Sample records for real quality control

  1. A real time quality control application for animal production by image processing.

    PubMed

    Sungur, Cemil; Özkan, Halil

    2015-11-01

    Standards of hygiene and health are of major importance in food production, and quality control has become obligatory in this field. Thanks to rapidly developing technologies, it is now possible for automatic and safe quality control of food production. For this purpose, image-processing-based quality control systems used in industrial applications are being employed to analyze the quality of food products. In this study, quality control of chicken (Gallus domesticus) eggs was achieved using a real time image-processing technique. In order to execute the quality control processes, a conveying mechanism was used. Eggs passing on a conveyor belt were continuously photographed in real time by cameras located above the belt. The images obtained were processed by various methods and techniques. Using digital instrumentation, the volume of the eggs was measured, broken/cracked eggs were separated and dirty eggs were determined. In accordance with international standards for classifying the quality of eggs, the class of separated eggs was determined through a fuzzy implication model. According to tests carried out on thousands of eggs, a quality control process with an accuracy of 98% was possible. © 2014 Society of Chemical Industry.

  2. Real-time control of combined surface water quantity and quality: polder flushing.

    PubMed

    Xu, M; van Overloop, P J; van de Giesen, N C; Stelling, G S

    2010-01-01

    In open water systems, keeping both water depths and water quality at specified values is critical for maintaining a 'healthy' water system. Many systems still require manual operation, at least for water quality management. When applying real-time control, both quantity and quality standards need to be met. In this paper, an artificial polder flushing case is studied. Model Predictive Control (MPC) is developed to control the system. In addition to MPC, a 'forward estimation' procedure is used to acquire water quality predictions for the simplified model used in MPC optimization. In order to illustrate the advantages of MPC, classical control [Proportional-Integral control (PI)] has been developed for comparison in the test case. The results show that both algorithms are able to control the polder flushing process, but MPC is more efficient in functionality and control flexibility.

  3. Real time monitoring of powder blend bulk density for coupled feed-forward/feed-back control of a continuous direct compaction tablet manufacturing process.

    PubMed

    Singh, Ravendra; Román-Ospino, Andrés D; Romañach, Rodolfo J; Ierapetritou, Marianthi; Ramachandran, Rohit

    2015-11-10

    The pharmaceutical industry is strictly regulated, where precise and accurate control of the end product quality is necessary to ensure the effectiveness of the drug products. For such control, the process and raw materials variability ideally need to be fed-forward in real time into an automatic control system so that a proactive action can be taken before it can affect the end product quality. Variations in raw material properties (e.g., particle size), feeder hopper level, amount of lubrication, milling and blending action, applied shear in different processing stages can affect the blend density significantly and thereby tablet weight, hardness and dissolution. Therefore, real time monitoring of powder bulk density variability and its incorporation into the automatic control system so that its effect can be mitigated proactively and efficiently is highly desired. However, real time monitoring of powder bulk density is still a challenging task because of different level of complexities. In this work, powder bulk density which has a significant effect on the critical quality attributes (CQA's) has been monitored in real time in a pilot-plant facility, using a NIR sensor. The sensitivity of the powder bulk density on critical process parameters (CPP's) and CQA's has been analyzed and thereby feed-forward controller has been designed. The measured signal can be used for feed-forward control so that the corrective actions on the density variations can be taken before they can influence the product quality. The coupled feed-forward/feed-back control system demonstrates improved control performance and improvements in the final product quality in the presence of process and raw material variations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Real-time feedback control of twin-screw wet granulation based on image analysis.

    PubMed

    Madarász, Lajos; Nagy, Zsombor Kristóf; Hoffer, István; Szabó, Barnabás; Csontos, István; Pataki, Hajnalka; Démuth, Balázs; Szabó, Bence; Csorba, Kristóf; Marosi, György

    2018-06-04

    The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Data Quality Control of the French Permanent Broadband Network in the RESIF Framework.

    NASA Astrophysics Data System (ADS)

    Grunberg, M.; Lambotte, S.; Engels, F.

    2014-12-01

    In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, a new information system is setting up, allowing the improvement of the management and the distribution of high quality data from the different elements of RESIF. Within this information system, EOST (in Strasbourg) is in charge of collecting real-time permanent broadband seismic waveform, and performing Quality Control on these data. The real-time and validated data set are pushed to the French National Distribution Center (Isterre/Grenoble) to make them publicly available. Furthermore EOST hosts the BCSF-ReNaSS, in charge of the French metropolitan seismic bulletin. This allows to benefit from some high-end quality control based on the national and world-wide seismicity. Here we present the real-time seismic data flow from the stations of the French National Broad Band Network to EOST, and then, the data Quality Control procedures that were recently installed, including some new developments.The data Quality Control consists in applying a variety of processes to check the consistency of the whole system from the stations to the data center. This allows us to verify that instruments and data transmission are operating correctly. Moreover, time quality is critical for most of the scientific data applications. To face this challenge and check the consistency of polarities and amplitudes, we deployed several high-end processes including a noise correlation procedure to check for timing accuracy (intrumental time errors result in a time-shift of the whole cross-correlation, clearly distinct from those due to change in medium physical properties), and a systematic comparison of synthetic and real data for teleseismic earthquakes of magnitude larger than 6.5 to detect timing errors as well as polarity and amplitude problems.

  6. Process-based quality for thermal spray via feedback control

    NASA Astrophysics Data System (ADS)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  7. Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels.

    PubMed

    Zupke, Craig; Brady, Lowell J; Slade, Peter G; Clark, Philip; Caspary, R Guy; Livingston, Brittney; Taylor, Lisa; Bigham, Kyle; Morris, Arvia E; Bailey, Robert W

    2015-01-01

    Pressures for cost-effective new therapies and an increased emphasis on emerging markets require technological advancements and a flexible future manufacturing network for the production of biologic medicines. The safety and efficacy of a product is crucial, and consistent product quality is an essential feature of any therapeutic manufacturing process. The active control of product quality in a typical biologic process is challenging because of measurement lags and nonlinearities present in the system. The current study uses nonlinear model predictive control to maintain a critical product quality attribute at a predetermined value during pilot scale manufacturing operations. This approach to product quality control ensures a more consistent product for patients, enables greater manufacturing efficiency, and eliminates the need for extensive process characterization by providing direct measures of critical product quality attributes for real time release of drug product. © 2015 American Institute of Chemical Engineers.

  8. QC-ART: A tool for real-time quality control assessment of mass spectrometry-based proteomics data.

    PubMed

    Stanfill, Bryan A; Nakayasu, Ernesto S; Bramer, Lisa M; Thompson, Allison M; Ansong, Charles K; Clauss, Therese; Gritsenko, Marina A; Monroe, Matthew E; Moore, Ronald J; Orton, Daniel J; Piehowski, Paul D; Schepmoes, Athena A; Smith, Richard D; Webb-Robertson, Bobbie-Jo; Metz, Thomas O

    2018-04-17

    Liquid chromatography-mass spectrometry (LC-MS)-based proteomics studies of large sample cohorts can easily require from months to years to complete. Acquiring consistent, high-quality data in such large-scale studies is challenging because of normal variations in instrumentation performance over time, as well as artifacts introduced by the samples themselves, such as those due to collection, storage and processing. Existing quality control methods for proteomics data primarily focus on post-hoc analysis to remove low-quality data that would degrade downstream statistics; they are not designed to evaluate the data in near real-time, which would allow for interventions as soon as deviations in data quality are detected.  In addition to flagging analyses that demonstrate outlier behavior, evaluating how the data structure changes over time can aide in understanding typical instrument performance or identify issues such as a degradation in data quality due to the need for instrument cleaning and/or re-calibration.  To address this gap for proteomics, we developed Quality Control Analysis in Real-Time (QC-ART), a tool for evaluating data as they are acquired in order to dynamically flag potential issues with instrument performance or sample quality.  QC-ART has similar accuracy as standard post-hoc analysis methods with the additional benefit of real-time analysis.  We demonstrate the utility and performance of QC-ART in identifying deviations in data quality due to both instrument and sample issues in near real-time for LC-MS-based plasma proteomics analyses of a sample subset of The Environmental Determinants of Diabetes in the Young cohort. We also present a case where QC-ART facilitated the identification of oxidative modifications, which are often underappreciated in proteomic experiments. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Data Quality Control of the French Permanent Broadband Network in the RESIF Framework

    NASA Astrophysics Data System (ADS)

    Grunberg, Marc; Lambotte, Sophie; Engels, Fabien; Dretzen, Remi; Hernandez, Alain

    2014-05-01

    In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, a new information system is being setting up, allowing the improvement of the management and the distribution of high quality data from the different elements of RESIF and the associated networks. Within this information system, EOST (in Strasbourg) is in charge of collecting real-time permanent broadband seismic waveform, and performing Quality Control on these data. The real-time and validated data set are pushed to the French National Distribution Center (Isterre/Grenoble) in order to make them publicly available. Furthermore EOST hosts the BCSF-ReNaSS, in charge of the French metropolitan seismic bulletin. This allows to benefit from some high-end quality control based on the national and world-wide seismicity. Here we present first the real-time seismic data flow from the stations of the French National Broad Band Network to EOST, and then, the data Quality Control procedures that were recently installed, including some new developments. The data Quality Control consists in applying a variety of subprocesses to check the consistency of the whole system and process from the stations to the data center. This allows us to verify that instruments and data transmission are operating correctly. Moreover analysis of the ambient noise helps to characterize intrinsic seismic quality of the stations and to identify other kind of disturbances. The deployed Quality Control consist in a pipeline that starts with low-level procedures : check the real-time miniseed data file (file naming convention, data integrity), check for inconsistencies between waveform and meta-data (channel name, sample rate, etc.), compute waveform statistics (data availability, gap/overlap, mean, rms, time quality, spike). It is followed by some high-level procedures such as : power spectral density computation (PSD), STA/LTA computation to be correlated to the seismicity, phases picking and stations magnitudes discrepancies. The results of quality control is visualized through a web interface. This latter gathers data from different information systems to provide a global view on last events that could impact the data (like intervention on site or seismic events, etc.). This work is still an ongoing project. We intend to add more sophisticated procedures to enhanced our data Quality Control. Among them, we will deploy a seismic moment tensor inversion tool for amplitude, time and polarity control and a noise correlation procedure for time drift detections.

  10. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.

  11. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    NASA Astrophysics Data System (ADS)

    Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.

    2009-07-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  12. World Ocean Database and the Global Temperature and Salinity Profile Program Database: Synthesis of historical and near real-time ocean profile data

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Sun, L.; Locarnini, R. A.; Mishonov, A. V.; Hall, N.; Ouellet, M.

    2016-02-01

    The World Ocean Database (WOD) contains systematically quality controlled historical and recent ocean profile data (temperature, salinity, oxygen, nutrients, carbon cycle variables, biological variables) ranging from Captain Cooks second voyage (1773) to this year's Argo floats. The US National Centers for Environmental Information (NCEI) also hosts the Global Temperature and Salinity Profile Program (GTSPP) Continuously Managed Database (CMD) which provides quality controlled near-real time ocean profile data and higher level quality controlled temperature and salinity profiles from 1990 to present. Both databases are used extensively for ocean and climate studies. Synchronization of these two databases will allow easier access and use of comprehensive regional and global ocean profile data sets for ocean and climate studies. Synchronizing consists of two distinct phases: 1) a retrospective comparison of data in WOD and GTSPP to ensure that the most comprehensive and highest quality data set is available to researchers without the need to individually combine and contrast the two datasets and 2) web services to allow the constantly accruing near-real time data in the GTSPP CMD and the continuous addition and quality control of historical data in WOD to be made available to researchers together, seamlessly.

  13. Expert database system for quality control

    NASA Astrophysics Data System (ADS)

    Wang, Anne J.; Li, Zhi-Cheng

    1993-09-01

    There are more competitors today. Markets are not homogeneous they are fragmented into increasingly focused niches requiring greater flexibility in the product mix shorter manufacturing production runs and above allhigher quality. In this paper the author identified a real-time expert system as a way to improve plantwide quality management. The quality control expert database system (QCEDS) by integrating knowledge of experts in operations quality management and computer systems use all information relevant to quality managementfacts as well as rulesto determine if a product meets quality standards. Keywords: expert system quality control data base

  14. Automated quality control for stitching of textile articles

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey L. (Inventor); Markus, Alan (Inventor)

    1999-01-01

    Quality control for stitching of a textile article is performed by measuring thread tension in the stitches as the stitches are being made, determining locations of the stitches, and generating a map including the locations and stitching data derived from the measured thread tensions. The stitching data can be analyzed, off-line or in real time, to identify defective stitches. Defective stitches can then be repaired. Real time analysis of the thread tensions allows problems such as broken needle threads to be corrected immediately.

  15. Real-time quality assurance testing using photonic techniques: Application to iodine water system

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Hatcher, Richard; Garlington, Yadilett; Harwell, Jack; Everett, Tracey

    1990-01-01

    A feasibility study of the use of inspection systems incorporating photonic sensors and multivariate analyses to provide an instrumentation system that in real-time assures quality and that the system in control has been conducted. A system is in control when the near future of the product quality is predictable. Off-line chemical analyses can be used for a chemical process when slow kinetics allows time to take a sample to the laboratory and the system provides a recovery mechanism that returns the system to statistical control without intervention of the operator. The objective for this study has been the implementation of do-it-right-the-first-time and just-in-time philosophies. The Environment Control and Life Support Systems (ECLSS) water reclamation system that adds iodine for biocidal control is an ideal candidate for the study and implementation of do-it-right-the-first-time technologies.

  16. FIELD QUALITY CONTROL STRATEGIES ASSESSING SOLIDIFICATION/STABILIZATION

    EPA Science Inventory

    Existing regulatory mobility reduction (leaching) tests are not amenable to real time quality control because of the time required to perform sample extraction and chemical analysis. This is of conccern because the leaching test is the most important parameter used to relate trea...

  17. Development of Real Time Implementation of 5/5 Rule based Fuzzy Logic Controller Shunt Active Power Filter for Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar

    2016-12-01

    This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.

  18. Development of inferential sensors for real-time quality control of water-level data for the Everglades Depth Estimation Network

    USGS Publications Warehouse

    Daamen, Ruby C.; Edwin A. Roehl, Jr.; Conrads, Paul

    2010-01-01

    A technology often used for industrial applications is “inferential sensor.” Rather than installing a redundant sensor to measure a process, such as an additional waterlevel gage, an inferential sensor, or virtual sensor, is developed that estimates the processes measured by the physical sensor. The advantage of an inferential sensor is that it provides a redundant signal to the sensor in the field but without exposure to environmental threats. In the event that a gage does malfunction, the inferential sensor provides an estimate for the period of missing data. The inferential sensor also can be used in the quality assurance and quality control of the data. Inferential sensors for gages in the EDEN network are currently (2010) under development. The inferential sensors will be automated so that the real-time EDEN data will continuously be compared to the inferential sensor signal and digital reports of the status of the real-time data will be sent periodically to the appropriate support personnel. The development and application of inferential sensors is easily transferable to other real-time hydrologic monitoring networks.

  19. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    PubMed

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  1. Quality of closed chest compression on a manikin in ambulance vehicles and flying helicopters with a real time automated feedback.

    PubMed

    Havel, Christof; Schreiber, Wolfgang; Trimmel, Helmut; Malzer, Reinhard; Haugk, Moritz; Richling, Nina; Riedmüller, Eva; Sterz, Fritz; Herkner, Harald

    2010-01-01

    Automated verbal and visual feedback improves quality of resuscitation in out-of-hospital cardiac arrest and was proven to increase short-term survival. Quality of resuscitation may be hampered in more difficult situations like emergency transportation. Currently there is no evidence if feedback devices can improve resuscitation quality during different modes of transportation. To assess the effect of real time automated feedback on the quality of resuscitation in an emergency transportation setting. Randomised cross-over trial. Medical University of Vienna, Vienna Municipal Ambulance Service and Helicopter Emergency Medical Service Unit (Christophorus Flugrettungsverein) in September 2007. European Resuscitation Council (ERC) certified health care professionals performing CPR in a flying helicopter and in a moving ambulance vehicle on a manikin with human-like chest properties. CPR sessions, with real time automated feedback as the intervention and standard CPR without feedback as control. Quality of chest compression during resuscitation. Feedback resulted in less deviation from ideal compression rate 100 min(-1) (9+/-9 min(-1), p<0.0001) with this effect becoming steadily larger over time. Applied work was less in the feedback group compared to controls (373+/-448 cm x compression; p<0.001). Feedback did not influence ideal compression depth significantly. There was some indication of a learning effect of the feedback device. Real time automated feedback improves certain aspects of CPR quality in flying helicopters and moving ambulance vehicles. The effect of feedback guidance was most pronounced for chest compression rate. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Earth Observation Data Quality Monitoring and Control: A Case Study of STAR Central Data Repository

    NASA Astrophysics Data System (ADS)

    Han, W.; Jochum, M.

    2017-12-01

    Earth observation data quality is very important for researchers and decision makers involved in weather forecasting, severe weather warning, disaster and emergency response, environmental monitoring, etc. Monitoring and control earth observation data quality, especially accuracy, completeness, and timeliness, is very useful in data management and governance to optimize data flow, discover potential transmission issues, and better connect data providers and users. Taking a centralized near real-time satellite data repository, STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR), as an example, this paper describes how to develop new mechanism to verify data integrity, check data completeness, and monitor data latency in an operational data management system. Such quality monitoring and control of large volume satellite data help data providers and managers improve data transmission of near real-time satellite data, enhance its acquisition and management, and overcome performance and management issues to better serve research and development activities.

  3. In-situ and real-time growth observation of high-quality protein crystals under quasi-microgravity on earth.

    PubMed

    Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru

    2016-02-26

    Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.

  4. Analysis And Control System For Automated Welding

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne

    1994-01-01

    Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.

  5. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking applications, including image quality control and target tracking.« less

  6. Quality control troubleshooting tools for the mill floor

    Treesearch

    John Dramm

    2000-01-01

    Statistical Process Control (SPC) provides effective tools for improving process quality in the forest products industry resulting in reduced costs and improved productivity. Implementing SPC helps identify and locate problems that occur in wood products manufacturing. SPC tools achieve their real value when applied on the mill floor for monitoring and troubleshooting...

  7. Software-safety and software quality assurance in real-time applications Part 2: Real-time structures and languages

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1988-07-01

    Our society is depending more and more on the reliability of embedded (real-time) computer systems even in every-day life. Considering the complexity of the real world, this might become a severe threat. Real-time programming is a discipline important not only in process control and data acquisition systems, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt- and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other and with respect to their potential to quality and safety.

  8. Real-time assessment of critical quality attributes of a continuous granulation process.

    PubMed

    Fonteyne, Margot; Vercruysse, Jurgen; Díaz, Damián Córdoba; Gildemyn, Delphine; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2013-02-01

    There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.

  9. Statewide implementation of Pave-IR in the Texas Department of Transportation.

    DOT National Transportation Integrated Search

    2012-02-01

    This project conducted work to complement implementation of Pave-IR into the Texas Department of : Transportations hot-mix-asphalt quality control/quality assurance specification. Pave-IR provides real-time : thermal profiling of paving operations...

  10. Real-time PCR for type-specific identification of herpes simplex in clinical samples: evaluation of type-specific results in the context of CNS diseases.

    PubMed

    Meylan, Sylvain; Robert, Daniel; Estrade, Christine; Grimbuehler, Valérie; Péter, Olivier; Meylan, Pascal R; Sahli, Roland

    2008-02-01

    HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.

  11. The Hazardous-Drums Project: A Multiweek Laboratory Exercise for General Chemistry Involving Environmental, Quality Control, and Cost Evaluation

    ERIC Educational Resources Information Center

    Hayes, David; Widanski, Bozena

    2013-01-01

    A laboratory experiment is described that introduces students to "real-world" hazardous waste management issues chemists face. The students are required to define an analytical problem, choose a laboratory analysis method, investigate cost factors, consider quality-control issues, interpret the meaning of results, and provide management…

  12. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  13. Real-time measurement of quality during the compaction of subgrade soils.

    DOT National Transportation Integrated Search

    2012-12-01

    Conventional quality control of subgrade soils during their compaction is usually performed by monitoring moisture content and dry density at a few discrete locations. However, randomly selected points do not adequately represent the entire compacted...

  14. [The establishment and application of internal quality control system for real-time quantitative PCR detection of BCR-ABL (P210) transcript levels].

    PubMed

    Zhong, C Q; He, N; Hua, M Q; Wei, X D; Ma, D X; Ji, C Y

    2016-09-14

    Objective: To set internal quality control system of BCR-ABL (P210) transcript levels for real-time quantitative PCR (RQ-PCR). Methods: Using K562 cells and HL-60 cells, we prepared high- and low-level BCR-ABL internal quality control substance. The BCR-ABL (P210) transcript levels of internal quality control substance have been determined for 184 times together with clinical samples from August 2013 to October 2015. The slope rate, intercept and correlation coefficient of standard curve were calculated according to different reagent lots (lots number 20130303, 20131212, 20140411 and 20150327 are called R1、R2、R3 and R4 for short respectively), and the detection results of quality control substance were calculated according to different reagent lots and quality control substance lots (lots number 20130725, 20140611 are called Q1、Q2 for short respectively). Then the results were analyzed by Levey-Jennings quality control chart combined with Westgard multi-rules theory. Results: ①We analyzed the slope rate and intercept of standard curve. Fifty-three times of the R1 reagent detection, 80 times of the R3 reagent detection and 14 times of the R4 reagent detection were all under control. For 37 times detection of R2 reagent, the slope rate was out of control for 6 times. It was lower than x - s for the 2-8 tests and upper the average for the 12-37 tests. The intercept was out of control for 9 times, upper the x + s for the 1-8 tests and lower the average for the 12-37 tests. ② According to the detection results of quality control substance, for Q1 quality control substance, 49 tests by R1 reagent were under control, and 1 out of 23 tests by R2 reagent was out of control. For Q2 quality control substance, 14 tests by R2 reagent detection, 72 tests by R3 reagent detection and 14 tests by R4 reagent were all under control. Conclusion: The preparation of high- and low-level quality control substance using K562 and HL-60 cells was convenient and the detection results were reliable and stable. The application of quality control substance combined with slope rate and intercept in the internal quality control may contribute to quality assurance for quantitative detection of BCR-ABL (P210) transcript levels.

  15. The Early Development and Evolution of the QARTOD for In-Situ Wave Measurements

    NASA Astrophysics Data System (ADS)

    Bouchard, R. H.; Thomas, J.; Teng, C. C.; Burnett, W.; Castel, D.

    2017-12-01

    In 2013 the US Integrated Ocean Observing System (IOOS) Program Office issued manual was for the Real-Time Quality Control of In-Situ Surface Wave Data. This was one of the first Quality Assurance/Quality Control of Real-Time Oceanographic Data (QARTOD) manuals that now cover 11 different in situ measurements. This landmark document was the product of an effort initiated at a 2002 OCEANS.US workshop. The workshop identified and prioritized ocean variables with directional waves ranked as one of the highest key variables for inclusion into a national backbone of observations. The workshop was the impetus that led to the first QARTOD meeting in 2003 that involved over 80 participants and developed minimum standards for real-time observations. Over three more QARTOD meetings, two ad hoc meetings, and many hours of coordination and review involving dozens of wave measurement users and providers, consensus was reached on a list of essential "must Do's" for quality control tests that eventually formed the basis of the manual. The IOOS QARTOD manual established a standard format, provided greater detail, included codeable examples of the algorithms and established a framework for periodic reviews and updates. While the bulk of the quality control procedures originated with those being used by the Coastal Data Information Program (CDIP) and by NOAA's National Data Buoy Center (NDBC), QARTOD also enlisted the expertise of federal, academic, and industry partners. CDIP and NDBC each operated more than 100 wave measuring buoys and had long histories of wave buoy measurements. In addition to buoy measurements, users and providers of fixed and bottom-mounted wave systems were also included. This paper examines the individual contributions, early developments, and the evolution of the QARTOD wave measurement efforts that culminated in the US IOOS manual. These efforts serve as an example of how individuals with a common interest and dedication can achieve results for the common good. Quality control algorithms of value, but not included in the essential list and further quality control advancements outside of the QARTOD will also be reviewed.

  16. Modified SPC for short run test and measurement process in multi-stations

    NASA Astrophysics Data System (ADS)

    Koh, C. K.; Chin, J. F.; Kamaruddin, S.

    2018-03-01

    Due to short production runs and measurement error inherent in electronic test and measurement (T&M) processes, continuous quality monitoring through real-time statistical process control (SPC) is challenging. Industry practice allows the installation of guard band using measurement uncertainty to reduce the width of acceptance limit, as an indirect way to compensate the measurement errors. This paper presents a new SPC model combining modified guard band and control charts (\\bar{\\text{Z}} chart and W chart) for short runs in T&M process in multi-stations. The proposed model standardizes the observed value with measurement target (T) and rationed measurement uncertainty (U). S-factor (S f) is introduced to the control limits to improve the sensitivity in detecting small shifts. The model was embedded in automated quality control system and verified with a case study in real industry.

  17. Pulse-Flow Microencapsulation System

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  18. Rapid toxicity detection in water quality control utilizing automated multispecies biomonitoring for permanent space stations

    NASA Technical Reports Server (NTRS)

    Morgan, E. L.; Young, R. C.; Smith, M. D.; Eagleson, K. W.

    1986-01-01

    The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.

  19. Real Time Quality Control Methods for Cued EMI Data Collection

    DTIC Science & Technology

    2016-03-14

    contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product...This project evaluated the effectiveness of in-field quality control (QC) procedures during cued electromagnetic induction (EMI) data collection. The...electromagnetic induction ESTCP Environmental Security Technology Certification Program hr hour ISO Industry Standard Object IVS Instrument

  20. Spatial Data Quality Control Procedure applied to the Okavango Basin Information System

    NASA Astrophysics Data System (ADS)

    Butchart-Kuhlmann, Daniel

    2014-05-01

    Spatial data is a powerful form of information, capable of providing information of great interest and tremendous use to a variety of users. However, much like other data representing the 'real world', precision and accuracy must be high for the results of data analysis to be deemed reliable and thus applicable to real world projects and undertakings. The spatial data quality control (QC) procedure presented here was developed as the topic of a Master's thesis, in the sphere of and using data from the Okavango Basin Information System (OBIS), itself a part of The Future Okavango (TFO) project. The aim of the QC procedure was to form the basis of a method through which to determine the quality of spatial data relevant for application to hydrological, solute, and erosion transport modelling using the Jena Adaptable Modelling System (JAMS). As such, the quality of all data present in OBIS classified under the topics of elevation, geoscientific information, or inland waters, was evaluated. Since the initial data quality has been evaluated, efforts are underway to correct the errors found, thus improving the quality of the dataset.

  1. Real-time simulation model of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.; Ragsdale, W. A.

    1992-01-01

    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies.

  2. 40 CFR 57.402 - Elements of the supplementary control system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... capable of routine real time measurement of maximum expected SO2 concentrations for the averaging times of... emission curtailment decisions based on the use of real time information from the air quality monitoring... meteorological information necessary to operate the system; (iv) The ambient concentrations and meteorological...

  3. 40 CFR 57.402 - Elements of the supplementary control system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... capable of routine real time measurement of maximum expected SO2 concentrations for the averaging times of... emission curtailment decisions based on the use of real time information from the air quality monitoring... meteorological information necessary to operate the system; (iv) The ambient concentrations and meteorological...

  4. 40 CFR 57.402 - Elements of the supplementary control system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capable of routine real time measurement of maximum expected SO2 concentrations for the averaging times of... emission curtailment decisions based on the use of real time information from the air quality monitoring... meteorological information necessary to operate the system; (iv) The ambient concentrations and meteorological...

  5. 40 CFR 57.402 - Elements of the supplementary control system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capable of routine real time measurement of maximum expected SO2 concentrations for the averaging times of... emission curtailment decisions based on the use of real time information from the air quality monitoring... meteorological information necessary to operate the system; (iv) The ambient concentrations and meteorological...

  6. 40 CFR 57.402 - Elements of the supplementary control system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... capable of routine real time measurement of maximum expected SO2 concentrations for the averaging times of... emission curtailment decisions based on the use of real time information from the air quality monitoring... meteorological information necessary to operate the system; (iv) The ambient concentrations and meteorological...

  7. Substation Reactive Power Regulation Strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    With the increasing requirements on the power supply quality and reliability of distribution network, voltage and reactive power regulation of substations has become one of the indispensable ways to ensure voltage quality and reactive power balance and to improve the economy and reliability of distribution network. Therefore, it is a general concern of the current power workers and operators that what kind of flexible and effective control method should be used to adjust the on-load tap-changer (OLTC) transformer and shunt compensation capacitor in a substation to achieve reactive power balance in situ, improve voltage pass rate, increase power factor and reduce active power loss. In this paper, based on the traditional nine-zone diagram and combining with the characteristics of substation, a fuzzy variable-center nine-zone diagram control method is proposed and used to make a comprehensive regulation of substation voltage and reactive power. Through the calculation and simulation of the example, this method is proved to have satisfactorily reconciled the contradiction between reactive power and voltage in real-time control and achieved the basic goal of real-time control of the substation, providing a reference value to the practical application of the substation real-time control method.

  8. The remote supervisory and controlling experiment system of traditional Chinese medicine production based on Fieldbus

    NASA Astrophysics Data System (ADS)

    Zhan, Jinliang; Lu, Pei

    2006-11-01

    Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.

  9. Real-Time Optimization for use in a Control Allocation System to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Leonard, Michael W.

    2013-01-01

    Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.

  10. Real-time multi-DSP control of three-phase current-source unity power factor PWM rectifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Wang; Boon-Teck Ooi

    1993-07-01

    The design of a real-time multi-DSP controller for a high-quality six-valve three-phase current-source unity power factor PWM rectifier is discussed in this paper. With the decoupler preprocessor and the dynamic trilogic PWM trigger scheme, each of the three input currents can be controlled independently. Based on the a-b-c frame system model and the fast parallel computer control, the pole-placement control method is implemented successfully to achieve fast response in the ac currents. The low-frequency resonance in the ac filter L-C networks has been damped effectively. The experimental results are obtained from a 1-kVA bipolar transistor current-source PWM rectifier with amore » real-time controller using three TMS320C25 DSP's.« less

  11. Ocean Wireless Networking and Real Time Data Management

    NASA Astrophysics Data System (ADS)

    Berger, J.; Orcutt, J. A.; Vernon, F. L.; Braun, H. W.; Rajasekar, A.

    2001-12-01

    Recent advances in technology have enabled the exploitation of satellite communications for high-speed (> 64 kbps) duplex communications with oceanographic ships at sea. Furthermore, decreasing costs for high-speed communications have made possible continuous connectivity to the global Internet for delivery of data ashore and communications with scientists and engineers on the ship. Through support from the Office of Naval Research, we have planned a series of tests using the R/V Revelle for real time data delivery of large quantities of underway data (e.g. continuous multibeam profiling) to shore for quality control, archiving, and real-time data availability. The Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics (IGPP) and the San Diego Supercomputer Center (SDSC) were funded by the NSF Information Technology Research (ITR) Program, the California Institute for Telecommunications and Information Technology [Cal-(IT)2] and the Scripps Institution of Oceanography for research entitled: "Exploring the Environment in Time: Wireless Networks & Real-Time Management." We will describe the technology to be used for the real-time seagoing experiment and the planned expansion of the project through support from the ITR grant. The short-term goal is to exercise the communications system aboard ship in various weather conditions and sea states while testing and developing the real-time data quality control and archiving methodology. The long-term goal is to enable continuous observations in the ocean, specifically supporting the goals of the DEOS (Dynamics of Earth and Ocean Systems) observatory program supported through a NSF Major Research Equipment (MRE) program - a permanent presence in the oceans. The impact on scientific work aboard ships, however, is likely to be fundamental. It will be possible to go to sea in the future with limited engineering capability for scientific operations by allowing shore-based quality control of data collected and videoconferencing for problem resolution. Costs for shipboard measurements will be reduced significantly while, at the same time, the quality of data collected will increase and ex-post-facto data archiving will no longer be necessary.

  12. High-Performance Integrated Control of water quality and quantity in urban water reservoirs

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.; Goedbloed, A.

    2015-11-01

    This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

  13. The Automation of Nowcast Model Assessment Processes

    DTIC Science & Technology

    2016-09-01

    that will automate real-time WRE-N model simulations, collect and quality control check weather observations for assimilation and verification, and...domains centered near White Sands Missile Range, New Mexico, where the Meteorological Sensor Array (MSA) will be located. The MSA will provide...observations and performing quality -control checks for the pre-forecast data assimilation period. 2. Run the WRE-N model to generate model forecast data

  14. Quantity is nothing without quality: automated QA/QC for streaming sensor networks

    Treesearch

    John L. Campbell; Lindsey E. Rustad; John H. Porter; Jeffrey R. Taylor; Ethan W. Dereszynski; James B. Shanley; Corinna Gries; Donald L. Henshaw; Mary E. Martin; Wade. M. Sheldon; Emery R. Boose

    2013-01-01

    Sensor networks are revolutionizing environmental monitoring by producing massive quantities of data that are being made publically available in near real time. These data streams pose a challenge for ecologists because traditional approaches to quality assurance and quality control are no longer practical when confronted with the size of these data sets and the...

  15. Approach path control for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Clymer, D. J.; Flora, C. C.

    1973-01-01

    A flight control system concept is defined for approach flightpath control of an augmentor wing (or similar) powered-lift STOL configuration. The proposed STOL control concept produces aircraft transient and steady-state control responses that are familiar to pilots of conventional jet transports, and has potential for good handling qualities ratings in all approach and landing phases. The effects of trailing-edge rate limits, real-engine dynamics, and atmospheric turbulence are considered in the study. A general discussion of STOL handling qualities problems and piloting techniques is included.

  16. On-site identification of meat species in processed foods by a rapid real-time polymerase chain reaction system.

    PubMed

    Furutani, Shunsuke; Hagihara, Yoshihisa; Nagai, Hidenori

    2017-09-01

    Correct labeling of foods is critical for consumers who wish to avoid a specific meat species for religious or cultural reasons. Therefore, gene-based point-of-care food analysis by real-time Polymerase Chain Reaction (PCR) is expected to contribute to the quality control in the food industry. In this study, we perform rapid identification of meat species by our portable rapid real-time PCR system, following a very simple DNA extraction method. Applying these techniques, we correctly identified beef, pork, chicken, rabbit, horse, and mutton in processed foods in 20min. Our system was sensitive enough to detect the interfusion of about 0.1% chicken egg-derived DNA in a processed food sample. Our rapid real-time PCR system is expected to contribute to the quality control in food industries because it can be applied for the identification of meat species, and future applications can expand its functionality to the detection of genetically modified organisms or mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Real-time control system for adaptive resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flath, L; An, J; Brase, J

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  18. How gamma radiation processing systems are benefiting from the latest advances in information technology

    NASA Astrophysics Data System (ADS)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  19. Storm water management in an urban catchment: effects of source control and real-time management of sewer systems on receiving water quality.

    PubMed

    Frehmann, T; Nafo, I; Niemann, A; Geiger, W F

    2002-01-01

    For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.

  20. Application of control theory to dynamic systems simulation

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.

  1. Multi-criteria decision making approaches for quality control of genome-wide association studies.

    PubMed

    Malovini, Alberto; Rognoni, Carla; Puca, Annibale; Bellazzi, Riccardo

    2009-03-01

    Experimental errors in the genotyping phases of a Genome-Wide Association Study (GWAS) can lead to false positive findings and to spurious associations. An appropriate quality control phase could minimize the effects of this kind of errors. Several filtering criteria can be used to perform quality control. Currently, no formal methods have been proposed for taking into account at the same time these criteria and the experimenter's preferences. In this paper we propose two strategies for setting appropriate genotyping rate thresholds for GWAS quality control. These two approaches are based on the Multi-Criteria Decision Making theory. We have applied our method on a real dataset composed by 734 individuals affected by Arterial Hypertension (AH) and 486 nonagenarians without history of AH. The proposed strategies appear to deal with GWAS quality control in a sound way, as they lead to rationalize and make explicit the experimenter's choices thus providing more reproducible results.

  2. Air Quality Monitoring: Risk-Based Choices

    NASA Technical Reports Server (NTRS)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  3. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing.

    PubMed

    Jiang, Mo; Severson, Kristen A; Love, John Christopher; Madden, Helena; Swann, Patrick; Zang, Li; Braatz, Richard D

    2017-11-01

    Real-time release testing (RTRT) is defined as "the ability to evaluate and ensure the quality of in-process and/or final drug product based on process data, which typically includes a valid combination of measured material attributes and process controls" (ICH Q8[R2]). This article discusses sensors (process analytical technology, PAT) and control strategies that enable RTRT for the spectrum of critical quality attributes (CQAs) in biopharmaceutical manufacturing. Case studies from the small-molecule and biologic pharmaceutical industry are described to demonstrate how RTRT can be facilitated by integrated manufacturing and multivariable control strategies to ensure the quality of products. RTRT can enable increased assurance of product safety, efficacy, and quality-with improved productivity including faster release and potentially decreased costs-all of which improve the value to patients. To implement a complete RTRT solution, biologic drug manufacturers need to consider the special attributes of their industry, particularly sterility and the measurement of viral and microbial contamination. Continued advances in on-line and in-line sensor technologies are key for the biopharmaceutical manufacturing industry to achieve the potential of RTRT. Related article: http://onlinelibrary.wiley.com/doi/10.1002/bit.26378/full. © 2017 Wiley Periodicals, Inc.

  4. Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis

    USGS Publications Warehouse

    Xu, Wenzhao; Collingsworth, Paris D.; Bailey, Barbara; Carlson Mazur, Martha L.; Schaeffer, Jeff; Minsker, Barbara

    2017-01-01

    This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events.

  5. Bridging the gap between PAT concepts and implementation: An integrated software platform for fermentation.

    PubMed

    Chopda, Viki R; Gomes, James; Rathore, Anurag S

    2016-01-01

    Bioreactor control significantly impacts both the amount and quality of the product being manufactured. The complexity of the control strategy that is implemented increases with reactor size, which may vary from thousands to tens of thousands of litres in commercial manufacturing. The Process Analytical Technology (PAT) initiative has highlighted the need for having robust monitoring tools and effective control schemes that are capable of taking real time information about the critical quality attributes (CQA) and the critical process parameters (CPP) and executing immediate response as soon as a deviation occurs. However, the limited flexibility that present commercial software packages offer creates a hurdle. Visual programming environments have gradually emerged as potential alternatives to the available text based languages. This paper showcases development of an integrated programme using a visual programming environment for a Sartorius BIOSTAT® B Plus 5L bioreactor through which various peripheral devices are interfaced. The proposed programme facilitates real-time access to data and allows for execution of control actions to follow the desired trajectory. Major benefits of such integrated software system include: (i) improved real time monitoring and control; (ii) reduced variability; (iii) improved performance; (iv) reduced operator-training time; (v) enhanced knowledge management; and (vi) easier PAT implementation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Teaching students about informatics and astronomy using real data for detection of asteroids

    NASA Astrophysics Data System (ADS)

    Boldea, A. L.; Vaduvescu, O.

    2017-09-01

    In this paper we approach the astronomy teaching process for students in computer sciences through a controlled investigation method using real astronomical data, including data reduction and quality control of the astrometry of near-Earth asteroids. The method used data collected on the Isaac Newton Telescope located at the ORM observatory on the island of La Palma in the Spanish Canary Islands and was successfully tested with a group of students in their second year of study.

  7. A real-time control framework for urban water reservoirs operation

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced computational requests and the capability of exploiting real-time hydro-meteorological information, which are crucial for an effective operation of these fast-varying hydrological systems. The framework is here demonstrated on the operation of Marina Reservoir (Singapore), whose recent construction in late 2008 increased the effective catchment area to about 50% of the total available. Its operation, which accounts for drinking water supply, flash floods control and water quality standards, is here designed by combining the MPC scheme with the process-based hydrological model SOBEK. Extensive simulation experiments show the validity of the proposed framework.

  8. Quality standards for real-world research. Focus on observational database studies of comparative effectiveness.

    PubMed

    Roche, Nicolas; Reddel, Helen; Martin, Richard; Brusselle, Guy; Papi, Alberto; Thomas, Mike; Postma, Dirjke; Thomas, Vicky; Rand, Cynthia; Chisholm, Alison; Price, David

    2014-02-01

    Real-world research can use observational or clinical trial designs, in both cases putting emphasis on high external validity, to complement the classical efficacy randomized controlled trials (RCTs) with high internal validity. Real-world research is made necessary by the variety of factors that can play an important a role in modulating effectiveness in real life but are often tightly controlled in RCTs, such as comorbidities and concomitant treatments, adherence, inhalation technique, access to care, strength of doctor-caregiver communication, and socio-economic and other organizational factors. Real-world studies belong to two main categories: pragmatic trials and observational studies, which can be prospective or retrospective. Focusing on comparative database observational studies, the process aimed at ensuring high-quality research can be divided into three parts: preparation of research, analyses and reporting, and discussion of results. Key points include a priori planning of data collection and analyses, identification of appropriate database(s), proper outcomes definition, study registration with commitment to publish, bias minimization through matching and adjustment processes accounting for potential confounders, and sensitivity analyses testing the robustness of results. When these conditions are met, observational database studies can reach a sufficient level of evidence to help create guidelines (i.e., clinical and regulatory decision-making).

  9. Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.

  10. Experimental Optimization of Exposure Index and Quality of Service in Wlan Networks.

    PubMed

    Plets, David; Vermeeren, Günter; Poorter, Eli De; Moerman, Ingrid; Goudos, Sotirios K; Luc, Martens; Wout, Joseph

    2017-07-01

    This paper presents the first real-life optimization of the Exposure Index (EI). A genetic optimization algorithm is developed and applied to three real-life Wireless Local Area Network scenarios in an experimental testbed. The optimization accounts for downlink, uplink and uplink of other users, for realistic duty cycles, and ensures a sufficient Quality of Service to all users. EI reductions up to 97.5% compared to a reference configuration can be achieved in a downlink-only scenario, in combination with an improved Quality of Service. Due to the dominance of uplink exposure and the lack of WiFi power control, no optimizations are possible in scenarios that also consider uplink traffic. However, future deployments that do implement WiFi power control can be successfully optimized, with EI reductions up to 86% compared to a reference configuration and an EI that is 278 times lower than optimized configurations under the absence of power control. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Long-term safety and real-world effectiveness of fingolimod in relapsing multiple sclerosis

    PubMed Central

    Druart, Charlotte; El Sankari, Souraya; van Pesch, Vincent

    2018-01-01

    With a growing number of disease-modifying therapies becoming available for relapsing multiple sclerosis, there is an important need to gather real-world evidence data regarding long-term treatment effectiveness and safety in unselected patient populations. Although not providing as high a level of evidence as randomized controlled trials, and prone to bias, real-world studies from observational studies or registries nevertheless provide crucial information on real-world outcomes of a given therapy. In addition, evaluation of treatment satisfaction and impact on quality of life are increasingly regarded as complementary outcome measures. Fingolimod was the first oral disease-modifying therapy approved for relapsing multiple sclerosis. This review aims to summarize current knowledge on the long-term effectiveness and safety outcomes of multiple sclerosis patients on fingolimod. Impact on treatment satisfaction and quality of life will be discussed according to available data. PMID:29317850

  12. The effect of real-time CPR feedback and post event debriefing on patient and processes focused outcomes: a cohort study: trial protocol.

    PubMed

    Perkins, Gavin D; Davies, Robin P; Quinton, Sarah; Woolley, Sarah; Gao, Fang; Abella, Ben; Stallard, Nigel; Cooke, Matthew W

    2011-10-18

    Cardiac arrest affects 30-35, 000 hospitalised patients in the UK every year. For these patients to be given the best chance of survival, high quality cardiopulmonary resuscitation (CPR) must be delivered, however the quality of CPR in real-life is often suboptimal. CPR feedback devices have been shown to improve CPR quality in the pre-hospital setting and post-event debriefing can improve adherence to guidelines and CPR quality. However, the evidence for use of these improvement methods in hospital remains unclear. The CPR quality improvement initiative is a prospective cohort study of the Q-CPR real-time feedback device combined with post-event debriefing in hospitalised adult patients who sustain a cardiac arrest. The primary objective of this trial is to assess whether a CPR quality improvement initiative will improve rate of return of sustained spontaneous circulation in in-hospital-cardiac-arrest patients. The study is set in one NHS trust operating three hospital sites. Secondary objectives will evaluate: any return of spontaneous circulation; survival to hospital discharge and patient cerebral performance category at discharge; quality of CPR variables and cardiac arrest team factors. All three sites will have an initial control phase before any improvements are implemented; site 1 will implement audiovisual feedback combined with post event debriefing, site 2 will implement audiovisual feedback only and site 3 will remain as a control site to measure any changes in outcome due to any other trust-wide changes in resuscitation practice. All adult patients sustaining a cardiac arrest and receiving resuscitation from the hospital cardiac arrest team will be included. Patients will be excluded if; they have a Do-not-attempt resuscitation order written and documented in their medical records, the cardiac arrest is not attended by a resuscitation team, the arrest occurs out-of-hospital or the patient has previously participated in this study. The trial will recruit a total of 912 patients from the three hospital sites. This trial will evaluate patient and process focussed outcomes following the implementation of a CPR quality improvement initiative using real-time audiovisual feedback and post event debriefing. ISRCTN56583860.

  13. e-Monitoring of Asthma Therapy to Improve Compliance in children using a real-time medication monitoring system (RTMM): the e-MATIC study protocol.

    PubMed

    Vasbinder, Erwin C; Janssens, Hettie M; Rutten-van Mölken, Maureen P M H; van Dijk, Liset; de Winter, Brenda C M; de Groot, Ruben C A; Vulto, Arnold G; van den Bemt, Patricia M L A

    2013-03-21

    Many children with asthma do not have sufficient asthma control, which leads to increased healthcare costs and productivity loss of parents. One of the causative factors are adherence problems. Effective interventions improving medication adherence may therefore improve asthma control and reduce costs. A promising solution is sending real time text-messages via the mobile phone network, when a medicine is about to be forgotten. As the effect of real time text-messages in children with asthma is unknown, the primary aim of this study is to determine the effect of a Real Time Medication Monitoring system (RTMM) with text-messages on adherence to inhaled corticosteroids (ICS). The secondary objective is to study the effects of RTMM on asthma control, quality of life and cost-effectiveness of treatment. A multicenter, randomized controlled trial involving 220 children (4-11 years) using ICS for asthma. All children receive an RTMM-device for one year, which registers time and date of ICS doses. Children in the intervention group also receive tailored text-messages, sent only when a dose is at risk of omission. Primary outcome measure is the proportion of ICS dosages taken within the individually predefined time-interval. Secondary outcome measures include asthma control (monthly Asthma Control Tests), asthma exacerbations, healthcare use (collected from hospital records, patient reports and pharmacy record data), and disease-specific quality of life (PAQLQ questionnaire). Parental and children's acceptance of RTMM is evaluated with online focus groups and patient questionnaires. An economic evaluation is performed adopting a societal perspective, including relevant healthcare costs and parental productivity loss. Furthermore, a decision-analytic model is developed in which different levels of adherence are associated with clinical and financial outcomes. Also, sensitivity analyses are carried out on different price levels for RTMM. If RTMM with tailored text-message reminders proves to be effective, this technique can be used in daily practice, which would support children with suboptimal adherence in their asthma (self)management and in achieving better asthma control and better quality of life. Netherlands Trial Register NTR2583.

  14. Analysis of the longitudinal handling qualities and pilot-induced-oscillation tendencies of the High-Angle-of-Attack Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1994-01-01

    The NASA High-Angle-of Attack Research Vehicle (HARV), a modified F-18 aircraft, experienced handling qualities problems in recent flight tests at NASA Dryden Research Center. Foremost in these problems was the tendency of the pilot-aircraft system to exhibit a potentially dangerous phenomenon known as a pilot-induced oscillation (PIO). When they occur, PIO's can severely restrict performance, sharply dimish mission capabilities, and can even result in aircraft loss. A pilot/vehicle analysis was undertaken with the goal of reducing these PIO tendencies and improving the overall vehicle handling qualities with as few changes as possible to the existing feedback/feedforward flight control laws. Utilizing a pair of analytical pilot models developed by the author, a pilot/vehicle analysis of the existing longitudinal flight control system was undertaken. The analysis included prediction of overall handling qualities levels and PIO susceptability. The analysis indicated that improvement in the flight control system was warranted and led to the formulation of a simple control stick command shaping filter. Analysis of the pilot/vehicle system with the shaping filter indicated significant improvements in handling qualities and PIO tendencies could be achieved. A non-real time simulation of the modified control system was undertaken with a realistic, nonlinear model of the current HARV. Special emphasis was placed upon those details of the command filter implementation which could effect safety of flight. The modified system is currently awaiting evaluation in the real-time, pilot-in-the-loop, Dual-Maneuvering-Simulator (DMS) facility at Langley.

  15. The Impact of an Assurance System on the Quality of Teaching and Learning--Using the Example of a University in Russia and One of the Universities in Germany

    ERIC Educational Resources Information Center

    Szymenderski, Peggy; Yagudina, Liliya; Burenkova, Olga

    2015-01-01

    In this paper we consider the question of how quality assurance can have a real, positive impact on the quality of teaching and learning at universities, considering the realities of different systems--the system of control and the system of quality culture--in using the example of two universities: the KNITU-KAI in Russia and the TU Dresden in…

  16. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms.

    PubMed

    García-Miranda Ferrari, Alejandro; Foster, Christopher W; Kelly, Peter J; Brownson, Dale A C; Banks, Craig E

    2018-06-08

    Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.

  17. Subjective quality of life in psychosis: Evidence for an association with real world functioning?

    PubMed

    Leendertse, Pien; Myin-Germeys, Inez; Lataster, Tineke; Simons, Claudia J P; Oorschot, Margreet; Lardinois, Mariëlle; Schneider, Maude; van Os, Jim; Reininghaus, Ulrich

    2018-03-01

    Subjective quality of life (SQOL) is an established patient-reported outcome in psychosis. However, current self-report measures of SQOL may be affected by recall bias and may not fully capture dynamic changes in SQOL over time. This study aimed to examine the ecological validity of self-reported and momentary assessment measures of SQOL, and their association with emotional experience, social interaction and activity in real life, in both patients with psychotic disorder (n = 56) and controls (n = 71). Self-reported QOL was assessed with the WHO-QOL, momentary QOL and real life experiences were assessed with the Experience Sampling Method (ESM). Results show that both measures were significantly associated in patients and controls, and associations with emotional experience were most relevant, momentary QOL being a stronger predictor than self-reported QOL. The association between momentary QOL and negative affect was stronger in patients than in controls. Overall, momentary QOL was more consistently associated with affect, social interaction and activity, while self-reported QOL displayed a more narrow association with mostly affect. Concluding, concurrent assessment of self-reported QOL and momentary QOL showed that momentary QOL may enhance the ecological validity of SQOL measurement. Experience sampling research may broaden our perspective on SQOL and its associations with real life functioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2016-01-01

    Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.

  19. Continuous processing and the applications of online tools in pharmaceutical product manufacture: developments and examples.

    PubMed

    Ooi, Shing Ming; Sarkar, Srimanta; van Varenbergh, Griet; Schoeters, Kris; Heng, Paul Wan Sia

    2013-04-01

    Continuous processing and production in pharmaceutical manufacturing has received increased attention in recent years mainly due to the industries' pressing needs for more efficient, cost-effective processes and production, as well as regulatory facilitation. To achieve optimum product quality, the traditional trial-and-error method for the optimization of different process and formulation parameters is expensive and time consuming. Real-time evaluation and the control of product quality using an online process analyzer in continuous processing can provide high-quality production with very high-throughput at low unit cost. This review focuses on continuous processing and the application of different real-time monitoring tools used in the pharmaceutical industry for continuous processing from powder to tablets.

  20. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  1. Face Recognition for Access Control Systems Combining Image-Difference Features Based on a Probabilistic Model

    NASA Astrophysics Data System (ADS)

    Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko

    We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.

  2. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    NASA Astrophysics Data System (ADS)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  3. Fast packet switching algorithms for dynamic resource control over ATM networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, R.P.; Keattihananant, P.; Chang, T.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less

  4. Rotorcraft flying qualities improvement using advanced control

    NASA Technical Reports Server (NTRS)

    Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.

    1993-01-01

    We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.

  5. [Development of whole process quality control and management system of traditional Chinese medicine decoction pieces based on traditional Chinese medicine quality tree].

