (ADS)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  5. Immersive Simulation in Constructivist-Based Classroom E-Learning

    ERIC Educational Resources Information Center

    McHaney, Roger; Reiter, Lauren; Reychav, Iris

    2018-01-01

    This article describes the development of a simulation-based online course combining sound pedagogy, educational technology, and real world expertise to provide university students with an immersive experience in storage management systems. The course developed in this example does more than use a simulation, the entire course is delivered using a…

  6. Generalized Fluid System Simulation Program, Version 5.0-Educational. Supplemental Information for NASA/TM-2011-216470. Supplement

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.

  7. The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning

    ERIC Educational Resources Information Center

    Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar

    2017-01-01

    Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…

  8. Computer considerations for real time simulation of a generalized rotor model

    NASA Technical Reports Server (NTRS)

    Howe, R. M.; Fogarty, L. E.

    1977-01-01

    Scaled equations were developed to meet requirements for real time computer simulation of the rotor system research aircraft. These equations form the basis for consideration of both digital and hybrid mechanization for real time simulation. For all digital simulation estimates of the required speed in terms of equivalent operations per second are developed based on the complexity of the equations and the required intergration frame rates. For both conventional hybrid simulation and hybrid simulation using time-shared analog elements the amount of required equipment is estimated along with a consideration of the dynamic errors. Conventional hybrid mechanization using analog simulation of those rotor equations which involve rotor-spin frequencies (this consititutes the bulk of the equations) requires too much analog equipment. Hybrid simulation using time-sharing techniques for the analog elements appears possible with a reasonable amount of analog equipment. All-digital simulation with affordable general-purpose computers is not possible because of speed limitations, but specially configured digital computers do have the required speed and consitute the recommended approach.

  9. Towards real-time photon Monte Carlo dose calculation in the cloud

    NASA Astrophysics Data System (ADS)

    Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe

    2017-06-01

    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.

  10. Towards real-time photon Monte Carlo dose calculation in the cloud.

    PubMed

    Ziegenhein, Peter; Kozin, Igor N; Kamerling, Cornelis Ph; Oelfke, Uwe

    2017-06-07

    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.

  11. Facilitating Students' Interaction with Real Gas Properties Using a Discovery-Based Approach and Molecular Dynamics Simulations

    ERIC Educational Resources Information Center

    Sweet, Chelsea; Akinfenwa, Oyewumi; Foley, Jonathan J., IV

    2018-01-01

    We present an interactive discovery-based approach to studying the properties of real gases using simple, yet realistic, molecular dynamics software. Use of this approach opens up a variety of opportunities for students to interact with the behaviors and underlying theories of real gases. Students can visualize gas behavior under a variety of…

  12. Integration of Modelling and Graphics to Create an Infrared Signal Processing Test Bed

    NASA Astrophysics Data System (ADS)

    Sethi, H. R.; Ralph, John E.

    1989-03-01

    The work reported in this paper was carried out as part of a contract with MoD (PE) UK. It considers the problems associated with realistic modelling of a passive infrared system in an operational environment. Ideally all aspects of the system and environment should be integrated into a complete end-to-end simulation but in the past limited computing power has prevented this. Recent developments in workstation technology and the increasing availability of parallel processing techniques makes the end-to-end simulation possible. However the complexity and speed of such simulations means difficulties for the operator in controlling the software and understanding the results. These difficulties can be greatly reduced by providing an extremely user friendly interface and a very flexible, high power, high resolution colour graphics capability. Most system modelling is based on separate software simulation of the individual components of the system itself and its environment. These component models may have their own characteristic inbuilt assumptions and approximations, may be written in the language favoured by the originator and may have a wide variety of input and output conventions and requirements. The models and their limitations need to be matched to the range of conditions appropriate to the operational scenerio. A comprehensive set of data bases needs to be generated by the component models and these data bases must be made readily available to the investigator. Performance measures need to be defined and displayed in some convenient graphics form. Some options are presented for combining available hardware and software to create an environment within which the models can be integrated, and which provide the required man-machine interface, graphics and computing power. The impact of massively parallel processing and artificial intelligence will be discussed. Parallel processing will make real time end-to-end simulation possible and will greatly improve the graphical visualisation of the model output data. Artificial intelligence should help to enhance the man-machine interface.

  13. A quadranomial real options model for evaluation of emissions trading and technology

    NASA Astrophysics Data System (ADS)

    Sarkis, Joseph; Tamarkin, Maurry

    2005-11-01

    Green house gas (GHG) emissions have been tied to global climate change. One popular policy instrument that seems to have gained credibility with explicit mention of its application in the Kyoto Protocol is the use of permit trading and cap-and-trade mechanisms. Organizations functioning within this environment will need to manage their resources appropriately to remain competitive. Organizations will either have the opportunity to purchase emissions credits (offsets) from a market trading scheme or seek to reduce their emissions through different measures. Some measures may include investment in new technologies that will reduce their reliance on GHG emitting practices. In many countries, large organizations and institutions generate their own power to operate their facilities. Much of this power is generated (or bought) from GHG producing technology. Specific renewable energy sources such as wind and solar photovoltaic technology may become more feasible alternatives available to a large percentage of these organizations if they are able to take advantage and incorporate the market for GHG emissions trading in their analyses. To help organizations evaluate investment in these renewable energy technologies we introduce a real options based model that will take into consideration uncertainties associated with the technology and those associated with the GHG trading market. The real options analysis will consider both the stochastic (uncertainty) nature of the exercise price of the technology and the stochastic nature of the market trading price of the GHG emissions.

  14. Divergence compensation for hardware-in-the-loop simulation of stiffness-varying discrete contact in space

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Hu, Yan

    2016-11-01

    The hardware-in-the-loop (HIL) contact simulation for flying objects in space is challenging due to the divergence caused by the time delay. In this study, a divergence compensation approach is proposed for the stiffness-varying discrete contact. The dynamic response delay of the motion simulator and the force measurement delay are considered. For the force measurement delay, a phase lead based force compensation approach is used. For the dynamic response delay of the motion simulator, a response error based force compensation approach is used, where the compensation force is obtained from the real-time identified contact stiffness and real-time measured position response error. The dynamic response model of the motion simulator is not required. The simulations and experiments show that the simulation divergence can be compensated effectively and satisfactorily by using the proposed approach.

  15. Evidence integration in model-based tree search

    PubMed Central

    Solway, Alec; Botvinick, Matthew M.

    2015-01-01

    Research on the dynamics of reward-based, goal-directed decision making has largely focused on simple choice, where participants decide among a set of unitary, mutually exclusive options. Recent work suggests that the deliberation process underlying simple choice can be understood in terms of evidence integration: Noisy evidence in favor of each option accrues over time, until the evidence in favor of one option is significantly greater than the rest. However, real-life decisions often involve not one, but several steps of action, requiring a consideration of cumulative rewards and a sensitivity to recursive decision structure. We present results from two experiments that leveraged techniques previously applied to simple choice to shed light on the deliberation process underlying multistep choice. We interpret the results from these experiments in terms of a new computational model, which extends the evidence accumulation perspective to multiple steps of action. PMID:26324932

  16. Combination of real options and game-theoretic approach in investment analysis

    NASA Astrophysics Data System (ADS)

    Arasteh, Abdollah

    2016-09-01

    Investments in technology create a large amount of capital investments by major companies. Assessing such investment projects is identified as critical to the efficient assignment of resources. Viewing investment projects as real options, this paper expands a method for assessing technology investment decisions in the linkage existence of uncertainty and competition. It combines the game-theoretic models of strategic market interactions with a real options approach. Several key characteristics underlie the model. First, our study shows how investment strategies rely on competitive interactions. Under the force of competition, firms hurry to exercise their options early. The resulting "hurry equilibrium" destroys the option value of waiting and involves violent investment behavior. Second, we get best investment policies and critical investment entrances. This suggests that integrating will be unavoidable in some information product markets. The model creates some new intuitions into the forces that shape market behavior as noticed in the information technology industry. It can be used to specify best investment policies for technology innovations and adoptions, multistage R&D, and investment projects in information technology.

  17. An experimental microcomputer controlled system for synchronized pulsating anti-gravity suit.

    PubMed

    Moore, T W; Foley, J; Reddy, B R; Kepics, F; Jaron, D

    1987-07-01

    An experimental system to deliver synchronized external pressure pulsations to the lower body is described in this technical note. The system is designed using a microcomputer with a real time interface and an electro-pneumatic subsystem capable of delivering pressure pulses to a modified anti-G suit at a fast rate. It is versatile, containing many options for synchronizing, phasing and sequencing of the pressure pulsations and controlling the pressure level in the suit bladders. Details of its software and hardware are described along with the results of initial testing in a Dynamic Flight Simulator on human volunteers.

  18. Exploiting Motion Capture to Enhance Avoidance Behaviour in Games

    NASA Astrophysics Data System (ADS)

    van Basten, Ben J. H.; Jansen, Sander E. M.; Karamouzas, Ioannis

    Realistic simulation of interacting virtual characters is essential in computer games, training and simulation applications. The problem is very challenging since people are accustomed to real-world situations and thus, they can easily detect inconsistencies and artifacts in the simulations. Over the past twenty years several models have been proposed for simulating individuals, groups and crowds of characters. However, little effort has been made to actually understand how humans solve interactions and avoid inter-collisions in real-life. In this paper, we exploit motion capture data to gain more insights into human-human interactions. We propose four measures to describe the collision-avoidance behavior. Based on these measures, we extract simple rules that can be applied on top of existing agent and force based approaches, increasing the realism of the resulting simulations.

  19. Pricing geometric Asian rainbow options under fractional Brownian motion

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Zhang, Rong; Yang, Lin; Su, Yang; Ma, Feng

    2018-03-01

    In this paper, we explore the pricing of the assets of Asian rainbow options under the condition that the assets have self-similar and long-range dependence characteristics. Based on the principle of no arbitrage, stochastic differential equation, and partial differential equation, we obtain the pricing formula for two-asset rainbow options under fractional Brownian motion. Next, our Monte Carlo simulation experiments show that the derived pricing formula is accurate and effective. Finally, our sensitivity analysis of the influence of important parameters, such as the risk-free rate, Hurst exponent, and correlation coefficient, on the prices of Asian rainbow options further illustrate the rationality of our pricing model.

  20. A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation

    PubMed Central

    Bao, Yidong; Wu, Dongmei; Yan, Zhiyuan; Du, Zhijiang

    2013-01-01

    This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy. PMID:24339837

  1. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    NASA Astrophysics Data System (ADS)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  2. Intercepting real and simulated falling objects: what is the difference?

    PubMed

    Baurès, Robin; Benguigui, Nicolas; Amorim, Michel-Ange; Hecht, Heiko

    2009-10-30

    The use of virtual reality is nowadays common in many studies in the field of human perception and movement control, particularly in interceptive actions. However, the ecological validity of the simulation is often taken for granted without having been formally established. If participants were to perceive the real situation and its virtual equivalent in a different fashion, the generalization of the results obtained in virtual reality to real life would be highly questionable. We tested the ecological validity of virtual reality in this context by comparing the timing of interceptive actions based upon actually falling objects and their simulated counterparts. The results show very limited differences as a function of whether participants were confronted with a real ball or a simulation thereof. And when present, such differences were limited to the first trial only. This result validates the use of virtual reality when studying interceptive actions of accelerated stimuli.

  3. Real-Time GNSS Positioning with JPL's new GIPSYx Software

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2016-12-01

    The JPL Global Differential GPS (GDGPS) System is now producing real-time orbit and clock solutions for GPS, GLONASS, BeiDou, and Galileo. The operations are based on JPL's next generation geodetic analysis and data processing software, GIPSYx (also known at RTGx). We will examine the impact of the nascent GNSS constellations on real-time kinematic positioning for earthquake monitoring, and assess the marginal benefits from each constellation. We will discus the options for signal selection, inter-signal bias modeling, and estimation strategies in the context of real-time point positioning. We will provide a brief overview of the key features and attributes of GIPSYx. Finally we will describe the current natural hazard monitoring services from the GDGPS System.

  4. From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems

    DTIC Science & Technology

    2015-03-13

    A. Lee. “A Programming Model for Time - Synchronized Distributed Real- Time Systems”. In: Proceedings of Real Time and Em- bedded Technology and Applications Symposium. 2007, pp. 259–268. ...From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

  5. International Space Station (ISS) External Thermal Control System (ETCS) Loop A Pump Module (PM) Jettison Options Assessment

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.

    2014-01-01

    On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.

  6. Development and evaluation of a general aviation real world noise simulator

    NASA Technical Reports Server (NTRS)

    Galanter, E.; Popper, R.

    1980-01-01

    An acoustic playback system is described which realistically simulates the sounds experienced by the pilot of a general aviation aircraft during engine idle, take-off, climb, cruise, descent, and landing. The physical parameters of the signal as they appear in the simulator environment are compared to analogous parameters derived from signals recorded during actual flight operations. The acoustic parameters of the simulated and real signals during cruise conditions are within plus or minus two dB in third octave bands from 0.04 to 4 kHz. The overall A-weighted levels of the signals are within one dB of signals generated in the actual aircraft during equivalent maneuvers. Psychoacoustic evaluations of the simulator signal are compared with similar measurements based on transcriptions of actual aircraft signals. The subjective judgments made by human observers support the conclusion that the simulated sound closely approximates transcribed sounds of real aircraft.

  7. Representing and Enacting Movement: The Body as an Instructional Resource in a Simulator-Based Environment

    ERIC Educational Resources Information Center

    Sellberg, Charlott

    2017-01-01

    Simulators are used to practice in a safe setting before training in a safety-critical environment. Since the nature of situations encountered in high-risk domains is complex and dynamic, it is considered important for the simulation to resemble conditions of real world tasks. For this reason, simulation-based training is often discussed in terms…

  8. Recent achievements in real-time computational seismology in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liang, W.; Huang, B.

    2012-12-01

    Real-time computational seismology is currently possible to be achieved which needs highly connection between seismic database and high performance computing. We have developed a real-time moment tensor monitoring system (RMT) by using continuous BATS records and moment tensor inversion (CMT) technique. The real-time online earthquake simulation service is also ready to open for researchers and public earthquake science education (ROS). Combine RMT with ROS, the earthquake report based on computational seismology can provide within 5 minutes after an earthquake occurred (RMT obtains point source information < 120 sec; ROS completes a 3D simulation < 3 minutes). All of these computational results are posted on the internet in real-time now. For more information, welcome to visit real-time computational seismology earthquake report webpage (RCS).

  9. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    NASA Technical Reports Server (NTRS)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; hide

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  10. Selection of the open pit mining cut-off grade strategy under price uncertainty using a risk based multi-criteria ranking system / Wybór strategii określania warunku opłacalności wydobycia w kopalniach odkrywkowych w warunkach niepewności cen w oparciu o wielokryterialny system rankingowy z uwzględnieniem czynników ryzyka

    NASA Astrophysics Data System (ADS)

    Azimi, Yousue; Osanloo, Montza; Esfahanipour, Akbar

    2012-12-01

    Cut-off Grade Strategy (COGS) is a concept that directly influences the financial, technical, economic, environmental, and legal issues in relation to exploitation of a mineral resource. A decision making system is proposed to select the best technically feasible COGS under price uncertainty. In the proposed system both the conventional discounted cash flow and modern simulation based real option valuations are used to evaluate the alternative strategies. Then the conventional expected value criterion and a multiple criteria ranking system were used to rank the strategies based on the two valuation methods. In the multiple criteria ranking system besides the expected value other stochastic orders expressing abilities of strategies in producing extra profits, minimizing losses and achieving the predefined goals of the exploitation strategy are considered. Finally, the best strategy is selected based on the overall average rank of strategies through all ranking systems. The proposed system was examined using the data of Sungun Copper Mine. To assess the merits of the alternatives better, ranking process was done at both high (prevailing economic condition) and low price conditions. Ranking results revealed that at different price conditions and valuation methods, different results would be obtained. It is concluded that these differences are due to the different behavior of the embedded option to close the mine early, which is more likely to be exercised under low price condition rather than high price condition. The proposed system would enhance the quality of decision making process by providing a more informative and certain platform for project evaluation.

  11. Fake Plate Vehicle Auditing Based on Composite Constraints in Internet of Things Environment

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Xiangji Huang, Jimmy; Tohti, Turdi

    2018-03-01

    Accordance to the real application demands, this paper proposes a fake plate vehicle auditing method based on composite constrains strategy, a corresponding simulated IOT (internet of things) environment was created and uses liner matrix, Base64 encryption and grid monitoring technology and puts forward a real-time detecting algorithm for fake plate vehicles. The developed real system not only shows the superiority on its speed, detection accuracy and visualization, it also be good at realizing the vehicle’s real-time position and predicting the possible traveling trajectory.

  12. An automatic detection method for the boiler pipe header based on real-time image acquisition

    NASA Astrophysics Data System (ADS)

    Long, Yi; Liu, YunLong; Qin, Yongliang; Yang, XiangWei; Li, DengKe; Shen, DingJie

    2017-06-01

    Generally, an endoscope is used to test the inner part of the thermal power plants boiler pipe header. However, since the endoscope hose manual operation, the length and angle of the inserted probe cannot be controlled. Additionally, it has a big blind spot observation subject to the length of the endoscope wire. To solve these problems, an automatic detection method for the boiler pipe header based on real-time image acquisition and simulation comparison techniques was proposed. The magnetic crawler with permanent magnet wheel could carry the real-time image acquisition device to complete the crawling work and collect the real-time scene image. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3-D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  13. The Development of Dispatcher Training Simulator in a Thermal Energy Generation System

    NASA Astrophysics Data System (ADS)

    Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.

    2018-01-01

    A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.

  14. An AD100 implementation of a real-time STOVL aircraft propulsion system

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Drummond, Colin K.

    1990-01-01

    A real-time dynamic model of the propulsion system for a Short Take-Off and Vertical Landing (STOVL) aircraft was developed for the AD100 simulation environment. The dynamic model was adapted from a FORTRAN based simulation using the dynamic programming capabilities of the AD100 ADSIM simulation language. The dynamic model includes an aerothermal representation of a turbofan jet engine, actuator and sensor models, and a multivariable control system. The AD100 model was tested for agreement with the FORTRAN model and real-time execution performance. The propulsion system model was also linked to an airframe dynamic model to provide an overall STOVL aircraft simulation for the purposes of integrated flight and propulsion control studies. An evaluation of the AD100 system for use as an aircraft simulation environment is included.

