Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples
2011-01-01
Background Real-time PCR is a sensitive and specific method for the analysis of Plasmodium DNA. However, prior purification of genomic DNA from blood is necessary since PCR inhibitors and quenching of fluorophores from blood prevent efficient amplification and detection of PCR products. Methods Reagents designed to specifically overcome PCR inhibition and quenching of fluorescence were evaluated for real-time PCR amplification of Plasmodium DNA directly from blood. Whole blood from clinical samples and dried blood spots collected in the field in Colombia were tested. Results Amplification and fluorescence detection by real-time PCR were optimal with 40× SYBR® Green dye and 5% blood volume in the PCR reaction. Plasmodium DNA was detected directly from both whole blood and dried blood spots from clinical samples. The sensitivity and specificity ranged from 93-100% compared with PCR performed on purified Plasmodium DNA. Conclusions The methodology described facilitates high-throughput testing of blood samples collected in the field by fluorescence-based real-time PCR. This method can be applied to a broad range of clinical studies with the advantages of immediate sample testing, lower experimental costs and time-savings. PMID:21851640
Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.
Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody
2014-02-07
High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.
Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.
Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing
2018-02-01
The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.
Swanson, Priscilla; Huang, Shihai; Abravaya, Klara; de Mendoza, Carmen; Soriano, Vincent; Devare, Sushil G; Hackett, John
2007-04-01
Performance of the Abbott m2000 instrument system and the Abbott RealTime HIV-1 assay was evaluated using a panel of 37 group M (subtypes A-D, F, G, CRF01_AE, CRF02_AG and unique recombinant forms) and 2 group O virus isolates. Testing was performed on 273 sample dilutions and compared to VERSANT HIV-1 RNA 3.0 (bDNA) and AMPLICOR HIV-1 MONITOR v1.5 (Monitor v1.5) test results. RealTime HIV-1, bDNA, and Monitor v1.5 tests quantified 87%, 78%, and 81% of samples, respectively. RealTime HIV-1 detected an additional 31 samples at < 40 copies/mL. For group M, RealTime HIV-1 dilution profiles and viral loads were highly correlated with bDNA and Monitor v1.5 values; 87% and 89% of values were within 0.5 log(10) copies/mL. In contrast, the group O viruses were not detected by Monitor v1.5 and were substantially underquantified by approximately 2 log(10) copies/mL in bDNA relative to the RealTime HIV-1 assay. Sequence analysis revealed that RealTime HIV-1 primer/probe binding sites are highly conserved and exhibit fewer nucleotide mismatches relative to Monitor v1.5. The automated m2000 system and RealTime HIV-1 assay offer the advantages of efficient sample processing and throughput with reduced "hands-on" time while providing improved sensitivity, expanded dynamic range and reliable quantification of genetically diverse HIV-1 strains.
Real-time high dynamic range laser scanning microscopy
NASA Astrophysics Data System (ADS)
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-04-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.
NASA Astrophysics Data System (ADS)
Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui
2018-04-01
A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.
Burnett, Andrew D; Fan, Wenhui; Upadhya, Prashanth C; Cunningham, John E; Hargreaves, Michael D; Munshi, Tasnim; Edwards, Howell G M; Linfield, Edmund H; Davies, A Giles
2009-08-01
Terahertz frequency time-domain spectroscopy has been used to analyse a wide range of samples containing cocaine hydrochloride, heroin and ecstasy--common drugs-of-abuse. We investigated real-world samples seized by law enforcement agencies, together with pure drugs-of-abuse, and pure drugs-of-abuse systematically adulterated in the laboratory to emulate real-world samples. In order to investigate the feasibility of automatic spectral recognition of such illicit materials by terahertz spectroscopy, principal component analysis was employed to cluster spectra of similar compounds.
Real-time high dynamic range laser scanning microscopy
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-01-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979
Shanmugam, Akshaya; Usmani, Mohammad; Mayberry, Addison; Perkins, David L; Holcomb, Daniel E
2018-01-01
Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples.
Suzuki, Kunio; Sakai, D K
2007-03-13
Quantification of msa gene mRNA of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD), was investigated using reverse transcription followed by real-time PCR assay on R. salmoninarum in culture, and in experimentally challenged chum salmon Oncorhynchus keta fry kidney tissues (total of 70 samples) after intraperitoneal (i.p.) injection and bath infection. Correlations of msa gene mRNA concentrations with culturable cell concentrations (as colony forming units [CFU]), determined by drop-plate culture method on selective kidney disease medium (SKDM) agar through a 12 wk incubation time, and msa gene DNA concentrations by real-time PCR assay were examined. Furthermore, ovarian fluid samples from wild chum salmon adults with no clinical signs of disease were collected from 8 rivers and from clinically infected kokanee 0. nerka and masu salmon O. masou that were reared in 1 and 2 hatcheries, respectively (total of 414 samples). All samples were examined by nested PCR assay. Then, positive samples were examined by real-time PCR assays for mRNA and DNA; mRNA was detectable at 8 log units (5.0 x 101 to 5.0 x 10(9) copies p11(-1)) with high correlation (R2 = 0.999). The mRNA concentration correlated with CFU in kidney tissue from fish infected by i.p. injection (R2 = 0.924), by bath infection (R2 = 0.502) and in culture (R2 = 0.888). R. salmoninarum was detected and quantified by real-time PCR assay for mRNA in ovarian fluid samples in both subclinically infected chum salmon adults and clinically infected kokanee and masu salmon adults; detection rates ranged from 0 to 44.4% and concentrations ranged from 9.7 x 10(2) to 5.6 x 10(5) copies pl(-1). These results indicate that real-time PCR assay for the mRNA is a rapid, sensitive and reliable method to detect and quantify the viability of R. salmoninarum in kidney and ovarian fluid samples of salmonid fishes with both clinical and subclinical infection of the pathogen.
Ma, Jiping; Lu, Xi; Xia, Yan; Yan, Fengli
2015-02-01
A solid-phase extraction (SPE) method using multi-walled carbon nanotubes as adsorbent coupled with high-performance liquid chromatography was developed for the determination of four pyrazole and pyrrole pesticides (fenpyroximate, chlorfenapyr, fipronil and flusilazole) in environmental water samples. Several parameters, such as extraction adsorbent, elution solvent and volume and sample loading flow rate were optimized to obtain high SPE recoveries and extraction efficiency. The calibration curves for the pesticides extracted were linear in the range of 0.05-10 μg L(-1) for chlorfenapyr and fenpyroximate and 0.05-20 μg L(-1) for fipronil and flusilazole, with the correlation coefficients (r(2)) between 0.9966 and 0.9990. The method gave good precisions (relative standard deviation %) from 2.9 to 10.1% for real spiked samples from reservoir water and seawater; method recoveries ranged 92.2-105.9 and 98.5-103.9% for real spiked samples from reservoir water and seawater, respectively. Limits of detection (S/N = 3) for the method were determined to be 8-19 ng L(-1). The optimized method was successfully applied to the determination of four pesticides of pyrazoles and pyrroles in real environmental water samples. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Mitic, Jelena; Anhut, Tiemo; Serov, Alexandre; Lasser, Theo; Bourquin, Stephane
2003-07-01
Real-time optically sectioned microscopy is demonstrated using an AC-sensitive detection concept realized with smart CMOS image sensor and structured light illumination by a continuously moving periodic pattern. We describe two different detection systems based on CMOS image sensors for the detection and on-chip processing of the sectioned images in real time. A region-of-interest is sampled at high frame rate. The demodulated signal delivered by the detector corresponds to the depth discriminated image of the sample. The measured FWHM of the axial response depends on the spatial frequency of the projected grid illumination and is in the μm-range. The effect of using broadband incoherent illumination is discussed. The performance of these systems is demonstrated by imaging technical as well as biological samples.
Akbarzade, Samaneh; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein; Ghorbani, Mahdi
2018-01-01
A selective and sensitive magnetic dispersive solid-phase microextraction (MDSPME) coupled with gas chromatography-mass spectrometry was developed for extraction and determination of organophosphorus pesticides (Sevin, Fenitrothion, Malathion, Parathion, and Diazinon) in fruit juice and real water samples. Zero valent Fe-reduced graphene oxide quantum dots (rGOQDs@ Fe) as a new and effective sorbent were prepared and applied for extraction of organophosphorus pesticides using MDSPME method. In order to study the performance of this new sorbent, the ability of rGOQDs@ Fe was compared with graphene oxide and magnetic graphene oxide nanocomposite by recovery experiments of the organophosphorus pesticides. Several affecting parameters in the microextraction procedure, including pH of donor phase, donor phase volume, stirring rate, extraction time, and desorption conditions such as the type and volume of solvents and desorption time were thoroughly investigated and optimized. Under the optimal conditions, the method showed a wide linear dynamic range with R-square between 0.9959 and 0.9991. The limit of detections, the intraday and interday relative standard deviations (n = 5) were less than 0.07 ngmL -1 , 4.7, and 8.6%, respectively. The method was successfully applied for extraction and determination of organophosphorus pesticides in real water samples (well, river and tap water) and fruit juice samples (apple and grape juice). The obtained relative recoveries were in the range of 82.9%-113.2% with RSD percentages of less than 5.8% for all the real samples.
Evaluation of the Abbott RealTime HCV assay for quantitative detection of hepatitis C virus RNA.
Michelin, Birgit D A; Muller, Zsofia; Stelzl, Evelyn; Marth, Egon; Kessler, Harald H
2007-02-01
The Abbott RealTime HCV assay for quantitative detection of HCV RNA has recently been introduced. In this study, the performance of the Abbott RealTime HCV assay was evaluated and compared to the COBAS AmpliPrep/COBAS TaqMan HCV test. Accuracy, linearity, interassay and intra-assay variations were determined, and a total of 243 routine clinical samples were investigated. When accuracy of the new assay was tested, the majority of results were found to be within +/-0.5 log(10) unit of the results obtained by reference laboratories. Determination of linearity resulted in a quasilinear curve up to 1.0 x 10(6)IU/ml. The interassay variation ranged from 15% to 32%, and the intra-assay variation ranged from 5% to 8%. When clinical samples were tested by the Abbott RealTime HCV assay and the results were compared with those obtained by the COBAS AmpliPrep/COBAS TaqMan HCV test, the results for 93% of all samples with positive results by both tests were found to be within +/-1.0 log(10) unit. The viral loads for all patients measured by the Abbott and Roche assays showed a high correlation (R(2)=0.93); quantitative results obtained by the Abbott assay were found to be lower than those obtained by the Roche assay. The Abbott RealTime HCV assay proved to be suitable for use in the routine diagnostic laboratory. The time to results was similar for both of the assays.
Mayberry, Addison; Perkins, David L.; Holcomb, Daniel E.
2018-01-01
Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples. PMID:29509786
Pan, Ru; Shao, Dejia; Qi, Xueyong; Wu, Yun; Fu, Wenyan; Ge, Yanru; Fu, Haizhen
2013-01-01
The effective method of ionic liquid-based aqueous two-phase extraction, which involves ionic liquid (IL) (1-butyl-3-methyllimidazolium chloride, [C4mim]Cl) and inorganic salt (K2HPO4) coupled with high-performance liquid chromatography (HPLC), has been used to extract trace tilmicosin in real water samples which were passed through a 0.45 μm filter. The effects of the different types of salts, the concentration of K2HPO4 and of ILs, the pH value and temperature of the systems on the extraction efficiencies have all been investigated. Under the optimum conditions, the average extraction efficiency is up to 95.8%. This method was feasible when applied to the analysis of tilmicosin in real water samples within the range 0.5-40 μg mL(-1). The limit of detection was found to be 0.05 μg mL(-1). The recovery rate of tilmicosin was 92.0-99.0% from the real water samples by the proposed method. This process is suggested to have important applications for the extraction of tilmicosin.
ELEMENTAL COMPOSITION OF FRESHLY NUCLEATED PARTICLES
The main objective of this work is to develop a method for real-time sampling and analysis of individual airborne nanoparticles in the 5 - 20 nm diameter range. The size range covered by this method is much smaller than existing single particle methods for chemical analysis. S...
Störmer, Melanie; Vollmer, Tanja; Henrich, Birgit; Kleesiek, Knut; Dreier, Jens
2009-04-01
Polymerase chain reaction assays have become widely used methods of confirming the presence of Mollicutes species in clinical samples and cell cultures. We have developed a broad-range real-time PCR assay using the locked nucleic acid technology to detect mollicute species causing human infection and cell line contamination. Primers and probes specifically for the conserved regions of the mycoplasmal tuf gene (encoding elongation factor Tu) were designed. Cell culture supernatants, clinical specimens (vaginal swabs, sputum, cryopreserved heart valve tissues), and reference strains were tested for mollicute contamination as well as to exclude cross-reaction to human nucleic acids and other bacterial species. Nucleic acids were extracted using magnetic separation technology. The coamplification of the human beta2-microglobulin DNA served as an internal control. The PCR assay was highly specific and obtained an analytical sensitivity of one copy per microl sample. The 95% detection limit was calculated to 10 copies per microl sample for Mycoplasma pneumoniae and M. orale. No false-positive results were observed due to cross-reaction of walled bacterial, fungal, and human nucleic acids. To evaluate the PCR, we compared the results to two commercialized test systems. Moreover, in combination with a previously developed broad-range RT-PCR assay for the detection of bacteria in blood products, both mollicute and walled bacterial contamination can be detected simultaneously using multiplex real-time RT-PCR.
Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens
2008-01-01
In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens. PMID:18385440
Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens
2008-06-01
In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens.
Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong
2017-10-23
Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.
Sample-based engine noise synthesis using an enhanced pitch-synchronous overlap-and-add method.
Jagla, Jan; Maillard, Julien; Martin, Nadine
2012-11-01
An algorithm for the real time synthesis of internal combustion engine noise is presented. Through the analysis of a recorded engine noise signal of continuously varying engine speed, a dataset of sound samples is extracted allowing the real time synthesis of the noise induced by arbitrary evolutions of engine speed. The sound samples are extracted from a recording spanning the entire engine speed range. Each sample is delimitated such as to contain the sound emitted during one cycle of the engine plus the necessary overlap to ensure smooth transitions during the synthesis. The proposed approach, an extension of the PSOLA method introduced for speech processing, takes advantage of the specific periodicity of engine noise signals to locate the extraction instants of the sound samples. During the synthesis stage, the sound samples corresponding to the target engine speed evolution are concatenated with an overlap and add algorithm. It is shown that this method produces high quality audio restitution with a low computational load. It is therefore well suited for real time applications.
Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall
2016-07-01
Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ostendorf, Ralf; Butschek, Lorenz; Merten, André; Grahmann, Jan; Jarvis, Jan; Hugger, Stefan; Fuchs, Frank; Wagner, Joachim
2016-02-01
We present spectroscopic measurements performed with an EC-QCL combining a broadly tunable quantum cascade laser chip with a tuning range of more than 300 cm-1 and a resonantly driven MOEMS scanner with an integrated diffraction grating for wavelength selection in Littrow configuration. The grating geometry was optimized to provide high diffraction efficiency over the wide tuning range of the QCL, thus assuring high power density and high spectral resolution in the MIR range. The MOEMS scanner has a resonance frequency of 1 kHz, hence allowing for two full wavelength scans, one up and the other downwards, within 1 ms. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets as well as on gaseous samples of carbon monoxide. For the latter one, a large portion of the characteristic CO absorption band containing several absorption lines in the range of 2070 cm-1 to 2280 cm-1 can be monitored in real-time.
NASA Astrophysics Data System (ADS)
Cody, Robert B.; Dane, A. John
2013-03-01
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Cody, Robert B; Dane, A John
2013-03-01
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾(•). No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Identification of lactic acid bacteria isolated from wine using real-time PCR.
Kántor, Attila; Kluz, Maciej; Puchalski, Czeslaw; Terentjeva, Margarita; Kačániová, Miroslava
2016-01-01
Different lactic acid bacteria strains have been shown to cause wine spoilage, including the generation of substances undesirable for the health of wine consumers. The aim of this study was to investigate the occurrence of selected species of heterofermentative lactobacilli, specifically Lactobacillus brevis, Lactobacillus hilgardii, and Lactobacillus plantarum in six different Slovak red wines following the fermentation process. In order to identify the dominant Lactobacillus strain using quantitative (real time) polymerized chain reaction (qPCR) method, pure lyophilized bacterial cultures from the Czech Collection of Microorganisms were used. Six different red wine samples following malolactic fermentation were obtained from selected wineries. After collection, the samples were subjected to a classic plate dilution method for enumeration of lactobacilli cells. Real-time PCR was performed after DNA extraction from pure bacterial strains and wine samples. We used SYBR® Green master mix reagents for measuring the fluorescence in qPCR. The number of lactobacilli ranged from 3.60 to 5.02 log CFU mL(-1). Specific lactobacilli strains were confirmed by qPCR in all wine samples. The number of lactobacilli ranged from 10(3) to 10(6) CFU mL(-1). A melting curve with different melting temperatures (T(m)) of DNA amplicons was obtained after PCR for the comparison of T(m) of control and experimental portions, revealing that the most common species in wine samples was Lactobacillus plantarum with a T(m) of 84.64°C.
Leb, Victoria; Stöcher, Markus; Valentine-Thon, Elizabeth; Hölzl, Gabriele; Kessler, Harald; Stekel, Herbert; Berg, Jörg
2004-02-01
We report on the development of a fully automated real-time PCR assay for the quantitative detection of hepatitis B virus (HBV) DNA in plasma with EDTA (EDTA plasma). The MagNA Pure LC instrument was used for automated DNA purification and automated preparation of PCR mixtures. Real-time PCR was performed on the LightCycler instrument. An internal amplification control was devised as a PCR competitor and was introduced into the assay at the stage of DNA purification to permit monitoring for sample adequacy. The detection limit of the assay was found to be 200 HBV DNA copies/ml, with a linear dynamic range of 8 orders of magnitude. When samples from the European Union Quality Control Concerted Action HBV Proficiency Panel 1999 were examined, the results were found to be in acceptable agreement with the HBV DNA concentrations of the panel members. In a clinical laboratory evaluation of 123 EDTA plasma samples, a significant correlation was found with the results obtained by the Roche HBV Monitor test on the Cobas Amplicor analyzer within the dynamic range of that system. In conclusion, the newly developed assay has a markedly reduced hands-on time, permits monitoring for sample adequacy, and is suitable for the quantitative detection of HBV DNA in plasma in a routine clinical laboratory.
Subirats, Jèssica; Royo, Elena; Balcázar, José Luis; Borrego, Carles M
2017-03-01
In this study, we have developed real-time PCR assays using SYBR Green chemistry to detect all known alleles of bla KPC , bla NDM , and bla OXA-48 -like carbapenemase genes in water, sediment, and biofilm samples collected from hospital and wastewater treatment plant (WWTP) effluents and rivers receiving chronic WWTP discharges. The amplification of bla KPC , bla NDM , and bla OXA-48 DNA was linear over 7 log dilutions (R 2 between 0.995 and 0.997) and showing efficiencies ranging from 92.6% to 100.3%. The analytical sensitivity indicated that the reaction for bla KPC , bla NDM , and bla OXA-48 -like genes was able to detect 35, 16, and 19 copy numbers per assay, respectively. The three carbapenemase genes were detected in hospital effluents, whereas only the bla KPC and bla NDM genes were detected in biofilm and sediment samples collected from wastewater-impacted rivers. The detection of bla KPC , bla NDM , and bla OXA-48 -like genes in different matrices suggests that carbapenem-resistant bacteria occur in both planktonic and benthic habitats thus expanding the range of resistance reservoirs for last-resort antibiotics. We believe that these real-time PCR assays would be a powerful tool for the rapid detection and quantification of bla KPC , bla NDM , and bla OXA-48 -like genes in complex environmental samples.
2011-01-01
Background Campylobacter spp., especially Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli), are recognized as the leading human foodborne pathogens in developed countries. Livestock animals carrying Campylobacter pose an important risk for human contamination. Pigs are known to be frequently colonized with Campylobacter, especially C. coli, and to excrete high numbers of this pathogen in their faeces. Molecular tools, notably real-time PCR, provide an effective, rapid, and sensitive alternative to culture-based methods for the detection of C. coli and C. jejuni in various substrates. In order to serve as a diagnostic tool supporting Campylobacter epidemiology, we developed a quantitative real-time PCR method for species-specific detection and quantification of C. coli and C. jejuni directly in faecal, feed, and environmental samples. Results With a sensitivity of 10 genome copies and a linear range of seven to eight orders of magnitude, the C. coli and C. jejuni real-time PCR assays allowed a precise quantification of purified DNA from C. coli and C. jejuni. The assays were highly specific and showed a 6-log-linear dynamic range of quantification with a quantitative detection limit of approximately 2.5 × 102 CFU/g of faeces, 1.3 × 102 CFU/g of feed, and 1.0 × 103 CFU/m2 for the environmental samples. Compared to the results obtained by culture, both C. coli and C. jejuni real-time PCR assays exhibited a specificity of 96.2% with a kappa of 0.94 and 0.89 respectively. For faecal samples of experimentally infected pigs, the coefficients of correlation between the C. coli or C. jejuni real-time PCR assay and culture enumeration were R2 = 0.90 and R2 = 0.93 respectively. Conclusion The C. coli and C. jejuni real-time quantitative PCR assays developed in this study provide a method capable of directly detecting and quantifying C. coli and C. jejuni in faeces, feed, and environmental samples. These assays represent a new diagnostic tool for studying the epidemiology of Campylobacter by, for instance, investigating the carriage and excretion of C. coli and C. jejuni by pigs from conventional herds. PMID:21600037
Sun, Jing; Yi, Chun-Liang; Zhao, Ru-Song; Wang, Xia; Jiang, Wen-Qiang; Wang, Xi-Kui
2012-10-01
A sensitive and efficient analytical method for triclosan (TCS) determination in water, which involves enrichment with bamboo-activated charcoal and detection with HPLC-ESI-MS, was developed. The influence of several operational parameters, including the eluant and its volume, the flow rate, the volume andacidity of the sample, and the amount of bamboo-activated charcoal, were investigated and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.02-20 μg/L, with correlation coefficients (r(2) ) >0.9990. The limit of detection was 0.002 μg/L based on the ratio of chromatographic signal to baseline noise (S/N = 3). The spiked recoveries of TCS in real water samples were achieved in the range of 97.6-112.5%. The proposed method was applied to analyze TCS in real aqueous samples. All the surface water samples collected in Xiaoqing River had detectable levels of TCS with concentrations of 42-197 ng/L. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lapthorn, Cris; Pullen, Frank
2009-01-01
The performance of the direct analysis in real-time (DART) technique was evaluated across a range of metastable gas temperatures for a pharmaceutical compound, Voriconazole, in order to investigate the effect of metastable gas temperature on molecular ion intensity and fragmentation. The DART source has been used to analyse a range of analytes and from a range of matrices including drugs in solid tablet form and preparations, active ingredients in ointment, naturally occurring plant alkaloids, flavours and fragrances, from thin layer chromatography (TLC) plates, melting point tubes and biological matrices including hair, urine and blood. The advantages of this technique include rapid analysis time (as little as 5 s), a reduction in sample preparation requirements, elimination of mobile phase requirement and analysis of samples not typically amenable to atmospheric pressure ionisation (API) techniques. This technology has therefore been proposed as an everyday tool for identification of components in crude organic reaction mixtures.
Křesinová, Zdena; Linhartová, Lucie; Petrů, Klára; Krejčová, Lucie; Šrédlová, Kamila; Lhotský, Ondřej; Kameník, Zdeněk; Cajthaml, Tomáš
2016-04-01
A rapid and reliable analytical method was developed for the quantitative determination of psychopharmaceuticals, their precursors and by-products in real contaminated samples from a pharmaceutical company in Olomouc (Czech Republic), based on SPE disk extraction and detection by ultra performance liquid chromatography, combined with time-of-flight mass spectrometry. The target compounds were quantified in the real whole-water samples (water including suspended particles), both in the presence of suspended particulate matter (SPM) and high concentrations of other organic pollutants. A total of nine compounds were analyzed which consisted of three commonly used antidepressants (tricyclic antidepressants and antipsychotics), one antitussive agent and five by-products or precursors. At first, the SPE disk method was developed for the extraction of water samples (dissolved analytes, recovery 84-104%) and pressurised liquid extraction technique was verified for solid matrices (sludge samples, recovery 81-95%). In order to evaluate the SPE disk technique for whole water samples containing SPM, non contaminated groundwater samples were also loaded with different amounts (100 and 300mgL(-1)) of real contaminated sludge originating from the same locality. The recoveries from the whole-water samples obtained by SPE disk method ranged between 67 and 119% after the addition of the most contaminated sludge. The final method was applied to several real groundwater (whole-water) samples from the industrial area and high concentrations (up to 10(3)μgL(-1)) of the target compounds were detected. The results of this study document and indicate the feasibility of the SPE disk method for analysis of groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Harnsoongnoen, Supakorn; Wanthong, Anuwat
2017-10-01
Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.
Nicklas, Janice A; Buel, Eric
2005-09-01
The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).
Chudzik, Emilia; Karabin, Karolina; Dzieciątkowski, Tomasz; Majewska, Anna; Przybylski, Maciej; Midak-Siewirska, Anna; Łuczak, Mirosław; Młynarczyk, Grazyna
2010-01-01
Herpes simplex viruses types 1 and 2 are members of the Alphaherpesviridae subfamily, as they can infect both skin and nerves and develop latent infection within the dorsal root and trigeminal ganglia. Infections with these viruses are common worldwide and cause wide range of clinical syndromes. Although HSV-1/2 infect healthy children and adults, disease is more severe and extensive in the immunocompromised individuals and/or during neuroinfections. The aim of the study was development of real-time PCR assay for detection and differentiation of herpes simplex viruses type 1 and 2. DNA in clinical samples, using specific dual-channel HybProbe chemistry. The nalytical sensitivity of assay was tested using serial dilutions of HSV-1 and HSV-2 DNA in range between 10 degrees and 10(-5). (4.35 x 10(5)-4.00 x 10(2) copies/ml and 4.18 x 10(5)-3.82 x 10(2) copies/ml, respectively). Thirty four cell line isolates and sixteen clinical samples taken from a group of adult patients with neurological signs were tested for the presence of HSV-1/2 DNA in the LightCycler instrument. Described in-house real-time PCR assay detected herpesviral DNA in all cell line isolates (31 of them were HSV-1 positive; 3 were HSV-2 positive) and in 10 clinical samples (positive only for HSV-1). The conclusion is that developed HybProbe-based real-time PCR test is very reliable and valuable tool for detection and differentiation of HSV-1/2 viremia in different kind of samples. The high level of sensitivity and accuracy provided by this assay is favorable for the quantification of herpes simplex virus 1 and 2 DNA in clinical specimens, especially during low-copy infections.
Zamecnik, Patrik; Schouten, Martijn G; Krafft, Axel J; Maier, Florian; Schlemmer, Heinz-Peter; Barentsz, Jelle O; Bock, Michael; Fütterer, Jurgen J
2014-12-01
To assess the feasibility of automatic needle-guide tracking by using a real-time phase-only cross correlation ( POCC phase-only cross correlation ) algorithm-based sequence for transrectal 3-T in-bore magnetic resonance (MR)-guided prostate biopsies. This study was approved by the ethics review board, and written informed consent was obtained from all patients. Eleven patients with a prostate-specific antigen level of at least 4 ng/mL (4 μg/L) and at least one transrectal ultrasonography-guided biopsy session with negative findings were enrolled. Regions suspicious for cancer were identified on 3-T multiparametric MR images. During a subsequent MR-guided biopsy, the regions suspicious for cancer were reidentified and targeted by using the POCC phase-only cross correlation -based tracking sequence. Besides testing a general technical feasibility of the biopsy procedure by using the POCC phase-only cross correlation -based tracking sequence, the procedure times were measured, and a pathologic analysis of the biopsy cores was performed. Thirty-eight core samples were obtained from 25 regions suspicious for cancer. It was technically feasible to perform the POCC phase-only cross correlation -based biopsies in all regions suspicious for cancer in each patient, with adequate biopsy samples obtained with each biopsy attempt. The median size of the region suspicious for cancer was 8 mm (range, 4-13 mm). In each region suspicious for cancer (median number per patient, two; range, 1-4), a median of one core sample per region was obtained (range, 1-3). The median time for guidance per target was 1.5 minutes (range, 0.7-5 minutes). Nineteen of 38 core biopsy samples contained cancer. This study shows that it is feasible to perform transrectal 3-T MR-guided biopsies by using a POCC phase-only cross correlation algorithm-based real-time tracking sequence. © RSNA, 2014.
Schedl, A; Zweckmair, T; Kikul, F; Bacher, M; Rosenau, T; Potthast, A
2018-03-01
Widening the methodology of chromophore analysis in pulp and paper science, a sensitive gas-chromatographic approach with electron-capture detection is presented and applied to model samples and real-world historic paper material. Trifluoroacetic anhydride was used for derivatization of the chromophore target compounds. The derivative formation was confirmed by NMR and accurate mass analysis. The method successfully detects and quantifies hydroxyquinones which are key chromophores in cellulosic matrices. The analytical figures of merit appeared to be in an acceptable range with an LOD down to approx. 60ng/g for each key chromophore, which allows for their successful detection in historic sample material. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparative Evaluation of Three Nucleic Acid-Based Assays for BK Virus Quantification
Descamps, Veronique; Martin, Elodie; Morel, Virginie; François, Catherine; Helle, François; Duverlie, Gilles; Castelain, Sandrine
2015-01-01
With the growing importance of BK virus (BKV), effective and efficient screening for BKV replication in plasma and urine samples is very important for monitoring renal transplant and hematopoietic stem cell transplant recipients, who are at increased risk of BKV-associated diseases. However, recent assays proposed by many manufacturers have not been tested, and the available tests have not been standardized. The aim of the present study was to evaluate and compare the performances of three commercially available kits, R-gene, GeneProof, and RealStar, on plasma and urine specimens from patients infected with various genotypes and to determine the correlations with the results from a reference laboratory. A qualitatively excellent global agreement (96.8%) was obtained. RealStar PCR tended to give a higher sensitivity, especially for subtype Ib1 samples. Comparison of 30 plasma samples and 53 urine samples showed a good agreement between the three assays, with Spearman's Rho correlation coefficient values falling between 0.92 and 0.98 (P < 0.001). Moreover, a perfect correlation was obtained for comparison of the assay performances with the AcroMetrix BKV panel (P < 0.001 for all comparisons). According to Bland-Altman analysis, more than 95% (240/249 comparisons) of sample comparisons were situated in the range of the mean ± 2 standard deviations (SD). The greatest variability between assays was observed for 10.2% of subtype Ib2 samples, with differences of >1 log10 copies/ml. In conclusion, this study demonstrated the reliable and comparable performances of the R-gene, GeneProof, and RealStar real-time PCR systems for quantification of BKV in urine and plasma samples. All three real-time PCR assays are appropriate for screening of BKV replication in patients. PMID:26424842
Ye, Xiao-yan; Xiao, Wen-qing; Huang, Xia-ning; Zhang, Yong-lu; Cao, Yu-guang; Gu, Kang-ding
2012-07-01
This study aimed to construct an effective method to concentrate and detect virus in drinking water, and human adenovirus pollution status in actual water samples was monitored by constructed method. The concentration efficient of NanoCeram filter for the first concentration with source water and drinking water and the concentration efficient of the different concentrations of PEG 8000 for the second concentration were assessed by spiking f₂ bacteriophage into water samples. The standard of human adenovirus for real-time PCR was constructed by T-A clone. The plasmid obtained was identified through sequence analyzing and consistency check comparing to target gene fragment was conducted by using blast algorithm. Then, real-time PCR was constructed to quantify the concentration of human adenovirus using the plasmid as standard. Water samples were concentrated by using NanoCeram filter on the spot and then concentrated for the second time by PEG/NaCl in 2011. The DNA of concentrated samples were extracted for the quantification of human adenovirus in real-time PCR subsequently to monitor the pollution of human adenovirus in water. For the first concentration by NanoCeram filter, the recovery rates were (51.63 ± 26.60)% in source water and (50.27 ± 14.35)% in treated water, respectively. For the second concentration, the highest recovery rate was reached to (90.09 ± 10.50)% at the concentration of 0.13 kg/L of PEG 8000. The sequence identity score of standard of adenovirus for real time PCR and adenovirus gene was 99%, implying that it can be successfully used to quantification with human adenovirus. The levels of human adenovirus in the water samples sampled in 2011 ranged from 4.13×10³ to 2.20×10⁶ copies/L in source water, while range from 5.57×10² to 7.52×10⁵ copies/L in treated water and the removal efficiency range was (75.49 ± 11.71)%. NanoCeram filers combined with PEG/NaCl was an effective method to concentrate virus in aquatic environment. There was a large number of human adenovirus in source water, and it is not sufficient to remove them thoroughly through conventional water treatment processes.
Validation of PCR methods for quantitation of genetically modified plants in food.
Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P
2001-01-01
For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.
Salomone, Alberto; Gazzilli, Giulia; Di Corcia, Daniele; Gerace, Enrico; Vincenti, Marco
2016-03-01
The detection of new psychoactive substances (NPS) in hair proved to provide insight into their current diffusion among the population and the social characteristics of these synthetic drugs' users. Therefore, a UHPLC-MS/MS method was developed in order to determine 31 stimulant and psychedelic substituted phenethylamines, and dissociative drugs in hair samples. The method proved to be simple, fast, specific, and sensitive. The absence of matrix interferents, together with excellent repeatability of both retention times and relative abundances of diagnostic transitions, allowed the correct identification of all analytes tested. The method showed optimal linearity in the interval 10-1000 pg/mg, with correlation coefficient values varying between 0.9981 and 0.9997. Quantitation limits ranged from 1.8 pg/mg for 4-methoxyphencyclidine (4-MeO-PCP) up to 35 pg/mg for 6-(2-aminopropyl)benzofuran (6-APB). The method was applied to (i) 23 real samples taken from proven MDMA and ketamine abusers and (ii) 54 real hair samples which had been previously tested negative during regular drug screening in driver's license recovery. Six samples tested positive for at least one target analyte. Methoxetamine (MXE) was found in three cases (range of concentration 7.7-27 pg/mg); mephedrone (4-MMC) was found in two cases (50-59 pg/mg) while one sample tested positive for methylone at 28 pg/mg. Other positive findings included 4-methylethcathinone (4-MEC), alpha-pyrrolidinovalerophenone (α-PVP), 4-fluoroamphetamine (4-FA), 3,4-methylenedioxypyrovalerone (MDPV), and diphenidine. The present study confirms the increasing diffusion of new designer drugs with enhanced stimulant activity among the target population of poly-abuse consumers.
Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.
Berrada, H; Soriano, J M; Mañes, J; Picó, Y
2006-01-01
Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.
Wong, Anita A; Pabbaraju, Kanti; Wong, Sallene; Tellier, Raymond
2016-03-01
Herpes simplex viruses (HSV) and varicella zoster virus (VZV) can have very similar and wide-ranging clinical presentations. Rapid identification is necessary for timely antiviral therapy, especially with infections involving the central nervous system, neonates, and immunocompromised individuals. Detection of HSV-1, HSV-2 and VZV was combined into one real-time PCR reaction utilizing hydrolysis probes. The assay was validated on the LightCycler(®) (Roche) and Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific Inc.) to detect alphaherpesviruses in cerebral spinal fluid (CSF) and lesion swab specimens, respectively. Validation data on blood and tissue samples are also presented. The multiplex assay showed excellent sensitivity, specificity and reproducibility when compared to two singleplex real-time PCR assays for CSF samples and direct fluorescent antigen/culture for lesion swab samples. Implementation of the multiplex assay has facilitated improved sensitivity and accuracy as well as reduced turn-around-times and costs. The results from a large data set of 16,622 prospective samples tested between August 16, 2012 to February 1, 2014 at the Provincial Laboratory for Public Health (Alberta, Canada) are presented here. Copyright © 2015 Elsevier B.V. All rights reserved.
Leblanc-Maridor, Mily; Garénaux, Amélie; Beaudeau, François; Chidaine, Bérangère; Seegers, Henri; Denis, Martine; Belloc, Catherine
2011-04-01
The rapid and direct quantification of Campylobacter spp. in complex substrates like feces or environmental samples is crucial to facilitate epidemiological studies on Campylobacter in pig production systems. We developed a real-time PCR assay for detecting and quantifying Campylobacter spp. directly in pig feces with the use of an internal control. Campylobacter spp. and Yersinia ruckeri primers-probes sets were designed and checked for specificity with diverse Campylobacter, related organisms, and other bacterial pathogens before being used in field samples. The quantification of Campylobacter spp. by the real-time PCR then was realized on 531 fecal samples obtained from experimentally and naturally infected pigs; the numeration of Campylobacter on Karmali plate was done in parallel. Yersinia ruckeri, used as bacterial internal control, was added to the samples before DNA extraction to control DNA-extraction and PCR-amplification. The sensitivity of the PCR assay was 10 genome copies. The established Campylobacter real-time PCR assay showed a 7-log-wide linear dynamic range of quantification (R²=0.99) with a detection limit of 200 Colony Forming Units of Campylobacter per gram of feces. A high correlation was found between the results obtained by real-time PCR and those by culture at both qualitative and quantitative levels. Moreover, DNA extraction followed by real-time PCR reduced the time needed for analysis to a few hours (within a working day). In conclusion, the real-time PCR developed in this study provides new tools for further epidemiological surveys to investigate the carriage and excretion of Campylobacter by pigs. Copyright © 2011 Elsevier B.V. All rights reserved.
Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong
2011-01-01
Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tang, Ning; Pahalawatta, Vihanga; Frank, Andrea; Bagley, Zowie; Viana, Raquel; Lampinen, John; Leckie, Gregor; Huang, Shihai; Abravaya, Klara; Wallis, Carole L
2017-07-01
HIV RNA suppression is a key indicator for monitoring success of antiretroviral therapy. From a logistical perspective, viral load (VL) testing using Dried Blood Spots (DBS) is a promising alternative to plasma based VL testing in resource-limited settings. To evaluate the analytical and clinical performance of the Abbott RealTime HIV-1 assay using a fully automated one-spot DBS sample protocol. Limit of detection (LOD), linearity, lower limit of quantitation (LLQ), upper limit of quantitation (ULQ), and precision were determined using serial dilutions of HIV-1 Virology Quality Assurance stock (VQA Rush University), or HIV-1-containing armored RNA, made in venous blood. To evaluate correlation, bias, and agreement, 497 HIV-1 positive adult clinical samples were collected from Ivory Coast, Uganda and South Africa. For each HIV-1 participant, DBS-fingerprick, DBS-venous and plasma sample results were compared. Correlation and bias values were obtained. The sensitivity and specificity were analyzed at a threshold of 1000 HIV-1 copies/mL generated using the standard plasma protocol. The Abbott HIV-1 DBS protocol had an LOD of 839 copies/mL, a linear range from 500 to 1×10 7 copies/mL, an LLQ of 839 copies/mL, a ULQ of 1×10 7 copies/mL, and an inter-assay SD of ≤0.30 log copies/mL for all tested levels within this range. With clinical samples, the correlation coefficient (r value) was 0.896 between DBS-fingerprick and plasma and 0.901 between DBS-venous and plasma, and the bias was -0.07 log copies/mL between DBS-fingerprick and plasma and -0.02 log copies/mL between DBS-venous and plasma. The sensitivity of DBS-fingerprick and DBS-venous was 93%, while the specificity of both DBS methods was 95%. The results demonstrated that the Abbott RealTime HIV-1 assay with DBS sample protocol is highly sensitive, specific and precise across a wide dynamic range and correlates well with plasma values. The Abbott RealTime HIV-1 assay with DBS sample protocol provides an alternative sample collection and transfer option in resource-limited settings and expands the utility of a viral load test to monitor HIV-1 ART treatment for infected patients. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Hamsawahini, Kunashegaran; Sathishkumar, Palanivel; Ahamad, Rahmalan; Yusoff, Abdull Rahim Mohd
2015-11-01
In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water. Copyright © 2015 Elsevier B.V. All rights reserved.
Calibration of CryojetHT and Cobra Plus Cryosystems used in X-ray diffraction studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudka, A. P., E-mail: dudka@crys.ras.ru; Verin, I. A.; Smirnova, E. S.
CryoJetHT (Oxford Instruments) and Cobra Plus (Oxford Cryosystems) cryosystems, which are used for sample cooling in X-ray diffraction experiments, have been calibrated. It is shown that the real temperature in the vicinity of the sample differs significantly (the deviation is as high as 8–10 K at low temperatures) from the temperature recorded by authorized sensors of these systems. The calibration results are confirmed by measurements of the unit-cell parameters of GdFe{sub 3}(BO{sub 3}){sub 4} single crystal in the temperature range of its phase transition. It is shown that, to determine the real temperature of a sample, one must perform anmore » independent calibration of cryosystems rather than rely on their ratings.« less
Mehdinia, Ali; Khodaee, Nader; Jabbari, Ali
2015-04-08
Polythiophene (PT) was used as a surface modifier of graphene/Fe3O4 (G/Fe3O4) composite to increase merit of it, and also overcome some limitations and disadvantages of using G/Fe3O4 alone as solid phase extraction (SPE) sorbent. An in-situ chemical polymerization method was employed to prepare G/Fe3O4@PT nanocomposites. Application of this newly designed material in the magnetic SPE (MSPE) of polycyclic aromatic hydrocarbons (PAHs), as model analytes, in the environmental water samples was investigated. The characterization of the hybrid material was performed using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform-infrared (FT-IR) spectroscopy and vibrating sample magnetometry. Seven important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent, initial sample volume and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 4 min for extraction time, 20 mg for sorbent amount, 100mL for initial sample volume, toluene as desorption solvent, 0.6 mL for desorption solvent volume, 6 min for desorption time and 30% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. Detection limits were in the range of 0.009-0.020 μg L(-1) in the real matrix. The calibration curves were linear over the concentration ranges from 0.03 to 80 μg L(-1) with correlation coefficients (R(2)) between 0.995 and 0.998 for all the analytes. Relative standard deviations were ranged from 4.3 to 6.3%. Appropriate recovery values, in the range of 83-107%, were also obtained for the real sample analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Blaya, Josefa; Lloret, Eva; Santísima-Trinidad, Ana B; Ros, Margarita; Pascual, Jose A
2016-04-01
Currently, real-time polymerase chain reaction (qPCR) is the technique most often used to quantify pathogen presence. Digital PCR (dPCR) is a new technique with the potential to have a substantial impact on plant pathology research owing to its reproducibility, sensitivity and low susceptibility to inhibitors. In this study, we evaluated the feasibility of using dPCR and qPCR to quantify Phytophthora nicotianae in several background matrices, including host tissues (stems and roots) and soil samples. In spite of the low dynamic range of dPCR (3 logs compared with 7 logs for qPCR), this technique proved to have very high precision applicable at very low copy numbers. The dPCR was able to detect accurately the pathogen in all type of samples in a broad concentration range. Moreover, dPCR seems to be less susceptible to inhibitors than qPCR in plant samples. Linear regression analysis showed a high correlation between the results obtained with the two techniques in soil, stem and root samples, with R(2) = 0.873, 0.999 and 0.995 respectively. These results suggest that dPCR is a promising alternative for quantifying soil-borne pathogens in environmental samples, even in early stages of the disease. © 2015 Society of Chemical Industry.
Mieszkin, Sophie; Furet, Jean-Pierre; Corthier, Gérard; Gourmelon, Michèle
2009-01-01
The microbiological quality of coastal or river water can be affected by fecal contamination from human or animal sources. To discriminate pig fecal pollution from other pollution, a library-independent microbial source tracking method targeting Bacteroidales host-specific 16S rRNA gene markers by real-time PCR was designed. Two pig-specific Bacteroidales markers (Pig-1-Bac and Pig-2-Bac) were designed using 16S rRNA gene Bacteroidales clone libraries from pig feces and slurry. For these two pig markers, 98 to 100% sensitivity and 100% specificity were obtained when tested by TaqMan real-time PCR. A decrease in the concentrations of Pig-1-Bac and Pig-2-Bac markers was observed throughout the slurry treatment chain. The two newly designed pig-specific Bacteroidales markers, plus the human-specific (HF183) and ruminant-specific (BacR) Bacteroidales markers, were then applied to river water samples (n = 24) representing 14 different sites from the French Daoulas River catchment (Brittany, France). Pig-1-Bac and Pig-2-Bac were quantified in 25% and 62.5%, respectively, of samples collected around pig farms, with concentrations ranging from 3.6 to 4.1 log10 copies per 100 ml of water. They were detected in water samples collected downstream from pig farms but never detected near cattle farms. HF183 was quantified in 90% of water samples collected downstream near Daoulas town, with concentrations ranging between 3.6 and 4.4 log10 copies per 100 ml of water, and BacR in all water samples collected around cattle farms, with concentrations ranging between 4.6 and 6.0 log10 copies per 100 ml of water. The results of this study highlight that pig fecal contamination was not as frequent as human or bovine fecal contamination and that fecal pollution generally came from multiple origins. The two pig-specific Bacteroidales markers can be applied to environmental water samples to detect pig fecal pollution. PMID:19329663
A survey of the state-of-the-art and focused research in range systems, task 1
NASA Technical Reports Server (NTRS)
Omura, J. K.