    PubMed

    Yu, Wen-Kang; Dong, Ling; Pei, Wen-Xuan; Sun, Zhi-Rong; Dai, Jun-Dong; Wang, Yun

    2017-12-01

    The whole process quality control and management of traditional Chinese medicine (TCM) decoction pieces is a system engineering, involving the base environment, seeds and seedlings, harvesting, processing and other multiple steps, so the accurate identification of factors in TCM production process that may induce the quality risk, as well as reasonable quality control measures are very important. At present, the concept of quality risk is mainly concentrated in the aspects of management and regulations, etc. There is no comprehensive analysis on possible risks in the quality control process of TCM decoction pieces, or analysis summary of effective quality control schemes. A whole process quality control and management system for TCM decoction pieces based on TCM quality tree was proposed in this study. This system effectively combined the process analysis method of TCM quality tree with the quality risk management, and can help managers to make real-time decisions while realizing the whole process quality control of TCM. By providing personalized web interface, this system can realize user-oriented information feedback, and was convenient for users to predict, evaluate and control the quality of TCM. In the application process, the whole process quality control and management system of the TCM decoction pieces can identify the related quality factors such as base environment, cultivation and pieces processing, extend and modify the existing scientific workflow according to their own production conditions, and provide different enterprises with their own quality systems, to achieve the personalized service. As a new quality management model, this paper can provide reference for improving the quality of Chinese medicine production and quality standardization. Copyright© by the Chinese Pharmaceutical Association.

  6. Multi-Criteria Decision Making Approaches for Quality Control of Genome-Wide Association Studies

    PubMed Central

    Malovini, Alberto; Rognoni, Carla; Puca, Annibale; Bellazzi, Riccardo

    2009-01-01

    Experimental errors in the genotyping phases of a Genome-Wide Association Study (GWAS) can lead to false positive findings and to spurious associations. An appropriate quality control phase could minimize the effects of this kind of errors. Several filtering criteria can be used to perform quality control. Currently, no formal methods have been proposed for taking into account at the same time these criteria and the experimenter’s preferences. In this paper we propose two strategies for setting appropriate genotyping rate thresholds for GWAS quality control. These two approaches are based on the Multi-Criteria Decision Making theory. We have applied our method on a real dataset composed by 734 individuals affected by Arterial Hypertension (AH) and 486 nonagenarians without history of AH. The proposed strategies appear to deal with GWAS quality control in a sound way, as they lead to rationalize and make explicit the experimenter’s choices thus providing more reproducible results. PMID:21347174

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Mafalda T., E-mail: mafaldatcosta@gmail.com; Carolino, Elisabete, E-mail: lizcarolino@gmail.com; Oliveira, Teresa A., E-mail: teresa.oliveira@uab.pt

    In water supply systems with distribution networkthe most critical aspects of control and Monitoring of water quality, which generates crises system, are the effects of cross-contamination originated by the network typology. The classics of control of quality systems through the application of Shewhart charts are generally difficult to manage in real time due to the high number of charts that must be completed and evaluated. As an alternative to the traditional control systems with Shewhart charts, this study aimed to apply a simplified methodology of a monitoring plan quality parameters in a drinking water distribution, by applying Hotelling’s T{sup 2}more » charts and supplemented with Shewhart charts with Bonferroni limits system, whenever instabilities with processes were detected.« less

  8. A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    NASA Technical Reports Server (NTRS)

    Cui, Zhenqian

    1999-01-01

    With the development of high-speed networking technology, computer networks, including local-area networks (LANs), wide-area networks (WANs) and the Internet, are extending their traditional roles of carrying computer data. They are being used for Internet telephony, multimedia applications such as conferencing and video on demand, distributed simulations, and other real-time applications. LANs are even used for distributed real-time process control and computing as a cost-effective approach. Differing from traditional data transfer, these new classes of high-speed network applications (video, audio, real-time process control, and others) are delay sensitive. The usefulness of data depends not only on the correctness of received data, but also the time that data are received. In other words, these new classes of applications require networks to provide guaranteed services or quality of service (QoS). Quality of service can be defined by a set of parameters and reflects a user's expectation about the underlying network's behavior. Traditionally, distinct services are provided by different kinds of networks. Voice services are provided by telephone networks, video services are provided by cable networks, and data transfer services are provided by computer networks. A single network providing different services is called an integrated-services network.

  9. Evaluation of medical record quality and communication skills among pediatric interns after standardized parent training history-taking in China.

    PubMed

    Yu, Mu Xue; Jiang, Xiao Yun; Li, Yi Juan; Shen, Zhen Yu; Zhuang, Si Qi; Gu, Yu Fen

    2018-02-01

    The effect of using standardized parent training history-taking on the quality of medical records and communication skills among pediatric interns was determined. Fifth-year interns who were undertaking a pediatric clinical practice rotation were randomized to intervention and control groups. All of the pediatric interns received history-taking training by lecture and bedside teaching. The pediatric interns in the intervention group also received standardized parent history-taking training. The following two outcome measures were used: the scores of medical records, which were written by the pediatric interns after history-taking from real parents of pediatric patients; and the communication assessment tool (CAT) assessed by real parents. The general information, history of present illness (HPI), past medical history, personal history, family history, diagnosis, diagnostic analysis, and differential diagnosis scores in the intervention group were significantly higher than the control group (p < 0.05). Assessment of the CAT indicated that the real parents were more satisfied with the pediatric interns in the intervention group. Standardized parent training history-taking is effective in improving the quality of medical records by pediatric interns. Standardized parent training history-taking is a superior teaching tool for clinical reasoning ability, as well as communication skills in clinical pediatric practice.

  10. Distributed sensor architecture for intelligent control that supports quality of control and quality of service.

    PubMed

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-02-25

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  11. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    PubMed Central

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-01-01

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145

  12. Evaluating the real-world predictive validity of the Body Image Quality of Life Inventory using Ecological Momentary Assessment.

    PubMed

    Heron, Kristin E; Mason, Tyler B; Sutton, Tiphanie G; Myers, Taryn A

    2015-09-01

    Perceptions of physical appearance, or body image, can affect psychosocial functioning and quality of life (QOL). The present study evaluated the real-world predictive validity of the Body Image Quality of Life Inventory (BIQLI) using Ecological Momentary Assessment (EMA). College women reporting subclinical disordered eating/body dissatisfaction (N=131) completed the BIQLI and related measures. For one week they then completed five daily EMA surveys of mood, social interactions, stress, and eating behaviors on palmtop computers. Results showed better body image QOL was associated with less negative affect, less overwhelming emotions, more positive affect, more pleasant social interactions, and higher self-efficacy for handling stress. Lower body image QOL was marginally related to less overeating and lower loss of control over eating in daily life. To our knowledge, this is the first study to support the real-world predictive validity of the BIQLI by identifying social, affective, and behavioral correlates in everyday life using EMA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Quality by control: Towards model predictive control of mammalian cell culture bioprocesses.

    PubMed

    Sommeregger, Wolfgang; Sissolak, Bernhard; Kandra, Kulwant; von Stosch, Moritz; Mayer, Martin; Striedner, Gerald

    2017-07-01

    The industrial production of complex biopharmaceuticals using recombinant mammalian cell lines is still mainly built on a quality by testing approach, which is represented by fixed process conditions and extensive testing of the end-product. In 2004 the FDA launched the process analytical technology initiative, aiming to guide the industry towards advanced process monitoring and better understanding of how critical process parameters affect the critical quality attributes. Implementation of process analytical technology into the bio-production process enables moving from the quality by testing to a more flexible quality by design approach. The application of advanced sensor systems in combination with mathematical modelling techniques offers enhanced process understanding, allows on-line prediction of critical quality attributes and subsequently real-time product quality control. In this review opportunities and unsolved issues on the road to a successful quality by design and dynamic control implementation are discussed. A major focus is directed on the preconditions for the application of model predictive control for mammalian cell culture bioprocesses. Design of experiments providing information about the process dynamics upon parameter change, dynamic process models, on-line process state predictions and powerful software environments seem to be a prerequisite for quality by control realization. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Research on control strategy based on fuzzy PR for grid-connected inverter

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Guan, Weiguo; Miao, Wen

    2018-04-01

    In the traditional PI controller, there is static error in tracking ac signals. To solve the problem, the control strategy of a fuzzy PR and the grid voltage feed-forward is proposed. The fuzzy PR controller is to eliminate the static error of the system. It also adjusts parameters of PR controller in real time, which avoids the defect of fixed parameter fixed. The grid voltage feed-forward control can ensure the quality of current and improve the system's anti-interference ability when the grid voltage is distorted. Finally, the simulation results show that the system can output grid current with good quality and also has good dynamic and steady state performance.

  15. Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI.

    PubMed

    Koush, Yury; Zvyagintsev, Mikhail; Dyck, Miriam; Mathiak, Krystyna A; Mathiak, Klaus

    2012-01-02

    Real-time fMRI allows analysis and visualization of the brain activity online, i.e. within one repetition time. It can be used in neurofeedback applications where subjects attempt to control an activation level in a specified region of interest (ROI) of their brain. The signal derived from the ROI is contaminated with noise and artifacts, namely with physiological noise from breathing and heart beat, scanner drift, motion-related artifacts and measurement noise. We developed a Bayesian approach to reduce noise and to remove artifacts in real-time using a modified Kalman filter. The system performs several signal processing operations: subtraction of constant and low-frequency signal components, spike removal and signal smoothing. Quantitative feedback signal quality analysis was used to estimate the quality of the neurofeedback time series and performance of the applied signal processing on different ROIs. The signal-to-noise ratio (SNR) across the entire time series and the group event-related SNR (eSNR) were significantly higher for the processed time series in comparison to the raw data. Applied signal processing improved the t-statistic increasing the significance of blood oxygen level-dependent (BOLD) signal changes. Accordingly, the contrast-to-noise ratio (CNR) of the feedback time series was improved as well. In addition, the data revealed increase of localized self-control across feedback sessions. The new signal processing approach provided reliable neurofeedback, performed precise artifacts removal, reduced noise, and required minimal manual adjustments of parameters. Advanced and fast online signal processing algorithms considerably increased the quality as well as the information content of the control signal which in turn resulted in higher contingency in the neurofeedback loop. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. High Resolution Sensing and Control of Urban Water Networks

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  17. User’s manual for the Automated Data Assurance and Management application developed for quality control of Everglades Depth Estimation Network water-level data

    USGS Publications Warehouse

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.

  18. Design and implementation of a control structure for quality products in a crude oil atmospheric distillation column.

    PubMed

    Sotelo, David; Favela-Contreras, Antonio; Sotelo, Carlos; Jiménez, Guillermo; Gallegos-Canales, Luis

    2017-11-01

    In recent years, interest for petrochemical processes has been increasing, especially in refinement area. However, the high variability in the dynamic characteristics present in the atmospheric distillation column poses a challenge to obtain quality products. To improve distillates quality in spite of the changes in the input crude oil composition, this paper details a new design of a control strategy in a conventional crude oil distillation plant defined using formal interaction analysis tools. The process dynamic and its control are simulated on Aspen HYSYS ® dynamic environment under real operating conditions. The simulation results are compared against a typical control strategy commonly used in crude oil atmospheric distillation columns. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Measuring management's perspective of data quality in Pakistan's Tuberculosis control programme: a test-based approach to identify data quality dimensions.

    PubMed

    Ali, Syed Mustafa; Anjum, Naveed; Kamel Boulos, Maged N; Ishaq, Muhammad; Aamir, Javariya; Haider, Ghulam Rasool

    2018-01-16

    Data quality is core theme of programme's performance assessment and many organizations do not have any data quality improvement strategy, wherein data quality dimensions and data quality assessment framework are important constituents. As there is limited published research about the data quality specifics that are relevant to the context of Pakistan's Tuberculosis control programme, this study aims at identifying the applicable data quality dimensions by using the 'fitness-for-purpose' perspective. Forty-two respondents pooled a total of 473 years of professional experience, out of which 223 years (47%) were in TB control related programmes. Based on the responses against 11 practical cases, adopted from the routine recording and reporting system of Pakistan's TB control programme (real identities of patient were masked), completeness, accuracy, consistency, vagueness, uniqueness and timeliness are the applicable data quality dimensions relevant to the programme's context, i.e. work settings and field of practice. Based on a 'fitness-for-purpose' approach to data quality, this study used a test-based approach to measure management's perspective and identified data quality dimensions pertinent to the programme and country specific requirements. Implementation of a data quality improvement strategy and achieving enhanced data quality would greatly help organizations in promoting data use for informed decision making.

  20. Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure.

    PubMed

    McLamore, E S; Zhang, W; Porterfield, D M; Banks, M K

    2010-09-15

    Bioreactors containing sessile bacteria (biofilms) grown on hollow fiber membranes have been used for treatment of many wastestreams. Real time operational control of bioreactor performance requires detailed knowledge of the relationship between bulk liquid water quality and physiological transport at the biofilm-liquid interface. Although large data sets exist describing membrane-aerated bioreactor effluent quality, very little real time data is available characterizing boundary layer transport under physiological conditions. A noninvasive, microsensor technique was used to quantify real time (≈1.5 s) changes in oxygen and proton flux for mature Nitrosomonas europaea and Pseudomonas aeruginosa biofilms in membrane-aerated bioreactors following exposure to environmental toxins. Stress response was characterized during exposure to toxins with known mode of action (chlorocarbonyl cyanide phenyl-hydrazone and potassium cyanide), and four environmental toxins (rotenone, 2,4-dinitrophenol, cadmium chloride, and pentachlorophenol). Exposure to sublethal concentrations of all environmental toxins caused significant increases in O(2) and/or H(+) flux (depending on the mode of action). These real time microscale signatures (i.e., fingerprints) of O(2) and H(+) flux can be coupled with bulk liquid analysis to improve our understanding of physiology in counter-diffusion biofilms found within membrane aerated bioreactors; leading to enhanced monitoring/modeling strategies for bioreactor control.

  1. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    PubMed

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  2. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control

    PubMed Central

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-01-01

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated. PMID:27681732

  3. A randomized, controlled, crossover study in patients with mild and moderate asthma undergoing treatment with traditional Chinese acupuncture

    PubMed Central

    Pai, Hong Jin; Azevedo, Raymundo Soares; Braga, Alfésio Luís Ferreira; Martins, Lourdes Conceição; Saraiva-Romanholo, Beatriz M; de Arruda Martins, Milton; Lin, Chin An

    2015-01-01

    OBJECTIVES: This study sought to verify the effects of acupuncture as an adjuvant treatment for the control of asthma. METHODS: This was a randomized, controlled, crossover trial conducted at the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. A total of 74 patients with mild/moderate, persistent asthma were randomized into two therapeutic groups: Group A – 31 patients underwent 10 real weekly acupuncture sessions, followed by a 3-week washout period and 10 sham weekly acupuncture sessions; and Group B - 43 patients underwent 10 sham weekly acupuncture sessions, followed by a 3-week washout period and 10 real weekly acupuncture sessions. Patients used short- and long-acting β-2 agonists and inhaled corticosteroids when necessary. Prior to treatment and after each period of 10 treatment sessions, the patients were evaluated for spirometry, induced sputum cell count, exhaled nitric oxide (NO) and with the Short Form 36 (SF-36) and Questionnaire on Quality of Life-Asthma (QQLA) questionnaires. Daily peak flow and symptom diaries were registered. The level of significance adopted was 5% (α=0.05). RESULTS: In Group B, after real acupuncture, there was a decrease in eosinophils (p=0.035) and neutrophils (p=0.047), an increase in macrophages (p=0.001) and an improvement in peak flow (p=0.01). After sham acupuncture treatment, patients experienced less coughing (p=0.037), wheezing (p=0.013) and dyspnea (p=0.014); similarly, after real acupuncture, patients reported less coughing (p=0.040), wheezing (p=0.012), dyspnea (p<0.001) and nocturnal awakening episodes (p=0.009). In Group A, there was less use of rescue medication (p=0.043). After the sham procedure, patients in Group A experienced less coughing (p=0.007), wheezing (p=0.037), dyspnea (p<0.001) and use of rescue medication (p<0.001) and after real acupuncture, these patients showed improvements in functional capacity (p=0.004), physical aspects (p=0.002), general health status (p<0.001) and vitality (p=0.019). Sham acupuncture also led to significant differences in symptoms, but these were not different from those seen with real acupuncture. Spirometry and exhaled NO levels did not show a difference between sham and real acupuncture treatment. In addition, no significant difference was demonstrated between treatments regarding the quality of life evaluation. CONCLUSION: Real and sham acupuncture have different effects and outcomes on asthma control. The crossover approach was not effective in this study because both interventions led to improvement of asthma symptoms, quality of life and inflammatory cell counts. Thus, sham acupuncture cannot serve as a placebo in trials with acupuncture as the main intervention for asthma. PMID:26598077

  4. DEVELOPMENT OF DATA QUALITY OBJECTIVES AND USE OF TWO VARIATIONS OF GENETICALLY-MODIFIED STREPTOCOCCUS GORDONIL AS LYSIS CONTROLS IN A QPCR ASSAY FOR ASSESSING SANITARY QUALITY OF WATER

    EPA Science Inventory

    Joseph B. James and Fred J. Genthner

    United States Environmental Protection Agency, Gulf Breeze, FL

    Background: Methods using rapid cycle, real-time, quantitative (QPCR) are being developed for detecting and quantifying Enterococcus spp. as well as other aquatic b...

  5. Inter-laboratory quality control for hormone-dependent gene expression in human breast tumors using real-time reverse transcription-polymerase chain reaction.

    PubMed

    de Cremoux, P; Bieche, I; Tran-Perennou, C; Vignaud, S; Boudou, E; Asselain, B; Lidereau, R; Magdelénat, H; Becette, V; Sigal-Zafrani, B; Spyratos, F

    2004-09-01

    Quantitative reverse transcription-polymerase chain reaction (RT-PCR) used to detect minor changes in specific mRNA concentrations may be associated with poor reproducibility. Stringent quality control is therefore essential at each step of the protocol, including the PCR procedure. We performed inter-laboratory quality control of quantitative PCR between two independent laboratories, using in-house RT-PCR assays on a series of hormone-related target genes in a retrospective consecutive series of 79 breast tumors. Total RNA was reverse transcribed in a single center. Calibration curves were performed for five target genes (estrogen receptor (ER)alpha, ERbeta, progesterone receptor (PR), CYP19 (aromatase) and Ki 67) and for two reference genes (human acidic ribosomal phosphoprotein PO (RPLPO) and TATA box-binding protein (TBP)). Amplification efficiencies of the calibrator were determined for each run and used to calculate mRNA expression. Correlation coefficients were evaluated for each target and each reference gene. A good correlation was observed for all target and reference genes in both centers using their own protocols and kits (P < 0.0001). The correlation coefficients ranged from 0.90 to 0.98 for the various target genes in the two centers. A good correlation was observed between the level of expression of the ERalpha and the PR transcripts (P < 0.001). A weak inverse correlation was observed in both centers between ERalpha and ERbeta levels, but only when TBP was the reference gene. No other correlation was observed with other parameters. Real-time PCR assays allow convenient quantification of target mRNA transcripts and quantification of target-derived nucleic acids in clinical specimens. This study addresses the importance of inter-laboratory quality controls for the use of a panel of real-time PCR assays devoted to clinical samples and protocols and to ensure their appropriate accuracy. This can also facilitate exchanges and multicenter comparison of data.

  6. Influence of menu labeling on food choices in real-life settings: a systematic review.

    PubMed

    Fernandes, Ana C; Oliveira, Renata C; Proença, Rossana P C; Curioni, Cintia C; Rodrigues, Vanessa M; Fiates, Giovanna M R

    2016-08-01

    Evidence that menu labeling influences food choices in real-life settings is lacking. Reviews usually focus on calorie counts without addressing broader issues related to healthy eating. This systematic review assessed the influence of diverse menu-labeling formats on food choices in real-life settings. Several databases were searched: Cochrane Library, Scopus, MEDLINE, Web of Science, Food Science and Technology Abstracts, Biological Abstracts, CAB Abstracts, EconLit, SciELO, and LILACS. Articles reporting experiments, quasi-experiments, and observational studies using control or preintervention groups were selected blindly by two reviewers. Data was extracted using a standard form. Analyses differentiated between foodservice types. The quality of the 38 included studies was assessed blindly by two reviewers. The results were mixed, but a partial influence of menu labeling on food choices was more frequent than an overall influence or no influence. Menu labeling was more effective in cafeterias than in restaurants. Qualitative information, such as healthy-food symbols and traffic-light labeling, was most effective in promoting healthy eating. In general, the studies were of moderate quality and did not use control groups. Calorie labeling in menus is not effective to promote healthier food choices. Further research in real-life settings with control groups should test diverse qualitative information in menu labeling. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. A low-cost sensing system for cooperative air quality monitoring in urban areas.

    PubMed

    Brienza, Simone; Galli, Andrea; Anastasi, Giuseppe; Bruschi, Paolo

    2015-05-26

    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring.

  8. Application Research of Quality Control Technology of Asphalt Pavement based on GPS Intelligent

    NASA Astrophysics Data System (ADS)

    Wang, Min; Gao, Bo; Shang, Fei; Wang, Tao

    2017-10-01

    Due to the difficulty of steel deck pavement asphalt layer compaction caused by the effect of the flexible supporting system (orthotropic steel deck plate), it is usually hard and difficult to control for the site compactness to reach the design goal. The intelligent compaction technology is based on GPS control technology and real-time acquisition of actual compaction tracks, and then forms a cloud maps of compaction times, which guide the roller operator to do the compaction in accordance with the design requirement to ensure the deck compaction technology and compaction quality. From the actual construction situation of actual bridge and checked data, the intelligent compaction technology is significant in guaranteeing the steel deck asphalt pavement compactness and quality stability.

  9. Platform for Automated Real-Time High Performance Analytics on Medical Image Data.

    PubMed

    Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A

    2018-03-01

    Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.

  10. Control of a metalorganic chemical vapor deposition process for improved composition and thickness precision in compound semiconductors

    NASA Astrophysics Data System (ADS)

    Gaffney, Monique Suzanne

    1998-11-01

    Metalorganic chemical vapor deposition (MOCVD) is a process used to manufacture electronic and optoelectronic devices that has traditionally lacked real-time growth monitoring and control. Controlling the growth rate and composition using the existing sensors, as well as advanced monitoring systems developed in-house, is shown to improve device quality. Specific MOCVD growth objectives are transformed into controller performance goals. Group III bubbler concentration variations, which perturb both growth rate and composition precision, are identified to be the primary disturbances. First a feed forward control system was investigated, which used an ultrasonic concentration monitor, located upstream in the process. This control strategy resulted in improved regulation of the gallium delivery rate by cancelling the sensed gallium bubbler concentration disturbances via the injection mass flow controller. The controller performance is investigated by growing GaInAs/InP superlattices. Results of growths performed under normal operating conditions and also under large perturbations include X-ray diffraction from the samples as well as real-time sensor signal data. High quality superlattices that display up to eight orders of satellite peaks are obtained under the feed forward compensation scheme, demonstrating improved layer-to-layer reproducibility of thickness and composition. The success of the feed forward control demonstration led to the development of a more complex downstream feedback control system. An ultraviolet absorption monitor was fabricated and retrofitted as a feedback control signal. A control-oriented model of the downstream process was developed for the feedback controller synthesis. Although challenged with both the photolysis and multi-gas detection issues common to UV absorption monitors, closed loop control with the UV sensor was performed and proved to be an effective method of disturbance rejection. An InP/GaInAs test structure was grown under both open and closed loop conditions. During the growth of a bulk GaInAs layer, an indium concentration disturbance was injected by way of the bubbler pressure control valve. The controller goal was to reject this concentration disturbance. The UV absorption real-time data, as well as both X-ray diffraction and photoluminescence post-growth sample measurements were used to evaluate the controller performance. All results indicate that the closed loop control system greatly improved the quality of the perturbed growth.

  11. The effect of real-time CPR feedback and post event debriefing on patient and processes focused outcomes: A cohort study: trial protocol

    PubMed Central

    2011-01-01

    Background Cardiac arrest affects 30-35, 000 hospitalised patients in the UK every year. For these patients to be given the best chance of survival, high quality cardiopulmonary resuscitation (CPR) must be delivered, however the quality of CPR in real-life is often suboptimal. CPR feedback devices have been shown to improve CPR quality in the pre-hospital setting and post-event debriefing can improve adherence to guidelines and CPR quality. However, the evidence for use of these improvement methods in hospital remains unclear. The CPR quality improvement initiative is a prospective cohort study of the Q-CPR real-time feedback device combined with post-event debriefing in hospitalised adult patients who sustain a cardiac arrest. Methods/design The primary objective of this trial is to assess whether a CPR quality improvement initiative will improve rate of return of sustained spontaneous circulation in in-hospital-cardiac-arrest patients. The study is set in one NHS trust operating three hospital sites. Secondary objectives will evaluate: any return of spontaneous circulation; survival to hospital discharge and patient cerebral performance category at discharge; quality of CPR variables and cardiac arrest team factors. Methods: All three sites will have an initial control phase before any improvements are implemented; site 1 will implement audiovisual feedback combined with post event debriefing, site 2 will implement audiovisual feedback only and site 3 will remain as a control site to measure any changes in outcome due to any other trust-wide changes in resuscitation practice. All adult patients sustaining a cardiac arrest and receiving resuscitation from the hospital cardiac arrest team will be included. Patients will be excluded if; they have a Do-not-attempt resuscitation order written and documented in their medical records, the cardiac arrest is not attended by a resuscitation team, the arrest occurs out-of-hospital or the patient has previously participated in this study. The trial will recruit a total of 912 patients from the three hospital sites. Conclusion This trial will evaluate patient and process focussed outcomes following the implementation of a CPR quality improvement initiative using real-time audiovisual feedback and post event debriefing. Trial registration ISRCTN56583860 PMID:22008636

  12. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2006: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2006-01-01

    For the eight monitoring stations in water year 2006, an average of 99.1% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. 

  13. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2005: quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2005-01-01

    For the eight monitoring sites in water year 2005, an average of 98.2% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value, based on calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. 

  14. Total dissolved gas and water temperature in the lower Columbia river, Oregon and Washington, 2004: quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew

    2004-01-01

    For the seven monitoring sites used to regulate spill in water year 2004, an average of 99.0% of the total- dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value, based on calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites.

  15. Simulation of intelligent object behavior in a virtual reality system

    NASA Astrophysics Data System (ADS)

    Mironov, Sergey F.

    1998-01-01

    This article presents a technique for computer control of a power boat movement in real-time marine trainers or arcade games. The author developed and successfully implemented a general technique allowing intellectual navigation of computer controlled moving objects that proved to be appropriate for real-time applications. This technique covers significant part of necessary behavioral tasks that appear in such titles. At the same time the technique forms a part of a more general system that involves control of less complicated characters of another nature. The system being an open one can be easily used by an action or arcade programming to improve the overall quality of characters artificial intelligence style.

  16. Real-time visual communication to aid disaster recovery in a multi-segment hybrid wireless networking system

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos

    2012-06-01

    When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.

  17. Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey

    USGS Publications Warehouse

    Rydlund, Jr., Paul H.; Densmore, Brenda K.

    2012-01-01

    Geodetic surveys have evolved through the years to the use of survey-grade (centimeter level) global positioning to perpetuate and post-process vertical datum. The U.S. Geological Survey (USGS) uses Global Navigation Satellite Systems (GNSS) technology to monitor natural hazards, ensure geospatial control for climate and land use change, and gather data necessary for investigative studies related to water, the environment, energy, and ecosystems. Vertical datum is fundamental to a variety of these integrated earth sciences. Essentially GNSS surveys provide a three-dimensional position x, y, and z as a function of the North American Datum of 1983 ellipsoid and the most current hybrid geoid model. A GNSS survey may be approached with post-processed positioning for static observations related to a single point or network, or involve real-time corrections to provide positioning "on-the-fly." Field equipment required to facilitate GNSS surveys range from a single receiver, with a power source for static positioning, to an additional receiver or network communicated by radio or cellular for real-time positioning. A real-time approach in its most common form may be described as a roving receiver augmented by a single-base station receiver, known as a single-base real-time (RT) survey. More efficient real-time methods involving a Real-Time Network (RTN) permit the use of only one roving receiver that is augmented to a network of fixed receivers commonly known as Continually Operating Reference Stations (CORS). A post-processed approach in its most common form involves static data collection at a single point. Data are most commonly post-processed through a universally accepted utility maintained by the National Geodetic Survey (NGS), known as the Online Position User Service (OPUS). More complex post-processed methods involve static observations among a network of additional receivers collecting static data at known benchmarks. Both classifications provide users flexibility regarding efficiency and quality of data collection. Quality assurance of survey-grade global positioning is often overlooked or not understood and perceived uncertainties can be misleading. GNSS users can benefit from a blueprint of data collection standards used to ensure consistency among USGS mission areas. A classification of GNSS survey qualities provide the user with the ability to choose from the highest quality survey used to establish objective points with low uncertainties, identified as a Level I, to a GNSS survey for general topographic control without quality assurance, identified as a Level IV. A Level I survey is strictly limited to post-processed methods, whereas Level II, Level III, and Level IV surveys integrate variations of a RT approach. Among these classifications, techniques involving blunder checks and redundancy are important, and planning that involves the assessment of the overall satellite configuration, as well as terrestrial and space weather, are necessary to ensure an efficient and quality campaign. Although quality indicators and uncertainties are identified in post-processed methods using CORS, the accuracy of a GNSS survey is most effectively expressed as a comparison to a local benchmark that has a high degree of confidence. Real-time and post-processed methods should incorporate these "trusted" benchmarks as a check during any campaign. Global positioning surveys are expected to change rapidly in the future. The expansion of continuously operating reference stations, combined with newly available satellite signals, and enhancements to the conterminous geoid, are all sufficient indicators for substantial growth in real-time positioning and quality thereof.

  18. Gasohol Quality Control for Real Time Applications by Means of a Multimode Interference Fiber Sensor

    PubMed Central

    Rodríguez Rodríguez, Adolfo J.; Baldovino-Pantaleón, Oscar; Domínguez Cruz, Rene F.; Zamarreño, Carlos R.; Matías, Ignacio R.; May-Arrioja, Daniel A.

    2014-01-01

    In this work we demonstrate efficient quality control of a variety of gasoline and ethanol (gasohol) blends using a multimode interference (MMI) fiber sensor. The operational principle relies on the fact that the addition of ethanol to the gasohol blend reduces the refractive index (RI) of the gasoline. Since MMI sensors are capable of detecting small RI changes, the ethanol content of the gasohol blend is easily determined by tracking the MMI peak wavelength response. Gasohol blends with ethanol contents ranging from 0% to 50% has been clearly identified using this device, which provides a linear response with a maximum sensitivity of 0.270 nm/% EtOH. The sensor can also distinguish when water incorporated in the blend has exceeded the maximum volume tolerated by the gasohol blend, which is responsible for phase separation of the ethanol and gasoline and could cause serious engine failures. Since the MMI sensor is straightforward to fabricate and does not require any special coating it is a cost effective solution for real time and in-situ monitoring of the quality of gasohol blends. PMID:25256111

  19. Near Real-Time Automatic Data Quality Controls for the AERONET Version 3 Database: An Introduction to the New Level 1.5V Aerosol Optical Depth Data Product

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Smirnov, A.; Eck, T. F.; Slutsker, I.; Sorokin, M. G.; Espenak, F.; Schafer, J.; Sinyuk, A.

    2015-12-01

    The Aerosol Robotic Network (AERONET) has provided a database of aerosol optical depth (AOD) measured by surface-based Sun/sky radiometers for over 20 years. AERONET provides unscreened (Level 1.0) and automatically cloud cleared (Level 1.5) AOD in near real-time (NRT), while manually inspected quality assured (Level 2.0) AOD are available after instrument field deployment (Smirnov et al., 2000). The growing need for NRT quality controlled aerosol data has become increasingly important. Applications of AERONET NRT data include the satellite evaluation (e.g., MODIS, VIIRS, MISR, OMI), data synergism (e.g., MPLNET), verification of aerosol forecast models and reanalysis (e.g., GOCART, ICAP, NAAPS, MERRA), input to meteorological models (e.g., NCEP, ECMWF), and field campaign support (e.g., KORUS-AQ, ORACLES). In response to user needs for quality controlled NRT data sets, the new Version 3 (V3) Level 1.5V product was developed with similar quality controls as those applied by hand to the Version 2 (V2) Level 2.0 data set. The AERONET cloud screened (Level 1.5) NRT AOD database can be significantly impacted by data anomalies. The most significant data anomalies include AOD diurnal dependence due to contamination or obstruction of the sensor head windows, anomalous AOD spectral dependence due to problems with filter degradation, instrument gains, or non-linear changes in calibration, and abnormal changes in temperature sensitive wavelengths (e.g., 1020nm) in response to anomalous sensor head temperatures. Other less common AOD anomalies result from loose filters, uncorrected clock shifts, connection and electronic issues, and various solar eclipse episodes. Automatic quality control algorithms are applied to the new V3 Level 1.5 database to remove NRT AOD anomalies and produce the new AERONET V3 Level 1.5V AOD product. Results of the quality control algorithms are presented and the V3 Level 1.5V AOD database is compared to the V2 Level 2.0 AOD database.

  20. Antimicrobial Stewardship Program Implementation of a Quality Improvement Intervention Using Real-Time Feedback and an Electronic Order Set for the Management of Staphylococcus aureus Bacteremia.

    PubMed

    Rosa, Rossana; Zavala, Bruno; Cain, Natalie; Anjan, Shweta; Aragon, Laura; Abbo, Lilian M

    2018-03-01

    Antimicrobial stewardship programs can optimize the management of Staphylococcus aureus bacteremia by integrating information technology and microbiology laboratory resources. This study describes our experience implementing an intervention consisting of real-time feedback and the use of an electronic order set for the management of S. aureus bacteremia. Infect Control Hosp Epidemiol 2018;39:346-349.

  1. Real-time robot deliberation by compilation and monitoring of anytime algorithms

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo

    1994-01-01

    Anytime algorithms are algorithms whose quality of results improves gradually as computation time increases. Certainty, accuracy, and specificity are metrics useful in anytime algorighm construction. It is widely accepted that a successful robotic system must trade off between decision quality and the computational resources used to produce it. Anytime algorithms were designed to offer such a trade off. A model of compilation and monitoring mechanisms needed to build robots that can efficiently control their deliberation time is presented. This approach simplifies the design and implementation of complex intelligent robots, mechanizes the composition and monitoring processes, and provides independent real time robotic systems that automatically adjust resource allocation to yield optimum performance.

  2. Real-World Evidence: What It Is and What It Can Tell Us According to the International Society for Pharmacoepidemiology (ISPE) Comparative Effectiveness Research (CER) Special Interest Group (SIG).

    PubMed

    Yuan, Hongbo; Ali, M Sanni; Brouwer, Emily S; Girman, Cynthia J; Guo, Jeff J; Lund, Jennifer L; Patorno, Elisabetta; Slaughter, Jonathan L; Wen, Xuerong; Bennett, Dimitri

    2018-05-07

    On December 8, 2016, the New England Journal of Medicine published a sounding board on Real World Evidence (RWE) 1 by the US Food and Drug Administration (FDA) leadership. While the value of RWE based on nonrandomized observational studies was appreciated, such as for hypothesis generating, safety, and measuring quality in healthcare delivery, the authors expressed concerns on the quality of data sources and the ability of methodologies to control for confounding. In response, we offer a few considerations regarding these concerns. © 2018, The American Society for Clinical Pharmacology and Therapeutics.

  3. Real-time water quality monitoring and providing water quality ...

    EPA Pesticide Factsheets

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  4. Software engineering aspects of real-time programming concepts

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  5. Real-life effectiveness of budesonide/formoterol therapy in asthma: A subanalysis of the SMARTASIA study.

    PubMed

    Lin, Jiangtao; Tang, Yan; Xiu, Qingyu; Kang, Jian; Cai, Shaoxi; Huang, Kewu; Itoh, Yohji; Ling, Xia; Zhong, Nanshan

    2016-01-01

    In the Study to Investigate Real Life Effectiveness of Symbicort Maintenance and Reliever Therapy in Asthma Patients Across Asia, the effectiveness of single-inhaler budesonide/formoterol maintenance and reliever therapy was evaluated in patients with poorly controlled asthma. To study the effects of this therapy on a Chinese patient subgroup. In this 12-week, multicenter, open-label therapeutic phase IV study, patients with partially controlled or uncontrolled asthma were switched from their usual asthma treatment to budesonide/formoterol (160/4.5 μg, one inhalation twice daily and as needed) after a 2-week run-in period. Primary and secondary objectives of the study, asthma control and quality of life were assessed by using the five-item Asthma Control Questionnaire and the Standardized Asthma Quality of Life Questionnaire. Asthma symptom scores, study medication use, asthma control and/or symptom-free days, and the number of asthma-related nighttime awakenings were also monitored. In total, 478 Chinese patients were enrolled and 407 patients initiated treatment. The patients displayed a significant improvement in mean (standard deviation) five-item Asthma Control Questionnaire (-0.58 ± 0.86; p < 0.0001) and Standardized Asthma Quality of Life Questionnaire (0.69 ± 0.79; p < 0.0001) scores versus the run-in period. Mean (standard deviation) asthma symptom scores were significantly reduced compared with run-in (-0.30 ± 0.55 daytime, -0.31 ± 0.56 nighttime; p < 0.0001 for both), as was as-needed study medication use (-0.24 ± 1.16 daytime, -0.28 ± 0.97 nighttime; p < 0.0001 for both). Patients who received previous treatment with salmeterol/fluticasone propionate also showed improvement in asthma control. In China, asthma control in Chinese patients whose asthma was not fully controlled with previous standard therapy improved during 12 weeks of treatment with budesonide/formoterol maintenance and reliever therapy. Quality of life was improved, and treatment was well tolerated. (Clinical Trials identifier NCT00939341).

  6. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    USGS Publications Warehouse

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the event that a station does malfunction, ADAM provides an accurate estimate for the period of missing data. The ADAM software also is used in the quality assurance and quality control of the data. The virtual signals are compared to the real-time data, and if the difference between the two signals exceeds a certain tolerance, corrective action to the data and (or) the gaging station can be taken. The ADAM software is automated so that, each morning, the real-time EDEN data are compared to the inferential sensor signals and digital reports highlighting potential erroneous real-time data are generated for appropriate support personnel. The development and application of inferential sensors is easily transferable to other real-time hydrologic monitoring networks.

  7. [RehaFuturReal®: Evaluation of Implementation in Organizational Structure and in Counseling Process - An Overview of Results].

    PubMed

    Arling, V; Knispel, J; Spijkers, W

    2016-08-01

    Due to prevailing future challenges in vocational rehabilitation, development process RehaFutur (BMAS) was initiated. In this context, recommendations were made to secure a future-oriented, innovative vocational rehabilitation in Germany. Deutsche Rentenversicherung (DRV) Westfalen transferred these recommendations into a new and applicable counseling concept RehaFutuReal(®). Rehabilitation managers (RM) are central protagonists in counseling process. Therefore, RehaFuturReal(®) focused on optimization of counseling performance. To achieve this aim, rehabilitation managers were taught to work with a case management (CM) based approach. RWTH Aachen supported RehaFuturReal(®) from an academic point of view and conducted a formative and summative evaluation. Primary aim of RWTH Aachen was to support DRV Westfalen during implementation of RehaFuturReal(®) into their organizational structure. Additionally, RWTH Aachen controlled whether transfer of RehaFutuReal(®) in counseling process was successful. From 04-01-13 until 12-31-14, RehaFuturReal(®) was tested by DRV Westfalen in the intervention district Dortmund with 10 RM. There were 3 selection criteria for the overall sample of N=320 insurants: participants were required to have an active employment status, suffered from integration issues and were in need of support to achieve vocational integration. Evaluation of RehaFuturReal(®) was realized summative (pre-post-comparison) and formative (process-orientated). Evaluative judgment regarding implementation in organizational structure and counseling process was performed by using three-stage-concept of Donabedian (quality of structure, process and results). Thereby, feedback of RM, insurants and employers was taken into account. Analysis of evaluation results revealed a positive overall impression. Implementation into organizational structure was successful on all 3 quality stages: concept of project and CM-training were an adequate basis and appropriately put into practice by fulfilling prescribed objectives, topics and schedule (quality of structure). Rehabilitation managers identified themselves with the implementation process into DRV Westfalen (grading of CM training: M=1,67; SD=0,65; quality of process). Analogous, consultants reported a high level of satisfaction during implementation of new counseling process (possible span: 1-4; M=3,11; SD=0,33; quality of results). Regarding implementation of counseling process, sample fitted into 3 selection criteria wherefore the correct insurants were picked in RehaFuturReal(®) (quality of structure). CM-orientated counseling approach was properly implemented into everyday work of RM by using CM-instruments for documentation (quality of process). RM were highly satisfied (possible span: 1-4) with counseling performance (M=3,43; SD=0,77). Employers also rated counseling performance positively (M=3,38; SD=0,85). By contrast, surveying insurants revealed a heterogeneous impression of satisfaction (M=2,97; SD=1,03) (quality of results). © Georg Thieme Verlag KG Stuttgart · New York.

  8. Real-time video signal processing by generalized DDA and control memories: three-dimensional rotation and mapping

    NASA Astrophysics Data System (ADS)

    Hama, Hiromitsu; Yamashita, Kazumi

    1991-11-01

    A new method for video signal processing is described in this paper. The purpose is real-time image transformations at low cost, low power, and small size hardware. This is impossible without special hardware. Here generalized digital differential analyzer (DDA) and control memory (CM) play a very important role. Then indentation, which is called jaggy, is caused on the boundary of a background and a foreground accompanied with the processing. Jaggy does not occur inside the transformed image because of adopting linear interpretation. But it does occur inherently on the boundary of the background and the transformed images. It causes deterioration of image quality, and must be avoided. There are two well-know ways to improve image quality, blurring and supersampling. The former does not have much effect, and the latter has the much higher cost of computing. As a means of settling such a trouble, a method is proposed, which searches for positions that may arise jaggy and smooths such points. Computer simulations based on the real data from VTR, one scene of a movie, are presented to demonstrate our proposed scheme using DDA and CMs and to confirm the effectiveness on various transformations.

  9. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system,more » GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.« less

  10. Building large mosaics of confocal edomicroscopic images using visual servoing.

    PubMed

    Rosa, Benoît; Erden, Mustafa Suphi; Vercauteren, Tom; Herman, Benoît; Szewczyk, Jérôme; Morel, Guillaume

    2013-04-01

    Probe-based confocal laser endomicroscopy provides real-time microscopic images of tissues contacted by a small probe that can be inserted in vivo through a minimally invasive access. Mosaicking consists in sweeping the probe in contact with a tissue to be imaged while collecting the video stream, and process the images to assemble them in a large mosaic. While most of the literature in this field has focused on image processing, little attention has been paid so far to the way the probe motion can be controlled. This is a crucial issue since the precision of the probe trajectory control drastically influences the quality of the final mosaic. Robotically controlled motion has the potential of providing enough precision to perform mosaicking. In this paper, we emphasize the difficulties of implementing such an approach. First, probe-tissue contacts generate deformations that prevent from properly controlling the image trajectory. Second, in the context of minimally invasive procedures targeted by our research, robotic devices are likely to exhibit limited quality of the distal probe motion control at the microscopic scale. To cope with these problems visual servoing from real-time endomicroscopic images is proposed in this paper. It is implemented on two different devices (a high-accuracy industrial robot and a prototype minimally invasive device). Experiments on different kinds of environments (printed paper and ex vivo tissues) show that the quality of the visually servoed probe motion is sufficient to build mosaics with minimal distortion in spite of disturbances.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shattan, Michael; Stowe, Ashley; McIntosh, Kathryn

    Explore feasibility of portable LIBS and micro-XRF systems as methods of field screening for real debris; Develop a LIBS Capability to rapidly screen beads for production quality control; Complete 3D elemental mapping of surrogate debris to determine uranium and other elemental migration patterns during debris formation

  12. Toward Higher QA: From Parametric Release of Sterile Parenteral Products to PAT for Other Pharmaceutical Dosage Forms.

    PubMed

    Hock, Sia Chong; Constance, Neo Xue Rui; Wah, Chan Lai

    2012-01-01

    Pharmaceutical products are generally subjected to end-product batch testing as a means of quality control. Due to the inherent limitations of conventional batch testing, this is not the most ideal approach for determining the pharmaceutical quality of the finished dosage form. In the case of terminally sterilized parenteral products, the limitations of conventional batch testing have been successfully addressed with the application of parametric release (the release of a product based on control of process parameters instead of batch sterility testing at the end of the manufacturing process). Consequently, there has been an increasing interest in applying parametric release to other pharmaceutical dosage forms, beyond terminally sterilized parenteral products. For parametric release to be possible, manufacturers must be capable of designing quality into the product, monitoring the manufacturing processes, and controlling the quality of intermediates and finished products in real-time. Process analytical technology (PAT) has been thought to be capable of contributing to these prerequisites. It is believed that the appropriate use of PAT tools can eventually lead to the possibility of real-time release of other pharmaceutical dosage forms, by-passing the need for end-product batch testing. Hence, this literature review attempts to present the basic principles of PAT, introduce the various PAT tools that are currently available, present their recent applications to pharmaceutical processing, and explain the potential benefits that PAT can bring to conventional ways of processing and quality assurance of pharmaceutical products. Last but not least, current regulations governing the use of PAT and the manufacturing challenges associated with PAT implementation are also discussed. Pharmaceutical products are generally subjected to end-product batch testing as a means of quality control. Due to the inherent limitations of conventional batch testing, this is not the most ideal approach. In the case of terminally sterilized parenteral products, these limitations have been successfully addressed with the application of parametric release (the release of a product based on control of process parameters instead of batch sterility testing at the end of the manufacturing process). Consequently, there has been an increasing interest in applying parametric release to other pharmaceutical dosage forms. With the advancement of process analytical technology (PAT), it is possible to monitor the manufacturing processes closely. This will eventually enable quality control of the intermediates and finished products, and thus their release in real-time. Hence, this literature review attempts to present the basic principles of PAT, introduce the various PAT tools that are currently available, present their recent applications to pharmaceutical processing, and explain the potential benefits that PAT can bring to conventional ways of processing and quality assurance of pharmaceutical products. It will also discuss the current regulations governing the use of PAT and the manufacturing challenges associated with the implementation of PAT.

  13. Dynamic quality of service model for improving performance of multimedia real-time transmission in industrial networks.

    PubMed

    Gopalakrishnan, Ravichandran C; Karunakaran, Manivannan

    2014-01-01

    Nowadays, quality of service (QoS) is very popular in various research areas like distributed systems, multimedia real-time applications and networking. The requirements of these systems are to satisfy reliability, uptime, security constraints and throughput as well as application specific requirements. The real-time multimedia applications are commonly distributed over the network and meet various time constraints across networks without creating any intervention over control flows. In particular, video compressors make variable bit-rate streams that mismatch the constant-bit-rate channels typically provided by classical real-time protocols, severely reducing the efficiency of network utilization. Thus, it is necessary to enlarge the communication bandwidth to transfer the compressed multimedia streams using Flexible Time Triggered- Enhanced Switched Ethernet (FTT-ESE) protocol. FTT-ESE provides automation to calculate the compression level and change the bandwidth of the stream. This paper focuses on low-latency multimedia transmission over Ethernet with dynamic quality-of-service (QoS) management. This proposed framework deals with a dynamic QoS for multimedia transmission over Ethernet with FTT-ESE protocol. This paper also presents distinct QoS metrics based both on the image quality and network features. Some experiments with recorded and live video streams show the advantages of the proposed framework. To validate the solution we have designed and implemented a simulator based on the Matlab/Simulink, which is a tool to evaluate different network architecture using Simulink blocks.

  14. Can a combination of average of normals and "real time" External Quality Assurance replace Internal Quality Control?

    PubMed

    Badrick, Tony; Graham, Peter

    2018-03-28

    Internal Quality Control and External Quality Assurance are separate but related processes that have developed independently in laboratory medicine over many years. They have different sample frequencies, statistical interpretations and immediacy. Both processes have evolved absorbing new understandings of the concept of laboratory error, sample material matrix and assay capability. However, we do not believe at the coalface that either process has led to much improvement in patient outcomes recently. It is the increasing reliability and automation of analytical platforms along with improved stability of reagents that has reduced systematic and random error, which in turn has minimised the risk of running less frequent IQC. We suggest that it is time to rethink the role of both these processes and unite them into a single approach using an Average of Normals model supported by more frequent External Quality Assurance samples. This new paradigm may lead to less confusion for laboratory staff and quicker responses to and identification of out of control situations.

  15. Near real-time adverse drug reaction surveillance within population-based health networks: methodology considerations for data accrual.

    PubMed

    Avery, Taliser R; Kulldorff, Martin; Vilk, Yury; Li, Lingling; Cheetham, T Craig; Dublin, Sascha; Davis, Robert L; Liu, Liyan; Herrinton, Lisa; Brown, Jeffrey S

    2013-05-01

    This study describes practical considerations for implementation of near real-time medical product safety surveillance in a distributed health data network. We conducted pilot active safety surveillance comparing generic divalproex sodium to historical branded product at four health plans from April to October 2009. Outcomes reported are all-cause emergency room visits and fractures. One retrospective data extract was completed (January 2002-June 2008), followed by seven prospective monthly extracts (January 2008-November 2009). To evaluate delays in claims processing, we used three analytic approaches: near real-time sequential analysis, sequential analysis with 1.5 month delay, and nonsequential (using final retrospective data). Sequential analyses used the maximized sequential probability ratio test. Procedural and logistical barriers to active surveillance were documented. We identified 6586 new users of generic divalproex sodium and 43,960 new users of the branded product. Quality control methods identified 16 extract errors, which were corrected. Near real-time extracts captured 87.5% of emergency room visits and 50.0% of fractures, which improved to 98.3% and 68.7% respectively with 1.5 month delay. We did not identify signals for either outcome regardless of extract timeframe, and slight differences in the test statistic and relative risk estimates were found. Near real-time sequential safety surveillance is feasible, but several barriers warrant attention. Data quality review of each data extract was necessary. Although signal detection was not affected by delay in analysis, when using a historical control group differential accrual between exposure and outcomes may theoretically bias near real-time risk estimates towards the null, causing failure to detect a signal. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Practical UXO Classification: Enhanced Data Processing Strategies for Technology Transition - Fort Ord: Dynamic and Cued Metalmapper Processing and Classification

    DTIC Science & Technology

    2017-06-06

    OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...Geophysical Mapping, Electromagnetic Induction, Instrument Verification Strip, Time Domain Electromagnetic, Unexploded Ordnance 16. SECURITY...Munitions Response QA Quality Assurance QC Quality Control ROC Receiver Operating Characteristic RTK Real- time Kinematic s Second SNR

  17. [Audiovisual telecommunication by multimedia technology in HNO medicine. ISDN--internet--ATM].

    PubMed

    Plinkert, P K; Plinkert, B; Kurek, R; Zenner, H P

    2000-11-01

    Telemedicine includes all medical activities in diagnosis, therapeutics, or social medicine undertaken by means of an electronic transfer medium, enabling the transmission of visual and acoustic information over long distances to doctors not personally present at the place of the requested consultation. Most experience with telemedicine applications has been gained in the field of diagnosis (teleconsultation, teleradiology, telepathology) and is expanding to quality control and quality assurance. Decisive for each form of application is its availability, practicability, cost, safety, and especially quality of audiovisual transmission. For telesurgical applications, particularly the use of minimally invasive techniques in otorhinolaryngology, head, and neck surgery, the high quality transmission of audiovisual data in real time is necessary. Rapid expansion and further developments in transmission technologies and networks in the last decade have created several technologies with increased quality and costs. In this paper, we tested different transmission media for audiovisual telecommunication--integrated services digital network (ISDN), Internet, and asynchronous transfer mode (ATM)--using real time video transmission of typical operations in otorhinolaryngology. Their applications, costs, and future perspectives are discussed.

  18. Development of a Control Optimization System for Real Time Monitoring of Managed Aquifer Recharge and Recovery Systems Using Intelligent Sensors

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.

    2015-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.