  15. DFSIM with economics: A financial analysis option for the DFSIM Douglas-fir simulator.

    Treesearch

    Roger O. Fight; Judith M. Chittester; Gary W. Clendenen

    1984-01-01

    A modified version of the DFSIM Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) growth and yield simulator, DFSIM WITH ECONOMICS, now has an economics option that allows the user to estimate present net worth at the same time a silvicultural regime is simulated. If desired, the economics option will apply a...

  16. Economics of Utility Scale Photovoltaics at Purdue University

    NASA Astrophysics Data System (ADS)

    Arnett, William

    The research for this case study shows that utility scale solar photovoltaics has become a competitive energy investment option, even when a campus operates a power plant at low electricity rates. To evaluate this an economic model called SEEMS (Solar Economic Evaluation Modelling Spreadsheets) was developed to evaluate a number of financial scenarios in Real Time Pricing for universities. The three main financing structures considered are 1) land leasing, 2) university direct purchase, and 3) third party purchase. Unlike other commercially available models SEEMS specifically accounts for real time pricing, where the local utility provides electricity at an hourly rate that changes with the expected demand. In addition, SEEMS also includes a random simulation that allows the model to predict the likelihood of success for a given solar installation strategy. The research showed that there are several options for utility scale solar that are financially attractive. The most practical financing structure is with a third party partnership because of the opportunity to take advantage of tax incentives. Other options could become more attractive if non-financial benefits are considered. The case study for this research, Purdue University, has a unique opportunity to integrate utility-scale solar electricity into its strategic planning. Currently Purdue is updating its master plan which will define how land is developed. Purdue is also developing a sustainability plan that will define long term environmental goals. In addition, the university is developing over 500 acres of land west of campus as part of its Aerospace Innovation District. This research helps make the case for including utility-scale solar electricity as part of the university's strategic planning.

  17. Executing Medical Guidelines on the Web: Towards Next Generation Healthcare

    NASA Astrophysics Data System (ADS)

    Argüello, M.; Des, J.; Fernandez-Prieto, M. J.; Perez, R.; Paniagua, H.

    There is still a lack of full integration between current Electronic Health Records (EHRs) and medical guidelines that encapsulate evidence-based medicine. Thus, general practitioners (GPs) and specialised physicians still have to read document-based medical guidelines and decide among various options for managing common non-life-threatening conditions where the selection of the most appropriate therapeutic option for each individual patient can be a difficult task. This paper presents a simulation framework and computational test-bed, called V.A.F. Framework, for supporting simulations of clinical situations that boosted the integration between Health Level Seven (HL7) and Semantic Web technologies (OWL, SWRL, and OWL-S) to achieve content layer interoperability between online clinical cases and medical guidelines, and therefore, it proves that higher integration between EHRs and evidence-based medicine can be accomplished which could lead to a next generation of healthcare systems that provide more support to physicians and increase patients' safety.

  18. Big data to smart data in Alzheimer's disease: Real-world examples of advanced modeling and simulation.

    PubMed

    Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo

    2016-09-01

    Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Real-time simulation of contact and cutting of heterogeneous soft-tissues.

    PubMed

    Courtecuisse, Hadrien; Allard, Jérémie; Kerfriden, Pierre; Bordas, Stéphane P A; Cotin, Stéphane; Duriez, Christian

    2014-02-01

    This paper presents a numerical method for interactive (real-time) simulations, which considerably improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, cutting and other topological changes. We provide an integrated methodology able to deal both with the ill-conditioning issues associated with material heterogeneities, contact boundary conditions which are one of the main sources of inaccuracies, and cutting which is one of the most challenging issues in interactive simulations. Our approach is based on an implicit time integration of a non-linear finite element model. To enable real-time computations, we propose a new preconditioning technique, based on an asynchronous update at low frequency. The preconditioner is not only used to improve the computation of the deformation of the tissues, but also to simulate the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also address the problem of cutting the heterogeneous structures and propose a method to update the preconditioner according to the topological modifications. Finally, we apply our approach to three challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic hepatectomy (iii) a brain tumor surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Incorporating Asymmetric Dependency Patterns in the Evaluation of IS/IT projects Using Real Option Analysis

    ERIC Educational Resources Information Center

    Burke, John C.

    2012-01-01

    The objective of my dissertation is to create a general approach to evaluating IS/IT projects using Real Option Analysis (ROA). This is an important problem because an IT Project Portfolio (ITPP) can represent hundreds of projects, millions of dollars of investment and hundreds of thousands of employee hours. Therefore, any advance in the…

  1. Real option logic for healthcare entrepreneurial growth and survival.

    PubMed

    Williams, David R; Hammes, Paul H

    2007-05-01

    Given the increasing market and technological uncertainty of capital investments, healthcare financial executives need to incorporate flexibility into their decision making. Traditional capital budgeting techniques do not take into consideration the need for flexibility, changes in the environment, or actions by management. In response, practitioners from various industries have adopted a new way of looking at capital investments: real options.

  2. BABAR: an R package to simplify the normalisation of common reference design microarray-based transcriptomic datasets

    PubMed Central

    2010-01-01

    Background The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems'-level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log2- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets. PMID:20128918

  3. A comparative review of estimates of the proportion unchanged genes and the false discovery rate

    PubMed Central

    Broberg, Per

    2005-01-01

    Background In the analysis of microarray data one generally produces a vector of p-values that for each gene give the likelihood of obtaining equally strong evidence of change by pure chance. The distribution of these p-values is a mixture of two components corresponding to the changed genes and the unchanged ones. The focus of this article is how to estimate the proportion unchanged and the false discovery rate (FDR) and how to make inferences based on these concepts. Six published methods for estimating the proportion unchanged genes are reviewed, two alternatives are presented, and all are tested on both simulated and real data. All estimates but one make do without any parametric assumptions concerning the distributions of the p-values. Furthermore, the estimation and use of the FDR and the closely related q-value is illustrated with examples. Five published estimates of the FDR and one new are presented and tested. Implementations in R code are available. Results A simulation model based on the distribution of real microarray data plus two real data sets were used to assess the methods. The proposed alternative methods for estimating the proportion unchanged fared very well, and gave evidence of low bias and very low variance. Different methods perform well depending upon whether there are few or many regulated genes. Furthermore, the methods for estimating FDR showed a varying performance, and were sometimes misleading. The new method had a very low error. Conclusion The concept of the q-value or false discovery rate is useful in practical research, despite some theoretical and practical shortcomings. However, it seems possible to challenge the performance of the published methods, and there is likely scope for further developing the estimates of the FDR. The new methods provide the scientist with more options to choose a suitable method for any particular experiment. The article advocates the use of the conjoint information regarding false positive and negative rates as well as the proportion unchanged when identifying changed genes. PMID:16086831

  4. Developing model asphalt systems using molecular simulation : final model.

    DOT National Transportation Integrated Search

    2009-09-01

    Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...

  5. The NATO Alliance: US Conventional Force Level Options Toward it Based on US National Interests.

    DTIC Science & Technology

    1981-09-01

    24 percent level for 1979, it has recently slowed down due to price controls and the slower depreciation of the escudo . Real wage increases declined...one can readily establisb US current and past generosity, in fiscal terms, toward the Atlantic Alliance. In conclusion, the fifteen countries presently

  6. The STARTEC Decision Support Tool for Better Tradeoffs between Food Safety, Quality, Nutrition, and Costs in Production of Advanced Ready-to-Eat Foods.

    PubMed

    Skjerdal, Taran; Gefferth, Andras; Spajic, Miroslav; Estanga, Edurne Gaston; de Cecare, Alessandra; Vitali, Silvia; Pasquali, Frederique; Bovo, Federica; Manfreda, Gerardo; Mancusi, Rocco; Trevisiani, Marcello; Tessema, Girum Tadesse; Fagereng, Tone; Moen, Lena Haugland; Lyshaug, Lars; Koidis, Anastasios; Delgado-Pando, Gonzalo; Stratakos, Alexandros Ch; Boeri, Marco; From, Cecilie; Syed, Hyat; Muccioli, Mirko; Mulazzani, Roberto; Halbert, Catherine

    2017-01-01

    A prototype decision support IT-tool for the food industry was developed in the STARTEC project. Typical processes and decision steps were mapped using real life production scenarios of participating food companies manufacturing complex ready-to-eat foods. Companies looked for a more integrated approach when making food safety decisions that would align with existing HACCP systems. The tool was designed with shelf life assessments and data on safety, quality, and costs, using a pasta salad meal as a case product. The process flow chart was used as starting point, with simulation options at each process step. Key parameters like pH, water activity, costs of ingredients and salaries, and default models for calculations of Listeria monocytogenes , quality scores, and vitamin C, were placed in an interactive database. Customization of the models and settings was possible on the user-interface. The simulation module outputs were provided as detailed curves or categorized as "good"; "sufficient"; or "corrective action needed" based on threshold limit values set by the user. Possible corrective actions were suggested by the system. The tool was tested and approved by end-users based on selected ready-to-eat food products. Compared to other decision support tools, the STARTEC-tool is product-specific and multidisciplinary and includes interpretation and targeted recommendations for end-users.

  7. The STARTEC Decision Support Tool for Better Tradeoffs between Food Safety, Quality, Nutrition, and Costs in Production of Advanced Ready-to-Eat Foods

    PubMed Central

    Gefferth, Andras; Spajic, Miroslav; Estanga, Edurne Gaston; Vitali, Silvia; Pasquali, Frederique; Bovo, Federica; Manfreda, Gerardo; Mancusi, Rocco; Tessema, Girum Tadesse; Fagereng, Tone; Moen, Lena Haugland; Lyshaug, Lars; Koidis, Anastasios; Delgado-Pando, Gonzalo; Stratakos, Alexandros Ch.; Boeri, Marco; From, Cecilie; Syed, Hyat; Muccioli, Mirko; Mulazzani, Roberto; Halbert, Catherine

    2017-01-01

    A prototype decision support IT-tool for the food industry was developed in the STARTEC project. Typical processes and decision steps were mapped using real life production scenarios of participating food companies manufacturing complex ready-to-eat foods. Companies looked for a more integrated approach when making food safety decisions that would align with existing HACCP systems. The tool was designed with shelf life assessments and data on safety, quality, and costs, using a pasta salad meal as a case product. The process flow chart was used as starting point, with simulation options at each process step. Key parameters like pH, water activity, costs of ingredients and salaries, and default models for calculations of Listeria monocytogenes, quality scores, and vitamin C, were placed in an interactive database. Customization of the models and settings was possible on the user-interface. The simulation module outputs were provided as detailed curves or categorized as “good”; “sufficient”; or “corrective action needed” based on threshold limit values set by the user. Possible corrective actions were suggested by the system. The tool was tested and approved by end-users based on selected ready-to-eat food products. Compared to other decision support tools, the STARTEC-tool is product-specific and multidisciplinary and includes interpretation and targeted recommendations for end-users. PMID:29457031

  8. Operating system for a real-time multiprocessor propulsion system simulator

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  9. Addressing the Real-World Challenges in the Development of Propulsion IVHM Technology Experiment (PITEX)

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy; Fulton, Christopher E.; Balaban, Edward; Sweet, Adam; Hayden, Sandra Claire; Bajwa, Anupa

    2005-01-01

    The Propulsion IVHM Technology Experiment (PITEX) has been an on-going research effort conducted over several years. PITEX has developed and applied a model-based diagnostic system for the main propulsion system of the X-34 reusable launch vehicle, a space-launch technology demonstrator. The application was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real-time on flight-like hardware. In an attempt to expose potential performance problems, these PITEX algorithms were subject to numerous real-world effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. The current research has demonstrated the potential benefits of model-based diagnostics, defined the performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  10. Infrared imagery acquisition process supporting simulation and real image training

    NASA Astrophysics Data System (ADS)

    O'Connor, John

    2012-05-01

    The increasing use of infrared sensors requires development of advanced infrared training and simulation tools to meet current Warfighter needs. In order to prepare the force, a challenge exists for training and simulation images to be both realistic and consistent with each other to be effective and avoid negative training. The US Army Night Vision and Electronic Sensors Directorate has corrected this deficiency by developing and implementing infrared image collection methods that meet the needs of both real image trainers and real-time simulations. The author presents innovative methods for collection of high-fidelity digital infrared images and the associated equipment and environmental standards. The collected images are the foundation for US Army, and USMC Recognition of Combat Vehicles (ROC-V) real image combat ID training and also support simulations including the Night Vision Image Generator and Synthetic Environment Core. The characteristics, consistency, and quality of these images have contributed to the success of these and other programs. To date, this method has been employed to generate signature sets for over 350 vehicles. The needs of future physics-based simulations will also be met by this data. NVESD's ROC-V image database will support the development of training and simulation capabilities as Warfighter needs evolve.

  11. Computer simulation of the activity of the elderly person living independently in a Health Smart Home.

    PubMed

    Noury, N; Hadidi, T

    2012-12-01

    We propose a simulator of human activities collected with presence sensors in our experimental Health Smart Home "Habitat Intelligent pour la Sante (HIS)". We recorded 1492 days of data on several experimental HIS during the French national project "AILISA". On these real data, we built a mathematical model of the behavior of the data series, based on "Hidden Markov Models" (HMM). The model is then played on a computer to produce simulated data series with added flexibility to adjust the parameters in various scenarios. We also tested several methods to measure the similarity between our real and simulated data. Our simulator can produce large data base which can be further used to evaluate the algorithms to raise an alarm in case of loss in autonomy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Expert systems and simulation models; Proceedings of the Seminar, Tucson, AZ, November 18, 19, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The seminar presents papers on modeling and simulation methodology, artificial intelligence and expert systems, environments for simulation/expert system development, and methodology for simulation/expert system development. Particular attention is given to simulation modeling concepts and their representation, modular hierarchical model specification, knowledge representation, and rule-based diagnostic expert system development. Other topics include the combination of symbolic and discrete event simulation, real time inferencing, and the management of large knowledge-based simulation projects.

  13. IGBT Switching Characteristic Curve Embedded Half-Bridge MMC Modelling and Real Time Simulation Realization

    NASA Astrophysics Data System (ADS)

    Zhengang, Lu; Hongyang, Yu; Xi, Yang

    2017-05-01

    The Modular Multilevel Converter (MMC) is one of the most attractive topologies in recent years for medium or high voltage industrial applications, such as high voltage dc transmission (HVDC) and medium voltage varying speed motor drive. The wide adoption of MMCs in industry is mainly due to its flexible expandability, transformer-less configuration, common dc bus, high reliability from redundancy, and so on. But, when the sub module number of MMC is more, the test of MMC controller will cost more time and effort. Hardware in the loop test based on real time simulator will save a lot of time and money caused by the MMC test. And due to the flexible of HIL, it becomes more and more popular in the industry area. The MMC modelling method remains an important issue for the MMC HIL test. Specifically, the VSC model should realistically reflect the nonlinear device switching characteristics, switching and conduction losses, tailing current, and diode reverse recovery behaviour of a realistic converter. In this paper, an IGBT switching characteristic curve embedded half-bridge MMC modelling method is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the proposed method, a FPGA real time simulation is carried out with 200ns sample time. The real time simulation results show the proposed method is correct.

  14. Modeling and real time simulation of an HVDC inverter feeding a weak AC system based on commutation failure study.

    PubMed

    Mankour, Mohamed; Khiat, Mounir; Ghomri, Leila; Chaker, Abdelkader; Bessalah, Mourad

    2018-06-01

    This paper presents modeling and study of 12-pulse HVDC (High Voltage Direct Current) based on real time simulation where the HVDC inverter is connected to a weak AC system. In goal to study the dynamic performance of the HVDC link, two serious kind of disturbance are applied at HVDC converters where the first one is the single phase to ground AC fault and the second one is the DC link to ground fault. The study is based on two different mode of analysis, which the first is to test the performance of the DC control and the second is focalized to study the effect of the protection function on the system behavior. This real time simulation considers the strength of the AC system to witch is connected and his relativity with the capacity of the DC link. The results obtained are validated by means of RT-lab platform using digital Real time simulator Hypersim (OP-5600), the results carried out show the effect of the DC control and the influence of the protection function to reduce the probability of commutation failures and also for helping inverter to take out from commutation failure even while the DC control fails to eliminate them. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Prototype software model for designing intruder detection systems with simulation

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey S.; Peters, Brett A.; Curry, James C.; Gupta, Dinesh

    1998-08-01

    This article explores using discrete-event simulation for the design and control of defence oriented fixed-sensor- based detection system in a facility housing items of significant interest to enemy forces. The key issues discussed include software development, simulation-based optimization within a modeling framework, and the expansion of the framework to create real-time control tools and training simulations. The software discussed in this article is a flexible simulation environment where the data for the simulation are stored in an external database and the simulation logic is being implemented using a commercial simulation package. The simulation assesses the overall security level of a building against various intruder scenarios. A series of simulation runs with different inputs can determine the change in security level with changes in the sensor configuration, building layout, and intruder/guard strategies. In addition, the simulation model developed for the design stage of the project can be modified to produce a control tool for the testing, training, and real-time control of systems with humans and sensor hardware in the loop.

  16. Simulation of financial market via nonlinear Ising model

    NASA Astrophysics Data System (ADS)

    Ko, Bonggyun; Song, Jae Wook; Chang, Woojin

    2016-09-01

    In this research, we propose a practical method for simulating the financial return series whose distribution has a specific heaviness. We employ the Ising model for generating financial return series to be analogous to those of the real series. The similarity between real financial return series and simulated one is statistically verified based on their stylized facts including the power law behavior of tail distribution. We also suggest the scheme for setting the parameters in order to simulate the financial return series with specific tail behavior. The simulation method introduced in this paper is expected to be applied to the other financial products whose price return distribution is fat-tailed.

  17. Conversion and Validation of Distribution System Model from a QSTS-Based Tool to a Real-Time Dynamic Phasor Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan

    A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less

  18. Conversion and Validation of Distribution System Model from a QSTS-Based Tool to a Real-Time Dynamic Phasor Simulator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan

    A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less

  19. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    PubMed

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  20. 41 CFR 102-73.15 - What real estate acquisition and related services may Federal agencies provide?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What real estate... REGULATION REAL PROPERTY 73-REAL ESTATE ACQUISITION General Provisions § 102-73.15 What real estate... provide real estate acquisition and related services, including leasing (with or without purchase options...

  1. 41 CFR 102-73.15 - What real estate acquisition and related services may Federal agencies provide?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What real estate... REGULATION REAL PROPERTY 73-REAL ESTATE ACQUISITION General Provisions § 102-73.15 What real estate... provide real estate acquisition and related services, including leasing (with or without purchase options...