1986-01-01
This final report presents the latest research activity in voice compression. We have designed a non-real time simulation system that is implemented around the IBM-PC where the IBM-PC is used as a speech work station for data acquisition and analysis of voice samples. A real-time implementation is also proposed. This real-time Voice Compression Board (VCB) is built around the Texas Instruments TMS-3220. The voice compression algorithm investigated here was described in an earlier report titled, Low Cost Voice Compression for Mobile Digital Radios, by the author. We will assume the reader is familiar with the voice compression algorithm discussed in this report. The VCB compresses speech waveforms at data rates ranging from 4.8 K bps to 16 K bps. This board interfaces to the IBM-PC 8-bit bus, and plugs into a single expansion slot on the mother board.
Gao, Shunxiang; Zheng, Xin; Wu, Jihong
2018-04-15
Accurate, fast and sensitive detection of disease-specific protein biomarkers, especially in blood, urine, or other bodily fluids, is an important approach to achieve early disease diagnosis. Platelet-derived growth factor-BB (PDGF-BB), a widely used biomarker, is involved in a substantial number of serious diseases, such as hepatic fibrosis, atherosclerosis, age-related macular degeneration and diabetic eye disease and is often over-expressed in human malignant tumors. Therefore, the development of sensitive and specific detection methods for PDGF-BB is of great importance for the early diagnosis of disease and assessments of patient recovery. In the current study, a biolayer interferometry-based enzyme-linked aptamer sorbent assay (BLI-ELASA) was successfully established for rapid (20-25min), high-throughput (8 or 16 samples) and real-time monitoring of PDGF-BB in clinical samples. The method exhibited a broad detection range from 0.5 to 1000ng/mL of PDGF-BB (good linear range from 0.5 to 10ng/mL), with a low detection limit of 0.08ng/mL. Moreover, BLI-ELASA was applied to the detection of PDGF-BB in spiked serum and urine samples and showed a high degree of selectivity for PDGF-BB, good reproducibility, and stability. We believe that the methodology in this work can be easily adapted to detect other biomolecules in clinical samples, including viruses, pathogens and toxins, in a rapid, sensitive, high-throughput and real-time manner. Copyright © 2017 Elsevier B.V. All rights reserved.
Oliveira-Cunha, Melissa; Byers, Richard J; Siriwardena, Ajith K
2010-03-01
There is a need to develop methods of early diagnosis for pancreatic cancer. Pancreatic juice is easily collected by endoscopic retrograde cholangiopancreatography and may facilitate diagnosis using molecular markers. The aim of this work was to explore the feasibility of measurement of gene expression in RNA isolated from ductal juice. Intraoperative sampling of pancreatic juice was undertaken in 27 patients undergoing pancreaticoduodenectomy for suspected tumor. Total RNA was extracted and used as template for poly(adenylic acid) (poly[A]) polymerase chain reaction (PCR) to generate a globally amplified complementary DNA pool representative of all expressed messenger RNAs. Real-time PCR was performed for trefoil factor 2 (TFF2), carboxypeptidase B1 (CPB1), and kallikrein-related peptidase 3 (KLK3) in a subset of samples; all samples were normalized for 3 reference genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], PSMB6, and beta-2-microglobulin [B2M]). The median volume of the pancreatic juice obtained was 1245 microL (range, 50-5000 microL). The RNA integrity number ranged from 1.9 to 10. Reverse transcriptase PCR was positive for pancreas-specific genes (TFF2 and CPB1) and negative for prostatic-specific antigen in all samples. These results demonstrate that RNA analysis of pancreatic juice is feasible using a combination of poly(A) PCR and real-time PCR. In addition, the poly(A) complementary DNA generated can be probed for multiple genes and is indefinitely renewable, thereby representing a molecular block of importance for future research.
Real-time computational photon-counting LiDAR
NASA Astrophysics Data System (ADS)
Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles
2018-03-01
The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.
Tignon, Marylène; Gallardo, Carmina; Iscaro, Carmen; Hutet, Evelyne; Van der Stede, Yves; Kolbasov, Denis; De Mia, Gian Mario; Le Potier, Marie-Frédérique; Bishop, Richard P; Arias, Marisa; Koenen, Frank
2011-12-01
A real-time polymerase chain reaction (PCR) assay for the rapid detection of African swine fever virus (ASFV), multiplexed for simultaneous detection of swine beta-actin as an endogenous control, has been developed and validated by four National Reference Laboratories of the European Union for African swine fever (ASF) including the European Union Reference Laboratory. Primers and a TaqMan(®) probe specific for ASFV were selected from conserved regions of the p72 gene. The limit of detection of the new real-time PCR assay is 5.7-57 copies of the ASFV genome. High accuracy, reproducibility and robustness of the PCR assay (CV ranging from 0.7 to 5.4%) were demonstrated both within and between laboratories using different real-time PCR equipments. The specificity of virus detection was validated using a panel of 44 isolates collected over many years in various geographical locations in Europe, Africa and America, including recent isolates from the Caucasus region, Sardinia, East and West Africa. Compared to the OIE-prescribed conventional and real-time PCR assays, the sensitivity of the new assay with internal control was improved, as demonstrated by testing 281 field samples collected in recent outbreaks and surveillance areas in Europe and Africa (170 samples) together with samples obtained through experimental infections (111 samples). This is particularly evident in the early days following experimental infection and during the course of the disease in pigs sub-clinically infected with strains of low virulence (from 35 up to 70dpi). The specificity of the assay was also confirmed on 150 samples from uninfected pigs and wild boar from ASF-free areas. Measured on the total of 431 tested samples, the positive deviation of the new assay reaches 21% or 26% compared to PCR and real-time PCR methods recommended by OIE. This improved and rigorously validated real-time PCR assay with internal control will provide a rapid, sensitive and reliable molecular tool for ASFV detection in pigs in newly infected areas, control in endemic areas and surveillance in ASF-free areas. Copyright © 2011 Elsevier B.V. All rights reserved.
Sadri, Minoo; Vatani, Hossein
2017-02-01
An ionic liquid-mediated multi-walled carbon nanotube (MWCNT)-polydimethylsiloxane (PDMS) sorbent was developed for headspace solid-phase microextraction (HS-SPME) of phenolic compounds from human urine samples. Sol-gel method was used to prepare this sorbent. For this purpose, MWCNTs were functionalized covalently and were attached chemically to the hydroxyl-terminated PDMS. Prepared fiber showed high thermal stability (over than 320°C) and good lifespan (>210 times). These good performances can be attributed to the performance of carbon nanotubes and sol-gel method. Affecting parameters on the efficiency of HS-SPME were investigated and optimized. Under the optimal conditions, linear dynamic ranges were observed over a range of 0.002-200 ng mL -1 with limits of detection from 0.0005 to 0.005 ng mL -1 and limits of quantitation between 0.002 and 0.02 ng mL -1 The relative standard deviations for one fiber (repeatability) (n = 5) at three different concentrations (0.05, 2 and 100 ng mL -1 ) were obtained from 4.6 up to 6.7% and between fibers or batch to batch (n = 3) (reproducibility) in the range of 5.7-7.8%. Urine samples were used as real samples. All real samples were spiked at 0.5 ng mL -1 of understudy analytes and the relative recovery percentages obtained from 90.7 to 102.1%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Three-dimensional near-field MIMO array imaging using range migration techniques.
Zhuge, Xiaodong; Yarovoy, Alexander G
2012-06-01
This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.
Alizadeh, Taher; Ganjali, Mohammad Reza; Rafiei, Faride
2017-06-29
In this study an innovative method was introduced for selective and precise determination of urea in various real samples including urine, blood serum, soil and water. The method was based on the square wave voltammetry determination of an electroactive product, generated during diacetylmonoxime reaction with urea. A carbon paste electrode, modified with multi-walled carbon nanotubes (MWCNTs) was found to be an appropriate electrochemical transducer for recording of the electrochemical signal. It was found that the chemical reaction conditions influenced the analytical signal directly. The calibration graph of the method was linear in the range of 1 × 10 -7 - 1 × 10 -2 mol L -1 . The detection limit was calculated to be 52 nmol L -1 . Relative standard error of the method was also calculated to be 3.9% (n = 3). The developed determination procedure was applied for urea determination in various real samples including soil, urine, plasma and water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David
2013-01-01
Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be greatly influenced by these factors. Furthermore, the results also confirmed the hypothesis that smaller particles generate more ROS activity and should be evaluated carefully for risk assessment.
Liu, Shuhui; Wang, Wenjun; Chen, Jie; Sun, Jianzhi
2012-01-01
This paper describes a simple, sensitive and environmentally benign method for the direct determination of aniline and its derivatives in environmental water samples by capillary zone electrophoresis (CZE) with field-enhanced sample injection. The parameters that influenced the enhancement and separation efficiencies were investigated. Surprisingly, under the optimized conditions, two linear ranges for the calibration plot, 1–50 ng/mL and 50–1000 ng/mL (R > 0.998), were obtained. The detection limit was in the range of 0.29–0.43 ng/mL. To eliminate the effect of the real sample matrix on the stacking efficiency, the standard addition method was applied to the analysis of water samples from local rivers. PMID:22837668
Paris-Edinburgh cell applications at HPCAT
NASA Astrophysics Data System (ADS)
Park, Changyong; Shen, Guoyin; Wang, Yanbin
2011-06-01
A Paris-Edinburgh cell (model VX-3) has been installed at HPCAT 16BM-B, a bending magnet white X-ray beamline at the Advanced Photon Source. The PE anvil and the heater assembly are specifically designed to contain the sample volume ranging from 0.03 mm3 to >1.2 mm3 while the entire sample volume can be seen through X-ray windows widely open in radial direction. The pressure and temperature of sample can reach up to 7 GPa and 2,300 K, respectively. For diffraction experiment, the maximum momentum transfer, Q = 4 πsin(θ) / λ, can reach up to ~40 Å -1. A real-time white-beam radiography imaging system obtains the absorption contrast images of compressed sample with 7x magnification, 5 μm image resolutions, and update rate of 0.1 msec to 60 sec per frame. A table top channel-cut monochromator which can provide 30-90 keV monochromatic X-rays is also available for transmission measurement. These series of new instrumental developments are expected to widen the range of user sciences at HPCAT with new opportunities for in-situ measurement of real-time radiography, amorphous and liquid structure, ultrasound velocity, density, electrical resistivity and thermal conductivity. Work supported by DOE-NNSA, DOE-BES, and NSF-COMPRESS.
Lara, Francisco J; Chan, Danny; Dickinson, Michael; Lloyd, Antony S; Adams, Stuart J
2017-05-05
Direct analysis in real time (DART) was evaluated for the determination of a number of highly polar pesticides using the Quick Polar Pesticides Extraction (QuPPe) method. DART was hyphenated to high resolution mass spectrometry (HRMS) in order to get the required selectivity that allows the determination of these compounds in complex samples such as lettuce and celery. Experimental parameters such as desorption temperature, scanning speed, and distances between the DART ion source and MS inlet were optimized. Two different mass analyzers (Orbitrap and QTOF) and two accessories for sample introduction (Dip-it ® tips and QuickStrip™ sample cards) were evaluated. An extra clean-up step using primary-secondary amine (PSA) was included in the QuPPe method to improve sensitivity. The main limitation found was in-source fragmentation, nevertheless QuPPe-DART-HRMS proved to be a fast and reliable tool with quantitative capabilities for at least seven compounds: amitrole, cyromazine, propamocarb, melamine, diethanolamine, triethanolamine and 1,2,4-triazole. The limits of detection ranged from 20 to 60μg/kg. Recoveries for fortified samples ranged from 71 to 115%, with relative standard deviations <18%. Copyright © 2017 Elsevier B.V. All rights reserved.
Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung
2017-08-01
HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; P<0.0001), with an average bias of -0.24 log 10 copies/ml. The in-house developed HHV-6 qPCR method is a sensitive and reliable assay with lower cost for the detection and quantification of HHV-6 DNA when compared to the RealStar ® HHV-6 PCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-11-01
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05839b
Range and azimuth resolution enhancement for 94 GHz real-beam radar
NASA Astrophysics Data System (ADS)
Liu, Guoqing; Yang, Ken; Sykora, Brian; Salha, Imad
2008-04-01
In this paper, two-dimensional (2D) (range and azimuth) resolution enhancement is investigated for millimeter wave (mmW) real-beam radar (RBR) with linear or non-linear antenna scan in the azimuth dimension. We design a new architecture of super resolution processing, in which a dual-mode approach is used for defining region of interest for 2D resolution enhancement and a combined approach is deployed for obtaining accurate location and amplitude estimations of targets within the region of interest. To achieve 2D resolution enhancement, we first adopt the Capon Beamformer (CB) approach (also known as the minimum variance method (MVM)) to enhance range resolution. A generalized CB (GCB) approach is then applied to azimuth dimension for azimuth resolution enhancement. The GCB approach does not rely on whether the azimuth sampling is even or not and thus can be used in both linear and non-linear antenna scanning modes. The effectiveness of the resolution enhancement is demonstrated by using both simulation and test data. The results of using a 94 GHz real-beam frequency modulation continuous wave (FMCW) radar data show that the overall image quality is significantly improved per visual evaluation and comparison with respect to the original real-beam radar image.
NASA Astrophysics Data System (ADS)
Shepherd, Rosalie H.; King, Martin D.; Marks, Amelia A.; Brough, Neil; Ward, Andrew D.
2018-04-01
Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 and 700 nm for organic aerosol extracts collected from urban (London) and remote (Antarctica) locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of A = 1.467 and B = 1000 nm2 with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of A = 1.465 ± 0.005 and B = 4625 ± 1200 nm2 with a representative real refractive index of 1.478 at a wavelength of 589 nm, whilst samples extracted during autumn had larger Cauchy coefficients of A = 1.505 and B = 600 nm2 with a representative real refractive index of 1.522 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Ångström exponent was determined for woodsmoke and humic acid aerosol extract. Typical values of the Cauchy coefficient for the woodsmoke aerosol extract were A = 1.541 ± 0.03 and B = 14 800 ± 2900 nm2, resulting in a real refractive index of 1.584 ± 0.007 at a wavelength of 589 nm and an absorption Ångström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to woodsmoke. A one-dimensional radiative-transfer calculation of the top-of-the-atmosphere albedo was applied to model an atmosphere containing a 3 km thick layer of aerosol comprising pure water, pure insoluble organic aerosol, or an aerosol consisting of an aqueous core with an insoluble organic shell. The calculation demonstrated that the top-of-the-atmosphere albedo increases by 0.01 to 0.04 for pure organic particles relative to water particles of the same size and that the top-of-the-atmosphere albedo increases by 0.03 for aqueous core-shell particles as volume fraction of the shell material increases to 25 %.
Dahane, S; Martínez Galera, M; Marchionni, M E; Socías Viciana, M M; Derdour, A; Gil García, M D
2016-05-15
This paper reports the first application of the silica based mesoporous material MCM-41 as a sorbent in solid phase extraction, to pre-concentrate pharmaceuticals of very different polarity (atenolol, nadolol, pindolol, timolol, bisoprolol, metoprolol, betaxolol, ketoprofen, naproxen, ibuprofen, diclofenac, tolfenamic acid, flufenamic acid and meclofenamic acid) in surface waters. The analytes were extracted from 100mL water samples at pH 2.0 (containing 10(-3) mol/L of sodium chloride) by passing the solution through a cartridge filled with 100 mg of MCM-41. Following elution, the pharmaceuticals were determined by micro-liquid chromatography and triple quadrupole-mass spectrometry. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. Matrix effect was found in real waters for most analytes and was overcome using the standard addition method, which compared favorably with the matrix matched calibration method. The detection limits in solvent (acetonitrile:water 10:90, v/v) ranged from 0.01 to 1.48 μg/L and in real water extracts from 0.10 to 3.85 μg/L (0.001-0.0385 μg/L in the water samples). The quantitation limits in solvent were in the range 0.02-4.93 μg/L, whereas in real water extracts were between 0.45 and 10.00 μg/L (0.0045 and 0.1000 μg/L in the water samples). When ultrapure water samples were spiked at two concentration levels of each pharmaceutical (0.1 and 0.2 μg/L) and quantified using solvent based calibration graphs, recoveries were near 100%. However, recoveries for most pharmaceuticals were comparable or better than de described above, when river water samples (spiked at the same concentration levels) were quantified by the standard addition method and slightly worse using the matrix matched calibration method. Five real samples (two rivers, one dam and two fountain water samples) were analyzed by the developed method, atenolol, timolol, betaxolol, nadolol and diclofenac being found in some of them, at levels higher than their quantitation limits. Copyright © 2016 Elsevier B.V. All rights reserved.
Trends and advances in food analysis by real-time polymerase chain reaction.
Salihah, Nur Thaqifah; Hossain, Mohammad Mosharraf; Lubis, Hamadah; Ahmed, Minhaz Uddin
2016-05-01
Analyses to ensure food safety and quality are more relevant now because of rapid changes in the quantity, diversity and mobility of food. Food-contamination must be determined to maintain health and up-hold laws, as well as for ethical and cultural concerns. Real-time polymerase chain reaction (RT-PCR), a rapid and inexpensive quantitative method to detect the presence of targeted DNA-segments in samples, helps in determining both accidental and intentional adulterations of foods by biological contaminants. This review presents recent developments in theory, techniques, and applications of RT-PCR in food analyses, RT-PCR addresses the limitations of traditional food analyses in terms of sensitivity, range of analytes, multiplexing ability, cost, time, and point-of-care applications. A range of targets, including species of plants or animals which are used as food ingredients, food-borne bacteria or viruses, genetically modified organisms, and allergens, even in highly processed foods can be identified by RT-PCR, even at very low concentrations. Microfluidic RT-PCR eliminates the separate sample-processing step to create opportunities for point-of-care analyses. We also cover the challenges related to using RT-PCR for food analyses, such as the need to further improve sample handling.
FonaDyn - A system for real-time analysis of the electroglottogram, over the voice range
NASA Astrophysics Data System (ADS)
Ternström, Sten; Johansson, Dennis; Selamtzis, Andreas
2018-01-01
From soft to loud and low to high, the mechanisms of human voice have many degrees of freedom, making it difficult to assess phonation from the acoustic signal alone. FonaDyn is a research tool that combines acoustics with electroglottography (EGG). It characterizes and visualizes in real time the dynamics of EGG waveforms, using statistical clustering of the cycle-synchronous EGG Fourier components, and their sample entropy. The prevalence and stability of different EGG waveshapes are mapped as colored regions into a so-called voice range profile, without needing pre-defined thresholds or categories. With appropriately 'trained' clusters, FonaDyn can classify and map voice regimes. This is of potential scientific, clinical and pedagogical interest.
Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.
2015-01-01
An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872
Jalal, Hamid; Stephen, Hannah; Curran, Martin D.; Burton, Janet; Bradley, Michelle; Carne, Christopher
2006-01-01
A multitarget real-time PCR (MRT-PCR) for detection of Chlamydia trachomatis DNA was developed and validated. There were three targets for amplification in a single reaction: the cryptic plasmid (CP), the major outer membrane protein (MOMP) gene, and an internal control. The assay had the following characteristics: (i) detection and confirmation of the presence of C. trachomatis DNA in a single reaction, (ii) detection of all genovars of C. trachomatis without any cross-reactivity with pathogenic bacteria or commensal organisms of the oropharynx and genital tract, (iii) a 95% probability of detection with three copies of MOMP and one copy of CP per reaction mixture, (iv) identification of the inhibition of amplification, (v) a quantitative dynamic range of 25 to 250,000 genome copies per reaction mixture, (vi) high intra- and interassay reproducibilities, and (vii) correct identification of all samples in the validation panel. There were 146 COBAS Amplicor PCR (Amplicor PCR)-positive samples and 122 Amplicor PCR-negative samples in the panel. MRT-PCR detected CP DNA alone in 6 (4%) Amplicor PCR-positive samples and both CP and MOMP DNAs in 140 (96%) of 146 Amplicor PCR-positive samples. The quantity of MOMP DNA in 95 (68%) of 140 samples was within the dynamic range of the assay. The median C. trachomatis load in these samples was 321 genome copies per reaction mixture (range, 26 to 40,137 genome copies per reaction mixture). Due to the inclusion of two different C. trachomatis-specific targets, the assay confirmed 259 (97%) of 268 results in a single reaction. This assay could be used in the qualitative format for the routine detection of C. trachomatis and in the quantitative format for study of the pathogenesis of C. trachomatis-associated diseases. The assay demonstrated the potential to eliminate the need for confirmatory testing in almost all samples, thus reducing the turnaround time and the workload. PMID:16390971
Software algorithm and hardware design for real-time implementation of new spectral estimator
2014-01-01
Background Real-time spectral analyzers can be difficult to implement for PC computer-based systems because of the potential for high computational cost, and algorithm complexity. In this work a new spectral estimator (NSE) is developed for real-time analysis, and compared with the discrete Fourier transform (DFT). Method Clinical data in the form of 216 fractionated atrial electrogram sequences were used as inputs. The sample rate for acquisition was 977 Hz, or approximately 1 millisecond between digital samples. Real-time NSE power spectra were generated for 16,384 consecutive data points. The same data sequences were used for spectral calculation using a radix-2 implementation of the DFT. The NSE algorithm was also developed for implementation as a real-time spectral analyzer electronic circuit board. Results The average interval for a single real-time spectral calculation in software was 3.29 μs for NSE versus 504.5 μs for DFT. Thus for real-time spectral analysis, the NSE algorithm is approximately 150× faster than the DFT. Over a 1 millisecond sampling period, the NSE algorithm had the capability to spectrally analyze a maximum of 303 data channels, while the DFT algorithm could only analyze a single channel. Moreover, for the 8 second sequences, the NSE spectral resolution in the 3-12 Hz range was 0.037 Hz while the DFT spectral resolution was only 0.122 Hz. The NSE was also found to be implementable as a standalone spectral analyzer board using approximately 26 integrated circuits at a cost of approximately $500. The software files used for analysis are included as a supplement, please see the Additional files 1 and 2. Conclusions The NSE real-time algorithm has low computational cost and complexity, and is implementable in both software and hardware for 1 millisecond updates of multichannel spectra. The algorithm may be helpful to guide radiofrequency catheter ablation in real time. PMID:24886214
Silk fiber for in-tube solid-phase microextraction to detect aldehydes by chemical derivatization.
Wang, Xiuqin; Pan, Lei; Feng, Juanjuan; Tian, Yu; Luo, Chuannan; Sun, Min
2017-11-03
Aldehydes are the potentially damaging pollutants in the environment, but it is difficult to be determined due to the low concentration level. Therefore, to accurate analysis of aldehydes, it is important for efficient sample preparation with selective enrichment and rapid separation. Environmentally friendly silk fiber as adsorbent material was directly applied to develop in-tube solid-phase microextraction for analyzing aqueous samples combined with high performance liquid chromatography. 2,4-Dinitrophenylhydrazine as a derivative reagent was used for chemical derivatization of aldehydes before extraction. Under optimum conditions, an online analysis method was built with the limits of detection in the range of 0.005-0.01μgL -1 and the linearity in the range of 0.03-10μgL -1 . Three aldehydes were determined in two real samples, and the relative recoveries were in the range of 95-102%. Copyright © 2017 Elsevier B.V. All rights reserved.
Demonstration of the Capabilities of the KINEROS2 – AGWA 3.0 Suite of Modeling Tools
This poster and computer demonstration illustrates a sampling of the wide range of applications that are possible using the KINEROS2 - AGWA suite of modeling tools. Applications include: 1) Incorporation of Low Impact Development (LID) features; 2) A real-time flash flood forecas...
Lozano, Ana; Rajski, Łukasz; Belmonte-Valles, Noelia; Uclés, Ana; Uclés, Samanta; Mezcua, Milagros; Fernández-Alba, Amadeo R
2012-12-14
This paper presents the validation of a modified QuEChERS method in four matrices - green tea, red tea, black tea and chamomile. The experiments were carried out using blank samples spiked with a solution of 86 pesticides (insecticides, fungicides and herbicides) at four levels - 10, 25, 50 and 100 μg/kg. The samples were extracted according to the citrate QuEChERS protocol; however, to reduce the amount of coextracted matrix compounds, calcium chloride was employed instead of magnesium sulphate in the clean-up step. The samples were analysed by LC-MS/MS and GC-MS/MS. Included in the scope of validation were: recovery, linearity, matrix effects, limits of detection and quantitation as well as intra-day and inter-day precision. The validated method was used in a real sample survey carried out on 75 samples purchased in ten different countries. In all matrices, recoveries of the majority of compounds were in the 70-120% range and were characterised by precision lower than 20%. In 85% of pesticide/matrix combinations the analytes can be detected quantitatively by the proposed method at the European Union Maximum Residue Level. The analysis of the real samples revealed that large number of teas and chamomiles sold in the European Union contain pesticides whose usage is not approved and also pesticides in concentrations above the EU MRLs. Copyright © 2012 Elsevier B.V. All rights reserved.
Wolff, Dietmar; Gerritzen, Andreas
2007-01-01
We have evaluated the performance of two newly developed automated real-time PCR assays, the COBAS Ampliprep/COBAS TaqMan (CAP/CTM) and the Abbott RealTime tests, in the quantification of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) RNA. The widely used semi-automated COBAS Amplicor Monitor (CAM) assay served as the reference test. Several specimens were analyzed, including 102 plasma samples from HCV patients and 109 from HIV patients and 10 samples from negative donors, as well as Quality Control in Molecular Diagnostics (QCMD) and National Institute for Biological Standards and Controls (NIBSC) proficiency program panels. Good correlation was observed among the three assays, with correlation coefficients (R2) of 0.8 (CAM-CAP/CTM), 0.89 (CAM-RealTime) and 0.91 (CAP/CTM-RealTime) for HCV and 0.83 (CAM-RealTime), 0.85 (CAM-CAP/CTM) and 0.89 (CAP/CTM-RealTime) for HIV. The overall concordance for negative/positive results was 100% for HCV and 98% for HIV. All assays were equally able to quantify HCV genotypes 1, 3, 5 and HIV group M (subtypes A-H) and N from QCMD and NIBSC panels. In terms of workflow, the RealTime assay requires more hands-on-time than the CAP/CTM assay. The results indicate that real-time PCR assays can improve the efficiency of end-point PCR tests by better covering viral dynamic ranges and providing higher throughput and automation.
van de Groep, Kirsten; Bos, Martine P; Savelkoul, Paul H M; Rubenjan, Anna; Gazenbeek, Christel; Melchers, Willem J G; van der Poll, Tom; Juffermans, Nicole P; Ong, David S Y; Bonten, Marc J M; Cremer, Olaf L
2018-04-26
Molecular tests may enable early adjustment of antimicrobial therapy and be complementary to blood culture (BC) which has imperfect sensitivity in critically ill patients. We evaluated a novel multiplex real-time PCR assay to diagnose bloodstream pathogens directly in whole blood samples (BSI-PCR). BSI-PCR included 11 species- and four genus-specific PCRs, a molecular Gram-stain PCR, and two antibiotic resistance markers. We collected 5 mL blood from critically ill patients simultaneously with clinically indicated BC. Microbial DNA was isolated using the Polaris method followed by automated DNA extraction. Sensitivity and specificity were calculated using BC as reference. BSI-PCR was evaluated in 347 BC-positive samples (representing up to 50 instances of each pathogen covered by the test) and 200 BC-negative samples. Bacterial species-specific PCR sensitivities ranged from 65 to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0 to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2200 species-specific PCRs in 200 culture-negative samples, and ranged from 0 to 6% for generic PCRs. Sensitivity of BSI-PCR was promising for individual bacterial pathogens, but still insufficient for yeasts and generic PCRs. Further development of BSI-PCR will focus on improving sensitivity by increasing input volumes and on subsequent implementation as a bedside test.
Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan
2013-12-01
Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.
Zhao, Yaju; Tang, Minmin; Liao, Qiaobo; Li, Zhoumin; Li, Hui; Xi, Kai; Tan, Li; Zhang, Mei; Xu, Danke; Chen, Hong-Yuan
2018-04-27
In this work, we demonstrate, for the first time, the development of a disposable MoS 2 -arrayed matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) chip combined with an immunoaffinity enrichment method for high-throughput, rapid, and simultaneous quantitation of multiple sulfonamides (SAs). The disposable MALDI MS chip was designed and fabricated by MoS 2 array formation on a commercial indium tin oxide (ITO) glass slide. A series of SAs were analyzed, and clear deprotonated signals were obtained in negative-ion mode. Compared with MoS 2 -arrayed commercial steel plate, the prepared MALDI MS chip exhibited comparable LDI efficiency, providing a good alternative and disposable substrate for MALDI MS analysis. Furthermore, internal standard (IS) was previously deposited onto the MoS 2 array to simplify the experimental process for MALDI MS quantitation. 96 sample spots could be analyzed within 10 min in one single chip to perform quantitative analysis, recovery studies, and real foodstuff detection. Upon targeted extraction and enrichment by antibody conjugated magnetic beads, five SAs were quantitatively determined by the IS-first method with the linear range of 0.5-10 ng/mL ( R 2 > 0.990). Good recoveries and repeatability were obtained for spiked pork, egg, and milk samples. SAs in several real foodstuffs were successfully identified and quantified. The developed method may provide a promising tool for the routine analysis of antibiotic residues in real samples.
Park, Sang Hyuk; Park, Chan-Jeoung; Kim, Mi-Jeong; Choi, Mi-Ok; Han, Min-Young; Cho, Young-Uk; Jang, Seongsoo
2014-12-01
We developed and validated an interinstrument comparison method for automatic hematology analyzers based on the 99th percentile coefficient of variation (CV) cutoff of daily means and validated in both patient samples and quality control (QC) materials. A total of 120 patient samples were obtained over 6 months. Data from the first 3 months were used to determine 99th percentile CV cutoff values, and data obtained in the last 3 months were used to calculate acceptable ranges and rejection rates. Identical analyses were also performed using QC materials. Two instrument comparisons were also performed, and the most appropriate allowable total error (ATE) values were determined. The rejection rates based on the 99th percentile cutoff values were within 10.00% and 9.30% for the patient samples and QC materials, respectively. The acceptable ranges of QC materials based on the currently used method were wider than those calculated from the 99th percentile CV cutoff values in most items. In two-instrument comparisons, 34.8% of all comparisons failed, and 87.0% of failed comparisons were successful when 4 SD was applied as an ATE value instead of 3 SD. The 99th percentile CV cutoff value-derived daily acceptable ranges can be used as a real-time interinstrument comparison method in both patient samples and QC materials. Applying 4 SD as an ATE value can significantly reduce unnecessarily followed recalibration in the leukocyte differential counts, reticulocytes, and mean corpuscular volume. Copyright© by the American Society for Clinical Pathology.
Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S
2014-01-01
Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.
López-Calleja, Inés María; de la Cruz, Silvia; González, Isabel; García, Teresa; Martín, Rosario
2015-06-15
Two real-time polymerase chain reaction (PCR)-based assays for detection of walnut (Juglans regia) and pecan (Carya illinoinensis) traces in a wide range of processed foods are described here. The method consists on a real-time PCR assay targeting the ITS1 region, using a nuclease (TaqMan) probe labeled with FAM and BBQ. The method was positive for walnut and pecan respectively, and negative for all other heterologous plants and animals tested. Using a series of model samples with defined raw walnut in wheat flour and heat-treated walnut in wheat flour with a range of concentrations of 0.1-100,000 mg kg(-1), a practical detection limit of 0.1 mg kg(-1) of walnut content was estimated. Identical binary mixtures were done for pecan, reaching the same limit of detection of 0.1 mg kg(-1). The assay was successfully trialed on a total of 232 commercial foodstuffs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Real-time terahertz digital holography with a quantum cascade laser
Locatelli, Massimiliano; Ravaro, Marco; Bartalini, Saverio; Consolino, Luigi; Vitiello, Miriam S.; Cicchi, Riccardo; Pavone, Francesco; De Natale, Paolo
2015-01-01
Coherent imaging in the THz range promises to exploit the peculiar capabilities of these wavelengths to penetrate common materials like plastics, ceramics, paper or clothes with potential breakthroughs in non-destructive inspection and quality control, homeland security and biomedical applications. Up to now, however, THz coherent imaging has been limited by time-consuming raster scanning, point-like detection schemes and by the lack of adequate coherent sources. Here, we demonstrate real-time digital holography (DH) at THz frequencies exploiting the high spectral purity and the mW output power of a quantum cascade laser combined with the high sensitivity and resolution of a microbolometric array. We show that, in a one-shot exposure, phase and amplitude information of whole samples, either in reflection or in transmission, can be recorded. Furthermore, a 200 times reduced sensitivity to mechanical vibrations and a significantly enlarged field of view are observed, as compared to DH in the visible range. These properties of THz DH enable unprecedented holographic recording of real world dynamic scenes. PMID:26315647
Caro, Valérie; Guiso, Nicole; Alberti, Corinne; Liguori, Sandrine; Burucoa, Christophe; Couetdic, Gérard; Doucet-Populaire, Florence; Ferroni, Agnès; Papin-Gibaud, Sophie; Grattard, Florence; Réglier-Poupet, Hélène; Raymond, Josette; Soler, Catherine; Bouchet, Sylvie; Charreau, Sandrine; Couzon, Brigitte; Leymarie, Isabelle; Tavares, Nicole; Choux, Mathilde; Bingen, Edouard; Bonacorsi, Stéphane
2009-10-01
With the support of a ministerial program for innovative and expensive technologies, dedicated to the economic evaluation of laboratory diagnosis of pertussis by real-time PCR, external quality assessment for real-time IS481 PCR was carried out. Coordinated by the National Centre of Reference of Pertussis and other Bordetelloses (NCR), this study aimed to harmonize and to assess the performances of eight participating microbiology hospital laboratories throughout the French territory. Between January 2006 and February 2007, 10 proficiency panels were sent by the NCR (ascending proficiency program), representing a total of 49 samples and including eight panels to analyze and evaluate the global sensitivity and specificity of real-time PCR, one to assess the limit of detection, and one to evaluate nucleic acid extraction methods. As part of the descending proficiency program, extracted DNA from clinical samples was sent by the eight participating laboratories in different panels and analyzed by the NCR. In the ascending proficiency analysis, the sensitivity and specificity of the real-time PCR methods were 92.2% and 94.3%, respectively. The limit of detection of the different methods ranged between 0.1 and 1 fg/microl (0.2 to 2 CFU/microl). The nucleic acid extraction methods showed similar performances. During the descending proficiency analysis, performed with 126 samples, the result of the NCR for 15 samples (11.9%) was discordant with the result obtained by the source laboratory. Despite several initial differences, harmonization was easy and performances were homogeneous. However, the risk of false-positive results remains quite high, and we strongly recommend establishment of uniform quality control procedures performed regularly.
Miyaguchi, Hajime; Kakuta, Masaya; Iwata, Yuko T; Matsuda, Hideaki; Tazawa, Hidekatsu; Kimura, Hiroko; Inoue, Hiroyuki
2007-09-07
We developed a rapid sample preparation method for the toxicological analysis of methamphetamine and amphetamine (the major metabolite of methamphetamine) in human hair by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), to facilitate fast screening and quantitation. Two milligrams of hair were mechanically micropulverized for 5 min in a 2-ml plastic tube together with 100 microl of an aqueous solvent containing 10% acetonitrile, 100 mM trifluoroacetic acid and the corresponding deuterium analogues as internal standards. The pulverizing highly disintegrated the hair components, simultaneously allowing the extraction of any drugs present in the hair. After filtering the suspension with a membrane-filter unit, the clear filtrate was directly analyzed by HPLC-MS/MS. No evaporation processes were required for sample preparation. Method optimization and validation study were carried out using real-case specimens and fortified samples in which the drugs had been artificially absorbed, respectively. Concentration ranges for quantitation were 0.040-125 and 0.040-25 ng/mg for methamphetamine and amphetamine, respectively. Real-case specimens were analyzed by the method presented here and by conventional ones to verify the applicability of our method to real-world analysis. Our method took less than 30 min for a set of chromatograms to be obtained from a washed hair sample.
Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Chiu, Yi-Chou; She, Cheng-Yu; Shen, Shu-Min; Huang, Yu-Li; Huang, Wen-Chien
2013-09-01
In this study, a SYBR green quantitative real-time PCR was developed to quantify and detect the Legionella spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and thermal spring area in Taiwan. Legionella was detected in 13.6 % (24/176), and the detection rate for river water, raw drinking water, and thermal spring water was 10, 21.4, and 16.6 %, respectively. Using real-time PCR, concentration of Legionella spp. in detected samples ranged between 9.75 × 10(4) and 3.47 × 10(5) cells/L in river water, 6.92 × 10(4) and 4.29 × 10(5) cells/L in raw drinking water, and 5.71 × 10(4) and 2.12 × 10(6) cells/L for thermal spring water samples. The identified species included Legionella pneumophila (20.8 %), Legionella jordanis (4.2 %), Legionella nautarum (4.2 %), Legionella sp. (4.2 %), and uncultured Legionella sp. (66.6 %). The presence of L. pneumophila in aquatic environments suggested a potential public health threat that must be further examined.
Method, system and computer-readable media for measuring impedance of an energy storage device
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.
2016-01-26
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Target recognition of log-polar ladar range images using moment invariants
NASA Astrophysics Data System (ADS)
Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong
2017-01-01
The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.
Schill, W.B.; Mathes, M.V.
2008-01-01
We designed and tested real-time PCR probe/primer sets to detect and quantify Cytochrome b sequences of mitochondrial DNA (mtDNA) from nine vertebrate species of pet (dog), farm (cow, chicken, sheep, horse, pig), wildlife (Canada goose, white-tailed deer), and human. Linear ranges of the assays were from 101 to 108 copies/??l. To formally test the performance of the assays, twenty blinded fecal suspension samples were analyzed by real-time PCR to identify the source of the feces. Sixteen of the twenty samples were correctly and unambiguously identified. Average sensitivity was calculated to be 0.850, while average specificity was found to be 0.994. One beef cow sample was not detected, but mtDNA from 11 other beef cattle of both sexes and varying physiological states was found in concentrations similar (3.45 ?? 107 copies/g) to thatfound in human feces (1.1 ?? 107 copies/g). Thus, environmental conditions and sample handling are probably important factors for successful detection of fecal mtDNA. When sewage samples were analyzed, only human mtDNA (7.2 ?? 104 copies/100 mL) was detected. With a detection threshold of 250 copies/reaction, an efficient concentration and purification method resulted in a final detection limit for human feces of 1.8 mg/100 mL water.
Yang, Jeng-Fu; Lin, Ya-Yun; Huang, Jee-Fu; Liu, Shu-Fen; Chu, Pei-Yu; Hsieh, Ming-Yen; Lin, Zu-Yau; Chen, Shinn-Cherng; Wang, Liang-Yen; Dai, Chia-Yen; Chuang, Wan-Long; Yu, Ming-Lung
2009-08-01
With an estimated 350-400 million people worldwide chronically infected with hepatitis B virus (HBV), and the subsequent serious complications caused by liver damage including cirrhosis, liver failure, and hepatocellular carcinoma, HBV infection remains a global health issue, particularly in Taiwan, an HBV-hyperendemic area. Sensitive and accurate quantification of HBV DNA is necessary to monitor patients with chronic hepatitis B who are receiving antiviral therapy to determine treatment response and adapt therapy. We evaluated and compared the clinical performance of two HBV DNA assays based on different technologies: the RealArt HBV PCR Kit (Abbott HBV DNA PCR kit, real-time polymerase chain reaction assay, detection limit: 27 IU/mL) and the VERSANT bDNA 3.0 assay (Bayer, branched DNA signal amplification assay, detection limit: 357 IU/mL). Serum levels of HBV DNA in 173 chronic HBV carriers were determined using both the RealArt HBV PCR Kit and the VERSANT bDNA 3.0 test. Of the 173 samples analyzed for baseline viral load detection, HBV DNA was quantifiable in 147 patients (82.1%) by the RealArt HBV PCR Kit, which was significantly higher than the 92 (53.2%) samples quantified by the VERSANT bDNA 3.0 assay. A total of 86 (49.7%) samples were quantifiable by both assays, whereas 25 (14.5%) were below the detection limit of both assays. The HBV DNA quantification values measured by the RealArt HBV PCR Kit and the VERSANT bDNA 3.0 assay were positively correlated (Spearman's rank correlation coefficient r = 0.932, p < 0.001). On average, the results derived from the RealArt HBV PCR Kit were 0.67 log lower than those of the VERSANT bDNA 3.0 assay. HBV DNA concentrations were significantly higher in 63 HBV e antigen (HBeAg)-seropositive patients than in 110 HBeAg-seronegative patients (5.42 +/- 2.34 logs vs. 3.21 +/- 2.27 logs, p < 0.001). The RealArt HBV PCR Kit is more sensitive and has a wider dynamic range than the VERSANT bDNA 3.0 assay in the clinical setting of chronic hepatitis B patients. The sensitivity and wide dynamic range of the PCR assay allow optimal monitoring and timely adaptation of antiviral therapy. Nevertheless, the HBV DNA values measured by the RealArt HBV PCR Kit and the VERSANT bDNA 3.0 assay were significantly correlated.
Bjornsdottir-Butler, Kristin; Jones, Jessica L; Benner, Ronald; Burkhardt, William
2011-05-01
Prompt detection of bacteria that contribute to scombrotoxin (histamine) fish poisoning can aid in the detection of potentially toxic fish products and prevent the occurrence of illness. We report development of the first real-time PCR method for rapid detection of Gram-negative histamine-producing bacteria (HPB) in fish. The real-time PCR assay was 100% inclusive for detecting high-histamine producing isolates and did not detect any of the low- or non-histamine producing isolates. The efficiency of the assay with/without internal amplification control ranged from 96-104% and in the presence of background flora and inhibitory matrices was 92/100% and 73-96%, respectively. This assay was used to detect HPB from naturally contaminated yellowfin tuna, bluefish, and false albacore samples. Photobacterium damselae (8), Plesiomonas shigelloides (2), Shewanella sp. (1), and Morganella morganii (1) were subsequently isolated from the real-time PCR positive fish samples. These results indicate that the real-time PCR assay developed in this study is a rapid and sensitive method for detecting high-HPB. The assay may be adapted for quantification of HPB, either directly or with an MPN-PCR method. Copyright © 2010. Published by Elsevier Ltd.
Lakshmi, I Karthika; Putty, Kalyani; Raut, Satya Samparna; Patil, Sunil R; Rao, P P; Bhagyalakshmi, B; Jyothi, Y Krishna; Susmitha, B; Reddy, Y Vishnuvardhan; Kasulanati, Sowmya; Jyothi, J Shiva; Reddy, Y N
2018-04-01
The present study was designed to standardize real-time polymerase chain reaction (PCR) for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV) NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 10 5 ml and RNA was isolated by the Trizol method. Both reverse transcription-PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD). The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect) and molecular confirmation (by BTV-NS1 group-specific PCR). The standardized technique was then applied to field samples (blood) for detecting BTV. The slope of the standard curve obtained was -3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269E×10 3 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 10 3 TCID 50/ml and 10 4 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 10 2 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Real-time PCR was found to be a very sensitive as well as reliable method to detect BTV present in different types of samples, including blood samples collected from BTV-infected sheep, compared to RT-PCR. The LoD of BTV is likely influenced by sample type, possibly by the interference by the other components present in the sample.
Laser Induced Breakdown Spectroscopy of Glass and Crystal Samples
NASA Astrophysics Data System (ADS)
Sharma, Prakash; Sandoval, Alejandra; Carter, Michael; Kumar, Akshaya
2015-03-01
Different types of quartz crystals and rare earth ions doped glasses have been identified using the laser induced breakdown spectroscopy (LIBS) technique. LIBS is a real time technique, can be used to identify samples in solid, liquid and gas phases. The advantage of LIBS technique is that no sample preparation is required and laser causes extremely minimal damage to the sample surface. The LIBS spectrum of silicate glasses, prepared by sol-gel method and doped with different concentration of rare earth ions, has been recorded. The limit of detection of rare earth ions in glass samples has been calculated. Total 10 spectrums of each sample were recorded and then averaged to get a final spectrum. The ocean optics LIBS2500 plus spectrometer along with a Q- switched Nd: YAG laser (Quantel, Big Sky) were used to record the LIBS spectrum. This spectrometer can analyze the sample in the spectral range of 200 nm to 980 nm. The spectrum was processed by OOILIBS-plus (v1.0) software. This study has application in the industry where different crystals can be easily identified before they go for shaping and polishing. Also, concentration of rare earth ions in glass can be monitored in real time for quality control.
Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming
2012-08-21
The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.
A Modular Low-Complexity ECG Delineation Algorithm for Real-Time Embedded Systems.
Bote, Jose Manuel; Recas, Joaquin; Rincon, Francisco; Atienza, David; Hermida, Roman
2018-03-01
This work presents a new modular and low-complexity algorithm for the delineation of the different ECG waves (QRS, P and T peaks, onsets, and end). Involving a reduced number of operations per second and having a small memory footprint, this algorithm is intended to perform real-time delineation on resource-constrained embedded systems. The modular design allows the algorithm to automatically adjust the delineation quality in runtime to a wide range of modes and sampling rates, from a ultralow-power mode when no arrhythmia is detected, in which the ECG is sampled at low frequency, to a complete high-accuracy delineation mode, in which the ECG is sampled at high frequency and all the ECG fiducial points are detected, in the case of arrhythmia. The delineation algorithm has been adjusted using the QT database, providing very high sensitivity and positive predictivity, and validated with the MIT database. The errors in the delineation of all the fiducial points are below the tolerances given by the Common Standards for Electrocardiography Committee in the high-accuracy mode, except for the P wave onset, for which the algorithm is above the agreed tolerances by only a fraction of the sample duration. The computational load for the ultralow-power 8-MHz TI MSP430 series microcontroller ranges from 0.2% to 8.5% according to the mode used.
NASA Astrophysics Data System (ADS)
Karimi-Maleh, Hassan; Bananezhad, Asma; Ganjali, Mohammad R.; Norouzi, Parviz; Sadrnia, Abdolhossein
2018-05-01
Didanosine is nucleoside analog reverse transcriptase inhibitors with many side effects such as nausea and vomiting, stomach pain, tingling, burning and numbness and determination of this drug is very important in biological samples. This paper presents a DNA biosensor for determination of didanosine (DDI) in pharmaceutical samples. A pencil graphite electrode modified with conductive materials such as polypyrrole (PPy) and reduced graphene oxide (rGO) (PGE/PPy/rGO) was used for this goal. The double-stranded DNA was successfully immobilized on PGE/PPy/rGO. The PGE/PPy/rGO was characterized by microscopic and electrochemical methods. Then, the interaction of DDI with DNA was identified by decreases in the oxidation currents of guanine and adenine by differential pulse voltammetric (DPV) method. The dynamic range of DDI identified in the range of 0.02-50.0 μM and this electrode provided a low limit of detection (LOD = 8.0 nM) for DDI. The PGE/PPy/rGO loaded with ds-DNA was utilized for the measurement of DDI in real samples and obtained data were compared with HPLC method. The statistical tests such as F-test and t-test were used for confirming ability of PGE/PPy/rGO loaded with ds-DNA for analysis of DDI in real samples.
Wang, Xianying; Song, Guoxin; Deng, Chunhui
2015-01-01
Magnetic graphene @hydrophilic polydopamine composites were successfully fabricated via a simple solvothermal reaction and self-polymerization of dopamine. Benefit from the excellent characteristics of strong magnetic responsivity, super-hydrophilicity and abundant π-electron system, the prepared material showed great potential as a magnetic solid phase extraction (MSPE) sorbent. In this work, six kinds of phthalates (PAEs) were selected as the target analytes to evaluate the extraction ability of the adsorbents combined with MSPE-GC-MS. And various extraction parameters were optimized by selecting the pH value of samples, the amount of sorbents, adsorption and desorption time, the type and volume of eluting solution. Meanwhile, the whole extraction process could be finished in 30 min. Under the optimized conditions, validations of the method were evaluated as well. And the results presented excellent linearity with a wide range of 50-20,000 μg/L (R(2)>0.9991). The detection of limits were in the range from 0.05-5 μg/L (S/N=3). Therefore, the novel magnetic graphene@polydopamine composites were successfully used as the sorbents for the enrichment and analysis of PAEs in real water samples. This proposed method provided a simple, efficient and sensitive approach for the determination of aromatic compounds in real environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tran, L.; Parra, Macarena P.; Jung, J.; Boone, T.; Schonfeld, Julie; Almeida, Eduardo
2017-01-01
The NASA Ames WetLab-2 system was developed to offer new on-orbit gene expression analysis capabilities to ISS researchers and can be used to conduct on-orbit RNA isolation and quantitative real time PCR (RT-qPCR) analysis of gene expression from a wide range of biological samples ranging from microbes to mammalian tissues. On orbit validation included three quantitative PCR (qPCR) runs using an E. coli genomic DNA template pre-loaded at three different concentrations. The flight Ct values for the DNA standards showed no statistically significant differences relative to ground controls although there was increased noise in Ct curves, likely due to microgravity-related bubble retention in the optical windows. RNA was successfully purified from both E. coli and mouse liver samples and successfully generated singleplex, duplex and triplex data although with higher standard deviations than ground controls, also likely due to bubbles. Using volunteer science activities, a potential bubble reduction strategy was tested and resulted in smooth amplification curves and tighter Cts between replicates. The WetLab-2 validation experiment demonstrates a novel molecular biology workbench on ISS which allows scientists to purify and stabilize RNA, and to conduct RT-qPCR analyses on-orbit with rapid results. This novel ability is an important step towards utilizing ISS as a National Laboratory facility with the capability to conduct and adjust science experiments in real time without sample return, and opens new possibilities for rapid medical diagnostics and biological environmental monitoring on ISS.
Sung, Heungsup; Yong, Dongeun; Ki, Chang Seok; Kim, Jae Seok; Seong, Moon Woo; Lee, Hyukmin; Kim, Mi Na
2016-09-01
Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1-35.4 with the PK-DNase method, 34.7-39.0 with the PBS method, and 33.9-38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both P<0.0001). The PK-DNase method is suitable for homogenizing sputum samples prior to RNA extraction.
Yong, Dongeun; Ki, Chang-Seok; Kim, Jae-Seok; Seong, Moon-Woo; Lee, Hyukmin
2016-01-01
Background Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. Methods We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). Results While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1–35.4 with the PK-DNase method, 34.7–39.0 with the PBS method, and 33.9–38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both P<0.0001). Conclusions The PK-DNase method is suitable for homogenizing sputum samples prior to RNA extraction. PMID:27374711
Statistical scaling of geometric characteristics in stochastically generated pore microstructures
Hyman, Jeffrey D.; Guadagnini, Alberto; Winter, C. Larrabee
2015-05-21
In this study, we analyze the statistical scaling of structural attributes of virtual porous microstructures that are stochastically generated by thresholding Gaussian random fields. Characterization of the extent at which randomly generated pore spaces can be considered as representative of a particular rock sample depends on the metrics employed to compare the virtual sample against its physical counterpart. Typically, comparisons against features and/patterns of geometric observables, e.g., porosity and specific surface area, flow-related macroscopic parameters, e.g., permeability, or autocorrelation functions are used to assess the representativeness of a virtual sample, and thereby the quality of the generation method. Here, wemore » rely on manifestations of statistical scaling of geometric observables which were recently observed in real millimeter scale rock samples [13] as additional relevant metrics by which to characterize a virtual sample. We explore the statistical scaling of two geometric observables, namely porosity (Φ) and specific surface area (SSA), of porous microstructures generated using the method of Smolarkiewicz and Winter [42] and Hyman and Winter [22]. Our results suggest that the method can produce virtual pore space samples displaying the symptoms of statistical scaling observed in real rock samples. Order q sample structure functions (statistical moments of absolute increments) of Φ and SSA scale as a power of the separation distance (lag) over a range of lags, and extended self-similarity (linear relationship between log structure functions of successive orders) appears to be an intrinsic property of the generated media. The width of the range of lags where power-law scaling is observed and the Hurst coefficient associated with the variables we consider can be controlled by the generation parameters of the method.« less
Pine, Sharon R; Yin, Changhong; Matloub, Yousif H; Sabaawy, Hatem E; Sandoval, Claudio; Levendoglu-Tugal, Oya; Ozkaynak, M Fevzi; Jayabose, Somasundaram
2005-02-01
Accurate detection of central nervous system (CNS) involvement in children with newly diagnosed acute lymphoblastic leukemia (ALL) could have profound prognostic and therapeutic implications. We examined various cerebrospinal fluid (CSF) preservation methods to yield adequate DNA stability for polymerase chain reaction (PCR) analysis and developed a quantitative real-time PCR assay to detect occult CNS leukemia. Sixty CSF specimens were maintained in several storage conditions for varying amounts of time, and we found that preserving CSF in 1:1 serum-free RPMI tissue culture medium offers the best stability of DNA for PCR analysis. Sixty CSF samples (30 at diagnosis and 30 at the end of induction therapy) from 30 children with ALL were tested for CNS leukemic involvement by real-time PCR using patient-specific antigen receptor gene rearrangement primers. Six of thirty patient diagnosis samples were PCR-positive at levels ranging from 0.5 to 66% leukemic blasts in the CSF. Four of these patients had no clinical or cytomorphological evidence of CNS leukemia involvement at that time. All 30 CSF samples drawn at the end of induction therapy were PCR-negative. The data indicate that real-time PCR analysis of CSF is an excellent tool to assess occult CNS leukemia involvement in patients with ALL and can possibly be used to refine CNS status classification.
Pine, Sharon R.; Yin, Changhong; Matloub, Yousif H.; Sabaawy, Hatem E.; Sandoval, Claudio; Levendoglu-Tugal, Oya; Ozkaynak, M. Fevzi; Jayabose, Somasundaram
2005-01-01
Accurate detection of central nervous system (CNS) involvement in children with newly diagnosed acute lymphoblastic leukemia (ALL) could have profound prognostic and therapeutic implications. We examined various cerebrospinal fluid (CSF) preservation methods to yield adequate DNA stability for polymerase chain reaction (PCR) analysis and developed a quantitative real-time PCR assay to detect occult CNS leukemia. Sixty CSF specimens were maintained in several storage conditions for varying amounts of time, and we found that preserving CSF in 1:1 serum-free RPMI tissue culture medium offers the best stability of DNA for PCR analysis. Sixty CSF samples (30 at diagnosis and 30 at the end of induction therapy) from 30 children with ALL were tested for CNS leukemic involvement by real-time PCR using patient-specific antigen receptor gene rearrangement primers. Six of thirty patient diagnosis samples were PCR-positive at levels ranging from 0.5 to 66% leukemic blasts in the CSF. Four of these patients had no clinical or cytomorphological evidence of CNS leukemia involvement at that time. All 30 CSF samples drawn at the end of induction therapy were PCR-negative. The data indicate that real-time PCR analysis of CSF is an excellent tool to assess occult CNS leukemia involvement in patients with ALL and can possibly be used to refine CNS status classification. PMID:15681484
Rojas, Alejandra; Diagne, Cheikh T; Stittleburg, Victoria D; Mohamed-Hadley, Alisha; de Guillén, Yvalena Arévalo; Balmaseda, Angel; Faye, Oumar; Faye, Ousmane; Sall, Amadou A; Harris, Eva; Pinsky, Benjamin A; Waggoner, Jesse J
2018-04-02
The differential diagnosis of dengue virus (DENV) and yellow fever virus (YFV) infections in endemic areas is complicated by nonspecific early clinical manifestations. In this study, we describe an internally controlled, multiplex real-time reverse transcription PCR (rRT-PCR) for the detection of DENV and YFV. The DENV-YFV assay demonstrated specific detection and had a dynamic range of 2.0-8.0 log 10 copies/μL of eluate for each DENV serotype and YFV. Clinical performance was similar to a published pan-DENV assay: 48/48 acute-phase samples from dengue cases were detected in both assays. For YFV detection, mock samples were prepared with nine geographically diverse YFV isolates over a range of concentrations. The DENV-YFV assay detected 62/65 replicates, whereas 54/65 were detected using a reference YFV rRT-PCR. Given the reemergence of DENV and YFV in areas around the world, the DENV-YFV assay should be a useful tool to narrow the differential diagnosis and provide early case detection.
Rutter, A.P.; Hanford, K.L.; Zwers, J.T.; Perillo-Nicholas, A. L.; Schauer, J.J.; Olson, M.L.
2008-01-01
Reactive gaseous mercury (RGM) and particulate mercury (PHg) were collected in Milwaukee, WI, between April 2004 and May 2005, and in Riverside, CA, between July 25 and August 7, 2005 using sorbent and filter substrates. The substrates were analyzed for mercury by thermal desorption analysis (TDA) using a purpose-built instrument. Results from this offline-TDA method were compared with measurements using a real-time atmospheric mercury analyzer. RGM measurements made with the offline-TDA agreed well with a commercial real-time method. However, the offline TDA reported PHg concentrations 2.7 times higher than the real-time method, indicating evaporative losses might be occurring from the real-time instrument during sample collection. TDA combined with reactive mercury collection on filter and absorbent substrates was cheap, relatively easy to use, did not introduce biases due to a semicontinuous sample collection strategy, and had a dynamic range appropriate for use in rural and urban locations. The results of this study demonstrate that offline-TDA is a feasible method for collecting reactive mercury concentrations in a large network of filter-based samplers. Copyright 2008 Air & Waste Management Association.
Determination of Inorganic Ion Profiles of Illicit Drugs by Capillary Electrophoresis.
Evans, Elizabeth; Costrino, Carolina; do Lago, Claudimir L; Garcia, Carlos D; Roux, Claude; Blanes, Lucas
2016-11-01
A portable capillary electrophoresis instrument with dual capacitively coupled contactless conductivity detection (C 4 D) was used to determine the inorganic ionic profiles of three pharmaceutical samples and precursors of two illicit drugs (contemporary samples of methylone and para-methoxymethamphetamine). The LODs ranged from 0.10 μmol/L to 1.25 μmol/L for the 10 selected cations, and from 0.13 μmol/L to 1.03 μmol/L for the eight selected anions. All separations were performed in less than 6 min with migration times and peak area RSD values ranging from 2 to 7%. The results demonstrate the potential of the analysis of inorganic ionic species to aid in the identification and/or differentiation of unknown tablets, and real samples found in illicit drug manufacture scenarios. From the resulting ionic fingerprint, the unknown tablets and samples can be further classified. © 2016 American Academy of Forensic Sciences.
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
Sarquiz-Martínez, Brenda; González-Bonilla, César R; Santacruz-Tinoco, Clara Esperanza; Muñoz-Medina, José E; Pardavé-Alejandre, Héctor D; Barbosa-Cabrera, Elizabeth; Ramírez-González, José Ernesto; Díaz-Quiñonez, José Alberto
2017-01-01
Enterovirus (EV) and herpes simplex virus 1 and 2 (HSV1 and HSV2) are the main etiologic agents of central nervous system infections. Early laboratory confirmation of these infections is performed by viral culture of the cerebrospinal fluid (CSF), or the detection of specific antibodies in serum (e.g., HSV). The sensitivity of viral culture ranges from 65 to 75%, with a recovery time varying from 3 to 10 days. Serological tests are faster and easy to carry out, but they exhibit cross-reactivity between HSV1 and HSV2. Although molecular techniques are more sensitive (sensitivity >95%), they are more expensive and highly susceptible to cross-contamination. A real-time RT-PCR for the detection of EV, HSV1, and HSV2 was compared with end-point nested PCR. We tested 87 CSF samples of patients with a clinical diagnosis of viral meningitis or encephalitis. Fourteen samples were found to be positive by RT-PCR, but only 8 were positive by end-point PCR. The RT-PCR showed a specificity range of 94-100%, the negative predictive value was 100%, and the positive predictive value was 62, 100, and 28% for HSV1, HSV2, and EV, respectively. Real-time RT-PCR detected EV, HSV1, and HSV2 with a higher sensitivity and specificity than end-point nested RT-PCR. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Zhou, Zhiping; Ying, Haiqin; Liu, Yanyan; Xu, Wanzhen; Yang, Yanfei; Luan, Yu; Lu, Yi; Liu, Tianshu; Yu, Shui; Yang, Wenming
2017-05-01
This paper demonstrates a facile method to synthesize surface molecular imprinting polymer (MIP) on SiO2-coated CdTe QDs for selective detection of sulfadimidine (SM2). The fluorescent MIP sensor was prepared using cadmium telluride quantum dots (CdTe QDs) as the material of fluorescent signal readout, sulfadimidine as template molecule, 3-aminopropyltriethoxysilane (APTES) as functional monomer and tetraethyloxysilane (TEOS) as cross-linking agent. The CdTe cores were embed in the silicon shells by a sol-gel reaction and then the molecular imprinting layers were immobilized on the surface of the SiO2-coated CdTe QDs. Under the optimized conditions, the relative fluorescent intensity weakened in a linear way with the increasing concentration of sulfadimidine in the range of 10-60 μmol L-1. The practical application of the fluorescent MIP sensor was evaluated by means of analyzing sulfadimidine in the real milk samples. The recoveries were at the range of 90.3-99.6% and the relative standard deviation (RSD) ranged from 1.9 to 3.1%, which indicates the successful synthesis of the fluorescent MIP sensor. This sensor provides an alternative solution for selective determination of sulfadimidine from real milk samples.
Vojkovska, H; Kubikova, I; Kralik, P
2015-03-01
Epidemiological data indicate that raw vegetables are associated with outbreaks of Listeria monocytogenes. Therefore, there is a demand for the availability of rapid and sensitive methods, such as PCR assays, for the detection and accurate discrimination of L. monocytogenes. However, the efficiency of PCR methods can be negatively affected by inhibitory compounds commonly found in vegetable matrices that may cause false-negative results. Therefore, the sample processing and DNA isolation steps must be carefully evaluated prior to the introduction of such methods into routine practice. In this study, we compared the ability of three column-based and four magnetic bead-based commercial DNA isolation kits to extract DNA of the model micro-organism L. monocytogenes from raw vegetables. The DNA isolation efficiency of all isolation kits was determined using a triplex real-time qPCR assay designed to specifically detect L. monocytogenes. The kit with best performance, the PowerSoil(™) Microbial DNA Isolation Kit, is suitable for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. Coupled with the triplex real-time qPCR assay, this DNA isolation kit is applicable to the samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. Several recent outbreaks of Listeria monocytogenes have been associated with the consumption of fruits and vegetables. Real-time PCR assays allow fast detection and accurate quantification of microbes. However, the success of real-time PCR is dependent on the success with which template DNA can be extracted. The results of this study suggest that the PowerSoil(™) Microbial DNA Isolation Kit can be used for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. This method is applicable to samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. © 2014 The Society for Applied Microbiology.
Dwivedi, Prabha; Gazda, Daniel B; Keelor, Joel D; Limero, Thomas F; Wallace, William T; Macatangay, Ariel V; Fernández, Facundo M
2013-10-15
The development of a direct analysis in real time-mass spectrometry (DART-MS) method and first prototype vaporizer for the detection of low molecular weight (∼30-100 Da) contaminants representative of those detected in water samples from the International Space Station is reported. A temperature-programmable, electro-thermal vaporizer (ETV) was designed, constructed, and evaluated as a sampling interface for DART-MS. The ETV facilitates analysis of water samples with minimum user intervention while maximizing analytical sensitivity and sample throughput. The integrated DART-ETV-MS methodology was evaluated in both positive and negative ion modes to (1) determine experimental conditions suitable for coupling DART with ETV as a sample inlet and ionization platform for time-of-flight MS, (2) to identify analyte response ions, (3) to determine the detection limit and dynamic range for target analyte measurement, and (4) to determine the reproducibility of measurements made with the method when using manual sample introduction into the vaporizer. Nitrogen was used as the DART working gas, and the target analytes chosen for the study were ethyl acetate, acetone, acetaldehyde, ethanol, ethylene glycol, dimethylsilanediol, formaldehyde, isopropanol, methanol, methylethyl ketone, methylsulfone, propylene glycol, and trimethylsilanol.
Benefits of aggregates surface modification in concrete production
NASA Astrophysics Data System (ADS)
Junak, J.; Sicakova, A.
2017-10-01
In our study, recycled concrete aggregates (RCA), which surfaces had been modified by geopolymer material based on coal fly ash, were used to produce the concrete samples. In these samples, fraction 4/8 mm was replaced by recycled concrete aggregate with a range of 100%. To modify the surface of RCA was “Solo” and “Triple stage” modification used. On these samples real density, total water absorption and compressive strength were examined after 28, 90, 180 and 365 days of hardening. The highest compressive strength 56.8 MPa, after 365 days hardening, reached sample which had improved RCA surface by “Triple stage mixing”.
Lee, Jun-Young; Kim, Seok Won; Kim, Dong-Min; Yun, Na Ra; Kim, Choon-Mee; Lee, Sang-Hong
2017-08-01
Vibrio vulnificus is a halophilic gram-negative bacillus isolated in seawater, fish, and shellfish. Infection by V. vulnificus is the most severe food-borne infection reported in the United States of America. Here, we aimed to examine the clinical usefulness of polymerase chain reaction (PCR) using tissue specimens other than blood samples as a diagnostic tool for V. vulnificus infection. A retrospective study was conducted with patients who underwent real-time PCR of toxR in both blood and skin tissues, including serum, bullae, swab, and operation room specimens, between 2006 and 2009. The median V. vulnificus DNA load of 14 patients in real-time PCR analysis of serum at the time of admission was 638.5 copies/mL blood, which was within the interquartile range (IQR: 37-3,225). In contrast, the median value by real-time PCR using the first tissue specimen at the time of admission was 16,650 copies/mL tissue fluid (IQR: 4,419-832,500). This difference was statistically significant ( P = 0.022). DNA copy numbers in tissues were less affected by short-term antibiotic administration than that in blood samples, and antibiotic administration increased the DNA copy number in some patients. We found, for the first time, that DNA copy numbers in tissues of patients infected by V. vulnificus were higher than those in blood samples. Additionally, skin lesions were more useful than blood samples as specimens for PCR analysis in patients administered antibiotics for V. vulnificus infection before admission.
NASA Astrophysics Data System (ADS)
Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico
2017-04-01
Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with theoretical expectations. We calculate the r0-d relation up to our highest mass, highest redshift sample tested (z = 2,Mhalo > 2 × 1014h-1M⊙). From our pilot sample limited to Mhalo > 5 × 1013h-1M⊙(0.4 < z < 0.7), we find that the real-space correlation function can be recovered by deprojection of wp(rp) within an accuracy of 5% for σz = 0.001 × (1 + zc) and within 10% for σz = 0.03 × (1 + zc). For higher dispersions (besides σz > 0.05 × (1 + zc)), the recovery becomes noisy and difficult. The evolution of the correlation in redshift and mass is clearly detected for all σz tested, but requires a large binning in redshift to be detected significantly between individual redshift slices when increasing σz. The best-fit parameters (r0 and γ) as well as the bias obtained from the deprojection method for all σz are within the 1σ uncertainty of the zc sample.
Sample introducing apparatus and sample modules for mass spectrometer
Thompson, Cyril V.; Wise, Marcus B.
1993-01-01
An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.
Salvetti, David J.; Pino, Christopher J.; Manuel, Steven G.; Dallmeyer, Ian; Rangarajan, Sanjeet V.; Meyer, Tobias; Kotov, Misha
2012-01-01
Mechanical stimulation has been shown to impact the properties of engineered hyaline cartilage constructs and is relevant for engineering of cartilage and osteochondral tissues. Most mechanical stimulators developed to date emphasize precision over adaptability to standard tissue culture equipment and protocols. The realization of mechanical characteristics in engineered constructs approaching native cartilage requires the optimization of complex variables (type of stimulus, regimen, and bimolecular signals). We have proposed and validated a stimulator design that focuses on high construct capacity, compatibility with tissue culture plastic ware, and regimen adaptability to maximize throughput. This design utilizes thin force sensors in lieu of a load cell and a linear encoder to verify position. The implementation of an individual force sensor for each sample enables the measurement of Young's modulus while stimulating the sample. Removable and interchangeable Teflon plungers mounted using neodymium magnets contact each sample. Variations in plunger height and design can vary the strain and force type on individual samples. This allows for the evaluation of a myriad of culture conditions and regimens simultaneously. The system was validated using contact accuracy, and Young's modulus measurements range as key parameters. Contact accuracy for the system was excellent within 1.16% error of the construct height in comparison to measurements made with a micrometer. Biomaterials ranging from bioceramics (cancellous bone, 123 MPa) to soft gels (1% agarose, 20 KPa) can be measured without any modification to the device. The accuracy of measurements in conjunction with the wide range of moduli tested demonstrate the unique characteristics of the device and the feasibility of using this device in mapping real-time changes to Young's modulus of tissue constructs (cartilage, bone) through the developmental phases in ex vivo culture conditions. PMID:21988089
de Morais, Rayana Carla Silva; da Costa Oliveira, Cintia Nascimento; de Albuquerque, Suênia da Cunha Gonçalves; Mendonça Trajano Silva, Lays Adrianne; Pessoa-E-Silva, Rômulo; Alves da Cruz, Heidi Lacerda; de Brito, Maria Edileuza Felinto; de Paiva Cavalcanti, Milena
2016-06-01
Cutaneous leishmaniasis (CL) is a parasitic disease caused by various Leishmania species. Several studies have shown that real time quantitative PCR (qPCR) can be used for Leishmania spp. identification by analyzing the melting temperature (Tm). Thus, the aim of this study was to evaluate the viability of qPCR for differentiating eight closely related Leishmania species that cause the same clinical form of the disease and to compare the results with classical techniques. qPCR assays for standardizing the Tm using reference strains were performed. After the CL diagnosis on blood samples of domestic animals, positive samples were analyzed by their Tm and qPCR products were purified and sequenced. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by Tm. A Restriction Fragment Length Polymorphism (RFLP) assay, a reference test, was also standardized, by using the reference strains. Through standardization of Tm for Leishmania spp., two Tm ranges were created for analysis: 1 (Tm = 78-79.99 °C) included Leishmania (V.) braziliensis, Leishmania (V.) panamensis, Leishmania (V.) lainsoni, Leishmania (V.) guyanensis and Leishmania (V.) shawi; and 2 (Tm = 80-82.2 °C) included Leishmania (V.) naiffi, Leishmania (L.) amazonensis and Leishmania (L.) mexicana. A total of 223 positive blood samples were analyzed, with 58 included in range 1 and 165 in range 2. L. (V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis were identified by sequencing, while L. (V.) braziliensis, L. (L.) mexicana and L. (V.) panamensis were identified by RFLP analysis. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by qPCR Tm analysis; five were classified in range 1 and five in range 2. A concordance of 80% was calculated between qPCR and the gold-standard (MLEE) with no significant difference between the methods (p = 0.6499); a similar result was observed for sequencing and qPCR (p = 0.2566). In contrast, a highly significant difference was observed for qPCR and RFLP (p < 0.001). In this study, we demonstrated the potential use of qPCR as a tool for Leishmania species identification using two Tm ranges. Copyright © 2016 Elsevier Inc. All rights reserved.
Portable instrument and method for detecting reduced sulfur compounds in a gas
Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.
1983-06-01
A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-12-14
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.
Functional Grammar in the ESL Classroom: Noticing, Exploring and Practicing
ERIC Educational Resources Information Center
Lock, Graham; Jones, Rodney
2011-01-01
A set of easy to use techniques helps students discover for themselves how grammar works in real world contexts and how grammatical choices are not just about form but about meaning. Sample teaching ideas, covering a wide range of grammatical topics including verb tense, voice, reference and the organization of texts, accompanies each procedure.…
Snyder, Jessica L; Giese, Heidi; Bandoski-Gralinski, Cheryl; Townsend, Jessica; Jacobson, Beck E; Shivers, Robert; Schotthoefer, Anna M; Fritsche, Thomas R; Green, Clayton; Callister, Steven M; Branda, John A; Lowery, Thomas J
2017-08-01
In early Lyme disease (LD), serologic testing is insensitive and seroreactivity may reflect active or past infection. In this study, we evaluated a novel assay for the direct detection of three species of Borrelia spirochetes in whole blood. The T2 magnetic resonance (T2MR) assay platform was used to amplify Borrelia DNA released from intact spirochetes and to detect amplicon. Analytical sensitivity was determined from blood spiked with known concentrations of spirochetes, and the assay's limit of detection was found to be in the single-cell-per-milliliter range: 5 cells/ml for B. afzelii and 8 cells/ml for Borrelia burgdorferi and Borrelia garinii Clinical samples ( n = 66) from confirmed or suspected early LD patients were also analyzed. B. burgdorferi was detected using T2MR in 2/2 (100%) of blood samples from patients with confirmed early LD, based on the presence of erythema migrans and documentation of seroconversion or a positive real-time blood PCR. T2MR detected B. burgdorferi in blood samples from 17/54 (31%) of patients with probable LD, based on the presence of erythema migrans without documented seroconversion or of documented seroconversion in patients with a compatible clinical syndrome but without erythema migrans. Out of 21 clinical samples tested by real-time PCR, only 1 was positive and 13 were negative with agreement with T2MR. An additional 7 samples that were negative by real-time PCR were positive with T2MR. Therefore, T2MR enables a low limit of detection (LoD) for Borrelia spp. in whole blood samples and is able to detect B. burgdorferi in clinical samples. Copyright © 2017 American Society for Microbiology.
Giese, Heidi; Bandoski-Gralinski, Cheryl; Townsend, Jessica; Jacobson, Beck E.; Shivers, Robert; Schotthoefer, Anna M.; Fritsche, Thomas R.; Green, Clayton; Callister, Steven M.; Branda, John A.
2017-01-01
ABSTRACT In early Lyme disease (LD), serologic testing is insensitive and seroreactivity may reflect active or past infection. In this study, we evaluated a novel assay for the direct detection of three species of Borrelia spirochetes in whole blood. The T2 magnetic resonance (T2MR) assay platform was used to amplify Borrelia DNA released from intact spirochetes and to detect amplicon. Analytical sensitivity was determined from blood spiked with known concentrations of spirochetes, and the assay's limit of detection was found to be in the single-cell-per-milliliter range: 5 cells/ml for B. afzelii and 8 cells/ml for Borrelia burgdorferi and Borrelia garinii. Clinical samples (n = 66) from confirmed or suspected early LD patients were also analyzed. B. burgdorferi was detected using T2MR in 2/2 (100%) of blood samples from patients with confirmed early LD, based on the presence of erythema migrans and documentation of seroconversion or a positive real-time blood PCR. T2MR detected B. burgdorferi in blood samples from 17/54 (31%) of patients with probable LD, based on the presence of erythema migrans without documented seroconversion or of documented seroconversion in patients with a compatible clinical syndrome but without erythema migrans. Out of 21 clinical samples tested by real-time PCR, only 1 was positive and 13 were negative with agreement with T2MR. An additional 7 samples that were negative by real-time PCR were positive with T2MR. Therefore, T2MR enables a low limit of detection (LoD) for Borrelia spp. in whole blood samples and is able to detect B. burgdorferi in clinical samples. PMID:28566314
Kim, Myeong Hee; Cha, Choong Hwan; An, Dongheui; Choi, Sung Eun; Oh, Heung Bum
2008-04-01
Hepatitis B virus (HBV) DNA quantification is necessary for starting and monitoring of antiviral therapy in patients with chronic hepatitis B. This study was intended to assess the clinical performance of Abbott RealTime HBV Quantification kit (Abbott Laboratories, USA). The performance was evaluated in terms of precision, linearity, detection sensitivity, cross-reactivity, and carry-over. A correlation with the Real-Q HBV Quantification kit (BioSewoom Inc., Korea) was also examined using serum samples from 64 patients diagnosed with chronic hepatitis B and underwent lamivudine therapy in Asan Medical Center. We verified the trueness of the system by comparing the outputs with the assigned values of the BBI panel (BBI Diagnostics, USA). Within-run and between-run coefficients of variation (CV) were 3.56-4.71% and 3.03-4.98%, respectively. Linearity was manifested ranging from 53 to 10(9)copies/mL and the detection sensitivity was verified to be 51 copies/mL. None of hepatitis C virus showed cross-reactivity. No cross-contamination occurred when negative and positive samples were alternatively placed in a row. It showed a good correlation with the Real-Q HBV (r(2)=0.9609) and the test results for the BBI panel were also well agreed to the assigned values (r(2)=0.9933). The performance of Abbott RealTime HBV Quantification kit was excellent; thus, it should be widely used in starting and monitoring of antiviral therapy in Korean patients with chronic hepatitis B.
Noncontact true temperature measurement. [of levitated sample using laser pyrometer
NASA Technical Reports Server (NTRS)
Lee, Mark C.; Allen, James L.
1987-01-01
A laser pyrometer has been developed for acquiring the true temperature of a levitated sample. The laser beam is first expanded to cover the entire cross-sectional surface of the target. For calibration of such a system, the reflectivity signal of an ideal 0.95 cm diameter gold-coated sphere (reflectivity = 0.99) is used as the reference for any other real targets. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of a blackbody furnace (emissivity = 1.0) at a known, arbitrary temperature. Since the photo sensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. Preliminary results indicate that true temperatures thus obtained are in excellent correlation with thermocouple measured temperatures.
Fast exposure time decision in multi-exposure HDR imaging
NASA Astrophysics Data System (ADS)
Piao, Yongjie; Jin, Guang
2012-10-01
Currently available imaging and display system exists the problem of insufficient dynamic range, and the system cannot restore all the information for an high dynamic range (HDR) scene. The number of low dynamic range(LDR) image samples and fastness of exposure time decision impacts the real-time performance of the system dramatically. In order to realize a real-time HDR video acquisition system, this paper proposed a fast and robust method for exposure time selection in under and over exposure area which is based on system response function. The method utilized the monotony of the imaging system. According to this characteristic the exposure time is adjusted to an initial value to make the median value of the image equals to the middle value of the system output range; then adjust the exposure time to make the pixel value on two sides of histogram be the middle value of the system output range. Thus three low dynamic range images are acquired. Experiments show that the proposed method for adjusting the initial exposure time can converge in two iterations which is more fast and stable than average gray control method. As to the exposure time adjusting in under and over exposed area, the proposed method can use the dynamic range of the system more efficiently than fixed exposure time method.
NASA Astrophysics Data System (ADS)
Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Matsukawa, Takeshi; Takida, Yuma; Minamide, Hiroaki
2014-03-01
Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and arts. In this letter, we report on real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal. The active projection-imaging system consisted of (1) THz wave generation, (2) THz-near-infrared hybrid optics, (3) THz wave up-conversion, and (4) an InGaAs camera working at 60 frames per second. The pumping laser system consisted of two optical parametric oscillators pumped by a nano-second frequency-doubled Nd:YAG laser. THz-wave images of handmade samples at 19.3 THz were taken, and videos of a sample moving and a ruler stuck with a black polyethylene film moving were supplied online to show real-time ability. Thanks to the high speed and high responsivity of this technology, real-time THz imaging with a higher signal-to-noise ratio than a commercially available THz micro-bolometer camera was proven to be feasible. By changing the phase-matching condition, i.e., by changing the wavelength of the pumping laser, we suggest THz imaging with a narrow THz frequency band of interest in a wide range from approximately 2 to 30 THz is possible.
Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel
Hietala, S. K.; Crossley, B. M.
2006-01-01
In recent years testing responsibilities for high-consequence pathogens have been expanded from national reference laboratories into networks of local and regional laboratories in order to support enhanced disease surveillance and to test for surge capacity. This movement of testing of select agents and high-consequence pathogens beyond reference laboratories introduces a critical need for standardized, noninfectious surrogates of disease agents for use as training and proficiency test samples. In this study, reverse transcription-PCR assay RNA targets were developed and packaged as armored RNA for use as a noninfectious, quantifiable synthetic substitute for four high-consequence animal pathogens: classical swine fever virus; foot-and-mouth disease virus; vesicular stomatitis virus, New Jersey serogroup; and vesicular stomatitis virus, Indiana serogroup. Armored RNA spiked into oral swab fluid specimens mimicked virus-positive clinical material through all stages of the reverse transcription-PCR testing process, including RNA recovery by four different commercial extraction procedures, reverse transcription, PCR amplification, and real-time detection at target concentrations consistent with the dynamic ranges of the existing real-time PCR assays. The armored RNA concentrations spiked into the oral swab fluid specimens were stable under storage conditions selected to approximate the extremes of time and temperature expected for shipping and handling of proficiency panel samples, including 24 h at 37°C and 2 weeks at temperatures ranging from ambient room temperature to −70°C. The analytic test performance, including the reproducibility over the dynamic range of the assays, indicates that armored RNA can provide a noninfectious, quantifiable, and stable virus surrogate for specific assay training and proficiency test purposes. PMID:16390950
MS-BWME: A Wireless Real-Time Monitoring System for Brine Well Mining Equipment
Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan
2014-01-01
This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications. PMID:25340455
Failure to Replicate a Genetic Association May Provide Important Clues About Genetic Architecture
Greene, Casey S.; Penrod, Nadia M.; Williams, Scott M.; Moore, Jason H.
2009-01-01
Replication has become the gold standard for assessing statistical results from genome-wide association studies. Unfortunately this replication requirement may cause real genetic effects to be missed. A real result can fail to replicate for numerous reasons including inadequate sample size or variability in phenotype definitions across independent samples. In genome-wide association studies the allele frequencies of polymorphisms may differ due to sampling error or population differences. We hypothesize that some statistically significant independent genetic effects may fail to replicate in an independent dataset when allele frequencies differ and the functional polymorphism interacts with one or more other functional polymorphisms. To test this hypothesis, we designed a simulation study in which case-control status was determined by two interacting polymorphisms with heritabilities ranging from 0.025 to 0.4 with replication sample sizes ranging from 400 to 1600 individuals. We show that the power to replicate the statistically significant independent main effect of one polymorphism can drop dramatically with a change of allele frequency of less than 0.1 at a second interacting polymorphism. We also show that differences in allele frequency can result in a reversal of allelic effects where a protective allele becomes a risk factor in replication studies. These results suggest that failure to replicate an independent genetic effect may provide important clues about the complexity of the underlying genetic architecture. We recommend that polymorphisms that fail to replicate be checked for interactions with other polymorphisms, particularly when samples are collected from groups with distinct ethnic backgrounds or different geographic regions. PMID:19503614
Lingala, Sajan Goud; Zhu, Yinghua; Lim, Yongwan; Toutios, Asterios; Ji, Yunhua; Lo, Wei-Ching; Seiberlich, Nicole; Narayanan, Shrikanth; Nayak, Krishna S
2017-12-01
To evaluate the feasibility of through-time spiral generalized autocalibrating partial parallel acquisition (GRAPPA) for low-latency accelerated real-time MRI of speech. Through-time spiral GRAPPA (spiral GRAPPA), a fast linear reconstruction method, is applied to spiral (k-t) data acquired from an eight-channel custom upper-airway coil. Fully sampled data were retrospectively down-sampled to evaluate spiral GRAPPA at undersampling factors R = 2 to 6. Pseudo-golden-angle spiral acquisitions were used for prospective studies. Three subjects were imaged while performing a range of speech tasks that involved rapid articulator movements, including fluent speech and beat-boxing. Spiral GRAPPA was compared with view sharing, and a parallel imaging and compressed sensing (PI-CS) method. Spiral GRAPPA captured spatiotemporal dynamics of vocal tract articulators at undersampling factors ≤4. Spiral GRAPPA at 18 ms/frame and 2.4 mm 2 /pixel outperformed view sharing in depicting rapidly moving articulators. Spiral GRAPPA and PI-CS provided equivalent temporal fidelity. Reconstruction latency per frame was 14 ms for view sharing and 116 ms for spiral GRAPPA, using a single processor. Spiral GRAPPA kept up with the MRI data rate of 18ms/frame with eight processors. PI-CS required 17 minutes to reconstruct 5 seconds of dynamic data. Spiral GRAPPA enabled 4-fold accelerated real-time MRI of speech with a low reconstruction latency. This approach is applicable to wide range of speech RT-MRI experiments that benefit from real-time feedback while visualizing rapid articulator movement. Magn Reson Med 78:2275-2282, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Development of VIS/NIR spectroscopic system for real-time prediction of fresh pork quality
NASA Astrophysics Data System (ADS)
Zhang, Haiyun; Peng, Yankun; Zhao, Songwei; Sasao, Akira
2013-05-01
Quality attributes of fresh meat will influence nutritional value and consumers' purchasing power. The aim of the research was to develop a prototype for real-time detection of quality in meat. It consisted of hardware system and software system. A VIS/NIR spectrograph in the range of 350 to 1100 nm was used to collect the spectral data. In order to acquire more potential information of the sample, optical fiber multiplexer was used. A conveyable and cylindrical device was designed and fabricated to hold optical fibers from multiplexer. High power halogen tungsten lamp was collected as the light source. The spectral data were obtained with the exposure time of 2.17ms from the surface of the sample by press down the trigger switch on the self-developed system. The system could automatically acquire, process, display and save the data. Moreover the quality could be predicted on-line. A total of 55 fresh pork samples were used to develop prediction model for real time detection. The spectral data were pretreated with standard normalized variant (SNV) and partial least squares regression (PLSR) was used to develop prediction model. The correlation coefficient and root mean square error of the validation set for water content and pH were 0.810, 0.653, and 0.803, 0.098 respectively. The research shows that the real-time non-destructive detection system based on VIS/NIR spectroscopy can be efficient to predict the quality of fresh meat.
Li, Xianjiang; Wang, Xin; Ma, Wen; Ai, Wanpeng; Bai, Yu; Ding, Li; Liu, Huwei
2017-04-01
Glycosides are a kind of highly important natural aromatic precursors in tobacco leaves. In this study, a novel HKUST-1-coated monolith dip-it sampler was designed for the fast and sensitive analysis of trace glycosides using direct analysis in real-time mass spectrometry. This device was prepared in two steps: in situ polymerization of monolith in a glass capillary of dip-it and layer-by-layer growth of HKUST-1 on the surface of monolith. Sufficient extraction was realized by immersing the tip to solution and in situ desorption was carried out by plasma direct analysis in real time. Compared with traditional solid-phase microextraction protocols, sample desorption was not needed anymore, and only extraction conditions were needed to be optimized in this method, including the gas temperature of direct analysis in real time, extraction time, and CH 3 COONH 4 additive concentration. This method enabled the simultaneous detection of six kinds of glycosides with the limits of detection of 0.02-0.05 μg/mL and the linear ranges covering two orders of magnitude with the limits of quantitation of 0.05-0.1 μg/mL. Moreover, the developed method was applied for the glycosides analysis of three tobacco samples, which only took about 2 s for every sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Near-real-time mosaics from high-resolution side-scan sonar
Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.
1991-01-01
High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.
Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk
2006-02-01
A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.
Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël
2013-06-01
How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.
Hurtaud-Pessel, D; Jagadeshwar-Reddy, T; Verdon, E
2011-10-01
A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was developed for screening meat for a wide range of antibiotics used in veterinary medicine. Full-scan mode under high resolution mass spectral conditions using an LTQ-Orbitrap mass spectrometer with resolving power 60,000 full width at half maximum (FWHM) was applied for analysis of the samples. Samples were prepared using two extraction protocols prior to LC-HRMS analysis. The scope of the method focuses on screening the following main families of antibacterial veterinary drugs: penicillins, cephalosporins, sulfonamides, macrolides, tetracyclines, aminoglucosides and quinolones. Compounds were successfully identified in spiked samples from their accurate mass and LC retention times from the acquired full-scan chromatogram. Automated data processing using ToxId software allowed rapid treatment of the data. Analyses of muscle tissues from real samples collected from antibiotic-treated animals was carried out using the above methodology and antibiotic residues were identified unambiguously. Further analysis of the data for real samples allowed the identification of the targeted antibiotic residues but also non-targeted compounds, such as some of their metabolites.
Sam, Soya S; Kurpewski, Jaclynn R; Cu-Uvin, Susan; Caliendo, Angela M
2016-04-01
Quantification of HIV-1 RNA has become the standard of care in the clinical management of HIV-1-infected individuals. The objective of this study was to evaluate performance characteristics and relative workflow of the Aptima HIV-1 Quant Dx assay in comparison with the Abbott RealTime HIV-1 assay using plasma and cervicovaginal lavage (CVL) specimens. Assay performance was evaluated by using an AcroMetrix HIV-1 panel, AcroMetrix positive controls, Qnostics and SeraCare HIV-1 evaluation panels, 208 clinical plasma samples, and 205 matched CVL specimens on the Panther and m2000 platforms. The Aptima assay demonstrated good linearity over the quantification range tested (2 to 5 log10copies/ml), and there was strong linear correlation between the assays (R(2)= 0.99), with a comparable coefficient of variance of <5.5%. For the plasma samples, Deming regression analyses and Bland-Altman plots showed excellent agreement between the assays, with an interassay concordance of 91.35% (kappa = 0.75; 95% confidence interval [CI], 0.65 to 0.85), and on average, the viral loads determined by the Aptima assay were 0.21 log10copies/ml higher than those determined by the RealTime assay. The assays differed in their sensitivity for quantifying HIV-1 RNA loads in CVL samples, with the Aptima and RealTime assays detecting 30% and 20%, respectively. Aptima had fewer invalid results, and on average, the viral loads in CVL samples quantified by the Aptima assay were 0.072 log10copies/ml higher than those of the RealTime assay. Our results demonstrate that the Aptima assay is sensitive and accurate in quantifying viral loads in both plasma and CVL specimens and that the fully automated Panther system has all the necessary features suitable for clinical laboratories demanding high-throughput sample processing. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kurpewski, Jaclynn R.; Cu-Uvin, Susan; Caliendo, Angela M.