  19. Sequentially Executed Model Evaluation Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Provides a message passing framework between generic input, model and output drivers, and specifies an API for developing such drivers. Also provides batch and real-time controllers which step the model and I/O through the time domain (or other discrete domain), and sample I/O drivers. This is a library framework, and does not, itself, solve any problems or execute any modeling. The SeMe framework aids in development of models which operate on sequential information, such as time-series, where evaluation is based on prior results combined with new data for this iteration. Has applications in quality monitoring, and was developed as partmore » of the CANARY-EDS software, where real-time water quality data is being analyzed for anomalies.« less

  20. Real-time WebRTC-based design for a telepresence wheelchair.

    PubMed

    Van Kha Ly Ha; Rifai Chai; Nguyen, Hung T

    2017-07-01

    This paper presents a novel approach to the telepresence wheelchair system which is capable of real-time video communication and remote interaction. The investigation of this emerging technology aims at providing a low-cost and efficient way for assisted-living of people with disabilities. The proposed system has been designed and developed by deploying the JavaScript with Hyper Text Markup Language 5 (HTML5) and Web Real-time Communication (WebRTC) in which the adaptive rate control algorithm for video transmission is invoked. We conducted experiments in real-world environments, and the wheelchair was controlled from a distance using the Internet browser to compare with existing methods. The results show that the adaptively encoded video streaming rate matches the available bandwidth. The video streaming is high-quality with approximately 30 frames per second (fps) and round trip time less than 20 milliseconds (ms). These performance results confirm that the WebRTC approach is a potential method for developing a telepresence wheelchair system.

  1. Effect of Continuous Glucose Monitoring on Glycemic Control, Acute Admissions, and Quality of Life: A Real-World Study.

    PubMed

    Charleer, Sara; Mathieu, Chantal; Nobels, Frank; De Block, Christophe; Radermecker, Regis P; Hermans, Michel P; Taes, Youri; Vercammen, Chris; T'Sjoen, Guy; Crenier, Laurent; Fieuws, Steffen; Keymeulen, Bart; Gillard, Pieter

    2018-03-01

    Randomized controlled trials evaluating real-time continuous glucose monitoring (RT-CGM) patients with type 1 diabetes (T1D) show improved glycemic control, but limited data are available on real-world use. To assess impact of RT-CGM in real-world settings on glycemic control, hospital admissions, work absenteeism, and quality of life (QOL). Prospective, observational, multicenter, cohort study. A total of 515 adults with T1D on continuous subcutaneous insulin infusion (CSII) therapy starting in the Belgian RT-CGM reimbursement program. Initiation of RT-CGM reimbursement. Hemoglobin A1c (HbA1c) evolution from baseline to 12 months. Between September 1, 2014, and December 31, 2016, 515 adults entered the reimbursement system. Over this period, 417 (81%) patients used RT-CGM for at least 12 months. Baseline HbA1c was 7.7 ± 0.9% (61 ± 9.8 mmol/mol) and decreased to 7.4 ± 0.8% (57 ± 8.7 mmol/mol) at 12 months (P < 0.0001). Subjects who started RT-CGM because of insufficient glycemic control showed stronger decrease in HbA1c at 4, 8, and 12 months compared with patients who started because of hypoglycemia or pregnancy. In the year preceding reimbursement, 16% of patients were hospitalized for severe hypoglycemia or ketoacidosis in contrast to 4% (P < 0.0005) the following year, with decrease in admission days from 54 to 18 per 100 patient years (P < 0.0005). In the same period, work absenteeism decreased and QOL improved significantly, with strong decline in fear of hypoglycemia. Sensor-augmented pump therapy in patients with T1D followed in specialized centers improves HbA1c, fear of hypoglycemia, and QOL, whereas work absenteeism and admissions for acute diabetes complications decreased.

  2. Revisiting sample size: are big trials the answer?

    PubMed

    Lurati Buse, Giovanna A L; Botto, Fernando; Devereaux, P J

    2012-07-18

    The superiority of the evidence generated in randomized controlled trials over observational data is not only conditional to randomization. Randomized controlled trials require proper design and implementation to provide a reliable effect estimate. Adequate random sequence generation, allocation implementation, analyses based on the intention-to-treat principle, and sufficient power are crucial to the quality of a randomized controlled trial. Power, or the probability of the trial to detect a difference when a real difference between treatments exists, strongly depends on sample size. The quality of orthopaedic randomized controlled trials is frequently threatened by a limited sample size. This paper reviews basic concepts and pitfalls in sample-size estimation and focuses on the importance of large trials in the generation of valid evidence.

  3. Real-time video quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  4. Real-time, T-ray imaging using a sub-terahertz gyrotron

    NASA Astrophysics Data System (ADS)

    Han, Seong-Tae; Torrezan, Antonio C.; Sirigiri, Jagadishwar R.; Shapiro, Michael A.; Temkin, Richard J.

    2012-06-01

    We demonstrated real-time, active, T-ray imaging using a 0.46 THz gyrotron capable of producing 16 W in continuous wave operation and a pyroelectric array camera with 124-by-124 pixels. An expanded Gaussian beam from the gyrotron was used to maintain the power density above the detection level of the pyroelectric array over the area of the irradiated object. Real-time imaging at a video rate of 48 Hz was achieved through the use of the built-in chopper of the camera. Potential applications include fast scanning for security purposes and for quality control of dry or frozen foods.

  5. An Optimized Trajectory Planning for Welding Robot

    NASA Astrophysics Data System (ADS)

    Chen, Zhilong; Wang, Jun; Li, Shuting; Ren, Jun; Wang, Quan; Cheng, Qunchao; Li, Wentao

    2018-03-01

    In order to improve the welding efficiency and quality, this paper studies the combined planning between welding parameters and space trajectory for welding robot and proposes a trajectory planning method with high real-time performance, strong controllability and small welding error. By adding the virtual joint at the end-effector, the appropriate virtual joint model is established and the welding process parameters are represented by the virtual joint variables. The trajectory planning is carried out in the robot joint space, which makes the control of the welding process parameters more intuitive and convenient. By using the virtual joint model combined with the B-spline curve affine invariant, the welding process parameters are indirectly controlled by controlling the motion curve of the real joint. To solve the optimal time solution as the goal, the welding process parameters and joint space trajectory joint planning are optimized.

  6. Performance evaluation of power control algorithms in wireless cellular networks

    NASA Astrophysics Data System (ADS)

    Temaneh-Nyah, C.; Iita, V.

    2014-10-01

    Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.

  7. Effects of real time control of sewer systems on treatment plant performance and receiving water quality.

    PubMed

    Frehmann, T; Niemann, A; Ustohal, P; Geiger, W F

    2002-01-01

    Four individual mathematical submodels simulating different subsystems of urban drainage were intercoupled to an integral model. The submodels (for surface runoff, flow in sewer system, wastewater treatment plant and receiving water) were calibrated on the basis of field data measured in an existing urban catchment investigation. Three different strategies for controlling the discharge in the sewer network were defined and implemented in the integral model. The impact of these control measures was quantified by representative immission state-parameters of the receiving water. The results reveal that the effect of a control measure may be ambivalent, depending on the referred component of a complex drainage system. Furthermore, it is demonstrated that the drainage system in the catchment investigation can be considerably optimised towards environmental protection and operation efficiency if an appropriate real time control on the integral scale is applied.

  8. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety

    PubMed Central

    Huang, Hui; Liu, Li; Ngadi, Michael O.

    2014-01-01

    Hyperspectral imaging which combines imaging and spectroscopic technology is rapidly gaining ground as a non-destructive, real-time detection tool for food quality and safety assessment. Hyperspectral imaging could be used to simultaneously obtain large amounts of spatial and spectral information on the objects being studied. This paper provides a comprehensive review on the recent development of hyperspectral imaging applications in food and food products. The potential and future work of hyperspectral imaging for food quality and safety control is also discussed. PMID:24759119

  9. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2010: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2011-01-01

    For the eight monitoring stations in water year 2010, a total of 99.7 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. Data received from the individual stations ranged from 98.4 to 100.0 percent complete.

  10. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2009: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; and Johnston, Matthew W.

    2010-01-01

    For the eight monitoring stations in water year 2009, a total of 99.2 percent of the TDG data were received in real time by the USGS satellite downlink and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the individual stations ranged from 97.0 to 100.0 percent complete.

  11. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2007: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2007-01-01

    For the eight monitoring sites in water year 2007, an average of 99.5% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the sites ranged from 97.9% to 100.0% complete.

  12. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2008: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2008-01-01

    For the eight monitoring stations in water year 2008, an average of 99.6 percent of the TDG data were received in real time by the USGS satellite downlink and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. Data received from the individual stations ranged from 98.8 to 100.0 percent complete.

  13. Image analysis for maintenance of coating quality in nickel electroplating baths--real time control.

    PubMed

    Vidal, M; Amigo, J M; Bro, R; van den Berg, F; Ostra, M; Ubide, C

    2011-11-07

    The aim of this paper is to show how it is possible to extract analytical information from images acquired with a flatbed scanner and make use of this information for real time control of a nickel plating process. Digital images of plated steel sheets in a nickel bath are used to follow the process under degradation of specific additives. Dedicated software has been developed for making the obtained results accessible to process operators. This includes obtaining the RGB image, to select the red channel data exclusively, to calculate the histogram of the red channel data and to calculate the mean colour value (MCV) and the standard deviation of the red channel data. MCV is then used by the software to determine the concentration of the additives Supreme Plus Brightner (SPB) and SA-1 (for confidentiality reasons, the chemical contents cannot be further detailed) present in the bath (these two additives degrade and their concentration changes during the process). Finally, the software informs the operator when the bath is generating unsuitable quality plating and suggests the amount of SPB and SA-1 to be added in order to recover the original plating quality. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-06-08

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less

  15. Investigation of Pearl River data collection system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The reliability of employing NASA developed remote sensing for in situ near real time monitoring of water quality in the Pearl River is evaluated. The placement, operation and maintenance of a number of NASA developed data collection platforms (DCP's) on the Pearl River are described. The reception, processing, and retransmission of water quality data from an ERTS satellite to the Mississippi Air and Water Pollution Control Commission (MAWPCC) via computer linkup are assessed.

  16. Development and Application of the Key Technologies for the Quality Control and Inspection of National Geographical Conditions Survey Products

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Ma, W.; Zhang, P.; Zhao, T.

    2018-04-01

    The First National Geographical Condition Survey is a predecessor task to dynamically master basic situations of the nature, ecology and human activities on the earth's surface and it is the brand-new mapping geographic information engineering. In order to ensure comprehensive, real and accurate survey results and achieve the quality management target which the qualified rate is 100 % and the yield is more than 80 %, it is necessary to carry out the quality control and result inspection for national geographical conditions survey on a national scale. To ensure that achievement quality meets quality target requirements, this paper develops the key technology method of "five-in-one" quality control that is constituted by "quality control system of national geographical condition survey, quality inspection technology system, quality evaluation system, quality inspection information management system and national linked quality control institutions" by aiming at large scale, wide coverage range, more undertaking units, more management levels, technical updating, more production process and obvious regional differences in the national geographical condition survey and combining with novel achievement manifestation, complicated dependency, more special reference data, and large data size. This project fully considering the domestic and foreign related research results and production practice experience, combined with the technology development and the needs of the production, it stipulates the inspection methods and technical requirements of each stage in the quality inspection of the geographical condition survey results, and extends the traditional inspection and acceptance technology, and solves the key technologies that are badly needed in the first national geographic survey.

  17. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  18. Application of Motion Induced Remote-Field Eddy-Current effect to online inspection and quality examination of rolling metallic strips

    NASA Astrophysics Data System (ADS)

    Sun, Yushi; Udpa, Satish; Lord, William; Udpa, Lalita; Ouyang, Tianhe

    2001-04-01

    The Motion Induced Remote-Field Eddy-Current (MIRFEC) effect was first observed in 1994. The effect was first exploited for detecting pipeline stress corrosion cracks as a part of a research project sponsored by the U.S. Department of Transportation. This paper presents a new application of the MIRFEC effect for online inspection of rolling metallic strips. Currently, rolled metallic strips and sheets are inspected off-line, which is costly, time consuming and not ideal for quality control. A well-designed online diagnostic and control system for metal rolling process may be able to reduce cost, improve quality, and hence enhance competitiveness of the product. The overall objective of this paper is to demonstrate the feasibility of a new nondestructive measurement system for on-line diagnostics and control of metallic rolling process using the MIRFEC effect. The system can be used to monitor, in real time, metallic strips/sheets for possible anomalies, inclusions, voids, bubbles, lamination, as well as variations in its magnetic and other properties. The potential advantages of the MIRFEC system include simplicity, robustness, low cost, high reliability, quick and accurate signal classification and characterization. Such systems can be used for real-time process control, or off-line data analysis. The technique also allows operation at high temperatures, tolerates large lift-off and vibration, and high rolling speed. Results of finite element modeling of the MIRFEC effect and experimental measurement data obtained from a prototype system are presented.

  19. A Comparison Between Publish-and-Subscribe and Client-Server Models in Distributed Control System Networks

    NASA Technical Reports Server (NTRS)

    Boulanger, Richard P., Jr.; Kwauk, Xian-Min; Stagnaro, Mike; Kliss, Mark (Technical Monitor)

    1998-01-01

    The BIO-Plex control system requires real-time, flexible, and reliable data delivery. There is no simple "off-the-shelf 'solution. However, several commercial packages will be evaluated using a testbed at ARC for publish- and-subscribe and client-server communication architectures. Point-to-point communication architecture is not suitable for real-time BIO-Plex control system. Client-server architecture provides more flexible data delivery. However, it does not provide direct communication among nodes on the network. Publish-and-subscribe implementation allows direct information exchange among nodes on the net, providing the best time-critical communication. In this work Network Data Delivery Service (NDDS) from Real-Time Innovations, Inc. ARTIE will be used to implement publish-and subscribe architecture. It offers update guarantees and deadlines for real-time data delivery. Bridgestone, a data acquisition and control software package from National Instruments, will be tested for client-server arrangement. A microwave incinerator located at ARC will be instrumented with a fieldbus network of control devices. BridgeVIEW will be used to implement an enterprise server. An enterprise network consisting of several nodes at ARC and a WAN connecting ARC and RISC will then be setup to evaluate proposed control system architectures. Several network configurations will be evaluated for fault tolerance, quality of service, reliability and efficiency. Data acquired from these network evaluation tests will then be used to determine preliminary design criteria for the BIO-Plex distributed control system.

  20. Simulation of mixture microstructures via particle packing models and their direct comparison with real mixtures

    NASA Astrophysics Data System (ADS)

    Gulliver, Eric A.

    The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.

  1. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    NASA Astrophysics Data System (ADS)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an architecture to represent how integrate air quality sensor data stream into geospatial data infrastructure to present an interoperable air quality monitoring system for supporting disaster management systems by real time information. Developed system tested on Tehran air pollution sensors for calculating Air Quality Index (AQI) for CO pollutant and subsequently notifying registered users in emergency cases by sending warning E-mails. Air quality monitoring portal used to retrieving and visualize sensor observation through interoperable framework. This system provides capabilities to retrieve SOS observation using WPS in a cascaded service chaining pattern for monitoring trend of timely sensor observation.

  2. Real-time control of sewer systems using turbidity measurements.

    PubMed

    Lacour, C; Schütze, M

    2011-01-01

    Real-time control (RTC) of urban drainage systems has been proven useful as a means to reduce pollution by combined sewer overflow discharges. So far, RTC has been investigated mainly with a sole focus on water quantity aspects. However, as measurement techniques for pollution of wastewater are advancing, pollution-based RTC might be of increasing interest. For example, turbidity data sets from an extensive measurement programme in two Paris catchments allow a detailed investigation of the benefits of using pollution-based data for RTC. This paper exemplifies this, comparing pollution-based RTC with flow-based RTC. Results suggest that pollution-based RTC indeed has some potential, particularly when measurements of water-quality characteristics are readily available.

  3. Human responses to augmented virtual scaffolding models.

    PubMed

    Hsiao, Hongwei; Simeonov, Peter; Dotson, Brian; Ammons, Douglas; Kau, Tsui-Ying; Chiou, Sharon

    2005-08-15

    This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job.

  4. Integrated Ocean Profile Data Delivery for Operations and Climate Research

    NASA Astrophysics Data System (ADS)

    Sun, C. L.; Soreide, N. N.

    2006-12-01

    An end-to-end data and information system for delivering integrated real-time and historical datasets is presented in this paper. The purposes of this paper are: (1) to illustrate the procedures of quality control and loading ocean profile data into the U.S. National Oceanographic Data Center (NODC) ocean database and (2) to facilitate the development and provision of a wide variety of useful data, analyses, and information products for operations and climate research. The NODC currently focuses on acquiring, processing, and distributing ocean profile data collected by two operational global ocean observing systems: Argo Profiling Network and Global Temperature-Salinity Profile Program (GTSPP). The two data streams contain upper ocean temperature and salinity data mainly from profiling floats, expendable bathythermographs (XBTs) but also from conductivity-temperature-depths (CTDs) and bottles. Argo has used resources from 23 or so countries to make unprecedented in-situ observations of the global ocean. All Argo data are publicly available in near real-time via the Global Telecommunications System (GTS) and in scientifically quality-controlled form with a few months delay. The NODC operates the Global Argo Data Repository for long-term archiving Argo data and serves the data in the NODC version of Argo netCDF and tab- delimited spreadsheet text formats to the public through the NODC Web site at http://www.nodc.noaa.gov/argo/. The GTSPP is a cooperative international program. It maintains a global ocean T-S resource with data that are both up-to-date and of the highest quality possible. Both real-time data transmitted over the GTS, and delayed- mode data received by contribution countries are acquired and quality controlled by the Marine Environmental Data Service, Canada and is eventually incorporated into a continuously managed database maintained by the NODC. Information and data are made publicly available at http://www.nodc.noaa.gov/GTSPP/ . Web-based tools are developed for allowing users on the Web to query and subset the data by parameter, location, time, and other attributes such as instrument types and quality flags. Desktop applications with capabilities of exploring data from real-time data streams and integrating the data streams with archives across the Internet are available for users who have a high bandwidth Internet connection. Alternatively, users without high-speed network access can order CD/DVD-ROMs from the NODC that contain the integrated dataset and then use software over potentially low-bandwidth network connection to periodically update the CD/DVD-ROM-based archive with new data

  5. Greening the Engineering and Technology Curriculum via Real Life Hands-on Projects

    USDA-ARS?s Scientific Manuscript database

    This paper aims at demonstrating how greening efforts can be embedded into science and engineering courses without major curricular changes. In this regard, examples of final projects assigned in a statistical quality control, a 500-level, graduate engineering course, focusing on campus sustainabili...

  6. United Kingdom: Quality with Control.

    ERIC Educational Resources Information Center

    Paulu, Burton

    1978-01-01

    Describes the autonomous workings of the British Broadcasting Corporation and the Independent Broadcasting Authority, where editorializing is prohibited, advertising is limited, and the aim of programing is to provide the public with real choices at all hours, and to maintain high standards of planning, writing, production, and presentation. (JMF)

  7. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  8. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    NASA Astrophysics Data System (ADS)

    Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.

    2013-04-01

    Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.

  9. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  10. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data acquired during the aluminum welding process. Finally, a fuzzy system was designed to receive these parameters and determine the weld quality.

  11. Changes in quality of care and costs induced by implementation of a diabetes program in a social security entity of Argentina.

    PubMed

    González, Lorena; Elgart, Jorge F; Calvo, Héctor; Gagliardino, Juan J

    2013-01-01

    To measure the impact of a diabetes and cardiovascular risk factors program implemented in a social security institution upon short- and long-term clinical/metabolic outcomes and costs of care. Observational longitudinal cohort analysis of clinical/metabolic data and resource use of 300 adult male and female program participants with diabetes before (baseline) and 1 and 3 years after implementation of the program. Data were obtained from clinical records (Qualidiab) and the administration's database. The implementation of the program in "real world" conditions resulted in an immediate and sustainable improvement of the quality of care provided to people with diabetes incorporated therein. We also recorded a more appropriate oral therapy prescription for hyperglycemia and cardiovascular risk factors (CVRFs), as well as a decrease of events related to chronic complications. This improvement was associated with an increased use of diagnostic and therapeutic resources, particularly those related to pharmacy prescriptions, not specifically used for the control of hyperglycemia and other CVRFs. The implementation of a diabetes program in real-world conditions results in a significant short- and long-term improvement of the quality of care provided to people with diabetes and other CVRFs, but simultaneously increased the use of resources and the cost of diagnostic and therapeutic practices. Since controlled studies have shown improvement in quality of care without increasing costs, our results suggest the need to include management-control strategies in these programs for appropriate medical and administrative feedback to ensure the simultaneous improvement of clinical outcomes and optimization of the use of resources.

  12. Monitoring scale scores over time via quality control charts, model-based approaches, and time series techniques.

    PubMed

    Lee, Yi-Hsuan; von Davier, Alina A

    2013-07-01

    Maintaining a stable score scale over time is critical for all standardized educational assessments. Traditional quality control tools and approaches for assessing scale drift either require special equating designs, or may be too time-consuming to be considered on a regular basis with an operational test that has a short time window between an administration and its score reporting. Thus, the traditional methods are not sufficient to catch unusual testing outcomes in a timely manner. This paper presents a new approach for score monitoring and assessment of scale drift. It involves quality control charts, model-based approaches, and time series techniques to accommodate the following needs of monitoring scale scores: continuous monitoring, adjustment of customary variations, identification of abrupt shifts, and assessment of autocorrelation. Performance of the methodologies is evaluated using manipulated data based on real responses from 71 administrations of a large-scale high-stakes language assessment.

  13. Beclomethasone Dipropionate Nasal Aerosol in Patients with Perennial Allergic Rhinitis (BALANCE) study: 6-month results.

    PubMed

    Bukstein, Donald; Parikh, Ruchir; Eid, Sherrine; Ferro, Thomas; Morello, Jean-Pierre

    2016-01-01

    Perennial allergic rhinitis (PAR) exerts significant quality-of-life and economic burdens on society. Beclomethasone dipropionate (BDP) nasal aerosol is the first nonaqueous, hydrofluoroalkane-propelled intranasal corticosteroid approved for patients in the United States to treat PAR and seasonal allergic rhinitis. To evaluate real-world effectiveness of BDP nasal aerosol from the patient's perspective by using a postmarketing observational registry. Patients (N = 824) from 43 U.S. study sites completed monthly patient-reported outcome instruments, including the Rhinitis Control Assessment Test (primary outcome variable), Treatment Satisfaction Questionnaire for Medication, Work Productivity and Activity Impairment Questionnaire plus Classroom Impairment Questions: Allergy-Specific, Pittsburgh Sleep Quality Index, and Mini Rhinoconjunctivitis Quality of Life Questionnaire for 6 months. The primary outcome assessment (Rhinitis Control Assessment Test score) (N = 527) indicated significant symptomatic improvement over baseline beginning at month 1 (p < 0.001), with >78.8% of respondents who achieved clinically meaningful improvement over 6 months. Secondary outcome measures Mini Rhinoconjunctivitis Quality of Life Questionnaire (p < 0.001), Pittsburgh Sleep Quality Index (p < 0.001), and Treatment Satisfaction Questionnaire for Medication-9 scales of effectiveness (p < 0.001), global satisfaction (p = 0.001), and patient-rated convenience (p = 0.03), significantly increased from baseline to month 6. Five of seven measurements of the Work Productivity and Activity Impairment Questionnaire plus Classroom Impairment Questions: Allergy-Specific, with the exception of work time missed and class time missed, were significantly (p < 0.001) improved in patients treated with BDP compared with baseline. Treatment with nonaqueous BDP nasal aerosol in a real-world setting significantly improved PAR symptoms and measures of quality of life, work, and school-related activities, and is associated with high patient satisfaction, reduced productivity loss and activity impairment, and improvement in sleep quality.

  14. Using Six-Sigma To Change and Measure Improvement.

    ERIC Educational Resources Information Center

    Feld, Karl G.; Stone, William K.

    2002-01-01

    Explains why Honeywell's Market Research Department replaced its traditional data collection and paper-based tabulation with blended modes, including electronic interviewing and real-time reporting. Describes how the Six-Sigma quality control process demonstrated that a hybrid approach with blended modes and Web-based reporting tools could deliver…

  15. Manual control models of industrial management

    NASA Technical Reports Server (NTRS)

    Crossman, E. R. F. W.

    1972-01-01

    The industrial engineer is often required to design and implement control systems and organization for manufacturing and service facilities, to optimize quality, delivery, and yield, and minimize cost. Despite progress in computer science most such systems still employ human operators and managers as real-time control elements. Manual control theory should therefore be applicable to at least some aspects of industrial system design and operations. Formulation of adequate model structures is an essential prerequisite to progress in this area; since real-world production systems invariably include multilevel and multiloop control, and are implemented by timeshared human effort. A modular structure incorporating certain new types of functional element, has been developed. This forms the basis for analysis of an industrial process operation. In this case it appears that managerial controllers operate in a discrete predictive mode based on fast time modelling, with sampling interval related to plant dynamics. Successive aggregation causes reduced response bandwidth and hence increased sampling interval as a function of level.

  16. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    PubMed Central

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  17. A reliable low cost integrated wireless sensor network for water quality monitoring and level control system in UAE

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Khaleeq, Hyder; Abou-Elnour, Ahmad

    2016-04-01

    In the present work, wireless sensor network and real-time controlling and monitoring system are integrated for efficient water quality monitoring for environmental and domestic applications. The proposed system has three main components (i) the sensor circuits, (ii) the wireless communication system, and (iii) the monitoring and controlling unit. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee and myRIO wireless modules have been used to implement the wireless system. The water quality parameters are accurately measured by the present computer based monitoring system and the measurement results are instantaneously transmitted and published with minimum infrastructure costs and maximum flexibility in term of distance or location. The mobility and durability of the proposed system are further enhanced by fully powering via a photovoltaic system. The reliability and effectiveness of the system are evaluated under realistic operating conditions.

  18. Quality and Efficiency Improvement Tools for Every Radiologist.

    PubMed

    Kudla, Alexei U; Brook, Olga R

    2018-06-01

    In an era of value-based medicine, data-driven quality improvement is more important than ever to ensure safe and efficient imaging services. Familiarity with high-value tools enables all radiologists to successfully engage in quality and efficiency improvement. In this article, we review the model for improvement, strategies for measurement, and common practical tools with real-life examples that include Run chart, Control chart (Shewhart chart), Fishbone (Cause-and-Effect or Ishikawa) diagram, Pareto chart, 5 Whys, and Root Cause Analysis. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  19. Weighted analysis of paired microarray experiments.

    PubMed

    Kristiansson, Erik; Sjögren, Anders; Rudemo, Mats; Nerman, Olle

    2005-01-01

    In microarray experiments quality often varies, for example between samples and between arrays. The need for quality control is therefore strong. A statistical model and a corresponding analysis method is suggested for experiments with pairing, including designs with individuals observed before and after treatment and many experiments with two-colour spotted arrays. The model is of mixed type with some parameters estimated by an empirical Bayes method. Differences in quality are modelled by individual variances and correlations between repetitions. The method is applied to three real and several simulated datasets. Two of the real datasets are of Affymetrix type with patients profiled before and after treatment, and the third dataset is of two-colour spotted cDNA type. In all cases, the patients or arrays had different estimated variances, leading to distinctly unequal weights in the analysis. We suggest also plots which illustrate the variances and correlations that affect the weights computed by our analysis method. For simulated data the improvement relative to previously published methods without weighting is shown to be substantial.

  20. Working alliance, real relationship, session quality, and client improvement in psychodynamic psychotherapy: A longitudinal actor partner interdependence model.

    PubMed

    Kivlighan, Dennis M; Hill, Clara E; Gelso, Charles J; Baumann, Ellen

    2016-03-01

    We used the Actor Partner Interdependence Model (APIM; Kashy & Kenny, 2000) to examine the dyadic associations of 74 clients and 23 therapists in their evaluations of working alliance, real relationship, session quality, and client improvement over time in ongoing psychodynamic or interpersonal psychotherapy. There were significant actor effects for both therapists and clients, with the participant's own ratings of working alliance and real relationship independently predicting their own evaluations of session quality. There were significant client partner effects, with clients' working alliance and real relationship independently predicting their therapists' evaluations of session quality. The client partner real relationship effect was stronger in later sessions than in earlier sessions. Therapists' real relationship ratings (partner effect) were a stronger predictor of clients' session quality ratings in later sessions than in earlier sessions. Therapists' working alliance ratings (partner effect) were a stronger predictor of clients' session quality ratings when clients made greater improvement than when clients made lesser improvement. For clients' session outcome ratings, there were complex three-way interactions, such that both Client real relationship and working alliance interacted with client improvement and time in treatment to predict clients' session quality. These findings strongly suggest both individual and partner effects when clients and therapists evaluate psychotherapy process and outcome. Implications for research and practice are discussed. (c) 2016 APA, all rights reserved).

  1. Adaptive weld control for high-integrity welding applications

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.

    1993-01-01

    An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.

  2. A proposed methodology for impact assessment of air quality traffic-related measures: The case of PM2.5 in Beijing.

    PubMed

    Fontes, Tânia; Li, Peilin; Barros, Nelson; Zhao, Pengjun

    2018-08-01

    Air quality traffic-related measures have been implemented worldwide to control the pollution levels of urban areas. Although some of those measures are claiming environmental improvements, few studies have checked their real impact. In fact, quantitative estimates are often focused on reducing emissions, rather than on evaluating the actual measures' effect on air quality. Even when air quality studies are conducted, results are frequently unclear. In order to properly assess the real impact on air quality of traffic-related measures, a statistical method is proposed. The method compares the pollutant concentration levels observed after the implementation of a measure with the concentration values of the previous year. Short- and long-term impact is assessed considering not only their influence on the average pollutant concentration, but also on its maximum level. To control the effect of the main confounding factors, only the days with similar environmental conditions are analysed. The changeability of the key meteorological variables that affect the transport and dispersion of the pollutant studied are used to identify and group the days categorized as similar. Resemblance of the pollutants' concentration of the previous day is also taken into account. The impact of the road traffic measures on the air pollutants' concentration is then checked for those similar days using specific statistical functions. To evaluate the proposed method, the impact on PM 2.5 concentrations of two air quality traffic-related measures (M1 and M2) implemented in the city of Beijing are taken into consideration: M1 was implemented in 2009, restricting the circulation of yellow-labelled vehicles, while M2 was implemented in 2014, restricting the circulation of heavy-duty vehicles. To compare the results of each measure, a time-period when these measures were not applied is used as case-control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    PubMed Central

    Expósito-Rodríguez, Marino; Borges, Andrés A; Borges-Pérez, Andrés; Pérez, José A

    2008-01-01

    Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC), SGN-U321250 (TIP41), SGN-U346908 ("Expressed") and SGN-U316474 (SAND) genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time RT-PCR studies of gene expression during tomato development process. From our study a tool-kit of control genes emerges that outperform the traditional genes in terms of expression stability. PMID:19102748

  4. Quality Assurance of Real-Time Oceanographic Data from the Cabled Array of the Ocean Observatories Initiative

    NASA Astrophysics Data System (ADS)

    Kawka, O. E.; Nelson, J. S.; Manalang, D.; Kelley, D. S.

    2016-02-01

    The Cabled Array component of the NSF-funded Ocean Observatories Initiative (OOI) provides access to real-time physical, chemical, geological, and biological data from water column and seafloor platforms/instruments at sites spanning the southern half of the Juan de Fuca Plate. The Quality Assurance (QA) program for OOI data is designed to ensure that data products meet OOI science requirements. This overall data QA plan establishes the guidelines for assuring OOI data quality and summarizes Quality Control (QC) protocols and procedures, based on best practices, which can be utilized to ensure the highest quality data across the OOI program. This presentation will highlight, specifically, the QA/QC approach being utilized for the OOI Cabled Array infrastructure and data and will include a summary of both shipboard and shore-based protocols currently in use. Aspects addressed will be pre-deployment instrument testing and calibration checks, post-deployment and pre-recovery field verification of data, and post-recovery "as-found" testing of instruments. Examples of QA/QC data will be presented and specific cases of cabled data will be discussed in the context of quality assessments and adjustment/correction of OOI datasets overall for inherent sensor drift and/or instrument fouling.

  5. Differences between genomic-based and pedigree-based relationships in a chicken population, as a function of quality control and pedigree links among individuals.

    PubMed

    Wang, H; Misztal, I; Legarra, A

    2014-12-01

    This work studied differences between expected (calculated from pedigree) and realized (genomic, from markers) relationships in a real population, the influence of quality control on these differences, and their fit to current theory. Data included 4940 pure line chickens across five generations genotyped for 57,636 SNP. Pedigrees (5762 animals) were available for the five generations, pedigree starting on the first one. Three levels of quality control were used. With no quality control, mean difference between realized and expected relationships for different type of relationships was ≤ 0.04 with standard deviation ≤ 0.10. With strong quality control (call rate ≥ 0.9, parent-progeny conflicts, minor allele frequency and use of only autosomal chromosomes), these numbers reduced to ≤ 0.02 and ≤ 0.04, respectively. While the maximum difference was 1.02 with the complete data, it was only 0.18 with the latest three generations of genotypes (but including all pedigrees). Variation of expected minus realized relationships agreed with theoretical developments and suggests an effective number of loci of 70 for this population. When the pedigree is complete and as deep as the genotypes, the standard deviation of difference between the expected and realized relationships is around 0.04, all categories confounded. Standard deviation of differences larger than 0.10 suggests bad quality control, mistakes in pedigree recording or genotype labelling, or insufficient depth of pedigree. © 2014 Blackwell Verlag GmbH.

  6. Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks.

    PubMed

    Greis, C

    2014-01-01

    Ultrasound contrast agents have substantially extended the clinical value of ultrasound, allowing the assessment of blood flow and distribution in real-time down to microcapillary level. Selective imaging of contrast agent signals requires a contrast-specific imaging mode on the ultrasound scanner, allowing real-time separation of tissue and contrast agent signals. The creation of a contrast image requires a specific interaction between the insonated ultrasound wave and the contrast agent microbubbles, leading to persistent oscillation of the bubbles. Several technical and procedural parameters have a significant influence on the quality of CEUS images and should be controlled carefully to obtain good image quality and a reliable diagnosis. Achieving the proper balance between the respective parameters is a matter of technical knowledge and experience. Appropriate training and education should be mandatory for every investigator performing CEUS examinations.

  7. Real-time GMAW quality classification using an artificial neural network with airborne acoustic signals as inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteson, A.; Morris, R.; Tate, R.

    1993-12-31

    The acoustic signal produced by the gas metal arc welding (GMAW) arc contains information about the behavior of the arc column, the molten pool and droplet transfer. It is possible to detect some defect producing conditions from the acoustic signal from the GMAW arc. An intelligent sensor, called the Weld Acoustic Monitor (WAM) has been developed to take advantage of this acoustic information in order to provide real-time quality assessment information for process control. The WAM makes use of an Artificial Neural Network (ANN) to classify the characteristic arc acoustic signals of acceptable and unacceptable welds. The ANN used inmore » the Weld Acoustic Monitor developed its own set of rules for this classification problem by learning a data base of known GMAW acoustic signals.« less

  8. Requirements for Real-Time Laboratory Experimentation over the Internet.

    ERIC Educational Resources Information Center

    Salzmann, C.; Latchman, H. A.; Gillet, D.; Crisalle, O. D.

    A prototype system based on an inverted pendulum is used to study the Quality of Service and discuss requirements of remote-experimentation systems utilized for carrying out control engineering experiments over the Internet. This class of applications involves the transmission over the network of a variety of data types with their own peculiar…

  9. Information system of quality assessment for liquid and gaseous medium production

    NASA Astrophysics Data System (ADS)

    Bobrov, V. N.; Us, N. A.; Davidov, I. S.

    2018-05-01

    A method and a technical solution for controlling the quality of production of liquid and gaseous media is proposed. It is also proposed to monitor harmful factors in production while ensuring safe working conditions. Initially, using the mathematical model of an ideal atmosphere, the projection to the horizontal surface of the observation trajectory is calculated. At the second stage, the horizontal projection of the observation trajectory in real conditions is measured. The quality of the medium is judged by the difference between the projections of observation trajectories. The technical result is presented in the form of a device allowing obtaining information about the quality of the medium under investigation.

  10. Implementation guide for turbidity threshold sampling: principles, procedures, and analysis

    Treesearch

    Jack Lewis; Rand Eads

    2009-01-01

    Turbidity Threshold Sampling uses real-time turbidity and river stage information to automatically collect water quality samples for estimating suspended sediment loads. The system uses a programmable data logger in conjunction with a stage measurement device, a turbidity sensor, and a pumping sampler. Specialized software enables the user to control the sampling...

  11. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    PubMed Central

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  12. Automated standardization technique for an inductively-coupled plasma emission spectrometer

    USGS Publications Warehouse

    Garbarino, John R.; Taylor, Howard E.

    1982-01-01

    The manifold assembly subsystem described permits real-time computer-controlled standardization and quality control of a commercial inductively-coupled plasma atomic emission spectrometer. The manifold assembly consists of a branch-structured glass manifold, a series of microcomputer-controlled solenoid valves, and a reservoir for each standard. Automated standardization involves selective actuation of each solenoid valve that permits a specific mixed standard solution to be pumped to the nebulizer of the spectrometer. Quality control is based on the evaluation of results obtained for a mixed standard containing 17 analytes, that is measured periodically with unknown samples. An inaccurate standard evaluation triggers restandardization of the instrument according to a predetermined protocol. Interaction of the computer-controlled manifold assembly hardware with the spectrometer system is outlined. Evaluation of the automated standardization system with respect to reliability, simplicity, flexibility, and efficiency is compared to the manual procedure. ?? 1982.

  13. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  14. Latest developments on the loop control system of AdOpt@TNG

    NASA Astrophysics Data System (ADS)

    Ghedina, Adriano; Gaessler, Wolfgang; Cecconi, Massimo; Ragazzoni, Roberto; Puglisi, Alfio T.; De Bonis, Fulvio

    2004-10-01

    The Adaptive Optics System of the Galileo Telescope (AdOpt@TNG) is the only adaptive optics system mounted on a telescope which uses a pyramid wavefront snesor and it has already shown on sky its potentiality. Recently AdOpt@TNG has undergone deep changes at the level of its higher orders control system. The CCD and the Real Time Computer (RTC) have been substituted as a whole. Instead of the VME based RTC, due to its frequent breakdowns, a dual pentium processor PC with Real-Time-Linux has been chosen. The WFS CCD, that feeds the images to the RTC, was changed to an off-the-shelf camera system from SciMeasure with an EEV39 80x80 pixels as detector. While the APD based Tip/Tilt loop has shown the quality on the sky at the TNG site and the ability of TNG to take advantage of this quality, up to the diffraction limit, the High-Order system has been fully re-developed and the performance of the closed loop is under evaluation to offer the system with the best performance to the astronomical community.

  15. HDP for the Neutralized pH Value Control in the Clarifying Process of Sugar Cane Juice

    NASA Astrophysics Data System (ADS)

    Lin, Xiaofeng; Yang, Jiaran

    2009-05-01

    Neutralizing pH value of sugar cane juice is the important craft in the control process in the clarifying process of sugar cane juice, which is the important factor to influence output and the quality of white sugar. On the one hand, it is an important content to control the neutralized pH value within a required range, which has the vital significance for acquiring high quality purified juice, reducing energy consumption and raising sucrose recovery. On the other hand, it is a complicated physical-chemistry process, which has the characteristics of strong non-linearity, time-varying, large time-delay, and multi-input. Therefore, there has not been a very good solution to control the neutralized pH value. Firstly, in this chapter, a neural network model for the clarifying process of sugar juice is established based on gathering 1200 groups of real-time sample data in a sugar factory. Then, the HDP (Heuristic Dynamic Programming) method is used to optimize and control the neutralized pH value in the clarifying process of sugar juice. Simulation results indicate that this method has good control effect. This will build a good foundation for stabilizing the clarifying process and enhancing the quality of the purified juice and lastly enhancing the quality of white sugar.

  16. Comparison of the Roche COBAS Amplicor Monitor, Roche COBAS Ampliprep/COBAS Taqman and Abbott RealTime Test assays for quantification of hepatitis C virus and HIV RNA.

    PubMed

    Wolff, Dietmar; Gerritzen, Andreas

    2007-01-01

    We have evaluated the performance of two newly developed automated real-time PCR assays, the COBAS Ampliprep/COBAS TaqMan (CAP/CTM) and the Abbott RealTime tests, in the quantification of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) RNA. The widely used semi-automated COBAS Amplicor Monitor (CAM) assay served as the reference test. Several specimens were analyzed, including 102 plasma samples from HCV patients and 109 from HIV patients and 10 samples from negative donors, as well as Quality Control in Molecular Diagnostics (QCMD) and National Institute for Biological Standards and Controls (NIBSC) proficiency program panels. Good correlation was observed among the three assays, with correlation coefficients (R2) of 0.8 (CAM-CAP/CTM), 0.89 (CAM-RealTime) and 0.91 (CAP/CTM-RealTime) for HCV and 0.83 (CAM-RealTime), 0.85 (CAM-CAP/CTM) and 0.89 (CAP/CTM-RealTime) for HIV. The overall concordance for negative/positive results was 100% for HCV and 98% for HIV. All assays were equally able to quantify HCV genotypes 1, 3, 5 and HIV group M (subtypes A-H) and N from QCMD and NIBSC panels. In terms of workflow, the RealTime assay requires more hands-on-time than the CAP/CTM assay. The results indicate that real-time PCR assays can improve the efficiency of end-point PCR tests by better covering viral dynamic ranges and providing higher throughput and automation.

  17. Enabling Mobile Air Quality App Development with an AirNow API

    NASA Astrophysics Data System (ADS)

    Dye, T.; White, J. E.; Ludewig, S. A.; Dickerson, P.; Healy, A. N.; West, J. W.; Prince, L. A.

    2013-12-01

    The U.S. Environmental Protection Agency's (EPA) AirNow program works with over 130 participating state, local, and federal air quality agencies to obtain, quality control, and store real-time air quality observations and forecasts. From these data, the AirNow system generates thousands of maps and products each hour. Each day, information from AirNow is published online and in other media to assist the public in making health-based decisions related to air quality. However, an increasing number of people use mobile devices as their primary tool for obtaining information, and AirNow has responded to this trend by publishing an easy-to-use Web API that is useful for mobile app developers. This presentation will describe the various features of the AirNow application programming interface (API), including Representational State Transfer (REST)-type web services, file outputs, and RSS feeds. In addition, a web portal for the AirNow API will be shown, including documentation on use of the system, a query tool for configuring and running web services, and general information about the air quality data and forecasts available. Data published via the AirNow API includes corresponding Air Quality Index (AQI) levels for each pollutant. We will highlight examples of mobile apps that are using the AirNow API to provide location-based, real-time air quality information. Examples will include mobile apps developed for Minnesota ('Minnesota Air') and Washington, D.C. ('Clean Air Partners Air Quality'), and an app developed by EPA ('EPA AirNow').

  18. Standard Reference Specimens in Quality Control of Engineering Surfaces

    PubMed Central

    Song, J. F.; Vorburger, T. V.

    1991-01-01

    In the quality control of engineering surfaces, we aim to understand and maintain a good relationship between the manufacturing process and surface function. This is achieved by controlling the surface texture. The control process involves: 1) learning the functional parameters and their control values through controlled experiments or through a long history of production and use; 2) maintaining high accuracy and reproducibility with measurements not only of roughness calibration specimens but also of real engineering parts. In this paper, the characteristics, utilizations, and limitations of different classes of precision roughness calibration specimens are described. A measuring procedure of engineering surfaces, based on the calibration procedure of roughness specimens at NIST, is proposed. This procedure involves utilization of check specimens with waveform, wavelength, and other roughness parameters similar to functioning engineering surfaces. These check specimens would be certified under standardized reference measuring conditions, or by a reference instrument, and could be used for overall checking of the measuring procedure and for maintaining accuracy and agreement in engineering surface measurement. The concept of “surface texture design” is also suggested, which involves designing the engineering surface texture, the manufacturing process, and the quality control procedure to meet the optimal functional needs. PMID:28184115

  19. A SiPM based real time dosimeter for radiotherapic beams

    NASA Astrophysics Data System (ADS)

    Berra, A.; Conti, V.; Lietti, D.; Milan, L.; Novati, C.; Ostinelli, A.; Prest, M.; Romanó, C.; Vallazza, E.

    2015-02-01

    This paper describes the development of a scintillator dosimeter prototype for radiotherapic applications based on plastic scintillating fibers readout by Silicon PhotoMultipliers. The dosimeter, whose probes are water equivalent, could be used for quality control measurements, beam characterization and in vivo dosimetry, allowing a real time measurement of the dose spatial distribution. This paper describes the preliminary percentual depth dose scan performed with clinical 6 and 18 MV photon beams, comparing the results with a reference curve. The measurements were performed using a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT). The prototype has given promising results, allowing real time measurements of relative dose without applying any correction factors.

  20. A multichannel amplitude and relative-phase controller for active sound quality control

    NASA Astrophysics Data System (ADS)

    Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.

    2017-05-01

    The enhancement of the sound quality of periodic disturbances for a number of listeners within an enclosure often confronts difficulties given by cross-channel interferences, which arise from simultaneously profiling the primary sound at each error sensor. These interferences may deteriorate the original sound among each listener, which is an unacceptable result from the point of view of sound quality control. In this paper we provide experimental evidence on controlling both amplitude and relative-phase functions of stationary complex primary sounds for a number of listeners within a cavity, attaining amplifications of twice the original value, reductions on the order of 70 dB, and relative-phase shifts between ± π rad, still in a free-of-interference control scenario. To accomplish such burdensome control targets, we have designed a multichannel active sound profiling scheme that bases its operation on exchanging time-domain control signals among the control units during uptime. Provided the real parts of the eigenvalues of persistently excited control matrices are positive, the proposed multichannel array is able to counterbalance cross-channel interferences, while attaining demanding control targets. Moreover, regularization of unstable control matrices is not seen to prevent the proposed array to provide free-of-interference amplitude and relative-phase control, but the system performance is degraded, as a function of the amount of regularization needed. The assessment of Loudness and Roughness metrics on the controlled primary sound proves that the proposed distributed control scheme noticeably outperforms current techniques, since active amplitude- and/or relative-phase-based enhancement of the auditory qualities of a primary sound no longer implies in causing interferences among different positions. In this regard, experimental results also confirm the effectiveness of the proposed scheme on stably enhancing the sound qualities of periodic sounds for multiple listeners within a cavity.

  1. A tale of trade-offs: the impact of macroeconomic factors on environmental concern.

    PubMed

    Conroy, Stephen J; Emerson, Tisha L N

    2014-12-01

    We test whether macroeconomic conditions affect individuals' willingness to pay for environmental quality improvements. Improvements in environmental quality, like everything, come at a cost. Individuals facing difficult economic times may be less willing to make trade-offs required for improvements in environmental quality. Using somewhat different methodologies and shorter time frames, prior investigations have generally found a direct relationship between willingness to pay for environmental improvements and macroeconomic conditions. We use a nearly 40-year span (27 periods) of the General Social Survey (1974-2012) to estimate attitudes toward environmental spending while controlling for U.S. macroeconomic conditions and respondent-specific factors such as age, gender, marital status, number of children, residential location, educational attainment, personal financial condition, political party affiliation and ideology. Macroeconomic conditions include one-year lagged controls for the unemployment rate, the rate of economic growth (percentage change in real GDP), and an indicator for whether the U.S. economy was experiencing a recession. We find that, in general, when economic conditions are unfavorable (i.e., during a recession, or with higher unemployment, or lower GDP growth), respondents are more likely to believe the U.S. is spending too much on "improving and protecting the environment". Interacting lagged macroeconomic controls with respondent's income, we find that these views are at least partially offset by the respondent's own economic condition (i.e., their own real income). Our findings are consistent with the notion that environmental quality is a normal, or procyclical good, i.e., that environmental spending should rise when the economy is expanding and fall during economic contractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Rapid quality assessment of Radix Aconiti Preparata using direct analysis in real time mass spectrometry.

    PubMed

    Zhu, Hongbin; Wang, Chunyan; Qi, Yao; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2012-11-08

    This study presents a novel and rapid method to identify chemical markers for the quality control of Radix Aconiti Preparata, a world widely used traditional herbal medicine. In the method, the samples with a fast extraction procedure were analyzed using direct analysis in real time mass spectrometry (DART MS) combined with multivariate data analysis. At present, the quality assessment approach of Radix Aconiti Preparata was based on the two processing methods recorded in Chinese Pharmacopoeia for the purpose of reducing the toxicity of Radix Aconiti and ensuring its clinical therapeutic efficacy. In order to ensure the safety and effectivity in clinical use, the processing degree of Radix Aconiti should be well controlled and assessed. In the paper, hierarchical cluster analysis and principal component analysis were performed to evaluate the DART MS data of Radix Aconiti Preparata samples in different processing times. The results showed that the well processed Radix Aconiti Preparata, unqualified processed and the raw Radix Aconiti could be clustered reasonably corresponding to their constituents. The loading plot shows that the main chemical markers having the most influence on the discrimination amongst the qualified and unqualified samples were mainly some monoester diterpenoid aconitines and diester diterpenoid aconitines, i.e. benzoylmesaconine, hypaconitine, mesaconitine, neoline, benzoylhypaconine, benzoylaconine, fuziline, aconitine and 10-OH-mesaconitine. The established DART MS approach in combination with multivariate data analysis provides a very flexible and reliable method for quality assessment of toxic herbal medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Transforming administrative data into real-time information in the Department of Surgery.

    PubMed

    Beaulieu, Peter A; Higgins, John H; Dacey, Lawrence J; Nugent, William C; DeFoe, Gordon R; Likosky, Donald S

    2010-10-01

    Cardiothoracic surgical programmes face increasingly more complex procedures performed on evermore challenging patients. Public and private stakeholders are demanding these programmes report process-level and clinical outcomes as a mechanism for enabling quality assurance and informed clinical decision-making. Increasingly these measures are being tied to reimbursement and institutional accreditation. The authors developed a system for linking administrative and clinical registries, in real-time, to track performance in satisfying the needs of the patients and stakeholders, as well as helping to drive continuous quality improvement. A relational surgical database was developed to link prospectively collected clinical data to administrative data sources at Dartmouth-Hitchcock Medical Center. Institutional performance was displayed over time using process control charts, and compared with both internal and regional benchmarks. Quarterly reports have been generated and automated for five surgical cohorts. Data are displayed externally on our dedicated website, and internally in the cardiothoracic surgical office suites, operating room theatre and nursing units. Monthly discussions are held with the clinical staff and have resulted in the development of quality-improvement projects. The delivery of clinical care in isolation of data and information is no longer prudent or acceptable. The present study suggests that an automated and real-time computer system may provide rich sources of data that may be used to drive improvements in the quality of care. Current and future work will be focused on identifying opportunities to integrate these data into the fabric of the delivery of care to drive process improvement.

  4. Rotorcraft handling-qualities design criteria development

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Lebacqz, J. Victor; Chen, Robert T. N.; Key, David L.

    1988-01-01

    Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics.

  5. Detection of adulterated murine components in meat products by TaqMan© real-time PCR.

    PubMed

    Fang, Xin; Zhang, Chi

    2016-02-01

    Using murine meat to substitute mutton has been identified as a new type of meat fraud in China, yet no detection method for murine species has been reported. Here, three kinds of rodent were used as target species to establish a murine-specific real-time PCR method of detection. The mitochondrial cytochrome b gene (cytb) of each target was sequenced and a TaqMan probe was designed based on the cytb. Simultaneously, an internal positive control (IPC) plasmid along with its respective probe were designed to monitor the PCR reaction. As a result, the duplex real-time PCR system was verified to be specific. The limit of detection (LOD) was lower than 1 pg of DNA per reaction and 0.1% murine contamination in meat mixtures. Standard curves were generated for a quantitative analysis. Thus, this study provided a new tool to control the quality of meat products for official and third-party laboratories. Copyright © 2015. Published by Elsevier Ltd.

  6. Automatic control of electric thermal storage (heat) under real-time pricing. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryanian, B.; Tabors, R.D.; Bohn, R.E.

    1995-01-01

    Real-time pricing (RTP) can be used by electric utilities as a control signal for responsive demand-side management (DSM) programs. Electric thermal storage (ETS) systems in buildings provide the inherent flexibility needed to take advantage of variations in prices. Under RTP, optimal performance for ETS operations is achieved under market conditions where reductions in customers` costs coincide with the lowering of the cost of service for electric utilities. The RTP signal conveys the time-varying actual marginal cost of the electric service to customers. The RTP rate is a combination of various cost components, including marginal generation fuel and maintenance costs, marginalmore » costs of transmission and distribution losses, and marginal quality of supply and transmission costs. This report describes the results of an experiment in automatic control of heat storage systems under RTP during the winter seasons of 1989--90 and 1990--91.« less

  7. JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion

    NASA Technical Reports Server (NTRS)

    Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan

    1990-01-01

    As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.