  2. 41 CFR 102-73.15 - What real estate acquisition and related services may Federal agencies provide?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What real estate... REGULATION REAL PROPERTY 73-REAL ESTATE ACQUISITION General Provisions § 102-73.15 What real estate... provide real estate acquisition and related services, including leasing (with or without purchase options...

  3. 41 CFR 102-73.15 - What real estate acquisition and related services may Federal agencies provide?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What real estate... REGULATION REAL PROPERTY 73-REAL ESTATE ACQUISITION General Provisions § 102-73.15 What real estate... provide real estate acquisition and related services, including leasing (with or without purchase options...

  4. A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Hartley, Tom T.

    1998-01-01

    Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.

  5. Image Understanding Architecture

    DTIC Science & Technology

    1991-09-01

    architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers

  6. Affective Realism of Animated Films in the Development of Simulation-Based Tutoring Systems

    ERIC Educational Resources Information Center

    Ekanayake, Hiran B.; Fors, Uno; Ramberg, Robert; Ziemke, Tom; Backlund, Per; Hewagamage, Kamalanath P.

    2013-01-01

    This paper presents a study focused on comparing real actors based scenarios and animated characters based scenarios with respect to their similarity in evoking psychophysiological activity for certain events by measuring galvanic skin response (GSR). In the experiment, one group (n = 11) watched the real actors' film whereas another group (n…

  7. Innovative real CSF leak simulation model for rhinology training: human cadaveric design.

    PubMed

    AlQahtani, Abdulaziz A; Albathi, Abeer A; Alhammad, Othman M; Alrabie, Abdulkarim S

    2018-04-01

    To study the feasibility of designing a human cadaveric simulation model of real CSF leak for rhinology training. The laboratory investigation took place at the surgical academic center of Prince Sultan Military Medical City between 2016 and 2017. Five heads of human cadaveric specimens were cannulated into the intradural space through two frontal bone holes. Fluorescein-dyed fluid was injected intracranialy, then endoscopic endonasal iatrogenic skull base defect was created with observation of fluid leak, followed by skull base reconstruction. The outcome measures included subjective assessment of integrity of the design, the ability of creating real CSF leak in multiple site of skull base and the possibility of watertight closure by various surgical techniques. The fluid filled the intradural space in all specimens without spontaneous leak from skull base or extra sinus areas. Successfully, we demonstrated fluid leak from all areas after iatrogenic defect in the cribriform plate, fovea ethmoidalis, planum sphenoidale sellar and clival regions. Watertight closure was achieved in all defects using different reconstruction techniques (overly, underlay and gasket seal closure). The design is simulating the real patient with CSF leak. It has potential in the learning process of acquiring and maintaining the surgical skills of skull base reconstruction before direct involvement of the patient. This model needs further evaluation and competence measurement as training tools in rhinology training.

  8. Intelligent system of coordination and control for manufacturing

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2016-08-01

    This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.

  9. Nursing Students' Experiential Learning Processes Using an Online 3D Simulation Game

    ERIC Educational Resources Information Center

    Koivisto, Jaana-Maija; Niemi, Hannele; Multisilta, Jari; Eriksson, Elina

    2017-01-01

    The growing use of game-based simulation in healthcare education reflects the opportunities afforded to learners by serious games, which simulate real-world situations and enable students to emulate the roles of healthcare professionals in a safe and engaging learning environment. As part of a design-based research project to design, test, and…

  10. A microprocessor-based real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1988-01-01

    A real-time digital simulator of a Pratt and Whitney F 100 engine is discussed. This self-contained unit can operate in an open-loop stand-alone mode or as part of a closed-loop control system. It can also be used in control system design and development. It accepts five analog control inputs and its sixteen outputs are returned as analog signals.

  11. GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array

    PubMed Central

    Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.

    2014-01-01

    Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080

  12. The Application of the Real Options Method for the Evaluation of High-Rise Construction Projects

    NASA Astrophysics Data System (ADS)

    Izotov, Aleksandr; Rostova, Olga; Dubgorn, Alissa

    2018-03-01

    The paper is devoted to the problem of evaluation of high-rise construction projects in a rapidly changing environment. The authors proposed an algorithm for constructing and embedding real options in high-rise construction projects, which makes it possible to increase the flexibility of managing multi-stage projects that have the ability to adapt to changing conditions of implementation.

  13. Trends in computer applications in science assessment

    NASA Astrophysics Data System (ADS)

    Kumar, David D.; Helgeson, Stanley L.

    1995-03-01

    Seven computer applications to science assessment are reviewed. Conventional test administration includes record keeping, grading, and managing test banks. Multiple-choice testing involves forced selection of an answer from a menu, whereas constructed-response testing involves options for students to present their answers within a set standard deviation. Adaptive testing attempts to individualize the test to minimize the number of items and time needed to assess a student's knowledge. Figurai response testing assesses science proficiency in pictorial or graphic mode and requires the student to construct a mental image rather than selecting a response from a multiple choice menu. Simulations have been found useful for performance assessment on a large-scale basis in part because they make it possible to independently specify different aspects of a real experiment. An emerging approach to performance assessment is solution pathway analysis, which permits the analysis of the steps a student takes in solving a problem. Virtually all computer-based testing systems improve the quality and efficiency of record keeping and data analysis.

  14. Spatial evolutionary public goods game on complete graph and dense complex networks

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2015-03-01

    We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we find that SEPGG has two stable states depending on the value of multiplication factor r, illustrating how the ``tragedy of the commons'' and ``an anomalous state without any active participants'' occurs in real-life situations. When r is low (), the state with only loners is stable, and the state with only defectors is stable when r is high (). We also derive the exact scaling relation for r*. All of the results are confirmed by numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of participants or the mean degree, , decreases. We also investigate the scaling dependence of the emergence of cooperation on r and . These results show how ``tragedy of the commons'' disappears when cooperation between egoistic individuals without any additional socioeconomic punishment increases.

  15. A real options approach to clinical faculty salary structure.

    PubMed

    Kahn, Marc J; Long, Hugh W

    2012-01-01

    One can use the option theory model originally developed to price financial opportunities in security markets to analyze many other economic arrangements such as the salary structures of clinical faculty in an academic medical center practice plan. If one views the underlying asset to be the portion (labeled "salary") of the economic value of the collections made for the care provided patients by the physician, then a salary guarantee can be considered a put option provided the physician, the guarantee having value to the physician only when the actual salary earned is less than the salary guarantee. Similarly, within an incentive plan, a salary cap can be thought of as a call option provided to the practice plan since a salary cap only has value to the practice plan when a physician's earnings exceed the cap. Further, based on analysis of prior earnings, the Black-Scholes options pricing model can be used both to price each option and to determine a financially neutral balance between a salary guarantee and a salary cap by equating the prices of the implied put and call options. We suggest that such analysis is superior to empirical methods for setting clinical faculty salary structure in the academic practice plan setting.

  16. Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Naresh; Baone, Chaitanya; Veda, Santosh

    2014-12-31

    Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve gridmore » resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed decades ago, when High Performance Computing (HPC) resources were not commonly available.« less

  17. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    NASA Astrophysics Data System (ADS)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  18. Transportation Planning for Your Community

    DOT National Transportation Integrated Search

    2000-12-01

    The Highway Economic Requirements System (HERS) is a computer model designed to simulate improvement selection decisions based on the relative benefit-cost merits of alternative improvement options. HERS is intended to estimate national level investm...

  19. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  20. Documentation for the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6

    USGS Publications Warehouse

    Provost, Alden M.; Langevin, Christian D.; Hughes, Joseph D.

    2017-08-10

    This report describes the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6. The XT3D option extends the capabilities of MODFLOW by enabling simulation of fully three-dimensional anisotropy on regular or irregular grids in a way that properly takes into account the full, three-dimensional conductivity tensor. It can also improve the accuracy of groundwater-flow simulations in cases in which the model grid violates certain geometric requirements. Three example problems demonstrate the use of the XT3D option to simulate groundwater flow on irregular grids and through three-dimensional porous media with anisotropic hydraulic conductivity.Conceptually, the XT3D method of estimating flow between two MODFLOW 6 model cells can be viewed in terms of three main mathematical steps: construction of head-gradient estimates by interpolation; construction of fluid-flux estimates by application of the full, three-dimensional form of Darcy’s Law, in which the conductivity tensor can be heterogeneous and anisotropic; and construction of the flow expression by enforcement of continuity of flow across the cell interface. The resulting XT3D flow expression, which relates the flow across the cell interface to the values of heads computed at neighboring nodes, is the sum of terms in which conductance-like coefficients multiply head differences, as in the conductance-based flow expression the NPF Package uses by default. However, the XT3D flow expression contains terms that involve “neighbors of neighbors” of the two cells for which the flow is being calculated. These additional terms have no analog in the conductance-based formulation. When assembled into matrix form, the XT3D formulation results in a larger stencil than the conductance-based formulation; that is, each row of the coefficient matrix generally contains more nonzero elements. The “RHS” suboption can be used to avoid expanding the stencil by placing the additional terms on the right-hand side of the matrix equation and evaluating them at the previous iteration or time step.The XT3D option can be an alternative to the Ghost-Node Correction (GNC) Package. However, the XT3D formulation is typically more computationally intensive than the conductance-based formulation the NPF Package uses by default, either with or without ghost nodes. Before deciding whether to use the GNC Package or XT3D option for production runs, the user should consider whether the conductance-based formulation alone can provide acceptable accuracy for the particular problem being solved.

  1. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy

    PubMed Central

    Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas

    2015-01-01

    Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742

  2. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation

    PubMed Central

    Kong, Zehui; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control. PMID:28671967

  3. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    PubMed

    Kong, Zehui; Zou, Yuan; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  4. User's manual for a parameter identification technique. [with options for model simulation for fixed input forcing functions and identification from wind tunnel and flight measurements

    NASA Technical Reports Server (NTRS)

    Kanning, G.

    1975-01-01

    A digital computer program written in FORTRAN is presented that implements the system identification theory for deterministic systems using input-output measurements. The user supplies programs simulating the mathematical model of the physical plant whose parameters are to be identified. The user may choose any one of three options. The first option allows for a complete model simulation for fixed input forcing functions. The second option identifies up to 36 parameters of the model from wind tunnel or flight measurements. The third option performs a sensitivity analysis for up to 36 parameters. The use of each option is illustrated with an example using input-output measurements for a helicopter rotor tested in a wind tunnel.

  5. [Cognitive research about the use of virtual worlds among the students enrolled to the faculty of medicine and surgery "Campus Bio-Medico University" in Rome].

    PubMed

    Tambone, V; Alessi, A; Macchi, I; Milighetti, S; Muzii, L

    2009-01-01

    The main difference between a virtual reality and a generic representation is to be directly involved into the action you are performing. As a matter of fact, within the shift from real to virtual world, our biological physique does not mutate but is amplified and connected to the virtual world by technological interfaces. Training using a virtual reality simulator is an option to supplement (or replace) standard training. One of the two main goals of our study is to test, at first, how much students enrolled to the Faculty of Medicine at "University Campus Bio-Medico of Rome" are familiar with synthetic worlds, how long they have been using them and how they would like their Avatar to look like. Moreover, the second aim is to collect students' opinion about the use of virtual, interactive environments to enable learning and participation in dynamic, problem based, clinical, virtual simulations. Simulations might be used to allow learners to make mistakes safely in lieu of real life situations, learn from those mistakes and ultimately to improve performances by subsequent avoidance of those mistakes. The selected approach to the study is based on a semi-structured questionnaire made of 14 questions administered to all the medical students. Most of the students appear not to be very confident with virtual worlds mostly because of a lack of interest. However, a large majority of them are likely to use a virtual world for fun or escaping from reality. Students would select and customize their Avatar by giving her/him the same sexual identity, same figure, same social class but different employment. It is important to notice that a wide majority of the students is interested in practicing on a virtual world in order to manage new experiences and being able to face them; their willing is to get benefits from the ability to make mistakes in a safe environment as well as to record a positive impact on their understanding.

  6. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    PubMed

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  7. Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2005-10-01

    We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.

  8. A flexible object-oriented software framework for developing complex multimedia simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydelko, P. J.; Dolph, J. E.; Christiansen, J. H.

    Decision makers involved in brownfields redevelopment and long-term stewardship must consider environmental conditions, future-use potential, site ownership, area infrastructure, funding resources, cost recovery, regulations, risk and liability management, community relations, and expected return on investment in a comprehensive and integrated fashion to achieve desired results. Successful brownfields redevelopment requires the ability to assess the impacts of redevelopment options on multiple interrelated aspects of the ecosystem, both natural and societal. Computer-based tools, such as simulation models, databases, and geographical information systems (GISs) can be used to address brownfields planning and project execution. The transparent integration of these tools into a comprehensivemore » and dynamic decision support system would greatly enhance the brownfields assessment process. Such a system needs to be able to adapt to shifting and expanding analytical requirements and contexts. The Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-oriented framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application domains. The modeling domain of a specific DIAS-based simulation is determined by (1) software objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. Models and applications used to express dynamic behaviors can be either internal or external to DIAS, including existing legacy models written in various languages (FORTRAN, C, etc.). The flexible design framework of DIAS makes the objects adjustable to the context of the problem without a great deal of recoding. The DIAS Spatial Data Set facility allows parameters to vary spatially depending on the simulation context according to any of a number of 1-D, 2-D, or 3-D topologies. DIAS is also capable of interacting with other GIS packages and can import many standard spatial data formats. DIAS simulation capabilities can also be extended by including societal process models. Models that implement societal behaviors of individuals and organizations within larger DIAS-based natural systems simulations allow for interaction and feedback among natural and societal processes. The ability to simulate the complex interplay of multimedia processes makes DIAS a promising tool for constructing applications for comprehensive community planning, including the assessment of multiple development and redevelopment scenarios.« less

  9. Study on Brain Injury Biomechanics Based on the Real Pedestrian Traffic Accidents

    NASA Astrophysics Data System (ADS)

    Feng, Chengjian; Yin, Zhiyong

    This paper aimed to research the dynamic response and injury mechanisms of head based on real pedestrian traffic accidents with video. The kinematics of head contact with the vehicle was reconstructed by using multi-body dynamics models. These calculated parameters such as head impact velocity and impact location and head orientation were applied to the THUMS-4 FE head model as initial conditions. The intracranial pressure and stress of brain were calculated from simulations of head contact with the vehicle. These results were consistent with that of others. It was proved that real traffic accidents combined with simulation analysis can be used to study head injury biomechanics. Increasing in the number of cases, a tolerance limit of brain injury will be put forward.

  10. 32 CFR 644.166 - Authority and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....166 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Acquisition Procurement of Options Prior to Real Estate Directives (military... parcel of real property before or after its acquisition is authorized by law, if he considers it suitable...

  11. Real and Virtual Experiential Learning on the Mekong: Field Schools, e-Sims and Cultural Challenge

    ERIC Educational Resources Information Center

    Hirsch, Philip; Lloyd, Kate

    2005-01-01

    This paper describes two innovative and linked approaches to teaching and student learning in the environmental and development geography of the Mekong region, a region remote from students' normal experiential options. The first approach is field-based learning through Field Schools carried out in Vietnam, Laos and Thailand. The second approach…

  12. Hardware in-the-Loop Demonstration of Real-Time Orbit Determination in High Earth Orbits

    NASA Technical Reports Server (NTRS)

    Moreau, Michael; Naasz, Bo; Leitner, Jesse; Carpenter, J. Russell; Gaylor, Dave

    2005-01-01

    This paper presents results from a study conducted at Goddard Space Flight Center (GSFC) to assess the real-time orbit determination accuracy of GPS-based navigation in a number of different high Earth orbital regimes. Measurements collected from a GPS receiver (connected to a GPS radio frequency (RF) signal simulator) were processed in a navigation filter in real-time, and resulting errors in the estimated states were assessed. For the most challenging orbit simulated, a 12 hour Molniya orbit with an apogee of approximately 39,000 km, mean total position and velocity errors were approximately 7 meters and 3 mm/s respectively. The study also makes direct comparisons between the results from the above hardware in-the-loop tests and results obtained by processing GPS measurements generated from software simulations. Care was taken to use the same models and assumptions in the generation of both the real-time and software simulated measurements, in order that the real-time data could be used to help validate the assumptions and models used in the software simulations. The study makes use of the unique capabilities of the Formation Flying Test Bed at GSFC, which provides a capability to interface with different GPS receivers and to produce real-time, filtered orbit solutions even when less than four satellites are visible. The result is a powerful tool for assessing onboard navigation performance in a wide range of orbital regimes, and a test-bed for developing software and procedures for use in real spacecraft applications.

  13. Development of fire shutters based on numerical optimizations

    NASA Astrophysics Data System (ADS)

    Novak, Ondrej; Kulhavy, Petr; Martinec, Tomas; Petru, Michal; Srb, Pavel

    2018-06-01

    This article deals with a prototype concept, real experiment and numerical simulation of a layered industrial fire shutter, based on some new insulating composite materials. The real fire shutter has been developed and optimized in laboratory and subsequently tested in the certified test room. A simulation of whole concept has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.

  14. Real options valuation in the design of Future surface combatants

    DTIC Science & Technology

    2017-06-01

    VALUATION IN THE DESIGN OF FUTURE SURFACE COMBATANTS by Lauren B. Majchrzak June 2017 Thesis Advisor: Johnathan Mun Second Reader: Tom...thesis 4. TITLE AND SUBTITLE REAL OPTIONS VALUATION IN THE DESIGN OF FUTURE SURFACE COMBATANTS 5. FUNDING NUMBERS 6. AUTHOR(S) Lauren B. Majchrzak...meeting their service-life expectancy of 40 years. Modular Adaptable Ship (MAS) designs that include flexibility, decoupled payloads from the platform

  15. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect, reservoirs and flows, albedo feedback, Snowball Earth, climate sensitivity, and model experiment design. Climate calculations are extended to Mars with some modifications to the Earth climate component, and could be used in lessons about the Mars atmosphere, and exploring scenarios of Mars climate history.