2016-01-01
Quantification of HIV-1 RNA has become the standard of care in the clinical management of HIV-1-infected individuals. The objective of this study was to evaluate performance characteristics and relative workflow of the Aptima HIV-1 Quant Dx assay in comparison with the Abbott RealTime HIV-1 assay using plasma and cervicovaginal lavage (CVL) specimens. Assay performance was evaluated by using an AcroMetrix HIV-1 panel, AcroMetrix positive controls, Qnostics and SeraCare HIV-1 evaluation panels, 208 clinical plasma samples, and 205 matched CVL specimens on the Panther and m2000 platforms. The Aptima assay demonstrated good linearity over the quantification range tested (2 to 5 log10 copies/ml), and there was strong linear correlation between the assays (R2 = 0.99), with a comparable coefficient of variance of <5.5%. For the plasma samples, Deming regression analyses and Bland-Altman plots showed excellent agreement between the assays, with an interassay concordance of 91.35% (kappa = 0.75; 95% confidence interval [CI], 0.65 to 0.85), and on average, the viral loads determined by the Aptima assay were 0.21 log10 copies/ml higher than those determined by the RealTime assay. The assays differed in their sensitivity for quantifying HIV-1 RNA loads in CVL samples, with the Aptima and RealTime assays detecting 30% and 20%, respectively. Aptima had fewer invalid results, and on average, the viral loads in CVL samples quantified by the Aptima assay were 0.072 log10 copies/ml higher than those of the RealTime assay. Our results demonstrate that the Aptima assay is sensitive and accurate in quantifying viral loads in both plasma and CVL specimens and that the fully automated Panther system has all the necessary features suitable for clinical laboratories demanding high-throughput sample processing. PMID:26842702
Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun
2011-08-01
Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.
Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad
2013-10-01
A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98-532.72 ng mL(-1), with the minimum detection limit of 1.73-1.79 ng mL(-1) (S/N=3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL(-1)) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Copyright © 2013 Elsevier B.V. All rights reserved.
Sample introducing apparatus and sample modules for mass spectrometer
Thompson, C.V.; Wise, M.B.
1993-12-21
An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.
Real-Life Impact of Executive Function Impairments in Adults Who Were Born Very Preterm.
Kroll, Jasmin; Karolis, Vyacheslav; Brittain, Philip J; Tseng, Chieh-En Jane; Froudist-Walsh, Sean; Murray, Robin M; Nosarti, Chiara
2017-05-01
Children and adolescents who were born very preterm (≤32 weeks' gestation) are vulnerable to experiencing cognitive problems, including in executive function. However, it remains to be established whether cognitive deficits are evident in adulthood and whether these exert a significant effect on an individual's real-lifeachievement. Using a cross-sectional design, we tested a range of neurocognitive abilities, with a focus on executive function, in a sample of 122 very preterm individuals and 89 term-born controls born between 1979 and 1984. Associations between executive function and a range of achievement measures, indicative of a successful transition to adulthood, were examined. Very preterm adults performed worse compared to controls on measures of intellectual ability and executive function with moderate to large effect sizes. They also demonstrated significantly lower achievement levels in terms of years spent in education, employment status, and on a measure of functioning in work and social domains. Results of regression analysis indicated a stronger positive association between executive function and real-life achievement in the very preterm group compared to controls. Very preterm born adults demonstrate executive function impairments compared to full-term controls, and these are associated with lower achievement in several real-life domains. (JINS, 2017, 23, 381-389).
NASA Astrophysics Data System (ADS)
Kazachevskii, I. V.; Lukashenko, S. N.; Chumikov, G. N.; Chakrova, E. T.; Smirin, L. N.; Solodukhin, V. P.; Khayekber, S.; Berdinova, N. M.; Ryazanova, L. A.; Bannyh, V. I.; Muratova, V. M.
1999-01-01
The results of combined radiochemical procedure for the determination of plutonium, americium and90Sr (via measurement of90Y) in the soil samples from SNTS are presented. The processes of co-precipitation of these nuclides with calcium fluoride in the strong acid solutions have been investigated. The conditions for simultaneous separation of americium and yttrium using extraction chromatography have been studied. It follows from analyses of real soil samples that the procedure developed provides the chemical recovery of plutonium and yttrium in the range of 50-95% and 60-95%, respectively. The execution of the procedure requires 3.5 working days including a sample decomposition study.
Jastrzembski, Jillian A; Bee, Madeleine Y; Sacks, Gavin L
2017-10-25
Ambient ionization mass spectrometric (AI-MS) techniques like direct analysis in real time (DART) offer the potential for rapid quantitative analyses of trace volatiles in food matrices, but performance is generally limited by the lack of preconcentration and extraction steps. The sensitivity and selectivity of AI-MS approaches can be improved through solid-phase microextraction (SPME) with appropriate thin-film geometries, for example, solid-phase mesh-enhanced sorption from headspace (SPMESH). This work improves the SPMESH-DART-MS approach for use in food analyses and validates the approach for trace volatile analysis for two compounds in real samples (grape macerates). SPMESH units prepared with different sorbent coatings were evaluated for their ability to extract a range of odor-active volatiles, with poly(dimethylsiloxane)/divinylbenzene giving the most satisfactory results. In combination with high-resolution mass spectrometry (HRMS), detection limits for SPMESH-DART-MS under 4 ng/L in less than 30 s acquisition times could be achieved for some volatiles [3-isobutyl-2-methoxypyrazine (IBMP) and β-damascenone]. A comparison of SPMESH-DART-MS and SPME-GC-MS quantitation of linalool and IBMP demonstrates excellent agreement between the two methods for real grape samples (r 2 ≥ 0.90), although linalool measurements appeared to also include isobaric interference.
Robertson, J.F.; Nagle, Douglas D.; Rhodes, Liesl C.
1994-01-01
Investigations to provide initial qualitative delineation of petroleum hydrocarbon contamination at three former underground storage tank locations at Fort Jackson, South Carolina, were made during March 1994. Ground-water and sediment samples were collected using direct-push technology and analyzed on-site with a gas chromatograph, which provided real-time, semi-quantitative data. In addition, ground-water and sediment samples were collected at selected sites for laboratory analyses to provide a confirmation of the on-site data. These analyses provided qualitative data on the lateral distri- bution of petroleum hydrocarbons. Petroleum hydrocarbons were detected by on-site analysis in ground-water samples from nine locations at Site 1062, suggesting the presence of a contaminant plume. Concentrations ranged from less than the minimum detection limit to 4,511 mg/L (micrograms per liter) for benzene, 15,594 mg/L for toluene, 16,501 mg/L for ethylbenzene, and 19,391 mg/L for total xylenes. Concentrations of Total Petroleum Hydrocarbons-Gasoline Range Organics ranged from 323 mg/L to 3,364 mg/L; Total Petroleum Hydrocarbons-Diesel Range Organics were not detected. Three samples from this site were analyzed for benzene, toluene, ethylbenzene, and total xylenes at a laboratory and results showed concentrations ranging from less than the minimum detection limit to 1,070 mg/L for benzene, 7,930 mg/L for toluene, 6,890 mg/L for ethylbenzene, and 1,524 mg/L for total xylenes. Petroleum hydro- carbons were detected by on-site analysis in only one sample at Site 2438. A concentration of 131,000 micrograms per kilogram Total Petroleum Hydrocarbons-Diesel Range Organics was detected in sample number GP-2-4-13.5. Petroleum hydrocarbons were detected by on-site analysis in only one ground-water sample from Site 2444. A concentration of 3,145 mg/L Total Petroleum Hydrocarbons-Gasoline Range Organics was detected at sampling location GP-3-2.
Chen, Suming; Zheng, Huzhi; Wang, Jianing; Hou, Jian; He, Qing; Liu, Huihui; Xiong, Caiqiao; Kong, Xianglei; Nie, Zongxiu
2013-07-16
Carbon nanodots were applied for the first time as a new matrix for the analysis of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in both positive- and negative-ion modes. A wide range of small molecules including amino acids, peptides, fatty acids, as well as β-agonists and neutral oligosaccharides were analyzed by MALDI MS with carbon nanodots as the matrix, and the lowest 0.2 fmol limits-of-detection were obtained for octadecanoic acid. Clear sodium and potassium adducts and deprotonated signals were produced in positive- and negative-ion modes. Furthermore, the glucose and uric acid in real samples were quantitatively determined by the internal standard method with the linear range of 0.5-9 mM and 0.1-1.8 mM (R(2) > 0.999), respectively. This work gives new insight into the application of carbon nanodots and provides a general approach for rapid analysis of low-molecular-weight compounds.
Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.
Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella
2010-08-21
Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.
Silva, Raquel V S; Tessarolo, Nathalia S; Pereira, Vinícius B; Ximenes, Vitor L; Mendes, Fábio L; de Almeida, Marlon B B; Azevedo, Débora A
2017-03-01
The elucidation of bio-oil composition is important to evaluate the processes of biomass conversion and its upgrading, and to suggest the proper use for each sample. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) is a widely applied analytical approach for bio-oil investigation due to the higher separation and resolution capacity from this technique. This work addresses the issue of analytical performance to assess the comprehensive characterization of real bio-oil samples via GC×GC-TOFMS. The approach was applied to the individual quantification of compounds of real thermal (PWT), catalytic process (CPO), and hydrodeoxygenation process (HDO) bio-oils. Quantification was performed with reliability using the analytical curves of oxygenated and hydrocarbon standards as well as the deuterated internal standards. The limit of quantification was set at 1ngµL -1 for major standards, except for hexanoic acid, which was set at 5ngµL -1 . The GC×GC-TOFMS method provided good precision (<10%) and excellent accuracy (recovery range of 70-130%) for the quantification of individual hydrocarbons and oxygenated compounds in real bio-oil samples. Sugars, furans, and alcohols appear as the major constituents of the PWT, CPO, and HDO samples, respectively. In order to obtain bio-oils with better quality, the catalytic pyrolysis process may be a better option than hydrogenation due to the effective reduction of oxygenated compound concentrations and the lower cost of the process, when hydrogen is not required to promote deoxygenation in the catalytic pyrolysis process. Copyright © 2016 Elsevier B.V. All rights reserved.
Real Option Cost Vulnerability Analysis of Electrical Infrastructure
NASA Astrophysics Data System (ADS)
Prime, Thomas; Knight, Phil
2015-04-01
Critical infrastructure such as electricity substations are vulnerable to various geo-hazards that arise from climate change. These geo-hazards range from increased vegetation growth to increased temperatures and flood inundation. Of all the identified geo-hazards, coastal flooding has the greatest impact, but to date has had a low probability of occurring. However, in the face of climate change, coastal flooding is likely to occur more often due to extreme water levels being experienced more frequently due to sea-level rise (SLR). Knowing what impact coastal flooding will have now and in the future on critical infrastructure such as electrical substations is important for long-term management. Using a flood inundation model, present day and future flood events have been simulated, from 1 in 1 year events up to 1 in 10,000 year events. The modelling makes an integrated assessment of impact by using sea-level and surge to simulate a storm tide. The geographical area the model covers is part of the Northwest UK coastline with a range of urban and rural areas. The ensemble of flood maps generated allows the identification of critical infrastructure exposed to coastal flooding. Vulnerability has be assessed using an Estimated Annual Damage (EAD) value. Sampling SLR annual probability distributions produces a projected "pathway" for SLR up to 2100. EAD is then calculated using a relationship derived from the flood model. Repeating the sampling process allows a distribution of EAD up to 2100 to be produced. These values are discounted to present day values using an appropriate discount rate. If the cost of building and maintain defences is also removed from this a Net Present Value (NPV) of building the defences can be calculated. This distribution of NPV can be used as part of a cost modelling process involving Real Options, A real option is the right but not obligation to undertake investment decisions. In terms of investment in critical infrastructure resilience this means that a real option can be deferred or exercised depending on the climate future that has been realised. The real option value is defined as the maximum positive NPV value that is found across the range of potential SLR "futures". Real Options add value in that flood defences may not be built when there is real value in doing so. The cost modelling output is in the form of an accessible database that has detailed real option values varying spatially across the model domain (for each critical infrastructure) and temporally up to 2100. The analysis has shown that in 2100, 8.2% of the substations analysed have a greater than a 1 in 2 chance of exercising the real option to build flood defences against coastal flooding. The cost modelling tool and flood maps that have been developed will help stakeholders in deciding where and when to invest in mitigating against coastal flooding.
NASA Astrophysics Data System (ADS)
Shao, Xintian; Zhang, Jing; Li, Donghui; Yue, Jingli; Chen, Zhenhua
2016-04-01
A novel modified ion selective electrode based on Fe2O3-clorprenaline/tetraphenylborate nanospheres (Fe2O3-CLPT NSs) as electroactive materials for the determination of clorprenaline hydrochloride (CLP) is described. The α-Fe2O3 nanoparticles (NPs) were prepared by hydrothermal synthesis, then self-assembled on CLP/tetraphenylborate (TPB) to form Fe2O3-CLPT NSs, which were used as a potentiometric electrode for analyte determination innovatively. The Fe2O3-CLPT NSs modified electrode exhibited a wider concentration range from 1.0 × 10-7 to 1.0 × 10-1 mol/L and a lower detection limit of 3.7 × 10-8 mol/L compared with unmodified electrodes. The selectivity of the modified electrode was evaluated by fixed interference method. The good performance of the modified electrode such as wide pH range (2.4-6.7), fast response time (15 s), and adequate lifetime (14 weeks) indicate the utility of the modified electrode for evaluation of CLP content in various real samples. Finally, the modified electrode was successfully employed to detect CLP in pork samples with satisfactory results. These results demonstrated the Fe2O3-CLPT NSs modified electrode to be a functional and convenient method to the field of potentiometry determination of CLP in real samples.
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.
2018-05-01
In this work, we report on a dual-behavior electrochemical/optical sensor for sensitive determination of Imidacloprid by fluorescent dye (fluorescein, FL) and imprinted polymer modified europium doped superparamagnetic iron oxide nanoparticles (FL@SPIONs@MIP). The imidacloprid (IMD)-imprinted polymer was directly synthesized on the Eu-SPIONs surface via Activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique. Preparation, characterization and application of the prepared FL@SPIONs@MIP were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), fluorescence spectroscopy and electrochemical techniques. The electrochemical experiments exhibited a remarkable selectivity of the prepared sensor towards IMD. Determination of IMD by the square wave stripping voltammetry method represented a wide linear range of 0.059-0.791 μg L-1 with a detection limit of 0.0125 μg L-1. In addition, the fluorescence method shows a linear range of 0.039-0.942 μg L-1 and LOD of 0.0108 μg L-1. The fluorescence property of prepared FL@SPIONs@MIP was used for rapid, on-spot but selective detection of IMD in real samples. The proposed electrode displayed excellent repeatability and long-term stability and was successfully applied for quantitative and trace level determination of IMD in several real samples.
NASA Astrophysics Data System (ADS)
Matin, Rastin; Hernandez, Anier; Misztal, Marek; Mathiesen, Joachim
2015-04-01
Many hydrodynamic phenomena ranging from flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated on computers using the lattice Boltzmann (LB) method. By solving the Lattice Boltzmann Equation on unstructured meshes in three dimensions, we have developed methods to efficiently model the fluid flow in real rock samples. We use this model to study the spatio-temporal statistics of the velocity field inside three-dimensional real geometries and investigate its relation to the, in general, anomalous transport of passive tracers for a wide range of Peclet and Reynolds numbers. We extend this model by free-energy based method, which allows us to simulate binary systems with large-density ratios in a thermodynamically consistent way and track the interface explicitly. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.
Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors
NASA Astrophysics Data System (ADS)
Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.
2015-12-01
Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.
New shortwave solar radiometer with information-based sparse sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, M.L.; Carnal, C.L.; Ericson, M.N.
1991-01-01
A new concept for a real-time shortwave solar radiometer is presented, based on the premise that high resolution measurements of the shortwave solar spectrum are needed only in wavelength regions where the atmospheric physics are changing rapidly with respect to {Lambda}. The design features holographic optical elements (HOEs) for nonuniform sampling of the spectrum, customized photocells, and temperature-compensated monolithic wide dynamic range amplifiers. Preliminary results show full spectrum reconstruction accuracies to < 3% with a 10:1 reduction in the number of photocells required. 9 refs.
New shortwave solar radiometer with information-based sparse sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, M.L.; Carnal, C.L.; Ericson, M.N.
1991-12-31
A new concept for a real-time shortwave solar radiometer is presented, based on the premise that high resolution measurements of the shortwave solar spectrum are needed only in wavelength regions where the atmospheric physics are changing rapidly with respect to {Lambda}. The design features holographic optical elements (HOEs) for nonuniform sampling of the spectrum, customized photocells, and temperature-compensated monolithic wide dynamic range amplifiers. Preliminary results show full spectrum reconstruction accuracies to < 3% with a 10:1 reduction in the number of photocells required. 9 refs.
Langbein, J.; Bock, Y.
2004-01-01
A network of 13 continuous GPS stations near Parkfield, California has been converted from 30 second to 1 second sampling with positions of the stations estimated in real-time relative to a master station. Most stations are near the trace of the San Andreas fault, which exhibits creep. The noise spectra of the instantaneous 1 Hz positions show flicker noise at high frequencies and change to frequency independence at low frequencies; the change in character occurs between 6 to 8 hours. Our analysis indicates that 1-second sampled GPS can estimate horizontal displacements of order 6 mm at the 99% confidence level from a few seconds to a few hours. High frequency GPS can augment existing measurements in capturing large creep events and postseismic slip that would exceed the range of existing creepmeters, and can detect large seismic displacements. Copyright 2004 by the American Geophysical Union.
Tomassetti, Mauro; Merola, Giovanni; Martini, Elisabetta; Campanella, Luigi; Sanzò, Gabriella; Favero, Gabriele; Mazzei, Franco
2017-01-01
In this research, we developed a direct-flow surface plasmon resonance (SPR) immunosensor for ampicillin to perform direct, simple, and fast measurements of this important antibiotic. In order to better evaluate the performance, it was compared with a conventional amperometric immunosensor, working with a competitive format with the aim of finding out experimental real advantages and disadvantages of two respective methods. Results showed that certain analytical features of the new SPR immunodevice, such as the lower limit of detection (LOD) value and the width of the linear range, are poorer than those of a conventional amperometric immunosensor, which adversely affects the application to samples such as natural waters. On the other hand, the SPR immunosensor was more selective to ampicillin, and measurements were more easily and quickly attained compared to those performed with the conventional competitive immunosensor. PMID:28394296
Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan
2005-07-10
We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.
Characteristics and Frequency of Chipping Effects in Near-Contact Gunshot Wounds.
Amadasi, Alberto; Mazzarelli, Debora; Merli, Daniele; Brandone, Alberto; Cattaneo, Cristina
2017-05-01
The presence of "chipping" or "flaking" around the edges of gunshot entry wounds has been described among the characteristics of gunshot wounds in bone. In this study, the real frequency of such a peculiar feature was investigated. The presence of "chipping" was assessed on 22 gunshot wounds fired at a near-contact range on bovine ribs with 9-mm bullets. As controls, five samples were shot with a 3 cm range, and five from 40 cm. In 77% of cases shot at near-contact range, a detachment of small fragments of the upper layers of bone was detected, mainly with a circumferential disposition, whereas this feature was lacking in control samples. The study demonstrated the frequency of "chipping" and that it may probably be due to a combined ballistic effect of impact of the bullet itself and expansion of gases. It may be thus considered indicative of close-range shots. © 2016 American Academy of Forensic Sciences.
Use of FTA sampling cards for molecular detection of avian influenza virus in wild birds.
Keeler, Shamus P; Ferro, Pamela J; Brown, Justin D; Fang, Xingwang; El-Attrache, John; Poulson, Rebecca; Jackwood, Mark W; Stallknecht, David E
2012-03-01
Current avian influenza (AI) virus surveillance programs involving wild birds rely on sample collection methods that require refrigeration or low temperature freezing to maintain sample integrity for virus isolation and/or reverse-transcriptase (RT) PCR. Maintaining the cold chain is critical for the success of these diagnostic assays but is not always possible under field conditions. The aim of this study was to test the utility of Finders Technology Associates (FTA) cards for reliable detection of AI virus from cloacal and oropharyngeal swabs of wild birds. The minimum detectable titer was determined, and the effect of room temperature storage was evaluated experimentally using multiple egg-propagated stock viruses (n = 6). Using real time RT-PCR, we compared results from paired cloacal swab and samples collected on FTA cards from both experimentally infected mallards (Anasplatyrhynchos) and hunter-harvested waterfowl sampled along the Texas Gulf Coast. Based on the laboratory trials, the average minimal detectable viral titer was determined to be 1 x 10(4.7) median embryo infectious dose (EID50)/ml (range: 1 x 10(4.3) to 1 x 10(5.4) EID50/ml), and viral RNA was consistently detectable on the FTA cards for a minimum of 20 days and up to 30 days for most subtypes at room temperature (23 C) storage. Real-time RT-PCR of samples collected using the FTA cards showed fair to good agreement in live birds when compared with both real-time RT-PCR and virus isolation of swabs. AI virus detection rates in samples from several wild bird species were higher when samples were collected using the FTA cards compared with cloacal swabs. These results suggest that FTA cards can be used as an alternative sample collection method when traditional surveillance methods are not possible, especially in avian populations that have historically received limited testing or situations in which field conditions limit the ability to properly store or ship swab samples.
A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection.
Kirgöz, Ulkü Anik; Odaci, Dilek; Timur, Suna; Merkoçi, Arben; Alegret, Salvador; Beşün, Nurgün; Telefoncu, Azmi
2006-06-16
A gelatin membrane with carboxyl esterase and alcohol oxidase was subsequently integrated onto the surface of a graphite epoxy composite electrode (GECE). The developed biosensors showed linearity in the range of 2.5-400 microM for aspartame and 2.5-25 microM for ethanol with response times of 170 and 70s for each analyte, respectively. The resulting bienzyme biosensor was used for aspartame detection in diet coke samples and ethanol detection in beer and wine samples. From the obtained results, it can be concluded that the developed biosensor is a selective, practical and economic tool for aspartame and ethanol detection in real samples.
Anklam, Kelly; Kulow, Megan; Yamazaki, Wataru; Döpfer, Dörte
2017-01-01
Bovine digital dermatitis (DD) is a severe infectious cause of lameness in cattle worldwide, with important economic and welfare consequences. There are three treponeme phylogroups (T. pedis, T. phagedenis, and T. medium) that are implicated in playing an important causative role in DD. This study was conducted to develop real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the detection and differentiation of the three treponeme phylogroups associated with DD. The real-time PCR treponeme phylogroup assays targeted the 16S-23S rDNA intergenic space (ITS) for T. pedis and T. phagedenis, and the flagellin gene (flaB2) for T. medium. The 3 treponeme phylogroup LAMP assays targeted the flagellin gene (flaB2) and the 16S rRNA was targeted for the Treponeme ssp. LAMP assay. The real-time PCR and LAMP assays correctly detected the target sequence of all control strains examined, and no cross-reactions were observed, representing 100% specificity. The limit of detection for each of the three treponeme phylogroup real-time PCR and LAMP assays was ≤ 70 fg/μl. The detection limit for the Treponema spp. LAMP assay ranged from 7-690 fg/μl depending on phylogroup. Treponemes were isolated from 40 DD lesion biopsies using an immunomagnetic separation culture method. The treponeme isolation samples were then subjected to the real-time PCR and LAMP assays for analysis. The treponeme phylogroup real-time PCR and LAMP assay results had 100% agreement, matching on all isolation samples. These results indicate that the developed assays are a sensitive and specific test for the detection and differentiation of the three main treponeme phylogroups implicated in DD.
Kulow, Megan; Yamazaki, Wataru; Döpfer, Dörte
2017-01-01
Bovine digital dermatitis (DD) is a severe infectious cause of lameness in cattle worldwide, with important economic and welfare consequences. There are three treponeme phylogroups (T. pedis, T. phagedenis, and T. medium) that are implicated in playing an important causative role in DD. This study was conducted to develop real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the detection and differentiation of the three treponeme phylogroups associated with DD. The real-time PCR treponeme phylogroup assays targeted the 16S-23S rDNA intergenic space (ITS) for T. pedis and T. phagedenis, and the flagellin gene (flaB2) for T. medium. The 3 treponeme phylogroup LAMP assays targeted the flagellin gene (flaB2) and the 16S rRNA was targeted for the Treponeme ssp. LAMP assay. The real-time PCR and LAMP assays correctly detected the target sequence of all control strains examined, and no cross-reactions were observed, representing 100% specificity. The limit of detection for each of the three treponeme phylogroup real-time PCR and LAMP assays was ≤ 70 fg/μl. The detection limit for the Treponema spp. LAMP assay ranged from 7–690 fg/μl depending on phylogroup. Treponemes were isolated from 40 DD lesion biopsies using an immunomagnetic separation culture method. The treponeme isolation samples were then subjected to the real-time PCR and LAMP assays for analysis. The treponeme phylogroup real-time PCR and LAMP assay results had 100% agreement, matching on all isolation samples. These results indicate that the developed assays are a sensitive and specific test for the detection and differentiation of the three main treponeme phylogroups implicated in DD. PMID:28542573
Aydin-Schmidt, Berit; Xu, Weiping; González, Iveth J; Polley, Spencer D; Bell, David; Shakely, Delér; Msellem, Mwinyi I; Björkman, Anders; Mårtensson, Andreas
2014-01-01
Loop mediated isothermal amplification (LAMP) provides an opportunity for improved, field-friendly detection of malaria infections in endemic areas. However data on the diagnostic accuracy of LAMP for active case detection, particularly low-density parasitaemias, are lacking. We therefore evaluated the performance of a new LAMP kit compared with PCR using DNA from filter paper blood spots. Samples from 865 fever patients and 465 asymptomatic individuals collected in Zanzibar were analysed for Pan (all species) and Pf (P. falciparum) DNA with the Loopamp MALARIA Pan/Pf kit. Samples were amplified at 65°C for 40 minutes in a real-time turbidimeter and results were compared with nested PCR. Samples with discordant results between LAMP and nested PCR were analysed with real-time PCR. The real-time PCR corrected nested PCR result was defined as gold standard. Among the 117 (13.5%) PCR detected P. falciparum infections from fever patients (mean parasite density 7491/µL, range 6-782,400) 115, 115 and 111 were positive by Pan-LAMP, Pf-LAMP and nested PCR, respectively. The sensitivities were 98.3% (95%CI 94-99.8) for both Pan and Pf-LAMP. Among the 54 (11.6%) PCR positive samples from asymptomatic individuals (mean parasite density 10/µL, range 0-4972) Pf-LAMP had a sensitivity of 92.7% (95%CI 80.1-98.5) for detection of the 41 P. falciparum infections. Pan-LAMP had sensitivities of 97% (95%CI 84.2-99.9) and 76.9% (95%CI 46.2-95) for detection of P. falciparum and P. malariae, respectively. The specificities for both Pan and Pf-LAMP were 100% (95%CI 99.1-100) in both study groups. Both components of the Loopamp MALARIA Pan/Pf detection kit revealed high diagnostic accuracy for parasite detection among fever patients and importantly also among asymptomatic individuals of low parasite densities from minute blood volumes preserved on filter paper. These data support LAMPs potential role for improved detection of low-density malaria infections in pre-elimination settings.
González, Iveth J.; Polley, Spencer D.; Bell, David; Shakely, Delér; Msellem, Mwinyi I.; Björkman, Anders; Mårtensson, Andreas
2014-01-01
Background Loop mediated isothermal amplification (LAMP) provides an opportunity for improved, field-friendly detection of malaria infections in endemic areas. However data on the diagnostic accuracy of LAMP for active case detection, particularly low-density parasitaemias, are lacking. We therefore evaluated the performance of a new LAMP kit compared with PCR using DNA from filter paper blood spots. Methods and Findings Samples from 865 fever patients and 465 asymptomatic individuals collected in Zanzibar were analysed for Pan (all species) and Pf (P. falciparum) DNA with the Loopamp MALARIA Pan/Pf kit. Samples were amplified at 65°C for 40 minutes in a real-time turbidimeter and results were compared with nested PCR. Samples with discordant results between LAMP and nested PCR were analysed with real-time PCR. The real-time PCR corrected nested PCR result was defined as gold standard. Among the 117 (13.5%) PCR detected P. falciparum infections from fever patients (mean parasite density 7491/µL, range 6–782,400) 115, 115 and 111 were positive by Pan-LAMP, Pf-LAMP and nested PCR, respectively. The sensitivities were 98.3% (95%CI 94–99.8) for both Pan and Pf-LAMP. Among the 54 (11.6%) PCR positive samples from asymptomatic individuals (mean parasite density 10/µL, range 0–4972) Pf-LAMP had a sensitivity of 92.7% (95%CI 80.1–98.5) for detection of the 41 P. falciparum infections. Pan-LAMP had sensitivities of 97% (95%CI 84.2–99.9) and 76.9% (95%CI 46.2–95) for detection of P. falciparum and P. malariae, respectively. The specificities for both Pan and Pf-LAMP were 100% (95%CI 99.1–100) in both study groups. Conclusion Both components of the Loopamp MALARIA Pan/Pf detection kit revealed high diagnostic accuracy for parasite detection among fever patients and importantly also among asymptomatic individuals of low parasite densities from minute blood volumes preserved on filter paper. These data support LAMPs potential role for improved detection of low-density malaria infections in pre-elimination settings. PMID:25105591
Multi-GHz Synchronous Waveform Acquisition With Real-Time Pattern-Matching Trigger Generation
NASA Astrophysics Data System (ADS)
Kleinfelder, Stuart A.; Chiang, Shiuh-hua Wood; Huang, Wei
2013-10-01
A transient waveform capture and digitization circuit with continuous synchronous 2-GHz sampling capability and real-time programmable windowed trigger generation has been fabricated and tested. Designed in 0.25 μm CMOS, the digitizer contains a circular array of 128 sample and hold circuits for continuous sample acquisition, and attains 2-GHz sample speeds with over 800-MHz analog bandwidth. Sample clock generation is synchronous, combining a phase-locked loop for high-speed clock generation and a high-speed fully-differential shift register for distributing clocks to all 128 sample circuits. Using two comparators per sample, the sampled voltage levels are compared against two reference levels, a high threshold and a low threshold, that are set via per-comparator digital to analog converters (DACs). The 256 per-comparator 5-bit DACs compensate for comparator offsets and allow for fine reference level adjustment. The comparator results are matched in 8-sample-wide windows against up to 72 programmable patterns in real time using an on-chip programmable logic array. Each 8-sample trigger window is equivalent to 4 ns of acquisition, overlapped sample by sample in a circular fashion through the entire 128-sample array. The 72 pattern-matching trigger criteria can be programmed to be any combination of High-above the high threshold, Low-below the low threshold, Middle-between the two thresholds, or “Don't Care”-any state is accepted. A trigger pattern of “HLHLHLHL,” for example, watches for a waveform that is oscillating at about 1 GHz given the 2-GHz sample rate. A trigger is flagged in under 20 ns if there is a match, after which sampling is stopped, and on-chip digitization can proceed via 128 parallel 10-bit converters, or off-chip conversion can proceed via an analog readout. The chip exceeds 11 bits of dynamic range, nets over 800-MHz -3-dB bandwidth in a realistic system, and jitter in the PLL-based sampling clock has been measured to be about 1 part per million, RMS.
Hopkins, Mark; Hau, Sarah; Tiernan, Caroline; Papadimitropoulos, Athanasios; Chawla, Anu; Beloukas, Apostolos; Geretti, Anna Maria
2015-08-01
Quantitative measurement of HIV-1 RNA levels in plasma ('viral load') plays a central role in clinical management. The choice of assay platform can influence results and treatment decisions. To compare the analytical performance of the new TMA-based Hologic Aptima(®) HIV-1 Quant Dx assay with that of three PCR-based assays: Abbott RealTime HIV-1, Qiagen Artus(®) HI Virus-1 QS-RGQ, and Roche CAP/CTM HIV-1 Test v2. Assay performance was evaluated using Acrometrix HIV-1 RNA Standard panels; the 3rd WHO HIV-1 RNA International Standard (12-500 copies/ml; 6 dilutions; 9 replicates); and plasma samples from 191 HIV-positive patients. Aptima showed high (>0.99) precision, accuracy and concordance with the Acrometrix Standards across a wide dynamic range (2.0-6.7 log10copies/ml). Variance caused up to 2.1 (Aptima), 1.7 (RealTime), 7.5 (Artus), and 1.9 (CAP/CTM) fold changes in the International Standard quantifications at 50-500 copies/ml. HIV-1 RNA detection rates in plasma samples were 141/191 (74%), 119/191 (62%), 108/191 (57%), and 145/191 (76%) for Aptima, RealTime, Artus and CAP/CTM, respectively. For categorising samples either side of 50 copies/ml, Aptima had excellent agreement with RealTime (kappa 0.92; 95% CI 0.87-0.98); lowest agreement was with Artus (kappa 0.79; 95%CI 0.70-0.88). Aptima quantifications were mean 0.12 and 0.06 log10copies/ml higher compared with RealTime and CAP/CTM, respectively, and 0.05 log10copies/ml lower compared with Artus. Limits of agreement were narrowest when comparing Aptima to RealTime. The new Aptima HIV assay is sensitive, precise, and accurate. HIV assays exhibit discordance at low HIV-1 RNA copy numbers. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Laus, Stella; Kingsley, Lawrence A; Green, Michael; Wadowsky, Robert M
2011-11-01
Automated and manual extraction systems have been used with real-time PCR for quantification of Epstein-Barr virus [human herpesvirus 4 (HHV-4)] DNA in whole blood, but few studies have evaluated relative performances. In the present study, the automated QIAsymphony and manual QIAamp extraction systems (Qiagen, Valencia, CA) were assessed using paired aliquots derived from clinical whole-blood specimens and an in-house, real-time PCR assay. The detection limits using the QIAsymphony and QIAamp systems were similar (270 and 560 copies/mL, respectively). For samples estimated as having ≥10,000 copies/mL, the intrarun and interrun variations were significantly lower using QIAsymphony (10.0% and 6.8%, respectively), compared with QIAamp (18.6% and 15.2%, respectively); for samples having ≤1000 copies/mL, the two variations ranged from 27.9% to 43.9% and were not significantly different between the two systems. Among 68 paired clinical samples, 48 pairs yielded viral loads ≥1000 copies/mL under both extraction systems. Although the logarithmic linear correlation from these positive samples was high (r(2) = 0.957), the values obtained using QIAsymphony were on average 0.2 log copies/mL higher than those obtained using QIAamp. Thus, the QIAsymphony and QIAamp systems provide similar EBV DNA load values in whole blood. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Rodriguez-Lazaro, David; Gonzalez-García, Patricia; Delibato, Elisabetta; De Medici, Dario; García-Gimeno, Rosa Maria; Valero, Antonio; Hernandez, Marta
2014-08-01
The microbiological standard for detection of Salmonella relies on several cultural steps and requires more than 5 days for final confirmation, and as consequence there is a need for an alternative rapid methodology for its detection. The aim of this study was to compare different detection strategies based on real-time PCR for a rapid and sensitive detection in an ample range of food products: raw pork and poultry meat, ready to eat lettuce salad and raw sheep milk cured cheese. Three main parameters were evaluated to reduce the time and cost for final results: the initial sample size (25 and 50 g), the incubation times (6, 10 and 18 h) and the bacterial DNA extraction (simple boiling of the culture after washing the bacterial pellet, the use of the Chelex resin, and a commercial silica column). The results obtained demonstrate that a combination of an incubation in buffered peptone water for 18 h of a 25 g-sample coupled to a DNA extraction by boiling and a real-time PCR assay detected down to 2-4 Salmonella spp.CFU per sample in less than 21 h in different types of food products. This RTi-PCR-based method is fully compatible with the ISO standard, providing results more rapidly and cost-effectively. The results were confirmed in a large number of naturally contaminated food samples with at least the same analytical performance as the reference method. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantitative LIBS analysis of vanadium in samples of hexagonal mesoporous silica catalysts.
Pouzar, Miloslav; Kratochvíl, Tomás; Capek, Libor; Smoláková, Lucie; Cernohorský, Tomás; Krejcová, Anna; Hromádko, Ludek
2011-02-15
The method for the analysis of vanadium in hexagonal mesoporous silica (V-HMS) catalysts using Laser Induced Breakdown Spectrometry (LIBS) was suggested. Commercially available LIBS spectrometer was calibrated with the aid of authentic V-HMS samples previously analyzed by ICP OES after microwave digestion. Deposition of the sample on the surface of adhesive tape was adopted as a sample preparation method. Strong matrix effect connected with the catalyst preparation technique (1st vanadium added in the process of HMS synthesis, 2nd already synthesised silica matrix was impregnated by vanadium) was observed. The concentration range of V in the set of nine calibration standards was 1.3-4.5% (w/w). Limit of detection was 0.13% (w/w) and it was calculated as a triple standard deviation from five replicated determinations of vanadium in the real sample with a very low vanadium concentration. Comparable results of LIBS and ED XRF were obtained if the same set of standards was used for calibration of both methods and vanadium was measured in the same type of real samples. LIBS calibration constructed using V-HMS-impregnated samples failed for measuring of V-HMS-synthesized samples. LIBS measurements seem to be strongly influenced with different chemical forms of vanadium in impregnated and synthesised samples. The combination of LIBS and ED XRF is able to provide new information about measured samples (in our case for example about procedure of catalyst preparation). Copyright © 2010 Elsevier B.V. All rights reserved.
Mboumba Bouassa, Ralph-Sydney; Jenabian, Mohammad-Ali; Wolyec, Serge Tonen; Robin, Leman; Matta, Mathieu; Longo, Jean de Dieu; Grésenguet, Gérard; Andreoletti, Laurent; Bélec, Laurent
2016-01-01
Objectives. We evaluated the performances of Amplix real-time PCR platform developed by Biosynex (Strasbourg, France), combining automated station extraction (Amplix station 16 Dx) and real-time PCR (Amplix NG), for quantifying plasma HIV-1 RNA by lyophilized HIV-1 RNA-based Amplix reagents targeting gag and LTR, using samples from HIV-1-infected adults from Central African Republic. Results. Amplix real-time PCR assay showed low limit of detection (28 copies/mL), across wide dynamic range (1.4–10 log copies/mL), 100% sensitivity and 99% specificity, high reproducibility, and accuracy with mean bias < 5%. The assay showed excellent correlations and concordance of 95.3% with the reference HIV-1 RNA load assay (Roche), with mean absolute bias of +0.097 log copies/mL by Bland-Altman analysis. The assay was able to detect and quantify the most prevalent HIV-1 subtype strains and the majority of non-B subtypes, CRFs of HIV-1 group M, and HIV-1 groups N and O circulating in Central Africa. The Amplix assay showed 100% sensitivity and 99.6% specificity to diagnose virological failure in clinical samples from antiretroviral drug-experienced patients. Conclusions. The HIV-1 RNA-based Amplix real-time PCR platform constitutes sensitive and reliable system for clinical monitoring of HIV-1 RNA load in HIV-1-infected children and adults, particularly adapted to intermediate laboratory facilities in sub-Saharan Africa. PMID:28050283
Tomaso, Herbert; Scholz, Holger C; Al Dahouk, Sascha; Eickhoff, Meike; Treu, Thomas M; Wernery, Renate; Wernery, Ulrich; Neubauer, Heinrich
2006-02-01
Burkholderia mallei is a potential biological agent that causes glanders or farcy in solipeds, a disease notifiable to the Office International des Epizooties (OIE). The number of reported outbreaks has increased steadily during the last decade, but diagnosis is hampered by the low bacterial load in infected tissues and excretions. We developed a B. mallei-specific 5'-nuclease real-time PCR assay that targets the fliP gene of B. mallei and includes an internal amplification control. Specificity was assessed with 19 B. mallei strains, 27 Burkholderia pseudomallei strains, other Burkholderia strains of 29 species, and clinically relevant non-Burkholderia organisms. Amplification products were observed in all B. mallei strains but in no other bacteria. The linear range of the B. mallei real-time PCR covered concentrations from 240 pg to 70 fg of bacterial DNA/reaction. The detection limit was 60 fg of B. mallei DNA. The clinical applicability of the assay was demonstrated by use of organ samples from diseased horses of a recent outbreak that was reported to the OIE by the United Arab Emirates in 2004. Compared with conventional PCR, our rapid 5'-nuclease real-time PCR assay for the specific identification of B. mallei has a lower risk of carryover contamination and eliminates the need for post-PCR manipulations. This real-time PCR assay also shortens the turnaround time for results and has the potential for automation.
Development of real-time PCR for detection and quantitation of Streptococcus parauberis.
Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B
2016-01-01
Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.
Dokpikul, Nattawut; Chaiyasith, Wipharat Chuachuad; Sananmuang, Ratana; Ampiah-Bonney, Richmond J
2018-04-25
A novel method was developed by SAE-DLLME for chromium speciation in water and rice samples using 2-thenoyltrifluoroacetone (TTA) as a chelating reagent by ETAAS. The speciation of Cr(III) and Cr(VI) was achieved by complexation of Cr(III)-TTA and the total Cr was measured after reduction of Cr(VI) to Cr. The calibration graph was linear in the range of 0.02-2.50 µg L -1 , with a detection limit of 0.0052 µg L -1 . The %RSD was in range of 2.90-3.30% at 0.5, 1.5 and 2.5 µg L -1 of Cr(III), n = 5 and the EF was 54.47. The method was applied to chromium speciation and total chromium determination in real samples and gave recoveries in the range of 96.2-103.5% and 97.1-102.7% for Cr(III) and Cr(VI) in water samples and 93.7-103.5% of total Cr in rice samples. The accuracy of the method was evaluated by analysis of SRM 1573a with good agreement compared to the certified value. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep
2015-05-15
A simultaneous derivatization/extraction method followed by liquid chromatography-electrospray-high resolution mass spectrometry for the determination of volatile thiols in hydroalcoholic matrixes was optimized and used to identify and quantify volatile thiols in wine and beer samples. The method was evaluated in terms of sensitivity, precision, accuracy and selectivity. The experimental LOQs of eleven thiols tested ranged between 0.01 ng/L and 10 ng/L. Intra-day relative standard deviation (RSD) was in general lower than 10% and inter-day RSD ranged between 10% and 30%. Recovery in the model and real matrixes ranged from 45% to 129%. The method was then applied for the analysis of four white wines and six beers. Five out of the eleven reference thiols were identified and quantified in the samples analyzed. The non-target approach, carried out by monitoring the diagnostic ion at m/z 275.9922 [C13H10ONSe](+) in the fragmentation spectrum, allowed detecting, in the same samples, fourteen non-target thiols. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaydecki, Patrick; Fernandes, Bosco
2003-11-01
A fast digital signal processing (DSP) system is described that can perform real-time emulation of a wide variety of linear audio-bandwidth systems and networks, such as reverberant spaces, musical instrument bodies and very high order filter networks. The hardware design is based upon a Motorola DSP56309 operating at 110 million multiplication-accumulations per second and a dual-channel 24 bit codec with a maximum sampling frequency of 192 kHz. High level software has been developed to express complex vector frequency responses as both infinite impulse response (IIR) and finite impulse response (FIR) coefficients, in a form suitable for real-time convolution by the firmware installed in the DSP system memory. An algorithm has also been devised to express IIR filters as equivalent FIR structures, thereby obviating the potential instabilities associated with recursive equations and negating the traditional deficiencies of FIR filters respecting equivalent analogue designs. The speed and dynamic range of the system is such that, when sampling at 48 kHz, the frequency response can be specified to a spectral precision of 22 Hz when sampling at 10 kHz, this resolution increases to 0.9 Hz. Moreover, it is also possible to control the phase of any frequency band with a theoretical precision of 10-5 degrees in all cases. The system has been applied in the study of analogue filter networks, real-time Hilbert transformation, phase-shift systems and musical instrument body emulation, where it is providing valuable new insights into the understanding of psychoacoustic mechanisms.
Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim
2012-01-01
Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.
An in-house assay for BK polyomavirus quantification using the Abbott m2000 RealTime system.
Muldrew, Kenneth L; Lovett, Jennie L
2013-11-01
BK polyomavirus (BKPyV) quantification is useful for monitoring renal transplant patient response to therapy. The Abbott m2000 RealTime System employed by some clinical laboratories to perform US Food and Drug Administration-approved assays can also be used to develop in-house assays such as the one presented here. This study aimed to validate an in-house quantitative real-time PCR assay targeting the BKPyV major capsid VP1 gene for assessment of viral load using the Abbott m2000 RealTime System. BKPyV load was measured in 95 urine and plasma samples previously tested for BKPyV by one of three laboratories (46 BKPyV-positive samples consisting of 35 plasma and 11 urine samples; 49 samples negative for BKPyV consisting of 47 plasma and two urine samples). Two additional plasma specimens from the College of American Pathologists proficiency testing survey were also analysed. Precision studies were performed by diluting a high-viral-titre patient sample into BKPyV-negative pooled plasma to create high-positive (6.16 log10 copies ml(-1)) and low-positive (3.16 log10 copies ml(-1)) samples. For precision studies of inter-assay variability, a high-positive (7.0 log10 copies ml(-1)) and a low-positive (3.0 log10 copies ml(-1)) sample were measured in 20 separate runs. The assay's limit of quantification and limit of detection were 2.70 and 2.25 log10 copies ml(-1), respectively. The assay was linear from 2.70 to 9.26 log10 copies ml(-1). Of the 48 known positives, 43 were detected as positive, with three reported by the reference laboratory as values lower than the limit of detection. Two known positives at 3.27 and 3.80 log10 copies ml(-1) tested negative by the m2000 BKPyV assay. Of the 49 known negative samples, 48 were negative by the m2000 BKPyV load assay, with one sample confirmed positive by a reference laboratory. Qualitative analysis prior to discrepancy testing demonstrated a sensitivity of 89.58 % and a specificity of 97.96 %. Precision studies demonstrated inter-assay coefficients of variation of 0.63 % (high positive) and 4.38 % (low positive). Genotyping was performed on 22 patient samples, of which 21 (95.45 %) were type I and one (4.55 %) was type II. In conclusion, the m2000 BKPyV viral load assay sensitivity, specificity, linear range, precision and cost effectiveness make it an attractive methodology for clinical laboratories using the Abbott m2000 RealTime System.
Olivero, S; Maroc, C; Beillard, E; Gabert, J; Nietfeld, W; Chabannon, C; Tonnelle, C
2000-09-01
The Ikaros gene is an essential regulator in development and haematopoiesis. Dysregulated Ikaros gene expression participates in leukaemic processes, as evidenced in animal models, and by analyses of blast-cell populations from leukaemic patients. We used real-time quantitative polymerase chain reaction (PCR) to evaluate the relative abundance of several Ikaros transcript isoforms in a variety of leukaemic-cell samples. Total RNA was isolated from bone-marrow or blood-cell samples collected at diagnosis in children or adult patients, 18 of whom had acute myeloblastic leukaemia (AML), 61 of whom had acute lymphoblastic leukaemia (ALL) and 11 of whom had chronic myeloid leukaemia (CML). The ratio (Ik1 + Ik2)/(Ik1 + Ik2 + Ik4 + Ik7 + Ik8) ranged from 13.5% to 85% and was lower (P < 0. 05) in samples from patients with m-bcr-abl ALL. An alternative splicing resulting in the deletion of 30 nucleotides at the end of exon 6 was observed in leukaemic samples, and in normal thymus and bone marrow. Our results are consistent with previous reports and suggest that the pattern of expression of the different human Ikaros isoforms are not homogeneous among different subsets of leukaemias.
Yang, Rui; Liu, Yuxin; Yan, Xiangyang; Liu, Shaomin
2016-12-01
A rapid, sensitive and accurate method for the simultaneous extraction and determination of five types of trace phthalate esters (PAEs) in environmental water and beverage samples using magnetic molecularly imprinted solid-phase extraction (MMIP-SPE) coupled with gas chromatography-mass spectrometry (GC-MS) was developed. A novel type of molecularly imprinted polymers on the surface of yolk-shell magnetic mesoporous carbon (Fe 3 O 4 @void@C-MIPs) was used as an efficient adsorbent for selective adsorption of phthalate esters based on magnetic solid-phase extraction (MSPE). The real samples were first preconcentrated by Fe 3 O 4 @void@C-MIPs, subsequently extracted by eluent and finally determined by GC-MS after magnetic separation. Several variables affecting the extraction efficiency of the analytes, including the type and volume of the elution solvent, amount of adsorbent, extraction time, desorption time and pH of the sample solution, were investigated and optimized. Validation experiments indicated that the developed method presented good linearity (R 2 >0.9961), satisfactory precision (RSD<6.7%), and high recovery (86.1-103.1%). The limits of detection ranged from 1.6ng/L to 5.2ng/L and the enrichment factor was in the range of 822-1423. The results indicated that the novel method had the advantages of convenience, good sensitivity, and high efficiency, and it could also be successfully applied to the analysis of PAEs in real samples. Copyright © 2016. Published by Elsevier B.V.
Luo, Yan-Bo; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi
2012-02-15
In this work, magnetic carbon nanotubes (CNTs) were prepared by mixing the magnetic particles and multi-walled carbon nanotubes dispersed solutions. Due to their excellent adsorption capability towards hydrophobic compounds, the magnetic CNTs were used as adsorbent of magnetic solid-phase extraction (MSPE) to extract phthalate acid esters (PAEs), which are widely used in many consumable products with potential carcinogenic properties. By coupling MSPE with gas chromatography/mass spectrometry (GC/MS), a rapid, sensitive and cost-effective method for the analysis of PAEs was established. Our results showed that the limits of detection (LODs) of 16 PAEs ranged from 4.9 to 38 ng L(-1), which are much lower compared to the previously reported methods. And good linearities of the detection method were obtained with correlation coefficients (R(2)) between 0.9821 and 0.9993. In addition, a satisfying reproducibility was achieved by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 11.7% and 14.6%, respectively. Finally, the established MSPE-GC/MS method was successfully applied to the determination of PAEs from bottled beverages, tap water and perfume samples. The recoveries of the 16 PAEs from the real samples ranged from 64.6% to 125.6% with the RSDs less than 16.5%. Taken together, the MSPE-GC/MS method developed in current study provides a new option for the detection of PAEs from real samples with complex matrices. Copyright © 2012 Elsevier B.V. All rights reserved.
Jiang, Li; Huang, Tengjun; Feng, Shun; Wang, Jide
2016-07-22
The widespread use of organophosphate pesticides (OPPs) in agriculture leads to residue accumulation in the environment which is dangerous to human health and disrupts the ecological balance. In this work, one nanocomposite immobilized zirconium (Zr, IV) was prepared and used as the affinity probes to quickly and selectively extract organophosphorus pesticides (OPPs) from water samples. The Fe3O4-ethylenediamine tetraacetic acid (EDTA)@Zr(IV) nanocomposites (NPs) were prepared by simply mixing Zr(IV) ions with Fe3O4-EDTA NPs synthesized by one-pot chemical co-precipitation method. The immobilized Zr(IV) ions were further utilized to capture OPPs based on their high affinity for the phosphate moiety in OPPs. Coupled with GC-MS, four OPPs were used as models to demonstrate the feasibility of this approach. Under the optimum conditions, the limits of detection for target OPPs were in the range of 0.10-10.30ngmL(-1) with relative standard deviations (RSDs) of 0.61-4.40% (n=3), respectively. The linear ranges were over three orders of magnitudes (correlation coefficients, R(2)>0.9995). The Fe3O4-EDTA@Zr(IV) NPs were successfully applied to extract OPPs samples with recoveries of 86.95-112.60% and RSDs of 1.20-10.42% (n=3) from two spiked real water. By the proposed method, the matrix interference could be effectively eliminated. We hope our finding can provide a promising alternative for the fast extraction of OPPs from complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Xue; Guo, Hao; Wang, Junwei; Zhao, Qingbiao
2018-01-19
In this study, a sensitive and fast procedure of ultrasonic-assisted dispersive liquid-liquid microextraction (UADLLME) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) for the determination of major pyrethroid pesticides (permethrin, tetramethrin, bifenthrin, fenvalerate, flucythrinate, fluvalinate, fenpropathrin, deltamethrin, and cyhalothrin) in blood samples was developed. Response surface methodology (RSM) combined with Box-Behnken design (BBD) and ANOVA function was used to optimize key factors affecting the extraction efficiency of UADLLME procedure. Target compounds were analyzed by GC-MS/MS. Under the optimal conditions, good linearity (R 2 >0.99) was achieved for all the analytes in the concentration range of 0.5 to 100 μg L -1 . The recoveries for spiked samples at 3 concentration levels were between 70.2 and 91.8%, with relative standard deviations (RSD) lower than 10%. Very low limits of detection (LODs) and limits of quantification (LOQs) ranging from 0.01 to 0.1 μg L -1 and from 0.03 to 0.3 μg L -1 were achieved. This method was successfully applied to the determination of low concentration of pyrethroids in blood samples from real forensic cases. High sensitivity, fast determination, simplicity in operation, small sample volume, and low usage of organic solvents are the advantages of this method. This methodology is of important value for sensitive and quick determination of residue pesticides and metabolites, study of residue pesticides behavior in human body, as well as application in real forensic cases. Copyright © 2018 John Wiley & Sons, Ltd.
PROBABILITY SAMPLING AND POPULATION INFERENCE IN MONITORING PROGRAMS
A fundamental difference between probability sampling and conventional statistics is that "sampling" deals with real, tangible populations, whereas "conventional statistics" usually deals with hypothetical populations that have no real-world realization. he focus here is on real ...
Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer.
Skeldon, K D; McMillan, L C; Wyse, C A; Monk, S D; Gibson, G; Patterson, C; France, T; Longbottom, C; Padgett, M J
2006-02-01
There is increasing interest in ethane (C(2)H(6)) in exhaled breath as a non-invasive marker of oxidative stress (OS) and thereby a potential indicator of disease. However, the lack of real-time measurement techniques has limited progress in the field. Here we report on a novel Tunable Diode Laser Spectrometer (TDLS) applied to the analysis of exhaled ethane in patients with lung cancer. The patient group (n=52) comprised randomly selected patients presenting at a respiratory clinic. Of these, a sub-group (n=12) was subsequently diagnosed with lung cancer. An age-matched group (n=12) corresponding to the lung cancer group was taken from a larger control group of healthy adults (n=58). The concentration of ethane in a single exhaled breath sample collected from all subjects was later measured using the TDLS. This technique is capable of real-time analysis of samples with accuracy 0.1 parts per billion (ppb), over 10 times less than typical ambient levels in the northern hemisphere. After correcting for ambient background, ethane in the control group (26% smokers) ranged from 0 to 10.54 ppb (median of 1.9 ppb) while ethane in the lung cancer patients (42% smokers) ranged from 0 to 7.6 ppb (median of 0.7 ppb). Ethane among the non-lung cancer patients presenting for investigation of respiratory disease ranged from 0 to 25 ppb (median 1.45 ppb). We conclude that, while the TDLS proved effective for accurate and rapid sample analysis, there was no significant difference in exhaled ethane among any of the subject groups. Comments are made on the suitability of the technique for monitoring applications.
Assessment of Salmonella survival in dry-cured Italian salami.
Bonardi, S; Bruini, I; Bolzoni, L; Cozzolino, P; Pierantoni, M; Brindani, F; Bellotti, P; Renzi, M; Pongolini, S
2017-12-04
The inactivation of Salmonella during curing of Italian traditional pork salami was investigated. A total of 150 batches of ground raw meat (GRM) used for salami manufacturing by four producers were tested for Salmonella by real-time PCR followed by ISO 6579 cultural confirmation and MPN enumeration. Salami produced with Salmonella positive GRMs were re-tested at the end of their curing period. Aw, pH and NaCl content were also measured. Detection of Salmonella was performed testing both 25 and 50g of the samples. By Real-Time PCR 37% of the GRMs resulted positive, but cultural detection of Salmonella was obtained in 14% of the samples only. Salmonella enumeration ranged from 31 MPN/g to <1.3 MPN/g. The difference between testing 50g and 25g of the samples was statistically significant (p value≤0.01). In particular, ISO-50g detected Salmonella in 100% of all positive samples, vs. 62% of ISO-25g. Salami made of the contaminated GRMs were 29% Salmonella-positive, as most batches of salami produced with Salmonella-positive GRMs resulted negative after regular curing (20-48days). Overall, 13% of salami produced with Salmonella-contaminated GRMs were positive. They belonged to six batches, which turned out negative after prolonged curing ranging between 49 and 86days. Salmonella enumeration in salami ranged from 8.7 MPN/g to <1.3 MPN/g. Unlike GRMs, no significant difference was observed between the ISO-50g and the ISO-25g in detecting Salmonella in cured salami (p value: >0.05). The most common Salmonella serovars in GRMs were Derby (52%), Typhimurium monophasic variant 4, (Barbuti et al., 1993), 12:i:- (19%) and Stanley (10%). Salmonella Derby (56%), London, Branderup, Panama (13%, respectively) and Goldcoast (6%) were most frequent in cured salami. The study showed negative correlation between real-time CT values and cultural confirmation of Salmonella, as well as the importance of sample size for Salmonella detection. Among considered factors with possible effect on the occurrence of Salmonella in salami, statistical analysis revealed a role for aw in salami and for Salmonella load in GRMs, while pH and NaCl content did not significantly affect the probability of finding Salmonella in dry-cured salami in the context of this study. In particular the lower aw values due to longer curing were associated with lower Salmonella presence in traditional dry-cured salami. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene
NASA Astrophysics Data System (ADS)
Kornbluth, Mordechai; Marianetti, Chris
We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.
Wisitsoraat, A; Sritongkham, P; Karuwan, C; Phokharatkul, D; Maturos, T; Tuantranont, A
2010-12-15
This work reports a new cholesterol detection scheme using functionalized carbon nanotube (CNT) electrode in a polydimethylsiloxane/glass based flow injection microfluidic chip. CNTs working, silver reference and platinum counter electrode layers were fabricated on the chip by sputtering and low temperature chemical vapor deposition methods. Cholesterol oxidase prepared in polyvinyl alcohol solution was immobilized on CNTs by in-channel flow technique. Cholesterol analysis based on flow injection chronoamperometric measurement was performed in 150-μm-wide and 150-μm-deep microchannels. Fast and sensitive real-time detection was achieved with high throughput of more than 60 samples per hour and small sample volume of 15 μl. The cholesterol sensor had a linear detection range between 50 and 400 mg/dl. In addition, low cross-sensitivities toward glucose, ascorbic acid, acetaminophen and uric acid were confirmed. The proposed system is promising for clinical diagnostics of cholesterol with high speed real-time detection capability, very low sample consumption, high sensitivity, low interference and good stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations
2015-01-01
The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007
Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.
Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry
2014-12-16
The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.
NASA Astrophysics Data System (ADS)
Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke
2017-08-01
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be < 4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.
Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke
2017-08-05
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be <4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Guangni; Zhu, Wenxin; Shen, Hao; Li, Yao; Zhang, Anfeng; Tamura, Nobumichi; Chen, Kai
2016-01-01
Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in real time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments). PMID:27302087
Donaldson, K.A.; Griffin, Dale W.; Paul, J.H.
2002-01-01
A method was developed for the quantitative detection of pathogenic human enteroviruses from surface waters in the Florida Keys using Taqman (R) one-step Reverse transcription (RT)-PCR with the Model 7700 ABI Prism (R) Sequence Detection System. Viruses were directly extracted from unconcentrated grab samples of seawater, from seawater concentrated by vortex flow filtration using a 100kD filter and from sponge tissue. Total RNA was extracted from the samples, purified and concentrated using spin-column chromatography. A 192-196 base pair portion of the 5??? untranscribed region was amplified from these extracts. Enterovirus concentrations were estimated using real-time RT-PCR technology. Nine of 15 sample sites or 60% were positive for the presence of pathogenic human enteroviruses. Considering only near-shore sites, 69% were positive with viral concentrations ranging from 9.3viruses/ml to 83viruses/g of sponge tissue (uncorrected for extraction efficiency). Certain amplicons were selected for cloning and sequencing for identification. Three strains of waterborne enteroviruses were identified as Coxsackievirus A9, Coxsackievirus A16, and Poliovirus Sabin type 1. Time and cost efficiency of this one-step real-time RT-PCR methodology makes this an ideal technique to detect, quantitate and identify pathogenic enteroviruses in recreational waters. Copyright ?? 2002 Elsevier Science Ltd.
Liu, Mingyang; Yang, Lijun; Zhang, Lei
2016-12-01
In this study, a functionalized magnetic hollow porous oval-shape NiFe 2 O 4 (MHPO-NiFe 2 O 4 ) was designed by a facile synthesis procedure, and employed as magnetic solid phase extraction (MSPE) material to extract several heavy metal ions. As-prepared MHPO-NiFe 2 O 4 exhibited superior adsorption capacities of 20.17, 16.64, 16.82, 9.69 and 16.58mgg -1 , for Cu(II), Cd(II), Cr(III), Co(II) and Zn(II), and was then used to detect these heavy metals elements in real samples by combining with inductively coupled plasma optical emission spectroscopy (ICP-OES). The possible mechanism of the enrichment of heavy metals ions on MHPO-NiFe 2 O 4 was proposed, which involved the dominant adsorption and desorption. The detection limits were as low as 0.015, 0.13, 0.062, 0.035 and 0.46μgL -1 for Cu(II), Cd(II), Cr(III), Co(II) and Zn(II), respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 3.87%. Moreover, the method was successfully utilized for the analysis of five heavy metals in real samples (cabbage, lettuce, apple, seawater), with satisfactory recoveries in the range of 92-108%. Copyright © 2016 Elsevier B.V. All rights reserved.
Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi
2017-10-01
Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.
Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott
2013-01-01
WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.
Cui, Meiyu; Qiu, Jinxue; Li, Zhenghua; He, Miao; Jin, Mingshi; Kim, Jiman; Quinto, Maurizio; Li, Donghao
2015-01-01
In this study, a stainless steel wire/ionic liquid-solid phase microextraction technique was developed for the direct extraction of APs from water samples. Some parameters were optimised, such as selection of the substrate and ILs, extraction time, extraction temperature, stirring rate and sample pH, etc. The experimental data demonstrated that the etched stainless steel wire was a suitable substrate for IL-coated SPME. The coating was prepared by directly depositing the ILs onto the surface of the etched stainless steel wire, which exhibited a porous structure and a high surface area. The [C8MIM][PF6] IL exhibited maximum efficiency with an extraction time of 30 min, and the aqueous sample was maintained at 40 °C and adjusted to pH 2 under stirring conditions. The enrichment factor of the IL coating for the four APs ranged from 1382 to 4779, the detection limits (LOD, S/N=3) of the four APs ranged from 0.01 to 0.04 ng mL(-1) and the RSD values for purified water spiked with APs ranged from 4.0 to 11.8% (n=3). The calibration graphs were linear in the concentration range from 0.5 to 200 ng mL(-1) (R(2)>0.9569). The optimised method was successfully applied for the analysis of real water samples, and the method was suitable for the extraction of APs from water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J
2017-09-01
Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Automated force controller for amplitude modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr
Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less
Wide binaries in the direction of Andromeda
NASA Technical Reports Server (NTRS)
Bahcall, J. N.; Ratnatunga, K. U.; Jones, B. F.
1986-01-01
A statistically well-defined sample of candidate binary stars with separations that are expected to be mostly in the range 0.01-0.1 pc is presented. The 36 candidate pairs are all brighter than apparent visual magnitude 12; about half of the projected pairs are expected to be physically associated. After the candidates are studied spectroscopically and photometrically to establish which pairs are real binaries and to measure their physical characteristics, the sample can be used to help determine the dependence of number density on semimajor axis for wide binaries, a function that is of considerable theoretical interest.
Wu, Chunxia; Liu, Huimin; Liu, Weihua; Wu, Qiuhua; Wang, Chun; Wang, Zhi
2010-07-01
A simple dispersive liquid-liquid microextraction based on solidification of floating organic droplet coupled with high-performance liquid chromatography-diode array detection was developed for the determination of five organophosphorus pesticides (OPs) in water samples. In this method, the extraction solvent used is of low density, low toxicity, and proper melting point near room temperature. The extractant droplet could be collected easily by solidifying it in the lower temperature. Some important experimental parameters that affect the extraction efficiencies were optimized. Under the optimum conditions, the calibration curve was linear in the concentration range from 1 to 200 ng mL(-1) for the five OPs (triazophos, parathion, diazinon, phoxim, and parathion-methyl), with the correlation coefficients (r) varying from 0.9991 to 0.9998. High enrichment factors were achieved ranging from 215 to 557. The limits of detection were in the range between 0.1 and 0.3 ng mL(-1). The recoveries of the target analytes from water samples at spiking levels of 5.0 and 50.0 ng mL(-1) were 82.2-98.8% and 83.6-104.0%, respectively. The relative standard deviations fell in the range of 4.4% to 6.3%. The method was suitable for the determination of the OPs in real water samples.
Method of detecting system function by measuring frequency response
NASA Technical Reports Server (NTRS)
Morrison, John L. (Inventor); Morrison, William H. (Inventor); Christophersen, Jon P. (Inventor)
2012-01-01
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Seong-Jin Kim; Euisik Yoon
2012-06-01
We present a label-free CMOS field-effect transistor sensing array to detect the surface potential change affected by the negative charge in DNA molecules for real-time monitoring and quantification. The proposed CMOS bio sensor includes a new sensing pixel architecture implemented with correlated double sampling for reducing offset fixed pattern noise and 1/f noise of the sensing devices. We incorporated non-surface binding detection which allows real-time continuous monitoring of DNA concentrations without immobilizing them on the sensing surface. Various concentrations of 19-bp oligonucleotides solution can be discriminated using the prototype device fabricated in 1- μm double-poly double-metal standard CMOS process. The detection limit was measured as 1.1 ng/μl with a dynamic range of 40 dB and the transient response time was measured less than 20 seconds.
Method of detecting system function by measuring frequency response
Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID
2012-04-03
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples.
Springer, Jan; Lackner, Michaela; Ensinger, Christian; Risslegger, Brigitte; Morton, Charles Oliver; Nachbaur, David; Lass-Flörl, Cornelia; Einsele, Hermann; Heinz, Werner J; Loeffler, Juergen
2016-12-01
Molecular diagnostic assays can accelerate the diagnosis of fungal infections and subsequently improve patient outcomes. In particular, the detection of infections due to Mucorales is still challenging for laboratories and physicians. The aim of this study was to evaluate a probe-based Mucorales-specific real-time PCR assay (Muc18S) using tissue and serum samples from patients suffering from invasive mucormycosis (IMM). This assay can detect a broad range of clinically relevant Mucorales species and can be used to complement existing diagnostic tests or to screen high-risk patients. An advantage of the Muc18S assay is that it exclusively detects Mucorales species allowing the diagnosis of Mucorales DNA without sequencing within a few hours. In paraffin-embedded tissue samples this PCR-based method allowed rapid identification of Mucorales in comparison with standard methods and showed 91 % sensitivity in the IMM tissue samples. We also evaluated serum samples, an easily accessible material, from patients at risk from IMM. Mucorales DNA was detected in all patients with probable/proven IMM (100 %) and in 29 % of the possible cases. Detection of IMM in serum could enable an earlier diagnosis (up to 21 days) than current methods including tissue samples, which were gained mainly post-mortem. A screening strategy for high-risk patients, which would enable targeted treatment to improve patient outcomes, is therefore possible.
Haramoto, E; Otagiri, M; Morita, H; Kitajima, M
2012-04-01
To determine the genogroup distribution of F-specific coliphages in aquatic environments using the plaque isolation procedure combined with genogroup-specific real-time PCR. Thirty water samples were collected from a wastewater treatment plant and a river in the Kofu basin in Japan on fine weather days. F-specific coliphages were detected in all tested samples, 187 (82%) of 227 phage plaques isolated were classified into one of the 4 F-specific RNA (F-RNA) coliphage genogroups and 24 (11%) plaques were F-specific DNA coliphages. Human genogroups II and III F-RNA coliphages were more abundant in raw sewage than animal genogroups I and IV, excluding one sample that was suspected to be heavily contaminated with sporadic heavy animal faeces. The secondary-treated sewage samples were highly contaminated with genogroup I F-RNA coliphages, probably because of different behaviours among the coliphage genogroups during wastewater treatment. The river water samples were expected to be mainly contaminated with human faeces, independent of rainfall effects. A wide range of F-specific coliphage genogroups were successfully identified in wastewater and river water samples. Our results clearly show the usefulness of the genogroup-specific real-time PCR for determining the genogroups of F-specific coliphages present in aquatic environments. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.
Xu, Yuanyuan; Zhu, Xianwen; Gong, Yiqin; Xu, Liang; Wang, Yan; Liu, Liwang
2012-08-03
Real-time quantitative reverse transcription PCR (RT-qPCR) is a rapid and reliable method for gene expression studies. Normalization based on reference genes can increase the reliability of this technique; however, recent studies have shown that almost no single reference gene is universal for all possible experimental conditions. In this study, eight frequently used reference genes were investigated, including Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Actin2/7 (ACT), Tubulin alpha-5 (TUA), Tubulin beta-1 (TUB), 18S ribosomal RNA (18SrRNA), RNA polymerase-II transcription factor (RPII), Elongation factor 1-b (EF-1b) and Translation elongation factor 2 (TEF2). Expression stability of candidate reference genes was examined across 27 radish samples, representing a range of tissue types, cultivars, photoperiodic and vernalization treatments, and developmental stages. The eight genes in these sample pools displayed a wide range of Ct values and were variably expressed. Two statistical software packages, geNorm and NormFinder showed that TEF2, RPII and ACT appeared to be relatively stable and therefore the most suitable for use as reference genes. These results facilitate selection of desirable reference genes for accurate gene expression studies in radish. Copyright © 2012 Elsevier Inc. All rights reserved.
Simpson, Tiffany J S; Dias, P Joana; Snow, Michael; Muñoz, Julieta; Berry, Tina
2017-05-01
Prevention and early detection are well recognized as the best strategies for minimizing the risks posed by nonindigenous species (NIS) that have the potential to become marine pests. Central to this is the ability to rapidly and accurately identify the presence of NIS, often from complex environmental samples like biofouling and ballast water. Molecular tools have been increasingly applied to assist with the identification of NIS and can prove particularly useful for taxonomically difficult groups like ascidians. In this study, we have developed real-time PCR assays suited to the specific identification of the ascidians Didemnum perlucidum and Didemnum vexillum. Despite being recognized as important global pests, this is the first time specific molecular detection methods have been developed that can support the early identification and detection of these species from a broad range of environmental sample types. These fast, robust and high-throughput assays represent powerful tools for routine marine biosecurity surveillance, as detection and confirmation of the early presence of species could assist in the timely establishment of emergency responses and control strategies. This study applied the developed assays to confirm the ability to detect Didemnid eDNA in water samples. While previous work has focused on detection of marine larvae from water samples, the development of real-time PCR assays specifically aimed at detecting eDNA of sessile invertebrate species in the marine environment represents a world first and a significant step forwards in applied marine biosecurity surveillance. Demonstrated success in the detection of D. perlucidum eDNA from water samples at sites where it could not be visually identified suggests value in incorporating such assays into biosecurity survey designs targeting Didemnid species. © 2016 John Wiley & Sons Ltd.
Forbes, Thomas P.; Staymates, Matthew
2017-01-01
Venturi-assisted ENTrainment and Ionization (VENTI) was developed, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects at multiple locations generated flow and analyte transport from non-proximate locations and more importantly enhanced the aerodynamic reach at the point of collection. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10-2 s to 10-1 s and Reynolds numbers on the order of 103 to 104. The Venturi-assisted entrainment successfully enhanced vapor collection and detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction). This enhancement is imperative, as simple suction restricts sampling to the immediate vicinity, requiring close proximity to the vapor source. In addition, the overall aerodynamic reach distance was increased by approximately 3-fold over simple suction under the investigated conditions. Enhanced aerodynamic reach was corroborated and observed with laser-light sheet flow visualization and schlieren imaging. Coupled with atmospheric pressure chemical ionization (APCI), the detection of a range of volatile chemical vapors; explosive vapors; explosive, narcotic, and mustard gas surrogate (methyl salicylate) aerosols; and explosive dust particulate was demonstrated. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m2 area, 570 m3 volume) was demonstrated for a 60-minute period without the remote sampling probe, exhibiting detection of chemical vapors and methyl salicylate at approximately 3 m stand-off distances within 2 minutes of exposure. PMID:28107830
Forbes, Thomas P; Staymates, Matthew
2017-03-08
Venturi-assisted ENTrainment and Ionization (VENTI) was developed, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects at multiple locations generated flow and analyte transport from non-proximate locations and more importantly enhanced the aerodynamic reach at the point of collection. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10 -2 s to 10 -1 s and Reynolds numbers on the order of 10 3 to 10 4 . The Venturi-assisted entrainment successfully enhanced vapor collection and detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction). This enhancement is imperative, as simple suction restricts sampling to the immediate vicinity, requiring close proximity to the vapor source. In addition, the overall aerodynamic reach distance was increased by approximately 3-fold over simple suction under the investigated conditions. Enhanced aerodynamic reach was corroborated and observed with laser-light sheet flow visualization and schlieren imaging. Coupled with atmospheric pressure chemical ionization (APCI), the detection of a range of volatile chemical vapors; explosive vapors; explosive, narcotic, and mustard gas surrogate (methyl salicylate) aerosols; and explosive dust particulate was demonstrated. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m 2 area, 570 m 3 volume) was demonstrated for a 60-min period without the remote sampling probe, exhibiting detection of chemical vapors and methyl salicylate at approximately 3 m stand-off distances within 2 min of exposure. Published by Elsevier B.V.
An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin A.
Lee, Bobin; Park, Jin-Ho; Byun, Ju-Young; Kim, Joon Heon; Kim, Min-Gon
2018-04-15
Label-free biosensing methods that rely on the use of localized surface plasmon resonance (LSPR) have attracted great attention as a result of their simplicity, high sensitivity, and relatively low cost. However, in-situ analysis of real samples using these techniques has remained challenging because colloidal nanoparticles (NPs) can be unstable at certain levels of pH and salt concentration. Even in the case of a chip-type LSPR sensor that can resolve the instability problem by employing NPs immobilized on the substrate, loading of a sample to sensor chip with exact volume control can be difficult for unskilled users. Herein, we report an optical-fiber-based LSPR aptasensor that can avoid these problems and serve as a portable and simple system for sensitive detection of a small mycotoxin, ochratoxin A (OTA), in real samples. The optical fiber coated with aptamer-modified gold nanorods (GNRs) is simply dipped into a solution containing OTA and subjected to LSPR analysis. Quantitative analysis of OTA is performed by measuring the spectral red shift of the LSPR peak of GNRs. Under optimized conditions, the LSPR peak shift displays a linear response (R 2 = 0.9887) to OTA in the concentration range from 10pM to 100nM, with a limit of detection of 12.0pM (3S). The developed sensor shows a high selectivity for OTA over other mycotoxins such as zearalenone (ZEN) and ochratoxin B (OTB), and shows an accurate detection capability for OTA in real grape juice samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Kun; Jiang, Jia; Lv, Xinping; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei; Yu, Yong
2018-03-01
Based on the foaming property of the honey, a rapid, simple, and effective method solvent floatation (SF) was developed and firstly applied to the extraction and separation of triazine herbicides in honey. The analytes were determined by high-performance liquid chromatography. Some parameters affecting the extraction efficiencies, such as the type and volume of extraction solvent, type of salt, amount of (NH 4 ) 2 SO 4 , pH value of sample solution, gas flow rate, and floatation time, were investigated and optimized. The limits of detection for analytes are in the range of 0.16-0.56 μg kg -1 . The recoveries and relative standard deviations for determining triazines in five real honey samples are in the range of 78.2-112.9 and 0.2-9.2%, respectively.
NASA Astrophysics Data System (ADS)
Yu, Zhan; Chen, Lee Chuin; Mandal, Mridul Kanti; Yoshimura, Kentaro; Takeda, Sen; Hiraoka, Kenzo
2013-10-01
This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.
Lim, Myong Cheol; Lee, Do-Hoon; Hwang, Sang-Hyun; Hwang, Na Rae; Lee, Bomyee; Shin, Hye Young; Jun, Jae Kwan; Yoo, Chong Woo; Lee, Dong Ock; Seo, Sang-Soo; Park, Sang-Yoon; Joo, Jungnam
2017-05-01
Human papillomavirus (HPV) testing based on cervical samples is important for use in cervical cancer screening. However, cervical sampling is invasive. Therefore, non-invasive methods for detecting HPV, such as urine samples, are needed. For HPV detection in urine samples, two real-time PCR (RQ-PCR) tests, Roche cobas 4800 test (Roche_HPV; Roche Molecular Diagnostics) and Abbott RealTime High Risk HPV test (Abbott_HPV; Abbott Laboratories) were compared to standard cervical samples. The performance of Roche_HPV and Abbott_HPV for HPV detection was evaluated at the National Cancer Center using 100 paired cervical and urine samples. The tests were also compared using urine samples stored at various temperatures and for a range of durations. The overall agreement between the Roche_HPV and Abbott_HPV tests using urine samples for any hrHPV type was substantial (86.0% with a kappa value of 0.7173), and that for HPV 16/18 was nearly perfect (99.0% with a kappa value of 0.9668). The relative sensitivities (based on cervical samples) for HPV 16/18 detection using Roche_HPV and Abbott_HPV with urine samples were 79.2% (95% CI; 57.9-92.9%) and 81.8% (95% CI; 59.7-94.8%), respectively. When the cut-off C T value for Abbott_HPV was extended to 40 for urine samples, the relative sensitivity of Abbott_HPV increased to 91.7% from 81.8% for HPV16/18 detection and to 87.0% from 68.5% for other hrHPV detection. The specificity was not affected by the change in the C T threshold. Roche_HPV and Abbott_HPV showed high concordance. However, HPV DNA detection using urine samples was inferior to HPV DNA detection using cervical samples. Interestingly, when the cut-off C T value was set to 40, Abbott_HPV using urine samples showed high sensitivity and specificity, comparable to those obtained using cervical samples. Fully automated DNA extraction and detection systems, such as Roche_HPV and Abbott_HPV, could reduce the variability in HPV detection and accelerate the standardization of HPV detection in urine. Thus, urine samples may be an effective alternative for HPV detection in women who hesitate to participate in cervical cancer screening programs. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Hui; Liao, Ying; Yao, Jinrong
2007-10-05
A new sample pretreatment technique, ultrasound-assisted headspace liquid-phase microextraction was developed as mentioned in this paper. In the technique, the volatile analytes were headspace extracted into a small drop of solvent, which suspended on the bottom of a cone-shaped PCR tube instead of the needle tip of a microsyringe. More solvent could be suspended in the PCR tube than microsyringe due to the larger interfacial tension, thus the analysis sensitivity was significantly improved with the increase of the extractant volume. Moreover, ultrasound-assisted extraction and independent controlling temperature of the extractant and the sample were performed to enhance the extraction efficiency. Following the extraction, the solvent-loaded sample was analyzed by high-performance liquid chromatography. Chlorophenols (2-chlorophenol, 2,4-dichlorophenol and 2,6-dichlorophenol) were chosen as model analytes to investigate the feasibility of the method. The experimental conditions related to the extraction efficiency were systematically studied. Under the optimum experimental conditions, the detection limit (S/N=3), intra- and inter-day RSD were 6 ng mL(-1), 4.6%, 3.9% for 2-chlorophenol, 12 ng mL(-1), 2.4%, 8.8% for 2,4-dichlorophenol and 23 ng mL(-1), 3.3%, 5.3% for 2,6-dichlorophenol, respectively. The proposed method was successfully applied to determine chlorophenols in real aqueous samples. Good recoveries ranging from 84.6% to 100.7% were obtained. In addition, the extraction efficiency of our method and the conventional headspace liquid-phase microextraction were compared; the extraction efficiency of the former was about 21 times higher than that of the latter. The results demonstrated that the proposed method is a promising sample pretreatment approach, its advantages over the conventional headspace liquid-phase microextraction include simple setup, ease of operation, rapidness, sensitivity, precision and no cross-contamination. The method is very suitable for the analysis of trace volatile and semivolatile pollutants in real aqueous sample.
Almeida, C; Stępkowska, A; Alegre, A; Nogueira, J M F
2013-10-11
Bar adsorptive micro-extraction (BAμE), using selective sorbent phases, followed by liquid desorption in combination with high performance liquid chromatography-diode array detection (BAμE-LD/HPLC-DAD), is proposed for the determination of trace levels of four benzophenone-type UV filters (benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2,4-hydroxybenzophenone and 4-hydroxybenzophenone) in real matrices. By comparing three polymers (P1, P2 and P3) and five activated carbons (AC1, AC2, AC3, AC4 and AC5) phases, P2 (a modified pyrrolidone polymer) and AC4 coatings showed much higher selectivity and capacity through BAμE, where the former offers multiple mechanisms of interaction and faster equilibrium kinetics. Assays performed on 25mL of ultra-pure water samples spiked at the 8.0μg/L level, yielded recoveries ranging from 76.6±8.3% to 103.5±6.4% depending on the sorbent phase used (P2 or AC4), under optimized experimental conditions. The analytical performance showed convenient detection limits (0.3-0.5μg/L) and good linear dynamic ranges (1.0-24.0μg/L) with remarkable determination coefficients (r(2)>0.9969). Excellent repeatability was also achieved through intraday (RSD<13.0%) and interday (RSD<8.9%) experiments. By using the standard addition methodology, the application of the present analytical approach on sea water, wastewater, commercial cosmetic products and urine samples revealed good sensitivity, absence of matrix effects and the occurrence of levels of some benzophenones. The proposed methodology that uses nanostructured particles and operates under the floating sampling technology proved to be a sorption-based static micro-extraction alternative to monitor benzophenone-type UV filters in real matrices. Moreover, is easy to implement, reliable, sensitive, requiring low sample volume and the possibility to choose the most selective sorbent coating according to the target compounds involved. Copyright © 2013. Published by Elsevier B.V.
Prevalence of emetic Bacillus cereus in different ice creams in Bavaria.
Messelhäusser, U; Kämpf, P; Fricker, M; Ehling-Schulz, M; Zucker, R; Wagner, B; Busch, U; Höller, C
2010-02-01
In this study, 809 samples of ice cream from different sources were investigated by using cultural methods for the presence of presumptive Bacillus cereus. Isolates from culture-positive samples were examined with a real-time PCR assay targeting a region of the cereulide synthetase gene (ces) that is highly specific for emetic B. cereus strains. The samples were collected from ice cream parlors and restaurants that produced their own ice cream and from international commercial ice cream companies in different regions of Bavaria during the summer of 2008. Presumptive B. cereus was found in 508 (62.7%) ice cream samples investigated, and 24 (4.7%) of the isolates had the genetic background for cereulide toxin production. The level of emetic B. cereus in the positive samples ranged from 0.1 to 20 CFU/g of ice cream.
Cai, Pei-Shan; Li, Dan; Chen, Jing; Xiong, Chao-Mei; Ruan, Jin-Lan
2015-04-15
Two thin-film microextractions (TFME), octadecylsilane (ODS)-polyacrylonitrile (PAN)-TFME and polar enhanced phase (PEP)-PAN-TFME have been proposed for the analysis of bisphenol-A, diethylstilbestrol and 17β-estradiol in aqueous tea extract and environmental water samples followed by high performance liquid chromatography-ultraviolet detection. Both thin-films were prepared by spraying. The influencing factors including pH, extraction time, desorption solvent, desorption volume, desorption time, ion strength and reusability were investigated. Under the optimal conditions, the two TFME methods are similar in terms of the analytical performance evaluated by standard addition method. The limits of detection for three estrogens in environmental water and aqueous tea extract matrix ranged from 1.3 to 1.6 and 2.8 to 7.1 ng mL(-1) by the two TFME methods, respectively. Both approaches were applied for the analysis of analytes in real aqueous tea extract and environmental water samples, presenting satisfactory recoveries ranged from 87.3% to 109.4% for the spiked samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ostra, Miren; Ubide, Carlos; Zuriarrain, Juan
2007-02-12
The determination of atrazine in real samples (commercial pesticide preparations and water matrices) shows how the Fenton's reagent can be used with analytical purposes when kinetic methodology and multivariate calibration methods are applied. Also, binary mixtures of atrazine-alachlor and atrazine-bentazone in pesticide preparations have been resolved. The work shows the way in which interferences and the matrix effect can be modelled. Experimental design has been used to optimize experimental conditions, including the effect of solvent (methanol) used for extraction of atrazine from the sample. The determination of pesticides in commercial preparations was accomplished without any pre-treatment of sample apart from evaporation of solvent; the calibration model was developed for concentration ranges between 0.46 and 11.6 x 10(-5) mol L(-1) with mean relative errors under 4%. Solid-phase extraction is used for pre-concentration of atrazine in water samples through C(18) disks, and the concentration range for determination was established between 4 and 115 microg L(-1) approximately. Satisfactory results for recuperation of atrazine were always obtained.
A rapid analytical method for predicting the oxygen demand of wastewater.
Fogelman, Shoshana; Zhao, Huijun; Blumenstein, Michael
2006-11-01
In this study, an investigation was undertaken to determine whether the predictive accuracy of an indirect, multiwavelength spectroscopic technique for rapidly determining oxygen demand (OD) values is affected by the use of unfiltered and turbid samples, as well as by the use of absorbance values measured below 200 nm. The rapid OD technique was developed that uses UV-Vis spectroscopy and artificial neural networks (ANNs) to indirectly determine chemical oxygen demand (COD) levels. It was found that the most accurate results were obtained when a spectral range of 190-350 nm was provided as data input to the ANN, and when using unfiltered samples below a turbidity range of 150 NTU. This is because high correlations of above 0.90 were obtained with the data using the standard COD method. This indicates that samples can be measured directly without the additional need for preprocessing by filtering. Samples with turbidity values higher than 150 NTU were found to produce poor correlations with the standard COD method, which made them unsuitable for accurate, real-time, on-line monitoring of OD levels.
Dielectric Relaxation In Complex Perovskite Sm(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Nishant; Prasad, S.; Sinha, T. P.
2011-11-22
The complex perovskite oxide Samarium nickel titenate, Sm(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}(SNT) is synthesized by a solid-state reaction technique. The X-ray diffraction of the sample at room temperature shows a monoclinic phase. The scanning micrograph of the sample shows the average grain size{approx_equal}0.6{mu}m The field dependence of dielectric response and the loss tangent of the sample are measured in a frequency range from 100Hz to 1MHz and in a temperature range from 313 K to 673 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency is performed, assuming a distribution of relaxation times as confirmedmore » by Cole-Cole plots. The frequency dependent electrical data are analyzed in the framework of conductivity formalism. The frequency dependent conductivity data are fitted to the universal power law. All these formalisms provided for qualitative similarities in the relaxation times.« less
Optical Modulation of BST/STO Thin Films in the Terahertz Range
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shi, Songjie; Zhou, Ling; Ling, Furi; Yao, Jianquan
2018-04-01
The {Ba}_{0.7} {Sr}_{0.3} {TiO}3 (BST) thin film (30.3 nm) deposited on a {SrTiO}3 (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2-1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement-electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.
Optical Modulation of BST/STO Thin Films in the Terahertz Range
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shi, Songjie; Zhou, Ling; Ling, Furi; Yao, Jianquan
2018-07-01
The {Ba}_{0.7} {Sr}_{0.3} {TiO}3 (BST) thin film (30.3 nm) deposited on a {SrTiO}3 (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2-1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement-electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.
NASA Astrophysics Data System (ADS)
Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong
2001-09-01
A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.