  8. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    PubMed

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. AIRQino, a low-cost air quality mobile platform

    NASA Astrophysics Data System (ADS)

    Zaldei, Alessandro; Vagnoli, Carolina; Di Lonardo, Sara; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Martelli, Francesca; Matese, Alessandro

    2015-04-01

    Recent air quality regulations (Directive 2008/50/EC) enforce the transition from point-based monitoring networks to new tools that must be capable of mapping and forecasting air quality on the totality of land area, and therefore the totality of citizens. This implies new technologies such as models and additional indicative measurements, are needed in addition to accurate fixed air quality monitoring stations, that until now have been taken as reference by local administrators for the enforcement of various mitigation strategies. However, due to their sporadic spatial distribution, they cannot describe the highly resolved spatial pollutant variations within cities. Integrating additional indicative measurements may provide adequate information on the spatial distribution of the ambient air quality, also allowing for a reduction of the required minimum number of fixed sampling points, whose high cost and complex maintenance still remain a crucial concern for local administrators. New low-cost and small size sensors are becoming available, that could be employed in air quality monitoring including mobile applications. However, accurate assessment of their accuracy and performance both in controlled and real monitoring conditions is crucially needed. Quantifying sensor response is a significant challenge due to the sensitivity to ambient temperature and humidity and the cross-sensitivity to others pollutant species. This study reports the development of an Arduino compatible electronic board (AIRQino) which integrates a series of low-cost metal oxide and NDIR sensors for air quality monitoring, with sensors to measure air temperature, relative humidity, noise, solar radiation and vertical acceleration. A comparative assessment was made for CO2, CO, NO2, CH4, O3, VOCs concentrations, temperature and relative humidity. A controlled climatic chamber study (-80°C / +80°C) was performed to verify temperature and humidity interference using reference gas cylinders and high quality reference sensors. The AIRQino was installed on mobile vectors such as bikes, buses and trams in the cities of Firenze and Siracusa (Italy), that send data real-time to a Web portal. By integrating a microprocessor unit it is capable of directly updating calibration coefficients to provide corrected sensor output as digital string through RS232 serial port. Results from the lab tests and the 'real world' mobile applications are presented and discussed, to assess to what extent this sensor technology might be useful for the development of portable, compact, wireless and cost-effective system for air quality monitoring in urban areas at high spatio-temporal resolution.

  10. Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.

    PubMed

    Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A

    2009-07-01

    An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.

  11. Impact of chronic urticaria on quality of life and work in Japan: Results of a real-world study.

    PubMed

    Itakura, Asako; Tani, Yumiko; Kaneko, Naoko; Hide, Michihiro

    2018-06-13

    Little attention has been given to the burden of chronic urticaria (CU) in Japan compared with other skin diseases, such as atopic dermatitis (AD) and psoriasis. The primary objective of the RELEASE study was to evaluate the real-life quality-of-life impairment in CU patients in Japan. Data were collected from 1443 urticaria, 1668 AD and 435 psoriatic patients; 552 urticaria patients who presented urticaria symptoms for over 6 weeks were defined as CU. The mean Dermatology Life Quality Index (DLQI) total score was 4.8, 6.1 and 4.8 in CU, AD and psoriatic patients, respectively. Disease control of urticaria evaluated by the Urticaria Control Test (UCT) and DLQI exhibited a strong correlation with a Spearman's rank correlation coefficient of -0.7158. CU and AD patients had relatively higher scores in all Work Productivity and Activity Impairment - General Health subscales except for absenteeism. At the time of the survey, approximately 64% of CU patients reported UCT scores of <12 and demonstrated higher work productivity loss and activity impairment versus patients with UCT scores of ≥12. Patients with lower UCT scores also displayed a higher percentage of dissatisfaction with their health state and the treatment they received. Approximately 85% of patients with CU had visited dermatology clinics, and less than 20% had visited hospital, indicating existence of a highly burdened population outside specialized centers. These results highlight the unmet medical needs of CU patients, suggesting the need to increase awareness of CU burden among both physicians and patients and to pursue improved real-life patient care. © 2018 Novartis K.K. The Journal of Dermatology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Dermatological Association.

  12. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2011: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2012-01-01

    For the eight monitoring stations in water year 2011, a total of 93.5 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the Cascade Island site were only 34.9% complete because the equipment was destroyed by high water. The other stations ranged from 99.6 to 100 percent complete.

  13. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2012: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2013-01-01

    For the eight monitoring stations in water year 2012, a total of 97.0 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the ba-sis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the Cascade Island site were only 77.8 percent complete because the equipment was destroyed by high water. The other stations ranged from 98.9 to 100.0 percent complete.

  14. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  15. Real-time water quality monitoring and providing water quality information to the Baltimore Community

    EPA Science Inventory

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Ba...

  16. Adaptive guidance and control for future remote sensing systems

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Myers, J. E.

    1980-01-01

    A unique approach to onboard processing was developed that is capable of acquiring high quality image data for users in near real time. The approach is divided into two steps: the development of an onboard cloud detection system; and the development of a landmark tracker. The results of these two developments are outlined and the requirements of an operational guidance and control system capable of providing continuous estimation of the sensor boresight position are summarized.

  17. Ugly ducklings-the dark side of plastic materials in contact with potable water.

    PubMed

    Neu, Lisa; Bänziger, Carola; Proctor, Caitlin R; Zhang, Ya; Liu, Wen-Tso; Hammes, Frederik

    2018-01-01

    Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 10 6  cells/cm 2 (clean water controls), 9.5 × 10 6  cells/cm 2 (real bath toys), and 7.3 × 10 7  cells/cm 2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users' microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water.

  18. Process and control systems for composites manufacturing

    NASA Technical Reports Server (NTRS)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  19. AUV technology heads for new depths[Autonomous Underwater Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.

    2000-04-01

    High-tech unmanned submarine technologies initially developed by the US Navy are being adapted for a new role to assist the oil and gas industry's shift into deeper waters. To address the problem of costly data acquisition and inaccurate survey data, C and C Technologies of Lafayette, La., has hired Kongsberg Simrad to construct the Hugin 3000 deepwater autonomous underwater vehicle (AUV). As the technology is applied to energy exploration and production advances to meet the deepwater challenges beyond the continental shelf, AUVs will be increasingly employed, it is believed. The paper describes the Hugin project, unexpected situations, the vehicle positionmore » tracking system, vehicle operation and real-time data quality control, real-time data monitoring and control, Hugin field experience, and pipe route surveying.« less

  20. Control of Space-Based Electron Beam Free Form Fabrication

    NASA Technical Reports Server (NTRS)

    Seifzer. W. J.; Taminger, K. M.

    2007-01-01

    Engineering a closed-loop control system for an electron beam welder for space-based additive manufacturing is challenging. For earth and space based applications, components must work in a vacuum and optical components become occluded with metal vapor deposition. For extraterrestrial applications added components increase launch weight, increase complexity, and increase space flight certification efforts. Here we present a software tool that closely couples path planning and E-beam parameter controls into the build process to increase flexibility. In an environment where data collection hinders real-time control, another approach is considered that will still yield a high quality build.

  1. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  2. Towards the Real-Time Evaluation of Collaborative Activities: Integration of an Automatic Rater of Collaboration Quality in the Classroom from the Teacher's Perspective

    ERIC Educational Resources Information Center

    Chounta, Irene-Angelica; Avouris, Nikolaos

    2016-01-01

    This paper presents the integration of a real time evaluation method of collaboration quality in a monitoring application that supports teachers in class orchestration. The method is implemented as an automatic rater of collaboration quality and studied in a real time scenario of use. We argue that automatic and semi-automatic methods which…

  3. Profile of a cell test database and a corresponding reliability database

    NASA Technical Reports Server (NTRS)

    Brearley, George R.; Klein, Glenn C.

    1992-01-01

    The development of computerized control, and data retrieval for aerospace cell testing affords an excellent opportunity to incorporate three specific concepts to both manage the test area and to track product performance on a real-time basis. The adoption and incorporation of precepts fostered by this total quality management (TQM) initiative are critical to us for retaining control of our business while substantially reducing the separate quality control inspection activity. Test discrepancies are all 'equally bad' in cell acceptance testing because, for example, we presently do not discriminate between 1 or 25 mV for an overvoltage condition. We must take leadership in classifying such discrepancies in order to expedite their clearance and redirect our resources for prevention activities. The development and use of engineering alerts (or guardbanding) which more closely match our product capabilities and are toleranced tighter than the required customer specification are paramount to managing the test unit in order to remain both quality and cost effective.

  4. A containerless levitation setup for liquid processing in a superconducting magnet.

    PubMed

    Lu, Hui-Meng; Yin, Da-Chuan; Li, Hai-Sheng; Geng, Li-Qiang; Zhang, Chen-Yan; Lu, Qin-Qin; Guo, Yun-Zhu; Guo, Wei-Hong; Shang, Peng; Wakayama, Nobuko I

    2008-09-01

    Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded.

  5. Adaptive measurements of urban runoff quality

    NASA Astrophysics Data System (ADS)

    Wong, Brandon P.; Kerkez, Branko

    2016-11-01

    An approach to adaptively measure runoff water quality dynamics is introduced, focusing specifically on characterizing the timing and magnitude of urban pollutographs. Rather than relying on a static schedule or flow-weighted sampling, which can miss important water quality dynamics if parameterized inadequately, novel Internet-enabled sensor nodes are used to autonomously adapt their measurement frequency to real-time weather forecasts and hydrologic conditions. This dynamic approach has the potential to significantly improve the use of constrained experimental resources, such as automated grab samplers, which continue to provide a strong alternative to sampling water quality dynamics when in situ sensors are not available. Compared to conventional flow-weighted or time-weighted sampling schemes, which rely on preset thresholds, a major benefit of the approach is the ability to dynamically adapt to features of an underlying hydrologic signal. A 28 km2 urban watershed was studied to characterize concentrations of total suspended solids (TSS) and total phosphorus. Water quality samples were autonomously triggered in response to features in the underlying hydrograph and real-time weather forecasts. The study watershed did not exhibit a strong first flush and intraevent concentration variability was driven by flow acceleration, wherein the largest loadings of TSS and total phosphorus corresponded with the steepest rising limbs of the storm hydrograph. The scalability of the proposed method is discussed in the context of larger sensor network deployments, as well the potential to improving control of urban water quality.

  6. Real-time motion-based H.263+ frame rate control

    NASA Astrophysics Data System (ADS)

    Song, Hwangjun; Kim, JongWon; Kuo, C.-C. Jay

    1998-12-01

    Most existing H.263+ rate control algorithms, e.g. the one adopted in the test model of the near-term (TMN8), focus on the macroblock layer rate control and low latency under the assumptions of with a constant frame rate and through a constant bit rate (CBR) channel. These algorithms do not accommodate the transmission bandwidth fluctuation efficiently, and the resulting video quality can be degraded. In this work, we propose a new H.263+ rate control scheme which supports the variable bit rate (VBR) channel through the adjustment of the encoding frame rate and quantization parameter. A fast algorithm for the encoding frame rate control based on the inherent motion information within a sliding window in the underlying video is developed to efficiently pursue a good tradeoff between spatial and temporal quality. The proposed rate control algorithm also takes the time-varying bandwidth characteristic of the Internet into account and is able to accommodate the change accordingly. Experimental results are provided to demonstrate the superior performance of the proposed scheme.

  7. Temperature and Humidity Calibration of a Low-Cost Wireless Dust Sensor for Real-Time Monitoring.

    PubMed

    Hojaiji, Hannaneh; Kalantarian, Haik; Bui, Alex A T; King, Christine E; Sarrafzadeh, Majid

    2017-03-01

    This paper introduces the design, calibration, and validation of a low-cost portable sensor for the real-time measurement of dust particles within the environment. The proposed design consists of low hardware cost and calibration based on temperature and humidity sensing to achieve accurate processing of airborne dust density. Using commercial particulate matter sensors, a highly accurate air quality monitoring sensor was designed and calibrated using real world variations in humidity and temperature for indoor and outdoor applications. Furthermore, to provide a low-cost secure solution for real-time data transfer and monitoring, an onboard Bluetooth module with AES data encryption protocol was implemented. The wireless sensor was tested against a Dylos DC1100 Pro Air Quality Monitor, as well as an Alphasense OPC-N2 optical air quality monitoring sensor for accuracy. The sensor was also tested for reliability by comparing the sensor to an exact copy of itself under indoor and outdoor conditions. It was found that accurate measurements under real-world humid and temperature varying and dynamically changing conditions were achievable using the proposed sensor when compared to the commercially available sensors. In addition to accurate and reliable sensing, this sensor was designed to be wearable and perform real-time data collection and transmission, making it easy to collect and analyze data for air quality monitoring and real-time feedback in remote health monitoring applications. Thus, the proposed device achieves high quality measurements at lower-cost solutions than commercially available wireless sensors for air quality.

  8. PSO Algorithm for an Optimal Power Controller in a Microgrid

    NASA Astrophysics Data System (ADS)

    Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.

    2017-07-01

    This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.

  9. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters

    PubMed Central

    Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna MY; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B

    2015-01-01

    The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease. PMID:26011746

  10. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters.

    PubMed

    Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna M Y; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B

    2015-01-01

    The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease.

  11. Do mobile phone base stations affect sleep of residents? Results from an experimental double-blind sham-controlled field study.

    PubMed

    Danker-Hopfe, Heidi; Dorn, Hans; Bornkessel, Christian; Sauter, Cornelia

    2010-01-01

    The aim of the present double-blind, sham-controlled, balanced randomized cross-over study was to disentangle effects of electromagnetic fields (EMF) and non-EMF effects of mobile phone base stations on objective and subjective sleep quality. In total 397 residents aged 18-81 years (50.9% female) from 10 German sites, where no mobile phone service was available, were exposed to sham and GSM (Global System for Mobile Communications, 900 MHz and 1,800 MHz) base station signals by an experimental base station while their sleep was monitored at their homes during 12 nights. Participants were randomly exposed to real (GSM) or sham exposure for five nights each. Individual measurement of EMF exposure, questionnaires on sleep disorders, overall sleep quality, attitude towards mobile communication, and on subjective sleep quality (morning and evening protocols) as well as objective sleep data (frontal EEG and EOG recordings) were gathered. Analysis of the subjective and objective sleep data did not reveal any significant differences between the real and sham condition. During sham exposure nights, objective and subjective sleep efficiency, wake after sleep onset, and subjective sleep latency were significantly worse in participants with concerns about possible health risks resulting from base stations than in participants who were not concerned. The study did not provide any evidence for short-term physiological effects of EMF emitted by mobile phone base stations on objective and subjective sleep quality. However, the results indicate that mobile phone base stations as such (not the electromagnetic fields) may have a significant negative impact on sleep quality. (c) 2010 Wiley-Liss, Inc.

  12. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery.

    PubMed

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2010-12-01

    The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins, as would be enabled by real-time imaging, gross tumor volume coverage was identical while notable reductions of bladder and rectal volumes exposed to large doses were possible. The quality of U.S. images obtained during beam operation was not appreciably degraded by radiofrequency interference and 2D tracking of a phantom object in U.S. images obtained with the beam on/off yielded no significant differences. Remotely controlled robotic U.S. imaging is feasible in the radiotherapy environment and for the first time may offer real-time volumetric soft-tissue guidance concurrent with radiotherapy delivery.

  13. Design and implementation of fuzzy-PD controller based on relation models: A cross-entropy optimization approach

    NASA Astrophysics Data System (ADS)

    Anisimov, D. N.; Dang, Thai Son; Banerjee, Santo; Mai, The Anh

    2017-07-01

    In this paper, an intelligent system use fuzzy-PD controller based on relation models is developed for a two-wheeled self-balancing robot. Scaling factors of the fuzzy-PD controller are optimized by a Cross-Entropy optimization method. A linear Quadratic Regulator is designed to bring a comparison with the fuzzy-PD controller by control quality parameters. The controllers are ported and run on STM32F4 Discovery Kit based on the real-time operating system. The experimental results indicate that the proposed fuzzy-PD controller runs exactly on embedded system and has desired performance in term of fast response, good balance and stabilize.

  14. On the dependence of information display quality requirements upon human characteristics and pilot/automatics relations

    NASA Technical Reports Server (NTRS)

    Wilckens, V.

    1972-01-01

    Present information display concepts for pilot landing guidance are outlined considering manual control as well as substitution of man by fully competent automatics. Display improvements are achieved by compressing the distributed indicators into an accumulative display and thus reducing information scanning. Complete integration of quantitative indications, outer loop information, and real world display in a pictorial information channel geometry constitutes an interface with human ability to differentiate and integrate for optimal manual control of the aircraft.

  15. A methodology model for quality management in a general hospital.

    PubMed

    Stern, Z; Naveh, E

    1997-01-01

    A reappraisal is made of the relevance of industrial modes of quality management to the issues of medical care. Analysis of the nature of medical care, which differentiates it from the supplier-client relationships of industry, presents the main intrinsic characteristics, which create problems in application of the industrial quality management approaches to medical care. Several examples are the complexity of the relationship between the medical action and the result obtained, the client's nonacceptance of economic profitability as a value in his medical care, and customer satisfaction biased by variable standards of knowledge. The real problems unique to hospitals are addressed, and a methodology model for their quality management is offered. Included is a sample of indicator vectors, measurements of quality care, cost of medical care, quality of service, and human resources. These are based on the trilogy of planning quality, quality control, and improving quality. The conclusions confirm the inadequacy of industrial quality management approaches for medical institutions and recommend investment in formulation of appropriate concepts.

  16. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  17. Toward city-scale water quality control: building a theory for smart stormwater systems

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  18. Experimental evaluation of the concept of supevisory manipulation

    NASA Technical Reports Server (NTRS)

    Brooks, T. L.; Sheridan, T. B.

    1982-01-01

    A computer-controlled teleoperator system which is based on task-referenced sensor-aided control has been developed to study supervisory manipulation. This system, called SUPERMAN, is capable of performing complicated tasks in real-time by utilizing the operator for high-level functions related to the unpredictable portions of a task, while the subordinate machine performs the more well-defined subtasks under human supervison. To determine whether supervisory control schemes such as these offer any advantage over manual control under real-time conditions, a number of experiments involving both simple and complicated tasks were performed. Six representative tasks were chosen for the study: (1) obtaining a tool from a rack, (2) returning the tool to the rack, (3) removing a nut, (4) placing samples in a storage bin, (5) opening and closing a valve, and (6) digging with a shovel. The experiments were performed under simulated conditions using four forms of manual control (i.e., switch rate, joystick rate, master-slave position control, and master-slave with force feedback), as well as supervisory control. Through these experiments the effectiveness and quality of control were evaluated on the basis of the time required to complete each portion of the task and the type and number of errors which occurred.

  19. Objective speech quality evaluation of real-time speech coders

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. R.; Russell, W. H.; Huggins, A. W. F.

    1984-02-01

    This report describes the work performed in two areas: subjective testing of a real-time 16 kbit/s adaptive predictive coder (APC) and objective speech quality evaluation of real-time coders. The speech intelligibility of the APC coder was tested using the Diagnostic Rhyme Test (DRT), and the speech quality was tested using the Diagnostic Acceptability Measure (DAM) test, under eight operating conditions involving channel error, acoustic background noise, and tandem link with two other coders. The test results showed that the DRT and DAM scores of the APC coder equalled or exceeded the corresponding test scores fo the 32 kbit/s CVSD coder. In the area of objective speech quality evaluation, the report describes the development, testing, and validation of a procedure for automatically computing several objective speech quality measures, given only the tape-recordings of the input speech and the corresponding output speech of a real-time speech coder.

  20. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Statistical Methods in Assembly Quality Management of Multi-Element Products on Automatic Rotor Lines

    NASA Astrophysics Data System (ADS)

    Pries, V. V.; Proskuriakov, N. E.

    2018-04-01

    To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.

  2. Energy saving control strategies for Haliscomenobacter hydrossis filamentous sludge bulking in the A/O process treating real low carbon/nitrogen domestic wastewater.

    PubMed

    Jiao, Erlong; Gao, Chundi; Li, Renfei; Tian, Ye; Peng, Yongzhen

    2017-07-16

    The control strategies of energy saving for filamentous sludge bulking were investigated in the A/O process under low dissolved oxygen (DO) with low carbon/nitrogen (C/N) ratio, and the dominant filamentous bacteria were identified by using fluorescent in situ hybridization. Initially, the sludge volume index reached nearly 500 mL/g and serious bulking occurred when the DO value was 0.5 mg/L, with Haliscomenobacter hydrossis as the major filamentous bacteria in the bulking sludge. Later on, the compartment number increased in the aerobic zone, increasing by this way DO, to control serious bulking. Increasing DO to 1 mg/L based on the increase of compartment number in the aerobic zone was the favorable controlling method, which solved the sludge loss, improved the effluent quality to the national discharge standard and allowed for energy costs saving. As a result, the effective control method for H. hydrossis filamentous sludge bulking provided the economical, convenient and longstanding method for most municipal wastewater treatment plants treating real low C/N domestic wastewater.

  3. First CLIPS Conference Proceedings, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The first Conference of C Language Production Systems (CLIPS) hosted by the NASA-Lyndon B. Johnson Space Center in August 1990 is presented. Articles included engineering applications, intelligent tutors and training, intelligent software engineering, automated knowledge acquisition, network applications, verification and validation, enhancements to CLIPS, space shuttle quality control/diagnosis applications, space shuttle and real-time applications, and medical, biological, and agricultural applications.

  4. Real-Time Mutual Gaze Perception Enhances Collaborative Learning and Collaboration Quality

    ERIC Educational Resources Information Center

    Schneider, Bertrand; Pea, Roy

    2013-01-01

    In this paper we present the results of an eye-tracking study on collaborative problem-solving dyads. Dyads remotely collaborated to learn from contrasting cases involving basic concepts about how the human brain processes visual information. In one condition, dyads saw the eye gazes of their partner on the screen; in a control group, they did not…

  5. Adherence and delivery: Implementation quality and program outcomes for the 7th grade keepin’ it REAL program

    PubMed Central

    Pettigrew, Jonathan; Graham, John W.; Miller-Day, Michelle; Hecht, Michael L.; Krieger, Janice L.; Shin, Young Ju

    2014-01-01

    Poor implementation quality (IQ) is known to reduce program effects making it important to consider IQ for evaluation and dissemination of prevention programs. However, less is known about the ways specific implementation variables relate to outcomes. In this study, two versions of the keepin’ it REAL, 7th grade drug prevention intervention were implemented in 78 classrooms in 25 schools in rural districts in Pennsylvania and Ohio. IQ was measured through observational coding of 276 videos. IQ variables included adherence to the curriculum, teacher engagement (attentiveness, enthusiasm, seriousness, clarity, positivity), student engagement (attention, participation), and a global rating of teacher delivery quality. Factor analysis showed that teacher engagement, student engagement, and delivery quality formed one factor, which was labeled delivery. A second factor was adherence to the curriculum. Self-report student surveys measured substance use, norms (beliefs about prevalence and acceptability of use), and efficacy (beliefs about one’s ability to refuse substance offers) at two waves (pretest, immediate posttest). Mixed model regression analysis which accounted for missing data and controlled for pretest levels examined implementation quality’s effects on individual level outcomes, statistically controlling for cluster level effects. Results show that when implemented well, students show positive outcomes compared to students receiving a poorly implemented program. Delivery significantly influenced substance use and norms, but not efficacy. Adherence marginally significantly predicted use and significantly predicted norms, but not efficacy. Findings underscore the importance of comprehensively measuring and accounting for IQ, particularly delivery, when evaluating prevention interventions. PMID:24442403

  6. Characterization of a reference material for BCR-ABL (M-BCR) mRNA quantitation by real-time amplification assays: towards new standards for gene expression measurements.

    PubMed

    Saldanha, J; Silvy, M; Beaufils, N; Arlinghaus, R; Barbany, G; Branford, S; Cayuela, J-M; Cazzaniga, G; Gonzalez, M; Grimwade, D; Kairisto, V; Miyamura, K; Lawler, M; Lion, T; Macintyre, E; Mahon, F-X; Muller, M C; Ostergaard, M; Pfeifer, H; Saglio, G; Sawyers, C; Spinelli, O; van der Velden, V H J; Wang, J Q; Zoi, K; Patel, V; Phillips, P; Matejtschuk, P; Gabert, J

    2007-07-01

    Monitoring of BCR-ABL transcripts has become established practice in the management of chronic myeloid leukemia. However, nucleic acid amplification techniques are prone to variations which limit the reliability of real-time quantitative PCR (RQ-PCR) for clinical decision making, highlighting the need for standardization of assays and reporting of minimal residual disease (MRD) data. We evaluated a lyophilized preparation of a leukemic cell line (K562) as a potential quality control reagent. This was found to be relatively stable, yielding comparable respective levels of ABL, GUS and BCR-ABL transcripts as determined by RQ-PCR before and after accelerated degradation experiments as well as following 5 years storage at -20 degrees C. Vials of freeze-dried cells were sent at ambient temperature to 22 laboratories on four continents, with RQ-PCR analyses detecting BCR-ABL transcripts at levels comparable to those observed in primary patient samples. Our results suggest that freeze-dried cells can be used as quality control reagents with a range of analytical instrumentations and could enable the development of urgently needed international standards simulating clinically relevant levels of MRD.

  7. Artificial neural networks applied to flow prediction scenarios in Tomebamba River - Paute watershed, for flood and water quality control and management at City of Cuenca Ecuador

    NASA Astrophysics Data System (ADS)

    Cisneros, Felipe; Veintimilla, Jaime

    2013-04-01

    The main aim of this research is to create a model of Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba River both, at real time and in a certain day of year. As inputs we are using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance This research includes two ANN models: Back propagation and a hybrid model between back propagation and OWO-HWO. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as: MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error are minimal. These predictions are useful for flood and water quality control and management at City of Cuenca Ecuador

  8. Direct analysis in real time mass spectrometry and multivariate data analysis: a novel approach to rapid identification of analytical markers for quality control of traditional Chinese medicine preparation.

    PubMed

    Zeng, Shanshan; Wang, Lu; Chen, Teng; Wang, Yuefei; Mo, Huanbiao; Qu, Haibin

    2012-07-06

    The paper presents a novel strategy to identify analytical markers of traditional Chinese medicine preparation (TCMP) rapidly via direct analysis in real time mass spectrometry (DART-MS). A commonly used TCMP, Danshen injection, was employed as a model. The optimal analysis conditions were achieved by measuring the contribution of various experimental parameters to the mass spectra. Salvianolic acids and saccharides were simultaneously determined within a single 1-min DART-MS run. Furthermore, spectra of Danshen injections supplied by five manufacturers were processed with principal component analysis (PCA). Obvious clustering was observed in the PCA score plot, and candidate markers were recognized from the contribution plots of PCA. The suitability of potential markers was then confirmed by contrasting with the results of traditional analysis methods. Using this strategy, fructose, glucose, sucrose, protocatechuic aldehyde and salvianolic acid A were rapidly identified as the markers of Danshen injections. The combination of DART-MS with PCA provides a reliable approach to the identification of analytical markers for quality control of TCMP. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimations over Continental South America

    NASA Technical Reports Server (NTRS)

    Vila, Daniel; deGoncalves, Luis Gustavo; Toll, David L.; Rozante, Jose Roberto

    2008-01-01

    This paper describes a comprehensive assessment of a new high-resolution, high-quality gauge-satellite based analysis of daily precipitation over continental South America during 2004. This methodology is based on a combination of additive and multiplicative bias correction schemes in order to get the lowest bias when compared with the observed values. Inter-comparisons and cross-validations tests have been carried out for the control algorithm (TMPA real-time algorithm) and different merging schemes: additive bias correction (ADD), ratio bias correction (RAT) and TMPA research version, for different months belonging to different seasons and for different network densities. All compared merging schemes produce better results than the control algorithm, but when finer temporal (daily) and spatial scale (regional networks) gauge datasets is included in the analysis, the improvement is remarkable. The Combined Scheme (CoSch) presents consistently the best performance among the five techniques. This is also true when a degraded daily gauge network is used instead of full dataset. This technique appears a suitable tool to produce real-time, high-resolution, high-quality gauge-satellite based analyses of daily precipitation over land in regional domains.

  10. Aircraft ride quality controller design using new robust root clustering theory for linear uncertain systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.

  11. Automated image quality assessment for chest CT scans.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  12. Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality

    PubMed Central

    Cushman, Laura A.; Stein, Karen; Duffy, Charles J.

    2008-01-01

    Background: Older adults get lost, in many cases because of recognized or incipient Alzheimer disease (AD). In either case, getting lost can be a threat to individual and public safety, as well as to personal autonomy and quality of life. Here we compare our previously described real-world navigation test with a virtual reality (VR) version simulating the same navigational environment. Methods: Quantifying real-world navigational performance is difficult and time-consuming. VR testing is a promising alternative, but it has not been compared with closely corresponding real-world testing in aging and AD. We have studied navigation using both real-world and virtual environments in the same subjects: young normal controls (YNCs, n = 35), older normal controls (ONCs, n = 26), patients with mild cognitive impairment (MCI, n = 12), and patients with early AD (EAD, n = 14). Results: We found close correlations between real-world and virtual navigational deficits that increased across groups from YNC to ONC, to MCI, and to EAD. Analyses of subtest performance showed similar profiles of impairment in real-world and virtual testing in all four subject groups. The ONC, MCI, and EAD subjects all showed greatest difficulty in self-orientation and scene localization tests. MCI and EAD patients also showed impaired verbal recall about both test environments. Conclusions: Virtual environment testing provides a valid assessment of navigational skills. Aging and Alzheimer disease (AD) share the same patterns of difficulty in associating visual scenes and locations, which is complicated in AD by the accompanying loss of verbally mediated navigational capacities. We conclude that virtual navigation testing reveals deficits in aging and AD that are associated with potentially grave risks to our patients and the community. GLOSSARY AD = Alzheimer disease; EAD = early Alzheimer disease; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; ONC = older normal control; std. wt. = standardized weight; THSD = Tukey honestly significant difference; VR = virtual reality; YNC = young normal control. PMID:18794491

  13. Objective Speech Quality Assessment Based on Payload Discrimination of Lost Packets for Cellular Phones in NGN Environment

    NASA Astrophysics Data System (ADS)

    Uemura, Satoshi; Fukumoto, Norihiro; Yamada, Hideaki; Nakamura, Hajime

    A feature of services provided in a Next Generation Network (NGN) is that the end-to-end quality is guaranteed. This is quite a challenging issue, given the considerable fluctuation in network conditions within a Fixed Mobile Convergence (FMC) network. Therefore, a novel approach, whereby a network node and a mobile terminal such as a cellular phone cooperate with each other to control service quality is essential. In order to achieve such cooperation, the mobile terminal needs to become more intelligent so it can estimate the service quality, including the user's perceptual quality, and notify the measurement result to the network node. Subsequently, the network node implements some kind of service control function, such as a resource and admission control function, based on the notification from the mobile terminal. In this paper, the role of the mobile terminal in such collaborative system is focused on. As a part of a QoS/QoE measurement system, we describe an objective speech quality assessment with payload discrimination of lost packets to measure the user's perceptual quality of VoIP. The proposed assessment is so simple that it can be implemented on a cellular phone. We therefore did this as part of the QoS/QoE measurement system. By using the implemented system, we can measure the user's perceptual quality of VoIP as well as the network QoS metrics, in terms of criteria such as packet loss rate, jitter and burstiness in real time.

  14. Real-time audiovisual feedback system in a physician-staffed helicopter emergency medical service in Finland: the quality results and barriers to implementation.

    PubMed

    Sainio, Marko; Kämäräinen, Antti; Huhtala, Heini; Aaltonen, Petri; Tenhunen, Jyrki; Olkkola, Klaus T; Hoppu, Sanna

    2013-07-01

    To evaluate the quality of cardiopulmonary resuscitation (CPR) in a physician staffed helicopter emergency medical service (HEMS) using a monitor-defibrillator with a quality analysis feature. As a post hoc analysis, the potential barriers to implementation were surveyed. The quality of CPR performed by the HEMS from November 2008 to April 2010 was analysed. To evaluate the implementation rate of quality analysis, the HEMS database was screened for all cardiac arrest missions during the study period. As a consequence of the observed low implementation rate, a survey was sent to physicians working in the HEMS to evaluate the possible reasons for not utilizing the automated quality analysis feature. During the study period, the quality analysis was used for 52 out of 187 patients (28%). In these cases the mean compression depth was < 40 mm in 46% and < 50 mm in 96% of the 1-min analysis intervals, but otherwise CPR quality corresponded with the 2005 resuscitation guidelines. In particular, the no-flow fraction was remarkably low 0.10 (0.07, 0.16). The most common reasons for not using quality-controlled CPR were that the device itself was not taken to the scene, or not applied to the patient, because another EMS unit was already treating the patient with another defibrillator. When quality-controlled CPR technology was used, the indicators of good quality CPR as described in the 2005 resuscitation guidelines were mostly achieved albeit with sufficient compression depth. The use of the well-described technology in improving patient care was low. Wider implementation of the automated quality control and feedback feature in defibrillators could further improve the quality of CPR on the field. ClinicalTrials.gov (NCT00951704).

  15. A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.

    PubMed

    Wang, Lujia; Liu, Ming; Meng, Max Q-H

    2017-02-01

    Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.

  16. A preliminary survey analysis of school shuttle bus system towards smart mobility solutions

    NASA Astrophysics Data System (ADS)

    Yue, Wong Seng; Hoy, Cheong Wan; Chye, Koh Keng

    2017-10-01

    Mobility and accessibility are crucial indicators of urban development. Public transport in the urban areas came into existence to fulfil transportation needs as well as mobility and accessibility demands. Ridership can be affected by the quality and quantity of transit service. However, technical improvements are needed for such as real-time bus information, controlling run time and headway delay. Thus, this paper is aimed to carry out a preliminary survey to determine the problems of school shuttle bus that faced by the students in a selected educational institution, their perceptions of using shuttle bus tracking and information mobile application and impacts of real-time information of public transits on bus ridership and towards smart mobility solutions. Efficient public transportation system needs further investigation about the role of mobile application for the bus tracking system in supporting smart mobility actions and real-time information. The proposed application also provides a smart solution for the management of public infrastructures and urban facilities in Malaysia in future. Eventually, this study opens an opportunity to improve Malaysian quality of life on the public value that created for the city as a whole.

  17. Modelling and control for laser based welding processes: modern methods of process control to improve quality of laser-based joining methods

    NASA Astrophysics Data System (ADS)

    Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt

    2017-02-01

    To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.

  18. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  19. Implementation of Quality Management in Core Service Laboratories

    PubMed Central

    Creavalle, T.; Haque, K.; Raley, C.; Subleski, M.; Smith, M.W.; Hicks, B.

    2010-01-01

    CF-28 The Genetics and Genomics group of the Advanced Technology Program of SAIC-Frederick exists to bring innovative genomic expertise, tools and analysis to NCI and the scientific community. The Sequencing Facility (SF) provides next generation short read (Illumina) sequencing capacity to investigators using a streamlined production approach. The Laboratory of Molecular Technology (LMT) offers a wide range of genomics core services including microarray expression analysis, miRNA analysis, array comparative genome hybridization, long read (Roche) next generation sequencing, quantitative real time PCR, transgenic genotyping, Sanger sequencing, and clinical mutation detection services to investigators from across the NIH. As the technology supporting this genomic research becomes more complex, the need for basic quality processes within all aspects of the core service groups becomes critical. The Quality Management group works alongside members of these labs to establish or improve processes supporting operations control (equipment, reagent and materials management), process improvement (reengineering/optimization, automation, acceptance criteria for new technologies and tech transfer), and quality assurance and customer support (controlled documentation/SOPs, training, service deficiencies and continual improvement efforts). Implementation and expansion of quality programs within unregulated environments demonstrates SAIC-Frederick's dedication to providing the highest quality products and services to the NIH community.

  20. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  1. X-29A flight control system performance during flight test

    NASA Technical Reports Server (NTRS)

    Chin, J.; Chacon, V.; Gera, J.

    1987-01-01

    An account is given of flight control system performance results for the X-29A forward-swept wing 'Advanced Technology Demonstrator' fighter aircraft, with attention to its software and hardware components' achievement of the requisite levels of system stability and desirable aircraft handling qualities. The Automatic Camber Control Logic is found to be well integrated with the stability loop of the aircraft. A number of flight test support software programs developed by NASA facilitated monitoring of the X-29A's stability in real time, and allowed the test team to clear the envelope with confidence.

  2. On Design and Implementation of Neural-Machine Interface for Artificial Legs

    PubMed Central

    Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing

    2011-01-01

    The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637

  3. The Use of OMPS Near Real Time Products in Volcanic Cloud Risk Mitigation and Smoke/Dust Air Quality Assessments

    NASA Astrophysics Data System (ADS)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Durbin, P. B.

    2015-12-01

    Near real time (NRT) SO2 and aerosol index (AI) imagery from Aura's Ozone Monitoring Instrument (OMI) has proven invaluable in mitigating the risk posed to air traffic by SO2 and ash clouds from volcanic eruptions. The OMI products, generated as part of NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) NRT system and available through LANCE and both NOAA's NESDIS and ESA's Support to Aviation Control Service (SACS) portals, are used to monitor the current location of volcanic clouds and to provide input into Volcanic Ash (VA) advisory forecasts. NRT products have recently been developed using data from the Ozone Mapping and Profiler Suite onboard the Suomi NPP platform; they are currently being made available through the SACS portal and will shortly be incorporated into the LANCE NRT system. We will show examples of the use of OMPS NRT SO2 and AI imagery to monitor recent volcanic eruption events. We will also demonstrate the usefulness of OMPS AI imagery to detect and track dust storms and smoke from fires, and how this information can be used to forecast their impact on air quality in areas far removed from their source. Finally, we will show SO2 and AI imagery generated from our OMPS Direct Broadcast data to highlight the capability of our real time system.

  4. Warfarin for prevention of thromboembolism in atrial fibrillation: comparison of patient characteristics and outcomes of the "Real-World" Michigan Anticoagulation Quality Improvement Initiative (MAQI2) registry to the RE-LY, ROCKET-AF, and ARISTOTLE trials.

    PubMed

    Hughey, Andrew B; Gu, Xiaokui; Haymart, Brian; Kline-Rogers, Eva; Almany, Steve; Kozlowski, Jay; Besley, Dennis; Krol, Gregory D; Ahsan, Syed; Kaatz, Scott; Froehlich, James B; Barnes, Geoffrey D

    2018-06-14

    Randomized controlled trials (RCTs) examining warfarin use for stroke prevention in atrial fibrillation (AF) may not accurately reflect real-world populations. We aimed to determine the representativeness of the RCT populations to real-world patients and to describe differences in the characteristics of trial populations from trial eligible patients in a real-world setting. We hypothesized that a significant fraction of real-world patients would not qualify for the RE-LY, ROCKET-AF, and ARISTOTLE trials and that real-world patients qualifying for the studies may have more strokes and bleeding events. We compared the inclusion and exclusion criteria, patient characteristics, and clinical outcomes from RE-LY, ROCKET-AF, and ARISTOTLE against data from the Michigan Anticoagulation Quality Improvement Initiative (MAQI 2 ), a regional network of six community- and academic-based anticoagulation clinics. Of the 1446 non-valvular AF patients in the MAQI 2 registry taking warfarin, approximately 40-60% would meet the selection criteria used in RE-LY (788, 54.5%), ROCKET-AF (566, 39.1%), and ARISTOTLE (866, 59.9%). The most common reasons for exclusion from one or more trial were anemia (15.1%), other concurrent medications (11.2%), and chronic kidney disease (9.4%). Trial-eligible MAQI 2 patients were older, more frequently female, with a higher rate of paroxysmal AF, and lower rates of congestive heart failure, previous stroke, and previous myocardial infarction than the trial populations. MAQI 2 patients eligible for each trial had a lower rate of stroke and similar rate of major bleeding than was observed in the trials. A sizable proportion of real-world AF patients managed in anticoagulation clinics would not have been eligible for the RE-LY, ROCKET-AF, and ARISOTLE trials. The expected stroke risk reduction and bleeding risk among real-world AF patients on warfarin may not be congruent with published clinical trial data.

  5. Development and Validation of a Laboratory-Developed Multiplex Real-Time PCR Assay on the BD Max System for Detection of Herpes Simplex Virus and Varicella-Zoster Virus DNA in Various Clinical Specimens.

    PubMed

    Pillet, Sylvie; Verhoeven, Paul O; Epercieux, Amélie; Bourlet, Thomas; Pozzetto, Bruno

    2015-06-01

    A multiplex real-time PCR (quantitative PCR [qPCR]) assay detecting herpes simplex virus (HSV) and varicella-zoster virus (VZV) DNA together with an internal control was developed on the BD Max platform combining automated DNA extraction and an open amplification procedure. Its performance was compared to those of PCR assays routinely used in the laboratory, namely, a laboratory-developed test for HSV DNA on the LightCycler instrument and a test using a commercial master mix for VZV DNA on the ABI7500fast system. Using a pool of negative cerebrospinal fluid (CSF) samples spiked with either calibrated controls for HSV-1 and VZV or dilutions of a clinical strain that was previously quantified for HSV-2, the empirical limit of detection of the BD Max assay was 195.65, 91.80, and 414.07 copies/ml for HSV-1, HSV-2, and VZV, respectively. All the samples from HSV and VZV DNA quality control panels (Quality Control for Molecular Diagnostics [QCMD], 2013, Glasgow, United Kingdom) were correctly identified by the BD Max assay. From 180 clinical specimens of various origins, 2 CSF samples were found invalid by the BD Max assay due to the absence of detection of the internal control; a concordance of 100% was observed between the BD Max assay and the corresponding routine tests. The BD Max assay detected the PCR signal 3 to 4 cycles earlier than did the routine methods. With results available within 2 h on a wide range of specimens, this sensitive and fully automated PCR assay exhibited the qualities required for detecting simultaneously HSV and VZV DNA on a routine basis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. The relationship between physical workload and quality within line-based assembly.

    PubMed

    Ivarsson, Anna; Eek, Frida

    2016-07-01

    Reducing costs and improvement of product quality are considered important to ensure productivity within a company. Quality deviations during production processes and ergonomics have previously shown to be associated. This study explored the relationship between physical workload and real (found during production processes) and potential (need of extra time and assistance to complete tasks) quality deviations in a line-based assembly plant. The physical workload on and the work rotation between 52 workstations were assessed. As the outcome, real and potential quality deviations were studied during 10 weeks. Results show that workstations with higher physical workload had significantly more real deviations compared to lower workload stations. Static work posture had significantly more potential deviations. Rotation between high and low workload was related to fewer quality deviations compared to rotation between only high workload stations. In conclusion, physical ergonomics seems to be related to real and potential quality deviation within line-based assembly. Practitioner Summary: To ensure good productivity in manufacturing industries, it is important to reduce costs and improve product quality. This study shows that high physical workload is associated with quality deviations and need of extra time and assistance to complete tasks within line-based assembly, which can be financially expensive for a company.

  7. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor.

    PubMed

    Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao

    2017-02-01

    This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  9. Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2014-01-01

    Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.

  10. Design of an Ada expert system shell for the VHSIC avionic modular flight processor

    NASA Technical Reports Server (NTRS)

    Fanning, F. Jesse

    1992-01-01

    The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.

  11. Application of the SAROTA index in real-life scenario

    NASA Astrophysics Data System (ADS)

    Rojatkar, A.; Monebhurrun, V.

    2014-10-01

    A unique parameter referred to as the SAROTA index which accounts for both the specific absorption rate (SAR) and the over-the-air (OTA) performance of a mobile phone was previously proposed to characterize the real-life exposure. The applicability of the SAROTA index was confirmed using SAR and total radiated power (TRP) data obtained under laboratory conditions wherein the power control (PC) enforced on the mobile phone was implemented artificially. Herein the investigation is extended to measurements conducted for the speech mode of operation in real-life scenarios. Based on the actual PC implemented during the communication with the base station, the instantaneous and average real-life exposure experienced by the mobile phone user is analyzed and compared to the predicted SAROTA index. To capture the PC in real-time, a set of hardware modified phones with embedded network monitoring software are used. The instantaneous uplink transmit power level (TX_LEV) along with various downlink parameters such as the receive signal level (RX_LEV) and received signal quality (RX_QUAL) of the communication link are thus available for performing a comprehensive RF exposure analysis.

  12. Design and implementation of new control room system in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, H.; Zamanian, H.; Gheidi, M.; Kheiri-Fard, M.; Kouhi, A.

    2017-07-01

    The aim of this paper is design and implementation of an up-to-date control room. The previous control room had a lot of constraints and it was not apposite to the sophisticated diagnostic systems as well as to the modern control and multivariable systems. Although it provided the best output for the considered experiments and implementing offline algorithms among all similar plants, it needed to be developed to provide more capability for complex algorithm mechanisms and this work introduces our efforts in this area. Accordingly, four leading systems were designed and implemented, including real-time control system, online Data Acquisition System (DAS), offline DAS, monitoring and data transmission system. In the control system, three real-time control modules were established based on Digital Signal Processor (DSP). Thanks to them, implementation of the classic and linear and nonlinear intelligent controllers was possible to control the plasma position and its elongation. Also, online DAS was constructed in two modules. Using them, voltages and currents of charge for the capacitor banks and pressure of different parts in vacuum vessel were measured and monitored. Likewise, by real-time processing of the online data, the safety protocol of plant performance was accomplished. In addition, the offline DAS was organized in 13 modules based on Field Programmable Gate Array (FPGA). This system can be used for gathering all diagnostic, control, and performance data in 156 channels. Data transmission system and storing mechanism in the server was provided by data transmitting network and MDSplus standard protocol. Moreover, monitoring software was designed so that it could display the required plots for physical analyses. Taking everything into account, this new platform can improve the quality and quantity of research activities in plasma physics for Damavand tokamak.

  13. Real-Time Monitoring and Prediction of the Pilot Vehicle System (PVS) Closed-Loop Stability

    NASA Astrophysics Data System (ADS)

    Mandal, Tanmay Kumar

    Understanding human control behavior is an important step for improving the safety of future aircraft. Considerable resources are invested during the design phase of an aircraft to ensure that the aircraft has desirable handling qualities. However, human pilots exhibit a wide range of control behaviors that are a function of external stimulus, aircraft dynamics, and human psychological properties (such as workload, stress factor, confidence, and sense of urgency factor). This variability is difficult to address comprehensively during the design phase and may lead to undesirable pilot-aircraft interaction, such as pilot-induced oscillations (PIO). This creates the need to keep track of human pilot performance in real-time to monitor the pilot vehicle system (PVS) stability. This work focused on studying human pilot behavior for the longitudinal axis of a remotely controlled research aircraft and using human-in-the-loop (HuIL) simulations to obtain information about the human controlled system (HCS) stability. The work in this dissertation is divided into two main parts: PIO analysis and human control model parameters estimation. To replicate different flight conditions, this study included time delay and elevator rate limiting phenomena, typical of actuator dynamics during the experiments. To study human control behavior, this study employed the McRuer model for single-input single-output manual compensatory tasks. McRuer model is a lead-lag controller with time delay which has been shown to adequately model manual compensatory tasks. This dissertation presents a novel technique to estimate McRuer model parameters in real-time and associated validation using HuIL simulations to correctly predict HCS stability. The McRuer model parameters were estimated in real-time using a Kalman filter approach. The estimated parameters were then used to analyze the stability of the closed-loop HCS and verify them against the experimental data. Therefore, the main contribution of this dissertation is the design of an unscented Kalman filter-based algorithm to estimate McRuer model parameters in real time, and a framework to validate this algorithm for single-input single-output manual compensatory tasks to predict instabilities.

  14. Real Time Metrology Using Heterodyne Interferometry

    NASA Astrophysics Data System (ADS)

    Evans, Joseph T..., Jr.

    1983-11-01

    The Air Force Weapons Laboratory (AFWL) located at Albuquerque, NM has developed a digital heterodyne interferometer capable of real-time, closed loop analysis and control of adaptive optics. The device uses independent phase modulation of two orthogonal polarizations of an argon ion laser to produce a temporally phase modulated interferogram of the test object in a Twyman-Green interferometer. Differential phase detection under the control of a Data General minicomputer helps reconstruct the phase front without noise effects from amplitude modulation in the optical train. The system consists of the interferometer optics, phase detection circuitry, and the minicomputer, allowing for complete software control of the process. The software has been unified into a powerful package that performs automatic data acquisition, OPD reconstruction, and Zernike analysis of the resulting wavefront. The minicomputer has the capability to control external devices so that closed loop analysis and control is possible. New software under development will provide a framework of data acquisition, display, and storage packages which can be integrated with analysis and control packages customized to the user's needs. Preliminary measurements with the system show that it is noise limited by laser beam phase quality and vibration of the optics. Active measures are necessary to reduce the impact of these noise sources.

  15. Development of a real-time RT-PCR assay for squash mosaic virus useful for broad spectrum detection of various serotypes and its incorporation into a multiplex seed health assay

    USDA-ARS?s Scientific Manuscript database

    Seed-borne pathogens pose a serious threat to modern agricultural cropping systems as they can be disseminated to many geographical regions around the world. With trends of increasing global seed production and trade, seed-health testing is an important quality control step to prevent the introduct...

  16. Managing the Existing Housing Stock: Prospects and Problems,

    DTIC Science & Technology

    1982-02-01

    single persons. Such rehabilitation has occurred in some places [6]. Currently called " gentrification ," it is greeted with mixed emotions by public...ingredient of gentrification during the 1970s was amateur real estate speculation. Although quality-controlled comparisons are difficult, single...city sites. The other side of gentrification is a narrowing of the rental market for lower-income households, especally those with children. From

  17. Real-Time Meteorological Battlespace Characterization in Support of Sea Power 21

    DTIC Science & Technology

    2011-02-04

    32  5.3  LESSONS LEARNED ....................................................................................... 44  6.  FUTURE WORK...problem with the SWR alignment, which is sometimes re- set during SWR maintenance (see Section 6 ‘Lessons Learned ’ for a case in point). Fig...ground clutter present (discussed in Section 6 ‘Lessons Learned ’), along with the lowest-tilt, quality controlled velocity. Bottom panel shows the

  18. An expert system/ion trap mass spectrometry approach for life support systems monitoring

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael

    1992-01-01

    Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.

  19. Job-shop scheduling applied to computer vision

    NASA Astrophysics Data System (ADS)

    Sebastian y Zuniga, Jose M.; Torres-Medina, Fernando; Aracil, Rafael; Reinoso, Oscar; Jimenez, Luis M.; Garcia, David

    1997-09-01

    This paper presents a method for minimizing the total elapsed time spent by n tasks running on m differents processors working in parallel. The developed algorithm not only minimizes the total elapsed time but also reduces the idle time and waiting time of in-process tasks. This condition is very important in some applications of computer vision in which the time to finish the total process is particularly critical -- quality control in industrial inspection, real- time computer vision, guided robots. The scheduling algorithm is based on the use of two matrices, obtained from the precedence relationships between tasks, and the data obtained from the two matrices. The developed scheduling algorithm has been tested in one application of quality control using computer vision. The results obtained have been satisfactory in the application of different image processing algorithms.

  20. Manufacture and Quality Control of Insert Coil with Real ITER TF Conductor

    DOE PAGES

    Ozeki, H.; Isono, T.; Uno, Y.; ...