  16. Modulation of Saccade Vigor during Value-Based Decision Making.

    PubMed

    Reppert, Thomas R; Lempert, Karolina M; Glimcher, Paul W; Shadmehr, Reza

    2015-11-18

    During value-based decision-making, individuals consider the various options and select the one that provides the maximum subjective value. Although the brain integrates abstract information to compute and compare these values, the only behavioral outcome is often the decision itself. However, if the options are visual stimuli, during deliberation the brain moves the eyes from one stimulus to the other. Previous work suggests that saccade vigor, i.e., peak velocity as a function of amplitude, is greater if reward is associated with the visual stimulus. This raises the possibility that vigor during the free viewing of options may be influenced by the valuation of each option. Here, humans chose between a small, immediate monetary reward and a larger but delayed reward. As the deliberation began, vigor was similar for the saccades made to the two options but diverged 0.5 s before decision time, becoming greater for the preferred option. This difference in vigor increased as a function of the difference in the subjective values that the participant assigned to the delayed and immediate options. After the decision was made, participants continued to gaze at the options, but with reduced vigor, making it possible to infer timing of the decision from the sudden drop in vigor. Therefore, the subjective value that the brain assigned to a stimulus during decision-making affected the motor system via the vigor with which the eyes moved toward that stimulus. We find that, as individuals deliberate between two rewarding options and arrive at a decision, the vigor with which they make saccades to each option reflects a real-time evaluation of that option. With deliberation, saccade vigor diverges between the two options, becoming greater for the option that the individual will eventually choose. The results suggest a shared element between the network that assigns value to a stimulus during the process of decision-making and the network that controls vigor of movements toward that stimulus. Copyright © 2015 the authors 0270-6474/15/3515369-10$15.00/0.

  17. Modulation of Saccade Vigor during Value-Based Decision Making

    PubMed Central

    Lempert, Karolina M.; Glimcher, Paul W.; Shadmehr, Reza

    2015-01-01

    During value-based decision-making, individuals consider the various options and select the one that provides the maximum subjective value. Although the brain integrates abstract information to compute and compare these values, the only behavioral outcome is often the decision itself. However, if the options are visual stimuli, during deliberation the brain moves the eyes from one stimulus to the other. Previous work suggests that saccade vigor, i.e., peak velocity as a function of amplitude, is greater if reward is associated with the visual stimulus. This raises the possibility that vigor during the free viewing of options may be influenced by the valuation of each option. Here, humans chose between a small, immediate monetary reward and a larger but delayed reward. As the deliberation began, vigor was similar for the saccades made to the two options but diverged 0.5 s before decision time, becoming greater for the preferred option. This difference in vigor increased as a function of the difference in the subjective values that the participant assigned to the delayed and immediate options. After the decision was made, participants continued to gaze at the options, but with reduced vigor, making it possible to infer timing of the decision from the sudden drop in vigor. Therefore, the subjective value that the brain assigned to a stimulus during decision-making affected the motor system via the vigor with which the eyes moved toward that stimulus. SIGNIFICANCE STATEMENT We find that, as individuals deliberate between two rewarding options and arrive at a decision, the vigor with which they make saccades to each option reflects a real-time evaluation of that option. With deliberation, saccade vigor diverges between the two options, becoming greater for the option that the individual will eventually choose. The results suggest a shared element between the network that assigns value to a stimulus during the process of decision-making and the network that controls vigor of movements toward that stimulus. PMID:26586823

  18. The Power Plant Operating Data Based on Real-time Digital Filtration Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie

    2018-03-01

    Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.

  19. Application of NARR-based NLDAS Ensemble Simulations to Continental-Scale Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Alonge, C. J.; Cosgrove, B. A.

    2008-05-01

    Government estimates indicate that droughts cause billions of dollars of damage to agricultural interests each year. More effective identification of droughts would directly benefit decision makers, and would allow for the more efficient allocation of resources that might mitigate the event. Land data assimilation systems, with their high quality representations of soil moisture, present an ideal platform for drought monitoring, and offer many advantages over traditional modeling systems. The recently released North American Regional Reanalysis (NARR) covers the NLDAS domain and provides all fields necessary to force the NLDAS for 27 years. This presents an ideal opportunity to combine NARR and NLDAS resources into an effective real-time drought monitor. Toward this end, our project seeks to validate and explore the NARR's suitability as a base for drought monitoring applications - both in terms of data set length and accuracy. Along the same lines, the project will examine the impact of the use of different (longer) LDAS model climatologies on drought monitoring, and will explore the advantages of ensemble simulations versus single model simulations in drought monitoring activities. We also plan to produce a NARR- and observation-based high quality 27 year, 1/8th degree, 3-hourly, land surface and meteorological forcing data sets. An investigation of the best way to force an LDAS-type system will also be made, with traditional NLDAS and NLDASE forcing options explored. This presentation will focus on an overview of the drought monitoring project, and will include a summary of recent progress. Developments include the generation of forcing data sets, ensemble LSM output, and production of model-based drought indices over the entire NLDAS domain. Project forcing files use 32km NARR model output as a data backbone, and include observed precipitation (blended CPC gauge, PRISM gauge, Stage II, HPD, and CMORPH) and a GOES-based bias correction of downward solar radiation. Multiple LSM simulations have been conducted using the Noah, Mosaic, CLM3, HYSSiB, and Catchment LSMs. These simulations, along with the NARR-based forcing data form the basis for several drought indices. These include standard measures such as the Palmer-type indices, LDAS-type percentile and anomaly values, and CLM3-based vegetation condition index values.

  20. Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts

    NASA Technical Reports Server (NTRS)

    Robinson, John E., III; Lee, Alan; Lai, Chok Fung

    2017-01-01

    This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.

  1. Development of IR imaging system simulator

    NASA Astrophysics Data System (ADS)

    Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu

    2017-02-01

    To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.

  2. Validation Of The Airspace Concept Evaluation System Using Real World Data

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon

    2005-01-01

    This paper discusses the process of performing a validation of the Airspace Concept Evaluation System (ACES) using real world historical flight operational data. ACES inputs are generated from select real world data and processed to create a realistic reproduction of a single day of operations within the National Airspace System (NAS). ACES outputs are then compared to real world operational metrics and delay statistics for the reproduced day. Preliminary results indicate that ACES produces delays and airport operational metrics similar to the real world with minor variations of delay by phase of flight. ACES is a nation-wide fast-time simulation tool developed at NASA Ames Research Center. ACES models and simulates the NAS using interacting agents representing center control, terminal flow management, airports, individual flights, and other NAS elements. These agents pass messages between one another similar to real world communications. This distributed agent based system is designed to emulate the highly unpredictable nature of the NAS, making it a suitable tool to evaluate current and envisioned airspace concepts. To ensure that ACES produces the most realistic results, the system must be validated. There is no way to validate future concepts scenarios using real world historical data, but current day scenario validations increase confidence in the validity of future scenario results. Each operational day has unique weather and traffic demand schedules. The more a simulation utilizes the unique characteristic of a specific day, the more realistic the results should be. ACES is able to simulate the full scale demand traffic necessary to perform a validation using real world data. Through direct comparison with the real world, models may continuee to be improved and unusual trends and biases may be filtered out of the system or used to normalize the results of future concept simulations.

  3. Research and realization of key technology in HILS interactive system

    NASA Astrophysics Data System (ADS)

    Liu, Che; Lu, Huiming; Wang, Fankai

    2018-03-01

    This paper designed HILS (Hardware In the Loop Simulation) interactive system based on xPC platform . Through the interface between C++ and MATLAB engine, establish the seamless data connection between Simulink and interactive system, complete data interaction between system and Simulink, realize the function development of model configuration, parameter modification and off line simulation. We establish the data communication between host and target machine through TCP/IP protocol to realize the model download and real-time simulation. Use database to store simulation data, implement real-time simulation monitoring and simulation data management. Realize system function integration by Qt graphic interface library and dynamic link library. At last, take the typical control system as an example to verify the feasibility of HILS interactive system.

  4. Real time implementation and control validation of the wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Sattar, Adnan

    The purpose of the thesis is to analyze dynamic and transient characteristics of wind energy conversion systems including the stability issues in real time environment using the Real Time Digital Simulator (RTDS). There are different power system simulation tools available in the market. Real time digital simulator (RTDS) is one of the powerful tools among those. RTDS simulator has a Graphical User Interface called RSCAD which contains detail component model library for both power system and control relevant analysis. The hardware is based upon the digital signal processors mounted in the racks. RTDS simulator has the advantage of interfacing the real world signals from the external devices, hence used to test the protection and control system equipments. Dynamic and transient characteristics of the fixed and variable speed wind turbine generating systems (WTGSs) are analyzed, in this thesis. Static Synchronous Compensator (STATCOM) as a flexible ac transmission system (FACTS) device is used to enhance the fault ride through (FRT) capability of the fixed speed wind farm. Two level voltage source converter based STATCOM is modeled in both VSC small time-step and VSC large time-step of RTDS. The simulation results of the RTDS model system are compared with the off-line EMTP software i.e. PSCAD/EMTDC. A new operational scheme for a MW class grid-connected variable speed wind turbine driven permanent magnet synchronous generator (VSWT-PMSG) is developed. VSWT-PMSG uses fully controlled frequency converters for the grid interfacing and thus have the ability to control the real and reactive powers simultaneously. Frequency converters are modeled in the VSC small time-step of the RTDS and three phase realistic grid is adopted with RSCAD simulation through the use of optical analogue digital converter (OADC) card of the RTDS. Steady state and LVRT characteristics are carried out to validate the proposed operational scheme. Simulation results show good agreement with real time simulation software and thus can be used to validate the controllers for the real time operation. Integration of the Battery Energy Storage System (BESS) with wind farm can smoothen its intermittent power fluctuations. The work also focuses on the real time implementation of the Sodium Sulfur (NaS) type BESS. BESS is integrated with the STATCOM. The main advantage of this system is that it can also provide the reactive power support to the system along with the real power exchange from BESS unit. BESS integrated with STATCOM is modeled in the VSC small time-step of the RTDS. The cascaded vector control scheme is used for the control of the STATCOM and suitable control is developed to control the charging/discharging of the NaS type BESS. Results are compared with Laboratory standard power system software PSCAD/EMTDC and the advantages of using RTDS in dynamic and transient characteristics analyses of wind farm are also demonstrated clearly.

  5. Fields of Fuel

    ERIC Educational Resources Information Center

    Russ, Rosemary S.; Wangen, Steve; Nye, D. Leith; Shapiro, R. Benjamin; Strinz, Will; Ferris, Michael

    2015-01-01

    To help teachers engage students in discussions about sustainability, the authors designed Fields of Fuel, a multiplayer, web-based simulation game that allows players to explore the environmental and economic trade-offs of a realistic sustainable system. Computer-based simulations of real-world phenomena engage students and have been shown to…

  6. Study of the coupling between real gas effects and rarefied effects on hypersonic aerodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Song; Hu, Yuan; Sun, Quanhua

    2012-11-01

    Hypersonic vehicles travel across the atmosphere at very high speed, and the surrounding gas experiences complicated physical and chemical processes. These processes produce real gas effects at high temperature and rarefied gas effects at high altitude where the two effects are coupled through molecular collisions. In this study, we aim to identify the individual real gas and rarefied gas effects by simulating hypersonic flow over a 2D cylinder, a sphere and a blunted cone using a continuum-based CFD approach and the direct simulation Monte Carlo method. It is found that physical processes such as vibrational excitation and chemical reaction will reduce significantly the shock stand-off distance and flow temperature for flows having small Knudsen number. The calculated skin friction and surface heat flux will decrease when the real gas effects are considered in simulations. The trend, however, gets weakened as the Knudsen number increases. It is concluded that the rarefied gas effects weaken the real gas effects on hypersonic flows.

  7. The hepatitis C cascade of care: identifying priorities to improve clinical outcomes.

    PubMed

    Linas, Benjamin P; Barter, Devra M; Leff, Jared A; Assoumou, Sabrina A; Salomon, Joshua A; Weinstein, Milton C; Kim, Arthur Y; Schackman, Bruce R

    2014-01-01

    As highly effective hepatitis C virus (HCV) therapies emerge, data are needed to inform the development of interventions to improve HCV treatment rates. We used simulation modeling to estimate the impact of loss to follow-up on HCV treatment outcomes and to identify intervention strategies likely to provide good value for the resources invested in them. We used a Monte Carlo state-transition model to simulate a hypothetical cohort of chronically HCV-infected individuals recently screened positive for serum HCV antibody. We simulated four hypothetical intervention strategies (linkage to care; treatment initiation; integrated case management; peer navigator) to improve HCV treatment rates, varying efficacies and costs, and identified strategies that would most likely result in the best value for the resources required for implementation. Sustained virologic responses (SVRs), life expectancy, quality-adjusted life expectancy (QALE), costs from health system and program implementation perspectives, and incremental cost-effectiveness ratios (ICERs). We estimate that imperfect follow-up reduces the real-world effectiveness of HCV therapies by approximately 75%. In the base case, a modestly effective hypothetical peer navigator program maximized the number of SVRs and QALE, with an ICER compared to the next best intervention of $48,700/quality-adjusted life year. Hypothetical interventions that simultaneously addressed multiple points along the cascade provided better outcomes and more value for money than less costly interventions targeting single steps. The 5-year program cost of the hypothetical peer navigator intervention was $14.5 million per 10,000 newly diagnosed individuals. We estimate that imperfect follow-up during the HCV cascade of care greatly reduces the real-world effectiveness of HCV therapy. Our mathematical model shows that modestly effective interventions to improve follow-up would likely be cost-effective. Priority should be given to developing and evaluating interventions addressing multiple points along the cascade rather than options focusing solely on single points.

  8. The Hepatitis C Cascade of Care: Identifying Priorities to Improve Clinical Outcomes

    PubMed Central

    Linas, Benjamin P.; Barter, Devra M.; Leff, Jared A.; Assoumou, Sabrina A.; Salomon, Joshua A.; Weinstein, Milton C.; Kim, Arthur Y.; Schackman, Bruce R.

    2014-01-01

    Background As highly effective hepatitis C virus (HCV) therapies emerge, data are needed to inform the development of interventions to improve HCV treatment rates. We used simulation modeling to estimate the impact of loss to follow-up on HCV treatment outcomes and to identify intervention strategies likely to provide good value for the resources invested in them. Methods We used a Monte Carlo state-transition model to simulate a hypothetical cohort of chronically HCV-infected individuals recently screened positive for serum HCV antibody. We simulated four hypothetical intervention strategies (linkage to care; treatment initiation; integrated case management; peer navigator) to improve HCV treatment rates, varying efficacies and costs, and identified strategies that would most likely result in the best value for the resources required for implementation. Main measures Sustained virologic responses (SVRs), life expectancy, quality-adjusted life expectancy (QALE), costs from health system and program implementation perspectives, and incremental cost-effectiveness ratios (ICERs). Results We estimate that imperfect follow-up reduces the real-world effectiveness of HCV therapies by approximately 75%. In the base case, a modestly effective hypothetical peer navigator program maximized the number of SVRs and QALE, with an ICER compared to the next best intervention of $48,700/quality-adjusted life year. Hypothetical interventions that simultaneously addressed multiple points along the cascade provided better outcomes and more value for money than less costly interventions targeting single steps. The 5-year program cost of the hypothetical peer navigator intervention was $14.5 million per 10,000 newly diagnosed individuals. Conclusions We estimate that imperfect follow-up during the HCV cascade of care greatly reduces the real-world effectiveness of HCV therapy. Our mathematical model shows that modestly effective interventions to improve follow-up would likely be cost-effective. Priority should be given to developing and evaluating interventions addressing multiple points along the cascade rather than options focusing solely on single points. PMID:24842841

  9. Applications of artificial intelligence V; Proceedings of the Meeting, Orlando, FL, May 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Gilmore, John F. (Editor)

    1987-01-01

    The papers contained in this volume focus on current trends in applications of artificial intelligence. Topics discussed include expert systems, image understanding, artificial intelligence tools, knowledge-based systems, heuristic systems, manufacturing applications, and image analysis. Papers are presented on expert system issues in automated, autonomous space vehicle rendezvous; traditional versus rule-based programming techniques; applications to the control of optional flight information; methodology for evaluating knowledge-based systems; and real-time advisory system for airborne early warning.

  10. Motion control of 7-DOF arms - The configuration control approach

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Long, Mark K.; Lee, Thomas S.

    1993-01-01

    Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola-68020/VME-bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control.

  11. Simulation-Based Approach for Site-Specific Optimization of Hydrokinetic Turbine Arrays

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Chawdhary, S.; Yang, X.; Khosronejad, A.; Angelidis, D.

    2014-12-01

    A simulation-based approach has been developed to enable site-specific optimization of tidal and current turbine arrays in real-life waterways. The computational code is based on the St. Anthony Falls Laboratory Virtual StreamLab (VSL3D), which is able to carry out high-fidelity simulations of turbulent flow and sediment transport processes in rivers and streams taking into account the arbitrary geometrical complexity characterizing natural waterways. The computational framework can be used either in turbine-resolving mode, to take into account all geometrical details of the turbine, or with the turbines parameterized as actuator disks or actuator lines. Locally refined grids are employed to dramatically increase the resolution of the simulation and enable efficient simulations of multi-turbine arrays. Turbine/sediment interactions are simulated using the coupled hydro-morphodynamic module of VSL3D. The predictive capabilities of the resulting computational framework will be demonstrated by applying it to simulate turbulent flow past a tri-frame configuration of hydrokinetic turbines in a rigid-bed turbulent open channel flow as well as turbines mounted on mobile bed open channels to investigate turbine/sediment interactions. The utility of the simulation-based approach for guiding the optimal development of turbine arrays in real-life waterways will also be discussed and demonstrated. This work was supported by NSF grant IIP-1318201. Simulations were carried out at the Minnesota Supercomputing Institute.

  12. Assessing the spatial implications of interactions among strategic forest management options using a Windows-based harvest simulator.

    Treesearch

    Eric J. Gustafson; Luke V. Rasmussen

    2002-01-01

    Forest management planners must develop strategies to produce timber in ways that do not compromise ecological integrity or sustainability. These strategies often involve modifications to the spatial and temporal scheduling of harvest activities, and these strategies may interact in unexpected ways. We used a timber harvest simulator (HARVEST 6.0) to determine the...

  13. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 3: User's manual for VATOL simulation program

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Instructions for using Vertical Attitude Takeoff and Landing Aircraft Simulation (VATLAS), the digital simulation program for application to vertical attitude takeoff and landing (VATOL) aircraft developed for installation on the NASA Ames CDC 7600 computer system are described. The framework for VATLAS is the Off-Line Simulation (OLSIM) routine. The OLSIM routine provides a flexible framework and standardized modules which facilitate the development of off-line aircraft simulations. OLSIM runs under the control of VTOLTH, the main program, which calls the proper modules for executing user specified options. These options include trim, stability derivative calculation, time history generation, and various input-output options.