Coggins, Brian E.; Werner-Allen, Jonathan W.; Yan, Anthony; Zhou, Pei
2012-01-01
In structural studies of large proteins by NMR, global fold determination plays an increasingly important role in providing a first look at a target’s topology and reducing assignment ambiguity in NOESY spectra of fully-protonated samples. In this work, we demonstrate the use of ultrasparse sampling, a new data processing algorithm, and a 4-D time-shared NOESY experiment (1) to collect all NOEs in 2H/13C/15N-labeled protein samples with selectively-protonated amide and ILV methyl groups at high resolution in only four days, and (2) to calculate global folds from this data using fully automated resonance assignment. The new algorithm, SCRUB, incorporates the CLEAN method for iterative artifact removal, but applies an additional level of iteration, permitting real signals to be distinguished from noise and allowing nearly all artifacts generated by real signals to be eliminated. In simulations with 1.2% of the data required by Nyquist sampling, SCRUB achieves a dynamic range over 10000:1 (250× better artifact suppression than CLEAN) and completely quantitative reproduction of signal intensities, volumes, and lineshapes. Applied to 4-D time-shared NOESY data, SCRUB processing dramatically reduces aliasing noise from strong diagonal signals, enabling the identification of weak NOE crosspeaks with intensities 100× less than diagonal signals. Nearly all of the expected peaks for interproton distances under 5 Å were observed. The practical benefit of this method is demonstrated with structure calculations for 23 kDa and 29 kDa test proteins using the automated assignment protocol of CYANA, in which unassigned 4-D time-shared NOESY peak lists produce accurate and well-converged global fold ensembles, whereas 3-D peak lists either fail to converge or produce significantly less accurate folds. The approach presented here succeeds with an order of magnitude less sampling than required by alternative methods for processing sparse 4-D data. PMID:22946863
Kuiper, Melanie W.; Valster, Rinske M.; Wullings, Bart A.; Boonstra, Harry; Smidt, Hauke; van der Kooij, Dick
2006-01-01
A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 × 10−1 and 1.14 × 104 cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 ± 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (≥98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water. PMID:16957190
Reina, J; Weber, I; Riera, E; Busquets, M; Morales, C
2014-05-01
Cytomegalovirus (CMV) is the main virus causing congenital and postnatal infections in the pediatric population. The aim of this study is to evaluate the usefulness of a quantitative real-time PCR in the diagnosis of these infections using urine as a single sample. We studied all the urine samples of newborns (< 7 days) with suspected congenital infection, and urine of patients with suspected postnatal infection (urine negative at birth). Urines were simultaneously studied by cell culture, qualitative PCR (PCRc), and quantitative real-time PCR (PCRq). We analyzed 332 urine samples (270 to rule out congenital infection and 62 postnatal infections). Of the first, 22 were positive in the PCRq, 19 in the PCRc, and 17 in the culture. PCRq had a sensitivity of 100%, on comparing the culture with the rest of the techniques. Using the PCRq as a reference method, culture had a sensitivity of 77.2%, and PCRc 86.3%. In cases of postnatal infection, PCRq detected 16 positive urines, the PCRq 12, and the cell culture 10. The urines showed viral loads ranging from 2,178 to 116,641 copies/ml. The genomic amplification technique PCRq in real time was more sensitive than the other techniques evaluated. This technique should be considered as a reference (gold standard), leaving the cell culture as a second diagnostic level. The low cost and the automation of PCRq would enable the screening for CMV infection in large neonatal and postnatal populations. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
van Beuningen, Rinie; Marras, Salvatore A.; Kramer, Fred R.; Oosterlaken, Tom; Weusten, Jos; Borst, G.; van de Wiel, Paul
2001-04-01
HIV-1 viral load assays require accuracy and sensitivity at low RNA levels with the capability to detect all subtypes. Furthermore, the assay should be easy to perform and fast to be useful for routine diagnostics. In order to meet these demands we have combined isothermal NASBA amplification with molecular beacon probes for real-time detection and quantitation of HIV-1 RNA. Quantitation is based on co-amplification of the HIV-1 RNA in the clinical sample and a synthetic calibrator RNA which is amplified by the same primer set but detected with a differently labeled molecular beacon. The entire procedure is simple and analysis of 48 samples requires less than 1» hours with minimal hands-on time. A fluorescent plate reader is used for real-time detection and isothermal amplification. The linearity and precision of the assay was determined with the VQC HIV-1 type B standard of the Central Laboratory of the Dutch Red Cross Blood Banks, The Netherlands. Sensitivity was shown to be 50 copies per ml (cps/ml). The average assay precision was 0,19 log10 over a range of 100-300,000 cps/ml tested at nine concentrations. The linearity of dilution series of 15 cultured HIV-1 gag clades A-H was shown. The specificity was 100% on non HIV-1 samples HIV-2, HTLV-1 and HTLV-2. The assay robustness in terms of valid results was 99%. In conclusion, the new real-time NASBA assay meets state-of-the-art HIV-1 viral load performance requirements combined with a high level of user convenience.
Wang, Lingling; Zhang, Zhenzhen; Xu, Xu; Zhang, Danfeng; Wang, Fang; Zhang, Lei
2015-09-01
A simple, rapid, sensitive and effective method for the simultaneous determination of four endocrine disrupting compounds (EDCs) (bisphenol A (BPA), bisphenol F (BPF), bisphenol AF (BPAF) and bisphenol AP (BPAP)) in environment water samples based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography (HPLC) was developed. Multi-wall carbon nanotubes (MWCNTs) adsorbents showed a good affinity to the target analytes. These compounds were rapidly extracted within 10 min. Various experimental parameters that could affect the extraction efficiencies had been investigated in detail. Under the optimum conditions, the enrichment factors of the method for the target EDCs were found to be 500. Satisfactory precision and accuracy of the method were obtained in a low concentration range of 2.0-500.0 ng mL(-1). The method detection limits were in the range of 0.10-0.30 ng mL(-1). The high pre-concentration rate and efficiency of the method ensure its successful application in extraction of trace EDCs from large volumes of environmental water samples. The extraction recoveries in real samples ranged from 85.3% to 102.5% with the relative standard deviations (n=5) less than 3.74%. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi
2011-01-15
A simple, rapid and environmentally friendly method has been developed for the determination of four triazole fungicides (myclobutanil, tebuconazole, triadimenol, hexaconazole) in water samples by dispersion-solidification liquid-liquid microextraction coupled with high performance liquid chromatography-diode array detection. Several variables that affect the extraction efficiencies, including the type and volume of the extraction solvent and dispersive solvent, extraction time, effect of pH and salt addition, were investigated and optimized. Under the optimum conditions, the proposed method is sensitive and shows a good linearity within a range of 0.5-200 ng mL(-1), with the correlation coefficients (r) varying from 0.9992 to 0.9998. High enrichment factors were achieved ranging from 190 to 450. The recoveries of the target analytes from water samples at spiking levels of 1.0, 5.0 and 50.0 ng mL(-1) were between 84.8% and 110.2%. The limits of detection (LODs) for the analytes were ranged in 0.06-0.1 ng mL(-1), and the relative standard deviations (RSD) varied from 3.9% to 5.7%. The proposed method has been successfully applied for the determination of the triazole fungicides in real water samples. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, XueAi; Han, XiJiang; Du, YunChen; Xu, Ping
2011-01-01
Magnetic and electromagnetic properties were investigated on the composites of iron oxide and Co-B alloy, which were prepared by a modified chemical reduction method. The composites are characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM). The complex electromagnetic parameters (permittivity ɛr= ɛr'+j ɛr″ and permeability μr= μr'+j μr″) of paraffin mixed composite samples (paraffin:composites=1:1 in mass ratio) were measured in the frequency range 2-18 GHz by vector network analyzer. The measured real part ( ɛr') and imaginary part ( ɛr″) of the relative permittivity show two resonant peaks in the range of 2-18 GHz. The imaginary parts of relative permeability ( μr″) of all samples exhibited one broad resonant peak over the 2-8 GHz range. The μr″ of samples with higher molar ratio of Co to Fe (C and D) shows negative values within 13-18 GHz, which exhibit resonant and antiresonant permeabilities simultaneously. Calculation results indicated that the reflection loss values of the composites and paraffin wax mixtures are less than -10 dB with frequency width of about 6 GHz at the matching thickness.
Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu
2017-10-11
Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.
Fan, Sufang; Li, Qiang; Zhang, Xiaoguang; Cui, Xiaobin; Zhang, Dongsheng; Zhang, Yan
2015-05-01
A novel fully automated method based on dual column switching using turbulent flow chromatography followed by liquid chromatography with tandem mass spectrometry was developed for the determination of aflatoxin B1 , B2 , G1 , and G2 in corn powder, edible oil, peanut butter, and soy sauce samples. After ultrasound-assisted extraction, samples were directly injected to the chromatographic system and the analytes were concentrated into the clean-up loading column. Through purge switching, the analytes were transferred to the analytical column for subsequent detection by mass spectrometry. Different types of TurboFlow(TM) columns, transfer flow rate, transfer time were optimized. The limits of detection and quantification of this method ranged between 0.2-2.0 and 0.5-4.0 μg/kg for aflatoxins in different matrixes, respectively. Recoveries of aflatoxins were in range of 83-108.1% for all samples, matrix effects were in range of 34.1-104.7%. The developed method has been successfully applied in the analysis of aflatoxin B1 , B2 , G1 , and G2 in real samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhong, Shi-Lei; Lu, Yuan; Kong, Wei-Jin; Cheng, Kai; Zheng, Ronger
2016-08-01
In this study, an ultrasonic nebulizer unit was established to improve the quantitative analysis ability of laser-induced breakdown spectroscopy (LIBS) for liquid samples detection, using solutions of the heavy metal element Pb as an example. An analytical procedure was designed to guarantee the stability and repeatability of the LIBS signal. A series of experiments were carried out strictly according to the procedure. The experimental parameters were optimized based on studies of the pulse energy influence and temporal evolution of the emission features. The plasma temperature and electron density were calculated to confirm the LTE state of the plasma. Normalizing the intensities by background was demonstrated to be an appropriate method in this work. The linear range of this system for Pb analysis was confirmed over a concentration range of 0-4,150ppm by measuring 12 samples with different concentrations. The correlation coefficient of the fitted calibration curve was as high as 99.94% in the linear range, and the LOD of Pb was confirmed as 2.93ppm. Concentration prediction experiments were performed on a further six samples. The excellent quantitative ability of the system was demonstrated by comparison of the real and predicted concentrations of the samples. The lowest relative error was 0.043% and the highest was no more than 7.1%.
Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear.
Hassanpour, Gholamreza; Mirhendi, Hossein; Mohebali, Mehdi; Raeisi, Ahmad; Zeraati, Hojjat; Keshavarz, Hossein
2016-01-01
We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan- Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. A single primer/probe set for pan-species Plasmodium -specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum . All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples.
Burt, Sara A; Röring, Romy E; Heijne, Marloes
2018-06-05
Feral pigeons (Columba livia domestica) live and breed in many city centres and contact with their droppings can be a hazard for human health if the birds carry Chlamydia psittaci. The aim of this study was to establish whether pigeon droppings in two Dutch cities (Utrecht and Haarlem) contain C. psittaci and/or C. avium, which could be a potential hazard for transmission to humans. In May 2017 seven feral pigeon 'hot spots' with between 5 and 40+ pigeons present were identified in two cities by visual observations over two days. During the following ten days fresh droppings were collected at these hot spots and the samples were pooled per three droppings to achieve 40-41 samples per city. Samples were analysed for Chlamydia DNA with a broad range 23S Chlamydiaceae Real-Time PCR and positive samples were tested with a specific C. psittaci and C. avium Real-Time PCR. Positive C. psittaci samples were genotyped. C. psittaci and C. avium were detected in both cities. For C. psittaci the prevalences in Utrecht and Haarlem were 2.4% and 7.5%, respectively; for C. avium 36.6% and 20.0%, respectively. One sample contained both species. All C. psittaci samples belonged to genotype B. C. psittaci and C. avium are present in feral pigeon droppings in Utrecht and Haarlem. Human contact with droppings from infected pigeons or inhalation of dust from dried droppings represent a potential hazard to public health.
NASA Astrophysics Data System (ADS)
Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Cappiello, Achille; Vandergrift, Gregory W.; Krogh, Erik T.; Gill, Chris G.
2016-02-01
Polycyclic aromatic hydrocarbons (PAHs) are USEPA regulated priority pollutants. Their low aqueous solubility requires very sensitive analytical methods for their detection, typically involving preconcentration steps. Presented is the first demonstrated `proof of concept' use of condensed phase membrane introduction mass spectrometry (CP-MIMS) coupled with direct liquid electron ionization (DEI) for the direct, on-line measurement of PAHs in aqueous samples. DEI is very well suited for the ionization of PAHs and other nonpolar compounds, and is not significantly influenced by the co-elution of matrix components. Linear calibration data for low ppb levels of aqueous naphthalene, anthracene, and pyrene is demonstrated, with measured detection limits of 4 ppb. Analytical response times (t10%-90% signal rise) ranged from 2.8 min for naphthalene to 4.7 min for pyrene. Both intra- and interday reproducibility has been assessed (<3% and 5% RSD, respectively). Direct measurements of ppb level PAHs spiked in a variety of real, complex environmental sample matrices is examined, including natural waters, sea waters, and a hydrocarbon extraction production waste water sample. For these spiked, complex samples, direct PAH measurement by CP-MIMS-DEI yielded minimal signal suppression from sample matrix effects (81%-104%). We demonstrate the use of this analytical approach to directly monitor real-time changes in aqueous PAH concentrations with potential applications for continuous on-line monitoring strategies and binding/adsorption studies in heterogeneous samples.
Lamas, J Pablo; Sanchez-Prado, Lucia; Garcia-Jares, Carmen; Llompart, Maria
2009-07-01
A method based on solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized for the determination of fragrance allergens in water samples. This is the first study devoted to this family of cosmetic ingredients performed by SPME. The influence of parameters such as fibre coating, extraction and desorption temperatures, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mixed-level factorial design, which allowed the study of the main effects as well as two-factor interactions. Excluding desorption temperature, the other parameters were, in general, very important for the achievement of high response. The final procedure was based on headspace sampling at 100 degrees C, using polydimethylsiloxane/divinylbenzene fibres. The method showed good linearity and precision for all compounds, with detection limits ranging from 0.001 to 0.3 ng mL(-1). Reliability was demonstrated through the evaluation of the recoveries in different real water samples, including baby bathwater and swimming pool water. The absence of matrix effects allowed the use of external standard calibration to quantify the target compounds in the samples. The proposed procedure was applied to the determination of allergens in several real samples. All the target compounds were found in the samples, and, in some cases, at quite high concentrations. The presence and the levels of these chemicals in baby bathwater should be a matter of concern.
Otero-Pazos, Pablo; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Benito-Peña, Elena; González-Vallejo, Victoria; Moreno-Bondi, M Cruz; Angulo, Immaculada; Paseiro-Losada, Perfecto
2014-11-19
A novel active packaging based on molecularly imprinted polymer (MIP) was developed for the controlled release of ferulic acid. The release kinetics of ferulic acid from the active system to food simulants (10, 20, and 50% ethanol (v/v), 3% acetic acid (w/v), and vegetable oil), substitutes (95% ethanol (v/v) and isooctane), and real food samples at different temperatures were studied. The key parameters of the diffusion process were calculated by using a mathematical modeling based on Fick's second law. The ferulic acid release was affected by the temperature as well as the percentage of ethanol of the simulant. The fastest release occurred in 95% ethanol (v/v) at 20 °C. The diffusion coefficients (D) obtained ranged between 1.8 × 10(-11) and 4.2 × 10(-9) cm(2)/s. A very good correlation between experimental and estimated data was obtained, and consequently the model could be used to predict the release of ferulic acid into food simulants and real food samples.
Hoff, Rodrigo Barcellos; Rübensam, Gabriel; Jank, Louise; Barreto, Fabiano; Peralba, Maria do Carmo Ruaro; Pizzolato, Tânia Mara; Silvia Díaz-Cruz, M; Barceló, Damià
2015-01-01
In residue analysis of veterinary drugs in foodstuff, matrix effects are one of the most critical points. This work present a discuss considering approaches used to estimate, minimize and monitoring matrix effects in bioanalytical methods. Qualitative and quantitative methods for estimation of matrix effects such as post-column infusion, slopes ratios analysis, calibration curves (mathematical and statistical analysis) and control chart monitoring are discussed using real data. Matrix effects varying in a wide range depending of the analyte and the sample preparation method: pressurized liquid extraction for liver samples show matrix effects from 15.5 to 59.2% while a ultrasound-assisted extraction provide values from 21.7 to 64.3%. The matrix influence was also evaluated: for sulfamethazine analysis, losses of signal were varying from -37 to -96% for fish and eggs, respectively. Advantages and drawbacks are also discussed considering a workflow for matrix effects assessment proposed and applied to real data from sulfonamides residues analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Pelição, Fabrício Souza; Peres, Mariana Dadalto; Pissinate, Jauber Fornaciari; De Martinis, Bruno Spinosa
2014-01-01
A gas chromatography-mass spectrometric (GC-MS) method was developed and validated for the simultaneous detection and quantification in postmortem whole blood samples of cocaine (COC), amphetamines (AMPs) and cannabis; the main drugs involved in cases of impaired driving in Brazil. The analytes were extracted by solid-phase extraction by means of Bond-Elute Certify cartridges, derivatized with N-methyl-N-(trimethylsilyl)trifluoroacetamide at 80°C for 30 min and analyzed by GC-MS. Linearity ranged from 10 to 500 ng/mL, except for ecgonine methyl ester, for which linearity ranged from 10 to 100 ng/mL. Inter- and intra-day imprecision ranged from 2.8 to 18.4% and from 1.5 to 14.9%, respectively. Accuracy values lay between 86.9 and 104.4%. The limit of quantitation for all drugs was 10 ng/mL and recoveries were >74% for all analytes, except for cannabinoids, which showed poor recovery (∼30%). The developed method was applied to real samples collected from deceased victims due to traffic accidents. These samples were selected according to the results obtained in immunoassay screening on collected urine samples. Five samples were positive for the presence of COC and metabolites, four samples were positive for cannabinoids, six samples were positive for AMPs and two samples were drug negative. Some samples were positive for more than one class of drug. Results obtained from whole blood samples showed good agreement with urine screening. The developed method proved capable of quantifying all three classes of drugs of abuse proposed in this study, through a one-step extraction procedure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mahajan, Supriya; Choudhary, Manish Chandra; Kumar, Guresh; Gupta, Ekta
2018-06-01
Dried blood spot (DBS) is a minimally invasive sampling method suitable for sample collection, storage and transportation in resource limited areas. Aim of this study was to compare the diagnostic utility of DBS with plasma sample for HCV RNA quantitation and genotyping using commercial systems. Plasma and DBS card spotted samples were collected from 95 HCV seropositive patients. Both types of samples were subjected to HCV RNA by real-time PCR (Abbott m2000rt, USA). Genotyping was performed using Abbott HCV genotype II kit (Abbott diagnostics, USA) in samples with viral load > 3 log 10 IU/ml. In both plasma and DBS, 14 (14.7%) samples were negative and 81 (85.3%) were positive for HCV RNA. Median viral load in plasma (3.78; range 0-7.43) log 10 IU/ml was comparable to DBS (3.93; range 0-7.24) log 10 IU/ml. DBS demonstrated sensitivity and specificity of 97.5 and 85.7% respectively, with positive predictive value (PPV) of 97.5% and negative predictive value (NPV) of 85.7%. DBS showed good correlation (r 2 = 0.866) and agreement (93.5%) with plasma. Genotyping in 20 patients showed 100% concordance between DBS and plasma samples. DBS showed good sensitivity and specificity as a sampling method for HCV RNA quantitation and genotyping.
Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer.
Desjardins, Philippe; Hansen, Joel B; Allen, Michael
2009-11-04
Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 microL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay.
Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.
2004-08-10
A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.
Thermal stability of inorganic and organic compounds in atmospheric particulate matter
NASA Astrophysics Data System (ADS)
Perrino, Cinzia; Marconi, Elisabetta; Tofful, Luca; Farao, Carmela; Materazzi, Stefano; Canepari, Silvia
2012-07-01
The thermal behaviour of atmospheric particulate matter (PM) has been investigated by using different analytical approaches to explore the added value offered by these technique in environmental studies. The thermogravimetric analysis (TGA), carried out on both certified material and real PM samples, has shown that several mass losses can be detected starting from 80 °C up to above 500 °C, when pyrolysis occur. Thermo-optical analysis of PM and ion chromatographic analysis of the residual have shown that the mass losses in the temperature range 80-180 °C are not justified by the release of either organic or inorganic compounds; it can be thus attributed to the release of weakly and strongly bound water. Release of water has also been evidenced in the temperature range 225-275 °C. The release of ammonium chloride and nitrate has been detected only above 80 °C. This indicates that the release of nitric acid, hydrochloric acid and ammonia, which is observed downstream of the filters during the sampling of atmospheric PM at ambient temperature, cannot be reproduced off-line, after the end of the sampling. We successfully explored one of the possible explanations, that is the desorption of HNO3, HCl and NH3 adsorbed on collected particles. NH4NO3 and NH4Cl, which can be thermally released by the filter, exhibit a different thermal behaviour from NaNO3 and NaCl, which are thermally stable up to 370 °C. This different behaviour can be used to discriminate between natural and secondary sources of atmospheric inorganic salts, as the interconversion that is observed when heating mixtures of pure salts resulted to be not relevant when heating real PM samples.
Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles
NASA Astrophysics Data System (ADS)
Lee, Ji Hyun; Ahn, Kangho; Kim, Sun Man; Jeon, Ki Soo; Lee, Jong Seong; Yu, Il Je
2012-09-01
With the increased production and widespread use of nanomaterials, human and environmental exposure to nanomaterials is inevitably increasing. Therefore, this study monitored the possible nanoparticle exposure at a workplace that manufactures silver nanoparticles. To estimate the potential exposure of workers, personal sampling, area monitoring, and real-time monitoring were conducted over 3 days using a scanning mobility particle sizer and dust monitor at a workplace where the workers handle nanomaterials. The area sampling concentrations obtained from the injection room showed the highest concentration, ranging from 0.00501 to 0.28873 mg/m3. However, apart from the injection room, none of the area samplings obtained from other locations showed a concentration higher than 0.0013 mg/m3. Meanwhile, the personal sampling concentrations ranged from 0.00004 to 0.00243 mg/m3 over the 3 days of sampling, which was much lower than the silver TLV. The particle number concentrations at the silver nanoparticle manufacturing workplace were 911,170 (1st day), 1,631,230 (2nd day), and 1,265,024 (3rd day) particles/cm3 with a size range of 15-710.5 nm during the operation of the reactor, while the concentration decreased to 877,364.9 (1st day), 492,732 (2nd day), and 344,343 (3rd day) particles/cm3 when the reactor was stopped.
Performance of a New HPV Cervi-Collect Collection and Transportation Kit
Chernesky, M.; Huang, S.; Jang, D.; Erickson, B.; Salituro, J.; Engel, H.; Gilchrist, J.; Neuscheler, P.; Mak, W. B.; Abravaya, K.
2012-01-01
Background. Liquid-based Pap (L-Pap) media are used for Pap and human papillomavirus (HPV) testing. Objectives. To compare RealTime High Risk (HR) HPV testing of a new collection kit (Cervi-Collect) and PreservCyt L-Pap specimens. To determine ease of use and safety of Cervi-Collect. Methods. L-Pap samples (n = 203) were tested with HC2 and RealTime HR HPV and Cervi-Collect with RealTime HR HPV. Discordant samples were genotyped. Results. L-Pap and Cervi-Collect specimens tested by RealTime HR HPV showed 93.1% agreement (Kappa 0.86). RealTime HR HPV and HC2 on L-Pap had 90.3% agreement (Kappa 0.80). RealTime HR HPV on Cervi-Collect and HC2 on L-Pap showed 88.2% agreement (Kappa 0.76). Sixteen of 21 samples which were HC2 negative and RealTime HR HPV positive on L-Pap or Cervi-Collect contained HR HPV genotypes. Eleven healthcare collectors were in strong agreement on a usability and safety questionnaire. Conclusion. Cervi-Collect samples were easy to collect and showed strong agreement with L-Pap samples tested with RealTime HR HPV or HC2. PMID:22174716
Apparatus and methods for continuous beam fourier transform mass spectrometry
McLuckey, Scott A.; Goeringer, Douglas E.
2002-01-01
A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.
Church, Deirdre L; Ambasta, Anshula; Wilmer, Amanda; Williscroft, Holly; Ritchie, Gordon; Pillai, Dylan R; Champagne, Sylvie; Gregson, Daniel G
2015-01-01
BACKGROUND: Pneumocystis jirovecii (PJ), a pathogenic fungus, causes severe interstitial Pneumocystis pneumonia (PCP) among immunocompromised patients. A laboratory-developed real-time polyermase chain reaction (PCR) assay was validated for PJ detection to improve diagnosis of PCP. METHODS: Forty stored bronchoalveolar lavage (BAL) samples (20 known PJ positive [PJ+] and 20 known PJ negative [PJ−]) were initially tested using the molecular assay. Ninety-two sequentially collected BAL samples were then analyzed using an immunofluorescence assay (IFA) and secondarily tested using the PJ real-time PCR assay. Discrepant results were resolved by retesting BAL samples using another real-time PCR assay with a different target. PJ real-time PCR assay performance was compared with the existing gold standard (ie, IFA) and a modified gold standard, in which a true positive was defined as a sample that tested positive in two of three methods in a patient suspected to have PCP. RESULTS: Ninety of 132 (68%) BAL fluid samples were collected from immunocompromised patients. Thirteen of 92 (14%) BALs collected were PJ+ when tested using IFA. A total of 40 BAL samples were PJ+ in the present study including: all IFA positive samples (n=13); all referred PJ+ BAL samples (n=20); and seven additional BAL samples that were IFA negative, but positive using the modified gold standard. Compared with IFA, the PJ real-time PCR had sensitivity, specificity, and positive and negative predictive values of 100%, 91%, 65% and 100%, respectively. Compared with the modified gold standard, PJ real-time PCR had a sensitivity, specificity, and positive and negative predictive values of 100%. CONCLUSION: PJ real-time PCR improved detection of PJ in immunocompromised patients. PMID:26600815
Gómez-Ríos, Germán Augusto; Gionfriddo, Emanuela; Poole, Justen; Pawliszyn, Janusz
2017-07-05
The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.
Measurement of Crystalline Silica Aerosol Using Quantum Cascade Laser-Based Infrared Spectroscopy.
Wei, Shijun; Kulkarni, Pramod; Ashley, Kevin; Zheng, Lina
2017-10-24
Inhalation exposure to airborne respirable crystalline silica (RCS) poses major health risks in many industrial environments. There is a need for new sensitive instruments and methods for in-field or near real-time measurement of crystalline silica aerosol. The objective of this study was to develop an approach, using quantum cascade laser (QCL)-based infrared spectroscopy (IR), to quantify airborne concentrations of RCS. Three sampling methods were investigated for their potential for effective coupling with QCL-based transmittance measurements: (i) conventional aerosol filter collection, (ii) focused spot sample collection directly from the aerosol phase, and (iii) dried spot obtained from deposition of liquid suspensions. Spectral analysis methods were developed to obtain IR spectra from the collected particulate samples in the range 750-1030 cm -1 . The new instrument was calibrated and the results were compared with standardized methods based on Fourier transform infrared (FTIR) spectrometry. Results show that significantly lower detection limits for RCS (≈330 ng), compared to conventional infrared methods, could be achieved with effective microconcentration and careful coupling of the particulate sample with the QCL beam. These results offer promise for further development of sensitive filter-based laboratory methods and portable sensors for near real-time measurement of crystalline silica aerosol.
Botasini, Santiago; Heijo, Gonzalo; Méndez, Eduardo
2013-10-24
In recent years, it has increased the number of works focused on the development of novel nanoparticle-based sensors for mercury detection, mainly motivated by the need of low cost portable devices capable of giving fast and reliable analytical response, thus contributing to the analytical decentralization. Methodologies employing colorimetric, fluorometric, magnetic, and electrochemical output signals allowed reaching detection limits within the pM and nM ranges. Most of these developments proved their suitability in detecting and quantifying mercury (II) ions in synthetic solutions or spiked water samples. However, the state of art in these technologies is still behind the standard methods of mercury quantification, such as cold vapor atomic absorption spectrometry and inductively coupled plasma techniques, in terms of reliability and sensitivity. This is mainly because the response of nanoparticle-based sensors is highly affected by the sample matrix. The developed analytical nanosystems may fail in real samples because of the negative incidence of the ionic strength and the presence of exchangeable ligands. The aim of this review is to critically consider the recently published innovations in this area, and highlight the needs to include more realistic assays in future research in order to make these advances suitable for on-site analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Danhelova, Hana; Hradecky, Jaromir; Prinosilova, Sarka; Cajka, Tomas; Riddellova, Katerina; Vaclavik, Lukas; Hajslova, Jana
2012-07-01
The development and use of a fast method employing a direct analysis in real time (DART) ion source coupled to high-resolution time-of-flight mass spectrometry (TOFMS) for the quantitative analysis of caffeine in various coffee samples has been demonstrated in this study. A simple sample extraction procedure employing hot water was followed by direct, high-throughput (<1 min per run) examination of the extracts spread on a glass rod under optimized conditions of ambient mass spectrometry, without any prior chromatographic separation. For quantification of caffeine using DART-TOFMS, an external calibration was used. Isotopically labeled caffeine was used to compensate for the variations of the ion intensities of caffeine signal. Recoveries of the DART-TOFMS method were 97% for instant coffee at the spiking levels of 20 and 60 mg/g, respectively, while for roasted ground coffee, the obtained values were 106% and 107% at the spiking levels of 10 and 30 mg/g, respectively. The repeatability of the whole analytical procedure (expressed as relative standard deviation, RSD, %) was <5% for all tested spiking levels and matrices. Since the linearity range of the method was relatively narrow (two orders of magnitude), an optimization of sample dilution prior the DART-TOFMS measurement to avoid saturation of the detector was needed.
Teranishi, Hideto; Ohzono, Nanae; Inamura, Norikazu; Kato, Atsushi; Wakabayashi, Tokio; Akaike, Hiroto; Terada, Kihei; Ouchi, Kazunobu
2015-03-01
Febrile neutropenia is the main treatment-related cause of mortality in cancer patients. During June 2012 to April 2014, 97 blood culture samples were collected from patients receiving chemotherapy for hematological malignancy and cancer with febrile neutropenia episodes (FNEs). The samples were examined for the presence of bacteria and fungi using real-time PCR amplification and sequencing of 16S and 18S rRNA genes. Bacteria were identified in 20 of 97 samples (20.6%) by the real-time PCR assay and in 10 of 97 (10.3%) samples by blood culture. In 6 blood culture-positive samples, the real-time PCR assay detected the same type of bacteria. No fungi were detected by the real-time PCR assay or blood culture. During antibiotic therapy, all samples were negative by blood culture, but the real-time PCR assay yielded a positive result in 2 cases of 2 (100%). The bacterial DNA copy number was not well correlated with the serum C-reactive protein titer of patients with FNEs. We conclude that a real-time PCR assay could provide better detection of causative microbes' in a shorter time, and with a smaller blood sample than blood culture. Using a real-time PCR assay in combination with blood culture could improve microbiological documentation of FNEs. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Ramkumar, Abilasha; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon
2012-08-15
The present study demonstrates a simple, rapid and efficient method for the determination of chlorinated anilines (CAs) in environmental water samples using ultrasonication assisted emulsification microextraction technique based on solidification of floating organic droplet (USAEME-SFO) coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection. In this extraction method, 1-dodecanol was used as extraction solvent which is of lower density than water, low toxicity, low volatility, and low melting point (24 °C). After the USAEME, extraction solvent could be collected easily by keeping the extraction tube in ice bath for 2 min and the solidified organic droplet was scooped out using a spatula and transferred to another glass vial and allowed to thaw. Then, 10 μL of extraction solvent was diluted with mobile phase (1:1) and taken for HPLC-UV analysis. Parameters influencing the extraction efficiency, such as the kind and volume of extraction solvent, volume of sample, ultrasonication time, pH and salt concentration were thoroughly examined and optimized. Under the optimal conditions, the method showed good linearity in the concentration range of 0.05-500 ng mL(-1) with correlation coefficients ranging from 0.9948 to 0.9957 for the three target CAs. The limit of detection based on signal to noise ratio of 3 ranged from 0.01 to 0.1 ng mL(-1). The relative standard deviations (RSDs) varied from 2.1 to 6.1% (n=3) and the enrichment factors ranged from 44 to 124. The proposed method has also been successfully applied to analyze real water samples and the relative recoveries of environmental water samples ranged from 81.1 to 116.9%. Copyright © 2012 Elsevier B.V. All rights reserved.
Bi, Wentao; Wang, Man; Yang, Xiaodi; Row, Kyung Ho
2014-07-01
Poly(ionic liquid)-bonded magnetic nanospheres were easily synthesized and applied to the pretreatment and determination of phenolic compounds in water samples, which have detrimental effects on water quality and the health of living beings. The high affinity of poly(ionic liquid)s toward the target compounds as well as the magnetic behavior of Fe3 O4 were combined in this material to provide an efficient and simple magnetic solid-phase extraction approach. The adsorption behavior of the poly(ionic liquid)-bonded magnetic nanospheres was examined to optimize the synthesis. Different parameters affecting the magnetic solid-phase extraction of phenolic compounds were assessed in terms of adsorption and recovery. Under the optimal conditions, the proposed method showed excellent detection sensitivity with limits of detection in the range of 0.3-0.8 ng/mL and precision in the range of 1.2-3.3%. This method was also applied successfully to the analysis of real water samples; good spiked recoveries over the range of 82.5-99.2% were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang
2012-01-01
A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minami, K; Kawata, S; Minami, S
1992-10-10
The real-zero interpolation method is applied to a Fourier-transformed infrared (FT-IR) interferogram. With this method an interferogram is reconstructed from its zero-crossing information only, without the use of a long-word analog-to-digital converter. We installed a phase-locked loop circuit into an FT-IR spectrometer for oversampling the interferogram. Infrared absorption spectra of polystyrene and Mylar films were measured as binary interferograms by the FT-IR spectrometer, which was equipped with the developed circuits, and their Fourier spectra were successfully reconstructed. The relationship of the oversampling ratio to the dynamic range of the reconstructed interferogram was evaluated through computer simulations. We also discuss the problems of this method for practical applications.
Clustering in the SDSS Redshift Survey
NASA Astrophysics Data System (ADS)
Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration
2002-05-01
We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.
Lorch, Jeffrey M.; Muller, Laura K.; Russell, Robin E.; O'Connor, Michael; Lindner, Daniel L.; Blehert, David S.
2013-01-01
White-nose syndrome (WNS) is an emerging disease of hibernating bats caused by the recently described fungus Geomyces destructans. First isolated in 2008, the origins of this fungus in North America and its ability to persist in the environment remain undefined. To investigate the correlation between manifestation of WNS and distribution of G. destructans in the U.S., we analyzed sediment samples collected from 55 bat hibernacula (caves and mines) both within and outside the known range of WNS using a newly developed real-time PCR assay. Geomyces destructans was detected in 17 of 21 sites within the known range of WNS at the time the samples were collected; the fungus was not found in 28 sites beyond the known range of the disease at the time that environmental samples were collected. These data indicate that distribution of G. destructans is correlated with disease in hibernating bats and support the hypothesis that the fungus is likely an exotic species in North America. Additionally, we examined whether G. destructans persists in infested bat hibernacula when bats are absent. Sediment samples were collected from 14 WNS-positive hibernacula, and the samples were screened for viable fungus using a culture technique. Viable G. destructans was cultivated from 7 of the 14 sites sampled during late summer when bats were no longer in hibernation, suggesting the fungus can persist in the environment in the absence of bat hosts for long periods of time.
Soares, Aline Rodrigues; Nascentes, Clésia Cristina
2013-02-15
A simple method was developed for determining the total lead content in lipstick samples by graphite furnace atomic absorption spectrometry (GFAAS) after treatment with tetramethylammonium hydroxide (TMAH). Multivariate optimization was used to establish the optimal conditions of sample preparation. The graphite furnace heating program was optimized through pyrolysis and atomization curves. An aliquot containing approximately 50mg of the sample was mixed with TMAH and heated in a water bath at 60°C for 60 min. Using Nb as the permanent modifier and Pd as the chemical modifier, the optimal temperatures were 900°C and 1800°C for pyrolysis and atomization, respectively. Under optimum conditions, the working range was from 1.73 to 50.0 μg L(-1), with detection and quantification limits of 0.20 and 0.34 μg g(-1), respectively. The precision was evaluated under conditions of repeatability and intermediate precision and showed standard deviations of 2.37%-4.61% and 4.93%-9.75%, respectively. The % recovery ranged from 96.2% to 109%, and no significant differences were found between the results obtained using the proposed method and the microwave decomposition method for real samples. Lead was detected in 21 tested lipstick samples; the lead content in these samples ranged from 0.27 to 4.54 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lattin, F.G.; Paul, D.G.; Jakubowski, E.M.
1994-12-31
The Real Time Analytical Platform (RTAP) is designed to provide mobile, real-time monitoring support to ensure protection of worker safety in areas where military unique compounds are used and stored, and at disposal sites. Quantitative analysis of low-level vapor concentrations in air is accomplished through sorbent-based collection with subsequent thermal desorption into a gas chromatograph (GC) equipped with a variety of detectors. The monitoring system is characterized by its sensitivity (ability to measure at low concentrations), selectivity (ability to filter out interferences), dynamic range and linearity, real time mode (versus methods requiring extensive sample preparation procedures), and ability to interfacemore » with complimentary GC detectors. This presentation describes an RTAP analytical method for analyzing lewisite, an arsenical compound, that consists of a GC screening technique with an Electron Capture Detector (ECD), and a confirmation technique using an Atomic Emission Detector (AED). Included in the presentation is a description of quality assurance objectives in the monitoring system, and an assessment of method accuracy, precision and detection levels.« less
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.
2014-06-01
The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.
Lee, Michael T.; Asquith, William H.; Oden, Timothy D.
2012-01-01
In December 2005, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (Escherichia coli and total coliform), atrazine, and suspended sediment at two USGS streamflow-gaging stations that represent watersheds contributing to Lake Houston (08068500 Spring Creek near Spring, Tex., and 08070200 East Fork San Jacinto River near New Caney, Tex.). Data from the discrete water-quality samples collected during 2005–9, in conjunction with continuously monitored real-time data that included streamflow and other physical water-quality properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), were used to develop regression models for the estimation of concentrations of water-quality constituents of substantial source watersheds to Lake Houston. The potential explanatory variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, and time (to account for seasonal variations inherent in some water-quality data). The response variables (the selected constituents) at each site were nitrite plus nitrate nitrogen, total phosphorus, total organic carbon, E. coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities to serve as potential surrogate variables to estimate concentrations of the selected constituents through statistical regression. Statistical regression also facilitates accompanying estimates of uncertainty in the form of prediction intervals. Each regression model potentially can be used to estimate concentrations of a given constituent in real time. Among other regression diagnostics, the diagnostics used as indicators of general model reliability and reported herein include the adjusted R-squared, the residual standard error, residual plots, and p-values. Adjusted R-squared values for the Spring Creek models ranged from .582–.922 (dimensionless). The residual standard errors ranged from .073–.447 (base-10 logarithm). Adjusted R-squared values for the East Fork San Jacinto River models ranged from .253–.853 (dimensionless). The residual standard errors ranged from .076–.388 (base-10 logarithm). In conjunction with estimated concentrations, constituent loads can be estimated by multiplying the estimated concentration by the corresponding streamflow and by applying the appropriate conversion factor. The regression models presented in this report are site specific, that is, they are specific to the Spring Creek and East Fork San Jacinto River streamflow-gaging stations; however, the general methods that were developed and documented could be applied to most perennial streams for the purpose of estimating real-time water quality data.
Nojavan, Saeed; Sirani, Mahsa; Asadi, Sakine
2017-10-01
In this study, electromembrane extraction from a flowing sample solution, termed as continuous-flow electromembrane extraction, was developed and compared with conventional procedures for the determination of four basic drugs in real samples. Experimental parameters affecting the extraction efficiency were further studied and optimized. Under optimum conditions, linearity of continuous-flow procedure was within 8.0-500 ng/mL, while it was wider for conventional procedures (2.0-500 ng/mL). Moreover, repeatability (percentage relative standard deviation) was found to range between 5.6 and 10.4% (n = 3) for the continuous-flow procedure, with a better repeatability than that of conventional procedures (2.3-5.5% (n = 3)). Also, for the continuous-flow procedure, the estimated detection limit (signal-to-noise ratio = 3) was less than 2.4 ng/mL and extraction recoveries were within 8-10%, while the corresponding figures for conventional procedures were less than 0.6 ng/mL and 42-60%, respectively. Thus, the results showed that both continuous flow and conventional procedures were applicable for the extraction of model compounds. However, the conventional procedure was more convenient to use, and thus it was applied to determine sample drugs in real urine and wastewater samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lara, Nadia C.; Haider, Asad A.; Wilson, Lon J.; Curley, Steven A.; Corr, Stuart J.
2017-01-01
Aqueous and nanoparticle-based solutions have been reported to heat when exposed to an alternating radiofrequency (RF) electric-field. Although the theoretical models have been developed to accurately model such a behavior given the solution composition as well as the geometrical constraints of the sample holder, these models have not been investigated across a wide-range of solutions where the dielectric properties differ, especially with regard to the real permittivity. In this work, we investigate the RF heating properties of non-aqueous solutions composed of ethanol, propylene glycol, and glycine betaine with and without varying amounts of NaCl and LiCl. This allowed us to modulate the real permittivity across the range 25-132, as well as the imaginary permittivity across the range 37-177. Our results are in excellent agreement with the previously developed theoretical models. We have shown that different materials generate unique RF heating curves that differ from the standard aqueous heating curves. The theoretical model previously described is robust and accounts for the RF heating behavior of materials with a variety of dielectric properties, which may provide applications in non-invasive RF cancer hyperthermia.
Noorbazargan, Hassan; Nadji, Seyed Alireza; Samiee, Siamak Mirab; Paryan, Mahdi; Mohammadi-Yeganeh, Samira
2018-04-01
Background Viral load measurement is commonly applicable to monitor HIV infection in patients to determine the number of HIV-RNA in serum samples of individuals. The aim of the present study was to set up a highly specific, sensitive, and reproducible home-brewed Real-time PCR assay based on TaqMan chemistry to quantify HIV-1 RNA genome. Methods In this study, three sets of primer pairs and a TaqMan probe were designed for HIV subtypes conserved sequences. An internal control was included in this assay to evaluate the presence of inhibition. Standard curve and threshold cycle values were determined using in vitro transcribed RNA from int region of HIV-1. A serial dilution of RNA standards was generated by in vitro transcription, from 10 to 10 9 copies/ml to find the sensitivity and the limit of detection (LOD) of the assay and to evaluate its performance in a quantitative RT-PCR assay. Results The assay has a low LOD equivalent to 33.13 copies/ml of HIV-1 RNA and a linear range of detection from 10 to 10 9 copies/ml. The coefficient of variation (CV) for Inter and Intra-assay precision of this in-house HIV Real-time RT-PCR ranged from 0.28 to 2.49% and 0.72 to 4.47%, respectively. The analytical and clinical specificity was 100%. Conclusions The results indicate that the developed method has a suitable specificity and sensitivity and is highly reproducible and cost-benefit. Therefore, it will be useful to monitor HIV infection in plasma samples of individuals.
Miyajima, Yoshiharu; Satoh, Kazuo; Uchida, Takao; Yamada, Tsuyoshi; Abe, Michiko; Watanabe, Shin-ichi; Makimura, Miho; Makimura, Koichi
2013-03-01
Trichophyton rubrum and Trichophyton mentagrophytes human-type (synonym, Trichophyton interdigitale (anthropophilic)) are major causative pathogens of tinea unguium. For suitable diagnosis and treatment, rapid and accurate identification of etiologic agents in clinical samples using reliable molecular based method is required. For identification of organisms causing tinea unguium, we developed a new real-time polymerase chain reaction (PCR) with a pan-fungal primer set and probe, as well as specific primer sets and probes for T. rubrum and T. mentagrophytes human-type. We designed two sets of primers from the internal transcribed spacer 1 (ITS1) region of fungal ribosomal DNA (rDNA) and three quadruple fluorescent probes, one for detection wide range pathogenic fungi and two for classification of T. rubrum and T. mentagrophytes by specific binding to different sites in the ITS1 region. We investigated the specificity of these primer sets and probes using fungal genomic DNA, and also examined 42 clinical specimens with our real-time PCR. The primers and probes specifically detected T. rubrum, T. mentagrophytes, and a wide range of pathogenic fungi. The causative pathogens were identified in 42 nail and skin samples from 32 patients. The total time required for identification of fungal species in each clinical specimen was about 3h. The copy number of each fungal DNA in the clinical specimens was estimated from the intensity of fluorescence simultaneously. This PCR system is one of the most rapid and sensitive methods available for diagnosing dermatophytosis, including tinea unguium and tinea pedis. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Schneider, George J; Kuper, Kevin G; Abravaya, Klara; Mullen, Carolyn R; Schmidt, Marion; Bunse-Grassmann, Astrid; Sprenger-Haussels, Markus
2009-04-01
Automated sample preparation systems must meet the demands of routine diagnostics laboratories with regard to performance characteristics and compatibility with downstream assays. In this study, the performance of QIAGEN EZ1 DSP Virus Kit on the BioRobot EZ1 DSP was evaluated in combination with the Abbott RealTime HIV-1, HCV, and HBV assays, followed by thermalcycling and detection on the Abbott m2000rt platform. The following performance characteristics were evaluated: linear range and precision, sensitivity, cross-contamination, effects of interfering substances and correlation. Linearity was observed within the tested ranges (for HIV-1: 2.0-6.0 log copies/ml, HCV: 1.3-6.9 log IU/ml, HBV: 1.6-7.6 log copies/ml). Excellent precision was obtained (inter-assay standard deviation for HIV-1: 0.06-0.17 log copies/ml (>2.17 log copies/ml), HCV: 0.05-0.11 log IU/ml (>2.09 log IU/ml), HBV: 0.03-0.07 log copies/ml (>2.55 log copies/ml)), with good sensitivity (95% hit rates for HIV-1: 50 copies/ml, HCV: 12.5 IU/ml, HBV: 10 IU/ml). No cross-contamination was observed, as well as no negative impact of elevated levels of various interfering substances. In addition, HCV and HBV viral load measurements after BioRobot EZ1 DSP extraction correlated well with those obtained after Abbott m2000sp extraction. This evaluation demonstrates that the QIAGEN EZ1 DSP Virus Kit provides an attractive solution for fully automated, low throughput sample preparation for use with the Abbott RealTime HIV-1, HCV, and HBV assays.
Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (
Perera, Inoka Eranda; Litton, Charles D.
2016-01-01
A series of experiments were conducted to quantify and characterize the optical and physical properties of combustion-generated aerosols during both flaming and smoldering combustion of three materials common to underground mines—Pittsburgh Seam coal, Styrene Butadiene Rubber (a common mine conveyor belt material), and Douglas-fir wood—using a combination of analytical and gravimetric measurements. Laser photometers were utilized in the experiments for continuous measurement of aerosol mass concentrations and for comparison to measurements made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few hundred nanometers, out of range of the standard photometer calibration. To correct for these uncertainties, the photometer mass concentrations were compared to gravimetric samples to determine if consistent correlations existed. The response of a calibrated and modified combination ionization/photoelectric smoke detector was also used. In addition, the responses of this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular scattering, total scattering, and total extinction measurements, were used to define in real time the size, morphology, and radiative transfer properties of these differing aerosols that are generally in the form of fractal aggregates. SEM/TEM images were also obtained in order to compare qualitatively the real-time, continuous experimental measurements with the visual microscopic measurements. These data clearly show that significant differences exist between aerosols from flaming and from smoldering combustion and that these differences produce very different scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors can be utilized to measure continuously and in real time aerosol properties over a broad spectrum of applications related to adverse environmental and health effects. PMID:27546898
Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (
Perera, Inoka Eranda; Litton, Charles D
2015-03-01
A series of experiments were conducted to quantify and characterize the optical and physical properties of combustion-generated aerosols during both flaming and smoldering combustion of three materials common to underground mines-Pittsburgh Seam coal, Styrene Butadiene Rubber (a common mine conveyor belt material), and Douglas-fir wood-using a combination of analytical and gravimetric measurements. Laser photometers were utilized in the experiments for continuous measurement of aerosol mass concentrations and for comparison to measurements made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few hundred nanometers, out of range of the standard photometer calibration. To correct for these uncertainties, the photometer mass concentrations were compared to gravimetric samples to determine if consistent correlations existed. The response of a calibrated and modified combination ionization/photoelectric smoke detector was also used. In addition, the responses of this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular scattering, total scattering, and total extinction measurements, were used to define in real time the size, morphology, and radiative transfer properties of these differing aerosols that are generally in the form of fractal aggregates. SEM/TEM images were also obtained in order to compare qualitatively the real-time, continuous experimental measurements with the visual microscopic measurements. These data clearly show that significant differences exist between aerosols from flaming and from smoldering combustion and that these differences produce very different scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors can be utilized to measure continuously and in real time aerosol properties over a broad spectrum of applications related to adverse environmental and health effects.
A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.
Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai
2016-11-15
P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Toyota, Akie; Akiyama, Hiroshi; Sugimura, Mitsunori; Watanabe, Takahiro; Kikuchi, Hiroyuki; Kanamori, Hisayuki; Hino, Akihiro; Esaka, Muneharu; Maitani, Tamio
2006-04-01
Because the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved genetically modified varieties in many countries, there is a need for a rapid and useful method of GMO quantification in food samples. In this study, a rapid detection system was developed for Roundup Ready Soybean (RRS) quantification using a combination of a capillary-type real-time PCR system, a LightCycler real-time PCR system, and plasmid DNA as the reference standard. In addition, we showed for the first time that the plasmid and genomic DNA should be similar in the established detection system because the PCR efficiencies of using plasmid DNA and using genomic DNA were not significantly different. The conversion factor (Cf) to calculate RRS content (%) was further determined from the average value analyzed in three laboratories. The accuracy and reproducibility of this system for RRS quantification at a level of 5.0% were within a range from 4.46 to 5.07% for RRS content and within a range from 2.0% to 7.0% for the relative standard deviation (RSD) value, respectively. This system rapidly monitored the labeling system and had allowable levels of accuracy and precision.
NASA Astrophysics Data System (ADS)
Edwards, A. W.; Blackler, K.; Gill, R. D.; van der Goot, E.; Holm, J.
1990-10-01
Based upon the experience gained with the present soft x-ray data acquisition system, new techniques are being developed which make extensive use of digital signal processors (DSPs). Digital filters make 13 further frequencies available in real time from the input sampling frequency of 200 kHz. In parallel, various algorithms running on further DSPs generate triggers in response to a range of events in the plasma. The sawtooth crash can be detected, for example, with a delay of only 50 μs from the onset of the collapse. The trigger processor interacts with the digital filter boards to ensure data of the appropriate frequency is recorded throughout a plasma discharge. An independent link is used to pass 780 and 24 Hz filtered data to a network of transputers. A full tomographic inversion and display of the 24 Hz data is carried out in real time using this 15 transputer array. The 780 Hz data are stored for immediate detailed playback following the pulse. Such a system could considerably improve the quality of present plasma diagnostic data which is, in general, sampled at one fixed frequency throughout a discharge. Further, it should provide valuable information towards designing diagnostic data acquisition systems for future long pulse operation machines when a high degree of real-time processing will be required, while retaining the ability to detect, record, and analyze events of interest within such long plasma discharges.
NASA Astrophysics Data System (ADS)
Commodore, Adwoa A.; Hartinger, Stella M.; Lanata, Claudio F.; Mäusezahl, Daniel; Gil, Ana I.; Hall, Daniel B.; Aguilar-Villalobos, Manuel; Naeher, Luke P.
2013-11-01
Nearly half of the world's population is exposed to household air pollution (HAP) due to long hours spent in close proximity to unvented cooking fires. We aimed to use PM2.5 and CO measurements to characterize exposure to cookstove generated woodsmoke in real time among control (n = 10) and intervention (n = 9) households in San Marcos, Cajamarca Region, Peru. Real time personal particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), and personal and kitchen carbon monoxide (CO) samples were taken. Control households used a number of stoves including open fire and chimney stoves while intervention households used study-promoted chimney stoves. Measurements were categorized into lunch (9 am-1 pm) and dinner (3 pm-7 pm) periods, where applicable, to adjust for a wide range of sampling periods (2.8-13.1 h). During the 4-h time periods, mean personal PM2.5 exposures were correlated with personal CO exposures during lunch (r = 0.67 p = 0.024 n = 11) and dinner (r = 0.72 p = 0.0011 n = 17) in all study households. Personal PM2.5 exposures and kitchen CO concentrations were also correlated during lunch (r = 0.76 p = 0.018 n = 9) and dinner (r = 0.60 p = 0.018 n = 15). CO may be a useful indicator of PM during 4-h time scales measured in real time, particularly during high woodsmoke exposures, particularly during residential biomass cooking.
Davarani, Saied Saeed Hosseiny; Moazami, Hamid Reza; Keshtkar, Ali Reza; Banitaba, Mohammad Hossein; Nojavan, Saeed
2013-06-14
A novel method for the selective electromembrane extraction (EME) of U(6+) prior to fluorometric determination has been proposed. The effect of extraction conditions including supported liquid membrane (SLM) composition, extraction time and extraction voltage were investigated. An SLM composition of 1% di-2-ethyl hexyl phosphonic acid in nitrophenyl octyl ether (NPOE) showed good selectivity, recovery and enrichment factor. The best performance was achieved at an extraction potential of 80 volts and an extraction time of 14 minutes Under the optimized conditions, a linear range from 1 to 1000 ng mL(-1) and LOD of 0.1 ng mL(-1) were obtained for the determination of U(6+). The EME method showed good performance in sample cleanup and the reduction of the interfering effects of Mn(2+), Zn(2+), Cd(2+), Ni(2+), Fe(3+), Co(2+), Cu(2+), Cl(-) and PO4(3-) ions during fluorometric determination of uranium in real water samples. The recoveries above 54% and enrichment factors above 64.7 were obtained by the proposed method for real sample analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Bacterial identification in real samples by means of micro-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Rösch, Petra; Stöckel, Stephan; Meisel, Susann; Bossecker, Anja; Münchberg, Ute; Kloss, Sandra; Schumacher, Wilm; Popp, Jürgen
2011-07-01
Pathogen detection is essential without time delay especially for severe diseases like sepsis. Here, the survival rate is dependent on a prompt antibiosis. For sepsis three hours after the onset of shock the survival rate of the patient drops below 60 %. Unfortunately, the results from standard diagnosis methods like PCR or microbiology can normally be received after 12 or 36 h, respectively. Therefore diagnosis methods which require less cultivation or even no cultivation at all have to be established for medical diagnosis. Here, Raman spectroscopy, as a vibrational spectroscopic method, is a very sensitive and selective approach and monitors the biochemical composition of the investigated sample. Applying micro-Raman spectroscopy allows for a spatial resolution below 1 μm and is therefore in the size range of bacteria. Raman spectra of bacteria depend on the physiological status. Therefore, the databases require the inclusion of the necessary environmental parameters such as temperature, pH, nutrition, etc. Such large databases therefore require a specialized chemometric approach, since the variation between different strains is small. In this contribution we will demonstrate the capability of Raman spectroscopy to identify pathogens without cultivation even from real environmental or medical samples.
Ackerman, L K; Noonan, G O; Begley, T H
2009-12-01
The ambient ionization technique direct analysis in real time (DART) was characterized and evaluated for the screening of food packaging for the presence of packaging additives using a benchtop mass spectrometer (MS). Approximate optimum conditions were determined for 13 common food-packaging additives, including plasticizers, anti-oxidants, colorants, grease-proofers, and ultraviolet light stabilizers. Method sensitivity and linearity were evaluated using solutions and characterized polymer samples. Additionally, the response of a model additive (di-ethyl-hexyl-phthalate) was examined across a range of sample positions, DART, and MS conditions (temperature, voltage and helium flow). Under optimal conditions, molecular ion (M+H+) was the major ion for most additives. Additive responses were highly sensitive to sample and DART source orientation, as well as to DART flow rates, temperatures, and MS inlet voltages, respectively. DART-MS response was neither consistently linear nor quantitative in this setting, and sensitivity varied by additive. All additives studied were rapidly identified in multiple food-packaging materials by DART-MS/MS, suggesting this technique can be used to screen food packaging rapidly. However, method sensitivity and quantitation requires further study and improvement.
An improved RT-IPCR for detection of pyrene and related polycyclic aromatic hydrocarbons.
Meng, X Y; Li, Y S; Zhou, Y; Sun, Y; Qiao, B; Si, C C; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Qiu, H J; Liu, J Q
2016-04-15
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous homogeneous chemicals which are well known by carcinogens, mutagens and endocrine disorder. Here, an improved real-time immuno-PCR (RT-IPCR) was developed for detection of pyrene and its homologs in water samples. The PAHs in sample compete with pyrene-modified DNA to bind with monoclonal antibody (McAb) coated on PCR plate. The reporter DNA was exponentially amplified by real-time PCR instrument using Fast Start universal SYBR Green Master (ROX) kit. Only two reaction steps were needed to accomplish the detection. The assay had a good linear range from 5 pmol L(-1) to 5 nmol L(-1) with a detection limit of 3.5 pmol L(-1). For application assay, the average recoveries from tap water, lake water and mineral water were 98.4%, 98.2% and 99.7%, respectively which showed a good correlation (R(2)=0.9906) with those from GC-MS. The results indicated that the improved RT-IPCR seems to be a potential method for simple and ultrasensitive detection of pyrene and some homologues in environment water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Ahmadi, Mazaher; Madrakian, Tayyebeh; Afkhami, Abbas
2016-01-01
This work reports on a method for selective extraction and sensitive determination of amoxicillin drug (AMX). The method is based on solid phase extraction of AMX by a novel modified magnetic nanoadsorbent prior to spectrophotometric determination of AMX using a procedure based on formation a colored azo-derivative of the investigated drug. The nanoadsorbent has been synthesized by modification of magnetic-multiwalled carbon nanotube with dibenzo-18-crown-6 moieties. The synthesized nanoparticles were characterized using TEM, XRD and FT-IR measurements. At the next step, various factors that could potentially affect adsorption and desorption efficiencies of AMX, have been optimized. The results showed that under the optimized conditions, sensitive and selective determination of the investigated drug in concentration range of 5.0-1000.0 ng mL(-1) with the limit of detection of 3.0 ng mL(-1) was achievable. Furthermore, the real sample analysis (i.e. amoxicillin capsules and human urine samples) results indicated that a reliable promising candidate method has been developed for the determination of AMX in the investigated real samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Fast, Safe, Propellant-Efficient Spacecraft Motion Planning Under Clohessy-Wiltshire-Hill Dynamics
NASA Technical Reports Server (NTRS)
Starek, Joseph A.; Schmerling, Edward; Maher, Gabriel D.; Barbee, Brent W.; Pavone, Marco
2016-01-01
This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively actuated, propellant- optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill dynamics model. The approach calls upon a modified version of the FMT* algorithm to grow a set of feasible trajectories over a deterministic, low-dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of actively safe samples, from which there exists a feasible one-burn collision-avoidance maneuver that can safely circularize the spacecraft orbit along its coasting arc under a given set of potential thruster failures. Key features of the proposed algorithm include 1) theoretical guarantees in terms of trajectory safety and performance, 2) amenability to real-time implementation, and 3) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.
Shin, Saeam; Kim, Juwon; Kim, Yoonjung; Cho, Sun-Mi; Lee, Kyung-A
2017-10-26
EGFR mutation is an emerging biomarker for treatment selection in non-small-cell lung cancer (NSCLC) patients. However, optimal mutation detection is hindered by complications associated with the biopsy procedure, tumor heterogeneity and limited sensitivity of test methodology. In this study, we evaluated the diagnostic utility of real-time PCR using malignant pleural effusion samples. A total of 77 pleural fluid samples from 77 NSCLC patients were tested using the cobas EGFR mutation test (Roche Molecular Systems). Pleural fluid was centrifuged, and separated cell pellets and supernatants were tested in parallel. Results were compared with Sanger sequencing and/or peptide nucleic acid (PNA)-mediated PCR clamping of matched tumor tissue or pleural fluid samples. All samples showed valid real-time PCR results in one or more DNA samples extracted from cell pellets and supernatants. Compared with other molecular methods, the sensitivity of real-time PCR method was 100%. Concordance rate of real-time PCR and Sanger sequencing plus PNA-mediated PCR clamping was 98.7%. We have confirmed that real-time PCR using pleural fluid had a high concordance rate compared to conventional methods, with no failed samples. Our data demonstrated that the parallel real-time PCR testing using supernatant and cell pellet could offer reliable and robust surrogate strategy when tissue is not available.
Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear
HASSANPOUR, Gholamreza; MIRHENDI, Hossein; MOHEBALI, Mehdi; RAEISI, Ahmad; ZERAATI, Hojjat; KESHAVARZ, Hossein
2016-01-01
Background: We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan-Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. Methods: A single primer/probe set for pan-species Plasmodium-specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. Results: The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum. All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. Conclusion: By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples. PMID:28127357
Imaging technique for real-time temperature monitoring during cryotherapy of lesions.
Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey
2016-11-01
Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to ?16°C and analyzed the data for single measurement variations. The nonlinearity (?Tmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and ?13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.
Imaging technique for real-time temperature monitoring during cryotherapy of lesions
Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey
2016-01-01
Abstract. Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to −16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and −13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms. PMID:27822579
Development of a Software-Defined Radar
2017-10-01
waveform to the widest available (unoccupied) instantaneous bandwidth in real time. Consequently, the radar range resolution and target detection are...LabVIEW The matched filter range profile is calculated in real time using fast Fourier transform (FFT) operations to perform a cross-correlation...between the transmitted waveform and the received complex data. Figure 4 demonstrates the block logic used to achieve real -time range profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R; Baer, E; Jee, K
Purpose: For proton therapy, an accurate model of CT HU to relative stopping power (RSP) conversion is essential. In current practice, validation of these models relies solely on measurements of tissue substitutes with standard compositions. Validation based on real tissue samples would be much more direct and can address variations between patients. This study intends to develop an efficient and accurate system based on the concept of dose extinction to measure WEPL and retrieve RSP in biological tissue in large number of types. Methods: A broad AP proton beam delivering a spread out Bragg peak (SOBP) is used to irradiatemore » the samples with a Matrixx detector positioned immediately below. A water tank was placed on top of the samples, with the water level controllable in sub-millimeter by a remotely controlled dosing pump. While gradually lowering the water level with beam on, the transmission dose was recorded at 1 frame/sec. The WEPL were determined as the difference between the known beam range of the delivered SOBP (80%) and the water level corresponding to 80% of measured dose profiles in time. A Gammex 467 phantom was used to test the system and various types of biological tissue was measured. Results: RSP for all Gammex inserts, expect the one made with lung-450 material (<2% error), were determined within ±0.5% error. Depends on the WEPL of investigated phantom, a measurement takes around 10 min, which can be accelerated by a faster pump. Conclusion: Based on the concept of dose extinction, a system was explored to measure WEPL efficiently and accurately for a large number of samples. This allows the validation of CT HU to stopping power conversions based on large number of samples and real tissues. It also allows the assessment of beam uncertainties due to variations over patients, which issue has never been sufficiently studied before.« less
Almeida, S A A; Heitor, A M; Montenegro, M C B S M; Sales, M G F
2011-09-15
Solid-contact sensors for the selective screening of sulfadiazine (SDZ) in aquaculture waters are reported. Sensor surfaces were made from PVC membranes doped with tetraphenylporphyrin-manganese(III) chloride, α-cyclodextrin, β-cyclodextrin, or γ-cyclodextrin ionophores that were dispersed in plasticizer. Some membranes also presented a positive or a negatively charged additive. Phorphyrin-based sensors relied on a charged carrier mechanism. They exhibited a near-Nernstian response with slopes of 52 mV decade(-1) and detection limits of 3.91×10(-5) mol L(-1). The addition of cationic lipophilic compounds to the membrane originated Nernstian behaviours, with slopes ranging 59.7-62.0 mV decade(-1) and wider linear ranges. Cyclodextrin-based sensors acted as neutral carriers. In general, sensors with positively charged additives showed an improved potentiometric performance when compared to those without additive. Some SDZ selective membranes displayed higher slopes and extended linear concentration ranges with an increasing amount of additive (always <100% ionophore). The sensors were independent from the pH of test solutions within 2-7. The sensors displayed fast response, always <15s. In general, a good discriminating ability was found in real sample environment. The sensors were successfully applied to the fast screening of SDZ in real waters samples from aquaculture fish farms. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in locus measurements of sulfadiazine or parent-drugs. Copyright © 2011 Elsevier B.V. All rights reserved.
Complexity multiscale asynchrony measure and behavior for interacting financial dynamics
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Niu, Hongli
2016-08-01
A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.
Painter, Stephanie M; Pfau, Russell S; Brady, Jeff A; McFarland, Anne M S
2013-06-01
Previous presence/absence studies have indicated a correlation between the presence of the pathogenic amoeba Naegleria fowleri and the presence of bacteria, such as the fecal indicator Escherichia coli, in environmental surface waters. The objective of this study was to use quantitative real-time polymerase chain reaction (qPCR) methodologies to measure N. fowleri and E. coli concentrations within a Texas reservoir in late summer, and to determine if concentrations of N. fowleri and E. coli were statistically correlated. N. fowleri was detected in water samples from 67% of the reservoir sites tested, with concentrations ranging up to an estimated 26 CE (cell equivalents)/100 mL. E. coli was detected in water samples from 60% of the reservoir sites tested, with concentrations ranging up to 427 CE/100 mL. In this study, E. coli concentrations were not indicative of N. fowleri concentrations.
Amare, Meareg; Admassie, Shimelis
2012-05-15
4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee. The peak current increased linearly with the concentration of caffeine in the range of 6 × 10(-8) to 4 × 10(-5) mol L(-1), with a detection limit of 1.37 × 10(-7) mol L(-1) (LoD = 3δ/slope). Analysis of caffeine in coffee was affected neither by sample matrices nor by structurally similar compounds. Recoveries ranging between 93.75 ± 2.32 and 100.75 ± 3.32 were achieved from coffee extracts indicating the applicability of the developed method for real sample analyses. Copyright © 2012 Elsevier B.V. All rights reserved.
Solliec, Morgan; Massé, Daniel; Sauvé, Sébastien
2014-10-01
A new extraction method coupled to a high throughput sample analysis technique was developed for the determination of four veterinary antibiotics. The analytes belong to different groups of antibiotics such as chemotherapeutics, sulfonamides, lincosamides and macrolides. Trimethoprim (TMP), sulfadoxin (SFX), lincomycin (LCM) and tylosin (TYL) were extracted from lyophilized manure using a sonication extraction. McIlvaine buffer and methanol (MeOH) were used as extraction buffers, followed by cation-exchange solid phase extraction (SPE) for clean-up. Analysis was performed by laser diode thermal desorption-atmospheric pressure chemical-ionization (LDTD-APCI) tandem mass spectrometry (MS/MS) with selected reaction monitoring (SRM) detection. The LDTD is a high throughput sample introduction method that reduces total analysis time to less than 15s per sample, compared to minutes when using traditional liquid chromatography (LC). Various SPE parameters were optimized after sample extraction: the stationary phase, the extraction solvent composition, the quantity of sample extracted and sample pH. LDTD parameters were also optimized: solvent deposition, carrier gas, laser power and corona discharge. The method limit of detection (MLD) ranged from 2.5 to 8.3 µg kg(-1) while the method limit of quantification (MLQ) ranged from 8.3 to 28µgkg(-1). Calibration curves in the manure matrix showed good linearity (R(2)≥ 0.996) for all analytes and the interday and intraday coefficients of variation were below 14%. Recoveries of analytes from manure ranged from 53% to 69%. The method was successfully applied to real manure samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Qian-qian; Wang, Chun-yan; Shi, Xiao-feng; Li, Wen-dong; Luan, Xiao-ning; Hou, Shi-lin; Zhang, Jin-liang; Zheng, Rong-er
2012-04-01
In this paper, a new method was developed to differentiate the spill oil samples. The synchronous fluorescence spectra in the lower nonlinear concentration range of 10(-2) - 10(-1) g x L(-1) were collected to get training data base. Radial basis function artificial neural network (RBF-ANN) was used to identify the samples sets, along with principal component analysis (PCA) as the feature extraction method. The recognition rate of the closely-related oil source samples is 92%. All the results demonstrated that the proposed method could identify the crude oil samples effectively by just one synchronous spectrum of the spill oil sample. The method was supposed to be very suitable to the real-time spill oil identification, and can also be easily applied to the oil logging and the analysis of other multi-PAHs or multi-fluorescent mixtures.
Bringing Magnetic Field Data in Real-Time for Researchers on Mobile Devices
NASA Astrophysics Data System (ADS)
Wolf, V. G.; Hampton, D. L.
2013-12-01
Magnetometer data from eight remote stations across Alaska have been collected continuously since the early 1980's by the Geophysical Institute Magnetometer Array (GIMA). These three-axis fluxgate magnetometers, with <1 nT precision, provide data at 1 Hz, which are used to determine the currents associated with auroral activity in the Alaska polar regions. A primary function of the GIMA is to supply magnetic field deflection data in real time to researchers so they can determine when to launch a sub-orbital sounding rocket from the Poker Flat Research Range into the proper auroral conditions. The aurora is a key coupling mechanism between the Earth's magnetosphere and ionosphere, and the magnetometers are used to remotely sense the ionospheric currents associated with aurora. The web-based interface to display the real-time magnetometer data has been upgraded to be fully functional on a wide range of platforms, from desktops to mobile devices. The incoming data stream from each station is recorded in a database and used to populate the real time graphical display. Improvements in data management increased the sampling rate from 5 seconds to 1 second for the display. The displays are highly configurable to allow researchers the flexibility to interpret the magnetic signature they need to make a successful launch decision. The use of Django and Java script technology enabled the system to be structured for rapid expansion when new stations come online and input streams are improved. Data are also available for download within 24 hours of collection. The existence of real-time data has been and will continue to be critical for successful rocket launches.
High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods.
López-Calleja, Inés María; de la Cruz, Silvia; Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario
2013-12-01
A broad range of foods have been described as causing allergies, but the majority of allergic reactions can be ascribed to a limited number of food components. Recent extensive surveys showed how tree nuts, particularly hazelnut (Corylus avellana L.) seeds, rank amongst the most important sources of food allergy. In order to protect the allergic consumer, efficient and reliable methods are required for the detection of allergenic ingredients. For this purpose, we have developed a real-time polymerase chain reaction (PCR) for detection of hazelnut in commercial food products. In this way a specific hazelnut primer pair based on the ITS marker (70 bp) and a nuclease (TaqMan) probe labelled with FAM and BHQ were designed. Sensibility of real-time PCR was determined by analysis of raw and heat treated hazelnut-wheat flour mixtures with a range of detection of 0.1-100,000 ppm. Practical applicability of the real-time PCR assay developed for determining hazelnut in different food matrices was investigated by analyzing 179 commercial foodstuffs comprising snacks, biscuits, chocolates, bonbons, creams, nut bars, ice creams, precooked meals, breads, beverages, yogurts, cereals, meat products, rice cake and nougat. From the total of samples analyzed, 40 commercial food products that didn't declare hazelnut nor traces on the label were found to contain hazelnut. The real-time PCR method proposed herein due to its high sensitivity facilitates the detection of hazelnut traces in commercial food products and can also be useful for monitoring the effectiveness of cleaning processes and as consequence, can help to prevent the food allergic consumer from unintentional ingestion of hidden allergens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data
NASA Astrophysics Data System (ADS)
Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, Andrew J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson, Scott; Doi, Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezić, Željko; Kent, Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald Q.; Leger, R. French; Long, Daniel C.; Loveday, Jon; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell, Patrick; Yanny, Brian; York, Donald G.
2002-05-01
We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700kms-1<=cz<=39,000kms-1, distributed in several long but narrow (2.5d-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r)=(r/6.1+/-0.2h-1Mpc)-1.75+/-0.03, for 0.1h-1Mpc<=r<=16h-1Mpc. The galaxy pairwise velocity dispersion is σ12~600+/-100kms-1 for projected separations 0.15h-1Mpc<=rp<=5h-1Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r<~10h-1Mpc: subsamples with absolute magnitude ranges centered on M*-1.5, M*, and M*+1.5 have real-space correlation functions that are parallel power laws of slope ~-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.
Daniel, Hubert Darius J; Fletcher, John G; Chandy, George M; Abraham, Priya
2009-01-01
Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV) is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR) for accurate quantitation and screening of HBV. The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV) antibody and human immunodeficiency virus (HIV) antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay's capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV) of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001). This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.
Zhao, Youyun; Cao, Xuan; Tang, Jingfeng; Zhou, Li; Gao, Yinglin; Wang, Jiangping; Zheng, Yi; Yin, Shanshan; Wang, Yefu
2012-04-01
Infection with human papillomavirus (HPV), particularly HPV16 and HPV18, is the main cause of invasive cervical cancer, although other factors such as herpes simplex virus (HSV) may act in conjunction with HPV in this context. To explore the possibility of developing a system for rapid diagnosis and clinical screening of cervical cancer, we developed a multiplex real-time PCR assay that can simultaneously detect and quantify HPV16/18 and HSV1/2. To evaluate its possibilities and practical uses, 177 samples collected from patients with suspected HPV and HSV infection in exfoliated cervical cells, genital herpes or labial herpes were tested by multiplex real-time PCR and compared with results obtained by DNA sequencing. Each virus was detected over a range from 1.0 × 10(1) to 1.0 × 10(7) copies/reaction. The clinical sensitivity was 100% for HPV16/18 and HSV1/2. The clinical specificity was 97.1% for HPV16, 98.1% for HPV18, 97.0% for HSV1 and 96.0% for HSV2. The kappa value was 0.96 for HPV16, 0.92 for HPV18, 0.94 for HSV1 and 0.93 for HSV2, when DNA sequencing was used as the reference standard. In summary, this novel multiplex real-time PCR allows the rapid and specific detection of HPV16/18 and HSV1/2, as well as coinfection with HPV and HSV, in clinical samples. In the future, this multiplex real-time PCR assay will assist in cervical cancer screening, viral treatment evaluation and epidemiological studies in which high throughput analysis is required. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhou, Xiaodong; Liu, Xiaoli; Li, Jing; Aprecio, Raydolfo M; Zhang, Wu; Li, Yiming
2015-05-01
The use of saliva as a diagnostic fluid for the evaluation of periodontal health has gained attention recently. Most published real-time PCR assays focused on quantification of bacteria in subgingival plaque, not in saliva. The aims of this study were to develop a real-time PCR assay for quantification of six periodontal pathogens in saliva and to establish a relationship between the amount of DNA (fg) and colony-forming unit (CFU). TaqMan primers/probe sets were used for the detection of Aggregatibacter actinomycetemcomitans (Aa), Eikenella corrodens (Ec), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and total bacteria. Six periodontal pathogens and total bacteria in saliva from 24 periodontally healthy individuals were determined. The relationship between the amount of DNA (fg) and CFU was established by measuring the concentrations of extracted bacterial DNA and CFU per milliliter of bacteria on agar plates. Fn, Ec, and Pi were detected in all saliva samples, while 58.5, 45.8, and 33.3% were detected for Tf, Pg, and Aa, respectively. Numbers of Ec and Fn in saliva were highly correlated (R(2) = 0.93, P < 0.01). The values of DNA (fg) per CFU ranged from 64 for Ec to 121 for Pg. The real-time PCR assay in combination with the relationship between DNA (fg) and CFU can be used to quantitate periodontal pathogens in saliva and estimate the number of live bacteria (CFU). This real-time PCR assay in combination with the relationship between DNA (fg) and CFU has the potential to be an adjunct in evaluation of periodontal health status.
CHARACTERISTICS OF RANGE HOODS IN CALIFORNIA HOMES DATA COLLECTED FROM A REAL ESTATE WEB SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klug, Victoria; Singer, Brett; Bedrosian, Tod
2011-09-02
Venting range hoods are important residential ventilation components that remove pollutants generated by cooking activities and natural gas cooking burners. To address the lack of data on range hood installations in California, we conducted a survey by examining photographs of homes for sale or rent listed on a popular real estate web site. The survey was conducted in November 2010 and April–May 2011. Posted photos of the homes were reviewed to determine if a hood was installed, the type of hood, and two installation details that can impact performance, namely the height above the cooktop and the degree to whichmore » the hood covers the cooktop burners. We additionally collected information about the homes, including asking price for purchase or rent, type of building (e.g. detached house, townhouse or apartment), building age, floor area, and cooktop fuel type. Listings were first sampled to focus on homes built since 2005, then randomly sampled to include varied prices and locations around the state. Data were obtained for 1002 homes built between 1865 and 2011 (median year built 1989). Homes for sale varied in asking price from $16,000 to $16,500,000 (median $353,000) and homes for rent varied from $500 to $25,000 (median $2125) per month. Approximately 74% of the sample had natural gas cooktops. In this sample, natural gas cooktops were more prevalent in more expensive homes than in less expensive homes. Across the entire sample, 7.4 % appeared to have no hood installed, 33% had a short hood, 13% had a deep hood and 47% had a microwave over the range. The percentage of these hoods that vent to the outdoors could not be determined. Hood type was related to coverage of the cooktop. For deep hoods, 76% appeared to cover most or all of the cooktop burners. For short hoods, 70% covered about three quarters of the cooktop. And for microwaves the vast majority (96%) covered the back burners but not the front burners. Hood type was also correlated with asking price or monthly rent, with deep hoods most common in the most expensive homes. Hood type was also correlated with home age, with microwave hoods more common in newer homes. Installation height was related to device type with microwaves installed lower (closer) to the cooktop (median 18 inches), and short hoods (median 28 inches) and deep hoods (median 30 inches) installed higher. Deep range hoods are more common with natural gas cooktops than with electric cooktops, and slightly fewer homes with natural gas cooktops lack a range hood (7%) than homes with electric cooktops (9%). This study provides limited but useful information about the characteristics of range hoods in California homes and demonstrates the potential value of non-traditional forms of data collection.« less
Efficient generation of discontinuity-preserving adaptive triangulations from range images.
Garcia, Miguel Angel; Sappa, Angel Domingo
2004-10-01
This paper presents an efficient technique for generating adaptive triangular meshes from range images. The algorithm consists of two stages. First, a user-defined number of points is adaptively sampled from the given range image. Those points are chosen by taking into account the surface shapes represented in the range image in such a way that points tend to group in areas of high curvature and to disperse in low-variation regions. This selection process is done through a noniterative, inherently parallel algorithm in order to gain efficiency. Once the image has been subsampled, the second stage applies a two and one half-dimensional Delaunay triangulation to obtain an initial triangular mesh. To favor the preservation of surface and orientation discontinuities (jump and crease edges) present in the original range image, the aforementioned triangular mesh is iteratively modified by applying an efficient edge flipping technique. Results with real range images show accurate triangular approximations of the given range images with low processing times.
Dielectric properties of lunar surface
NASA Astrophysics Data System (ADS)
Yushkova, O. V.; Kibardina, I. N.
2017-03-01
Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.
NASA Astrophysics Data System (ADS)
Jiang, J.; Zhu, L.; Qian, W.; Chen, H.; Feng, C.; Han, S.; Lin, H.; Ye, F. Y.
Glassy carbon electrodes (GCE) were modified by carboxylated graphene oxide/lanthanum with various concentrations of hexadecyl trimethyl ammonium bromide (CTAB), and the treated electrodes, called CTAB/GO-COOLa/GCE, were prepared for the detection of uric acid (UA) and dopamine (DA) by using the differential pulse voltammetry (DPV) and the cyclic voltammetry (CV). The results show that the modified electrode’s electrocatalytic activity could be affected by several factors in the examination, they are the pH value of the system, the main content of CTAB, various concentrations and rates of scan. With a combination of carboxylated graphene oxide/lanthanum and CTAB, the resulted CTAB/GO-COOLa/GCE sensors showed preeminent selectivity and obvious catalytic property toward the electro-oxidation of UA and DA. In optimized conditions, the response of the CTAB/GO-COOLa/GCE electrode for DA was linear in the region of 0.03-500.0μM with detection limits of 0.036μM (S/N=3). Two linear response ranges for the determination UA were obtained from ranges of 1 to 200μM and 200 to 1300μM with a detection limit of 0.42μM (S/N=3). Moreover, the refined electrode was used in the inspection of DA and UA in real samples of serum and urine successfully, displaying its potential application of real samples involved in electroanalysis.
Li, Xianjiang; Xing, Jiawei; Chang, Cuilan; Wang, Xin; Bai, Yu; Yan, Xiuping; Liu, Huwei
2014-06-01
MIL-101(Cr) is an excellent metal-organic framework with high surface area and nanoscale cavities, making it promising in solid-phase extraction. Herein, we used MIL-101(Cr) as a solid-phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART-MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL-101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1∼0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5∼1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85∼110%. These results showed that solid-phase extraction with metal-organic frameworks is an efficient sample preparation approach for DART-MS analysis and could find more applications in environmental analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estill, C.F.; Kovein, R.J.; Jones, J.H.
1999-03-26
The National Institute for Occupational Safety and Health (NIOSH) is currently conducting research on ventilation controls to reduce furniture stripping exposures to methylene chloride to the OSHA PEL of 25 ppm. Low cost ventilation systems were designed by NIOSH researchers along with Benny Bixenman of Benco Sales, Inc. (Forney, TX). The controls were constructed and installed by Benco Sales. This report compares the methylene chloride levels of one worker stripping furniture using the recently installed ventilation controls and using the existing controls. During the survey, two different chemical stripping solutions (a standard formulation and a low methylene chloride content formulation)more » were used and compared. This survey tested three control combinations: (1) new ventilation, low methylene chloride stripper, (2) new ventilation, standard stripping solution, and (3) old ventilation, standard stripping solution. During each test, sorbent tube sampling and real-time sampling were employed. Sorbent tube, data collected in the worker's breathing zone, ranged from 300 to 387 ppm. Real-time data showed breathing zone exposures to range from 211 to 383 ppm while stripping and 164 to 230 ppm while rinsing. Data were inconclusive to determine which ventilation system or stripping solution produced the lowest exposures. Recommendations are made in the report to improve the newly installed ventilation controls.« less
de Moraes, F M; Espósito, D L A; Klein, T M; da Fonseca, B A L
2018-01-01
Clinical manifestations of Zika, dengue, and chikungunya virus infections are very similar, making it difficult to reach a diagnosis based only on clinical grounds. In addition, there is an intense cross-reactivity between antibodies directed to Zika virus and other flaviviruses, and an accurate Zika diagnosis is best achieved by real-time RT-PCR. However, some real-time RT-PCR show better performance than others. To reach the best possible Zika diagnosis, the analytic sensitivity of some probe-based real-time RT-PCR amplifying Zika virus RNA was evaluated in spiked and clinical samples. We evaluated primers and probes to detect Zika virus, which had been published before, and tested sensitivity using serum spiked and patient samples by real-time RT-PCR. When tested against spiked samples, the previously described primers showed different sensitivity, with very similar results when samples from patients (serum and urine) were analyzed. Real-time RT-PCR designed to amplify Zika virus NS1 showed the best analytical sensitivity for all samples.
NASA Astrophysics Data System (ADS)
Kelly, P. J.; Werner, C. A.; Evans, W.; Ingebritsen, S.; Tucker, D.
2012-12-01
Degassing from most Cascade Range Volcanoes, USA, is characterized by low-temperature hydrothermal emissions. It is important to monitor these emissions as part of a comprehensive monitoring strategy yet access is often difficult and most features are sampled by the USGS only once per year at best. In an effort to increase the sampling frequency of major gas species and in preparation for building permanent, autonomous units, we built a portable sensor package capable of measuring H2O, CO2, SO2, and H2S in volcanic gas plumes. Here we compare results from the portable sensor package with gas analyses from direct samples obtained using a titanium tube and evacuated glass flasks collected at the same time. The sensor package is housed in a small, rugged case, weighs 5 kg, and includes sensors for measuring H2O (0-16 parts per thousand), CO2 (0-5000 ppmv), SO2 (0-100 ppm), and H2S (0-20 ppm) gases. Additional temperature and pressure sensors, a micro air pump, datalogger, and an internal battery are also incorporated. H2O and CO2 are measured using an infrared spectrometer (Licor 840) and sulfur-containing gases are measured using electrochemical sensors equipped with filters to mitigate cross-sensitivities. Data are collected at a 1 Hz sampling rate and can be recorded and displayed in real-time using a netbook computer or can be saved to the onboard datalogger. The data display includes timeseries of H2O, CO2, SO2, and H2S mixing ratios, the four-component bulk composition of the plume, and automated calculation of gas ratios commonly used in volcanic gas monitoring, such as H2O/CO2, CO2/SO2, and CO2/H2S . In the Cascade Range, the sensor package has been tested at Mt. Baker, Mt. St. Helens, Mt. Hood, and in Lassen Volcanic National Park. In each case, the instrument was placed 5 to 30 meters from the fumarole or fumarole field and emissions were sampled for 5 to 30 minutes. No SO2 was detected at any location. At Mt. Hood the sensor package yielded average CO2/H2S ratios from 10 to 16 in fumarole plumes versus flask CO2/H2S ratios (n = 2) of 13 and 16 on 9 July 2011, and on 28 July 2012 the sensor package yielded an average CO2/H2S ratio of 12 versus flask ratios (n = 2) of 13 (both sets of flask samples obtained in the Crater Rock area). At Mt. Baker, the sensor package yielded average CO2/H2S ratios from 19 to 22 whereas flask ratios (n = 3) were higher, from 25 to 32 (both fumarole-plume and flask samples obtained in the Sherman Crater area) on 22 July 2011. The mismatch falls slightly outside expected analytical uncertainty for the sensor package (about 20% relative for CO2/H2S ratios). However, flask samples collected in Sherman Crater in 2006 and 2007 (n = 5) yielded CO2/H2S ratios from 18 to 29, which nearly spans the range of observations in 2011. Therefore, one explanation for the small mismatch between the results of the sensor package and direct samples is that the sensor package measures bulk plume compositions that may integrate emissions from several chemically distinct fumaroles and the direct samples better represent the composition of discrete vents. Overall, the sensor package and evacuated flask data show good agreement and demonstrate that the real-time technique is a viable means for monitoring major volcanic gas species.
Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi
2015-10-19
We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.
Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi
2015-01-01
We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259
A new real-time PCR protocol for detection of avian haemosporidians.
Bell, Jeffrey A; Weckstein, Jason D; Fecchio, Alan; Tkach, Vasyl V
2015-07-19
Birds possess the most diverse assemblage of haemosporidian parasites; including three genera, Plasmodium, Haemoproteus, and Leucocytozoon. Currently there are over 200 morphologically identified avian haemosporidian species, although true species richness is unknown due to great genetic diversity and insufficient sampling in highly diverse regions. Studies aimed at surveying haemosporidian diversity involve collecting and screening samples from hundreds to thousands of individuals. Currently, screening relies on microscopy and/or single or nested standard PCR. Although effective, these methods are time and resource consuming, and in the case of microscopy require substantial expertise. Here we report a newly developed real-time PCR protocol designed to quickly and reliably detect all three genera of avian haemosporidians in a single biochemical reaction. Using available DNA sequences from avian haemosporidians we designed primers R330F and R480RL, which flank a 182 base pair fragment of mitochondrial conserved rDNA. These primers were initially tested using real-time PCR on samples from Malawi, Africa, previously screened for avian haemosporidians using traditional nested PCR. Our real time protocol was further tested on 94 samples from the Cerrado biome of Brazil, previously screened using a single PCR assay for haemosporidian parasites. These samples were also amplified using modified nested PCR protocols, allowing for comparisons between the three different screening methods (single PCR, nested PCR, real-time PCR). The real-time PCR protocol successfully identified all three genera of avian haemosporidians from both single and mixed infections previously detected from Malawi. There was no significant difference between the three different screening protocols used for the 94 samples from the Brazilian Cerrado (χ(2) = 0.3429, df = 2, P = 0.842). After proving effective, the real-time protocol was used to screen 2113 Brazilian samples, identifying 693 positive samples. Our real-time PCR assay proved as effective as two widely used molecular screening techniques, single PCR and nested PCR. However, the real-time protocol has the distinct advantage of detecting all three genera in a single reaction, which significantly increases efficiency by greatly decreasing screening time and cost. Our real-time PCR protocol is therefore a valuable tool in the quickly expanding field of avian haemosporidian research.
Abras, Alba; Ballart, Cristina; Llovet, Teresa; Roig, Carme; Gutiérrez, Cristina; Tebar, Silvia; Berenguer, Pere; Pinazo, María-Jesús; Posada, Elizabeth; Gascón, Joaquim; Schijman, Alejandro G; Gállego, Montserrat; Muñoz, Carmen
2018-01-01
Polymerase chain reaction (PCR) has become a useful tool for the diagnosis of Trypanosoma cruzi infection. The development of automated DNA extraction methodologies and PCR systems is an important step toward the standardization of protocols in routine diagnosis. To date, there are only two commercially available Real-Time PCR assays for the routine laboratory detection of T. cruzi DNA in clinical samples: TCRUZIDNA.CE (Diagnostic Bioprobes Srl) and RealCycler CHAG (Progenie Molecular). Our aim was to evaluate the RealCycler CHAG assay taking into account the whole process. We assessed the usefulness of an automated DNA extraction system based on magnetic particles (EZ1 Virus Mini Kit v2.0, Qiagen) combined with a commercially available Real-Time PCR assay targeting satellite DNA (SatDNA) of T. cruzi (RealCycler CHAG), a methodology used for routine diagnosis in our hospital. It was compared with a well-known strategy combining a commercial DNA isolation kit based on silica columns (High Pure PCR Template Preparation Kit, Roche Diagnostics) with an in-house Real-Time PCR targeting SatDNA. The results of the two methodologies were in almost perfect agreement, indicating they can be used interchangeably. However, when variations in protocol factors were applied (sample treatment, extraction method and Real-Time PCR), the results were less convincing. A comprehensive fine-tuning of the whole procedure is the key to successful results. Guanidine EDTA-blood (GEB) samples are not suitable for DNA extraction based on magnetic particles due to inhibition, at least when samples are not processed immediately. This is the first study to evaluate the RealCycler CHAG assay taking into account the overall process, including three variables (sample treatment, extraction method and Real-Time PCR). Our findings may contribute to the harmonization of protocols between laboratories and to a wider application of Real-Time PCR in molecular diagnostic laboratories associated with health centers.