    2016-03-02

    JAEA successfully completed the manufacture of the toroidal field (TF) insert coil (TFIC) for a performance test of the ITER TF conductor in the final design in cooperation with Hitachi, Ltd. The TFIC is a single-layer 8.875-turn solenoid coil with 1.44-m diameter. This will be tested for 68-kA current application in a 13-T external magnetic field. TFIC was manufactured in the following order: winding of the TF conductor, lead bending, fabrication of the electrical termination, heat treatment, turn insulation, installation of the coil into the support mandrel structure, vacuum pressure impregnation (VPI), structure assembly, and instrumentation. Here in this presentation,more » manufacture process and quality control status for the TFIC manufacturing are reported.« less

  1. Interlaboratory quality control of total HIV-1 DNA load measurement for multicenter reservoir studies.

    PubMed

    Gantner, Pierre; Mélard, Adeline; Damond, Florence; Delaugerre, Constance; Dina, Julia; Gueudin, Marie; Maillard, Anne; Sauné, Karine; Rodallec, Audrey; Tuaillon, Edouard; Plantier, Jean-Christophe; Rouzioux, Christine; Avettand-Fenoel, Véronique

    2017-11-01

    Viral reservoirs represent an important barrier to HIV cure. Accurate markers of HIV reservoirs are needed to develop multicenter studies. The aim of this multicenter quality control (QC) was to evaluate the inter-laboratory reproducibility of total HIV-1-DNA quantification. Ten laboratories of the ANRS-AC11 working group participated by quantifying HIV-DNA with a real-time qPCR assay (Biocentric) in four samples (QCMD). Good reproducibility was found between laboratories (standard deviation ≤ 0.2 log 10 copies/10 6 PBMC) for the three positive QC that were correctly classified by each laboratory (QC1

  2. Data Management and Data Quality in PERCH, a Large International Case-Control Study of Severe Childhood Pneumonia.

    PubMed

    Watson, Nora L; Prosperi, Christine; Driscoll, Amanda J; Higdon, Melissa M; Park, Daniel E; Sanza, Megan; DeLuca, Andrea N; Awori, Juliet O; Goswami, Doli; Hammond, Emily; Hossain, Lokman; Johnson, Catherine; Kamau, Alice; Kuwanda, Locadiah; Moore, David P; Neyzari, Omid; Onwuchekwa, Uma; Parker, David; Sapchookul, Patranuch; Seidenberg, Phil; Shamsul, Arifin; Siazeele, Kazungu; Srisaengchai, Prasong; Sylla, Mamadou; Levine, Orin S; Murdoch, David R; O'Brien, Katherine L; Wolff, Mark; Deloria Knoll, Maria

    2017-06-15

    The Pneumonia Etiology Research for Child Health (PERCH) study is the largest multicountry etiology study of pediatric pneumonia undertaken in the past 3 decades. The study enrolled 4232 hospitalized cases and 5325 controls over 2 years across 9 research sites in 7 countries in Africa and Asia. The volume and complexity of data collection in PERCH presented considerable logistical and technical challenges. The project chose an internet-based data entry system to allow real-time access to the data, enabling the project to monitor and clean incoming data and perform preliminary analyses throughout the study. To ensure high-quality data, the project developed comprehensive quality indicator, data query, and monitoring reports. Among the approximately 9000 cases and controls, analyzable laboratory results were available for ≥96% of core specimens collected. Selected approaches to data management in PERCH may be extended to the planning and organization of international studies of similar scope and complexity. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  3. Modeling, simulation, and flight characteristics of an aircraft designed to fly at 100,000 feet

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1991-01-01

    A manned real time simulation of a conceptual vehicle, the stratoplane, was developed to study the problems associated with the flight characteristics of a large, lightweight vehicle. Mathematical models of the aerodynamics, mass properties, and propulsion system were developed in support of the simulation and are presented. The simulation was at first conducted without control augmentation to determine the needs for a control system. The unaugmented flying qualities were dominated by lightly damped dutch roll oscillations. Constant pilot workloads were needed at high altitudes. Control augmentation was studied using basic feedbacks. For the longitudinal axis, flight path angle, and pitch rate feedback were sufficient to damp the phugoid mode and to provide good flying qualities. In the lateral directional axis, bank angle, roll rate, and yaw rate feedbacks were sufficient to provide a safe vehicle with acceptable handling qualities. Intentionally stalling the stratoplane to very high angles of attack (deep stall) was studied as a means of enable safe and rapid descent. It was concluded that the deep stall maneuver is viable for this class of vehicle.

  4. Development, Implementation, and Pilot Evaluation of a Model-Driven Envelope Protection System to Mitigate the Hazard of In-Flight Ice Contamination on a Twin-Engine Commuter Aircraft

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Ranaudo, Richard; Norton, Billy; Gingras, David; Barnhart, Billy

    2014-01-01

    Fatal loss-of-control accidents have been directly related to in-flight airframe icing. The prototype system presented in this report directly addresses the need for real-time onboard envelope protection in icing conditions. The combination of prior information and real-time aerodynamic parameter estimations are shown to provide sufficient information for determining safe limits of the flight envelope during inflight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system was designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. The utility of the ICEPro system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their awareness of a hazardous aircraft state. The performance of ICEPro system was further evaluated by various levels of sensor noise and atmospheric turbulence.

  5. Further support for the role of dysfunctional attitudes in models of real-world functioning in schizophrenia.

    PubMed

    Horan, William P; Rassovsky, Yuri; Kern, Robert S; Lee, Junghee; Wynn, Jonathan K; Green, Michael F

    2010-06-01

    According to A.T. Beck and colleagues' cognitive formulation of poor functioning in schizophrenia, maladaptive cognitive appraisals play a key role in the expression and persistence of negative symptoms and associated real-world functioning deficits. They provided initial support for this model by showing that dysfunctional attitudes are elevated in schizophrenia and account for significant variance in negative symptoms and subjective quality of life. The current study used structural equation modeling to further evaluate the contribution of dysfunctional attitudes to outcome in schizophrenia. One hundred eleven outpatients and 67 healthy controls completed a Dysfunctional Attitudes Scale, and patients completed a competence measure of functional capacity, clinical ratings of negative symptoms, and interview-based ratings of real-world functioning. Patients reported higher defeatist performance beliefs than controls and these were significantly related to lower functional capacity, higher negative symptoms, and worse community functioning. Consistent with Beck and colleagues' formulation, modeling analyses indicated a significant indirect pathway from functional capacity-->dysfunctional attitudes-->negative symptoms-->real-world functioning. These findings support the value of dysfunctional attitudes for understanding the determinants of outcome in schizophrenia and suggest that therapeutic interventions targeting these attitudes may facilitate functional recovery. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Flight Dynamics Aspects of a Large Civil Tiltrotor Simulation Using Translational Rate Command

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Malpica, Carlos A.; Theodore, Colin R.; Decker, William A.; Lindsey, James E.

    2011-01-01

    An in-depth analysis of a Large Civil Tiltrotor simulation with a Translational Rate Command control law that uses automatic nacelle deflections for longitudinal velocity control and lateral cyclic for lateral velocity control is presented. Results from piloted real-time simulation experiments and offline time and frequency domain analyses are used to investigate the fundamental flight dynamic and control mechanisms of the control law. The baseline Translational Rate Command conferred handling qualities improvements over an attitude command attitude hold control law but in some scenarios there was a tendency to enter PIO. Nacelle actuator rate limiting strongly influenced the PIO tendency and reducing the rate limits degraded the handling qualities further. Counterintuitively, increasing rate limits also led to a worsening of the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired pitching motions proportional to the allowable amount of nacelle rate. A modification that applied a counteracting amount of longitudinal cyclic proportional to the nacelle rate significantly improved the handling qualities. The lateral axis of the Translational Rate Command conferred Level 1 handling qualities in a Lateral Reposition maneuver. Analysis of the influence of the modeling fidelity on the lateral flapping angles is presented. It is showed that the linear modeling approximation is likely to have under-predicted the side-force and therefore under-predicted the lateral flapping at velocities above 15 ft/s. However, at lower velocities, and therefore more weakly influenced by the side force modeling, the accelerations that the control law commands also significantly influenced the peak levels of lateral flapping achieved.

  7. Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation

    NASA Astrophysics Data System (ADS)

    Hakim, P. R.; Permala, R.; Jayani, A. P. S.

    2018-05-01

    LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.

  8. Use of near-infrared spectroscopy and multipoint measurements for quality control of pharmaceutical drug products.

    PubMed

    Boiret, Mathieu; Chauchard, Fabien

    2017-01-01

    Near-infrared (NIR) spectroscopy is a non-destructive analytical technique that enables better-understanding and optimization of pharmaceutical processes and final drug products. The use in line is often limited by acquisition speed and sampling area. This work focuses on performing a multipoint measurement at high acquisition speed at the end of the manufacturing process on a conveyor belt system to control both the distribution and the content of active pharmaceutical ingredient within final drug products, i.e., tablets. A specially designed probe with several collection fibers was developed for this study. By measuring spectral and spatial information, it provides physical and chemical knowledge on the final drug product. The NIR probe was installed on a conveyor belt system that enables the analysis of a lot of tablets. The use of these NIR multipoint measurement probes on a conveyor belt system provided an innovative method that has the potential to be used as a new paradigm to ensure the drug product quality at the end of the manufacturing process and as a new analytical method for the real-time release control strategy. Graphical abstract Use of near-infrared spectroscopy and multipoint measurements for quality control of pharmaceutical drug products.

  9. Real-time, continuous water-quality monitoring in Indiana and Kentucky

    USGS Publications Warehouse

    Shoda, Megan E.; Lathrop, Timothy R.; Risch, Martin R.

    2015-01-01

    Water-quality “super” gages (also known as “sentry” gages) provide real-time, continuous measurements of the physical and chemical characteristics of stream water at or near selected U.S. Geological Survey (USGS) streamgages in Indiana and Kentucky. A super gage includes streamflow and water-quality instrumentation and representative stream sample collection for laboratory analysis. USGS scientists can use statistical surrogate models to relate instrument values to analyzed chemical concentrations at a super gage. Real-time, continuous and laboratory-analyzed concentration and load data are publicly accessible on USGS Web pages.

  10. Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling.

    PubMed

    Melcher, Michael; Scharl, Theresa; Luchner, Markus; Striedner, Gerald; Leisch, Friedrich

    2017-02-01

    The quality of biopharmaceuticals and patients' safety are of highest priority and there are tremendous efforts to replace empirical production process designs by knowledge-based approaches. Main challenge in this context is that real-time access to process variables related to product quality and quantity is severely limited. To date comprehensive on- and offline monitoring platforms are used to generate process data sets that allow for development of mechanistic and/or data driven models for real-time prediction of these important quantities. Ultimate goal is to implement model based feed-back control loops that facilitate online control of product quality. In this contribution, we explore structured additive regression (STAR) models in combination with boosting as a variable selection tool for modeling the cell dry mass, product concentration, and optical density on the basis of online available process variables and two-dimensional fluorescence spectroscopic data. STAR models are powerful extensions of linear models allowing for inclusion of smooth effects or interactions between predictors. Boosting constructs the final model in a stepwise manner and provides a variable importance measure via predictor selection frequencies. Our results show that the cell dry mass can be modeled with a relative error of about ±3%, the optical density with ±6%, the soluble protein with ±16%, and the insoluble product with an accuracy of ±12%. Biotechnol. Bioeng. 2017;114: 321-334. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. [Real-time feedback systems for improvement of resuscitation quality].

    PubMed

    Lukas, R P; Van Aken, H; Engel, P; Bohn, A

    2011-07-01

    The quality of chest compression is a determinant of survival after cardiac arrest. Therefore, the European Resuscitation Council (ERC) 2010 guidelines on resuscitation strongly focus on compression quality. Despite its impact on survival, observational studies have shown that chest compression quality is not reached by professional rescue teams. Real-time feedback devices for resuscitation are able to measure chest compression during an ongoing resuscitation attempt through a sternal sensor equipped with a motion and pressure detection system. In addition to the electrocardiograph (ECG) ventilation can be detected by transthoracic impedance monitoring. In cases of quality deviation, such as shallow chest compression depth or hyperventilation, feedback systems produce visual or acoustic alarms. Rescuers can thereby be supported and guided to the requested quality in chest compression and ventilation. Feedback technology is currently available both as a so-called stand-alone device and as an integrated feature in a monitor/defibrillator unit. Multiple studies have demonstrated sustainable enhancement in the education of resuscitation due to the use of real-time feedback technology. There is evidence that real-time feedback for resuscitation combined with training and debriefing strategies can improve both resuscitation quality and patient survival. Chest compression quality is an independent predictor for survival in resuscitation and should therefore be measured and documented in further clinical multicenter trials.

  12. Assessing the Relationship between Socioeconomic Conditions and Urban Environmental Quality in Accra, Ghana

    PubMed Central

    Fobil, Julius; May, Juergen; Kraemer, Alexander

    2010-01-01

    The influence of socioeconomic status (SES) on health inequalities is widely known, but there is still poor understanding of the precise relationship between area-based socioeconomic conditions and neighborhood environmental quality. This study aimed to investigate the socioeconomic conditions which predict urban neighbourhood environmental quality. The results showed wide variation in levels of association between the socioeconomic variables and environmental conditions, with strong evidence of a real difference in environmental quality across the five socioeconomic classes with respect to total waste generation (p < 0.001), waste collection rate (p < 0.001), sewer disposal rate (p < 0.001), non-sewer disposal (p < 0.003), the proportion of households using public toilets (p = 0.005). Socioeconomic conditions are therefore important drivers of change in environmental quality and urban environmental interventions aimed at infectious disease prevention and control if they should be effective could benefit from simultaneous implementation with other social interventions. PMID:20195437

  13. Real-time feedback can improve infant manikin cardiopulmonary resuscitation by up to 79%--a randomised controlled trial.

    PubMed

    Martin, Philip; Theobald, Peter; Kemp, Alison; Maguire, Sabine; Maconochie, Ian; Jones, Michael

    2013-08-01

    European and Advanced Paediatric Life Support training courses. Sixty-nine certified CPR providers. CPR providers were randomly allocated to a 'no-feedback' or 'feedback' group, performing two-thumb and two-finger chest compressions on a "physiological", instrumented resuscitation manikin. Baseline data was recorded without feedback, before chest compressions were repeated with one group receiving feedback. Indices were calculated that defined chest compression quality, based upon comparison of the chest wall displacement to the targets of four, internationally recommended parameters: chest compression depth, release force, chest compression rate and compression duty cycle. Baseline data were consistent with other studies, with <1% of chest compressions performed by providers simultaneously achieving the target of the four internationally recommended parameters. During the 'experimental' phase, 34 CPR providers benefitted from the provision of 'real-time' feedback which, on analysis, coincided with a statistical improvement in compression rate, depth and duty cycle quality across both compression techniques (all measures: p<0.001). Feedback enabled providers to simultaneously achieve the four targets in 75% (two-finger) and 80% (two-thumb) of chest compressions. Real-time feedback produced a dramatic increase in the quality of chest compression (i.e. from <1% to 75-80%). If these results transfer to a clinical scenario this technology could, for the first time, support providers in consistently performing accurate chest compressions during infant CPR and thus potentially improving clinical outcomes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Low cost composite manufacturing utilizing intelligent pultrusion and resin transfer molding (IPRTM)

    NASA Astrophysics Data System (ADS)

    Bradley, James E.; Wysocki, Tadeusz S., Jr.

    1993-02-01

    This article describes an innovative method for the economical manufacturing of large, intricately-shaped tubular composite parts. Proprietary intelligent process control techniques are combined with standard pultrusion and RTM methodologies to provide high part throughput, performance, and quality while substantially reducing scrap, rework costs, and labor requirements. On-line process monitoring and control is achieved through a smart tooling interface consisting of modular zone tiles installed on part-specific die assemblies. Real-time archiving of process run parameters provides enhanced SPC and SQC capabilities.

  15. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with the system. We are currently testing the system at two sites on the Colorado River in Grand Canyon and at one critical monitoring site on the Paria River where we have deployed suites of instruments for monitoring flow, sediment concentration, temperature, and conductivity. One aspect of the system that may be particularly useful for ecohydrological applications is the ability to remotely control on-site pump samplers, which allows for the collection of a water sample by the press of a button in the office.

  16. Advances and new directions in crystallization control.

    PubMed

    Nagy, Zoltan K; Braatz, Richard D

    2012-01-01

    The academic literature on and industrial practice of control of solution crystallization processes have seen major advances in the past 15 years that have been enabled by progress in in-situ real-time sensor technologies and driven primarily by needs in the pharmaceutical industry for improved and more consistent quality of drug crystals. These advances include the accurate measurement of solution concentrations and crystal characteristics as well as the first-principles modeling and robust model-based and model-free feedback control of crystal size and polymorphic identity. Research opportunities are described in model-free controller design, new crystallizer designs with enhanced control of crystal size distribution, strategies for the robust control of crystal shape, and interconnected crystallization systems for multicomponent crystallization.

  17. Flash LIDAR Emulator for HIL Simulation

    NASA Technical Reports Server (NTRS)

    Brewster, Paul F.

    2010-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is building a system for detecting hazards and automatically landing controlled vehicles safely anywhere on the Moon. The Flash Light Detection And Ranging (LIDAR) sensor is used to create on-the-fly a 3D map of the unknown terrain for hazard detection. As part of the ALHAT project, a hardware-in-the-loop (HIL) simulation testbed was developed to test the data processing, guidance, and navigation algorithms in real-time to prove their feasibility for flight. Replacing the Flash LIDAR camera with an emulator in the testbed provided a cheaper, safer, more feasible way to test the algorithms in a controlled environment. This emulator must have the same hardware interfaces as the LIDAR camera, have the same performance characteristics, and produce images similar in quality to the camera. This presentation describes the issues involved and the techniques used to create a real-time flash LIDAR emulator to support HIL simulation.

  18. New methodology of designing inexpensive hybrid control-acquisition systems for mechatronic constructions.

    PubMed

    Augustyn, Jacek

    2013-12-13

    This article presents a new methodology for designing a hybrid control and acquisition system consisting of a 32-bit SoC microsystem connected via a direct Universal Serial Bus (USB) with a standard commercial off-the-shelf (COTS) component running the Android operating system. It is proposed to utilize it avoiding the use of an additional converter. An Android-based component was chosen to explore the potential for a mobile, compact and energy efficient solution with easy to build user interfaces and easy wireless integration with other computer systems. This paper presents results of practical implementation and analysis of experimental real-time performance. It covers closed control loop time between the sensor/actuator module and the Android operating system as well as the real-time sensor data stream within such a system. Some optimisations are proposed and their influence on real-time performance was investigated. The proposed methodology is intended for acquisition and control of mechatronic systems, especially mobile robots. It can be used in a wide range of control applications as well as embedded acquisition-recording devices, including energy quality measurements, smart-grids and medicine. It is demonstrated that the proposed methodology can be employed without developing specific device drivers. The latency achieved was less than 0.5 ms and the sensor data stream throughput was on the order of 750 KB/s (compared to 3 ms latency and 300 KB/s in traditional solutions).

  19. New Methodology of Designing Inexpensive Hybrid Control-Acquisition Systems for Mechatronic Constructions

    PubMed Central

    Augustyn, Jacek

    2013-01-01

    This article presents a new methodology for designing a hybrid control and acquisition system consisting of a 32-bit SoC microsystem connected via a direct Universal Serial Bus (USB) with a standard commercial off-the-shelf (COTS) component running the Android operating system. It is proposed to utilize it avoiding the use of an additional converter. An Android-based component was chosen to explore the potential for a mobile, compact and energy efficient solution with easy to build user interfaces and easy wireless integration with other computer systems. This paper presents results of practical implementation and analysis of experimental real-time performance. It covers closed control loop time between the sensor/actuator module and the Android operating system as well as the real-time sensor data stream within such a system. Some optimisations are proposed and their influence on real-time performance was investigated. The proposed methodology is intended for acquisition and control of mechatronic systems, especially mobile robots. It can be used in a wide range of control applications as well as embedded acquisition-recording devices, including energy quality measurements, smart-grids and medicine. It is demonstrated that the proposed methodology can be employed without developing specific device drivers. The latency achieved was less than 0.5 ms and the sensor data stream throughput was on the order of 750 KB/s (compared to 3 ms latency and 300 KB/s in traditional solutions). PMID:24351633

  20. Single-channel stereoscopic ophthalmology microscope based on TRD

    NASA Astrophysics Data System (ADS)

    Radfar, Edalat; Park, Jihoon; Lee, Sangyeob; Ha, Myungjin; Yu, Sungkon; Jang, Seulki; Jung, Byungjo

    2016-03-01

    A stereoscopic imaging modality was developed for the application of ophthalmology surgical microscopes. A previous study has already introduced a single-channel stereoscopic video imaging modality based on a transparent rotating deflector (SSVIM-TRD), in which two different view angles, image disparity, are generated by imaging through a transparent rotating deflector (TRD) mounted on a stepping motor and is placed in a lens system. In this case, the image disparity is a function of the refractive index and the rotation angle of TRD. Real-time single-channel stereoscopic ophthalmology microscope (SSOM) based on the TRD is improved by real-time controlling and programming, imaging speed, and illumination method. Image quality assessments were performed to investigate images quality and stability during the TRD operation. Results presented little significant difference in image quality in terms of stability of structural similarity (SSIM). A subjective analysis was performed with 15 blinded observers to evaluate the depth perception improvement and presented significant improvement in the depth perception capability. Along with all evaluation results, preliminary results of rabbit eye imaging presented that the SSOM could be utilized as an ophthalmic operating microscopes to overcome some of the limitations of conventional ones.

  1. Motion adaptive Kalman filter for super-resolution

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Nasse, Fabian; Schröder, Hartmut

    2011-01-01

    Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.

  2. A study on real-time low-quality content detection on Twitter from the users' perspective.

    PubMed

    Chen, Weiling; Yeo, Chai Kiat; Lau, Chiew Tong; Lee, Bu Sung

    2017-01-01

    Detection techniques of malicious content such as spam and phishing on Online Social Networks (OSN) are common with little attention paid to other types of low-quality content which actually impacts users' content browsing experience most. The aim of our work is to detect low-quality content from the users' perspective in real time. To define low-quality content comprehensibly, Expectation Maximization (EM) algorithm is first used to coarsely classify low-quality tweets into four categories. Based on this preliminary study, a survey is carefully designed to gather users' opinions on different categories of low-quality content. Both direct and indirect features including newly proposed features are identified to characterize all types of low-quality content. We then further combine word level analysis with the identified features and build a keyword blacklist dictionary to improve the detection performance. We manually label an extensive Twitter dataset of 100,000 tweets and perform low-quality content detection in real time based on the characterized significant features and word level analysis. The results of our research show that our method has a high accuracy of 0.9711 and a good F1 of 0.8379 based on a random forest classifier with real time performance in the detection of low-quality content in tweets. Our work therefore achieves a positive impact in improving user experience in browsing social media content.

  3. A study on real-time low-quality content detection on Twitter from the users’ perspective

    PubMed Central

    Yeo, Chai Kiat; Lau, Chiew Tong; Lee, Bu Sung

    2017-01-01

    Detection techniques of malicious content such as spam and phishing on Online Social Networks (OSN) are common with little attention paid to other types of low-quality content which actually impacts users’ content browsing experience most. The aim of our work is to detect low-quality content from the users’ perspective in real time. To define low-quality content comprehensibly, Expectation Maximization (EM) algorithm is first used to coarsely classify low-quality tweets into four categories. Based on this preliminary study, a survey is carefully designed to gather users’ opinions on different categories of low-quality content. Both direct and indirect features including newly proposed features are identified to characterize all types of low-quality content. We then further combine word level analysis with the identified features and build a keyword blacklist dictionary to improve the detection performance. We manually label an extensive Twitter dataset of 100,000 tweets and perform low-quality content detection in real time based on the characterized significant features and word level analysis. The results of our research show that our method has a high accuracy of 0.9711 and a good F1 of 0.8379 based on a random forest classifier with real time performance in the detection of low-quality content in tweets. Our work therefore achieves a positive impact in improving user experience in browsing social media content. PMID:28793347

  4. Impact of telemonitoring approaches on integrated HIV and TB diagnosis and treatment interventions in sub-Saharan Africa: a scoping review.

    PubMed

    Yah, Clarence S; Tambo, Ernest; Khayeka-Wandabwa, Christopher; Ngogang, Jeanne Y

    2017-01-01

    Background: This paper explores telemonitoring/mhealth approaches as a promising real time and contextual strategy in overhauling HIV and TB interventions quality access and uptake, retention,adherence and coverage impact in endemic and prone-epidemic prevention and control in sub-Sahara Africa. Methods: The scoping review method was applied in acknowledged journals indexing platforms including Medline, Embase, Global Health, PubMed, MeSH PsycInfo, Scopus and Google Scholar to identify relevant articles pertaining to telemonitoring as a proxy surrogate method in reinforcing sustainability of HIV/TB prevention/treatment interventions in sub-Saharan Africa. Full papers were assessed and those selected that fosters evidence on telemonitoring/mhealth diagnosis, treatment approaches and strategies in HIV and TB prevention and control were synthesized and analyzed. Results: We found telemonitoring/mhealth approach as a more efficient and sustained proxy in HIV and TB risk reduction strategies for early diagnosis and prompt quality clinical outcomes. It can significantly contribute to decreasing health systems/patients cost, long waiting time in clinics, hospital visits, travels and time off/on from work. Improved integrated HIV and TB telemonitoring systems sustainability hold great promise in health systems strengthening including patient centered early diagnosis and care delivery systems, uptake and retention to medications/services and improving patients' survival and quality of life. Conclusion: Telemonitoring/mhealth (electronic phone text/video/materials messaging)acceptability, access and uptake are crucial in monitoring and improving uptake, retention,adherence and coverage in both local and national integrated HIV and TB programs and interventions. Moreover, telemonitoring is crucial in patient-providers-health professional partnership, real-time quality care and service delivery, antiretroviral and anti-tuberculous drugs improvement, susceptibility monitoring and prescription choice, reinforcing cost effective HIV and TB integrated therapy model and survival rate.

  5. Improved statistical method for temperature and salinity quality control

    NASA Astrophysics Data System (ADS)

    Gourrion, Jérôme; Szekely, Tanguy

    2017-04-01

    Climate research and Ocean monitoring benefit from the continuous development of global in-situ hydrographic networks in the last decades. Apart from the increasing volume of observations available on a large range of temporal and spatial scales, a critical aspect concerns the ability to constantly improve the quality of the datasets. In the context of the Coriolis Dataset for ReAnalysis (CORA) version 4.2, a new quality control method based on a local comparison to historical extreme values ever observed is developed, implemented and validated. Temperature, salinity and potential density validity intervals are directly estimated from minimum and maximum values from an historical reference dataset, rather than from traditional mean and standard deviation estimates. Such an approach avoids strong statistical assumptions on the data distributions such as unimodality, absence of skewness and spatially homogeneous kurtosis. As a new feature, it also allows addressing simultaneously the two main objectives of an automatic quality control strategy, i.e. maximizing the number of good detections while minimizing the number of false alarms. The reference dataset is presently built from the fusion of 1) all ARGO profiles up to late 2015, 2) 3 historical CTD datasets and 3) the Sea Mammals CTD profiles from the MEOP database. All datasets are extensively and manually quality controlled. In this communication, the latest method validation results are also presented. The method has already been implemented in the latest version of the delayed-time CMEMS in-situ dataset and will be deployed soon in the equivalent near-real time products.

  6. A real-time monitoring system for night glare protection

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Ni, Xuxiang

    2010-11-01

    When capturing a dark scene with a high bright object, the monitoring camera will be saturated in some regions and the details will be lost in and near these saturated regions because of the glare vision. This work aims at developing a real-time night monitoring system. The system can decrease the influence of the glare vision and gain more details from the ordinary camera when exposing a high-contrast scene like a car with its headlight on during night. The system is made up of spatial light modulator (The liquid crystal on silicon: LCoS), image sensor (CCD), imaging lens and DSP. LCoS, a reflective liquid crystal, can modular the intensity of reflective light at every pixel as a digital device. Through modulation function of LCoS, CCD is exposed with sub-region. With the control of DSP, the light intensity is decreased to minimum in the glare regions, and the light intensity is negative feedback modulated based on PID theory in other regions. So that more details of the object will be imaging on CCD and the glare protection of monitoring system is achieved. In experiments, the feedback is controlled by the embedded system based on TI DM642. Experiments shows: this feedback modulation method not only reduces the glare vision to improve image quality, but also enhances the dynamic range of image. The high-quality and high dynamic range image is real-time captured at 30hz. The modulation depth of LCoS determines how strong the glare can be removed.

  7. Modeling in the quality by design environment: Regulatory requirements and recommendations for design space and control strategy appointment.

    PubMed

    Djuris, Jelena; Djuric, Zorica

    2017-11-30

    Mathematical models can be used as an integral part of the quality by design (QbD) concept throughout the product lifecycle for variety of purposes, including appointment of the design space and control strategy, continual improvement and risk assessment. Examples of different mathematical modeling techniques (mechanistic, empirical and hybrid) in the pharmaceutical development and process monitoring or control are provided in the presented review. In the QbD context, mathematical models are predominantly used to support design space and/or control strategies. Considering their impact to the final product quality, models can be divided into the following categories: high, medium and low impact models. Although there are regulatory guidelines on the topic of modeling applications, review of QbD-based submission containing modeling elements revealed concerns regarding the scale-dependency of design spaces and verification of models predictions at commercial scale of manufacturing, especially regarding real-time release (RTR) models. Authors provide critical overview on the good modeling practices and introduce concepts of multiple-unit, adaptive and dynamic design space, multivariate specifications and methods for process uncertainty analysis. RTR specification with mathematical model and different approaches to multivariate statistical process control supporting process analytical technologies are also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    PubMed

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p < 0.001). Most (>90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  9. SAR operational aspects

    NASA Astrophysics Data System (ADS)

    Holmdahl, P. E.; Ellis, A. B. E.; Moeller-Olsen, P.; Ringgaard, J. P.

    1981-12-01

    The basic requirements of the SAR ground segment of ERS-1 are discussed. A system configuration for the real time data acquisition station and the processing and archive facility is depicted. The functions of a typical SAR processing unit (SPU) are specified, and inputs required for near real time and full precision, deferred time processing are described. Inputs and the processing required for provision of these inputs to the SPU are dealt with. Data flow through the systems, and normal and nonnormal operational sequence, are outlined. Prerequisites for maintaining overall performance are identified, emphasizing quality control. The most demanding tasks to be performed by the front end are defined in order to determine types of processors and peripherals which comply with throughput requirements.

  10. Practical, Real-Time, and Robust Watermarking on the Spatial Domain for High-Definition Video Contents

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Su; Lee, Hae-Yeoun; Im, Dong-Hyuck; Lee, Heung-Kyu

    Commercial markets employ digital right management (DRM) systems to protect valuable high-definition (HD) quality videos. DRM system uses watermarking to provide copyright protection and ownership authentication of multimedia contents. We propose a real-time video watermarking scheme for HD video in the uncompressed domain. Especially, our approach is in aspect of practical perspectives to satisfy perceptual quality, real-time processing, and robustness requirements. We simplify and optimize human visual system mask for real-time performance and also apply dithering technique for invisibility. Extensive experiments are performed to prove that the proposed scheme satisfies the invisibility, real-time processing, and robustness requirements against video processing attacks. We concentrate upon video processing attacks that commonly occur in HD quality videos to display on portable devices. These attacks include not only scaling and low bit-rate encoding, but also malicious attacks such as format conversion and frame rate change.

  11. Fully Automated Quantification of Cytomegalovirus (CMV) in Whole Blood with the New Sensitive Abbott RealTime CMV Assay in the Era of the CMV International Standard

    PubMed Central

    Schnepf, Nathalie; Scieux, Catherine; Resche-Riggon, Matthieu; Feghoul, Linda; Xhaard, Alienor; Gallien, Sébastien; Molina, Jean-Michel; Socié, Gérard; Viglietti, Denis; Simon, François; Mazeron, Marie-Christine

    2013-01-01

    Fully standardized reproducible and sensitive quantification assays for cytomegalovirus (CMV) are needed to better define thresholds for antiviral therapy initiation and interruption. We evaluated the newly released Abbott RealTime CMV assay for CMV quantification in whole blood (WB) that includes automated extraction and amplification (m2000 RealTime system). Sensitivity, accuracy, linearity, and intra- and interassay variability were validated in a WB matrix using Quality Control for Molecular Diagnostics (QCMD) panels and the WHO international standard (IS). The intra- and interassay coefficients of variation were 1.37% and 2.09% at 5 log10 copies/ml and 2.41% and 3.80% at 3 log10 copies/ml, respectively. According to expected values for the QCMD and Abbott RealTime CMV methods, the lower limits of quantification were 104 and <50 copies/ml, respectively. The conversion factor between international units and copies (2.18), determined from serial dilutions of the WHO IS in WB, was significantly different from the factor provided by the manufacturer (1.56) (P = 0.001). Results from 302 clinical samples were compared with those from the Qiagen artus CMV assay on the same m2000 RealTime system. The two assays provided highly concordant results (concordance correlation coefficient, 0.92), but the Abbott RealTime CMV assay detected and quantified, respectively, 20.6% and 47.8% more samples than the Qiagen/artus CMV assay. The sensitivity and reproducibility of the results, along with the automation, fulfilled the quality requirements for implementation of the Abbott RealTime CMV assay in clinical settings. Our results highlight the need for careful validation of conversion factors provided by the manufacturers for the WHO IS in WB to allow future comparison of results obtained with different assays. PMID:23616450

  12. Using Antelope and Seiscomp in the framework of the Romanian Seismic Network

    NASA Astrophysics Data System (ADS)

    Marius Craiu, George; Craiu, Andreea; Marmureanu, Alexandru; Neagoe, Cristian

    2014-05-01

    The National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2, SH-1, S13, Mark l4c, Ranger, Gs21, Mark 22) and acceleration sensors (Episensor Kinemetrics). The primary goal of the real-time seismic network is to provide earthquake parameters from more broad-band stations with a high dynamic range, for more rapid and accurate computation of the locations and magnitudes of earthquakes. The Seedlink and AntelopeTM program packages are completely automated Antelope seismological system is run at the Data Center in Măgurele. The Antelope data acquisition and processing software is running for real-time processing and post processing. The Antelope real-time system provides automatic event detection, arrival picking, event location, and magnitude calculation. It also provides graphical displays and automatic location within near real time after a local, regional or teleseismic event has occurred SeisComP 3 is another automated system that is run at the NIEP and which provides the following features: data acquisition, data quality control, real-time data exchange and processing, network status monitoring, issuing event alerts, waveform archiving and data distribution, automatic event detection and location, easy access to relevant information about stations, waveforms, and recent earthquakes. The main goal of this paper is to compare both of these data acquisitions systems in order to improve their detection capabilities, location accuracy, magnitude and depth determination and reduce the RMS and other location errors.

  13. Towards an integrated quality control procedure for eddy-covariance data

    NASA Astrophysics Data System (ADS)

    Vitale, Domenico; Papale, Dario

    2017-04-01

    The eddy-covariance technique is nowadays the most reliable and direct way, allowing to calculate the main fluxes of Sensible and Latent Heat and of Net Ecosystem Exchange, this last being the result of the difference between the CO2 assimilated by photosynthetic activities and those released to the atmosphere through the ecosystem respiration processes. Despite the improvements in accuracy of measurement instruments and software development, the eddy-covariance technique is not suitable under non-ideal conditions respect to the instruments characteristics and the physical assumption behind the technique mainly related to the well-developed and stationary turbulence conditions. Under these conditions the calculated fluxes are not reliable and need to be flagged and discarded. In order to discover these unavoidable "bad" fluxes and build dataset with the highest quality, several tests applied both on high-frequency (10-20 Hz) raw data and on half-hourly times series have been developed in the past years. Nevertheless, there is an increasing need to develop a standardized quality control procedure suitable not only for the analysis of long-term data, but also for the near-real time data processing. In this paper, we review established quality assessment procedures and present an innovative quality control strategy with the purpose of integrating the existing consolidated procedures with robust and advanced statistical tests more suitable for the analysis of time series data. The performance of the proposed quality control strategy is evaluated both on simulated and EC data distributed by the ICOS research infrastructure. It is concluded that the proposed strategy is able to flag and exclude unrealistic fluxes while being reproducible and retaining the largest possible amount of high quality data.

  14. Real-time head movement system and embedded Linux implementation for the control of power wheelchairs.

    PubMed

    Nguyen, H T; King, L M; Knight, G

    2004-01-01

    Mobility has become very important for our quality of life. A loss of mobility due to an injury is usually accompanied by a loss of self-confidence. For many individuals, independent mobility is an important aspect of self-esteem. Head movement is a natural form of pointing and can be used to directly replace the joystick whilst still allowing for similar control. Through the use of embedded LINUX and artificial intelligence, a hands-free head movement wheelchair controller has been designed and implemented successfully. This system provides for severely disabled users an effective power wheelchair control method with improved posture, ease of use and attractiveness.

  15. Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection

    NASA Astrophysics Data System (ADS)

    Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan

    2018-03-01

    X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400  ×  400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.

  16. Enhancing the Quality of Service for Real Time Traffic over Optical Burst Switching (OBS) Networks with Ensuring the Fairness for Other Traffics.

    PubMed

    Al-Shargabi, Mohammed A; Shaikh, Asadullah; Ismail, Abdulsamad S

    2016-01-01

    Optical burst switching (OBS) networks have been attracting much consideration as a promising approach to build the next generation optical Internet. A solution for enhancing the Quality of Service (QoS) for high priority real time traffic over OBS with the fairness among the traffic types is absent in current OBS' QoS schemes. In this paper we present a novel Real Time Quality of Service with Fairness Ratio (RT-QoSFR) scheme that can adapt the burst assembly parameters according to the traffic QoS needs in order to enhance the real time traffic QoS requirements and to ensure the fairness for other traffic. The results show that RT-QoSFR scheme is able to fulfill the real time traffic requirements (end to end delay, and loss rate) ensuring the fairness for other traffics under various conditions such as the type of real time traffic and traffic load. RT-QoSFR can guarantee that the delay of the real time traffic packets does not exceed the maximum packets transfer delay value. Furthermore, it can reduce the real time traffic packets loss, at the same time guarantee the fairness for non real time traffic packets by determining the ratio of real time traffic inside the burst to be 50-60%, 30-40%, and 10-20% for high, normal, and low traffic loads respectively.

  17. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  18. Three-dimensional face pose detection and tracking using monocular videos: tool and application.

    PubMed

    Dornaika, Fadi; Raducanu, Bogdan

    2009-08-01

    Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.

  19. Power quality improvement by using STATCOM control scheme in wind energy generation interface to grid

    NASA Astrophysics Data System (ADS)

    Kirmani, Sheeraz; Kumar, Brijesh

    2018-01-01

    “Electric Power Quality (EPQ) is a term that refers to maintaining the near sinusoidal waveform of power distribution bus voltages and currents at rated magnitude and frequency”. Today customers are more aware of the seriousness that the power quality possesses, this prompt the utilities to assure good quality of power to their customer. The power quality is basically customer centric. Increased focus of utilities toward maintaining reliable power supply by employing power quality improvement tools has reduced the power outages and black out considerably. Good power quality is the characteristic of reliable power supply. Low power factor, harmonic pollution, load imbalance, fast voltage variations are some common parameters which are used to define the power quality. If the power quality issues are not checked i.e. the parameters that define power quality doesn't fall within the predefined standards than it will lead into high electricity bill, high running cost in industries, malfunctioning of equipments, challenges in connecting renewable. Capacitor banks, FACTS devices, harmonic filters, SVC’s (static voltage compensators), STATCOM (Static-Compensator) are the solutions to achieve the power quality. The performance of Wind turbine generators is affected by poor quality power, at the same time these wind power generating plant affects the power quality negatively. This paper presents the STATCOM-BESS (battery energy storage system) system and studies its impact on the power quality in a system which consists of wind turbine generator, non linear load, hysteresis controller for controlling the operation of STATCOM and grid. The model is simulated in the MATLAB/Simulink. This scheme mitigates the power quality issues, improves voltage profile and also reduces harmonic distortion of the waveforms. BESS level out the imbalances caused in real power due to intermittent nature of wind power available due to varying wind speeds.

  20. Real Time Quality Control Methods for Cued EMI Data Collection

    DTIC Science & Technology

    2016-01-12

    of magnetic geology creating false source locations;  out of the remaining 78 recollects that were due to legitimate sources (i.e., a metal...White River Technologies January 2016 The magnetic geology at the site presented the most significant challenge to the technology and...object, magnetic geology , etc.); however, many of the reacquires due to common errors such as inaccurate target picking could be replaced by in-field

  1. Development of a reference material of a single DNA molecule for the quality control of PCR testing.

    PubMed

    Mano, Junichi; Hatano, Shuko; Futo, Satoshi; Yoshii, Junji; Nakae, Hiroki; Naito, Shigehiro; Takabatake, Reona; Kitta, Kazumi

    2014-09-02

    We developed a reference material of a single DNA molecule with a specific nucleotide sequence. The double-strand linear DNA which has PCR target sequences at the both ends was prepared as a reference DNA molecule, and we named the PCR targets on each side as confirmation sequence and standard sequence. The highly diluted solution of the reference molecule was dispensed into 96 wells of a plastic PCR plate to make the average number of molecules in a well below one. Subsequently, the presence or absence of the reference molecule in each well was checked by real-time PCR targeting for the confirmation sequence. After an enzymatic treatment of the reaction mixture in the positive wells for the digestion of PCR products, the resultant solution was used as the reference material of a single DNA molecule with the standard sequence. PCR analyses revealed that the prepared samples included only one reference molecule with high probability. The single-molecule reference material developed in this study will be useful for the absolute evaluation of a detection limit of PCR-based testing methods, the quality control of PCR analyses, performance evaluations of PCR reagents and instruments, and the preparation of an accurate calibration curve for real-time PCR quantitation.

  2. A tele-operated mobile ultrasound scanner using a light-weight robot.

    PubMed

    Delgorge, Cécile; Courrèges, Fabien; Al Bassit, Lama; Novales, Cyril; Rosenberger, Christophe; Smith-Guerin, Natalie; Brù, Concepció; Gilabert, Rosa; Vannoni, Maurizio; Poisson, Gérard; Vieyres, Pierre

    2005-03-01

    This paper presents a new tele-operated robotic chain for real-time ultrasound image acquisition and medical diagnosis. This system has been developed in the frame of the Mobile Tele-Echography Using an Ultralight Robot European Project. A light-weight six degrees-of-freedom serial robot, with a remote center of motion, has been specially designed for this application. It holds and moves a real probe on a distant patient according to the expert gesture and permits an image acquisition using a standard ultrasound device. The combination of mechanical structure choice for the robot and dedicated control law, particularly nearby the singular configuration allows a good path following and a robotized gesture accuracy. The choice of compression techniques for image transmission enables a compromise between flow and quality. These combined approaches, for robotics and image processing, enable the medical specialist to better control the remote ultrasound probe holder system and to receive stable and good quality ultrasound images to make a diagnosis via any type of communication link from terrestrial to satellite. Clinical tests have been performed since April 2003. They used both satellite or Integrated Services Digital Network lines with a theoretical bandwidth of 384 Kb/s. They showed the tele-echography system helped to identify 66% of lesions and 83% of symptomatic pathologies.

  3. Research and Development of An In-situ Real-time Coastal Monitoring System

    NASA Astrophysics Data System (ADS)

    Deponte, D.; Cecco, R.; Laterza, R.; Medeot, N.; Nair, R.; Viezzoli, D.

    The coastal area is a complex system in which the effects of the forcing terms on the circulation and mixing present a marked space-time variability on widely differing scales. In order to study such a system, it is necessary to monitor continuously, at high frequency, oceanographic and meteorological variables. To meet this need, the OGS has developed a coastal meteo-oceanographic buoy, called MAMBO, constituted by a float, a hull, a tripod and a powering system based on batteries recharged by so- lar panels that have been expressly designed and assembled by an in-house technical team. The buoy is equipped with a mechanical winch driving a multi-parametric pro- filing probe which provides data on pressure, temperature, salinity, dissolved oxygen, chlorophyll, pH and turbidity over the entire water column. Meteorological data (air temperature, barometric pressure and wind) are also measured. Data are acquired ev- ery 3 hours and transmitted via GSM cellular phone to a receiving station at the OGS in real-time where they are automatically subjected to a first level quality-check and made available to the public at the OGS web site. The buoy also serves as a convenient platform for a separate OGS-developed controller that manages an upward-looking ADCP-600kHz positioned on the sea floor close to the buoy. This controller regu- lates the ADCP power supply and permits the real-time transmission of pressure and current data to land via GSM cellular phone. Since there are no limitations due to bat- teries or memory capacity, currents can be sampled at high spatial and time resolution. Moreover, the controller permits to remotely change the configuration of the instru- ment in order to increase, for example, vertical resolution, and eventually, to record wave data. The first buoy of this type has been operating in the Gulf of Trieste (North Adriatic Sea) since 1998, and it is being continually improved. Two others, supplied additionally with a GPS, a radiometer and a hygrometer and improved with respect to some mechanical parts, have been deployed since June 2000, in the coastal area to the north of Sardinia (Tyrrhenian Sea). The development of an effective quality control procedure, that can be applied in real-time to the acquired data and that can permit the design of an efficient maintenance program for the buoy sensors, is in progress.

  4. Quality labeled faces in the wild (QLFW): a database for studying face recognition in real-world environments

    NASA Astrophysics Data System (ADS)

    Karam, Lina J.; Zhu, Tong

    2015-03-01

    The varying quality of face images is an important challenge that limits the effectiveness of face recognition technology when applied in real-world applications. Existing face image databases do not consider the effect of distortions that commonly occur in real-world environments. This database (QLFW) represents an initial attempt to provide a set of labeled face images spanning the wide range of quality, from no perceived impairment to strong perceived impairment for face detection and face recognition applications. Types of impairment include JPEG2000 compression, JPEG compression, additive white noise, Gaussian blur and contrast change. Subjective experiments are conducted to assess the perceived visual quality of faces under different levels and types of distortions and also to assess the human recognition performance under the considered distortions. One goal of this work is to enable automated performance evaluation of face recognition technologies in the presence of different types and levels of visual distortions. This will consequently enable the development of face recognition systems that can operate reliably on real-world visual content in the presence of real-world visual distortions. Another goal is to enable the development and assessment of visual quality metrics for face images and for face detection and recognition applications.

  5. Enhancements to the EPANET-RTX (Real-Time Analytics) ...

    EPA Pesticide Factsheets

    Technical brief and software The U.S. Environmental Protection Agency (EPA) developed EPANET-RTX as a collection of object-oriented software libraries comprising the core data access, data transformation, and data synthesis (real-time analytics) components of a real-time hydraulic and water quality modeling system. While EPANET-RTX uses the hydraulic and water quality solvers of EPANET, the object libraries are a self-contained set of building blocks for software developers. “Real-time EPANET” promises to change the way water utilities, commercial vendors, engineers, and the water community think about modeling.

  6. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Galanos, Theodore; Ghellere, Matteo; Meroni, Italo

    2017-05-04

    The article describes the results of the project "open source smart lamp" aimed at designing and developing a smart object able to manage and control the indoor environmental quality (IEQ) of the built environment. A first version of this smart object, built following a do-it-yourself (DIY) approach using a microcontroller, an integrated temperature and relative humidity sensor, and techniques of additive manufacturing, allows the adjustment of the indoor thermal comfort quality (ICQ), by interacting directly with the air conditioner. As is well known, the IEQ is a holistic concept including indoor air quality (IAQ), indoor lighting quality (ILQ) and acoustic comfort, besides thermal comfort. The upgrade of the smart lamp bridges the gap of the first version of the device providing the possibility of interaction with the air exchange unit and lighting system in order to get an overview of the potential of a nearable device in the management of the IEQ. The upgraded version was tested in a real office equipped with mechanical ventilation and an air conditioning system. This office was occupied by four workers. The experiment is compared with a baseline scenario and the results show how the application of the nearable device effectively optimizes both IAQ and ILQ.

  7. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality

    PubMed Central

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Galanos, Theodore; Ghellere, Matteo; Meroni, Italo

    2017-01-01

    The article describes the results of the project “open source smart lamp” aimed at designing and developing a smart object able to manage and control the indoor environmental quality (IEQ) of the built environment. A first version of this smart object, built following a do-it-yourself (DIY) approach using a microcontroller, an integrated temperature and relative humidity sensor, and techniques of additive manufacturing, allows the adjustment of the indoor thermal comfort quality (ICQ), by interacting directly with the air conditioner. As is well known, the IEQ is a holistic concept including indoor air quality (IAQ), indoor lighting quality (ILQ) and acoustic comfort, besides thermal comfort. The upgrade of the smart lamp bridges the gap of the first version of the device providing the possibility of interaction with the air exchange unit and lighting system in order to get an overview of the potential of a nearable device in the management of the IEQ. The upgraded version was tested in a real office equipped with mechanical ventilation and an air conditioning system. This office was occupied by four workers. The experiment is compared with a baseline scenario and the results show how the application of the nearable device effectively optimizes both IAQ and ILQ. PMID:28471398

  8. Recent developments in smart freezing technology applied to fresh foods.

    PubMed

    Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu

    2017-09-02

    Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh like quality of foods. In this article, we review the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts have greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during the freezing process and help improve product quality and freezing efficiency. We also provide a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies include computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.

  9. Research on width control of Metal Fused-coating Additive Manufacturing based on active control

    NASA Astrophysics Data System (ADS)

    Ren, Chuan qi; Wei, Zheng ying; Wang, Xin; Du, Jun; Zhang, Shan; Zhang, Zhitong; Bai, Hao

    2017-12-01

    Given the stability of the shape of the forming layer is one of the key problems that affect the final quality of the sample morphology, taking a study on the forming process and the control method of morphology make a significant difference to metal fused-coating additive manufacturing (MFCAM) in achieving the efficient and stable forming. To improve the quality and precision of the samples of single-layer single pass, a control method of morphology based on active control was established by this paper. The real-time acquisition of image was realized by CCD and the characteristics of morphology of the forming process were simultaneously extracted. Making analysis of the characteristics of the width during the process, the relationship between the relative difference of different frames and moving speed was given. A large number of experiments are used to verify the response speed and accuracy of the system. The results show that the active system can improve the morphology of the sample and the smoothness of the width of the single channel, and increase the uniformity of width by 55.16%.

  10. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  11. The SIESTA Trial: A Randomized Study Investigating the Efficacy, Safety, and Tolerability of Acupressure versus Sham Therapy for Improving Sleep Quality in Patients with End-Stage Kidney Disease on Hemodialysis

    PubMed Central

    Cho, Yeoungjee; Pascoe, Elaine M.; Hawley, Carmel M.; Oliver, Veronica; Frazier, Jeremy; Jarvis, Elizabeth; Tan, Ken-Soon; Liu, Xusheng; Gobe, Glenda

    2017-01-01

    Objectives. To compare the effectiveness of real acupressure versus sham acupressure therapy in improving sleep quality in patients receiving hemodialysis (HD) or hemodiafiltration (HDF). Methods. A multicenter, single-blind, randomized controlled trial was conducted in two Australian dialysis units located in Princess Alexandra Hospital and Logan Hospital, respectively. Forty-two subjects with self-reported poor sleep quality were randomly assigned to real (n = 21) or sham (n = 21) acupressure therapy delivered thrice weekly for four consecutive weeks during routine dialysis sessions. The primary outcome was the Pittsburgh Sleep Quality Index (PSQI) score measured at week four adjusted for baseline PSQI measurements. Secondary outcomes were quality of life (QOL) (SF-8), adverse events, and patient acceptability (treatment acceptability questionnaire, TAQ). Results. The two groups were comparable on global PSQI scores (difference 0.19, 95% confidence interval [CI] −1.32 to 1.70) and on the subscale scores. Similar results were observed for QOL both in the mental (difference −3.88, 95% CI −8.63 to 0.87) and the physical scores (difference 2.45, 95% CI −1.69 to 6.58). There were no treatment-related adverse events and acupressure was perceived favorably by participants. Conclusion. Acupressure is a safe, well-tolerated, and highly acceptable therapy in adult hemodialysis patients in a Western healthcare setting with uncertain implications for therapeutic efficacy. PMID:28316636

  12. Improving multiple sclerosis management and collecting safety information in the real world: the MSDS3D software approach.

    PubMed

    Haase, Rocco; Wunderlich, Maria; Dillenseger, Anja; Kern, Raimar; Akgün, Katja; Ziemssen, Tjalf

    2018-04-01

    For safety evaluation, randomized controlled trials (RCTs) are not fully able to identify rare adverse events. The richest source of safety data lies in the post-marketing phase. Real-world evidence (RWE) and observational studies are becoming increasingly popular because they reflect usefulness of drugs in real life and have the ability to discover uncommon or rare adverse drug reactions. Areas covered: Adding the documentation of psychological symptoms and other medical disciplines, the necessity for a complex documentation becomes apparent. The collection of high-quality data sets in clinical practice requires the use of special documentation software as the quality of data in RWE studies can be an issue in contrast to the data obtained from RCTs. The MSDS3D software combines documentation of patient data with patient management of patients with multiple sclerosis. Following a continuous development over several treatment-specific modules, we improved and expanded the realization of safety management in MSDS3D with regard to the characteristics of different treatments and populations. Expert opinion: eHealth-enhanced post-authorisation safety study may complete the fundamental quest of RWE for individually improved treatment decisions and balanced therapeutic risk assessment. MSDS3D is carefully designed to contribute to every single objective in this process.

  13. The real world of blood glucose point-of-care testing (POCT) system running in China teaching hospital.

    PubMed

    Li, Feng-Fei; Xie, Yun; Shi, Bing-Yin; Niu, Min; Guo, Hui; Cao, Yan; Liu, Bing-Li; Yan, Reng-Na; Su, Xiao-Fei; Wu, Jin-Dan; Zhang, Dan-Feng; Chen, Li-Ming; Ma, Jian-Hua

    2018-06-01

     The blood glucose point-of-care testing (POCT) system is important in the decision-making process involving patients suspected of having hypoglycemia. To investigate the real world of the POCT system being used in teaching hospitals in China. The survey was conducted by Hisend Research Group from May 2015 to July 2015 in four teaching hospitals in China. The survey questions were referred to the ISO 15197:2013 standard requirements for the use of the POCT system in a hospital setting. A total of 170 subjects were included from 4 hospitals, which included nursing staff, nurse unit managers, employees from the department of medical instruments, and staff members employed by the clinical laboratories in the Tianjin Metabolism Hospital, Nanjing First Hospital, First Affiliated Hospital of Dalian Medical University, and the First hospital affiliated with the Xi'an Transportation University. The average score for the four hospitals surveyed in this study was 66.6, which varied from 46.1 to 79.7. The main factors influencing the scores were the multiple choices of blood-glucose meters, and the quality control assessment. Our data indicates that the real world use of the POCT system in hospital settings in China needs more closer adherence to a quality management framework.