  14. Real Option in Capital Budgeting for SMEs: Insight from Steel Company

    NASA Astrophysics Data System (ADS)

    Muharam, F. M.; Tarrazon, M. A.

    2017-06-01

    Complex components of investment projects can only be analysed accurately if flexibility and comprehensive consideration of uncertainty are incorporated into valuation. Discounted cash flow (DCF) analysis has failed to cope with strategic future alternatives that affect the right value of investment projects. Real option valuation (ROV) proves to be the right tool for this purpose since it enables to calculate the enlarged or strategic Net Present Value (ENPV). This study attempts to provide an insight of the usage of ROV in capital budgeting and investment decision-making processes of SMEs. Exploring into the first stage processing of steel industry, analysis of alternatives to cancel, to expand, to defer or to abandon is performed. Completed with multiple options interaction and a sensitivity analysis, our findings prove that the application of ROV is beneficial for complex investment projects independently from the size of the company and particularly suitable in scenarios with scarce resources. The application of Real Option Valuation (ROV) is plausible and beneficial for SMEs to be incorporated in the strategic decision making process.

  15. Large Scale Traffic Simulations

    DOT National Transportation Integrated Search

    1997-01-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computation speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated "looping" between t...

  16. Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.

    PubMed

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-02-21

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.

  17. Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab VIEW

    PubMed Central

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-01-01

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented. PMID:23429578

  18. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.

  19. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  20. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.

    PubMed

    Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D

    2017-11-01

    This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of Above Real Time Training and Post Flight Feedback in Training of Novice Pilots in a PC-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; Heath, Bruce E.; Ali, Syed firasat; Crane, Peter; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    The use of Post-Flight Feedback (PFFB) and Above Real-Time Training (ARTT) while training novice pilots to perform a coordinated level turn on a PC-based flight simulator was investigated. One group trained at 1.5 ARTT followed by an equal number of flights at 2.0 ARTT; the second group experienced Real Time Training (RTT). The total number of flights for both groups was equal. Each group was further subdivided into two groups one of which was provided PFFB while the other was not. Then, all participants experienced two challenging evaluation missions in real time. Performance was assessed by comparing root-mean-square error in bank-angle and altitude. Participants in the 1.512.0 ARTT No-PFFB sequence did not show improvement in performance across training sessions. An ANOVA on performance in evaluation flights found that the PFFB groups performed significantly better than those with No-PFFB. Also, the RTT groups performed significantly better than the ARTT groups. Data from two additional groups trained under a 2.011.5 ARTT PFFB and No-PFFB regimes were collected and combined with data from the previously Trainers, Real-time simulation, Personal studied groups and reanalyzed to study the computers, Man-in-the-loop simulation influence of sequence. An ANOVA on test trials found no significant effects between groups. Under training situations involving ARTT we recommend that appropriate PFFB be provided.

  2. Real-time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery.

    PubMed

    Sui, Yuan; Pan, Jun J; Qin, Hong; Liu, Hao; Lu, Yun

    2017-12-01

    Laparoscopic surgery (LS), also referred to as minimally invasive surgery, is a modern surgical technique which is widely applied. The fulcrum effect makes LS a non-intuitive motor skill with a steep learning curve. A hybrid model of tetrahedrons and a multi-layer triangular mesh are constructed to simulate the deformable behavior of the rectum and surrounding tissues in the Position-Based Dynamics (PBD) framework. A heat-conduction based electric-burn technique is employed to simulate the electrocautery procedure. The simulator has been applied for laparoscopic rectum cancer surgery training. From the experimental results, trainees can operate in real time with high degrees of stability and fidelity. A preliminary study was performed to evaluate the realism and usefulness. This prototype simulator has been tested and verified by colorectal surgeons through a pilot study. They believed both the visual and the haptic performance of the simulation are realistic and helpful to enhance laparoscopic skills. Copyright © 2017 John Wiley & Sons, Ltd.

  3. A hardware-in-the-loop simulation program for ground-based radar

    NASA Astrophysics Data System (ADS)

    Lam, Eric P.; Black, Dennis W.; Ebisu, Jason S.; Magallon, Julianna

    2011-06-01

    A radar system created using an embedded computer system needs testing. The way to test an embedded computer system is different from the debugging approaches used on desktop computers. One way to test a radar system is to feed it artificial inputs and analyze the outputs of the radar. More often, not all of the building blocks of the radar system are available to test. This will require the engineer to test parts of the radar system using a "black box" approach. A common way to test software code on a desktop simulation is to use breakpoints so that is pauses after each cycle through its calculations. The outputs are compared against the values that are expected. This requires the engineer to use valid test scenarios. We will present a hardware-in-the-loop simulator that allows the embedded system to think it is operating with real-world inputs and outputs. From the embedded system's point of view, it is operating in real-time. The hardware in the loop simulation is based on our Desktop PC Simulation (PCS) testbed. In the past, PCS was used for ground-based radars. This embedded simulation, called Embedded PCS, allows a rapid simulated evaluation of ground-based radar performance in a laboratory environment.

  4. Cognitive Load Theory vs. Constructivist Approaches: Which Best Leads to Efficient, Deep Learning?

    ERIC Educational Resources Information Center

    Vogel-Walcutt, J. J.; Gebrim, J. B.; Bowers, C.; Carper, T. M.; Nicholson, D.

    2011-01-01

    Computer-assisted learning, in the form of simulation-based training, is heavily focused upon by the military. Because computer-based learning offers highly portable, reusable, and cost-efficient training options, the military has dedicated significant resources to the investigation of instructional strategies that improve learning efficiency…

  5. Real-time inextensible surgical thread simulation.

    PubMed

    Xu, Lang; Liu, Qian

    2018-03-27

    This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.

  6. The Design and the Formative Evaluation of a Web-Based Course for Simulation Analysis Experiences

    ERIC Educational Resources Information Center

    Tao, Yu-Hui; Guo, Shin-Ming; Lu, Ya-Hui

    2006-01-01

    Simulation output analysis has received little attention comparing to modeling and programming in real-world simulation applications. This is further evidenced by our observation that students and beginners acquire neither adequate details of knowledge nor relevant experience of simulation output analysis in traditional classroom learning. With…

  7. Learning Oceanography from a Computer Simulation Compared with Direct Experience at Sea

    ERIC Educational Resources Information Center

    Winn, William; Stahr, Frederick; Sarason, Christian; Fruland, Ruth; Oppenheimer, Peter; Lee, Yen-Ling

    2006-01-01

    Considerable research has compared how students learn science from computer simulations with how they learn from "traditional" classes. Little research has compared how students learn science from computer simulations with how they learn from direct experience in the real environment on which the simulations are based. This study compared two…

  8. Evolutionary online behaviour learning and adaptation in real robots.

    PubMed

    Silva, Fernando; Correia, Luís; Christensen, Anders Lyhne

    2017-07-01

    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm.

  9. A new ChainMail approach for real-time soft tissue simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2016-07-03

    This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance.

  10. Scalability study of parallel spatial direct numerical simulation code on IBM SP1 parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Hanebutte, Ulf R.; Joslin, Ronald D.; Zubair, Mohammad

    1994-01-01

    The implementation and the performance of a parallel spatial direct numerical simulation (PSDNS) code are reported for the IBM SP1 supercomputer. The spatially evolving disturbances that are associated with laminar-to-turbulent in three-dimensional boundary-layer flows are computed with the PS-DNS code. By remapping the distributed data structure during the course of the calculation, optimized serial library routines can be utilized that substantially increase the computational performance. Although the remapping incurs a high communication penalty, the parallel efficiency of the code remains above 40% for all performed calculations. By using appropriate compile options and optimized library routines, the serial code achieves 52-56 Mflops on a single node of the SP1 (45% of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a 'real world' simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP for the same simulation. The scalability information provides estimated computational costs that match the actual costs relative to changes in the number of grid points.

  11. Advances in mobile mental health: opportunities and implications for the spectrum of e-mental health services

    PubMed Central

    Chan, Steven; Hwang, Tiffany; Wong, Alice; Bauer, Amy M.

    2017-01-01

    Mobile health (mHealth), telemedicine and other technology-based services facilitate mental health service delivery and may be considered part of an e-mental health (eMH) spectrum of care. Web- and Internet-based resources provide a great opportunity for the public, patients, healthcare providers and others to improve wellness, practice prevention and reduce suffering from illnesses. Mobile apps offer portability for access anytime/anywhere, are inexpensive versus traditional desktop computers, and have additional features (e.g., context-aware interventions and sensors with real-time feedback. This paper discusses mobile mental health (mMH) options, as part of a broader framework of eMH options. The evidence-based literature shows that many people have an openness to technology as a way to help themselves, change behaviors and engage additional clinical services. Studies show that traditional video-based synchronous telepsychiatry (TP) is as good as in-person service, but mHealth outcomes have been rarely, directly compared to in-person and other eMH care options. Similarly, technology options added to in-person care or combined with others have not been evaluated nor linked with specific goals and desired outcomes. Skills and competencies for clinicians are needed for mHealth, social media and other new technologies in the eMH spectrum, in addition to research by randomized trials and study of health service delivery models with an emphasis on effectiveness. PMID:28894744

  12. A Real Options Method for Estimating the Adoption Potential of Forestry and Agroforestry Systems on Private Lands in the Lower Mississippi Alluvial Valley, USA

    Treesearch

    Gregory E. Frey; D. Evan Mercer; Frederick W. Cubbage; Robert C. Abt

    2010-01-01

    The Lower Mississippi River Alluvial Valley (LMAV), once was the largest forested bottom-land area in the continental United States, but has undergone widespread loss of forest through conversion to farmland. Restoration of forest functions and values has been a key conservation goal in the LMAV since the 1970s. This study utilizes a partial differential real options...

  13. Simulation of mixture microstructures via particle packing models and their direct comparison with real mixtures

    NASA Astrophysics Data System (ADS)

    Gulliver, Eric A.

    The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.

  14. Can we cut out the meat of the dish? Constructing consumer-oriented pathways towards meat substitution.

    PubMed

    Schösler, Hanna; de Boer, Joop; Boersema, Jan J

    2012-02-01

    The shift towards a more sustainable diet necessitates less reliance on foods of animal origin. This study presents data from a representative survey of Dutch consumers on their practices related to meat, meat substitution and meat reduction. The practices reflected a cultural gradient of meat substitution options running from other products of animal origin and conventional meat free meals to real vegetarian meals. To investigate feasible substitution options, a variety of meals without meat were presented using photos, which were rated by the participants in terms of attractiveness and chances that they would prepare a similar meal at home. The results demonstrated the influence of meal formats, product familiarity, cooking skills, preferences for plant-based foods and motivational orientations towards food. In particular, a lack of familiarity and skill hampered the preparation of real vegetarian meals. Based on the findings we propose a diversified understanding of meat substitution and we specify four policy-relevant pathways for a transition towards a more plant-based diet, including an incremental change towards more health-conscious vegetarian meals, a pathway that utilizes the trend towards convenience, a pathway of reduced portion size, and practice-oriented change towards vegetarian meals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. When to Wait for More Evidence? Real Options Analysis in Proton Therapy

    PubMed Central

    Abrams, Keith R.; de Ruysscher, Dirk; Pijls-Johannesma, Madelon; Peters, Hans J.M.; Beutner, Eric; Lambin, Philippe; Joore, Manuela A.

    2011-01-01

    Purpose. Trends suggest that cancer spending growth will accelerate. One method for controlling costs is to examine whether the benefits of new technologies are worth the extra costs. However, especially new and emerging technologies are often more costly, while limited clinical evidence of superiority is available. In that situation it is often unclear whether to adopt the new technology now, with the risk of investing in a suboptimal therapy, or to wait for more evidence, with the risk of withholding patients their optimal treatment. This trade-off is especially difficult when it is costly to reverse the decision to adopt a technology, as is the case for proton therapy. Real options analysis, a technique originating from financial economics, assists in making this trade-off. Methods. We examined whether to adopt proton therapy, as compared to stereotactic body radiotherapy, in the treatment of inoperable stage I non-small cell lung cancer. Three options are available: adopt without further research; adopt and undertake a trial; or delay adoption and undertake a trial. The decision depends on the expected net gain of each option, calculated by subtracting its total costs from its expected benefits. Results. In The Netherlands, adopt and trial was found to be the preferred option, with an optimal sample size of 200 patients. Increase of treatment costs abroad and costs of reversal altered the preferred option. Conclusion. We have shown that real options analysis provides a transparent method of weighing the costs and benefits of adopting and/or further researching new and expensive technologies. PMID:22147003

  16. Integration of Dynamic Models in Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.

  17. Real-time piloted simulation of fully automatic guidance and control for rotorcraft nap-of-the-earth (NOE) flight following planned profiles

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard

    1990-01-01

    Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.

  18. Simulation as a planning tool for job-shop production environment

    NASA Astrophysics Data System (ADS)

    Maram, Venkataramana; Nawawi, Mohd Kamal Bin Mohd; Rahman, Syariza Abdul; Sultan, Sultan Juma

    2015-12-01

    In this paper, we made an attempt to use discrete event simulation software ARENA® as a planning tool for job shop production environment. We considered job shop produces three types of Jigs with different sequence of operations to study and improve shop floor performance. The sole purpose of the study is to identifying options to improve machines utilization, reducing job waiting times at bottleneck machines. First, the performance of the existing system was evaluated by using ARENA®. Then identified improvement opportunities by analyzing base system results. Second, updated the model with most economical options. The proposed new system outperforms with that of the current base system by 816% improvement in delay times at paint shop by increase 2 to 3 and Jig cycle time reduces by Jig1 92%, Jig2 65% and Jig3 41% and hence new proposal was recommended.

  19. Main drive selection for the Windstorm Simulation Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, J.M.; Earl, J.S.

    1998-02-01

    Operated by the Partnership for Natural Disaster Reduction, the Windstorm Simulation Center (WSC) will be a structural test center dedicated to studying the performance of civil structural systems subjected to hurricanes, tornadoes, and other storm winds. Within the WSC, a bank of high-power fans, the main drive, will produce the high velocity wind necessary to reproduce these storms. Several options are available for the main drive, each with advantages and liabilities. This report documents a study to identify and evaluate all candidates available, and to select the most promising system such that the best possible combination of real-world performance attributesmore » is achieved at the best value. Four broad classes of candidate were identified: electric motors, turbofan aircraft engines, turboshaft aircraft engines, and turboshaft industrial engines. Candidate systems were evaluated on a basis of technical feasibility, availability, power, installed cost, and operating cost.« less

  20. Resisting Temptation: Tracking How Self-Control Conflicts Are Successfully Resolved in Real Time.

    PubMed

    Stillman, Paul E; Medvedev, Danila; Ferguson, Melissa J

    2017-09-01

    Across four studies, we used mouse tracking to identify the dynamic, on-line cognitive processes that underlie successful self-control decisions. First, we showed that individuals display real-time conflict when choosing options consistent with their long-term goal over short-term temptations. Second, we found that individuals who are more successful at self-control-whether measured or manipulated-show significantly less real-time conflict in only self-control-relevant choices. Third, we demonstrated that successful individuals who choose a long-term goal over a short-term temptation display movements that are smooth rather than abrupt, which suggests dynamic rather than stage-based resolution of self-control conflicts. These findings have important implications for contemporary theories of self-control.

  1. Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models.

    PubMed

    Niroomandi, S; Alfaro, I; Cueto, E; Chinesta, F

    2012-01-01

    Model reduction techniques have shown to constitute a valuable tool for real-time simulation in surgical environments and other fields. However, some limitations, imposed by real-time constraints, have not yet been overcome. One of such limitations is the severe limitation in time (established in 500Hz of frequency for the resolution) that precludes the employ of Newton-like schemes for solving non-linear models as the ones usually employed for modeling biological tissues. In this work we present a technique able to deal with geometrically non-linear models, based on the employ of model reduction techniques, together with an efficient non-linear solver. Examples of the performance of the technique over some examples will be given. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Three-dimensional simulation and auto-stereoscopic 3D display of the battlefield environment based on the particle system algorithm

    NASA Astrophysics Data System (ADS)

    Ning, Jiwei; Sang, Xinzhu; Xing, Shujun; Cui, Huilong; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    The army's combat training is very important now, and the simulation of the real battlefield environment is of great significance. Two-dimensional information has been unable to meet the demand at present. With the development of virtual reality technology, three-dimensional (3D) simulation of the battlefield environment is possible. In the simulation of 3D battlefield environment, in addition to the terrain, combat personnel and the combat tool ,the simulation of explosions, fire, smoke and other effects is also very important, since these effects can enhance senses of realism and immersion of the 3D scene. However, these special effects are irregular objects, which make it difficult to simulate with the general geometry. Therefore, the simulation of irregular objects is always a hot and difficult research topic in computer graphics. Here, the particle system algorithm is used for simulating irregular objects. We design the simulation of the explosion, fire, smoke based on the particle system and applied it to the battlefield 3D scene. Besides, the battlefield 3D scene simulation with the glasses-free 3D display is carried out with an algorithm based on GPU 4K super-multiview 3D video real-time transformation method. At the same time, with the human-computer interaction function, we ultimately realized glasses-free 3D display of the simulated more realistic and immersed 3D battlefield environment.

  3. An IP-Based Software System for Real-time, Closed Loop, Multi-Spacecraft Mission Simulations

    NASA Technical Reports Server (NTRS)

    Cary, Everett; Davis, George; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    This viewgraph presentation provides information on the architecture of a computerized testbest for simulating Distributed Space Systems (DSS) for controlling spacecraft flying in formation. The presentation also discusses and diagrams the Distributed Synthesis Environment (DSE) for simulating and planning DSS missions.