  14. Dynamic Analyses of Result Quality in Energy-Aware Approximate Programs

    NASA Astrophysics Data System (ADS)

    RIngenburg, Michael F.

    Energy efficiency is a key concern in the design of modern computer systems. One promising approach to energy-efficient computation, approximate computing, trades off output precision for energy efficiency. However, this tradeoff can have unexpected effects on computation quality. This thesis presents dynamic analysis tools to study, debug, and monitor the quality and energy efficiency of approximate computations. We propose three styles of tools: prototyping tools that allow developers to experiment with approximation in their applications, online tools that instrument code to determine the key sources of error, and online tools that monitor the quality of deployed applications in real time. Our prototyping tool is based on an extension to the functional language OCaml. We add approximation constructs to the language, an approximation simulator to the runtime, and profiling and auto-tuning tools for studying and experimenting with energy-quality tradeoffs. We also present two online debugging tools and three online monitoring tools. The first online tool identifies correlations between output quality and the total number of executions of, and errors in, individual approximate operations. The second tracks the number of approximate operations that flow into a particular value. Our online tools comprise three low-cost approaches to dynamic quality monitoring. They are designed to monitor quality in deployed applications without spending more energy than is saved by approximation. Online monitors can be used to perform real time adjustments to energy usage in order to meet specific quality goals. We present prototype implementations of all of these tools and describe their usage with several applications. Our prototyping, profiling, and autotuning tools allow us to experiment with approximation strategies and identify new strategies, our online tools succeed in providing new insights into the effects of approximation on output quality, and our monitors succeed in controlling output quality while still maintaining significant energy efficiency gains.

  15. REAL-TIME WATER QUALITY MONITORING AND MODELING FOR EQUITABLE RECREATION ON THE MYSTIC RIVER

    EPA Science Inventory

    City of Somerville, Massachusetts, in collaboration with Tufts University and the Mystic River Watershed Association, proposes this project that combines advanced technology for real-time water quality and meteorological monitoring with sampling of bacterial levels...

  16. The relationship between health related quality of life and sensory deficits among patients with diabetes mellitus.

    PubMed

    Engel-Yeger, Batya; Darawsha Najjar, Sanaa; Darawsha, Mahmud

    2017-08-13

    (1) To profile sensory deficits examined in the ability to process sensory information from daily environment and discriminate between tactile stimuli among patients with controlled and un-controlled diabetes mellitus. (2) Examine the relationship between the sensory deficits and patients' health-related quality of life. This study included 115 participants aged 33-55 with uncontrolled (n = 22) or controlled (n = 24) glycemic levels together with healthy subjects (n = 69). All participants completed the brief World Health Organization Quality of Life Questionnaire, the Adolescent/Adult Sensory Profile and performed the tactile discrimination test. Sensory deficits were more emphasized among patients with uncontrolled glycemic levels as expressed in difficulties to register sensory input, lower sensation seeking in daily environments and difficulties to discriminate between tactile stimuli. They also reported the lowest physical and social quality of life as compared to the other two groups. Better sensory seeking and registration predicted better quality of life. Disease control and duration contributed to these predictions. Difficulties in processing sensory information from their daily environments are particularly prevalent among patients with uncontrolled glycemic levels, and significantly impacted their quality of life. Clinicians should screen for sensory processing difficulties among patients with diabetes mellitus and understand their impacts on patients' quality of life. Implications for Rehabilitation Patients with diabetes mellitus, and particularly those with uncontrolled glycemic levels, may have difficulties in processing sensory information from daily environment. A multidisciplinary intervention approach is recommended: clinicians should screen for sensory processing deficits among patients with diabetes mellitus and understand their impacts on patients' daily life. By providing the patients with environmental adaptations and coping strategies, clinicians may assist in optimizing sensory experiences in real life context and elevate patients' quality of life. Relating to quality of life and emphasizing a multidisciplinary approach is of major importance in broadening our understanding of health conditions and providing holistic treatment for patients.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Shen, C; Wang, J

    Purpose: To reduce cone beam CT (CBCT) imaging dose, we previously proposed a progressive dose control (PDC) scheme to employ temporal correlation between CBCT images at different fractions for image quality enhancement. A temporal non-local means (TNLM) method was developed to enhance quality of a new low-dose CBCT using existing high-quality CBCT. To enhance a voxel value, the TNLM method searches for similar voxels in a window. Due to patient deformation among the two CBCTs, a large searching window was required, reducing image quality and computational efficiency. This abstract proposes a deformation-assisted TNLM (DA-TNLM) method to solve this problem. Methods:more » For a low-dose CBCT to be enhanced using a high-quality CBCT, we first performed deformable image registration between the low-dose CBCT and the high-quality CBCT to approximately establish voxel correspondence between the two. A searching window for a voxel was then set based on the deformation vector field. Specifically, the search window for each voxel was shifted by the deformation vector. A TNLM step was then applied using only voxels within this determined window to correct image intensity at the low-dose CBCT. Results: We have tested the proposed scheme on simulated CIRS phantom data and real patient data. The CITS phantom was scanned on Varian onboard imaging CBCT system with coach shifting and dose reducing for each time. The real patient data was acquired in four fractions with dose reduced from standard CBCT dose to 12.5% of standard dose. It was found that the DA-TNLM method can reduce total dose by over 75% on average in the first four fractions. Conclusion: We have developed a PDC scheme which can enhance the quality of image scanned at low dose using a DA-TNLM method. Tests in phantom and patient studies demonstrated promising results.« less

  18. Proficiency program for real-time PCR diagnosis of Bordetella pertussis infections in French hospital laboratories and at the French National Reference Center for Whooping Cough and other Bordetelloses.

    PubMed

    Caro, Valérie; Guiso, Nicole; Alberti, Corinne; Liguori, Sandrine; Burucoa, Christophe; Couetdic, Gérard; Doucet-Populaire, Florence; Ferroni, Agnès; Papin-Gibaud, Sophie; Grattard, Florence; Réglier-Poupet, Hélène; Raymond, Josette; Soler, Catherine; Bouchet, Sylvie; Charreau, Sandrine; Couzon, Brigitte; Leymarie, Isabelle; Tavares, Nicole; Choux, Mathilde; Bingen, Edouard; Bonacorsi, Stéphane

    2009-10-01

    With the support of a ministerial program for innovative and expensive technologies, dedicated to the economic evaluation of laboratory diagnosis of pertussis by real-time PCR, external quality assessment for real-time IS481 PCR was carried out. Coordinated by the National Centre of Reference of Pertussis and other Bordetelloses (NCR), this study aimed to harmonize and to assess the performances of eight participating microbiology hospital laboratories throughout the French territory. Between January 2006 and February 2007, 10 proficiency panels were sent by the NCR (ascending proficiency program), representing a total of 49 samples and including eight panels to analyze and evaluate the global sensitivity and specificity of real-time PCR, one to assess the limit of detection, and one to evaluate nucleic acid extraction methods. As part of the descending proficiency program, extracted DNA from clinical samples was sent by the eight participating laboratories in different panels and analyzed by the NCR. In the ascending proficiency analysis, the sensitivity and specificity of the real-time PCR methods were 92.2% and 94.3%, respectively. The limit of detection of the different methods ranged between 0.1 and 1 fg/microl (0.2 to 2 CFU/microl). The nucleic acid extraction methods showed similar performances. During the descending proficiency analysis, performed with 126 samples, the result of the NCR for 15 samples (11.9%) was discordant with the result obtained by the source laboratory. Despite several initial differences, harmonization was easy and performances were homogeneous. However, the risk of false-positive results remains quite high, and we strongly recommend establishment of uniform quality control procedures performed regularly.

  19. Innovative hyperchaotic encryption algorithm for compressed video

    NASA Astrophysics Data System (ADS)

    Yuan, Chun; Zhong, Yuzhuo; Yang, Shiqiang

    2002-12-01

    It is accepted that stream cryptosystem can achieve good real-time performance and flexibility which implements encryption by selecting few parts of the block data and header information of the compressed video stream. Chaotic random number generator, for example Logistics Map, is a comparatively promising substitute, but it is easily attacked by nonlinear dynamic forecasting and geometric information extracting. In this paper, we present a hyperchaotic cryptography scheme to encrypt the compressed video, which integrates Logistics Map with Z(232 - 1) field linear congruential algorithm to strengthen the security of the mono-chaotic cryptography, meanwhile, the real-time performance and flexibility of the chaotic sequence cryptography are maintained. It also integrates with the dissymmetrical public-key cryptography and implements encryption and identity authentification on control parameters at initialization phase. In accord with the importance of data in compressed video stream, encryption is performed in layered scheme. In the innovative hyperchaotic cryptography, the value and the updating frequency of control parameters can be changed online to satisfy the requirement of the network quality, processor capability and security requirement. The innovative hyperchaotic cryprography proves robust security by cryptoanalysis, shows good real-time performance and flexible implement capability through the arithmetic evaluating and test.

  20. REAL-TIME REMOTE MONITORING OF DRINKING WATER QUALITY

    EPA Science Inventory

    Over the past eight years, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) has funded the testing and evaluation of various online "real-time" technologies for monitoring drinking water quality. The events of 9/11 and subsequent threats t...

  1. Adaptive super-twisting sliding mode control for a three-phase single-stage grid-connected differential boost inverter based photovoltaic system.

    PubMed

    Pati, Akshaya K; Sahoo, N C

    2017-07-01

    This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples.

    PubMed

    Tannous, Joanna; Atoui, Ali; El Khoury, André; Kantar, Sally; Chdid, Nader; Oswald, Isabelle P; Puel, Olivier; Lteif, Roger

    2015-09-01

    Due to the occurrence and spread of the fungal contaminants in food and the difficulties to remove their resulting mycotoxins, rapid and accurate methods are needed for early detection of these mycotoxigenic fungi. The polymerase chain reaction and the real time PCR have been widely used for this purpose. Apples are suitable substrates for fungal colonization mostly caused by Penicillium expansum, which produces the mycotoxin patulin during fruit infection. This study describes the development of a real-time PCR assay incorporating an internal amplification control (IAC) to specifically detect and quantify P. expansum. A specific primer pair was designed from the patF gene, involved in patulin biosynthesis. The selected primer set showed a high specificity for P. expansum and was successfully employed in a standardized real-time PCR for the direct quantification of this fungus in apples. Using the developed system, twenty eight apples were analyzed for their DNA content. Apples were also analyzed for patulin content by HPLC. Interestingly, a positive correlation (R(2) = 0.701) was found between P. expansum DNA content and patulin concentration. This work offers an alternative to conventional methods of patulin quantification and mycological detection of P. expansum and could be very useful for the screening of patulin in fruits through the application of industrial quality control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Enhancing the Quality of Service for Real Time Traffic over Optical Burst Switching (OBS) Networks with Ensuring the Fairness for Other Traffics

    PubMed Central

    Al-Shargabi, Mohammed A.; Ismail, Abdulsamad S.

    2016-01-01

    Optical burst switching (OBS) networks have been attracting much consideration as a promising approach to build the next generation optical Internet. A solution for enhancing the Quality of Service (QoS) for high priority real time traffic over OBS with the fairness among the traffic types is absent in current OBS’ QoS schemes. In this paper we present a novel Real Time Quality of Service with Fairness Ratio (RT-QoSFR) scheme that can adapt the burst assembly parameters according to the traffic QoS needs in order to enhance the real time traffic QoS requirements and to ensure the fairness for other traffic. The results show that RT-QoSFR scheme is able to fulfill the real time traffic requirements (end to end delay, and loss rate) ensuring the fairness for other traffics under various conditions such as the type of real time traffic and traffic load. RT-QoSFR can guarantee that the delay of the real time traffic packets does not exceed the maximum packets transfer delay value. Furthermore, it can reduce the real time traffic packets loss, at the same time guarantee the fairness for non real time traffic packets by determining the ratio of real time traffic inside the burst to be 50–60%, 30–40%, and 10–20% for high, normal, and low traffic loads respectively. PMID:27583557

  4. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    PubMed

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Real-time Internet connections: implications for surgical decision making in laparoscopy.

    PubMed

    Broderick, T J; Harnett, B M; Doarn, C R; Rodas, E B; Merrell, R C

    2001-08-01

    To determine whether a low-bandwidth Internet connection can provide adequate image quality to support remote real-time surgical consultation. Telemedicine has been used to support care at a distance through the use of expensive equipment and broadband communication links. In the past, the operating room has been an isolated environment that has been relatively inaccessible for real-time consultation. Recent technological advances have permitted videoconferencing over low-bandwidth, inexpensive Internet connections. If these connections are shown to provide adequate video quality for surgical applications, low-bandwidth telemedicine will open the operating room environment to remote real-time surgical consultation. Surgeons performing a laparoscopic cholecystectomy in Ecuador or the Dominican Republic shared real-time laparoscopic images with a panel of surgeons at the parent university through a dial-up Internet account. The connection permitted video and audio teleconferencing to support real-time consultation as well as the transmission of real-time images and store-and-forward images for observation by the consultant panel. A total of six live consultations were analyzed. In addition, paired local and remote images were "grabbed" from the video feed during these laparoscopic cholecystectomies. Nine of these paired images were then placed into a Web-based tool designed to evaluate the effect of transmission on image quality. The authors showed for the first time the ability to identify critical anatomic structures in laparoscopy over a low-bandwidth connection via the Internet. The consultant panel of surgeons correctly remotely identified biliary and arterial anatomy during six laparoscopic cholecystectomies. Within the Web-based questionnaire, 15 surgeons could not blindly distinguish the quality of local and remote laparoscopic images. Low-bandwidth, Internet-based telemedicine is inexpensive, effective, and almost ubiquitous. Use of these inexpensive, portable technologies will allow sharing of surgical procedures and decisions regardless of location. Internet telemedicine consistently supported real-time intraoperative consultation in laparoscopic surgery. The implications are broad with respect to quality improvement and diffusion of knowledge as well as for basic consultation.

  6. Google Glass for Residents Dealing With Pediatric Cardiopulmonary Arrest: A Randomized, Controlled, Simulation-Based Study.

    PubMed

    Drummond, David; Arnaud, Cécile; Guedj, Romain; Duguet, Alexandre; de Suremain, Nathalie; Petit, Arnaud

    2017-02-01

    To determine whether real-time video communication between the first responder and a remote intensivist via Google Glass improves the management of a simulated in-hospital pediatric cardiopulmonary arrest before the arrival of the ICU team. Randomized controlled study. Children's hospital at a tertiary care academic medical center. Forty-two first-year pediatric residents. Pediatric residents were evaluated during two consecutive simulated pediatric cardiopulmonary arrests with a high-fidelity manikin. During the second evaluation, the residents in the Google Glass group were allowed to seek help from a remote intensivist at any time by activating real-time video communication. The residents in the control group were asked to provide usual care. The main outcome measures were the proportion of time for which the manikin received no ventilation (no-blow fraction) or no compression (no-flow fraction). In the first evaluation, overall no-blow and no-flow fractions were 74% and 95%, respectively. During the second evaluation, no-blow and no-flow fractions were similar between the two groups. Insufflations were more effective (p = 0.04), and the technique (p = 0.02) and rate (p < 0.001) of chest compression were more appropriate in the Google Glass group than in the control group. Real-time video communication between the first responder and a remote intensivist through Google Glass did not decrease no-blow and no-flow fractions during the first 5 minutes of a simulated pediatric cardiopulmonary arrest but improved the quality of the insufflations and chest compressions provided.

  7. Improved near real-time data management procedures for the Mediterranean ocean Forecasting System-Voluntary Observing Ship program

    NASA Astrophysics Data System (ADS)

    Manzella, G. M. R.; Scoccimarro, E.; Pinardi, N.; Tonani, M.

    2003-01-01

    A "ship of opportunity" program was launched as part of the Mediterranean Forecasting System Pilot Project. During the operational period (September 1999 to May 2000), six tracks covered the Mediterranean from the northern to southern boundaries approximately every 15 days, while a long eastwest track from Haifa to Gibraltar was covered approximately every month. XBT data were collected, sub-sampled at 15 inflection points and transmitted through a satellite communication system to a regional data centre. It was found that this data transmission system has limitations in terms of quality of the temperature profiles and quantity of data successfully transmitted. At the end of the MFSPP operational period, a new strategy for data transmission and management was developed. First of all, VOS-XBT data are transmitted with full resolution. Secondly, a new data management system, called Near Real Time Quality Control for XBT (NRT.QC.XBT), was defined to produce a parallel stream of high quality XBT data for further scientific analysis. The procedure includes: (1) Position control; (2) Elimination of spikes; (3) Re-sampling at a 1 metre vertical interval; (4) Filtering; (5) General malfunctioning check; (6) Comparison with climatology (and distance from this in terms of standard deviations); (7) Visual check; and (8) Data consistency check. The first six steps of the new procedure are completely automated; they are also performed using a new climatology developed as part of the project. The visual checks are finally done with a free-market software that allows NRT final data assessment.

  8. How do mothers manage their preschool children’s eating habits and does this change as children grow older? A longitudinal analysis

    PubMed Central

    Jarman, Megan; Ogden, Jane; Inskip, Hazel; Lawrence, Wendy; Baird, Janis; Cooper, Cyrus; Robinson, Sian; Barker, Mary

    2015-01-01

    The practices mothers adopt in relation to feeding their children have been identified as important predictors of children’s quality of diet. However, most studies of the impact of these practices on quality of children’s diets have been cross-sectional in design, limiting conclusions about change and causality. Previous research has called for qualitative exploration of the way these practices are used in a real-life setting. This study set out to address these gaps in knowledge. At baseline, mothers recruited to a community-based intervention study and who had a preschool child, completed a questionnaire about their use of covert and overt control practices, child food neophobia and demographics. The quality of children’s diets was assessed using a validated food frequency questionnaire Both questionnaires were repeated with the mothers two years later. Complete data at both time points were available for 228 mother-child pairs. Four focus group discussions were conducted with 29 mothers of preschool children to explore their experiences of feeding young children. Mothers who increased their use of overt control had children whose level of food neophobia also increased (P=0.02). Mothers who used more covert control had children with better quality diets at both time points (P=<0.01) and mothers who increased their use of covert control over the two year follow-up had children whose diet quality improved (P=0.003). These associations were independent of confounders such as mother’s level of education. In the focus groups, mothers suggested that feeding young children was stressful and that control was often relinquished in order to reduce conflict at mealtimes. Supporting parents to adopt more covert techniques to control their children’s eating habits may be an effective way of improving the quality of young children’s diets. PMID:26271222

  9. The whole earth telescope - A new astronomical instrument

    NASA Technical Reports Server (NTRS)

    Nather, R. E.; Winget, D. E.; Clemens, J. C.; Hansen, C. J.; Hine, B. P.

    1990-01-01

    A new multimirror ground-based telescope for time-series photometry of rapid variable stars, designed to minimize or eliminate gaps in the brightness record caused by the rotation of the earth, is described. A sequence of existing telescopes distributed in longitude, coordinated from a single control center, is used to measure designated target stars so long as they are in darkness. Data are returned by electronic mail to the control center, where they are analyzed in real time. This instrument is the first to provide data of continuity and quality that permit true high-resolution power spectroscopy of pulsating white dwarf stars.

  10. Power quality analysis of DC arc furnace operation using the Bowman model for electric arc

    NASA Astrophysics Data System (ADS)

    Gherman, P. L.

    2018-01-01

    This work is about a relatively new domain. The DC electric arc is superior to the AC electric arc and it’s not used in Romania. This is why we analyzed the work functions of these furnaces by simulation and model checking of the simulation results.The conclusions are favorable, to be carried is to develop a real-time control system of steel elaboration process.

  11. Automated real-time search and analysis algorithms for a non-contact 3D profiling system

    NASA Astrophysics Data System (ADS)

    Haynes, Mark; Wu, Chih-Hang John; Beck, B. Terry; Peterman, Robert J.

    2013-04-01

    The purpose of this research is to develop a new means of identifying and extracting geometrical feature statistics from a non-contact precision-measurement 3D profilometer. Autonomous algorithms have been developed to search through large-scale Cartesian point clouds to identify and extract geometrical features. These algorithms are developed with the intent of providing real-time production quality control of cold-rolled steel wires. The steel wires in question are prestressing steel reinforcement wires for concrete members. The geometry of the wire is critical in the performance of the overall concrete structure. For this research a custom 3D non-contact profilometry system has been developed that utilizes laser displacement sensors for submicron resolution surface profiling. Optimizations in the control and sensory system allow for data points to be collected at up to an approximate 400,000 points per second. In order to achieve geometrical feature extraction and tolerancing with this large volume of data, the algorithms employed are optimized for parsing large data quantities. The methods used provide a unique means of maintaining high resolution data of the surface profiles while keeping algorithm running times within practical bounds for industrial application. By a combination of regional sampling, iterative search, spatial filtering, frequency filtering, spatial clustering, and template matching a robust feature identification method has been developed. These algorithms provide an autonomous means of verifying tolerances in geometrical features. The key method of identifying the features is through a combination of downhill simplex and geometrical feature templates. By performing downhill simplex through several procedural programming layers of different search and filtering techniques, very specific geometrical features can be identified within the point cloud and analyzed for proper tolerancing. Being able to perform this quality control in real time provides significant opportunities in cost savings in both equipment protection and waste minimization.

  12. Effects of lower limb prosthesis on activity, participation, and quality of life: a systematic review.

    PubMed

    Samuelsson, Kersti A M; Töytäri, Outi; Salminen, Anna-Liisa; Brandt, Ase

    2012-06-01

    Effects presented on the use of assistive devices such as prosthesis are often based on laboratory findings (i.e. efficacy). To summarise and evaluate findings from studies on effectiveness of lower limb prostheses for adults in real life contexts, primarily in terms of activity, participation, and quality of life (QoL) and secondarily in terms of user satisfaction, use/non-use, and/or cost-effectiveness. Systematic review. We included controlled studies and non-controlled follow-up studies including both baseline and follow-up data. Using 14 different databases supplemented with manual searches, we searched for studies published from 1998 until June 2009. Out of an initial 818 identified publications, eight met the inclusion criteria. Four studies reported on the effectiveness of a microprocessor-controlled knee (MP-knee) compared to a non-microprocessor-controlled knee (NMP-knee). Results were inconsistent except for quality of life and use/non-use, where the authors reported an improvement with the MP-knee compared to the NMP-knee. The remaining four studies included a diversity of prosthetic intervention measures and types of endpoints. Overall, there was an inconsistency in results and study quality. This review highlights the need for high-quality research studies that reflect the effectiveness of different prosthesis interventions in terms of users' daily living and QoL. Clinical guidelines are important to every practitioner. Information on expected effectiveness from assistive devices should be well founded and contain both facts about the device quality and its contribution to users' daily lives. Thus, studies based on users' experiences from prosthetic use in everyday life activities are of great importance.

  13. Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality.

    PubMed

    Cushman, Laura A; Stein, Karen; Duffy, Charles J

    2008-09-16

    Older adults get lost, in many cases because of recognized or incipient Alzheimer disease (AD). In either case, getting lost can be a threat to individual and public safety, as well as to personal autonomy and quality of life. Here we compare our previously described real-world navigation test with a virtual reality (VR) version simulating the same navigational environment. Quantifying real-world navigational performance is difficult and time-consuming. VR testing is a promising alternative, but it has not been compared with closely corresponding real-world testing in aging and AD. We have studied navigation using both real-world and virtual environments in the same subjects: young normal controls (YNCs, n = 35), older normal controls (ONCs, n = 26), patients with mild cognitive impairment (MCI, n = 12), and patients with early AD (EAD, n = 14). We found close correlations between real-world and virtual navigational deficits that increased across groups from YNC to ONC, to MCI, and to EAD. Analyses of subtest performance showed similar profiles of impairment in real-world and virtual testing in all four subject groups. The ONC, MCI, and EAD subjects all showed greatest difficulty in self-orientation and scene localization tests. MCI and EAD patients also showed impaired verbal recall about both test environments. Virtual environment testing provides a valid assessment of navigational skills. Aging and Alzheimer disease (AD) share the same patterns of difficulty in associating visual scenes and locations, which is complicated in AD by the accompanying loss of verbally mediated navigational capacities. We conclude that virtual navigation testing reveals deficits in aging and AD that are associated with potentially grave risks to our patients and the community.

  14. Public reporting in health care: how do consumers use quality-of-care information? A systematic review.

    PubMed

    Faber, Marjan; Bosch, Marije; Wollersheim, Hub; Leatherman, Sheila; Grol, Richard

    2009-01-01

    One of the underlying goals of public reporting is to encourage the consumer to select health care providers or health plans that offer comparatively better quality-of-care. To review the weight consumers give to quality-of-care information in the process of choice, to summarize the effect of presentation formats, and to examine the impact of quality information on consumers' choice behavior. The evidence is organized in a theoretical consumer choice model. English language literature was searched in PubMed, the Cochrane Clinical Trial, and the EPOC Databases (January 1990-January 2008). Study selection was limited to randomized controlled trails, controlled before-after trials or interrupted time series. Included interventions focused on choice behavior of consumers in health care settings. Outcome measures referred to one of the steps in a consumer choice model. The quality of the study design was rated, and studies with low quality ratings were excluded. All 14 included studies examine quality information, usually CAHPS, with respect to its impact on the consumer's choice of health plans. Easy-to-read presentation formats and explanatory messages improve knowledge about and attitude towards the use of quality information; however, the weight given to quality information depends on other features, including free provider choice and costs. In real-world settings, having seen quality information is a strong determinant for choosing higher quality-rated health plans. This review contributes to an understanding of consumer choice behavior in health care settings. The small number of included studies limits the strength of our conclusions.

  15. New developments in automated biosensing from remote water quality stations and satellite data retrieval for resources management

    NASA Astrophysics Data System (ADS)

    Morgan, E. L.; Eagleson, K. W.; Hermann, R.; McCollough, N. D.

    1981-05-01

    Maintaining adequate water quality in a multipurpose drainage system becomes increasingly important as demands on resources become greater. Real-time water quality monitoring plays a crucial role in meeting this objective. In addition to remote automated physical monitoring, developments at the end of the 1970's allow simultaneous real-time measurements of fish breathing response to water quality changes. These advantages complement complex in-stream surveys typically carried out to evaluate the environmental quality of a system. Automated biosensing units having remote capabilities are designed to aid in the evaluation of subtle water quality changes contributing to undesirable conditions in a drainage basin. Using microprocessor-based monitors to measure fish breathing rates, the biosensing units are interfaced to a U.S. National Aeronautics and Space Administration (N.A.S.A.) remote data collection platform for National Oceanic and Atmospheric Administration (N.O.A.A.) GOES satellite retrieval and transmission of data. Simultaneously, multiparameter physical information is collected from site-specific locations and recovered in a similar manner. Real-time biological and physical data received at a data processing center are readily available for interpretation by resource managers. Management schemes incorporating real-time monitoring networks into on-going programs to simultaneously retrieve biological and physical data by satellite, radio and telephone cable give added advantages in maintaining water quality for multipurpose needs.

  16. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms.

    PubMed

    Içten, Elçin; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V

    2015-05-01

    The US Food and Drug Administration introduced the quality by design approach and process analytical technology guidance to encourage innovation and efficiency in pharmaceutical development, manufacturing, and quality assurance. As part of this renewed emphasis on the improvement of manufacturing, the pharmaceutical industry has begun to develop more efficient production processes with more intensive use of online measurement and sensing, real-time quality control, and process control tools. Here, we present dropwise additive manufacturing of pharmaceutical products (DAMPP) as an alternative to conventional pharmaceutical manufacturing methods. This mini-manufacturing process for the production of pharmaceuticals utilizes drop on demand printing technology for automated and controlled deposition of melt-based formulations onto edible substrates. The advantages of drop-on-demand technology, including reproducible production of small droplets, adjustable drop sizing, high placement accuracy, and flexible use of different formulations, enable production of individualized dosing even for low-dose and high-potency drugs. In this work, DAMPP is used to produce solid oral dosage forms from hot melts of an active pharmaceutical ingredient and a polymer. The dosage forms are analyzed to show the reproducibility of dosing and the dissolution behavior of different formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Developing a workstation-based, real-time simulation for rapid handling qualities evaluations during design

    NASA Technical Reports Server (NTRS)

    Anderson, Frederick; Biezad, Daniel J.

    1994-01-01

    This paper describes the Rapid Aircraft DynamIcs AssessmeNt (RADIAN) project - an integration of the Aircraft SYNThesis (ACSTNT) design code with the USAD DATCOM code that estimates stability derivatives. Both of these codes are available to universities. These programs are then linked to flight simulation and flight controller synthesis tools and resulting design is evaluated on a graphics workstation. The entire process reduces the preliminary design time by an order of magnitude and provides an initial handling qualities evaluation of the design coupled to a control law. The integrated design process is applicable to both conventional aircraft taken from current textbooks and to unconventional designs emphasizing agility and propulsive control of attitude. The interactive and concurrent nature of the design process has been well received by industry and by design engineers at NASA. The process is being implemented into the design curriculum and is being used by students who view it as a significant advance over prior methods.

  18. Power quality improvement of a stand-alone power system subjected to various disturbances

    NASA Astrophysics Data System (ADS)

    Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din

    In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.

  19. Analysis and experimental evaluation of shunt active power filter for power quality improvement based on predictive direct power control.

    PubMed

    Aissa, Oualid; Moulahoum, Samir; Colak, Ilhami; Babes, Badreddine; Kabache, Nadir

    2017-10-12

    This paper discusses the use of the concept of classical and predictive direct power control for shunt active power filter function. These strategies are used to improve the active power filter performance by compensation of the reactive power and the elimination of the harmonic currents drawn by non-linear loads. A theoretical analysis followed by a simulation using MATLAB/Simulink software for the studied techniques has been established. Moreover, two test benches have been carried out using the dSPACE card 1104 for the classic and predictive DPC control to evaluate the studied methods in real time. Obtained results are presented and compared in this paper to confirm the superiority of the predictive technique. To overcome the pollution problems caused by the consumption of fossil fuels, renewable energies are the alternatives recommended to ensure green energy. In the same context, the tested predictive filter can easily be supplied by a renewable energy source that will give its impact to enhance the power quality.

  20. A 3D THz image processing methodology for a fully integrated, semi-automatic and near real-time operational system

    NASA Astrophysics Data System (ADS)

    Brook, A.; Cristofani, E.; Vandewal, M.; Matheis, C.; Jonuscheit, J.; Beigang, R.

    2012-05-01

    The present study proposes a fully integrated, semi-automatic and near real-time mode-operated image processing methodology developed for Frequency-Modulated Continuous-Wave (FMCW) THz images with the center frequencies around: 100 GHz and 300 GHz. The quality control of aeronautics composite multi-layered materials and structures using Non-Destructive Testing is the main focus of this work. Image processing is applied on the 3-D images to extract useful information. The data is processed by extracting areas of interest. The detected areas are subjected to image analysis for more particular investigation managed by a spatial model. Finally, the post-processing stage examines and evaluates the spatial accuracy of the extracted information.

  1. Packetized Video On MAGNET

    NASA Astrophysics Data System (ADS)

    Lazar, Aurel A.; White, John S.

    1987-07-01

    Theoretical analysis of integrated local area network model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up during video and voice calls during periods of little movement in the images and periods of silence in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamicaly controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real-time multimedia workstation EDDY, which integrates video, voice, and data traffic flows. Protocols supporting variable-bandwidth, fixed-quality packetized video transport are described in detail.

  2. Packetized video on MAGNET

    NASA Astrophysics Data System (ADS)

    Lazar, Aurel A.; White, John S.

    1986-11-01

    Theoretical analysis of an ILAN model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up by video and voice calls during periods of little movement in the images and silence periods in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamically controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real time multimedia workstation EDDY that integrates video, voice and data traffic flows. Protocols supporting variable bandwidth, constant quality packetized video transport are descibed in detail.

  3. E-GVAP, the EIG EUMETNET GNSS Water Vapour Programme

    NASA Astrophysics Data System (ADS)

    Jones, J.; de Haan, S.; Vedel, H.

    2011-12-01

    The main purpose of E-GVAP is to deliver near real-time (NRT) ground based GNSS delay data for usage in operational meteorology. This involves the collection and processing of raw GNSS data to estimate zenith total delay (ZTD) and subsequent collection and distribution of ZTD data to European national meteorological services. Validation and quality control, production of 2D animated water vapour maps, development of best practices for GNSS data processing and data usage in Numerical Weather Prediction (NWP) models, are other important aspects. Furthermore there is a current push for more real-time observations which would have positive impacts in high both resolution NWP and for nowcasting applications. We present an overview of the current status of E-GVAP.

  4. Low-complexity camera digital signal imaging for video document projection system

    NASA Astrophysics Data System (ADS)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  5. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    PubMed

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  6. Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.

    2016-01-01

    The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.

  7. Fully automated, internally controlled quantification of hepatitis B Virus DNA by real-time PCR by use of the MagNA Pure LC and LightCycler instruments.

    PubMed

    Leb, Victoria; Stöcher, Markus; Valentine-Thon, Elizabeth; Hölzl, Gabriele; Kessler, Harald; Stekel, Herbert; Berg, Jörg

    2004-02-01

    We report on the development of a fully automated real-time PCR assay for the quantitative detection of hepatitis B virus (HBV) DNA in plasma with EDTA (EDTA plasma). The MagNA Pure LC instrument was used for automated DNA purification and automated preparation of PCR mixtures. Real-time PCR was performed on the LightCycler instrument. An internal amplification control was devised as a PCR competitor and was introduced into the assay at the stage of DNA purification to permit monitoring for sample adequacy. The detection limit of the assay was found to be 200 HBV DNA copies/ml, with a linear dynamic range of 8 orders of magnitude. When samples from the European Union Quality Control Concerted Action HBV Proficiency Panel 1999 were examined, the results were found to be in acceptable agreement with the HBV DNA concentrations of the panel members. In a clinical laboratory evaluation of 123 EDTA plasma samples, a significant correlation was found with the results obtained by the Roche HBV Monitor test on the Cobas Amplicor analyzer within the dynamic range of that system. In conclusion, the newly developed assay has a markedly reduced hands-on time, permits monitoring for sample adequacy, and is suitable for the quantitative detection of HBV DNA in plasma in a routine clinical laboratory.

  8. Perception of CPR quality: Influence of CPR feedback, Just-in-Time CPR training and provider role.

    PubMed

    Cheng, Adam; Overly, Frank; Kessler, David; Nadkarni, Vinay M; Lin, Yiqun; Doan, Quynh; Duff, Jonathan P; Tofil, Nancy M; Bhanji, Farhan; Adler, Mark; Charnovich, Alex; Hunt, Elizabeth A; Brown, Linda L

    2015-02-01

    Many healthcare providers rely on visual perception to guide cardiopulmonary resuscitation (CPR), but little is known about the accuracy of provider perceptions of CPR quality. We aimed to describe the difference between perceived versus measured CPR quality, and to determine the impact of provider role, real-time visual CPR feedback and Just-in-Time (JIT) CPR training on provider perceptions. We conducted secondary analyses of data collected from a prospective, multicenter, randomized trial of 324 healthcare providers who participated in a simulated cardiac arrest scenario between July 2012 and April 2014. Participants were randomized to one of four permutations of: JIT CPR training and real-time visual CPR feedback. We calculated the difference between perceived and measured quality of CPR and reported the proportion of subjects accurately estimating the quality of CPR within each study arm. Participants overestimated achieving adequate chest compression depth (mean difference range: 16.1-60.6%) and rate (range: 0.2-51%), and underestimated chest compression fraction (0.2-2.9%) across all arms. Compared to no intervention, the use of real-time feedback and JIT CPR training (alone or in combination) improved perception of depth (p<0.001). Accurate estimation of CPR quality was poor for chest compression depth (0-13%), rate (5-46%) and chest compression fraction (60-63%). Perception of depth is more accurate in CPR providers versus team leaders (27.8% vs. 7.4%; p=0.043) when using real-time feedback. Healthcare providers' visual perception of CPR quality is poor. Perceptions of CPR depth are improved by using real-time visual feedback and with prior JIT CPR training. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. High-quality cardiopulmonary resuscitation.

    PubMed

    Nolan, Jerry P

    2014-06-01

    The quality of cardiopulmonary resuscitation (CPR) impacts on outcome after cardiac arrest. This review will explore the factors that contribute to high-quality CPR and the metrics that can be used to monitor performance. A recent consensus statement from North America defined five key components of high-quality CPR: minimizing interruptions in chest compressions, providing compressions of adequate rate and depth, avoiding leaning on the chest between compressions, and avoiding excessive ventilation. Studies have shown that real-time feedback devices improve the quality of CPR and, in one before-and-after study, outcome from out-of-hospital cardiac arrest. There is evidence for increasing survival rates following out-of-hospital cardiac arrest and this is associated with increasing rates of bystander CPR. The quality of CPR provided by healthcare professionals can be improved with real-time feedback devices. The components of high-quality CPR and the metrics that can be measured and fed back to healthcare professionals have been defined by expert consensus. In the future, real-time feedback based on the physiological responses to CPR may prove more effective.

  10. INCREASE: Innovation and Networking for the integration of Coastal Radars into European mArine SErvices

    NASA Astrophysics Data System (ADS)

    Mader, Julien; Rubio, Anna; Asensio Igoa, Jose Luis; Corgnati, Lorenzo; Mantovani, Carlo; Griffa, Annalisa; Gorringe, Patrick; Alba, Marco; Novellino, Antonio

    2017-04-01

    High Frequency radar (HFR) is a land-based remote sensing instrument offering a unique insight to coastal ocean variability, by providing synoptic, high frequency and high resolution data at the ocean atmosphere interface. HFRs have become invaluable tools in the field of operational oceanography for measuring surface currents, waves and winds, with direct applications in different sectors and an unprecedented potential for the integrated management of the coastal zone. To further the use of HFRs into the Copernicus Marine environment monitoring service, CMEMS, is becoming crucial to ensure the improved management of several related key issues such as Marine Safety, Marine Resources, Coastal & Marine Environment, Weather, Climate & Seasonal Forecast. In this context, INCREASE (Innovation and Networking for the integration of Coastal Radars into European mArine SErvices) project aims to set the necessary developments towards the integration of the existing European HFR operational systems into the CMEMS, following five main objectives: (i) Define and implement a common data and metadata model for HFR real-time data; (ii) Provide HFR quality controlled real-time surface currents and key derived products; (iii) Set the basis for the management of historical data and methodologies for advanced delayed mode quality-control techniques; (iv) Advance the use of HFR data for improving CMEMS numerical modelling systems; and (v) Enable an HFR European operational node to ensure the link with operational CMEMS. In cooperation with other ongoing initiatives (like the EuroGOOS HFR Task Team and the European project JERICO_NEXT), INCREASE has already set up the data management infrastructure to manage and make discoverable and accessible near real time data from 30 systems in Europe. This paper presents the achieved results and available products and features.

  11. Effect of acupuncture on patients with insomnia: study protocol for a randomized controlled trial.

    PubMed

    Han, Kyung-Hun; Kim, Sang-Young; Chung, Sun-Yong

    2014-10-23

    Hypnotic drugs tend to be the dominant form of treatment of insomnia, but these come with a number of reported side effects. Acupuncture has been studied as an alternative, resulting in a rising need for methodological research towards verifying its efficacy as insomnia treatment. We describe a proposal for a single-center, patient-assessor-blinded, randomized controlled trial with two parallel arms. A total of 38 patients complete screening tests at the first visit, are registered into the clinical trial, and then randomly assigned to the experimental or sham control groups (19 patients for each group). All subjects are clinical insomnia patients who score a 6 or above on the Pittsburgh Sleep Quality Index (PSQI) and meet all inclusion criteria. All subjects are treated with acupuncture and intradermal acupuncture (IDA) three times during the first week. Five sham acupoints are used in the control group. In the experimental group, five real acupoints (PC6, SP6, HT7, KI6, and BL62) are used unilaterally in turn. Sham acupoints are over 1 cm away from each real acupoint.The primary outcomes are the scores on the Insomnia Severity Index (ISI) and PSQI. Secondary outcomes are the sleep log, the Beck Depression Inventory (BDI), the State-Trait Anxiety Inventory (STAI), the World Health Organization Quality of Life Abbreviated Version (WHOQOL-BREF), the Korean-Auditory Verbal Learning Test (K-AVLT), the Digit Span Test (DS), Event Related Potentials (ERPs) and heart rate variability (HRV) to assess emotional states, sleep quality, cognitive functioning, and electro-physiological changes.Subjects are assessed at three time points: baseline, post-treatment and follow-up. The duration of the clinical trial is 18 days. To study the enhancement of the effectiveness of acupuncture for insomnia, we test the intradermal acupuncture method, which is performed continuously on the subject's skin and stimulated at home by the subject every night. In the trial, objective measurements including ERPs and HRV are used to evaluate states of cognition and autonomic nervous system functioning and subjective self-report questionnaires assess insomnia symptoms.'Sham' acupuncture points provided by STRICTA are used for the control group. ClinicalTrials.gov: NCT01956760, registered 5 September 2013.

  12. Data quality through a web-based QA/QC system: implementation for atmospheric mercury data from the global mercury observation system.

    PubMed

    D'Amore, Francesco; Bencardino, Mariantonia; Cinnirella, Sergio; Sprovieri, Francesca; Pirrone, Nicola

    2015-08-01

    The overall goal of the on-going Global Mercury Observation System (GMOS) project is to develop a coordinated global monitoring network for mercury, including ground-based, high altitude and sea level stations. In order to ensure data reliability and comparability, a significant effort has been made to implement a centralized system, which is designed to quality assure and quality control atmospheric mercury datasets. This system, GMOS-Data Quality Management (G-DQM), uses a web-based approach with real-time adaptive monitoring procedures aimed at preventing the production of poor-quality data. G-DQM is plugged on a cyberinfrastructure and deployed as a service. Atmospheric mercury datasets, produced during the first-three years of the GMOS project, are used as the input to demonstrate the application of the G-DQM and how it identifies a number of key issues concerning data quality. The major issues influencing data quality are presented and discussed for the GMOS stations under study. Atmospheric mercury data collected at the Longobucco (Italy) station is used as a detailed case study.

  13. Latest processing status and quality assessment of the GOMOS, MIPAS and SCIAMACHY ESA dataset

    NASA Astrophysics Data System (ADS)

    Niro, F.; Brizzi, G.; Saavedra de Miguel, L.; Scarpino, G.; Dehn, A.; Fehr, T.; von Kuhlmann, R.

    2011-12-01

    GOMOS, MIPAS and SCIAMACHY instruments are successfully observing the changing Earth's atmosphere since the launch of the ENVISAT-ESA platform on March 2002. The measurements recorded by these instruments are relevant for the Atmospheric-Chemistry community both in terms of time extent and variety of observing geometry and techniques. In order to fully exploit these measurements, it is crucial to maintain a good reliability in the data processing and distribution and to continuously improving the scientific output. The goal is to meet the evolving needs of both the near-real-time and research applications. Within this frame, the ESA operational processor remains the reference code, although many scientific algorithms are nowadays available to the users. In fact, the ESA algorithm has a well-established calibration and validation scheme, a certified quality assessment process and the possibility to reach a wide users' community. Moreover, the ESA algorithm upgrade procedures and the re-processing performances have much improved during last two years, thanks to the recent updates of the Ground Segment infrastructure and overall organization. The aim of this paper is to promote the usage and stress the quality of the ESA operational dataset for the GOMOS, MIPAS and SCIAMACHY missions. The recent upgrades in the ESA processor (GOMOS V6, MIPAS V5 and SCIAMACHY V5) will be presented, with detailed information on improvements in the scientific output and preliminary validation results. The planned algorithm evolution and on-going re-processing campaigns will be mentioned that involves the adoption of advanced set-up, such as the MIPAS V6 re-processing on a clouds-computing system. Finally, the quality control process will be illustrated that allows to guarantee a standard of quality to the users. In fact, the operational ESA algorithm is carefully tested before switching into operations and the near-real time and off-line production is thoughtfully verified via the implementation of automatic quality control procedures. The scientific validity of the ESA dataset will be additionally illustrated with examples of applications that can be supported, such as ozone-hole monitoring, volcanic ash detection and analysis of atmospheric composition changes during the past years.

  14. [Role of medium-sized independent laboratories in control of healthcare-associated infection].

    PubMed

    Anzai, Eiko; Fukui, Toru

    2009-05-01

    In 2006, the Ministry of Health and Welfare revised the regulations regarding the Medical Service Law. The amendments stipulate that all healthcare institutions are required to implement infection control programs. However, small hospitals and clinics have no clinical microbiology laboratories, whereas medium-sized hospitals have few medical technologists and the outsourcing of microbiology tests to independent laboratories is common. The decreasing number of laboratories and recent outsourcing tendency reflect the increasing commercialization, and, with it, the escalating number of commercially operating chains. Each independent laboratory is responsible for supporting activities related to the surveillance, control, and prevention of healthcare-associated infections in the associated small and medium-sized hospitals. The people responsible for infection control in these hospitals usually do not have a background in microbiology. The evaluation of communication between independent laboratory staff and hospital personnel, and rapid turnaround time of microbiology laboratory test reports are important elements ensuring the quality of independent laboratory work. With the pressures of financial constraints in the Japanese medical insurance system, the development of a cost-effective and practical protocol for quality assurance is a real dilemma.

  15. The effect of process parameters on audible acoustic emissions from high-shear granulation.

    PubMed

    Hansuld, Erin M; Briens, Lauren; Sayani, Amyn; McCann, Joe A B

    2013-02-01

    Product quality in high-shear granulation is easily compromised by minor changes in raw material properties or process conditions. It is desired to develop a process analytical technology (PAT) that can monitor the process in real-time and provide feedback for quality control. In this work, the application of audible acoustic emissions (AAEs) as a PAT tool was investigated. A condenser microphone was placed at the top of the air exhaust on a PMA-10 high-shear granulator to collect AAEs for a design of experiment (DOE) varying impeller speed, total binder volume and spray rate. The results showed the 10 Hz total power spectral densities (TPSDs) between 20 and 250 Hz were significantly affected by the changes in process conditions. Impeller speed and spray rate were shown to have statistically significant effects on granulation wetting, and impeller speed and total binder volume were significant in terms of process end-point. The DOE results were confirmed by a multivariate PLS model of the TPSDs. The scores plot showed separation based on impeller speed in the first component and spray rate in the second component. The findings support the use of AAEs to monitor changes in process conditions in real-time and achieve consistent product quality.

  16. Characterizing air quality data from complex network perspective.

    PubMed

    Fan, Xinghua; Wang, Li; Xu, Huihui; Li, Shasha; Tian, Lixin

    2016-02-01

    Air quality depends mainly on changes in emission of pollutants and their precursors. Understanding its characteristics is the key to predicting and controlling air quality. In this study, complex networks were built to analyze topological characteristics of air quality data by correlation coefficient method. Firstly, PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) indexes of eight monitoring sites in Beijing were selected as samples from January 2013 to December 2014. Secondly, the C-C method was applied to determine the structure of phase space. Points in the reconstructed phase space were considered to be nodes of the network mapped. Then, edges were determined by nodes having the correlation greater than a critical threshold. Three properties of the constructed networks, degree distribution, clustering coefficient, and modularity, were used to determine the optimal value of the critical threshold. Finally, by analyzing and comparing topological properties, we pointed out that similarities and difference in the constructed complex networks revealed influence factors and their different roles on real air quality system.

  17. A Strategy to Establish a Quality Assurance/Quality Control Plan for the Application of Biosensors for the Detection of E. coli in Water.

    PubMed

    Hesari, Nikou; Kıratlı Yılmazçoban, Nursel; Elzein, Mohamad; Alum, Absar; Abbaszadegan, Morteza

    2017-01-03

    Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities.

  18. Development of the Quality Assurance/Quality Control Procedures for a Neutron Interrogation System

    NASA Astrophysics Data System (ADS)

    Obhođaš, Jasmina; Sudac, Davorin; Valković, Vladivoj

    2016-06-01

    In order to perform Quality Assurance/Quality Control (QA/QC) procedures for a system dedicated to the neutron interrogation of objects for the presence of threat materials one needs to perform measurements of reference materials (RM) i.e. simulants having the same (or similar) atomic ratios as real materials. It is well known that explosives, drugs, and various other benign materials, contain chemical elements such as hydrogen, oxygen, carbon and nitrogen in distinctly different quantities. For example, a high carbon-to-oxygen ratio (C/O) is characteristic of drugs. Explosives can be differentiated by measurement of both (C/O) and nitrogen-to-oxygen (N/O) ratios. The C/N ratio of the chemical warfare agents, coupled with the measurement of elements such as fluorine and phosphorus, clearly differentiate them from the conventional explosives. Here we present the RM preparation, calibration procedure and correlations attained between theoretical values and experimentally obtained results in laboratory conditions for C/O and N/C ratios of prepared hexogen (RDX), TNT, DLM2, TATP, cocaine, heroin, yperite, tetranitromethane, peroxide methylethylketone, nitromethane and ethyleneglycol dinitrate simulants. We have shown that analyses of the gamma ray spectra by using simple unfolding model developed for this purpose gave a nice agreement with the chemical formula of created simulants, thus the calibration quality was successfully tested.

  19. A Strategy to Establish a Quality Assurance/Quality Control Plan for the Application of Biosensors for the Detection of E. coli in Water

    PubMed Central

    Hesari, Nikou; Kıratlı Yılmazçoban, Nursel; Elzein, Mohamad; Alum, Absar; Abbaszadegan, Morteza

    2017-01-01

    Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities. PMID:28054956

  20. The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters.

    PubMed

    Zack, Elizabeth; Barr, Rachel

    2016-01-01

    Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a two-dimensional (2D) screen and three-dimensional (3D) object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emotional responsiveness and infant outcomes during a transfer of learning task. Fifty 15-month-old infants and their mothers participated in this semi-naturalistic teaching task. Mothers were given a 3D object, and a static image of the object presented on a touch screen. Mothers had 5 min to teach their infant that a button on the real toy works in the same way as a virtual button on the touch screen (or vice versa). Overall, 64% of infants learned how to make the button work, transferring learning from the touch screen to the 3D object or vice versa. Infants were just as successful in the 3D to 2D transfer direction as they were in the 2D to 3D transfer direction. A cluster analysis based on emotional responsiveness, the proportion of diverse maternal verbal input, and amount of maternal structuring resulted in two levels of interactional quality: high quality and moderate quality. A logistic regression revealed the level of interactional quality predicted infant transfer. Infants were 19 times more likely to succeed and transfer learning between the touch screen and real object if they were in a high interactional quality dyad, even after controlling for infant activity levels. The present findings suggest that interactional quality between mother and infant plays an important role in making touch screens effective teaching tools for infants' learning.

  1. The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters

    PubMed Central

    Zack, Elizabeth; Barr, Rachel

    2016-01-01

    Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a two-dimensional (2D) screen and three-dimensional (3D) object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emotional responsiveness and infant outcomes during a transfer of learning task. Fifty 15-month-old infants and their mothers participated in this semi-naturalistic teaching task. Mothers were given a 3D object, and a static image of the object presented on a touch screen. Mothers had 5 min to teach their infant that a button on the real toy works in the same way as a virtual button on the touch screen (or vice versa). Overall, 64% of infants learned how to make the button work, transferring learning from the touch screen to the 3D object or vice versa. Infants were just as successful in the 3D to 2D transfer direction as they were in the 2D to 3D transfer direction. A cluster analysis based on emotional responsiveness, the proportion of diverse maternal verbal input, and amount of maternal structuring resulted in two levels of interactional quality: high quality and moderate quality. A logistic regression revealed the level of interactional quality predicted infant transfer. Infants were 19 times more likely to succeed and transfer learning between the touch screen and real object if they were in a high interactional quality dyad, even after controlling for infant activity levels. The present findings suggest that interactional quality between mother and infant plays an important role in making touch screens effective teaching tools for infants’ learning. PMID:27625613

  2. Quality control and conduct of genome-wide association meta-analyses.

    PubMed

    Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Mägi, Reedik; Ferreira, Teresa; Fall, Tove; Graff, Mariaelisa; Justice, Anne E; Luan, Jian'an; Gustafsson, Stefan; Randall, Joshua C; Vedantam, Sailaja; Workalemahu, Tsegaselassie; Kilpeläinen, Tuomas O; Scherag, André; Esko, Tonu; Kutalik, Zoltán; Heid, Iris M; Loos, Ruth J F

    2014-05-01

    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.

  3. Health-Mining: a Disease Management Support Service based on Data Mining and Rule Extraction.

    PubMed

    Bei, Andrea; De Luca, Stefano; Ruscitti, Giancarlo; Salamon, Diego

    2005-01-01

    The disease management is the collection of the processes aimed to control the health care and improving the quality at same time reducing the overall cost of the procedures. Our system, Health-Mining, is a Decision Support System with the objective of controlling the adequacy of hospitalization and therapies, determining the effective use of standard guidelines and eventually identifying better ones emerged from the medical practice (Evidence Based Medicine). In realizing the system, we have the aim of creation of a path to admissions- appropriateness criteria construction, valid at an international level. A main goal of the project is rule extraction and the identification of the rules adequate in term of efficacy, quality and cost reduction, especially in the view of fast changing technologies and medicines. We tested Health-Mining in a real test case for an Italian Region, Regione Veneto, on the installation of pacemaker and ICD.

  4. Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries.

    PubMed

    Laurie, Matthew T; Bertout, Jessica A; Taylor, Sean D; Burton, Joshua N; Shendure, Jay A; Bielas, Jason H

    2013-08-01

    Due to the high cost of failed runs and suboptimal data yields, quantification and determination of fragment size range are crucial steps in the library preparation process for massively parallel sequencing (or next-generation sequencing). Current library quality control methods commonly involve quantification using real-time quantitative PCR and size determination using gel or capillary electrophoresis. These methods are laborious and subject to a number of significant limitations that can make library calibration unreliable. Herein, we propose and test an alternative method for quality control of sequencing libraries using droplet digital PCR (ddPCR). By exploiting a correlation we have discovered between droplet fluorescence and amplicon size, we achieve the joint quantification and size determination of target DNA with a single ddPCR assay. We demonstrate the accuracy and precision of applying this method to the preparation of sequencing libraries.

  5. Study of weld quality real-time monitoring system for auto-body assembly

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Li, Yong-Bing; Chen, Guan-Long

    2005-12-01

    Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.

  6. CÆLIS: software for assimilation, management and processing data of an atmospheric measurement network

    NASA Astrophysics Data System (ADS)

    Fuertes, David; Toledano, Carlos; González, Ramiro; Berjón, Alberto; Torres, Benjamín; Cachorro, Victoria E.; de Frutos, Ángel M.

    2018-02-01

    Given the importance of the atmospheric aerosol, the number of instruments and measurement networks which focus on its characterization are growing. Many challenges are derived from standardization of protocols, monitoring of the instrument status to evaluate the network data quality and manipulation and distribution of large volume of data (raw and processed). CÆLIS is a software system which aims at simplifying the management of a network, providing tools by monitoring the instruments, processing the data in real time and offering the scientific community a new tool to work with the data. Since 2008 CÆLIS has been successfully applied to the photometer calibration facility managed by the University of Valladolid, Spain, in the framework of Aerosol Robotic Network (AERONET). Thanks to the use of advanced tools, this facility has been able to analyze a growing number of stations and data in real time, which greatly benefits the network management and data quality control. The present work describes the system architecture of CÆLIS and some examples of applications and data processing.

  7. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  8. SSALTO/DUACS: Faster data delivery for operational oceanography and GMES

    NASA Astrophysics Data System (ADS)

    Dorandeu, J.; Dibarboure, G.; Larnicol, G.; Picot, N.

    2008-12-01

    This paper describes the DUACS multi-mission system, and its most relevant improvements and changes. Initiated 10 years ago with an EC project, DUACS is now a part of the CNES multi-mission ground segment SSALTO, and the backbone of the Sea Level Thematic Assembly Centre (SL-TAC) of the GMES Marine Core Service. Near Real Time (NRT): Daily Operational Products DUACS-NRT provides GODAE, climate forecasting centres, the MyOcean EU FP7 project, and real time oceanographic research (e.g.: in-situ campaigns) with directly useable, high quality near real time altimeter data. Regional products (European Shelves, Mediterranean Sea, and Black Sea) are delivered to operational projects. Commercial applications are also developed for the fishery and offshore drilling industries. All DUACS near real time products are generated and distributed on a daily basis to reduce the NRT delay, and to smooth the operational procedures of NRT users. DUACS features a systematic quality control of the input data, the system itself, and its products with detailed reports put online twice per week. The system also carries out on-the-fly editing and reprocessing of erroneous datasets, as well as a long term monitoring of NRT data it has used, to quickly detect anomalies, drifts and discontinuities in incoming altimeter data. Delayed Time (DT): A consistent data set from built upon all altimeters The second generation of DUACS-DT products is composed of global data sets of along track and gridded Sea Level Anomaly, Absolute Dynamic Topography, and geostrophic currents, but also of regional-specific products (higher resolution, optimized parameters). DUACS reprocessed all past altimeter data: Jason-1, T/P, ENVISAT, GFO, ERS1/2 and GEOSAT. These delayed time products are regularly updated when new Level2 data are released and fully validated. The system operationally integrates the state-of-the-art corrections, models and references recommended by the altimeter community, as well as the best Cal/Val and cross-calibration and merging algorithms. Ongoing Improvements to secure multi-mission products Adding Jason-2 to the system is arguably the most important improvement on DUACS in 2008. Additionally, the effort to improve the quality of DUACS combined data and the robustness of the NRT system are ongoing with the release of Key Performance Indicators on the system, and Ocean Indicators for a near real time ocean monitoring. Last year, preliminary studies were carried out to merge into the high-accuracy NRT system, innovative information of lower quality altimeter data flows such as OSDR / FDGDR / OGDR (real time data delivered in a few hours as opposed to 2 or 3 days for classical NRT data), as well as CryoSat data. These offline studies and experimental NRT productions will be integrated to the system in order to guarantee sustainability and quality in the operational DUACS framework.

  9. [Service quality in health care: the application of the results of marketing research].

    PubMed

    Verheggen, F W; Harteloh, P P

    1993-01-01

    This paper deals with quality assurance in health care and its relation to quality assurance in trade and industry. We present the service quality model--a model of quality from marketing research--and discuss how it can be applied to health care. Traditional quality assurance appears to have serious flaws. It lacks a general theory of the sources of hazards in the complex process of patient care and tends to stagnate, for no real improvement takes place. Departing from this criticism, modern quality assurance in health care is marked by: defining quality in a preferential sense as "fitness for use"; the use of theories and models of trade and industry (process-control); an emphasis on analyzing the process, instead of merely inspecting it; use of the Deming problem solving technique (plan, do, check, act); improvement of the process of care by altering perceptions of parties involved. We present an experience of application and utilization of this method in the University Hospital Maastricht, The Netherlands. The successful application of this model requires a favorable corporate culture and motivation of the health care workers. This model provides a useful framework to uplift the traditional approach to quality assurance in health care.

  10. Quality control of the soil moisture probe response patterns from a green infrastructure site using Dynamic Time Warping (DTW) and association rule learning

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Bedig, A.; Quigley, M.; Montalto, F. A.

    2017-12-01

    In-situ field monitoring can help to improve the design and management of decentralized Green Infrastructure (GI) systems in urban areas. Because of the vast quantity of continuous data generated from multi-site sensor systems, cost-effective post-construction opportunities for real-time control are limited; and the physical processes that influence the observed phenomena (e.g. soil moisture) are hard to track and control. To derive knowledge efficiently from real-time monitoring data, there is currently a need to develop more efficient approaches to data quality control. In this paper, we employ dynamic time warping method to compare the similarity of two soil moisture patterns without ignoring the inherent autocorrelation. We also use a rule-based machine learning method to investigate the feasibility of detecting anomalous responses from soil moisture probes. The data was generated from both individual and clusters of probes, deployed in a GI site in Milwaukee, WI. In contrast to traditional QAQC methods, which seek to detect outliers at individual time steps, the new method presented here converts the continuous time series into event-based symbolic sequences from which unusual response patterns can be detected. Different Matching rules are developed on different physical characteristics for different seasons. The results suggest that this method could be used alternatively to detect sensor failure, to identify extreme events, and to call out abnormal change patterns, compared to intra-probe and inter-probe historical observations. Though this algorithm was developed for soil moisture probes, the same approach could easily be extended to advance QAQC efficiency for any continuous environmental datasets.

  11. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson's disease: A pilot randomized controlled trial.

    PubMed

    Ginis, Pieter; Nieuwboer, Alice; Dorfman, Moran; Ferrari, Alberto; Gazit, Eran; Canning, Colleen G; Rocchi, Laura; Chiari, Lorenzo; Hausdorff, Jeffrey M; Mirelman, Anat

    2016-01-01

    Inertial measurement units combined with a smartphone application (CuPiD-system) were developed to provide people with Parkinson's disease (PD) real-time feedback on gait performance. This study investigated the CuPiD-system's feasibility and effectiveness compared with conventional gait training when applied in the home environment. Forty persons with PD undertook gait training for 30 min, three times per week for six weeks. Participants were randomly assigned to i) CuPiD, in which a smartphone application offered positive and corrective feedback on gait, or ii) an active control, in which personalized gait advice was provided. Gait, balance, endurance and quality of life were assessed before and after training and at four weeks follow-up using standardized tests. Both groups improved significantly on the primary outcomes (single and dual task gait speed) at post-test and follow-up. The CuPiD group improved significantly more on balance (MiniBESTest) at post-test (from 24.8 to 26.1, SD ∼ 5) and maintained quality of life (SF-36 physical health) at follow-up whereas the control group deteriorated (from 50.4 to 48.3, SD ∼ 16). No other statistically significant differences were found between the two groups. The CuPiD system was well-tolerated and participants found the tool user-friendly. CuPiD was feasible, well-accepted and seemed to be an effective approach to promote gait training, as participants improved equally to controls. This benefit may be ascribed to the real-time feedback, stimulating corrective actions and promoting self-efficacy to achieve optimal performance. Further optimization of the system and adequately-powered studies are warranted to corroborate these findings and determine cost-effectiveness.

  12. Process control of laser conduction welding by thermal imaging measurement with a color camera.

    PubMed

    Bardin, Fabrice; Morgan, Stephen; Williams, Stewart; McBride, Roy; Moore, Andrew J; Jones, Julian D C; Hand, Duncan P

    2005-11-10

    Conduction welding offers an alternative to keyhole welding. Compared with keyhole welding, it is an intrinsically stable process because vaporization phenomena are minimal. However, as with keyhole welding, an on-line process-monitoring system is advantageous for quality assurance to maintain the required penetration depth, which in conduction welding is more sensitive to changes in heat sinking. The maximum penetration is obtained when the surface temperature is just below the boiling point, and so we normally wish to maintain the temperature at this level. We describe a two-color optical system that we have developed for real-time temperature profile measurement of the conduction weld pool. The key feature of the system is the use of a complementary metal-oxide semiconductor standard color camera leading to a simplified low-cost optical setup. We present and discuss the real-time temperature measurement and control performance of the system when a defocused beam from a high power Nd:YAG laser is used on 5 mm thick stainless steel workpieces.

  13. A Telescopic Binary Learning Machine for Training Neural Networks.

    PubMed

    Brunato, Mauro; Battiti, Roberto

    2017-03-01

    This paper proposes a new algorithm based on multiscale stochastic local search with binary representation for training neural networks [binary learning machine (BLM)]. We study the effects of neighborhood evaluation strategies, the effect of the number of bits per weight and that of the maximum weight range used for mapping binary strings to real values. Following this preliminary investigation, we propose a telescopic multiscale version of local search, where the number of bits is increased in an adaptive manner, leading to a faster search and to local minima of better quality. An analysis related to adapting the number of bits in a dynamic way is presented. The control on the number of bits, which happens in a natural manner in the proposed method, is effective to increase the generalization performance. The learning dynamics are discussed and validated on a highly nonlinear artificial problem and on real-world tasks in many application domains; BLM is finally applied to a problem requiring either feedforward or recurrent architectures for feedback control.

  14. Multimodal optical analysis discriminates freshly extracted human sample of gliomas, metastases and meningiomas from their appropriate controls

    NASA Astrophysics Data System (ADS)

    Zanello, Marc; Poulon, Fanny; Pallud, Johan; Varlet, Pascale; Hamzeh, H.; Abi Lahoud, Georges; Andreiuolo, Felipe; Ibrahim, Ali; Pages, Mélanie; Chretien, Fabrice; di Rocco, Federico; Dezamis, Edouard; Nataf, François; Turak, Baris; Devaux, Bertrand; Abi Haidar, Darine

    2017-02-01

    Delineating tumor margins as accurately as possible is of primordial importance in surgical oncology: extent of resection is associated with survival but respect of healthy surrounding tissue is necessary for preserved quality of life. The real-time analysis of the endogeneous fluorescence signal of brain tissues is a promising tool for defining margins of brain tumors. The present study aims to demonstrate the feasibility of multimodal optical analysis to discriminate fresh samples of gliomas, metastases and meningiomas from their appropriate controls. Tumor samples were studied on an optical fibered endoscope using spectral and fluorescence lifetime analysis and then on a multimodal set-up for acquiring spectral, one and two-photon fluorescence images, second harmonic generation signals and two-photon fluorescence lifetime datasets. The obtained data allowed us to differentiate healthy samples from tumor samples. These results confirmed the possible clinical relevance of this real-time multimodal optical analysis. This technique can be easily applied to neurosurgical procedures for a better delineation of surgical margins.

  15. Quantitative monitoring of HCMV DNAlactia in human milk by real time PCR assay: Implementation of internal control contributes to standardization and quality control.

    PubMed

    Hartleif, Steffen; Göhring, Katharina; Goelz, Rangmar; Jahn, Gerhard; Hamprecht, Klaus

    2016-11-01

    For cytomegalovirus screening of breastfeeding mothers of preterm infants under risk, we present a rapid, quantitative real-time PCR protocol using the hybridization format of the viral gB target region. For quantification, we used an external gB fragment cloned into a vector system. For standardization, we created an internal control-plasmid by site-directed mutagenesis with an exchange of 9 nucleotides. Spiked with internal control, patient wildtype amplicons could be discriminated from internal controls by hybridization probes using two-channel fluorescence detection. Potential bias of formerly reported false nucleotide sequence data of gB-hybridization probes was excluded. Using this approach, we could demonstrate excellent analytical performance and high reproducibility of HCMV detection during lactation. This assay shows very good correlation with a commercial quantitative HCMV DNA PCR and may help to identify rapidly HCMV shedding mothers of very low birth weight preterm infants to prevent HCMV transmission. On the other hand, negative DNA amplification results allow feeding of milk samples of seropositive mothers to their preterm infants under risk (<30 weeks of gestational age, <1000g birth weight) during the onset and late stage of HCMV shedding during lactation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  17. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE PAGES

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  18. A novel pulsed gas metal arc welding system with direct droplet transfer close-loop control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Li, P.; Zhang, L.

    1994-12-31

    In pulsed gas metal arc welding (GMAW), a predominant parameter that has to be monitored and controlled in real time for maintaining process stability and ensuring weld quality, is droplet transfer. Based on the close correlation between droplet transfer and arc light radiant flux in GMAW of steel and aluminum, a direct closed-loop droplet transfer control system for pulsed GMAW with arc light sensor has been developed. By sensing the droplet transfer directly via the arc light signal, a pulsed GMAW process with real and exact one-pulse, one-droplet transfer has been achieved. The novel pulsed GMAW machine consists of threemore » parts: a sensing system, a controlling system, and a welding power system. The software used in this control system is capable of data sampling and processing, parameter matching, optimum parameter restoring, and resetting. A novel arc light sensing system has been developed. The sensor is small enough to be clamped to a semiautomatic welding torch. Based on thissensingn system, a closed-loop droplet transfer control system of GMAW of steel and aluminum has been built and a commercial prototype has been made. The system is capable of keeping one-pulse, one-droplet transfer against external interferences. The welding process with this control system has been proved to be stable, quiet, with no spatter, and provide good weld formation.« less

  19. High assurance SPIRAL

    NASA Astrophysics Data System (ADS)

    Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.

    2014-06-01

    In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.

  20. NASA JSC water monitor system: City of Houston field demonstration

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.

    1979-01-01

    A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.

  1. The effectiveness of robust RMCD control chart as outliers’ detector

    NASA Astrophysics Data System (ADS)

    Darmanto; Astutik, Suci

    2017-12-01

    A well-known control chart to monitor a multivariate process is Hotelling’s T 2 which its parameters are estimated classically, very sensitive and also marred by masking and swamping of outliers data effect. To overcome these situation, robust estimators are strongly recommended. One of robust estimators is re-weighted minimum covariance determinant (RMCD) which has robust characteristics as same as MCD. In this paper, the effectiveness term is accuracy of the RMCD control chart in detecting outliers as real outliers. In other word, how effectively this control chart can identify and remove masking and swamping effects of outliers. We assessed the effectiveness the robust control chart based on simulation by considering different scenarios: n sample sizes, proportion of outliers, number of p quality characteristics. We found that in some scenarios, this RMCD robust control chart works effectively.

  2. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  3. On-Line Water Quality Parameters as Indicators of Distribution System Contamination

    EPA Science Inventory

    At a time when the safety and security of services we have typically taken for granted are under question, a real-time or near real-time method of monitoring changes in water quality parameters could provide a critical line of defense in protecting public health. This study was u...

  4. EVALUATION OF THE REAL-TIME AIR-QUALITY MODEL USING THE RAPS (REGIONAL AIR POLLUTION STUDY) DATA BASE. VOLUME 1. OVERVIEW

    EPA Science Inventory

    The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four report volumes. Moreover, the tests are generally applicable to other model evaluation problem...

  5. Determination of combustion parameters using engine crankshaft speed

    NASA Astrophysics Data System (ADS)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  6. From assessment to improvement of elderly care in general practice using decision support to increase adherence to ACOVE quality indicators: study protocol for randomized control trial

    PubMed Central

    2014-01-01

    Background Previous efforts such as Assessing Care of Vulnerable Elders (ACOVE) provide quality indicators for assessing the care of elderly patients, but thus far little has been done to leverage this knowledge to improve care for these patients. We describe a clinical decision support system to improve general practitioner (GP) adherence to ACOVE quality indicators and a protocol for investigating impact on GPs’ adherence to the rules. Design We propose two randomized controlled trials among a group of Dutch GP teams on adherence to ACOVE quality indicators. In both trials a clinical decision support system provides un-intrusive feedback appearing as a color-coded, dynamically updated, list of items needing attention. The first trial pertains to real-time automatically verifiable rules. The second trial concerns non-automatically verifiable rules (adherence cannot be established by the clinical decision support system itself, but the GPs report whether they will adhere to the rules). In both trials we will randomize teams of GPs caring for the same patients into two groups, A and B. For the automatically verifiable rules, group A GPs receive support only for a specific inter-related subset of rules, and group B GPs receive support only for the remainder of the rules. For non-automatically verifiable rules, group A GPs receive feedback framed as actions with positive consequences, and group B GPs receive feedback framed as inaction with negative consequences. GPs indicate whether they adhere to non-automatically verifiable rules. In both trials, the main outcome measure is mean adherence, automatically derived or self-reported, to the rules. Discussion We relied on active end-user involvement in selecting the rules to support, and on a model for providing feedback displayed as color-coded real-time messages concerning the patient visiting the GP at that time, without interrupting the GP’s workflow with pop-ups. While these aspects are believed to increase clinical decision support system acceptance and its impact on adherence to the selected clinical rules, systems with these properties have not yet been evaluated. Trial registration Controlled Trials NTR3566 PMID:24642339

  7. A single-center randomized, controlled trial investigating the efficacy of a mHealth ECG technology intervention to improve the detection of atrial fibrillation: the iHEART study protocol.

    PubMed

    Hickey, Kathleen T; Hauser, Nicole R; Valente, Laura E; Riga, Teresa C; Frulla, Ashton P; Masterson Creber, Ruth; Whang, William; Garan, Hasan; Jia, Haomiao; Sciacca, Robert R; Wang, Daniel Y

    2016-07-16

    Atrial fibrillation is a major public health problem and is the most common cardiac arrhythmia, affecting an estimated 2.7 million Americans. The true prevalence of atrial fibrillation is likely underestimated because episodes are often sporadic; therefore, it is challenging to detect and record an occurrence in a "real world" setting. To date, mobile health tools that promote earlier detection and treatment of atrial fibrillation and improvement in self-management behaviors and knowledge have not been evaluated. This study will be the first to address the epidemic problem of atrial fibrillation with a novel approach utilizing advancements in mobile health electrocardiogram technology to empower patients to actively engage in their healthcare and to evaluate impact on quality of life and quality-adjusted life years. Furthermore, sending a daily electrocardiogram transmission, coupled with receiving educational and motivational text messages aimed at promoting self-management and a healthy lifestyle may improve the management of chronic cardiovascular conditions (e.g., hypertension, diabetes, heart failure, etc.). Therefore, we are currently conducting a randomized controlled trial to assess the efficacy of a mobile health intervention, iPhone® Helping Evaluate Atrial fibrillation Rhythm through Technology (iHEART) versus usual cardiac care. The iHEART study is a single center, prospective, randomized controlled trial. A total of 300 participants with a recent history of atrial fibrillation will be enrolled. Participants will be randomized 1:1 to receive the iHEART intervention, receiving an iPhone® equipped with an AliveCor® Mobile ECG and accompanying Kardia application and behavioral altering motivational text messages or usual cardiac care for 6 months. This will be the first study to investigate the utility of a mobile health intervention in a "real world" setting. We will evaluate the ability of the iHEART intervention to improve the detection and treatment of recurrent atrial fibrillation and assess the intervention's impact on improving clinical outcomes, quality of life, quality-adjusted life-years and disease-specific knowledge. NCT02731326 ; Verified April 2016.

  8. Use of near-infrared spectroscopy (NIRs) in the biopharmaceutical industry for real-time determination of critical process parameters and integration of advanced feedback control strategies using MIDUS control.

    PubMed

    Vann, Lucas; Sheppard, John

    2017-12-01

    Control of biopharmaceutical processes is critical to achieve consistent product quality. The most challenging unit operation to control is cell growth in bioreactors due to the exquisitely sensitive and complex nature of the cells that are converting raw materials into new cells and products. Current monitoring capabilities are increasing, however, the main challenge is now becoming the ability to use the data generated in an effective manner. There are a number of contributors to this challenge including integration of different monitoring systems as well as the functionality to perform data analytics in real-time to generate process knowledge and understanding. In addition, there is a lack of ability to easily generate strategies and close the loop to feedback into the process for advanced process control (APC). The current research aims to demonstrate the use of advanced monitoring tools along with data analytics to generate process understanding in an Escherichia coli fermentation process. NIR spectroscopy was used to measure glucose and critical amino acids in real-time to help in determining the root cause of failures associated with different lots of yeast extract. First, scale-down of the process was required to execute a simple design of experiment, followed by scale-up to build NIR models as well as soft sensors for advanced process control. In addition, the research demonstrates the potential for a novel platform technology that enables manufacturers to consistently achieve "goldenbatch" performance through monitoring, integration, data analytics, understanding, strategy design and control (MIDUS control). MIDUS control was employed to increase batch-to-batch consistency in final product titers, decrease the coefficient of variability from 8.49 to 1.16%, predict possible exhaust filter failures and close the loop to prevent their occurrence and avoid lost batches.

  9. Implementation of quality by design toward processing of food products.

    PubMed

    Rathore, Anurag S; Kapoor, Gautam

    2017-05-28

    Quality by design (QbD) is a systematic approach that begins with predefined objectives and emphasizes product and process understanding and process control. It is an approach based on principles of sound science and quality risk management. As the food processing industry continues to embrace the idea of in-line, online, and/or at-line sensors and real-time characterization for process monitoring and control, the existing gaps with regard to our ability to monitor multiple parameters/variables associated with the manufacturing process will be alleviated over time. Investments made for development of tools and approaches that facilitate high-throughput analytical and process development, process analytical technology, design of experiments, risk analysis, knowledge management, and enhancement of process/product understanding would pave way for operational and economic benefits later in the commercialization process and across other product pipelines. This article aims to achieve two major objectives. First, to review the progress that has been made in the recent years on the topic of QbD implementation in processing of food products and second, present a case study that illustrates benefits of such QbD implementation.

  10. Interest and limits of the six sigma methodology in medical laboratory.

    PubMed

    Scherrer, Florian; Bouilloux, Jean-Pierre; Calendini, Ors'Anton; Chamard, Didier; Cornu, François

    2017-02-01

    The mandatory accreditation of clinical laboratories in France provides an incentive to develop real tools to measure performance management methods and to optimize the management of internal quality controls. Six sigma methodology is an approach commonly applied to software quality management and discussed in numerous publications. This paper discusses the primary factors that influence the sigma index (the choice of the total allowable error, the approach used to address bias) and compares the performance of different analyzers on the basis of the sigma index. Six sigma strategy can be applied to the policy management of internal quality control in a laboratory and demonstrates through a comparison of four analyzers that there is no single superior analyzer in clinical chemistry. Similar sigma results are obtained using approaches toward bias based on the EQAS or the IQC. The main difficulty in using the six sigma methodology lies in the absence of official guidelines for the definition of the total error acceptable. Despite this drawback, our comparison study suggests that difficulties with defined analytes do not vary with the analyzer used.

  11. Reduced-cost Chlamydia trachomatis-specific multiplex real-time PCR diagnostic assay evaluated for ocular swabs and use by trachoma research programmes.

    PubMed

    Butcher, Robert; Houghton, Jo; Derrick, Tamsyn; Ramadhani, Athumani; Herrera, Beatriz; Last, Anna R; Massae, Patrick A; Burton, Matthew J; Holland, Martin J; Roberts, Chrissy H

    2017-08-01

    Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), is the leading infectious cause of preventable blindness. Many commercial platforms are available that provide highly sensitive and specific detection of Ct DNA. However, the majority of these commercial platforms are inaccessible for population-level surveys in resource-limited settings typical to trachoma control programmes. We developed two low-cost quantitative PCR (qPCR) tests for Ct using readily available reagents on standard real-time thermocyclers. Each multiplex qPCR test targets one genomic and one plasmid Ct target in addition to an endogenous positive control for Homo sapiens DNA. The quantitative performance of the qPCR assays in clinical samples was determined by comparison to a previously evaluated droplet digital PCR (ddPCR) test. The diagnostic performance of the qPCR assays were evaluated against a commercial assay (artus C. trachomatis Plus RG PCR, Qiagen) using molecular diagnostics quality control standards and clinical samples. We examined the yield of Ct DNA prepared from five different DNA extraction kits and a cold chain-free dry-sample preservation method using swabs spiked with fixed concentrations of human and Ct DNA. The qPCR assay was highly reproducible (Ct plasmid and genomic targets mean total coefficients of variance 41.5% and 48.3%, respectively). The assay detected 8/8 core specimens upon testing of a quality control panel and performed well in comparison to commercially marketed comparator test (sensitivity and specificity>90%). Optimal extraction and sample preservation methods for research applications were identified. We describe a pipeline from collection to diagnosis providing the most efficient sample preservation and extraction with significant per test cost savings over a commercial qPCR diagnostic assay. The assay and its evaluation should allow control programs wishing to conduct independent research within the context of trachoma control, access to an affordable test with defined performance characteristics. Copyright © 2017. Published by Elsevier B.V.

  12. Matching rendered and real world images by digital image processing

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  13. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  14. LESS: Link Estimation with Sparse Sampling in Intertidal WSNs

    PubMed Central

    Ji, Xiaoyu; Chen, Yi-chao; Li, Xiaopeng; Xu, Wenyuan

    2018-01-01

    Deploying wireless sensor networks (WSN) in the intertidal area is an effective approach for environmental monitoring. To sustain reliable data delivery in such a dynamic environment, a link quality estimation mechanism is crucial. However, our observations in two real WSN systems deployed in the intertidal areas reveal that link update in routing protocols often suffers from energy and bandwidth waste due to the frequent link quality measurement and updates. In this paper, we carefully investigate the network dynamics using real-world sensor network data and find it feasible to achieve accurate estimation of link quality using sparse sampling. We design and implement a compressive-sensing-based link quality estimation protocol, LESS, which incorporates both spatial and temporal characteristics of the system to aid the link update in routing protocols. We evaluate LESS in both real WSN systems and a large-scale simulation, and the results show that LESS can reduce energy and bandwidth consumption by up to 50% while still achieving more than 90% link quality estimation accuracy. PMID:29494557

  15. Real-time terahertz digital holography with a quantum cascade laser

    PubMed Central

    Locatelli, Massimiliano; Ravaro, Marco; Bartalini, Saverio; Consolino, Luigi; Vitiello, Miriam S.; Cicchi, Riccardo; Pavone, Francesco; De Natale, Paolo

    2015-01-01

    Coherent imaging in the THz range promises to exploit the peculiar capabilities of these wavelengths to penetrate common materials like plastics, ceramics, paper or clothes with potential breakthroughs in non-destructive inspection and quality control, homeland security and biomedical applications. Up to now, however, THz coherent imaging has been limited by time-consuming raster scanning, point-like detection schemes and by the lack of adequate coherent sources. Here, we demonstrate real-time digital holography (DH) at THz frequencies exploiting the high spectral purity and the mW output power of a quantum cascade laser combined with the high sensitivity and resolution of a microbolometric array. We show that, in a one-shot exposure, phase and amplitude information of whole samples, either in reflection or in transmission, can be recorded. Furthermore, a 200 times reduced sensitivity to mechanical vibrations and a significantly enlarged field of view are observed, as compared to DH in the visible range. These properties of THz DH enable unprecedented holographic recording of real world dynamic scenes. PMID:26315647

  16. A Verification Method of Inter-Task Cooperation in Embedded Real-time Systems and its Evaluation

    NASA Astrophysics Data System (ADS)

    Yoshida, Toshio

    In software development process of embedded real-time systems, the design of the task cooperation process is very important. The cooperating process of such tasks is specified by task cooperation patterns. Adoption of unsuitable task cooperation patterns has fatal influence on system performance, quality, and extendibility. In order to prevent repetitive work caused by the shortage of task cooperation performance, it is necessary to verify task cooperation patterns in an early software development stage. However, it is very difficult to verify task cooperation patterns in an early software developing stage where task program codes are not completed yet. Therefore, we propose a verification method using task skeleton program codes and a real-time kernel that has a function of recording all events during software execution such as system calls issued by task program codes, external interrupts, and timer interrupt. In order to evaluate the proposed verification method, we applied it to the software development process of a mechatronics control system.

  17. Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia.

    PubMed

    Teipel, Stefan; König, Alexandra; Hoey, Jesse; Kaye, Jeff; Krüger, Frank; Robillard, Julie M; Kirste, Thomas; Babiloni, Claudio

    2018-06-21

    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials. Copyright © 2018. Published by Elsevier Inc.

  18. Link Performance Analysis and monitoring - A unified approach to divergent requirements

    NASA Astrophysics Data System (ADS)

    Thom, G. A.

    Link Performance Analysis and real-time monitoring are generally covered by a wide range of equipment. Bit Error Rate testers provide digital link performance measurements but are not useful during real-time data flows. Real-time performance monitors utilize the fixed overhead content but vary widely from format to format. Link quality information is also present from signal reconstruction equipment in the form of receiver AGC, bit synchronizer AGC, and bit synchronizer soft decision level outputs, but no general approach to utilizing this information exists. This paper presents an approach to link tests, real-time data quality monitoring, and results presentation that utilizes a set of general purpose modules in a flexible architectural environment. The system operates over a wide range of bit rates (up to 150 Mbs) and employs several measurement techniques, including P/N code errors or fixed PCM format errors, derived real-time BER from frame sync errors, and Data Quality Analysis derived by counting significant sync status changes. The architecture performs with a minimum of elements in place to permit a phased update of the user's unit in accordance with his needs.

  19. Fermentanomics: Relating quality attributes of a monoclonal antibody to cell culture process variables and raw materials using multivariate data analysis.

    PubMed

    Rathore, Anurag S; Kumar Singh, Sumit; Pathak, Mili; Read, Erik K; Brorson, Kurt A; Agarabi, Cyrus D; Khan, Mansoor

    2015-01-01

    Fermentanomics is an emerging field of research and involves understanding the underlying controlled process variables and their effect on process yield and product quality. Although major advancements have occurred in process analytics over the past two decades, accurate real-time measurement of significant quality attributes for a biotech product during production culture is still not feasible. Researchers have used an amalgam of process models and analytical measurements for monitoring and process control during production. This article focuses on using multivariate data analysis as a tool for monitoring the internal bioreactor dynamics, the metabolic state of the cell, and interactions among them during culture. Quality attributes of the monoclonal antibody product that were monitored include glycosylation profile of the final product along with process attributes, such as viable cell density and level of antibody expression. These were related to process variables, raw materials components of the chemically defined hybridoma media, concentration of metabolites formed during the course of the culture, aeration-related parameters, and supplemented raw materials such as glucose, methionine, threonine, tryptophan, and tyrosine. This article demonstrates the utility of multivariate data analysis for correlating the product quality attributes (especially glycosylation) to process variables and raw materials (especially amino acid supplements in cell culture media). The proposed approach can be applied for process optimization to increase product expression, improve consistency of product quality, and target the desired quality attribute profile. © 2015 American Institute of Chemical Engineers.

  20. Quality control and quality assurance in genotypic data for genome-wide association studies

    PubMed Central

    Laurie, Cathy C.; Doheny, Kimberly F.; Mirel, Daniel B.; Pugh, Elizabeth W.; Bierut, Laura J.; Bhangale, Tushar; Boehm, Frederick; Caporaso, Neil E.; Cornelis, Marilyn C.; Edenberg, Howard J.; Gabriel, Stacy B.; Harris, Emily L.; Hu, Frank B.; Jacobs, Kevin; Kraft, Peter; Landi, Maria Teresa; Lumley, Thomas; Manolio, Teri A.; McHugh, Caitlin; Painter, Ian; Paschall, Justin; Rice, John P.; Rice, Kenneth M.; Zheng, Xiuwen; Weir, Bruce S.

    2011-01-01

    Genome-wide scans of nucleotide variation in human subjects are providing an increasing number of replicated associations with complex disease traits. Most of the variants detected have small effects and, collectively, they account for a small fraction of the total genetic variance. Very large sample sizes are required to identify and validate findings. In this situation, even small sources of systematic or random error can cause spurious results or obscure real effects. The need for careful attention to data quality has been appreciated for some time in this field, and a number of strategies for quality control and quality assurance (QC/QA) have been developed. Here we extend these methods and describe a system of QC/QA for genotypic data in genome-wide association studies. This system includes some new approaches that (1) combine analysis of allelic probe intensities and called genotypes to distinguish gender misidentification from sex chromosome aberrations, (2) detect autosomal chromosome aberrations that may affect genotype calling accuracy, (3) infer DNA sample quality from relatedness and allelic intensities, (4) use duplicate concordance to infer SNP quality, (5) detect genotyping artifacts from dependence of Hardy-Weinberg equilibrium (HWE) test p-values on allelic frequency, and (6) demonstrate sensitivity of principal components analysis (PCA) to SNP selection. The methods are illustrated with examples from the ‘Gene Environment Association Studies’ (GENEVA) program. The results suggest several recommendations for QC/QA in the design and execution of genome-wide association studies. PMID:20718045

  1. A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation*.

    PubMed

    Parnia, Sam; Nasir, Asad; Ahn, Anna; Malik, Hanan; Yang, Jie; Zhu, Jiawen; Dorazi, Francis; Richman, Paul

    2014-04-01

    A major hurdle limiting the ability to improve the quality of resuscitation has been the lack of a noninvasive real-time detection system capable of monitoring the quality of cerebral and other organ perfusion, as well as oxygen delivery during cardiopulmonary resuscitation. Here, we report on a novel system of cerebral perfusion targeted resuscitation. An observational study evaluating the role of cerebral oximetry (Equanox; Nonin, Plymouth, MI, and Invos; Covidien, Mansfield, MA) as a real-time marker of cerebral perfusion and oxygen delivery together with the impact of an automated mechanical chest compression system (Life Stat; Michigan Instruments, Grand Rapids, MI) on oxygen delivery and return of spontaneous circulation following in-hospital cardiac arrest. Tertiary medical center. In-hospital cardiac arrest patients (n = 34). Cerebral oximetry provided real-time information regarding the quality of perfusion and oxygen delivery. The use of automated mechanical chest compression device (n = 12) was associated with higher regional cerebral oxygen saturation compared with manual chest compression device (n = 22) (53.1% ± 23.4% vs 24% ± 25%, p = 0.002). There was a significant difference in mean regional cerebral oxygen saturation (median % ± interquartile range) in patients who achieved return of spontaneous circulation (n = 15) compared with those without return of spontaneous circulation (n = 19) (47.4% ± 21.4% vs 23% ± 18.42%, p < 0.001). After controlling for patients achieving return of spontaneous circulation or not, significantly higher mean regional cerebral oxygen saturation levels during cardiopulmonary resuscitation were observed in patients who were resuscitated using automated mechanical chest compression device (p < 0.001). The integration of cerebral oximetry into cardiac arrest resuscitation provides a novel noninvasive method to determine the quality of cerebral perfusion and oxygen delivery to the brain. The use of automated mechanical chest compression device during in-hospital cardiac arrest may lead to improved oxygen delivery and organ perfusion.

  2. 1-Hz rTMS in the treatment of tinnitus: A sham-controlled, randomized multicenter trial.

    PubMed

    Landgrebe, Michael; Hajak, Göran; Wolf, Stefan; Padberg, Frank; Klupp, Philipp; Fallgatter, Andreas J; Polak, Thomas; Höppner, Jacqueline; Haker, Rene; Cordes, Joachim; Klenzner, Thomas; Schönfeldt-Lecuona, Carlos; Kammer, Thomas; Graf, Erika; Koller, Michael; Kleinjung, Tobias; Lehner, Astrid; Schecklmann, Martin; Pöppl, Timm B; Kreuzer, Peter; Frank, Elmar; Langguth, Berthold

    Chronic tinnitus is a frequent, difficult to treat disease with high morbidity. This multicenter randomized, sham-controlled trial investigated the efficacy and safety of 1-Hz repetitive transcranial magnetic stimulation (rTMS) applied to the left temporal cortex in patients with chronic tinnitus. Tinnitus patients were randomized to receive 10 sessions of either real or sham 1-Hz-rTMS (2000 stimuli, 110% motor threshold) to the left temporal cortex. The primary outcome was the change in the sum score of the tinnitus questionnaire (TQ) of Goebel and Hiller from baseline to end of treatment. A total of 163 patients were enrolled in the study (real rTMS: 75; sham rTMS: 78). At day 12, the baseline mean of 43.1 TQ points in 71 patients assigned to real rTMS changed by -0.5 points; it changed by 0.5 points from a baseline of 42.1 in 75 patients randomized to sham rTMS (adjusted mean difference between groups: -1.0; 95.19% confidence interval: -3.2 to 1.2; p = 0.36). All secondary outcome measures including measures of depression and quality of life showed no significant differences either (p > 0.11). The number of participants with side-effects or adverse events did not differ between groups. Real 1-Hz-rTMS over the left temporal cortex was well tolerated but not superior compared with sham rTMS in improving tinnitus severity. These findings are in contrast to results from studies with smaller sample sizes and put the efficacy of this rTMS protocol for treatment of chronic tinnitus into question. Controlled Trials: http://www.isrctn.com/ISRCTN89848288. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Implementation of statistical process control for proteomic experiments via LC MS/MS.

    PubMed

    Bereman, Michael S; Johnson, Richard; Bollinger, James; Boss, Yuval; Shulman, Nick; MacLean, Brendan; Hoofnagle, Andrew N; MacCoss, Michael J

    2014-04-01

    Statistical process control (SPC) is a robust set of tools that aids in the visualization, detection, and identification of assignable causes of variation in any process that creates products, services, or information. A tool has been developed termed Statistical Process Control in Proteomics (SProCoP) which implements aspects of SPC (e.g., control charts and Pareto analysis) into the Skyline proteomics software. It monitors five quality control metrics in a shotgun or targeted proteomic workflow. None of these metrics require peptide identification. The source code, written in the R statistical language, runs directly from the Skyline interface, which supports the use of raw data files from several of the mass spectrometry vendors. It provides real time evaluation of the chromatographic performance (e.g., retention time reproducibility, peak asymmetry, and resolution), and mass spectrometric performance (targeted peptide ion intensity and mass measurement accuracy for high resolving power instruments) via control charts. Thresholds are experiment- and instrument-specific and are determined empirically from user-defined quality control standards that enable the separation of random noise and systematic error. Finally, Pareto analysis provides a summary of performance metrics and guides the user to metrics with high variance. The utility of these charts to evaluate proteomic experiments is illustrated in two case studies.

  4. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak.

    PubMed

    Kwong, Jason C; Lane, Courtney R; Romanes, Finn; Gonçalves da Silva, Anders; Easton, Marion; Cronin, Katie; Waters, Mary Jo; Tomita, Takehiro; Stevens, Kerrie; Schultz, Mark B; Baines, Sarah L; Sherry, Norelle L; Carter, Glen P; Mu, Andre; Sait, Michelle; Ballard, Susan A; Seemann, Torsten; Stinear, Timothy P; Howden, Benjamin P

    2018-01-01

    Until recently, Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae were rarely identified in Australia. Following an increase in the number of incident cases across the state of Victoria, we undertook a real-time combined genomic and epidemiological investigation. The scope of this study included identifying risk factors and routes of transmission, and investigating the utility of genomics to enhance traditional field epidemiology for informing management of established widespread outbreaks. All KPC-producing Enterobacteriaceae isolates referred to the state reference laboratory from 2012 onwards were included. Whole-genome sequencing was performed in parallel with a detailed descriptive epidemiological investigation of each case, using Illumina sequencing on each isolate. This was complemented with PacBio long-read sequencing on selected isolates to establish high-quality reference sequences and interrogate characteristics of KPC-encoding plasmids. Initial investigations indicated that the outbreak was widespread, with 86 KPC-producing Enterobacteriaceae isolates ( K. pneumoniae 92%) identified from 35 different locations across metropolitan and rural Victoria between 2012 and 2015. Initial combined analyses of the epidemiological and genomic data resolved the outbreak into distinct nosocomial transmission networks, and identified healthcare facilities at the epicentre of KPC transmission. New cases were assigned to transmission networks in real-time, allowing focussed infection control efforts. PacBio sequencing confirmed a secondary transmission network arising from inter-species plasmid transmission. Insights from Bayesian transmission inference and analyses of within-host diversity informed the development of state-wide public health and infection control guidelines, including interventions such as an intensive approach to screening contacts following new case detection to minimise unrecognised colonisation. A real-time combined epidemiological and genomic investigation proved critical to identifying and defining multiple transmission networks of KPC Enterobacteriaceae, while data from either investigation alone were inconclusive. The investigation was fundamental to informing infection control measures in real-time and the development of state-wide public health guidelines on carbapenemase-producing Enterobacteriaceae surveillance and management.

  5. Real-Time Internet Connections: Implications for Surgical Decision Making in Laparoscopy

    PubMed Central

    Broderick, Timothy J.; Harnett, Brett M.; Doarn, Charles R.; Rodas, Edgar B.; Merrell, Ronald C.

    2001-01-01

    Objective To determine whether a low-bandwidth Internet connection can provide adequate image quality to support remote real-time surgical consultation. Summary Background Data Telemedicine has been used to support care at a distance through the use of expensive equipment and broadband communication links. In the past, the operating room has been an isolated environment that has been relatively inaccessible for real-time consultation. Recent technological advances have permitted videoconferencing over low-bandwidth, inexpensive Internet connections. If these connections are shown to provide adequate video quality for surgical applications, low-bandwidth telemedicine will open the operating room environment to remote real-time surgical consultation. Methods Surgeons performing a laparoscopic cholecystectomy in Ecuador or the Dominican Republic shared real-time laparoscopic images with a panel of surgeons at the parent university through a dial-up Internet account. The connection permitted video and audio teleconferencing to support real-time consultation as well as the transmission of real-time images and store-and-forward images for observation by the consultant panel. A total of six live consultations were analyzed. In addition, paired local and remote images were “grabbed” from the video feed during these laparoscopic cholecystectomies. Nine of these paired images were then placed into a Web-based tool designed to evaluate the effect of transmission on image quality. Results The authors showed for the first time the ability to identify critical anatomic structures in laparoscopy over a low-bandwidth connection via the Internet. The consultant panel of surgeons correctly remotely identified biliary and arterial anatomy during six laparoscopic cholecystectomies. Within the Web-based questionnaire, 15 surgeons could not blindly distinguish the quality of local and remote laparoscopic images. Conclusions Low-bandwidth, Internet-based telemedicine is inexpensive, effective, and almost ubiquitous. Use of these inexpensive, portable technologies will allow sharing of surgical procedures and decisions regardless of location. Internet telemedicine consistently supported real-time intraoperative consultation in laparoscopic surgery. The implications are broad with respect to quality improvement and diffusion of knowledge as well as for basic consultation. PMID:11505061

  6. Multimodal person authentication on a smartphone under realistic conditions

    NASA Astrophysics Data System (ADS)

    Morris, Andrew C.; Jassim, Sabah; Sellahewa, Harin; Allano, Lorene; Ehlers, Johan; Wu, Dalei; Koreman, Jacques; Garcia-Salicetti, Sonia; Ly-Van, Bao; Dorizzi, Bernadette

    2006-05-01

    Verification of a person's identity by the combination of more than one biometric trait strongly increases the robustness of person authentication in real applications. This is particularly the case in applications involving signals of degraded quality, as for person authentication on mobile platforms. The context of mobility generates degradations of input signals due to the variety of environments encountered (ambient noise, lighting variations, etc.), while the sensors' lower quality further contributes to decrease in system performance. Our aim in this work is to combine traits from the three biometric modalities of speech, face and handwritten signature in a concrete application, performing non intrusive biometric verification on a personal mobile device (smartphone/PDA). Most available biometric databases have been acquired in more or less controlled environments, which makes it difficult to predict performance in a real application. Our experiments are performed on a database acquired on a PDA as part of the SecurePhone project (IST-2002-506883 project "Secure Contracts Signed by Mobile Phone"). This database contains 60 virtual subjects balanced in gender and age. Virtual subjects are obtained by coupling audio-visual signals from real English speaking subjects with signatures from other subjects captured on the touch screen of the PDA. Video data for the PDA database was recorded in 2 recording sessions separated by at least one week. Each session comprises 4 acquisition conditions: 2 indoor and 2 outdoor recordings (with in each case, a good and a degraded quality recording). Handwritten signatures were captured in one session in realistic conditions. Different scenarios of matching between training and test conditions are tested to measure the resistance of various fusion systems to different types of variability and different amounts of enrolment data.

  7. Biomedical applications of a real-time terahertz color scanner

    PubMed Central

    Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi

    2010-01-01

    A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner’s potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472

  8. Development of a Real-Time Environmental Monitoring System, Life Cycle Assessment Systems, and Pollution Prevention Programs

    NASA Technical Reports Server (NTRS)

    Kocher, Walter M.

    2003-01-01

    Pollution prevention (P2) opportunities and Greening the Government (GtG) activities, including the development of the Real-Time Environmental Monitoring System (RTEMS), are currently under development at the NASA Glenn Research Center. The RTEMS project entails the ongoing development of a monitoring system which includes sensors, instruments, computer hardware and software, plus a data telemetry system.Professor Kocher has been directing the RTEMS project for more than 3 years, and the implementation of the prototype system at GRC will be a major portion of his summer effort. This prototype will provide mulitmedia environmental monitoring and control capabilities, although water quality and air emissions will be the immediate issues addressed this summer. Applications beyond those currently identified for environmental purposes will also be explored.

  9. Design Aids for Real-Time Systems (DARTS)

    NASA Technical Reports Server (NTRS)

    Szulewski, P. A.

    1982-01-01

    Design-Aids for Real-Time Systems (DARTS) is a tool that assists in defining embedded computer systems through tree structured graphics, military standard documentation support, and various analyses including automated Software Science parameter counting and metrics calculation. These analyses provide both static and dynamic design quality feedback which can potentially aid in producing efficient, high quality software systems.

  10. EVALUATION OF THE REAL-TIME AIR-QUALITY MODEL USING THE RAPS (REGIONAL AIR POLLUTION STUDY) DATA BASE. VOLUME 3. PROGRAM USER'S GUIDE

    EPA Science Inventory

    The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four volumes. Moreover, the tests are generally applicable to other model evaluation problems. Volu...

  11. EVALUATION OF THE REAL-TIME AIR-QUALITY MODEL USING THE RAPS (REGIONAL AIR POLLUTION STUDY) DATA BASE. VOLUME 4. EVALUATION GUIDE

    EPA Science Inventory

    The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four volumes. Moreover, the tests are generally applicable to other model evaluation problems. Volu...

  12. Real-Time Optimization and Control of Next-Generation Distribution

    Science.gov Websites

    Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution Infrastructure This project develops innovative, real-time optimization and control methods for next-generation

  13. Uniform-large Area BaSrTiO3 Growth and Novel Material Designs to Enable Fabrication of High Quality, Affordable, and Performance Consistent Phase Shifters for OTM Phased Array Antennas

    DTIC Science & Technology

    2012-07-11

    molar flux of each precursor entering the reactor. The molar fluxes for Ba , Sr , and Ti are measured and computed in real-time, and these measured values...allows control of the relative amounts of Ba , Sr , and Ti, and the overall total mass flow in umole/min reaching the substrate. In all, there are three...is the Ba:Sr ratio with depth (from the top of the film). The ratio of Ba to Sr was controlled from 0.87 to 0.43. The total film thickness is 130 nm

  14. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods.

    PubMed

    Shanks, Orin C; Kelty, Catherine A; Oshiro, Robin; Haugland, Richard A; Madi, Tania; Brooks, Lauren; Field, Katharine G; Sivaganesan, Mano

    2016-05-01

    There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria proposed in this study should help scientists, managers, reviewers, and the public evaluate the technical quality of future findings against an established benchmark. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. A noninvasive technique for real-time detection of bruises in apple surface based on machine vision

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Peng, Yankun; Dhakal, Sagar; Zhang, Leilei; Sasao, Akira

    2013-05-01

    Apple is one of the highly consumed fruit item in daily life. However, due to its high damage potential and massive influence on taste and export, the quality of apple has to be detected before it reaches the consumer's hand. This study was aimed to develop a hardware and software unit for real-time detection of apple bruises based on machine vision technology. The hardware unit consisted of a light shield installed two monochrome cameras at different angles, LED light source to illuminate the sample, and sensors at the entrance of box to signal the positioning of sample. Graphical Users Interface (GUI) was developed in VS2010 platform to control the overall hardware and display the image processing result. The hardware-software system was developed to acquire the images of 3 samples from each camera and display the image processing result in real time basis. An image processing algorithm was developed in Opencv and C++ platform. The software is able to control the hardware system to classify the apple into two grades based on presence/absence of surface bruises with the size of 5mm. The experimental result is promising and the system with further modification can be applicable for industrial production in near future.

  16. An RFID-Based Manufacturing Control Framework for Loosely Coupled Distributed Manufacturing System Supporting Mass Customization

    NASA Astrophysics Data System (ADS)

    Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur

    In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.

  17. Quality control for quantitative PCR based on amplification compatibility test.

    PubMed

    Tichopad, Ales; Bar, Tzachi; Pecen, Ladislav; Kitchen, Robert R; Kubista, Mikael; Pfaffl, Michael W

    2010-04-01

    Quantitative qPCR is a routinely used method for the accurate quantification of nucleic acids. Yet it may generate erroneous results if the amplification process is obscured by inhibition or generation of aberrant side-products such as primer dimers. Several methods have been established to control for pre-processing performance that rely on the introduction of a co-amplified reference sequence, however there is currently no method to allow for reliable control of the amplification process without directly modifying the sample mix. Herein we present a statistical approach based on multivariate analysis of the amplification response data generated in real-time. The amplification trajectory in its most resolved and dynamic phase is fitted with a suitable model. Two parameters of this model, related to amplification efficiency, are then used for calculation of the Z-score statistics. Each studied sample is compared to a predefined reference set of reactions, typically calibration reactions. A probabilistic decision for each individual Z-score is then used to identify the majority of inhibited reactions in our experiments. We compare this approach to univariate methods using only the sample specific amplification efficiency as reporter of the compatibility. We demonstrate improved identification performance using the multivariate approach compared to the univariate approach. Finally we stress that the performance of the amplification compatibility test as a quality control procedure depends on the quality of the reference set. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag minimization demonstrates the effectiveness of the proposed solution. In-flight structural loads are also an important consideration. As wing flexibility increases, maneuver load and gust load responses can be significant and therefore can pose safety and flight control concerns. In this paper, we will extend the multi-objective flight control framework to include load alleviation control. The study will focus initially on maneuver load minimization control, and then subsequently will address gust load alleviation control in future work.