  4. A Critical Role for the Hippocampus in the Valuation of Imagined Outcomes

    PubMed Central

    Lebreton, Maël; Bertoux, Maxime; Boutet, Claire; Lehericy, Stéphane; Dubois, Bruno; Fossati, Philippe; Pessiglione, Mathias

    2013-01-01

    Many choice situations require imagining potential outcomes, a capacity that was shown to involve memory brain regions such as the hippocampus. We reasoned that the quality of hippocampus-mediated simulation might therefore condition the subjective value assigned to imagined outcomes. We developed a novel paradigm to assess the impact of hippocampus structure and function on the propensity to favor imagined outcomes in the context of intertemporal choices. The ecological condition opposed immediate options presented as pictures (hence directly observable) to delayed options presented as texts (hence requiring mental stimulation). To avoid confounding simulation process with delay discounting, we compared this ecological condition to control conditions using the same temporal labels while keeping constant the presentation mode. Behavioral data showed that participants who imagined future options with greater details rated them as more likeable. Functional MRI data confirmed that hippocampus activity could account for subjects assigning higher values to simulated options. Structural MRI data suggested that grey matter density was a significant predictor of hippocampus activation, and therefore of the propensity to favor simulated options. Conversely, patients with hippocampus atrophy due to Alzheimer's disease, but not patients with Fronto-Temporal Dementia, were less inclined to favor options that required mental simulation. We conclude that hippocampus-mediated simulation plays a critical role in providing the motivation to pursue goals that are not present to our senses. PMID:24167442

  5. Agent-based self-service technology adoption model for air-travelers: Exploring best operational practices

    NASA Astrophysics Data System (ADS)

    Ueda, Keiichi; Kurahashi, Setsuya

    2018-02-01

    The continuous development of the service economy and an aging society with fewer children is expected to lead to a shortage of workers in the near future. In addition, the growth of the service economy would require service providers to meet various service requirements. In this regard, self-service technology (SST) is a promising alternative to securing labor in both developed and emerging countries. SST is expected to coordinate the controllable productive properties in order to optimize resources and minimize consumer stress. As services are characterized by simultaneity and inseparability, a smoother operation in cooperation with the consumer is required to provide a certain level of service. This study focuses on passenger handling in an airport departure lobby with the objective of optimizing multiple service resources comprising interpersonal service staff and self-service kiosks. Our aim is to elucidate the passenger decision- making mechanism of choosing either interpersonal service or self-service as the check-in option, and to apply it to analyze several scenarios to determine the best practice. The experimental space is studied and an agent-based model is proposed to analyze the operational efficiency via a simulation. We expand on a previous SST adoption model, which is enhanced by introducing the concept of individual traits. We focus on the decision-making of individuals who are neutral toward the service option, by tracking the actual activity of passengers and mapping their behavior into the model. A new method of validation that follows a different approach is proposed to ensure that this model approximates real-world situations. A scenario analysis is then carried out with the aim of exploring the best operational practice to minimize the stress experienced by the air travelers and to meet the business needs of the airline managers at the airport. We collected actual data from the Departure Control System of an airline to map the real-world data to the proposed model. Passenger behavior was extracted by front-line service experts and clarified through consecutive on-site observations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqui, Afzal; Marnay, Chris

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investmentmore » threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.« less

  7. Time Series Data Visualization in World Wide Telescope

    NASA Astrophysics Data System (ADS)

    Fay, J.

    WorldWide Telescope provides a rich set of timer series visualization for both archival and real time data. WWT consists of both interactive desktop tools for interactive immersive visualization and HTML5 web based controls that can be utilized in customized web pages. WWT supports a range of display options including full dome, power walls, stereo and virtual reality headsets.

  8. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  9. Real-time locating systems (RTLS) in healthcare: a condensed primer

    PubMed Central

    2012-01-01

    Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results. PMID:22741760

  10. Real-time locating systems (RTLS) in healthcare: a condensed primer.

    PubMed

    Kamel Boulos, Maged N; Berry, Geoff

    2012-06-28

    Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results.

  11. Models and Methods for Adaptive Management of Individual and Team-Based Training Using a Simulator

    NASA Astrophysics Data System (ADS)

    Lisitsyna, L. S.; Smetyuh, N. P.; Golikov, S. P.

    2017-05-01

    Research of adaptive individual and team-based training has been analyzed and helped find out that both in Russia and abroad, individual and team-based training and retraining of AASTM operators usually includes: production training, training of general computer and office equipment skills, simulator training including virtual simulators which use computers to simulate real-world manufacturing situation, and, as a rule, the evaluation of AASTM operators’ knowledge determined by completeness and adequacy of their actions under the simulated conditions. Such approach to training and re-training of AASTM operators stipulates only technical training of operators and testing their knowledge based on assessing their actions in a simulated environment.

  12. An Open-Source Arduino-based Controller for Mechanical Rain Simulators

    NASA Astrophysics Data System (ADS)

    Cantilina, K. K.

    2017-12-01

    Many commercial rain simulators currently used in hydrology rely on inflexible and outdated controller designs. These analog controllers typically only allow a handful of discrete parameter options, and do not support internal timing functions or continuously-changing parameters. A desire for finer control of rain simulation events necessitated the design and construction of a microcontroller-based controller, using widely available off-the-shelf components. A menu driven interface allows users to fine-tune simulation parameters without the need for training or experience with microcontrollers, and the accessibility of the Arduino IDE allows users with a minimum of programming and hardware experience to modify the controller program to suit the needs of individual experiments.

  13. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.

    2016-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, Joule-Thompson device, control valve, heat exchanger core, parallel tube, and compressible orifice. The program has the provision of including additional resistance options through User Subroutines. GFSSP employs a finite volume formulation of mass, momentum, and energy conservation equations in conjunction with the thermodynamic equations of state for real fluids as well as energy conservation equations for the solid. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. The application and verification of the code has been demonstrated through 30 example problems.

  14. Transport link scanner: simulating geographic transport network expansion through individual investments

    NASA Astrophysics Data System (ADS)

    Jacobs-Crisioni, C.; Koopmans, C. C.

    2016-07-01

    This paper introduces a GIS-based model that simulates the geographic expansion of transport networks by several decision-makers with varying objectives. The model progressively adds extensions to a growing network by choosing the most attractive investments from a limited choice set. Attractiveness is defined as a function of variables in which revenue and broader societal benefits may play a role and can be based on empirically underpinned parameters that may differ according to private or public interests. The choice set is selected from an exhaustive set of links and presumably contains those investment options that best meet private operator's objectives by balancing the revenues of additional fare against construction costs. The investment options consist of geographically plausible routes with potential detours. These routes are generated using a fine-meshed regularly latticed network and shortest path finding methods. Additionally, two indicators of the geographic accuracy of the simulated networks are introduced. A historical case study is presented to demonstrate the model's first results. These results show that the modelled networks reproduce relevant results of the historically built network with reasonable accuracy.

  15. Using a Web-Based e-Visit Simulation to Educate Nurse Practitioner Students.

    PubMed

    Merritt, Lisa Schaeg; Brauch, Allison N; Bender, Annah K; Kochuk, Daria

    2018-05-01

    The purpose of this pilot study was to develop and implement a Web-based, e-Visit simulation experience for nurse practitioner students and evaluate student satisfaction and perceived learning. The convenience sample consisted of 26 senior-level Master of Science in Nursing students in the Pediatric Nurse Practitioner and Adult-Gerontology Nurse Practitioner programs. A Likert survey was used for evaluation that measured items from 1 (strongly disagree) to 5 (strongly agree). Students reported that the simulation cases closely resembled real-world patients (97%; M = 4.42, SD = 0.69), providing them with a better understanding of complaints commonly addressed via telehealth services (96%; M = 4.46, SD = 0.57). Accuracy of diagnosis and treatment on first attempt was 95%. A Web-based, e-Visit simulation can be a useful learning experience for nurse practitioner students with knowledge gained that is transferable to real clinical situations. [J Nurs Educ. 2018;57(5):304-307.]. Copyright 2018, SLACK Incorporated.

  16. Real-time maritime scene simulation for ladar sensors

    NASA Astrophysics Data System (ADS)

    Christie, Chad L.; Gouthas, Efthimios; Swierkowski, Leszek; Williams, Owen M.

    2011-06-01

    Continuing interest exists in the development of cost-effective synthetic environments for testing Laser Detection and Ranging (ladar) sensors. In this paper we describe a PC-based system for real-time ladar scene simulation of ships and small boats in a dynamic maritime environment. In particular, we describe the techniques employed to generate range imagery accompanied by passive radiance imagery. Our ladar scene generation system is an evolutionary extension of the VIRSuite infrared scene simulation program and includes all previous features such as ocean wave simulation, the physically-realistic representation of boat and ship dynamics, wake generation and simulation of whitecaps, spray, wake trails and foam. A terrain simulation extension is also under development. In this paper we outline the development, capabilities and limitations of the VIRSuite extensions.

  17. BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes.

    PubMed

    Gao, Junhui; Li, Li; Wu, Xiaolin; Wei, Dong-Qing

    2012-03-01

    BioNetSim, a Petri net-based software for modeling and simulating biochemistry processes, is developed, whose design and implement are presented in this paper, including logic construction, real-time access to KEGG (Kyoto Encyclopedia of Genes and Genomes), and BioModel database. Furthermore, glycolysis is simulated as an example of its application. BioNetSim is a helpful tool for researchers to download data, model biological network, and simulate complicated biochemistry processes. Gene regulatory networks, metabolic pathways, signaling pathways, and kinetics of cell interaction are all available in BioNetSim, which makes modeling more efficient and effective. Similar to other Petri net-based softwares, BioNetSim does well in graphic application and mathematic construction. Moreover, it shows several powerful predominances. (1) It creates models in database. (2) It realizes the real-time access to KEGG and BioModel and transfers data to Petri net. (3) It provides qualitative analysis, such as computation of constants. (4) It generates graphs for tracing the concentration of every molecule during the simulation processes.

  18. Development and Flight Results of a PC104/QNX-Based On-Board Computer and Software for the YES2 Tether Experiment

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, I.; Mirmont, M.; Kruijff, M.

    2008-08-01

    This paper highlights the flight preparation and mission performance of a PC104-based On-Board Computer for ESA's second Young Engineer's Satellite (YES2), with additional attention to the flight software design and experience of QNX as multi-process real-time operating system. This combination of Commercial-Of-The-Shelf (COTS) technologies is an accessible option for small satellites with high computational demands.

  19. Operateurs et engins de calcul en virgule flottante et leur application a la simulation en temps reel sur FPGA

    NASA Astrophysics Data System (ADS)

    Ould Bachir, Tarek

    The real-time simulation of electrical networks gained a vivid industrial interest during recent years, motivated by the substantial development cost reduction that such a prototyping approach can offer. Real-time simulation allows the progressive inclusion of real hardware during its development, allowing its testing under realistic conditions. However, CPU-based simulations suffer from certain limitations such as the difficulty to reach time-steps of a few microsecond, an important challenge brought by modern power converters. Hence, industrial practitioners adopted the FPGA as a platform of choice for the implementation of calculation engines dedicated to the rapid real-time simulation of electrical networks. The reconfigurable technology broke the 5 kHz switching frequency barrier that is characteristic of CPU-based simulations. Moreover, FPGA-based real-time simulation offers many advantages, including the reduced latency of the simulation loop that is obtained thanks to a direct access to sensors and actuators. The fixed-point format is paradigmatic to FPGA-based digital signal processing. However, the format imposes a time penalty in the development process since the designer has to asses the required precision for all model variables. This fact brought an import research effort on the use of the floating-point format for the simulation of electrical networks. One of the main challenges in the use of the floating-point format are the long latencies required by the elementary arithmetic operators, particularly when an adder is used as an accumulator, an important building bloc for the implementation of integration rules such as the trapezoidal method. Hence, single-cycle floating-point accumulation forms the core of this research work. Our results help building such operators as accumulators, multiply-accumulators (MACs), and dot-product (DP) operators. These operators play a key role in the implementation of the proposed calculation engines. Therefore, this thesis contributes to the realm of FPGA-based real-time simulation in many ways. The research work proposes a new summation algorithm, which is a generalization of the so-called self-alignment technique. The new formulation is broader, simpler in its expression and hardware implementation. Our research helps formulating criteria to guarantee good accuracy, the criteria being established on a theoretical, as well as empirical basis. Moreover, the thesis offers a comprehensive analysis on the use of the redundant high radix carry-save (HRCS) format. The HRCS format is used to perform rapid additions of large mantissas. Two new HRCS operators are also proposed, namely an endomorphic adder and a HRCS to conventional converter. Once the mean to single-cycle accumulation is defined as a combination of the self-alignment technique and the HRCS format, the research focuses on the FPGA implementation of SIMD calculation engines using parallel floating-point MACs or DPs. The proposed operators are characterized by low latencies, allowing the engines to reach very low time-steps. The document finally discusses power electronic circuits modelling, and concludes with the presentation of a versatile calculation engine capable of simulating power converter with arbitrary topologies and up to 24 switches, while achieving time steps below 1 mus and allowing switching frequencies in the range of tens kilohertz. The latter realization has led to commercialization of a product by our industrial partner.

  20. NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.

    PubMed

    Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien

    2015-07-01

    NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.

  1. Development of real-time motion verification system using in-room optical images for respiratory-gated radiotherapy.

    PubMed

    Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon

    2013-09-06

    Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.

  2. Applying Real Options for Evaluating Investments in ERP Systems

    NASA Astrophysics Data System (ADS)

    Nakagane, Jun; Sekozawa, Teruji

    This paper intends to verify effectiveness of real options approach for evaluating investments in Enterprise Resource Planning systems (ERP) and proves how important it is to disclose shadow options potentially embedded in ERP investment. The net present value (NPV) method is principally adopted to evaluate the value of ERP. However, the NPV method assumes no uncertainties exist in the object. It doesn't satisfy the current business circumstances which are filled with dynamic issues. Since the 1990s the effectiveness of option pricing models for Information System (IS) investment to solve issues in the NPV method has been discussed in the IS literature. This paper presents 3 business cases to review the practical advantages of such techniques for IS investments, especially ERP investments. The first case is EDI development. We evaluate the project by a new approach with lighting one of shadow options, EDI implementation. In the second case we reveal an ERP investment has an “expanding option” in a case of eliminating redundancy. The third case describes an option to contract which is deliberately slotted in ERP development to prepare transferring a manufacturing facility.

  3. Solar PV leasing in Singapore: enhancing return on investments with options

    NASA Astrophysics Data System (ADS)

    Song, Shuang; Poh, K. L.

    2017-05-01

    Renewable energy is getting more important nowadays as an alternative to traditional energies. Solar energy, according to Energy Market Authority, is the most viable in the context of Singapore compared to other renewable energy sources due to land constraints. In light of the increasing adoption of solar power in Singapore, this paper focuses on solar PV leasing using a case study. This paper assesses the prospect for solar PV leasing companies in Singapore through the lens of embedded real options. The recent news that solar power is becoming the cheapest form of new electricity presents the leasing company an option to expand the scale of solar PV system. Taking into account this option, the Net Present Value (NPV) of the investment increased significantly compared to the case without real options. Technological developments result in a continuously changing environment with uncertainties. Thus, decision makers need to be aware of the inherent risk associated and identify options to maximize NPV. This upside potential is realized by exercising the managerial flexibility and exploiting the uncertainty. The paper enables solar energy planners to consider possible managerial flexibilities under uncertainties, showing how option thinking can be incorporated in the valuation of solar energy.

  4. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for carbon cycle studies

    USGS Publications Warehouse

    He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.

  5. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    NASA Astrophysics Data System (ADS)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  6. Using "Game of Thrones" to Teach International Relations

    ERIC Educational Resources Information Center

    Young, Laura D.; Carranza Ko, Ñusta; Perrin, Michael

    2018-01-01

    Despite the known benefits of long-term, game-based simulations they remain underutilized in Political Science classrooms. Simulations used are typically designed to reinforce a concept and are short-lived, lasting one or two class sessions; rarely are entire courses designed around a single simulation. Creating real-world conditions in which…

  7. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    PubMed

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Flowslide Early Warning System in pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Olivares, Lucio; Damiano, Emila; De Cristofaro, Martina; Roberto, Greco; Mollo, Luigi; Netti, Nadia; Capparelli, Giovanna

    2015-04-01

    Most of the mountains of Campania are covered by airfall pyroclastic deposits in primary deposition generally in unsaturated conditions. These deposits are periodically subjected to rainfall induced landslides that may evolve into catastrophic flowslides. To protect towns EWS can be implemented in order to correctly and promptly predict the trigger. In the paper we detect some 'essential ingredients' for effective EWSs which are new with respect to those already employed and essentially based on pluviometric thresholds (Greco et. Al., 2013) and extremely simplified models not able to correctly follow the physical phenomena which are responsible of flowslides generation (Olivares et Al. 2009). Complex models, able to correctly simulate those physical phenomena such as infiltration processes and the effects of partial saturated conditions on shear strength contain the 'essential ingredients' that we discuss in the paper. A particular attention is devoted to define the relation between suction and shear strength and the water retention curve obtained from different techniques to assess a reliable hydro-geotechnical model to analyze the slope response of loose unsaturated pyroclastic deposits. An EWS that contains these elements can provide many advantages. In fact, catastrophic flowslides but even false alarms about such events, produce negative technological and productive shocks that strongly reduce the actual and prospective value added of investment in the areas at risk suggesting the opportunity of their shrinking and postponement. Of course this severely compromises the economic development of those areas. In the paper we propose to examine this subject in the Dixit e Pindyck framework of the Real Option Valuation Approach in order to explain the socio-economic value of effective EWS. In fact, such EWSs will embed valuable new real options in the investment opportunities in the areas at risk increasing their actual and prospective values. Keywords: slope stability, pyroclastic soil, monitoring, unsaturated soil, socio-economic framework

  9. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  10. An Internet Protocol-Based Software System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications

    NASA Technical Reports Server (NTRS)

    Burns, Richard D.; Davis, George; Cary, Everett; Higinbotham, John; Hogie, Keith

    2003-01-01

    A mission simulation prototype for Distributed Space Systems has been constructed using existing developmental hardware and software testbeds at NASA s Goddard Space Flight Center. A locally distributed ensemble of testbeds, connected through the local area network, operates in real time and demonstrates the potential to assess the impact of subsystem level modifications on system level performance and, ultimately, on the quality and quantity of the end product science data.

  11. The Validity of Computer Audits of Simulated Cases Records.

    ERIC Educational Resources Information Center

    Rippey, Robert M.; And Others

    This paper describes the implementation of a computer-based approach to scoring open-ended problem lists constructed to evaluate student and practitioner clinical judgment from real or simulated records. Based on 62 previously administered and scored problem lists, the program was written in BASIC for a Heathkit H11A computer (equivalent to DEC…

  12. Looking for a relevant potential evapotranspiration model at the watershed scale

    NASA Astrophysics Data System (ADS)

    Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Anctil, F.; Andréassian, V.

    2003-04-01

    In this paper, we try to identify the most relevant approach to calculate Potential Evapotranspiration (PET) for use in a daily watershed model, to try to bring an answer to the following question: "how can we use commonly available atmospheric parameters to represent the evaporative demand at the catchment scale?". Hydrologists generally see the Penman model as the ideal model regarding to its good adequacy with lysimeter measurements and its physically-based formulation. However, in real-world engineering situations, where meteorological stations are scarce, hydrologists are often constrained to use other PET formulae with less data requirements or/and long-term average of PET values (the rationale being that PET is an inherently conservative variable). We chose to test 28 commonly used PET models coupled with 4 different daily watershed models. For each test, we compare both PET input options: actual data and long-term average data. The comparison is made in terms of streamflow simulation efficiency, over a large sample of 308 watersheds. The watersheds are located in France, Australia and the United States of America and represent varied climates. Strikingly, we find no systematic improvements of the watershed model efficiencies when using actual PET series instead of long-term averages. This suggests either that watershed models may not conveniently use the climatic information contained in PET values or that formulae are only awkward indicators of the real PET which watershed models need.

  13. Operationalizing the Space Weather Modeling Framework: Challenges and Resolutions

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Gombosi, T. I.; Toth, G.; Singer, H. J.; Millward, G. H.; Balch, C. C.; Cash, M. D.

    2016-12-01

    Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized time-varying magnetic field (dB/dt) predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation chronicles the challenges encountered during the R2O transition of the SWMF. Because operations relies on frequent calculations of global surface dB/dt, new optimizations were required to keep the model running faster than real time. Additionally, several singular situations arose during the 30-day robustness test that required immediate attention. Solutions and strategies for overcoming these issues will be presented. This includes new failsafe options for code execution, new physics and coupling parameters, and the development of an automated validation suite that allows us to monitor performance with code evolution. Finally, the operations-to-research (O2R) impact on SWMF-related research is presented. The lessons learned from this work are valuable and instructive for the space weather community as further R2O progress is made.

  14. Multi-Level Cultural Models

    DTIC Science & Technology

    2014-11-05

    usable simulations. This procedure was to be tested using real-world data collected from open-source venues. The final system would support rapid...assess social change. Construct is an agent-based dynamic-network simulation system design to allow the user to assess the spread of information and...protest or violence. Technical Challenges Addressed  Re‐use:    Most agent-based simulation ( ABM ) in use today are one-off. In contrast, we

  15. COMSOL-Based Modeling and Simulation of SnO2/rGO Gas Sensor for Detection of NO2.

    PubMed

    Yaghouti Niyat, Farshad; Shahrokh Abadi, M H

    2018-02-01

    Despite SIESTA and COMSOL being increasingly used for the simulation of the sensing mechanism in the gas sensors, there are no modeling and simulation reports in literature for detection of NO 2 based rGO/SnO 2 sensors. In the present study, we model, simulate, and characterize an NO 2 based rGO/SnO 2 gas sensor using COMSOL by solving the Poisson's equations under associated boundary conditions of mass, heat and electrical transitions. To perform the simulation, we use an exposure model for presenting the required NO 2 , a heat transfer model to obtain a reaction temperature, and an electrical model to characterize the sensor's response in the presence of the gas. We characterize the sensor's response in the presence of different concentrations of NO 2 at different working temperatures and compare the results with the experimental data, reported by Zhang et al. The results from the simulated sensor show a good agreement with the real sensor with some inconsistencies due to differences between the practical conditions in the real chamber and applied conditions to the analytical equations. The results also show that the method can be used to define and predict the behavior of the rGO-based gas sensors before undergoing the fabrication process.

  16. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    PubMed

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  17. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    PubMed Central

    Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-01-01

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375

  18. Improving team information sharing with a structured call-out in anaesthetic emergencies: a randomized controlled trial.

    PubMed

    Weller, J M; Torrie, J; Boyd, M; Frengley, R; Garden, A; Ng, W L; Frampton, C

    2014-06-01

    Sharing information with the team is critical in developing a shared mental model in an emergency, and fundamental to effective teamwork. We developed a structured call-out tool, encapsulated in the acronym 'SNAPPI': Stop; Notify; Assessment; Plan; Priorities; Invite ideas. We explored whether a video-based intervention could improve structured call-outs during simulated crises and if this would improve information sharing and medical management. In a simulation-based randomized, blinded study, we evaluated the effect of the video-intervention teaching SNAPPI on scores for SNAPPI, information sharing, and medical management using baseline and follow-up crisis simulations. We assessed information sharing using a probe technique where nurses and technicians received unique, clinically relevant information probes before the simulation. Shared knowledge of probes was measured in a written, post-simulation test. We also scored sharing of diagnostic options with the team and medical management. Anaesthetists' scores for SNAPPI were significantly improved, as was the number of diagnostic options they shared. We found a non-significant trend to improve information-probe sharing and medical management in the intervention group, and across all simulations, a significant correlation between SNAPPI and information-probe sharing. Of note, only 27% of the clinically relevant information about the patient provided to the nurse and technician in the pre-simulation information probes was subsequently learnt by the anaesthetist. We developed a structured communication tool, SNAPPI, to improve information sharing between anaesthetists and their team, taught it using a video-based intervention, and provide initial evidence to support its value for improving communication in a crisis. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Performance evaluation of power control algorithms in wireless cellular networks

    NASA Astrophysics Data System (ADS)

    Temaneh-Nyah, C.; Iita, V.

    2014-10-01

    Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.

  20. Aerodynamic design and optimization of high altitude environment simulation system based on CFD

    NASA Astrophysics Data System (ADS)

    Ma, Pingchang; Yan, Lutao; Li, Hong

    2017-05-01

    High altitude environment simulation system (HAES) is built to provide a true flight environment for subsonic vehicles, with low density, high speed, and short time characteristics. Normally, wind tunnel experiments are based on similar principal, such as parameters of Re or Ma, in order to shorten test product size. However, the test products in HAES are trim size, so more attention is put on the true flight environment simulation. It includes real flight environment pressure, destiny and real flight velocity, and its type velocity is Ma=0.8. In this paper, the aerodynamic design of HAES is introduced and its rationality is explained according to CFD calculation based on Fluent. Besides, the initial pressure of vacuum tank in HAES is optimized, which is not only to meet the economic requirements, but also to decrease the effect of additional stress on the test product in the process of the establishment of the target flow field.

  1. Finite Volume Method for Pricing European Call Option with Regime-switching Volatility

    NASA Astrophysics Data System (ADS)

    Lista Tauryawati, Mey; Imron, Chairul; Putri, Endah RM

    2018-03-01

    In this paper, we present a finite volume method for pricing European call option using Black-Scholes equation with regime-switching volatility. In the first step, we formulate the Black-Scholes equations with regime-switching volatility. we use a finite volume method based on fitted finite volume with spatial discretization and an implicit time stepping technique for the case. We show that the regime-switching scheme can revert to the non-switching Black Scholes equation, both in theoretical evidence and numerical simulations.

  2. Computer-based simulation training to improve learning outcomes in mannequin-based simulation exercises.

    PubMed

    Curtin, Lindsay B; Finn, Laura A; Czosnowski, Quinn A; Whitman, Craig B; Cawley, Michael J

    2011-08-10

    To assess the impact of computer-based simulation on the achievement of student learning outcomes during mannequin-based simulation. Participants were randomly assigned to rapid response teams of 5-6 students and then teams were randomly assigned to either a group that completed either computer-based or mannequin-based simulation cases first. In both simulations, students used their critical thinking skills and selected interventions independent of facilitator input. A predetermined rubric was used to record and assess students' performance in the mannequin-based simulations. Feedback and student performance scores were generated by the software in the computer-based simulations. More of the teams in the group that completed the computer-based simulation before completing the mannequin-based simulation achieved the primary outcome for the exercise, which was survival of the simulated patient (41.2% vs. 5.6%). The majority of students (>90%) recommended the continuation of simulation exercises in the course. Students in both groups felt the computer-based simulation should be completed prior to the mannequin-based simulation. The use of computer-based simulation prior to mannequin-based simulation improved the achievement of learning goals and outcomes. In addition to improving participants' skills, completing the computer-based simulation first may improve participants' confidence during the more real-life setting achieved in the mannequin-based simulation.

  3. Interactive physically-based sound simulation

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation behind obstructions, reverberation, scattering from complex geometry and sound focusing. This is enabled by a novel compact representation that takes a thousand times less memory than a direct scheme, thus reducing memory footprints to fit within available main memory. To the best of my knowledge, this is the only technique and system in existence to demonstrate auralization of physical wave-based effects in real-time on large, complex 3D scenes.

  4. Simulation of how a geo-engineering intervention to restore arctic sea ice might work in practice

    NASA Astrophysics Data System (ADS)

    Jackson, L. S.; Crook, J. A.; Forster, P.; Jarvis, A.; Leedal, D.; Ridgwell, A. J.; Vaughan, N.

    2013-12-01

    The declining trend in annual minimum Arctic sea ice coverage and years of more pronounced drops like 2007 and 2012 raise the prospect of an Arctic Ocean largely free of sea ice in late summer and the potential for a climate crisis or emergency. In a novel computer simulation, we treated one realisation of a climate model (HadGEM2) as the real world and tried to restore its Arctic sea ice by the rapid deployment of geo-engineering with emission of SO2 into the Arctic stratosphere. The objective was to restore the annual minimum Arctic sea ice coverage to levels seen in the late twentieth century using as little geo-engineering as possible. We took intervention decisions as one might do in the real world: by committee, using a limited set of uncertain 'observations' from our simulated world and using models and control theory to plan the best intervention strategy for the coming year - so learning as we went and being thrown off course by future volcanoes and technological breakdowns. Uncertainties in real world observations were simulated by applying noise to emerging results from the climate model. Volcanic forcing of twenty-first century climate was included with the timing and magnitude of the simulated eruptions unknown by the 'geo-engineers' until after the year of the eruption. Monitoring of Arctic sea ice with the option to intervene with SO2 emissions started from 2018 and continued to 2075. Simulated SO2 emissions were made in January-May each year at a latitude of 79o N and an altitude within the range of contemporary tanker aircraft. The magnitude of emissions was chosen annually using a model predictive control process calibrated using results from CMIP5 models (excluding HadGEM2), using the simplified climate model MAGICC and assimilation of emerging annual results from the HadGEM2 'real world'. We found that doubts in the minds of the 'geo-engineers' of the effectiveness and the side effects of their past intervention, and the veracity of the models used for planning intervention were a constant feature of the simulation. As a result, their assumptions and intervention approaches were considerably revised as the simulation progressed. Side effects of the geo-engineering were difficult to explicitly determine without a control experiment. Nevertheless, we found wide spread changes in precipitation that were believed to be due to the geo-engineering - a later control experiment confirmed this belief. On termination of the SO2 geo-engineering, northern hemisphere temperatures rose sharply and Arctic sea ice area dropped dramatically. These termination effects were so large that attribution to the geo-engineering cessation was unambiguous.

  5. In Patients With Cirrhosis, Driving Simulator Performance Is Associated With Real-life Driving.

    PubMed

    Lauridsen, Mette M; Thacker, Leroy R; White, Melanie B; Unser, Ariel; Sterling, Richard K; Stravitz, Richard T; Matherly, Scott; Puri, Puneet; Sanyal, Arun J; Gavis, Edith A; Luketic, Velimir; Siddiqui, Muhammad S; Heuman, Douglas M; Fuchs, Michael; Bajaj, Jasmohan S

    2016-05-01

    Minimal hepatic encephalopathy (MHE) has been linked to higher real-life rates of automobile crashes and poor performance in driving simulation studies, but the link between driving simulator performance and real-life automobile crashes has not been clearly established. Furthermore, not all patients with MHE are unsafe drivers, but it is unclear how to distinguish them from unsafe drivers. We investigated the link between performance on driving simulators and real-life automobile accidents and traffic violations. We also aimed to identify features of unsafe drivers with cirrhosis and evaluated changes in simulated driving skills and MHE status after 1 year. We performed a study of outpatients with cirrhosis (n = 205; median 55 years old; median model for end-stage liver disease score, 9.5; none with overt hepatic encephalopathy or alcohol or illicit drug use within previous 6 months) seen at the Virginia Commonwealth University and McGuire Veterans Administration Medical Center, from November 2008 through April 2014. All participants were given paper-pencil tests to diagnose MHE (98 had MHE; 48%), and 163 patients completed a standardized driving simulation. Data were collected on traffic violations and automobile accidents from the Virginia Department of Motor Vehicles and from participants' self-assessments when they entered the study, and from 73 participants 1 year later. Participants also completed a questionnaire about alcohol use and cessation patterns. The driving simulator measured crashes, run-time, road center and edge excursions, and illegal turns during navigation; before and after each driving simulation session, patients were asked to rate their overall driving skills. Drivers were classified as safe or unsafe based on crashes and violations reported on official driving records; simulation results were compared with real-life driving records. Multivariable regression analyses of real-life crashes and violations was performed using data on demographics, cirrhosis details, MHE status, and alcohol cessation patterns, at baseline and at 1 year. Drivers categorized as unsafe had more crashes and made more illegal turns on the driving simulator than drivers categorized as safe; a higher proportion of subjects with MHE were categorized as unsafe drivers at baseline (16%) than subjects without MHE (7%; P = .02), and at 1-year follow-up (18% vs 0%; P = .02). Alcohol cessation within <1 year and illegal turns during simulator navigation tasks were associated with real-life automobile crashes and MHE in regression analysis; road edge excursions in the simulator were associated with real-life traffic violations. Personal assessment of driving skills improved after each simulation episode. In a study of 205 patients with cirrhosis, we associated results from driving simulation tests with real-life driving records and MHE. Traffic safety counseling should focus on patients with cirrhosis who recently quit consuming alcohol and perform poorly on driving simulation. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Alex

    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform formore » modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to model three­phase and single­ phase networks and devices.« less

  7. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation.

    PubMed

    Sørensen, Jette Led; Østergaard, Doris; LeBlanc, Vicki; Ottesen, Bent; Konge, Lars; Dieckmann, Peter; Van der Vleuten, Cees

    2017-01-21

    Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities are called in-house training. In-house training facilities can be part of hospital departments and resemble to some extent simulation centres but often have less technical equipment. In situ simulation, introduced over the past decade, mainly comprises of team-based activities and occurs in patient care units with healthcare professionals in their own working environment. Thus, this intentional blend of simulation and real working environments means that in situ simulation brings simulation to the real working environment and provides training where people work. In situ simulation can be either announced or unannounced, the latter also known as a drill. This article presents and discusses the design of SBME and the advantage and disadvantage of the different simulation settings, such as training in simulation-centres, in-house simulations in hospital departments, announced or unannounced in situ simulations. Non-randomised studies argue that in situ simulation is more effective for educational purposes than other types of simulation settings. Conversely, the few comparison studies that exist, either randomised or retrospective, show that choice of setting does not seem to influence individual or team learning. However, hospital department-based simulations, such as in-house simulation and in situ simulation, lead to a gain in organisational learning. To our knowledge no studies have compared announced and unannounced in situ simulation. The literature suggests some improved organisational learning from unannounced in situ simulation; however, unannounced in situ simulation was also found to be challenging to plan and conduct, and more stressful among participants. The importance of setting, context and fidelity are discussed. Based on the current limited research we suggest that choice of setting for simulations does not seem to influence individual and team learning. Department-based local simulation, such as simulation in-house and especially in situ simulation, leads to gains in organisational learning. The overall objectives of simulation-based education and factors such as feasibility can help determine choice of simulation setting.

  8. An Operationally Based Vision Assessment Simulator for Domes

    NASA Technical Reports Server (NTRS)

    Archdeacon, John; Gaska, James; Timoner, Samson

    2012-01-01

    The Operational Based Vision Assessment (OBVA) simulator was designed and built by NASA and the United States Air Force (USAF) to provide the Air Force School of Aerospace Medicine (USAFSAM) with a scientific testing laboratory to study human vision and testing standards in an operationally relevant environment. This paper describes the general design objectives and implementation characteristics of the simulator visual system being created to meet these requirements. A key design objective for the OBVA research simulator is to develop a real-time computer image generator (IG) and display subsystem that can display and update at 120 frame s per second (design target), or at a minimum, 60 frames per second, with minimal transport delay using commercial off-the-shelf (COTS) technology. There are three key parts of the OBVA simulator that are described in this paper: i) the real-time computer image generator, ii) the various COTS technology used to construct the simulator, and iii) the spherical dome display and real-time distortion correction subsystem. We describe the various issues, possible COTS solutions, and remaining problem areas identified by NASA and the USAF while designing and building the simulator for future vision research. We also describe the critically important relationship of the physical display components including distortion correction for the dome consistent with an objective of minimizing latency in the system. The performance of the automatic calibration system used in the dome is also described. Various recommendations for possible future implementations shall also be discussed.

  9. Mars Smart Lander Simulations for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Striepe, S. A.; Way, D. W.; Balaram, J.

    2002-01-01

    Two primary simulations have been developed and are being updated for the Mars Smart Lander Entry, Descent, and Landing (EDL). The high fidelity engineering end-to-end EDL simulation that is based on NASA Langley's Program to Optimize Simulated Trajectories (POST) and the end-to-end real-time, hardware-in-the-loop simulation testbed, which is based on NASA JPL's (Jet Propulsion Laboratory) Dynamics Simulator for Entry, Descent and Surface landing (DSENDS). This paper presents the status of these Mars Smart Lander EDL end-to-end simulations at this time. Various models, capabilities, as well as validation and verification for these simulations are discussed.

  10. Fast Photon Monte Carlo for Water Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Latorre, Anthony; Seibert, Stanley

    2012-03-01

    We present Chroma, a high performance optical photon simulation for large particle physics detectors, such as the water Cerenkov far detector option for LBNE. This software takes advantage of the CUDA parallel computing platform to propagate photons using modern graphics processing units. In a computer model of a 200 kiloton water Cerenkov detector with 29,000 photomultiplier tubes, Chroma can propagate 2.5 million photons per second, around 200 times faster than the same simulation with Geant4. Chroma uses a surface based approach to modeling geometry which offers many benefits over a solid based modelling approach which is used in other simulations like Geant4.

  11. Prediction of Land use changes using CA in GIS Environment

    NASA Astrophysics Data System (ADS)

    Kiavarz Moghaddam, H.; Samadzadegan, F.