  19. DORIS system and integrity survey

    NASA Astrophysics Data System (ADS)

    Jayles, C.; Chauveau, J. P.; Didelot, F.; Auriol, A.; Tourain, C.

    2016-12-01

    DORIS, as other techniques for space geodesy (SLR, VLBI, GPS) has regularly progressed to meet the ever increasing needs of the scientific community in oceanography, geodesy or geophysics. Over the past 10 years, a particular emphasis has been placed on integrity monitoring of the system, which has contributed to the enhancement of the overall availability and quality of DORIS data products. A high level of monitoring is now provided by a centralized control of the whole system, including the global network of beacons and the onboard instruments, which perform a constant end-to-end survey. At first signs of any unusual behavior, a dedicated team is activated with well-established tools to investigate, to anticipate and to contain the impact of any potential failures. The procedure has increased the availability of DORIS beacons to 90%. The core topic of this article is to demonstrate that DORIS has implemented a high-level integrity control of its data. Embedded in the DORIS receiver, DIODE (DORIS Immediate Orbit Determination) is a Real-Time On-Board Orbit Determination software. Its accuracy has also been dramatically improved when compared to Precise Orbit Ephemeris (P.O.E.), down to 2.7 cm RMS on Jason-2, 3.0 cm on Saral and 3.3 cm on CryoSat-2. Specific quality indices were derived from the DIODE-based Kalman filters and are used to monitor network and system performance. This paper covers the definition of these indices and how the reliability and the reactiveness to incidents or anomalies of the system are improved. From these indices, we have provided detailed diagnostic information about the DORIS system, which is available in real-time, on-board each DORIS satellite. Using these capabilities, we have developed real-time functions that give an immediate diagnosis of the status of key components in the DORIS system. The Near-Real Time navigation system was improved and can distinguish and handle both satellite events and beacon anomalies. The next missions to use DORIS will be Jason-3 and Sentinel-3, and then Jason-CS and SWOT (Surface Water and Ocean Topography). The real-time information on satellite positions should be better than 2.5 cm RMS on the radial component. Science products will benefit from this improvement in DORIS's performance and data integrity.

  20. High-cadence nowcast of a proxy K-type index of the local magnetic activity for improved space weather monitoring applications

    NASA Astrophysics Data System (ADS)

    Stankov, S.; Verhulst, T. G. W.; Sapundjiev, D.

    2016-12-01

    The K index is a quasi-logarithmic index characterizing the 3-hourly range in the transient geomagnetic field activity at a certain location relative to its regular "quiet-day" variation. It is a popular choice among researchers; however, the 3-hour time scale is much larger than the characteristic time of various phenomena associated with an elevated geomagnetic activity. These include disturbances in the ionosphere that are of particular interest because of their (adverse) effects on present-day radio communications and navigation practices. From this aspect, there is an on-going demand for services providing real-time assessment of the (local and global) magnetic activity and alerting the users for the purpose of taking mitigating actions. An obstacle to the real-time estimation of the K index stems from the fact that the original definition of this index postulates the use of measurements from both sides of the abovementioned 3-hour interval. We offer a method for estimating, in real time, the local magnetic activity via a K-type index (K*) which closely resembles the "classical" K index. The main difference is in the way of determining the solar regular variation of the geomagnetic field - the new, real-time approach uses data from past measurements only. Another difference is that the concept of fixed 3-hour time periods (0-3, 3-6, …, 21-24), each characterized with a single K value, is abolished; instead, in the new approach, a K* value is derived at any time using data from the most recent 3 hours. Following this approach, a novel nowcast system was developed based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, establishing the field's regular variation, calculating the K* index, and issuing an alert if storm-level activity is indicated. The nominal cadence is envisaged to be as high as one K* value per minute. Another important feature of this nowcast system is the strict control on the data input and processing, allowing for an immediate assessment of the quality of output. The quality control employs the fact that a complete and sound dataset provides the ideal platform for reliable, closest-to-definite index production.

  1. Coherent sources for mid-infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Honzátko, Pavel; Baravets, Yauhen; Mondal, Shyamal; Peterka, Pavel; Todorov, Filip

    2016-12-01

    Mid-infrared laser absorption spectroscopy (LAS) is useful for molecular trace gas concentration measurements in gas mixtures. While the gas chromatography-mass spectrometry is still the gold standard in gas analysis, LAS offers several advantages. It takes tens of minutes for a gas mixture to be separated in the capillary column precluding gas chromatography from real-time control of industrial processes, while LAS can measure the concentration of gas species in seconds. LAS can be used in a wide range of applications such as gas quality screening for regulation, metering and custody transfer,1 purging gas pipes to avoid explosions,1 monitoring combustion processes,2 detection and quantification of gas leaks,3 by-products monitoring to provide feedback for the real-time control of processes in petrochemical industry,4 real-time control of inductively coupled plasma etch reactors,5, 6 and medical diagnostics by means of time-resolved volatile organic compound (VOC) analysis in exhaled breath.7 Apart from the concentration, it also permits us to determine the temperature, pressure, velocity and mass flux of the gas under observation. The selectivity and sensitivity of LAS is linked to a very high spectral resolution given by the linewidth of single-frequency lasers. Measurements are performed at reduced pressure where the collisional and Doppler broadenings are balanced. The sensitivity can be increased to ppb and sometimes to ppt ranges by increasing the interaction length in multi-pass gas cells or resonators and also by adopting modulation techniques.8

  2. Continuous on-line steam quality monitoring system of the Bacman Geothermal Production Field, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solis, R.P.; Chavez, F.C.; Garcia, S.E.

    1997-12-31

    In any operating geothermal power plant, steam quality is one of the most important parameters being monitored. In the Bacon-Manito Geothermal Production Field (BGPF), an online steam quality monitoring system have been installed in two operating power plants which provides an accurate, efficient and continuous real-time data which is more responsive to the various requirements of the field operation. The system utilizes sodium as an indicator of steam purity. Sodium concentration is read by the flame photometer located at the interface after aspirating a sample of the condensed steam through a continuous condensate sampler. The condensate has been degassed throughmore » a condensate-NCG separator. The flame photometer analog signal is then converted by a voltage-to-current converter/transmitter and relayed to the processor which is located at the control center through electrical cable to give a digital sodium concentration read-out at the control panel. The system features a high and high-high sodium level alarm, a continuous strip-chart recorder and a central computer for data capture, retrieval, and processing for further interpretation. Safety devices, such as the flame-off indicator at the control center and the automatic fuel cut-off device along the fuel line, are incorporated in the system.« less

  3. Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G.; Buchsbaum, Andreas

    2015-03-01

    Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm.

  4. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  5. IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments.

    PubMed

    Shumate, Justin; Baillargeon, Pierre; Spicer, Timothy P; Scampavia, Louis

    2018-04-01

    Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

  6. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  7. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  8. Real-time Simulation of Turboprop Engine Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  9. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    NASA Astrophysics Data System (ADS)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor (ASDP) was recently developed to merge PM2.5 estimates from National Aeronautics and Space Administration (NASA) satellite data and AirNow observational data, creating more precise maps and gridded data products for under-monitored areas. The ASDP can easily incorporate other data feeds, including fire and smoke locations, to build enhanced real-time air quality data products. In this presentation, we provide an overview of the features and functions of IMS, an explanation of how data moves through IMS, the rationale of the system architecture, and highlights of the ASDP as an example of the modularity and scalability of IMS.

  10. Monitoring Processes in Visual Search Enhanced by Professional Experience: The Case of Orange Quality-Control Workers

    PubMed Central

    Visalli, Antonino; Vallesi, Antonino

    2018-01-01

    Visual search tasks have often been used to investigate how cognitive processes change with expertise. Several studies have shown visual experts' advantages in detecting objects related to their expertise. Here, we tried to extend these findings by investigating whether professional search experience could boost top-down monitoring processes involved in visual search, independently of advantages specific to objects of expertise. To this aim, we recruited a group of quality-control workers employed in citrus farms. Given the specific features of this type of job, we expected that the extensive employment of monitoring mechanisms during orange selection could enhance these mechanisms even in search situations in which orange-related expertise is not suitable. To test this hypothesis, we compared performance of our experimental group and of a well-matched control group on a computerized visual search task. In one block the target was an orange (expertise target) while in the other block the target was a Smurfette doll (neutral target). The a priori hypothesis was to find an advantage for quality-controllers in those situations in which monitoring was especially involved, that is, when deciding the presence/absence of the target required a more extensive inspection of the search array. Results were consistent with our hypothesis. Quality-controllers were faster in those conditions that extensively required monitoring processes, specifically, the Smurfette-present and both target-absent conditions. No differences emerged in the orange-present condition, which resulted to mainly rely on bottom-up processes. These results suggest that top-down processes in visual search can be enhanced through immersive real-life experience beyond visual expertise advantages. PMID:29497392

  11. Mobile Monitoring and Embedded Control System for Factory Environment

    PubMed Central

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  12. Mobile monitoring and embedded control system for factory environment.

    PubMed

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  13. Real-time feedback for spatiotemporal field stabilization in MR systems.

    PubMed

    Duerst, Yolanda; Wilm, Bertram J; Dietrich, Benjamin E; Vannesjo, S Johanna; Barmet, Christoph; Schmid, Thomas; Brunner, David O; Pruessmann, Klaas P

    2015-02-01

    MR imaging and spectroscopy require a highly stable, uniform background field. The field stability is typically limited by hardware imperfections, external perturbations, or field fluctuations of physiological origin. The purpose of the present work is to address these issues by introducing spatiotemporal field stabilization based on real-time sensing and feedback control. An array of NMR field probes is used to sense the field evolution in a whole-body MR system concurrently with regular system operation. The field observations serve as inputs to a proportional-integral controller that governs correction currents in gradient and higher-order shim coils such as to keep the field stable in a volume of interest. The feedback system was successfully set up, currently reaching a minimum latency of 20 ms. Its utility is first demonstrated by countering thermal field drift during an EPI protocol. It is then used to address respiratory field fluctuations in a T2 *-weighted brain exam, resulting in substantially improved image quality. Feedback field control is an effective means of eliminating dynamic field distortions in MR systems. Third-order spatial control at an update time of 100 ms has proven sufficient to largely eliminate thermal and breathing effects in brain imaging at 7 Tesla. © 2014 Wiley Periodicals, Inc.

  14. Evaluation of a Real-Time Monitoring System for River Quality-A Trade-off between Risk Attitudes, Costs, and Uncertainly.

    ERIC Educational Resources Information Center

    Varis, Olli; And Others

    1993-01-01

    Presents one approach to handling the trade-off between reducing uncertainty in environmental assessment and management and additional expenses. Uses the approach in the evaluation of three alternatives for a real time river water quality forecasting system. Analysis of risk attitudes, costs and uncertainty indicated the levels of socioeconomic…

  15. Real-time dissemination of air quality information using data streams and Web technologies: linking air quality to health risks in urban areas.

    PubMed

    Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan

    2015-06-01

    This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed.

  16. Relations between continuous real-time physical properties and discrete water-quality constituents in the Little Arkansas River, south-central Kansas, 1998-2014

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Eslick, Patrick J.; Ziegler, Andrew C.

    2016-08-11

    Water from the Little Arkansas River is used as source water for artificial recharge of the Equus Beds aquifer, one of the primary water-supply sources for the city of Wichita, Kansas. The U.S. Geological Survey has operated two continuous real-time water-quality monitoring stations since 1995 on the Little Arkansas River in Kansas. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest. Site-specific regression models were originally published in 2000 for the near Halstead and near Sedgwick U.S. Geological Survey streamgaging stations and the site-specific regression models were then updated in 2003. This report updates those regression models using discrete and continuous data collected during May 1998 through August 2014. In addition to the constituents listed in the 2003 update, new regression models were developed for total organic carbon. The real-time computations of water-quality concentrations and loads are available at http://nrtwq.usgs.gov. The water-quality information in this report is important to the city of Wichita because water-quality information allows for real-time quantification and characterization of chemicals of concern (including chloride), in addition to nutrients, sediment, bacteria, and atrazine transported in the Little Arkansas River. The water-quality information in this report aids in the decision making for water treatment before artificial recharge.

  17. Model documentation for relations between continuous real-time and discrete water-quality constituents in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999--2009

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir in south-central Kansas is one of the primary sources of water for the city of Wichita. The North Fork Ninnescah River is the largest contributing tributary to Cheney Reservoir. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on a different dataset collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for five new constituents, including additional nutrient species and indicator bacteria. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise.

  18. Stormwater runoff water quality evaluation and management program for hazardous chemical sites: Development issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.F.; Jones-Lee, A.

    1998-12-31

    The deficiencies in the typical stormwater runoff water quality monitoring from hazardous chemical sites and an alternative approach (Evaluation Monitoring) for monitoring that shifts the monitoring program from periodic sampling and analysis of stormwater runoff for a suite of chemical parameters to examining the receiving waters to determine what, if any, water quality use impairments are occurring due to the runoff-associated constituents is presented in this paper. Rather than measuring potentially toxic constituents such as heavy metals in runoff, the monitoring program determines whether there is aquatic life toxicity in the receiving waters associated with the stormwater runoff. If toxicitymore » is found, its cause is determined and the source of the constituents causing the toxicity is identified through forensic analysis. Based on this information, site-specific, technically valid stormwater runoff management programs can be developed that will control real water quality impacts caused by stormwater runoff-associated constituents.« less

  19. Measuring, managing and maximizing performance of mineral processing plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bascur, O.A.; Kennedy, J.P.

    1995-12-31

    The implementation of continuous quality improvement is the confluence of Total Quality Management, People Empowerment, Performance Indicators and Information Engineering. The supporting information technologies allow a mineral processor to narrow the gap between management business objectives and the process control level. One of the most important contributors is the user friendliness and flexibility of the personal computer in a client/server environment. This synergistic combination when used for real time performance monitoring translates into production cost savings, improved communications and enhanced decision support. Other savings come from reduced time to collect data and perform tedious calculations, act quickly with fresh newmore » data, generate and validate data to be used by others. This paper presents an integrated view of plant management. The selection of the proper tools for continuous quality improvement are described. The process of selecting critical performance monitoring indices for improved plant performance are discussed. The importance of a well balanced technological improvement, personnel empowerment, total quality management and organizational assets are stressed.« less

  20. The wireless networking system of Earthquake precursor mobile field observation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within an acceptable range and do not affect real-time observation curve. After field running test and earthquake tracking project applications, the field mobile observation wireless networking system is operate normally, various function have good operability and show good performance, the quality of data transmission meet the system design requirements and play a significant role in practical applications.

  1. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting.

    PubMed

    Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin

    2018-05-04

    The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.

  2. Quality assurance and the need to evaluate interventions and audit programme outcomes.

    PubMed

    Zhao, Min; Vaartjes, Ilonca; Klipstein-Grobusch, Kerstin; Kotseva, Kornelia; Jennings, Catriona; Grobbee, Diederick E; Graham, Ian

    2017-06-01

    Evidence-based clinical guidelines provide standards for the provision of healthcare. However, these guidelines have been poorly implemented in daily practice. Clinical audit is a quality improvement tool to promote quality of care in daily practice and to improve outcomes through the systematic review of care delivery and implementation of changes. A major priority in the management of subjects with cardiovascular disease (CVD) management is secondary prevention by controlling cardiovascular risk factors and providing appropriate medical treatment. Clinical audits can be applied to monitor modifiable risk factors and evaluate quality improvements of CVD management in daily practice. Existing clinical audits have provided an overview of the burden of risk factors in subjects with CVD and reflect real-world risk factor recording and management. However, consistent and representative data from clinic audits are still insufficient to fully monitor quality improvement of CVD management. Data are lacking in particular from low- and middle-income countries, limiting the evaluation of CVD management quality by clinical audit projects in many settings. To support the development of clinical standards, monitor daily practice performance, and improve quality of care in CVD management at national and international levels, more widespread clinical audits are warranted.

  3. pcr: an R package for quality assessment, analysis and testing of qPCR data

    PubMed Central

    Ahmed, Mahmoud

    2018-01-01

    Background Real-time quantitative PCR (qPCR) is a broadly used technique in the biomedical research. Currently, few different analysis models are used to determine the quality of data and to quantify the mRNA level across the experimental conditions. Methods We developed an R package to implement methods for quality assessment, analysis and testing qPCR data for statistical significance. Double Delta CT and standard curve models were implemented to quantify the relative expression of target genes from CT in standard qPCR control-group experiments. In addition, calculation of amplification efficiency and curves from serial dilution qPCR experiments are used to assess the quality of the data. Finally, two-group testing and linear models were used to test for significance of the difference in expression control groups and conditions of interest. Results Using two datasets from qPCR experiments, we applied different quality assessment, analysis and statistical testing in the pcr package and compared the results to the original published articles. The final relative expression values from the different models, as well as the intermediary outputs, were checked against the expected results in the original papers and were found to be accurate and reliable. Conclusion The pcr package provides an intuitive and unified interface for its main functions to allow biologist to perform all necessary steps of qPCR analysis and produce graphs in a uniform way. PMID:29576953

  4. A simplified rotor system mathematical model for piloted flight dynamics simulation

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.

    1979-01-01

    The model was developed for real-time pilot-in-the-loop investigation of helicopter flying qualities. The mathematical model included the tip-path plane dynamics and several primary rotor design parameters, such as flapping hinge restraint, flapping hinge offset, blade Lock number, and pitch-flap coupling. The model was used in several exploratory studies of the flying qualities of helicopters with a variety of rotor systems. The basic assumptions used and the major steps involved in the development of the set of equations listed are described. The equations consisted of the tip-path plane dynamic equation, the equations for the main rotor forces and moments, and the equation for control phasing required to achieve decoupling in pitch and roll due to cyclic inputs.

  5. Inexpensive DAQ based physics labs

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  6. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  7. Defect Detection in Fuel Cell Gas Diffusion Electrodes Using Infrared Thermography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulsh, Michael; Porter, Jason M.; Bittinat, Daniel C.

    2016-04-01

    Polymer electrolyte membrane fuel cells are energy conversion devices that offer high power densities and high efficiencies for mobile and other applications. Successful introduction into the marketplace requires addressing cost barriers such as production volumes and platinum loading. For cost reduction, it is vital to minimize waste and maximize quality during the manufacturing of platinum-containing electrodes, including gas diffusion electrodes (GDEs). In this work, we report on developing a quality control diagnostic for GDEs, involving creating an ex situ exothermic reaction on the electrode surface and using infrared thermography to measure the resulting temperature profile. Experiments with a moving GDEmore » containing created defects were conducted to demonstrate the applicability of the diagnostic for real-time web-line inspection.« less

  8. Development of a real-time clinical decision support system upon the web mvc-based architecture for prostate cancer treatment

    PubMed Central

    2011-01-01

    Background A real-time clinical decision support system (RTCDSS) with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs) and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC) architecture, by which the system can easily be adapted to different diseases and applications. Methods We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. Results The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Conclusions Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital information system and be easily applied in other chronic diseases. PMID:21385459

  9. Development of a real-time clinical decision support system upon the Web MVC-based architecture for prostate cancer treatment.

    PubMed

    Lin, Hsueh-Chun; Wu, Hsi-Chin; Chang, Chih-Hung; Li, Tsai-Chung; Liang, Wen-Miin; Wang, Jong-Yi Wang

    2011-03-08

    A real-time clinical decision support system (RTCDSS) with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs) and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC) architecture, by which the system can easily be adapted to different diseases and applications. We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital information system and be easily applied in other chronic diseases.

  10. Characterization of PET preforms using spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hosseiny, Hamid; Ferreira, Manuel João.; Martins, Teresa; Carmelo Rosa, Carla

    2013-11-01

    Polyethylene terephthalate (PET) preforms are massively produced nowadays with the purpose of producing food and beverages packaging and liquid containers. Some varieties of these preforms are produced as multilayer structures, where very thin inner film(s) act as a barrier for nutrients leakage. The knowledge of the thickness of this thin inner layer is important in the production line. The quality control of preforms production requires a fast approach and normally the thickness control is performed by destructive means out of the production line. A spectral domain optical coherence tomography (SD-OCT) method was proposed to examine the thin layers in real time. This paper describes a nondestructive approach and all required signal processing steps to characterize the thin inner layers and also to improve the imaging speed and the signal to noise ratio. The algorithm was developed by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This GPU-accelerated white light interferometry technique nondestructively assesses the samples and has high imaging speed advantage, overcoming the bottlenecks in PET performs quality control.

  11. Aggregative Learning Method and Its Application for Communication Quality Evaluation

    NASA Astrophysics Data System (ADS)

    Akhmetov, Dauren F.; Kotaki, Minoru

    2007-12-01

    In this paper, so-called Aggregative Learning Method (ALM) is proposed to improve and simplify the learning and classification abilities of different data processing systems. It provides a universal basis for design and analysis of mathematical models of wide class. A procedure was elaborated for time series model reconstruction and analysis for linear and nonlinear cases. Data approximation accuracy (during learning phase) and data classification quality (during recall phase) are estimated from introduced statistic parameters. The validity and efficiency of the proposed approach have been demonstrated through its application for monitoring of wireless communication quality, namely, for Fixed Wireless Access (FWA) system. Low memory and computation resources were shown to be needed for the procedure realization, especially for data classification (recall) stage. Characterized with high computational efficiency and simple decision making procedure, the derived approaches can be useful for simple and reliable real-time surveillance and control system design.

  12. User Access Management Based on Network Pricing for Social Network Applications

    PubMed Central

    Ma, Xingmin; Gu, Qing

    2018-01-01

    Social applications play a very important role in people’s lives, as users communicate with each other through social networks on a daily basis. This presents a challenge: How does one receive high-quality service from social networks at a low cost? Users can access different kinds of wireless networks from various locations. This paper proposes a user access management strategy based on network pricing such that networks can increase its income and improve service quality. Firstly, network price is treated as an optimizing access parameter, and an unascertained membership algorithm is used to make pricing decisions. Secondly, network price is adjusted dynamically in real time according to network load. Finally, selecting a network is managed and controlled in terms of the market economy. Simulation results show that the proposed scheme can effectively balance network load, reduce network congestion, improve the user's quality of service (QoS) requirements, and increase the network’s income. PMID:29495252

  13. Using SCADA Data, Field Studies, and Real-Time Modeling to ...

    EPA Pesticide Factsheets

    EPA has been providing technical assistance to the City of Flint and the State of Michigan in response to the drinking water lead contamination incident. Responders quickly recognized the need for a water distribution system hydraulic model to provide insight on flow patterns and water quality as well as to evaluate changes being made to the system operation to enhance corrosion control and improve chlorine residuals. EPA partnered with the City of Flint and the Michigan Department of Environmental Quality to update and calibrate an existing hydraulic model. The City provided SCADA data, GIS data, customer billing data, valve status data, design diagrams, and information on operations. Team members visited all facilities and updated pump and valve types, sizes, settings, elevations, and pump discharge curves. Several technologies were used to support this work including the EPANET-RTX based Polaris real-time modeling software, WaterGEMS, ArcGIS, EPANET, and RTX:LINK. Field studies were conducted to collect pressure and flow data from more than 25 locations throughout the distribution system. An assessment of the model performance compared model predictions for flow, pressure, and tank levels to SCADA and field data, resulting in error measurements for each data stream over the time period analyzed. Now, the calibrated model can be used with a known confidence in its performance to evaluate hydraulic and water quality problems, and the model can be easily

  14. Evaluation of different pulverisation methods for RNA extraction in squash fruit: lyophilisation, cryogenic mill and mortar grinding.

    PubMed

    Román, Belén; González-Verdejo, Clara I; Peña, Francisco; Nadal, Salvador; Gómez, Pedro

    2012-01-01

    Quality and integrity of RNA are critical for transcription studies in plant molecular biology. In squash fruit and other high water content crops, the grinding of tissue with mortar and pestle in liquid nitrogen fails to produce a homogeneous and fine powered sample desirable to ensure a good penetration of the extraction reagent. To develop an improved pulverisation method to facilitate the homogenisation process of squash fruit tissue prior to RNA extraction without reducing quality and yield of the extracted RNA. Three methods of pulverisation, each followed by the same extraction protocol, were compared. The first approach consisted of the lyophilisation of the sample in order to remove the excess of water before grinding, the second one used a cryogenic mill and the control one a mortar grinding of frozen tissue. The quality of the isolated RNA was tested by carrying out a quantitative real time downstream amplification. In the three situations considered, mean values for A(260) /A(280) indicated minimal interference by proteins and RNA quality indicator (RQI) values were considered appropriate for quantitative real-time polymerase chain reaction (qRT-PCR) amplification. Successful qRT-PCR amplifications were obtained with cDNA isolated with the three protocols. Both apparatus can improve and facilitate the grinding step in the RNA extraction process in zucchini, resulting in isolated RNA of high quality and integrity as revealed by qRT-PCR downstream application. This is apparently the first time that a cryogenic mill has been used to prepare fruit samples for RNA extraction, thereby improving the sampling strategy because the fine powder obtained represents a homogeneous mix of the organ tissue. Copyright © 2012 John Wiley & Sons, Ltd.

  15. An in vitro test bench reproducing coronary blood flow signals.

    PubMed

    Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory

    2015-08-07

    It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.

  16. Improving cardiopulmonary resuscitation with a CPR feedback device and refresher simulations (CPR CARES Study): a randomized clinical trial.

    PubMed

    Cheng, Adam; Brown, Linda L; Duff, Jonathan P; Davidson, Jennifer; Overly, Frank; Tofil, Nancy M; Peterson, Dawn T; White, Marjorie L; Bhanji, Farhan; Bank, Ilana; Gottesman, Ronald; Adler, Mark; Zhong, John; Grant, Vincent; Grant, David J; Sudikoff, Stephanie N; Marohn, Kimberly; Charnovich, Alex; Hunt, Elizabeth A; Kessler, David O; Wong, Hubert; Robertson, Nicola; Lin, Yiqun; Doan, Quynh; Duval-Arnould, Jordan M; Nadkarni, Vinay M

    2015-02-01

    The quality of cardiopulmonary resuscitation (CPR) affects hemodynamics, survival, and neurological outcomes following pediatric cardiopulmonary arrest (CPA). Most health care professionals fail to perform CPR within established American Heart Association guidelines. To determine whether "just-in-time" (JIT) CPR training with visual feedback (VisF) before CPA or real-time VisF during CPA improves the quality of chest compressions (CCs) during simulated CPA. Prospective, randomized, 2 × 2 factorial-design trial with explicit methods (July 1, 2012, to April 15, 2014) at 10 International Network for Simulation-Based Pediatric Innovation, Research, & Education (INSPIRE) institutions running a standardized simulated CPA scenario, including 324 CPR-certified health care professionals assigned to 3-person resuscitation teams (108 teams). Each team was randomized to 1 of 4 permutations, including JIT training vs no JIT training before CPA and real-time VisF vs no real-time VisF during simulated CPA. The proportion of CCs with depth exceeding 50 mm, the proportion of CPR time with a CC rate of 100 to 120 per minute, and CC fraction (percentage CPR time) during simulated CPA. The quality of CPR was poor in the control group, with 12.7% (95% CI, 5.2%-20.1%) mean depth compliance and 27.1% (95% CI, 14.2%-40.1%) mean rate compliance. JIT training compared with no JIT training improved depth compliance by 19.9% (95% CI, 11.1%-28.7%; P < .001) and rate compliance by 12.0% (95% CI, 0.8%-23.2%; P = .037). Visual feedback compared with no VisF improved depth compliance by 15.4% (95% CI, 6.6%-24.2%; P = .001) and rate compliance by 40.1% (95% CI, 28.8%-51.3%; P < .001). Neither intervention had a statistically significant effect on CC fraction, which was excellent (>89.0%) in all groups. Combining both interventions showed the highest compliance with American Heart Association guidelines but was not significantly better than either intervention in isolation. The quality of CPR provided by health care professionals is poor. Using novel and practical technology, JIT training before CPA or real-time VisF during CPA, alone or in combination, improves compliance with American Heart Association guidelines for CPR that are associated with better outcomes. clinicaltrials.gov Identifier: NCT02075450.

  17. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    PubMed Central

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854

  18. Power quality improvement by unified power quality conditioner based on CSC topology using synchronous reference frame theory.

    PubMed

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  19. Use of Social Media in the Assessment of Relative Effectiveness: Explorative Review With Examples From Oncology.

    PubMed

    Kalf, Rachel Rj; Makady, Amr; Ten Ham, Renske Mt; Meijboom, Kim; Goettsch, Wim G

    2018-06-08

    An element of health technology assessment constitutes assessing the clinical effectiveness of drugs, generally called relative effectiveness assessment. Little real-world evidence is available directly after market access, therefore randomized controlled trials are used to obtain information for relative effectiveness assessment. However, there is growing interest in using real-world data for relative effectiveness assessment. Social media may provide a source of real-world data. We assessed the extent to which social media-generated health data has provided insights for relative effectiveness assessment. An explorative literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify examples in oncology where health data were collected using social media. Scientific and grey literature published between January 2010 and June 2016 was identified by four reviewers, who independently screened studies for eligibility and extracted data. A descriptive qualitative analysis was performed. Of 1032 articles identified, eight were included: four articles identified adverse events in response to cancer treatment, three articles disseminated quality of life surveys, and one study assessed the occurrence of disease-specific symptoms. Several strengths of social media-generated health data were highlighted in the articles, such as efficient collection of patient experiences and recruiting patients with rare diseases. Conversely, limitations included validation of authenticity and presence of information and selection bias. Social media may provide a potential source of real-world data for relative effectiveness assessment, particularly on aspects such as adverse events, symptom occurrence, quality of life, and adherence behavior. This potential has not yet been fully realized and the degree of usefulness for relative effectiveness assessment should be further explored. ©Rachel R.J. Kalf, Amr Makady, Renske M.T. ten Ham, Kim Meijboom, Wim G. Goettsch, On Behalf Of IMI-GetReal Workpackage 1. Originally published in JMIR Cancer (http://cancer.jmir.org), 08.06.2018.

  20. Bimanual coordination: A missing piece of arm rehabilitation after stroke.

    PubMed

    Kantak, Shailesh; Jax, Steven; Wittenberg, George

    2017-01-01

    Inability to use the arm in daily actions significantly lowers quality of life after stroke. Most contemporary post-stroke arm rehabilitation strategies that aspire to re-engage the weaker arm in functional activities have been greatly limited in their effectiveness. Most actions of daily life engage the two arms in a highly coordinated manner. In contrast, most rehabilitation approaches predominantly focus on restitution of the impairments and unilateral practice of the weaker hand alone. We present a perspective that this misalignment between real world requirements and intervention strategies may limit the transfer of unimanual capability to spontaneous arm use and functional recovery. We propose that if improving spontaneous engagement and use of the weaker arm in real life is the goal, arm rehabilitation research and treatment need to address the coordinated interaction between arms in targeted theory-guided interventions. Current narrow focus on unimanual deficits alone, difficulty in quantifying bimanual coordination in real-world actions and limited theory-guided focus on control and remediation of different coordination modes are some of the biggest obstacles to successful implementation of effective interventions to improve bimanual coordination in the real world. We present a theory-guided taxonomy of bimanual actions that will facilitate quantification of coordination for different real-world tasks and provide treatment targets for addressing coordination deficits. We then present evidence in the literature that points to bimanual coordination deficits in stroke survivors and demonstrate how current rehabilitation approaches are limited in their impact on bimanual coordination. Importantly, we suggest theory-based areas of future investigation that may assist quantification, identification of neural mechanisms and scientifically-based training/remediation approaches for bimanual coordination deficits post-stroke. Advancing the science and practice of arm rehabilitation to incorporate bimanual coordination will lead to a more complete functional recovery of the weaker arm, thus improving the effectiveness of rehabilitation interventions and augmenting quality of life after stroke.

  1. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  2. Objective assessment of MPEG-2 video quality

    NASA Astrophysics Data System (ADS)

    Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano

    2002-07-01

    The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.

  3. Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles.

    PubMed

    Wen, Dongqi; Zhai, Wenjuan; Xiang, Sheng; Hu, Zhice; Wei, Tongchuan; Noll, Kenneth E

    2017-11-01

    Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO 2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations. The paper provides emission factors (EFs) that are a function of traffic volume and mode of operation (free flow and congestion) for LDVs under real-world conditions. The good agreement between monitoring and modeling results indicates that high-resolution, simultaneous measurements of air quality and meteorological and traffic conditions can be used to determine real-world, fleet-wide vehicle EFs as a function of vehicle mode of operation under actual driving conditions.

  4. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    PubMed

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p < 0.05). The DNA yield decreased as frozen storage time increased due to DNA degradation. The half-life (t 1/2  = ln2/0.015) was calculated as 46 months. The DNA quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Water quality real-time monitoring system via biological detection based on video analysis

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Fei, Yuan

    2017-11-01

    With the development of society, water pollution has become the most serious problem in China. Therefore, real-time water quality monitoring is an important part of human activities and water pollution prevention. In this paper, the behavior of zebrafish was monitored by computer vision. Firstly, the moving target was extracted by the method of saliency detection, and tracked by fitting the ellipse model. Then the motion parameters were extracted by optical flow method, and the data were monitored in real time by means of Hinkley warning and threshold warning. We achieved classification warning through a number of dimensions by comprehensive toxicity index. The experimental results show that the system can achieve more accurate real-time monitoring.

  6. A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc

    2015-06-01

    High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.

  7. Fuzzy comprehensive evaluation of multiple environmental factors for swine building assessment and control.

    PubMed

    Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin

    2017-10-15

    In confined swine buildings, temperature, humidity, and air quality are all important for animal health and productivity. However, the current swine building environmental control is only based on temperature; and evaluation and control methods based on multiple environmental factors are needed. In this paper, fuzzy comprehensive evaluation (FCE) theory was adopted for multi-factor assessment of environmental quality in two commercial swine buildings using real measurement data. An assessment index system and membership functions were established; and predetermined weights were given using analytic hierarchy process (AHP) combined with knowledge of experts. The results show that multi-factors such as temperature, humidity, and concentrations of ammonia (NH 3 ), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S) can be successfully integrated in FCE for swine building environment assessment. The FCE method has a high correlation coefficient of 0.737 compared with the method of single-factor evaluation (SFE). The FCE method can significantly increase the sensitivity and perform an effective and integrative assessment. It can be used as part of environmental controlling and warning systems for swine building environment management to improve swine production and welfare. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Optimal colour quality of LED clusters based on memory colours.

    PubMed

    Smet, Kevin; Ryckaert, Wouter R; Pointer, Michael R; Deconinck, Geert; Hanselaer, Peter

    2011-03-28

    The spectral power distributions of tri- and tetrachromatic clusters of Light-Emitting-Diodes, composed of simulated and commercially available LEDs, were optimized with a genetic algorithm to maximize the luminous efficacy of radiation and the colour quality as assessed by the memory colour quality metric developed by the authors. The trade-off of the colour quality as assessed by the memory colour metric and the luminous efficacy of radiation was investigated by calculating the Pareto optimal front using the NSGA-II genetic algorithm. Optimal peak wavelengths and spectral widths of the LEDs were derived, and over half of them were found to be close to Thornton's prime colours. The Pareto optimal fronts of real LED clusters were always found to be smaller than those of the simulated clusters. The effect of binning on designing a real LED cluster was investigated and was found to be quite large. Finally, a real LED cluster of commercially available AlGaInP, InGaN and phosphor white LEDs was optimized to obtain a higher score on memory colour quality scale than its corresponding CIE reference illuminant.

  9. The influence of scenario-based training and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation quality and survival from out-of-hospital cardiac arrest.

    PubMed

    Bobrow, Bentley J; Vadeboncoeur, Tyler F; Stolz, Uwe; Silver, Annemarie E; Tobin, John M; Crawford, Scott A; Mason, Terence K; Schirmer, Jerome; Smith, Gary A; Spaite, Daniel W

    2013-07-01

    We assess whether an initiative to optimize out-of-hospital provider cardiopulmonary resuscitation (CPR) quality is associated with improved CPR quality and increased survival from out-of-hospital cardiac arrest. This was a before-after study of consecutive adult out-of-hospital cardiac arrest. Data were obtained from out-of-hospital forms and defibrillators. Phase 1 included 18 months with real-time audiovisual feedback disabled (October 2008 to March 2010). Phase 2 included 16 months (May 2010 to September 2011) after scenario-based training of 373 professional rescuers and real-time audiovisual feedback enabled. The effect of interventions on survival to hospital discharge was assessed with multivariable logistic regression. Multiple imputation of missing data was used to analyze the effect of interventions on CPR quality. Analysis included 484 out-of-hospital cardiac arrest patients (phase 1 232; phase 2 252). Median age was 68 years (interquartile range 56-79); 66.5% were men. CPR quality measures improved significantly from phase 1 to phase 2: Mean chest compression rate decreased from 128 to 106 chest compressions per minute (difference -23 chest compressions; 95% confidence interval [CI] -26 to -19 chest compressions); mean chest compression depth increased from 1.78 to 2.15 inches (difference 0.38 inches; 95% CI 0.28 to 0.47 inches); median chest compression fraction increased from 66.2% to 83.7% (difference 17.6%; 95% CI 15.0% to 20.1%); median preshock pause decreased from 26.9 to 15.5 seconds (difference -11.4 seconds; 95% CI -15.7 to -7.2 seconds), and mean ventilation rate decreased from 11.7 to 9.5/minute (difference -2.2/minute; 95% CI -3.9 to -0.5/minute). All-rhythms survival increased from phase 1 to phase 2 (20/231, 8.7% versus 35/252, 13.9%; difference 5.2%; 95% CI -0.4% to 10.8%), with an adjusted odds ratio of 2.72 (95% CI 1.15 to 6.41), controlling for initial rhythm, witnessed arrest, age, minimally interrupted cardiac resuscitation protocol compliance, and provision of therapeutic hypothermia. Witnessed arrests/shockable rhythms survival was 26.3% (15/57) for phase 1 and 55.6% (20/36) for phase 2 (difference 29.2%; 95% CI 9.4% to 49.1%). Implementation of resuscitation training combined with real-time audiovisual feedback was independently associated with improved CPR quality, an increase in survival, and favorable functional outcomes after out-of-hospital cardiac arrest. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  10. Comprehensive Performance Study of Magneto Cantilevers as a Candidate Model for Biological Sensors used in Lab-on-a-Chip Applications

    PubMed Central

    Saberkari, Hamidreza; Ghavifekr, Habib Badri; Shamsi, Mousa

    2015-01-01

    In recent years, demand for biological sensors which are capable of fast and accurate detection of minor amounts of pathogens in real-time form has been intensified. Acoustic wave (AW) devices whose performance is determined by mass sensitivity parameters and quality factor are used in biological sensors as platforms with high quality. Yet, current AW devices are facing many challenges such as the low value of their quality factor in practical applications and also their difficulty to use in liquids. The main focus of this article is to study on the magnetostrictive sensors which include milli/microcantilever (MSMC) type. In comparison with AW devices, MSMC has a lot of advantages; (1) its actuation and sensing unit is wirelessly controlled. (2) Its fabrication process is easy. (3) It works well in liquids. (4) It has a high-quality factor (in the air > 500). Simulation results demonstrate that the amount of quality factor depends on environment properties (density and viscosity), MSMC geometry, and its resonant behavior of harmonic modes. PMID:26120566

  11. Attributes of quality programs in universities in developing countries: Case studies of two private universities in Ecuador and beyond

    NASA Astrophysics Data System (ADS)

    Uriguen, Monica I.

    This study sought to identify the key attributes of high-quality programs with an eye toward helping developing countries such as Ecuador advance program quality. The dissertation is divided into five chapters: (1) introduction to high-quality programs; (2) literature review of attributes of high-quality programs; (3) grounded theory method (including interviews with 60 individuals) used to identify program attributes that enhance student learning; (4) findings; and (5) conclusions and recommendations. Following are the five clusters and thirteen attributes of high-quality programs that I identified: Cluster One: Highly Qualified Participants: (1) Highly Qualified Faculty, and (2) Highly Qualified Students; Cluster Two: Learning-Centered Cultures: (3) Shared Program Direction Focused on Learning, (4) Real-World Learning Experiences, (5) Reading-Centered Culture, and (6) Supportive and Risk-Taking Environment; Cluster Three: Interactive Teaching and Learning: (7) Integrative learning: Theory with Practice, Self with Subject, and (8) Exclusive Tutoring and Mentoring; Cluster Four: Connected Program Requirements: (9) Planned Breadth and Depth Course Work, and (10) Tangible Products; and Cluster Five: Adequate Resources: (11) Support for Students, (12) Support for Faculty, and (13) Support for Campus Infrastructure. The study was guided by Haworth and Conrad's (1997) "Engagement Theory of High-Quality Programs." Eleven of the attributes of high-quality programs are closely connected to Haworth and Conrad's theory and the other two attributes---real-world learning experiences and a reading-centered culture---make the signature theoretical contributions of the study. Real-world learning experiences encourage the active involvement of stakeholders in designing curricula with real-world learning experiences. The second attribute---a reading-centered culture---has never before been identified in the literature. There are four key differences between Haworth and Conrad's theory and the theory developed in this study. This study identified four attributes that are highly important in Ecuador and, possibly, other developing countries: highly-qualified faculty, highly-qualified students, reading-centered cultures, and real-world learning experiences. If Latin American universities implement the recommendations proposed in the study, particularly Ecuadorian universities, there is a foundation for envisioning a better future for Ecuadorian universities.

  12. A framework for analyzing the impact of data integrity/quality on electricity market operations

    NASA Astrophysics Data System (ADS)

    Choi, Dae Hyun

    This dissertation examines the impact of data integrity/quality in the supervisory control and data acquisition (SCADA) system on real-time locational marginal price (LMP) in electricity market operations. Measurement noise and/or manipulated sensor errors in a SCADA system may mislead system operators about real-time conditions in a power system, which, in turn, may impact the price signals in real-time power markets. This dissertation serves as a first attempt to analytically investigate the impact of bad/malicious data on electric power market operations. In future power system operations, which will probably involve many more sensors, the impact of sensor data integrity/quality on grid operations will become increasingly important. The first part of this dissertation studies from a market participant's perspective a new class of malicious data attacks on state estimation, which subsequently influences the result of the newly emerging look-ahead dispatch models in the real-time power market. In comparison with prior work of cyber-attack on static dispatch where no inter-temporal ramping constraint is considered, we propose a novel attack strategy, named ramp-induced data (RID) attack, with which the attacker can manipulate the limits of ramp constraints of generators in look-ahead dispatch. It is demonstrated that the proposed attack can lead to financial profits via malicious capacity withholding of selected generators, while being undetected by the existing bad data detection algorithm embedded in today's state estimation software. In the second part, we investigate from a system operator's perspective the sensitivity of locational marginal price (LMP) with respect to data corruption-induced state estimation error in real-time power market. Two data corruption scenarios are considered, in which corrupted continuous data (e.g., the power injection/flow and voltage magnitude) falsify power flow estimate whereas corrupted discrete data (e.g., the on/off status of a circuit breaker) do network topology estimate, thus leading to the distortion of LMP. We present an analytical framework to quantify real-time LMP sensitivity subject to continuous and discrete data corruption via state estimation. The proposed framework offers system operators an analytical tool to identify economically sensitive buses and transmission lines to data corruption as well as find sensors that impact LMP changes significantly. This dissertation serves as a first step towards rigorous understanding of the fundamental coupling among cyber, physical and economical layers of operations in future smart grid.

  13. Robust adaptive optics systems for vision science

    NASA Astrophysics Data System (ADS)

    Burns, S. A.; de Castro, A.; Sawides, L.; Luo, T.; Sapoznik, K.

    2018-02-01

    Adaptive Optics (AO) is of growing importance for understanding the impact of retinal and systemic diseases on the retina. While AO retinal imaging in healthy eyes is now routine, AO imaging in older eyes and eyes with optical changes to the anterior eye can be difficult and requires a control and an imaging system that is resilient when there is scattering and occlusion from the cornea and lens, as well as in the presence of irregular and small pupils. Our AO retinal imaging system combines evaluation of local image quality of the pupil, with spatially programmable detection. The wavefront control system uses a woofer tweeter approach, combining an electromagnetic mirror and a MEMS mirror and a single Shack Hartmann sensor. The SH sensor samples an 8 mm exit pupil and the subject is aligned to a region within this larger system pupil using a chin and forehead rest. A spot quality metric is calculated in real time for each lenslet. Individual lenslets that do not meet the quality metric are eliminated from the processing. Mirror shapes are smoothed outside the region of wavefront control when pupils are small. The system allows imaging even with smaller irregular pupils, however because the depth of field increases under these conditions, sectioning performance decreases. A retinal conjugate micromirror array selectively directs mid-range scatter to additional detectors. This improves detection of retinal capillaries even when the confocal image has poorer image quality that includes both photoreceptors and blood vessels.

  14. Digitalizing historical high resolution water level data: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Holinde, Lars; Hein, Hartmut; Barjenbruch, Ulrich

    2017-04-01

    Historical tide-gauge data offer the opportunities for determining variations in key characteristics for water level data and the analyses of past extreme events (storm surges). These information are important for calculating future trends and scenarios. But there are challenges involved due to the extensive effort needed to digitalize gauge sheets and quality control the resulting historical data. Based on these conditions, two main sources for inaccuracies in historical time series can be identified. First are several challenges due to the digitalization of the historical data, e.g. general quality of the sheets, multiple crossing lines of the observed water levels and additional comments on the sheet describing problems or additional information during the measurements. Second are problems during the measurements themselves. These can include the incorrect positioning of the sheets, trouble with the tide-gauge and maintenance. Errors resulting from these problems can be e.g. flat lines, discontinuities and outlier. Especially, the characterization of outliers has to be conducted carefully, to distinguish between real outliers and the appearance of extreme events. Methods for the quality control process involve the use of statistics, machine learning and neural networks. These will be described and applied to three different time series from tide gauge stations at the cost of Lower Saxony, Germany. Resulting difficulties and outcomes of the quality control process will be presented and explained. Furthermore, we will present a first glance at analyses for these time series.

  15. Combined comfort model of thermal comfort and air quality on buses in Hong Kong.

    PubMed

    Shek, Ka Wing; Chan, Wai Tin

    2008-01-25

    Air-conditioning settings are important factors in controlling the comfort of passengers on buses. The local bus operators control in-bus air quality and thermal environment by conforming to the prescribed levels stated in published standards. As a result, the settings are merely adjusted to fulfill the standards, rather than to satisfy the passengers' thermal comfort and air quality. Such "standard-oriented" practices are not appropriate; the passengers' preferences and satisfaction should be emphasized instead. Thus a "comfort-oriented" philosophy should be implemented to achieve a comfortable in-bus commuting environment. In this study, the achievement of a comfortable in-bus environment was examined with emphasis on thermal comfort and air quality. Both the measurement of physical parameters and subjective questionnaire surveys were conducted to collect practical in-bus thermal and air parameters data, as well as subjective satisfaction and sensation votes from the passengers. By analyzing the correlation between the objective and subjective data, a combined comfort models were developed. The models helped in evaluating the percentage of dissatisfaction under various combinations of passengers' sensation votes towards thermal comfort and air quality. An effective approach integrated the combined comfort model, hardware and software systems and the bus air-conditioning system could effectively control the transient in-bus environment. By processing and analyzing the data from the continuous monitoring system with the combined comfort model, air-conditioning setting adjustment commands could be determined and delivered to the hardware. This system adjusted air-conditioning settings depending on real-time commands along the bus journey. Therefore, a comfortable in-bus air quality and thermal environment could be achieved and efficiently maintained along the bus journey despite dynamic outdoor influences. Moreover, this model can help optimize air-conditioning control by striking a beneficial balance between energy conservation and passengers' satisfaction level.

  16. Evaluation of Earthquake Detection Performance in Terms of Quality and Speed in SEISCOMP3 Using New Modules Qceval, Npeval and Sceval

    NASA Astrophysics Data System (ADS)

    Roessler, D.; Weber, B.; Ellguth, E.; Spazier, J.

    2017-12-01

    The geometry of seismic monitoring networks, site conditions and data availability as well as monitoring targets and strategies typically impose trade-offs between data quality, earthquake detection sensitivity, false detections and alert times. Network detection capabilities typically change with alteration of the seismic noise level by human activity or by varying weather and sea conditions. To give helpful information to operators and maintenance coordinators, gempa developed a range of tools to evaluate earthquake detection and network performance including qceval, npeval and sceval. qceval is a module which analyzes waveform quality parameters in real-time and deactivates and reactivates data streams based on waveform quality thresholds for automatic processing. For example, thresholds can be defined for latency, delay, timing quality, spikes and gaps count and rms. As changes in the automatic processing have a direct influence on detection quality and speed, another tool called "npeval" was designed to calculate in real-time the expected time needed to detect and locate earthquakes by evaluating the effective network geometry. The effective network geometry is derived from the configuration of stations participating in the detection. The detection times are shown as an additional layer on the map and updated in real-time as soon as the effective network geometry changes. Yet another new tool, "sceval", is an automatic module which classifies located seismic events (Origins) in real-time. sceval evaluates the spatial distribution of the stations contributing to an Origin. It confirms or rejects the status of Origins, adds comments or leaves the Origin unclassified. The comments are passed to an additional sceval plug-in where the end user can customize event types. This unique identification of real and fake events in earthquake catalogues allows to lower network detection thresholds. In real-time monitoring situations operators can limit the processing to events with unclassified Origins, reducing their workload. Classified Origins can be treated specifically by other procedures. These modules have been calibrated and fully tested by several complex seismic monitoring networks in the region of Indonesia and Northern Chile.

  17. Teleneurosonology: a novel application of transcranial and carotid ultrasound.

    PubMed

    Rubin, Mark N; Barrett, Kevin M; Freeman, W David; Lee Iannotti, Joyce K; Channer, Dwight D; Rabinstein, Alejandro A; Demaerschalk, Bart M

    2015-03-01

    To demonstrate the technical feasibility of interfacing transcranial Doppler (TCD) and carotid "duplex" ultrasonography (CUS) peripherals with telemedicine end points to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. We performed remote TCD and CUS examinations on a healthy, volunteer employee from our institution without known cerebrovascular disease. The telemedicine end point was stationed in our institution's hospital where the neurosonology examinations took place and the control station was in a dedicated telemedicine room in a separate building. The examinations were performed by a postgraduate level neurohospitalist trainee (M.N.R.) and interpreted by an attending vascular neurologist, both with experience in the performance and interpretation of TCD and CUS. Spectral waveform and duplex ultrasound data were successfully transmitted from TCD and CUS instruments through a telemedicine end point to a remote reviewer at a control station. Image quality was preserved in all cases, and technical failures were not encountered. This proof-of-concept study demonstrates the technical feasibility of interfacing TCD and CUS peripherals with a telemedicine end point to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. Medical diagnostic and telemedicine devices should be equipped with interfaces that allow simple transmission of high-quality audio and video information from the medical devices to the telemedicine technology. Further study is encouraged to determine the clinical impact of teleneurosonology. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. Profiling and classification of French propolis by combined multivariate data analysis of planar chromatograms and scanning direct analysis in real time mass spectra.

    PubMed

    Chasset, Thibaut; Häbe, Tim T; Ristivojevic, Petar; Morlock, Gertrud E

    2016-09-23

    Quality control of propolis is challenging, as it is a complex natural mixture of compounds, and thus, very difficult to analyze and standardize. Shown on the example of 30 French propolis samples, a strategy for an improved quality control was demonstrated in which high-performance thin-layer chromatography (HPTLC) fingerprints were evaluated in combination with selected mass signals obtained by desorption-based scanning mass spectrometry (MS). The French propolis sample extracts were separated by a newly developed reversed phase (RP)-HPTLC method. The fingerprints obtained by two different detection modes, i.e. after (1) derivatization and fluorescence detection (FLD) at UV 366nm and (2) scanning direct analysis in real time (DART)-MS, were analyzed by multivariate data analysis. Thus, RP-HPTLC-FLD and RP-HPTLC-DART-MS fingerprints were explored and the best classification was obtained using both methods in combination with pattern recognition techniques, such as principal component analysis. All investigated French propolis samples were divided in two types and characteristic patterns were observed. Phenolic compounds such as caffeic acid, p-coumaric acid, chrysin, pinobanksin, pinobanksin-3-acetate, galangin, kaempferol, tectochrysin and pinocembrin were identified as characteristic marker compounds of French propolis samples. This study expanded the research on the European poplar type of propolis and confirmed the presence of two botanically different types of propolis, known as the blue and orange types. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  20. Application of Advanced Process Control techniques to a pusher type reheating furnace

    NASA Astrophysics Data System (ADS)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

Top