    2009-04-01

    Urban growth is a typical self-organized system that results from the interaction between three defined systems; developed urban system, natural non-urban system and planned urban system. Urban growth simulation for an artificial city is carried out first. It evaluates a number of urban sprawl parameters including the size and shape of neighborhood besides testing different types of constraints on urban growth simulation. The results indicate that circular-type neighborhood shows smoother but faster urban growth as compared to nine-cell Moore neighborhood. Cellular Automata is proved to be very efficient in simulating the urban growth simulation over time. The strength of this technology comes from the ability of urban modeler to implement the growth simulation model, evaluating the results and presenting the output simulation results in visual interpretable environment. Artificial city simulation model provides an excellent environment to test a number of simulation parameters such as neighborhood influence on growth results and constraints role in driving the urban growth .Also, CA rules definition is critical stage in simulating the urban growth pattern in a close manner to reality. CA urban growth simulation and prediction of Tehran over the last four decades succeeds to simulate specified tested growth years at a high accuracy level. Some real data layer have been used in the CA simulation training phase such as 1995 while others used for testing the prediction results such as 2002. Tuning the CA growth rules is important through comparing the simulated images with the real data to obtain feedback. An important notice is that CA rules need also to be modified over time to adapt to the urban growth pattern. The evaluation method used on region basis has its advantage in covering the spatial distribution component of the urban growth process. Next step includes running the developed CA simulation over classified raster data for three years in a developed ArcGIS extention. A set of crisp rules are defined and calibrated based on real urban growth pattern. Uncertainty analysis is performed to evaluate the accuracy of the simulated results as compared to the historical real data. Evaluation shows promising results represented by the high average accuracies achieved. The average accuracy for the predicted growth images 1964 and 2002 is over 80 %. Modifying CA growth rules over time to match the growth pattern changes is important to obtain accurate simulation. This modification is based on the urban growth relationship for Tehran over time as can be seen in the historical raster data. The feedback obtained from comparing the simulated and real data is crucial in identifying the optimal set of CA rules for reliable simulation and calibrating growth steps.

  12. QoS-aware health monitoring system using cloud-based WBANs.

    PubMed

    Almashaqbeh, Ghada; Hayajneh, Thaier; Vasilakos, Athanasios V; Mohd, Bassam J

    2014-10-01

    Wireless Body Area Networks (WBANs) are amongst the best options for remote health monitoring. However, as standalone systems WBANs have many limitations due to the large amount of processed data, mobility of monitored users, and the network coverage area. Integrating WBANs with cloud computing provides effective solutions to these problems and promotes the performance of WBANs based systems. Accordingly, in this paper we propose a cloud-based real-time remote health monitoring system for tracking the health status of non-hospitalized patients while practicing their daily activities. Compared with existing cloud-based WBAN frameworks, we divide the cloud into local one, that includes the monitored users and local medical staff, and a global one that includes the outer world. The performance of the proposed framework is optimized by reducing congestion, interference, and data delivery delay while supporting users' mobility. Several novel techniques and algorithms are proposed to accomplish our objective. First, the concept of data classification and aggregation is utilized to avoid clogging the network with unnecessary data traffic. Second, a dynamic channel assignment policy is developed to distribute the WBANs associated with the users on the available frequency channels to manage interference. Third, a delay-aware routing metric is proposed to be used by the local cloud in its multi-hop communication to speed up the reporting process of the health-related data. Fourth, the delay-aware metric is further utilized by the association protocols used by the WBANs to connect with the local cloud. Finally, the system with all the proposed techniques and algorithms is evaluated using extensive ns-2 simulations. The simulation results show superior performance of the proposed architecture in optimizing the end-to-end delay, handling the increased interference levels, maximizing the network capacity, and tracking user's mobility.

  13. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  14. Evaluation of Foreign Investment in Power Plants using Real Options

    NASA Astrophysics Data System (ADS)

    Kato, Moritoshi; Zhou, Yicheng

    This paper proposes new methods for evaluating foreign investment in power plants under market uncertainty using a real options approach. We suppose a thermal power plant project in a deregulated electricity market. One of our proposed methods is that we calculate the cash flow generated by the project in a reference year using actual market data to incorporate periodic characteristics of energy prices into a yearly cash flow model. We make the stochastic yearly cash flow model with the initial value which is the cash flow in the reference year, and certain trend and volatility. Then we calculate the real options value (ROV) of the project which has abandonment options using the yearly cash flow model. Another our proposed method is that we evaluate foreign currency/domestic currency exchange rate risk by representing ROV in foreign currency as yearly pay off and exchanging it to ROV in domestic currency using a stochastic exchange rate model. We analyze the effect of the heat rate and operation and maintenance costs of the power plant on ROV, and evaluate exchange rate risk through numerical examples. Our proposed method will be useful for the risk management of foreign investment in power plants.

  15. Bridging the gap between real-life data and simulated data by providing a highly realistic fall dataset for evaluating camera-based fall detection algorithms.

    PubMed

    Baldewijns, Greet; Debard, Glen; Mertes, Gert; Vanrumste, Bart; Croonenborghs, Tom

    2016-03-01

    Fall incidents are an important health hazard for older adults. Automatic fall detection systems can reduce the consequences of a fall incident by assuring that timely aid is given. The development of these systems is therefore getting a lot of research attention. Real-life data which can help evaluate the results of this research is however sparse. Moreover, research groups that have this type of data are not at liberty to share it. Most research groups thus use simulated datasets. These simulation datasets, however, often do not incorporate the challenges the fall detection system will face when implemented in real-life. In this Letter, a more realistic simulation dataset is presented to fill this gap between real-life data and currently available datasets. It was recorded while re-enacting real-life falls recorded during previous studies. It incorporates the challenges faced by fall detection algorithms in real life. A fall detection algorithm from Debard et al. was evaluated on this dataset. This evaluation showed that the dataset possesses extra challenges compared with other publicly available datasets. In this Letter, the dataset is discussed as well as the results of this preliminary evaluation of the fall detection algorithm. The dataset can be downloaded from www.kuleuven.be/advise/datasets.

  16. Evolutionary online behaviour learning and adaptation in real robots

    PubMed Central

    Correia, Luís; Christensen, Anders Lyhne

    2017-01-01

    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm. PMID:28791130

  17. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  18. Research on simulated infrared image utility evaluation using deep representation

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiheng; Mu, Chengpo; Yang, Yu; Xu, Lixin

    2018-01-01

    Infrared (IR) image simulation is an important data source for various target recognition systems. However, whether simulated IR images could be used as training data for classifiers depends on the features of fidelity and authenticity of simulated IR images. For evaluation of IR image features, a deep-representation-based algorithm is proposed. Being different from conventional methods, which usually adopt a priori knowledge or manually designed feature, the proposed method can extract essential features and quantitatively evaluate the utility of simulated IR images. First, for data preparation, we employ our IR image simulation system to generate large amounts of IR images. Then, we present the evaluation model of simulated IR image, for which an end-to-end IR feature extraction and target detection model based on deep convolutional neural network is designed. At last, the experiments illustrate that our proposed method outperforms other verification algorithms in evaluating simulated IR images. Cross-validation, variable proportion mixed data validation, and simulation process contrast experiments are carried out to evaluate the utility and objectivity of the images generated by our simulation system. The optimum mixing ratio between simulated and real data is 0.2≤γ≤0.3, which is an effective data augmentation method for real IR images.

  19. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass.

    PubMed

    Sánchez, Jesús M; Carrera, Álvaro; Iglesias, Carlos Á; Serrano, Emilio

    2016-08-24

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services.

  20. An enhanced lumped element electrical model of a double barrier memristive device

    NASA Astrophysics Data System (ADS)

    Solan, Enver; Dirkmann, Sven; Hansen, Mirko; Schroeder, Dietmar; Kohlstedt, Hermann; Ziegler, Martin; Mussenbrock, Thomas; Ochs, Karlheinz

    2017-05-01

    The massive parallel approach of neuromorphic circuits leads to effective methods for solving complex problems. It has turned out that resistive switching devices with a continuous resistance range are potential candidates for such applications. These devices are memristive systems—nonlinear resistors with memory. They are fabricated in nanotechnology and hence parameter spread during fabrication may aggravate reproducible analyses. This issue makes simulation models of memristive devices worthwhile. Kinetic Monte-Carlo simulations based on a distributed model of the device can be used to understand the underlying physical and chemical phenomena. However, such simulations are very time-consuming and neither convenient for investigations of whole circuits nor for real-time applications, e.g. emulation purposes. Instead, a concentrated model of the device can be used for both fast simulations and real-time applications, respectively. We introduce an enhanced electrical model of a valence change mechanism (VCM) based double barrier memristive device (DBMD) with a continuous resistance range. This device consists of an ultra-thin memristive layer sandwiched between a tunnel barrier and a Schottky-contact. The introduced model leads to very fast simulations by using usual circuit simulation tools while maintaining physically meaningful parameters. Kinetic Monte-Carlo simulations based on a distributed model and experimental data have been utilized as references to verify the concentrated model.

  1. Fuzzy-based simulation of real color blindness.

    PubMed

    Lee, Jinmi; dos Santos, Wellington P

    2010-01-01

    About 8% of men are affected by color blindness. That population is at a disadvantage since they cannot perceive a substantial amount of the visual information. This work presents two computational tools developed to assist color blind people. The first one tests color blindness and assess its severity. The second tool is based on Fuzzy Logic, and implements a method proposed to simulate real red and green color blindness in order to generate synthetic cases of color vision disturbance in a statistically significant amount. Our purpose is to develop correction tools and obtain a deeper understanding of the accessibility problems faced by people with chromatic visual impairment.

  2. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  3. Propulsion IVHM Technology Experiment

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.

    2006-01-01

    The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  4. Real Estate Education: A Curriculum Guide for a Two-year Post Secondary Program.

    ERIC Educational Resources Information Center

    Overton, R. Jean

    This curriculum guide was designed to assist in the development of associate degree programs and/or options for real estate education in North Carolina community colleges. The real estate education program prescribed by this guide spans six academic quarters. The 28 courses listed cover such subject areas as real estate fundamentals, human…

  5. 76 FR 46346 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... Change To Allow for the Clearing of Real Estate Index Futures Contracts July 27, 2011. Pursuant to... change would accommodate the clearing and settling of certain futures on real estate indexes (``Real... Change The purpose of this proposed rule change is to accommodate Real Estate Index Futures that are...

  6. EEG-based decoding of error-related brain activity in a real-world driving task

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Chavarriaga, R.; Khaliliardali, Z.; Gheorghe, L.; Iturrate, I.; Millán, J. d. R.

    2015-12-01

    Objectives. Recent studies have started to explore the implementation of brain-computer interfaces (BCI) as part of driving assistant systems. The current study presents an EEG-based BCI that decodes error-related brain activity. Such information can be used, e.g., to predict driver’s intended turning direction before reaching road intersections. Approach. We executed experiments in a car simulator (N = 22) and a real car (N = 8). While subject was driving, a directional cue was shown before reaching an intersection, and we classified the presence or not of an error-related potentials from EEG to infer whether the cued direction coincided with the subject’s intention. In this protocol, the directional cue can correspond to an estimation of the driving direction provided by a driving assistance system. We analyzed ERPs elicited during normal driving and evaluated the classification performance in both offline and online tests. Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline experiments in the car simulator, while tests in the real car yielded a performance of 0.682 ± 0.059. The results were significantly higher than chance level for all cases. Online experiments led to equivalent performances in both simulated and real car driving experiments. These results support the feasibility of decoding these signals to help estimating whether the driver’s intention coincides with the advice provided by the driving assistant in a real car. Significance. The study demonstrates a BCI system in real-world driving, extending the work from previous simulated studies. As far as we know, this is the first online study in real car decoding driver’s error-related brain activity. Given the encouraging results, the paradigm could be further improved by using more sophisticated machine learning approaches and possibly be combined with applications in intelligent vehicles.

  7. Real-time volcano monitoring using GNSS single-frequency receivers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Yun, Sung-Hyo; Kim, Do Hyeong; Lee, Dukkee; Lee, Young J.; Schutz, Bob E.

    2015-12-01

    We present a real-time volcano monitoring strategy that uses the Global Navigation Satellite System (GNSS), and we examine the performance of the strategy by processing simulated and real data and comparing the results with published solutions. The cost of implementing the strategy is reduced greatly by using single-frequency GNSS receivers except for one dual-frequency receiver that serves as a base receiver. Positions of the single-frequency receivers are computed relative to the base receiver on an epoch-by-epoch basis using the high-rate double-difference (DD) GNSS technique, while the position of the base station is fixed to the values obtained with a deferred-time precise point positioning technique and updated on a regular basis. Since the performance of the single-frequency high-rate DD technique depends on the conditions of the ionosphere over the monitoring area, the ionospheric total electron content is monitored using the dual-frequency data from the base receiver. The surface deformation obtained with the high-rate DD technique is eventually processed by a real-time inversion filter based on the Mogi point source model. The performance of the real-time volcano monitoring strategy is assessed through a set of tests and case studies, in which the data recorded during the 2007 eruption of Kilauea and the 2005 eruption of Augustine are processed in a simulated real-time mode. The case studies show that the displacement time series obtained with the strategy seem to agree with those obtained with deferred-time, dual-frequency approaches at the level of 10-15 mm. Differences in the estimated volume change of the Mogi source between the real-time inversion filter and previously reported works were in the range of 11 to 13% of the maximum volume changes of the cases examined.

  8. Investment Justification of Robotic Technology in Aerospace Manufacturing. User’s Manual

    DTIC Science & Technology

    1984-10-01

    assessing the economic attractiveness of investments in robotics and/or flexible manufacturing systems (FMS). It models the cash flows...relative. 5. RIDM assesses the inherent economic attractiveness of robotic/FMS implementation. The model is based on real economic events and not...provided for an optional analysis of state and local tax impacts, to be custom designed by the user. (2) Computation of Depreciation

  9. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    PubMed

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  10. Impact of variational assimilation using multivariate background error covariances on the simulation of monsoon depressions over India

    NASA Astrophysics Data System (ADS)

    Dhanya, M.; Chandrasekar, A.

    2016-02-01

    The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.

  11. Real-life decision making in college students. I: Consistency across specific decisions.

    PubMed

    Galotti, Kathleen M; Wiener, Hillary J D; Tandler, Jane M

    2014-01-01

    First-year undergraduates participated in a short-term longitudinal study of real-life decision making over their first 14 months of college. They were surveyed about 7 different decisions: choosing courses for an upcoming term (3 different terms), choosing an academic major (twice), planning for the upcoming summer, and planning for sophomore-year housing. Participants showed moderate levels of consistency in the options they considered and in the criteria they used to decide between options, with about half of the options or criteria being used at 2 different points on the decision repeatedly studied. Participants varied somewhat in structural consistency, the tendency to consider the same number of options or criteria across decisions. They also varied in the way they integrated information across decision-making tasks. We suggest that people attempt to keep the information demands of the task within workable limits, sometimes sacrificing consistency as a result.

  12. RMG An Open Source Electronic Structure Code for Multi-Petaflops Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil; Lu, Wenchang; Hodak, Miroslav; Bernholc, Jerzy

    RMG (Real-space Multigrid) is an open source, density functional theory code for quantum simulations of materials. It solves the Kohn-Sham equations on real-space grids, which allows for natural parallelization via domain decomposition. Either subspace or Davidson diagonalization, coupled with multigrid methods, are used to accelerate convergence. RMG is a cross platform open source package which has been used in the study of a wide range of systems, including semiconductors, biomolecules, and nanoscale electronic devices. It can optionally use GPU accelerators to improve performance on systems where they are available. The recently released versions (>2.0) support multiple GPU's per compute node, have improved performance and scalability, enhanced accuracy and support for additional hardware platforms. New versions of the code are regularly released at http://www.rmgdft.org. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms. Several recent, large-scale applications of RMG will be discussed.

  13. Following Human Footsteps: Proposal of a Decision Theory Based on Human Behavior

    NASA Technical Reports Server (NTRS)

    Mahmud, Faisal

    2011-01-01

    Human behavior is a complex nature which depends on circumstances and decisions varying from time to time as well as place to place. The way a decision is made either directly or indirectly related to the availability of the options. These options though appear at random nature, have a solid directional way for decision making. In this paper, a decision theory is proposed which is based on human behavior. The theory is structured with model sets that will show the all possible combinations for making a decision, A virtual and simulated environment is considered to show the results of the proposed decision theory

  14. A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd

    1998-01-01

    This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.

  15. Eco-Logic: Logic-Based Approaches to Ecological Modelling

    Treesearch

    Daniel L. Schmoldt

    1991-01-01

    This paper summarizes the simulation research carried out during 1984-1989 at the University of Edinburgh. Two primary objectives of their research are 1) to provide tools for manipulating simulation models (i.e., implementation tools) and 2) to provide advice on conceptualizing real-world phenomena into an idealized representation for simulation (i.e., model design...

  16. Simulated Environments with Animated Agents: Effects on Visual Attention, Emotion, Performance, and Perception

    ERIC Educational Resources Information Center

    Romero-Hall, E.; Watson, G. S.; Adcock, A.; Bliss, J.; Adams Tufts, K.

    2016-01-01

    This research assessed how emotive animated agents in a simulation-based training affect the performance outcomes and perceptions of the individuals interacting in real time with the training application. A total of 56 participants consented to complete the study. The material for this investigation included a nursing simulation in which…

  17. First Steps towards an Interactive Real-Time Hazard Management Simulation

    ERIC Educational Resources Information Center

    Gemmell, Alastair M. D.; Finlayson, Ian G.; Marston, Philip G.

    2010-01-01

    This paper reports on the construction and initial testing of a computer-based interactive flood hazard management simulation, designed for undergraduates taking an applied geomorphology course. Details of the authoring interface utilized to create the simulation are presented. Students act as the managers of civil defence utilities in a fictional…

  18. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  19. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems: A Case Study on Vocal Fold Inflammation and Healing.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2016-05-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.

  20. Cryotherapy simulator for localized prostate cancer.

    PubMed

    Hahn, James K; Manyak, Michael J; Jin, Ge; Kim, Dongho; Rewcastle, John; Kim, Sunil; Walsh, Raymond J

    2002-01-01

    Cryotherapy is a treatment modality that uses a technique to selectively freeze tissue and thereby cause controlled tissue destruction. The procedure involves placement of multiple small diameter probes through the perineum into the prostate tissue at selected spatial intervals. Transrectal ultrasound is used to properly position the cylindrical probes before activation of the liquid Argon cooling element, which lowers the tissue temperature below -40 degrees Centigrade. Tissue effect is monitored by transrectal ultrasound changes as well as thermocouples placed in the tissue. The computer-based cryotherapy simulation system mimics the major surgical steps involved in the procedure. The simulated real-time ultrasound display is generated from 3-D ultrasound datasets where the interaction of the ultrasound with the instruments as well as the frozen tissue is simulated by image processing. The thermal and mechanical simulations of the tissue are done using a modified finite-difference/finite-element method optimized for real-time performance. The simulator developed is a part of a comprehensive training program, including a computer-based learning system and hands-on training program with a proctor, designed to familiarize the physician with the technique and equipment involved.

Top