A fast, programmable hardware architecture for the processing of spaceborne SAR data
NASA Technical Reports Server (NTRS)
Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.
1984-01-01
The development of high-throughput SAR processors (HTSPs) for the spaceborne SARs being planned by NASA, ESA, DFVLR, NASDA, and the Canadian Radarsat Project is discussed. The basic parameters and data-processing requirements of the SARs are listed in tables, and the principal problems are identified as real-operations rates in excess of 2 x 10 to the 9th/sec, I/O rates in excess of 8 x 10 to the 6th samples/sec, and control computation loads (as for range cell migration correction) as high as 1.4 x 10 to the 6th instructions/sec. A number of possible HTSP architectures are reviewed; host/array-processor (H/AP) and distributed-control/data-path (DCDP) architectures are examined in detail and illustrated with block diagrams; and a cost/speed comparison of these two architectures is presented. The H/AP approach is found to be adequate and economical for speeds below 1/200 of real time, while DCDP is more cost-effective above 1/50 of real time.
Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen
2015-01-01
A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632
Delnatte, Pauline; Nagy, Éva; Ojkic, Davor; Leishman, David; Crawshaw, Graham; Elias, Kyle; Smith, Dale A
2014-07-01
We surveyed free-ranging Canada Geese (Branta canadensis), Trumpeter Swans (Cygnus buccinator), Mute Swans (Cygnus olor), and Mallards (Anas platyrhynchos) to estimate the prevalence of antibodies to avian bornavirus (ABV) and of cloacal shedding of ABV RNA in southern Ontario, Canada. Blood samples and cloacal swabs were collected from 206 free-ranging Canada Geese, 135 Trumpeter Swans, 75 Mute Swans, and 208 Mallards at 10 main capture sites between October 2010 and May 2012. Sera were assessed for antibodies against ABV by enzyme-linked immunosorbent assay and swabs were evaluated for ABV RNA using real-time reverse-transcription PCR. Serum antibodies were detected in birds from all four species and at each sampling site. Thirteen percent of the geese caught on the Toronto Zoo site shed ABV RNA in feces compared with 0% in geese sampled at three other locations. The proportions of shedders among Mute Swans, Trumpeter Swans, and Mallards were 9%, 0%, and 0%, respectively. Birds that were shedding viral RNA were more likely to have antibodies against ABV and to have higher antibody levels than those that were not, although many birds with antibodies were not shedding. We confirmed that exposure to, or infection with, ABV is widespread in asymptomatic free-ranging waterfowl in Canada; however, the correlation between cloacal shedding, presence of antibodies, and presence of disease is not fully understood.
Gbylik-Sikorska, Malgorzata; Sniegocki, Tomasz; Posyniak, Andrzej
2015-05-15
The original analytical method for the simultaneous determination and confirmation of neonicotinoids insecticides (imidacloprid, clothianidin, acetamiprid, thiametoxam, thiacloprid, nitenpyram, dinotefuran) and some of their metabolites (imidacloprid guanidine, imidacloprid olefin, imidacloprid urea, desnitro-imidacloprid hydrochloride, thiacloprid-amid and acetamiprid-N-desmethyl) in honey bee and honey was developed. Preparation of honey bee samples involves the extraction with mixture of acetonitrile and ethyl acetate followed by cleaned up using the Sep-Pak Alumina N Plus Long cartridges. Honey samples were dissolved in 1% mixture of acetonitrile and ethyl acetate with addition of TEA, then extracts were cleaned up with Strata X-CW cartridges. The identity of analytes was confirmed using liquid chromatography tandem mass spectrometry. All compounds were separated on a Luna C18 column with gradient elution. The whole procedure was validated according to the requirements of SANCO 12571/2013. The average recoveries of the analytes ranged from 85.3% to 112.0%, repeatabilities were in the range of 2.8-11.2%, within-laboratory reproducibility was in the range of 3.3-14.6%, the limits of quantitation were in the range of 0.1-0.5μgkg(-1), depending of analyte and matrices. The validated method was successfully applied for the determination of clothianidin, imidacloprid and imidacloprid urea in real incurred honey bee samples and clothianidin in honey. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin
2014-02-01
A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.
Huang, Yunrui; Zhou, Qingxiang; Xie, Guohong
2013-01-01
Fungicides have been widely used throughout the world, and the resulted pollution has absorbed great attention in recent years. Present study described an effective measurement technique for fungicides including thiram, metalaxyl, diethofencarb, myclobutanil and tebuconazole in environmental water samples. A micro-solid phase extraction (μSPE) was developed utilizing ordered TiO(2) nanotube array for determination of target fungicides prior to a high performance liquid chromatography (HPLC). The experimental results indicated that TiO(2) nanotube arrays demonstrated excellent merits on the preconcentration of fungicides, and excellent linear relationship between peak area and the concentration of fungicides was obtained in the range of 0.1-50 μg L(-1). The detection limits for the targeted fungicides were in the range of 0.016-0.086 μg L(-1) (S/N=3). Four real environmental water samples were used to validate the applicability of the proposed method, and good spiked recoveries in the range of 73.9-114% were achieved. A comparison of present method with conventional solid phase extraction was made and the results exhibited that proposed method resulted in better recoveries. The results demonstrated that this μ-SPE technique was a viable alternative for the analysis of fungicides in complex samples. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.
2016-08-01
This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.
Safari, Meysam; Nojavan, Saeed; Davarani, Saied Saeed Hosseiny; Morteza-Najarian, Amin
2013-07-30
This study proposes the dual electromembrane extraction followed by high performance liquid chromatography for selective separation-preconcentration of Cr(VI) and Cr(III) in different environmental samples. The method was based on the electrokinetic migration of chromium species toward the electrodes with opposite charge into the two different hollow fibers. The extractant was then complexed with ammonium pyrrolidinedithiocarbamate for HPLC analysis. The effects of analytical parameters including pH, type of organic solvent, sample volume, stirring rate, time of extraction and applied voltage were investigated. The results showed that Cr(III) and Cr(VI) could be simultaneously extracted into the two different hollow fibers. Under optimized conditions, the analytes were quantified by HPLC instrument, with acceptable linearity ranging from 20 to 500 μg L(-1) (R(2) values≥0.9979), and repeatability (RSD) ranging between 9.8% and 13.7% (n=5). Also, preconcentration factors of 21.8-33 that corresponded to recoveries ranging from 31.1% to 47.2% were achieved for Cr(III) and Cr(VI), respectively. The estimated detection limits (S/N ratio of 3:1) were less than 5.4 μg L(-1). Finally, the proposed method was successfully applied to determine Cr(III) and Cr(VI) species in some real water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang
2015-02-13
A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.
Hou, Fang; Deng, Xiaoying; Jiang, Xinyu; Yu, Jingang
2014-01-01
A simple and efficient method for dispersive liquid-liquid microextraction of methylparaben, ethylparaben, propylparaben and butylparaben in real beverage samples was developed. It is making use of solidified floating organic droplets of 1-dodecanol which has low density and a proper melting point. Parameters influencing the extraction efficiency, such as the type of extraction and dispersive solvent, the volume of extraction and dispersive solvent, salt effect, pH, extraction time, were optimized and resulted in enrichment factors (EFs) of 84 for methylparaben, 103 for ethylparaben, 115 for propylparaben and 126 for butylparaben. The limits of detection for parabens were 1.52, 1.06, 0.32 and 0.17 ng/mL, respectively. Excellent linearity with coefficients of correlation from 0.9970 to 0.9997 was observed in the concentration range of 5-1,000 ng/mL. The repeatability of the proposed method expressed as relative standard deviations (RSDs) ranged from 2.54 to 3.89% (n = 5). The relative recoveries for parabens in beverage samples were good and in the ranges of 89.8-109.9, 90.2-107.3, 90.9-101.7 and 92.3-118.1%, respectively. Thus, the proposed method has excellent potential for the determination of parabens in beverage samples. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapid DNA analysis for automated processing and interpretation of low DNA content samples.
Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F
2016-01-01
Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample types that can be processed and minimizes the time between sample collection, sample processing and analysis, and generation of actionable intelligence. The fully integrated Expert System is capable of interpreting a wide range or sample types and input DNA quantities, allowing samples to be processed and interpreted without a technical operator.
Lindahl, S; Båverud, V; Egenvall, A; Aspán, A; Pringle, J
2013-01-01
Strangles is a contagious equine-specific disease caused by Streptococcus equi subsp. equi. Unfortunately, detection of S. equi can fail in up to 40% of horses with strangles. Whereas recent molecular biologic methods and sampling techniques have improved recovery of S. equi optimal sampling methods and laboratory analyses remain ill-defined. To determine the yield of S. equi from horses with acute strangles in confirmed outbreaks by field-sampling methods subjected to culture and biochemical identification, and real-time PCR directly and after culture. Fifty-seven horses of varying breeds and ages from 8 strangles outbreaks. Prospective study. Culture with biochemical identification and real-time PCR directly, and from culture, were performed on nasal swabs, nasopharyngeal swabs, and nasopharyngeal lavages. Real-time PCR directly from samples identified the highest number of infected horses, with 45/57 nasal swabs, 41/57 nasopharyngeal swabs, and 48/57 nasopharyngeal lavages S. equi positive. Biochemical identification (highest positives 22/57) was inferior to real-time PCR for S. equi recovery regardless of sampling method. Real-time PCR of nasopharyngeal lavage directly and after culture yielded 52/57 positives whereas direct real-time PCR of nasopharyngeal lavage combined with either nasopharyngeal swabs or nasal swabs yielded 53/57 positives. Three horses were negative on all samples. Nasopharyngeal lavage analyzed by a combination of real-time PCR directly and after culture or, alternatively, real-time PCR directly on a nasopharyngeal lavage and a nasal/nasopharyngeal swab can identify S. equi in over 90% of acute strangles cases. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Kafatos, George; Niepel, Daniela; Lowe, Kimberley; Jenkins-Anderson, Sophie; Westhead, Hal; Garawin, Tamer; Traugottová, Zuzana; Bilalis, Antonios; Molnar, Edit; Timar, Jozsef; Toth, Erika; Gouvas, Nikolaos; Papaxoinis, George; Murray, Samuel; Mokhtar, Nadia; Vosmikova, Hana; Fabian, Pavel; Skalova, Alena; Wójcik, Piotr; Tysarowski, Andrzej; Barugel, Mario; van Krieken, J Han; Trojan, Jörg
2017-07-27
A confirmed wild-type RAS tumor status is commonly required for prescribing anti-EGFR treatment for metastatic colorectal cancer. This noninterventional, observational research project estimated RAS mutation prevalence from real-world sources. Aggregate RAS mutation data were collected from 12 sources in three regions. Each source was analyzed separately; pooled prevalence estimates were then derived from meta-analyses. The pooled RAS mutation prevalence from 4431 tumor samples tested for RAS mutation status was estimated to be 43.6% (95% CI: 38.8-48.5%); ranging from 33.7% (95% CI: 28.4-39.3%) to 54.1% (95% CI: 51.7-56.5%) between sources. The RAS mutation prevalence estimates varied among sources. The reasons for this are not clear and highlight the need for further research.
Dreier, Jens; Störmer, Melanie; Kleesiek, Knut
2007-07-01
Bacterial contamination of blood components, particularly of platelet concentrates (PCs), represents the greatest infectious risk in blood transfusion. Although the incidence of platelet bacterial contamination is approximately 1 per 2,000 U, the urgent need for a method for the routine screening of PCs to improve safety for patients had not been considered for a long time. Besides the culturing systems, which will remain the criterion standard, rapid methods for sterility screening will play a more important role in transfusion medicine in the future. In particular, nucleic acid amplification techniques (NATs) are powerful potential tools for bacterial screening assays. The combination of excellent sensitivity and specificity, reduced contamination risk, ease of performance, and speed has made real-time polymerase chain reaction (PCR) technology an appealing alternative to conventional culture-based testing methods. When using real-time PCR for the detection of bacterial contamination, several points have to be considered. The main focus is the choice of the target gene; the assay format; the nucleic acid extraction method, depending on the sample type; and the evaluation of an ideal sampling strategy. However, several factors such as the availability of bacterial-derived nucleic acid amplification reagents, the impracticability, and the cost have limited the use of NATs until now. Attempts to reduce the presence of contaminating nucleic acids from reagents in real-time PCR have been described, but none of these approaches have proven to be very effective or to lower the sensitivity of the assay. Recently, a number of broad-range NAT assays targeting the 16S ribosomal DNA or 23S ribosomal RNA for the detection of bacteria based on real-time technology have been reported. This review will give a short survey of current approaches to and the limitations of the application of real-time PCR for bacterial detection in blood components, with emphasis on the bacterial contamination of PCs.
Nelson, Jon P
2014-04-01
Relatively little is known about cross-country differences in alcohol affordability or factors that determine differences in affordability over time. This information is potentially important for alcohol policy, especially policies that focus on higher taxes or prices to reduce total alcohol consumption. This study estimates cross-country alcohol consumption relationships using economic models incorporating income and prices and alternative models based on alcohol affordability. The data and analysis are restricted to higher income countries. Data for alcohol consumption per capita (ages 15+) are analyzed for 2 samples: first, 17 countries in the Organisation for Economic Co-operation and Development for the period 1975 to 2000; second, 22 countries in the European Union for the period from 2000 to 2008. Panel data models are utilized, with country and time fixed-effects to control for confounding influences. In economic demand models, covariates are real per capita income and real alcohol price indices. In affordability models, income is divided by prices to yield an index of alcohol affordability. Analysis of data trends reveals that much of the increase in affordability is due to rising real incomes, and not falling real prices. Economic models of demand perform slightly better statistically, but differences are not substantial as income and affordability are highly correlated. For both samples, exogenous rates of growth of alcohol consumption are negative. Price and income elasticities, on average, are within the range of prior estimates. Affordability elasticities are between 0.21 and 0.25. Although alcohol affordability is a valid concept statistically, its use in policy discussions tends to hide underlying causes of changes in affordability. A better approach is a comparison and analysis of trends and cross-country differences in real incomes and real alcohol prices together with the affordability index. Country-level analysis of income and price elasticities also is required. Copyright © 2014 by the Research Society on Alcoholism.
Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep
2017-08-01
Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Healy, David A.; O'Connor, David J.; Burke, Aoife M.; Sodeau, John R.
2012-12-01
A Bioaerosol sensing instrument referred to as WIBS-4, designed to continuously monitor ambient bioaerosols on-line, has been used to record a multiparameter “signature” from each of a number of Primary Biological Aerosol Particulate (PBAP) samples found in air. These signatures were obtained in a controlled laboratory environment and are based on the size, asymmetry (“shape”) and auto-fluorescence of the particles. Fifteen samples from two separate taxonomic ranks (kingdoms), Plantae (×8) and Fungi (×7) were individually introduced to the WIBS-4 for measurement along with two non-fluorescing chemical solids, common salt and chalk. Over 2000 individual-particle measurements were recorded for each sample type and the ability of the WIBS spectroscopic technique to distinguish between chemicals, pollen and fungal spore material was examined by identifying individual PBAP signatures. The results obtained show that WIBS-4 could potentially be a very useful analytical tool for distinguishing between natural airborne PBAP samples, such as the fungal spores and may potentially play an important role in detecting and discriminating the toxic fungal spore, Aspergillus fumigatus, from others in real-time. If the sizing range of the commercial instrument was customarily increased and permitted to operate simultaneously in its two sizing ranges, pollen and spores could potentially be discriminated between. The data also suggest that the gain setting sensitivity on the detector would also have to be reduced by a factor >5, to routinely detect, in-range fluorescence measurements for pollen samples.
Ultraviolet Radiation Round-Robin Testing of Various Backsheets for Photovoltaic Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehl, Michael; Ballion, Amal; Lee, Yu-Hsien
2015-06-14
Durability testing of materials exposed to natural weathering requires testing of the ultraviolet (UV) stability, especially for polymeric materials. The type approval testing of photovoltaic (PV) modules according to standards IEC 61215 and IEC 61646, which includes a so-called UV preconditioning test with a total UV dose of 15 kWh/m2, does not correspond to the real loads during lifetime. Between 3%-10% of the UV radiation has to be in the spectral range between 280 and 320 nm (UV-B) in the recent editions of the standards. However, the spectral distribution of the radiation source is very important because different samples showmore » very individual spectral sensitivity for the radiation offered. Less than 6% of the intensity of solar radiation exists in the UV range. In the case of an increase of the intensity of the light source for accelerating the UV test, overheating of the samples would have to be prevented more rigorously and the temperature of the samples have to be measured to avoid misinterpretation of the test results.« less
Zheng, Mingda; Wang, Chenge; Wang, Yingying; Wei, Wei; Ma, Shuang; Sun, Xiaohan; He, Jiang
2018-08-01
In this work, Lycii Fructus as raw materials for green synthesis of fluorescent carbon dots (CDs) reduce AgNO 3 . The CDs-AgNPs were synthesized by one-step method. CDs were applied to stabilize AgNPs due to abundant functional groups on the surface of CDs. In presence of phoxim, the dispersed CDs-AgNPs get aggregated and the absorption peak with red shift from 400 nm to 525 nm, resulting in the color changed from yellow to red. Under optimized conditions, the absorbance ratio at A 525 nm /A 400 nm was related linearly to the concentrations of phoxim in the range of 0.1-100 μM. The detection limit was calculated to 0.04 μM, which is lower than maximum residue limits of phoxim in samples in China. The colorimetric sensor was successfully utilized to monitoring phoxim in environmental and fruit samples with good recoveries ranges from 87% to 110.0%. These results showed the sensor had a promising application prospect in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Mariani, Maurizio Boccacci; Giannetti, Vanessa; Testani, Elena; Ceccarelli, Valentina
2013-01-01
The use of pesticides in agriculture has grown dramatically over the last decades. Environmental exposure of humans to agrochemicals is common and results in both acute and chronic health effects. In this study, direct immersion-solid phase microextraction (SPME) was coupled with electron capture detection for trace determination of 19 chlorinated pesticides in tomato samples, using a 100 pm polydimethylsiloxane fiber. The experimental parameters extraction time, extraction temperature, stirring, and salting out were evaluated and optimized. The LODs ranged from 0.5 to 8 microg/kg, and the LOQs from 5 to 30 microg/kg. A linear response was confirmed by correlation coefficients ranging from 0.97 to 0.9985. The developed method was tested by analyzing real samples purchased within the network of Italian distribution. The samples were found to be free from detectable residues of the studied pesticides. SPME has been shown to be a fast extraction technique that has several advantages such as solvent-free extraction, simplicity, and compatibility with the chromatographic analytical system.
Extraction and Determination of Cyproheptadine in Human Urine by DLLME-HPLC Method.
Maham, Mehdi; Kiarostami, Vahid; Waqif-Husain, Syed; Abroomand-Azar, Parviz; Tehrani, Mohammad Saber; Khoeini Sharifabadi, Malihe; Afrouzi, Hossein; Shapouri, Mahmoudreza; Karami-Osboo, Rouhollah
2013-01-01
Novel dispersive liquid-liquid microextraction (DLLME), coupled with high performance liquid chromatography with photodiode array detection (HPLC-DAD) has been applied for the extraction and determination of cyproheptadine (CPH), an antihistamine, in human urine samples. In this method, 0.6 mL of acetonitrile (disperser solvent) containing 30 μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5 mL urine sample. After centrifugation, the sedimented phase containing enriched analyte was dissolved in acetonitrile and an aliquot of this solution injected into the HPLC system for analysis. Development of DLLME procedure includes optimization of some important parameters such as kind and volume of extraction and disperser solvent, pH and salt addition. The proposed method has good linearity in the range of 0.02-4.5 μg mL(-1) and low detection limit (13.1 ng mL(-1)). The repeatability of the method, expressed as relative standard deviation was 4.9% (n = 3). This method has also been applied to the analysis of real urine samples with satisfactory relative recoveries in the range of 91.6-101.0%.
Christensen, Victoria G.; Esralew, Rachel A.; Allen, Monica L.
2008-01-01
The Eucha-Spavinaw basin is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the City of Tulsa. The City of Tulsa has received complaints of taste and odor in the finished drinking water because of deteriorating water quality. The deterioration is largely because of algal growth from the input of nutrients from the Eucha-Spavinaw basin. The U.S. Geological Survey, in cooperation with the City of Tulsa, implemented a continuous, real-time water-quality monitoring program in the Eucha-Spavinaw basin to better understand the source of the nutrient loading. This program included the manual collection of samples analyzed for nutrients and the collection of continuous, in-stream data from water-quality monitors. Continuous water-quality monitors were installed at two existing continuous streamflow-gaging stations - Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma, from October 2004 through September 2007. Total nitrogen concentrations for manually collected water samples ranged from 2.08 to 9.66 milligrams per liter for the water samples collected from Spavinaw Creek near Colcord, Oklahoma, and from 0.67 to 5.12 milligrams per liter for manually collected water samples from Beaty Creek near Jay, Oklahoma. Total phosphorus concentrations ranged from 0.04 to 1.5 milligrams per liter for the water samples collected from Spavinaw Creek near Colcord and from 0.028 to 1.0 milligram per liter for the water samples collected from Beaty Creek near Jay. Data from water samples and in-stream monitors at Spavinaw and Beaty Creeks (specific conductance and turbidity) were used to develop linear regression equations relating in-stream water properties to total nitrogen and total phosphorus concentrations. The equations developed for the Spavinaw and Beaty sites are site specific and only valid for the concentration ranges of the explanatory variables used in the analysis. The range in estimated and measured phosphorus is not representative for the range of historic streamflow at the Beaty site and that regression equation would benefit from more high flow and high turbidity samples. In addition, all three study years had below average annual precipitation for the area, and streamflow was especially low in Water Year 2006. Average nutrient concentrations from October 2004 through September 2007, which were drier than others, may not be a good indication of conditions in future wetter years. The equations for the Spavinaw and Beaty sites may be used to estimate instantaneous nutrient concentrations, which can be used to compute loads and yields in real time in order to better characterize the effect of land-management practices in these watersheds on the transport of nutrients to Lake Eucha and Spavinaw Lake. The methods used in this study show promise for monitoring future effectiveness of implemented best management practices, development and monitoring of total maximum daily loads, early detection of taste-and-odor occurrences, and to anticipate treatment needs for water suppliers.
Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun
2014-09-01
The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.
Cazorla-Reyes, Rocío; Fernández-Moreno, José Luis; Romero-González, Roberto; Frenich, Antonia Garrido; Vidal, José Luis Martínez
2011-07-15
A new multiresidue method has been developed and validated for the simultaneous extraction of more than two hundred pesticides, including non-polar and polar pesticides (carbamates, organochlorine, organophosphorous, pyrethroids, herbicides and insecticides) in urine at trace levels by gas and ultra high pressure liquid chromatography coupled to ion trap and triple quadrupole mass spectrometry, respectively (GC-IT-MS/MS, UHPLC-QqQ-MS/MS). Non-polar and polar pesticides were simultaneously extracted from urine samples by a simple and fast solid phase extraction (SPE) procedure using C(18) cartridges as sorbent, and dichloromethane as elution solvent. Recovery was in the range of 60-120%. Precision values expressed as relative standard deviation (RSD) were lower than 25%. Identification and confirmation of the compounds were performed by the use of retention time windows, comparison of spectra (GC-amenable compounds) or the estimation of the ion ratio (LC-amenable compounds). For GC-amenable pesticides, limits of detection (LODs) ranged from 0.001 to 0.436 μg L(-1) and limits of quantification (LOQs) from 0.003 to 1.452 μg L(-1). For LC-amenable pesticides, LODs ranged from 0.003 to 1.048 μg L(-1) and LOQs ranged from 0.011 to 3.494 μg L(-1). Finally, the optimized method was applied to the analysis of fourteen real samples of infants from agricultural population. Some pesticides such as methoxyfenozide, tebufenozide, piperonyl butoxide and propoxur were found at concentrations ranged from 1.61 to 24.4 μg L(-1), whereas methiocarb sulfoxide was detected at trace levels in two samples. Copyright © 2011 Elsevier B.V. All rights reserved.
New Optical Constants for Amorphous and Crystalline H2O-ice
NASA Technical Reports Server (NTRS)
Mastrapa, Rachel; Bernstein, Max; Sandford, Scott
2006-01-01
We have used the infrared spectra of laboratory ices to calculate the real and imaginary indices of refraction for amorphous and crystalline H2O-ice. We create H2O-ice samples in vacuum (approx. 10(exp ^-8)Torr). We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows and then collect transmission spectra of the samples in the wavelength range 1.25-22 micrometers. Using the ice thickness and transmission spectrum we calculate the imaginary part of the index of refraction. A Kramers-Kronig calculation is then used to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can be used to create model spectra for comparison to spectra from Solar System objects. We will summarize the differences between the amorphous and crystalline H2O-ice spectra. These include weakening of features and shifting of features to shorter wavelength in amorphous H,O-ice spectra. We will also discuss methods of using band area ratios to quickly estimate the fraction of amorphous to crystalline H2O-ice. We acknowledge financial support from the NASA Origins of the Solar System Program, the NASA Planetary Geology and Geophysics Program, and the NASA Postdoctoral Program.
Gerace, E; Salomone, A; Abbadessa, G; Racca, S; Vincenti, M
2012-02-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid-liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration.
Gerace, E.; Salomone, A.; Abbadessa, G.; Racca, S.; Vincenti, M.
2011-01-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid–liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration. PMID:29403714
Pérez-Méndez, A; Chandler, J C; Bisha, B; Goodridge, L D
2014-08-01
Enteric viral contaminants in water represent a public health concern, thus methods for detecting these viruses or their indicator microorganisms are needed. Because enteric viruses and their viral indicators are often found at low concentrations in water, their detection requires upfront concentration methods. In this study, a strong basic anion exchange resin was evaluated as an adsorbent material for the concentration of F-RNA coliphages (MS2, Qβ, GA, and HB-P22). These coliphages are recognized as enteric virus surrogates and fecal indicator organisms. Following adsorption of the coliphages from 50ml water samples, direct RNA isolation and real time RT-PCR detection were performed. In water samples containing 10(5)pfu/ml of the F-RNA coliphages, the anion exchange resin (IRA-900) adsorbed over 96.7% of the coliphages present, improving real time RT-PCR detection by 5-7 cycles compared to direct testing. F-RNA coliphage RNA recovery using the integrated method ranged from 12.6% to 77.1%. Resin-based concentration of samples with low levels of the F-RNA coliphages allowed for 10(0)pfu/ml (MS2 and Qβ) and 10(-1)pfu/ml (GA and HB-P22) to be detected. The resin-based method offers considerable advantages in cost, speed, simplicity and field adaptability. Copyright © 2014 Elsevier B.V. All rights reserved.
Wood, Susanna A; Zaiko, Anastasija; Richter, Ingrid; Inglis, Graeme J; Pochon, Xavier
2017-07-01
The Mediterranean fanworm, Sabella spallanzanii Gmelin 1791, was first detected in the Southern Hemisphere in the 1990s and is now abundant in many parts of southern Australia and in several locations around northern New Zealand. Once established, it can proliferate rapidly, reaching high densities with potential ecological and economic impacts. Early detection of new S. spallanzanii incursions is important to prevent its spread, guide eradication or control efforts and to increase knowledge on the species' dispersal pathways. In this study, we developed a TaqMan probe real-time polymerase chain reaction assay targeting a region of the mitochondrial cytochrome oxidase I gene. The assay was validated in silico and in vitro using DNA from New Zealand and Australian Sabellidae with no cross-reactivity detected. The assay has a linear range of detection over seven orders of magnitude with a limit of detection reached at 12.4 × 10 -4 ng/μL of DNA. We analysed 145 environmental (water, sediment and biofouling) samples and obtained positive detections only from spiked samples and those collected at a port where S. spallanzanii is known to be established. This assay has the potential to enhance current morphological and molecular-based methods, through its ability to rapidly and accurately identify S. spallanzanii in environmental samples.
Sereshti, Hassan; Heravi, Yeganeh Entezari; Samadi, Soheila
2012-08-15
Ultrasonic-assisted emulsification microextraction (USAEME) combined with inductively coupled plasma-optical emission spectrometry (ICP-OES) was used for preconcentration and determination of aluminum, bismuth, cadmium, cobalt, copper, iron, gallium, indium, nickel, lead, thallium and zinc in real water samples. Ammonium pyrrolidine dithiocarbamate (APDC) and carbon tetrachloride (CCl(4)) were used as the chelating agent and extraction solvent, respectively. The effective parameters (factors) of the extraction process such as volume of extraction solvent, pH, sonication time, and concentration of chelating agent were optimized by a small central composite design (CCD). The optimum conditions were found to be 98 μL for extraction solvent, 1476 mg L(-1) for chelating agent, 3.8 for pH and 9 min for sonication time. Under the optimal conditions, the limits of detection (LODs) for Al, Bi, Cd, Co, Cu, Fe, Ga, In, Ni, Pb, Tl and Zn were 0.13, 0.48, 0.19, 0.28, 0.29, 0.27, 0.27, 0.38, 0.44, 0.47, 0.52 and 0.17 μg L(-1), respectively. The linear dynamic range (LDR) was 1-1000 μ gL(-1) with determination coefficients of 0.991-0.998. Relative standard deviations (RSDs, C=200 μg L(-1), n=6) were between 1.87%-5.65%. The proposed method was successfully applied to the extraction and determination of heavy metals in real water samples and the satisfactory relative recoveries (90.3%-105.5%) were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.
Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi
2011-01-01
In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.
Perrino, Cinzia; Marcovecchio, Francesca
2016-02-01
Primary Biologic Atmospheric Particles (PBAPs) constitute an interesting and poorly investigated component of the atmospheric aerosol. We have developed and validated a method for evaluating the contribution of overall PBAPs to the mass concentration of atmospheric particulate matter (PM). The method is based on PM sampling on polycarbonate filters, staining of the collected particles with propidium iodide, observation at epifluorescence microscope and calculation of the bioaerosol mass using a digital image analysis software. The method has been also adapted to the observation and quantification of size-segregated aerosol samples collected by multi-stage impactors. Each step of the procedure has been individually validated. The relative repeatability of the method, calculated on 10 pairs of atmospheric PM samples collected side-by-side, was 16%. The method has been applied to real atmospheric samples collected in the vicinity of Rome, Italy. Size distribution measurements revealed that PBAPs was mainly in the coarse fraction of PM, with maxima in the range 5.6-10 μm. 24-h samples collected during different period of the year have shown that the concentration of bioaerosol was in the range 0.18-5.3 μg m(-3) (N=20), with a contribution to the organic matter in PM10 in the range 0.5-31% and to the total mass concentration of PM10 in the range 0.3-18%. The possibility to determine the concentration of total PBAPs in PM opens up interesting perspectives in terms of studying the health effects of these components and of increasing our knowledge about the composition of the organic fraction of the atmospheric aerosol. Copyright © 2015 Elsevier Ltd. All rights reserved.
Luo, Qian; Chen, Xichao; Wei, Zi; Xu, Xiong; Wang, Donghong; Wang, Zijian
2014-10-24
When iodide and natural organic matter are present in raw water, the formation of iodo-trihalomethanes (Iodo-THMs), haloacetonitriles (HANs), and halonitromethanes (HNMs) pose a potential health risk because they have been reported to be more toxic than their brominated or chlorinated analogs. In the work, simultaneous analysis of Iodo-THMs, HANs, and HNMs in drinking water samples in a single cleanup and chromatographic analysis was proposed. The DVB/CAR/PDMS fiber was found to be the most suitable for all target compounds, although 75μm CAR/PDMS was better for chlorinated HANs and 65μm PDMS/DVB for brominated HNMs. After optimization of the SPME parameters (DVB/CAR/PDMS fiber, extraction time of 30min at 40°C, addition of 40% w/v of salt, (NH4)2SO4 as a quenching agent, and desorption time of 3min at 170°C), detection limits ranged from 1 to 50ng/L for different analogs, with a linear range of at least two orders of magnitude. Good recoveries (78.6-104.7%) were obtained for spiked samples of a wide range of treated drinking waters, demonstrating that the method is applicable for analysis of real drinking water samples. Matrix effects were negligible for the treated water samples with total organic carbon concentration of less than 2.9mg/L. An effective survey conducted by two drinking water treatment plants showed the highest proportion of Iodo-THMs, HANs, and HNMs occurred in treated water, and concentrations of 13 detected compounds ranged between the ng/L and the μg/L levels. Copyright © 2014 Elsevier B.V. All rights reserved.
Holzhauser, Thomas; Kleiner, Kornelia; Janise, Annabella; Röder, Martin
2014-11-15
A novel method to quantify species or DNA on the basis of a competitive quantitative real-time polymerase chain reaction (cqPCR) was developed. Potentially allergenic peanut in food served as one example. Based on an internal competitive DNA sequence for normalisation of DNA extraction and amplification, the cqPCR was threshold-calibrated against 100mg/kg incurred peanut in milk chocolate. No external standards were necessary. The competitive molecule successfully served as calibrator for quantification, matrix normalisation, and inhibition control. Although designed for verification of a virtual threshold of 100mg/kg, the method allowed quantification of 10-1,000 mg/kg peanut incurred in various food matrices and without further matrix adaption: On the basis of four PCR replicates per sample, mean recovery of 10-1,000 mg/kg peanut in chocolate, vanilla ice cream, cookie dough, cookie, and muesli was 87% (range: 39-147%) in comparison to 199% (range: 114-237%) by three commercial ELISA kits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Allender, Matthew C; Bunick, David; Dzhaman, Elena; Burrus, Lucienne; Maddox, Carol
2015-03-01
Fungal pathogens threatening the conservation of wildlife are becoming increasingly common. Since 2008, free-ranging snakes across North America have been experiencing a marked increase in the prevalence of snake fungal disease associated with Ophidiomyces ophiodiicola. Diagnosis has historically relied on histology, microbiology, and conventional polymerase chain reaction (PCR). More sensitive methods are needed to adequately characterize the epidemiology. The current study describes the development of a real-time PCR (qPCR) assay for detecting a segment of the internal transcribed spacer 1 region between the 18S and 5.8S ribosomal RNA gene. The assay was able to detect as few as 1.05 × 10(1) gene copies per reaction. An additional 4 positive cases were detected when comparing a conventional PCR (n = 3) and the qPCR (n = 7) when used on swab samples from 47 eastern massasauga rattlesnakes. The newly developed assay is a sensitive and specific tool for surveillance and monitoring in the conservation of free-ranging snakes. © 2015 The Author(s).
Concurrent in situ ion irradiation transmission electron microscope
Hattar, K.; Bufford, D. C.; Buller, D. L.
2014-08-29
An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.
First evidence of hemoplasma infection in free-ranging Namibian cheetahs (Acinonyx jubatus).
Krengel, Annika; Meli, Marina L; Cattori, Valentino; Wachter, Bettina; Willi, Barbara; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Lutz, Hans; Hofmann-Lehmann, Regina
2013-03-23
Infections with feline hemotropic mycoplasmas (hemoplasmas) have been documented in domestic cats and free-ranging feline species with high prevalences in Iberian lynxes (Lynx pardinus), Eurasian lynxes (Lynx lynx), European wildcats (Felis silvestris silvestris), African lions (Panthera leo) in Tanzania and domestic cats in South Africa. The prevalence of hemoplasmas has not yet been investigated in free-ranging felids in southern Africa. In this study we screened 73 blood samples from 61 cheetahs in central Namibia for the presence of hemoplasmas using quantitative real-time PCR. One of the cheetahs tested PCR-positive. Phylogenetic analysis based on partial sequencing of the 16S rRNA and RNAse P genes revealed that the isolate belongs to the Mycoplasma haemofelis/haemocanis group. This is the first molecular evidence of a hemoplasma infection in a free-ranging cheetah. Copyright © 2012 Elsevier B.V. All rights reserved.
Velasco, Valeria; Sherwood, Julie S.; Rojas-García, Pedro P.; Logue, Catherine M.
2014-01-01
The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method. PMID:24849624
Velasco, Valeria; Sherwood, Julie S; Rojas-García, Pedro P; Logue, Catherine M
2014-01-01
The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68-0.88 (from substantial to almost perfect agreement) and 0.29-0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0-0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method.
Gates, Michelle; Gerhold, Richard W; Wilkes, Rebecca P; Gulsby, William D; Maestas, Lauren; Rosypal, Alexa; Miller, Karl V; Miller, Debra L
2014-10-01
We examined 31 free-ranging coyotes (Canis latrans) from central Georgia, USA, for select parasites and viral agents. Sixteen coyotes had adult heartworms (Dirofilaria immitis). Serum samples from 27 animals revealed antibodies against canine parvovirus (100%), canine distemper virus (48%), canine adenovirus (37%), and Trypanosoma cruzi (7%); none were detected against Leishmania spp. Twenty-two of 24 (92%) coyotes were positive for Toxoplasma gondii. Real-time PCR of feces revealed 32% of coyotes were shedding canine parvovirus, and sequencing revealed type 2b and 2c. Because coyotes could be a spillover host of domestic dog (Canis lupus familiaris) pathogens, studies of the transmission of pathogens between coyotes and domestic dogs are warranted.
NASA Astrophysics Data System (ADS)
Jiang, Yicheng; Cheng, Ping; Ou, Yangkui
2001-09-01
A new method for target classification of high-range resolution radar is proposed. It tries to use neural learning to obtain invariant subclass features of training range profiles. A modified Euclidean metric based on the Box-Cox transformation technique is investigated for Nearest Neighbor target classification improvement. The classification experiments using real radar data of three different aircraft have demonstrated that classification error can reduce 8% if this method proposed in this paper is chosen instead of the conventional method. The results of this paper have shown that by choosing an optimized metric, it is indeed possible to reduce the classification error without increasing the number of samples.
Insights from two industrial hygiene pilot e-cigarette passive vaping studies.
Maloney, John C; Thompson, Michael K; Oldham, Michael J; Stiff, Charles L; Lilly, Patrick D; Patskan, George J; Shafer, Kenneth H; Sarkar, Mohamadi A
2016-01-01
While several reports have been published using research methods of estimating exposure risk to e-cigarette vapors in nonusers, only two have directly measured indoor air concentrations from vaping using validated industrial hygiene sampling methodology. Our first study was designed to measure indoor air concentrations of nicotine, menthol, propylene glycol, glycerol, and total particulates during the use of multiple e-cigarettes in a well-characterized room over a period of time. Our second study was a repeat of the first study, and it also evaluated levels of formaldehyde. Measurements were collected using active sampling, near real-time and direct measurement techniques. Air sampling incorporated industrial hygiene sampling methodology using analytical methods established by the National Institute of Occupational Safety and Health and the Occupational Safety and Health Administration. Active samples were collected over a 12-hr period, for 4 days. Background measurements were taken in the same room the day before and the day after vaping. Panelists (n = 185 Study 1; n = 145 Study 2) used menthol and non-menthol MarkTen prototype e-cigarettes. Vaping sessions (six, 1-hr) included 3 prototypes, with total number of puffs ranging from 36-216 per session. Results of the active samples were below the limit of quantitation of the analytical methods. Near real-time data were below the lowest concentration on the established calibration curves. Data from this study indicate that the majority of chemical constituents sampled were below quantifiable levels. Formaldehyde was detected at consistent levels during all sampling periods. These two studies found that indoor vaping of MarkTen prototype e-cigarette does not produce chemical constituents at quantifiable levels or background levels using standard industrial hygiene collection techniques and analytical methods.
Marques, Sara S.; Magalhães, Luís M.; Tóth, Ildikó V.; Segundo, Marcela A.
2014-01-01
Total antioxidant capacity assays are recognized as instrumental to establish antioxidant status of biological samples, however the varying experimental conditions result in conclusions that may not be transposable to other settings. After selection of the complexing agent, reagent addition order, buffer type and concentration, copper reducing assays were adapted to a high-throughput scheme and validated using model biological antioxidant compounds of ascorbic acid, Trolox (a soluble analogue of vitamin E), uric acid and glutathione. A critical comparison was made based on real samples including NIST-909c human serum certified sample, and five study samples. The validated method provided linear range up to 100 µM Trolox, (limit of detection 2.3 µM; limit of quantification 7.7 µM) with recovery results above 85% and precision <5%. The validated developed method with an increased sensitivity is a sound choice for assessment of TAC in serum samples. PMID:24968275
Microvolume Protein Concentration Determination using the NanoDrop 2000c Spectrophotometer
Desjardins, Philippe; Hansen, Joel B.; Allen, Michael
2009-01-01
Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 μL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay. PMID:19890248
Highly efficient removal of pathogenic bacteria with magnetic graphene composite.
Zhan, Sihui; Zhu, Dandan; Ma, Shuanglong; Yu, Wenchao; Jia, Yanan; Li, Yi; Yu, Hongbing; Shen, Zhiqiang
2015-02-25
Magnetic Fe3O4/graphene composite (abbreviated as G-Fe3O4) was synthesized successfully by solvothermal method to effectively remove both bacteriophage and bacteria in water, which was tested by HRTEM, XRD, BET, XPS, FTIR, CV, magnetic property and zeta-potential measurements. Based on the result of HRTEM, the single-sheet structure of graphene oxide and the monodisperse Fe3O4 nanoparticles on the surface of graphene can be observed obviously. The G-Fe3O4 composite were attractive for removing a wide range of pathogens including not only bacteriophage ms2, but also various bacteria such as S. aureus, E. coli, Salmonella, E. Faecium, E. faecalis, and Shigella. The removal efficiency of E. coli for G-Fe3O4 composite can achieve 93.09%, whereas it is only 54.97% with pure Fe3O4 nanoparticles. Moreover, a detailed verification test of real water samples was conducted and the removal efficiency of bacteria in real water samples with G-Fe3O4 composite can also reach 94.8%.
Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Ji, Wen-Tsai; Huang, Po-Hsiang; Hsueh, Chih-Jen; Chiang, Chuen-Sheue; Huang, Shih-Wei; Huang, Yu-Li
2014-08-15
In this study, TaqMan fluorescent quantitative real-time PCR was performed to quantify Legionella species in reservoirs. Water samples were collected from 19 main reservoirs in Taiwan, and 12 (63.2%) were found to contain Legionella spp. The identified species included uncultured Legionella spp., L. pneumophila, L. jordanis, and L. drancourtii. The concentrations of Legionella spp. and L. pneumophila in the water samples were in the range of 1.8×10(2)-2.6×10(3) and 1.6×10(2)-2.4×10(2) cells/L, respectively. The presence and absence of Legionella spp. in the reservoir differed significantly in pH values. These results highlight the importance that L. pneumophila, L. jordanis, and L. drancourtii are potential pathogens in the reservoirs. The presence of L. pneumophila in reservoirs may be a potential public health concern that must be further examined. Copyright © 2014 Elsevier B.V. All rights reserved.
Radiometric errors in complex Fourier transform spectrometry.
Sromovsky, Lawrence A
2003-04-01
A complex spectrum arises from the Fourier transform of an asymmetric interferogram. A rigorous derivation shows that the rms noise in the real part of that spectrum is indeed given by the commonly used relation sigmaR = 2X x NEP/(etaAomega square root(tauN)), where NEP is the delay-independent and uncorrelated detector noise-equivalent power per unit bandwidth, +/- X is the delay range measured with N samples averaging for a time tau per sample, eta is the system optical efficiency, and Aomega is the system throughput. A real spectrum produced by complex calibration with two complex reference spectra [Appl. Opt. 27, 3210 (1988)] has a variance sigmaL2 = sigmaR2 + sigma(c)2 (Lh - Ls)2/(Lh - Lc)2 + sigma(h)2 (Ls - Lc)2/(Lh - Lc)2, valid for sigmaR, sigma(c), and sigma(h) small compared with Lh - Lc, where Ls, Lh, and Lc are scene, hot reference, and cold reference spectra, respectively, and sigma(c) and sigma(h) are the respective combined uncertainties in knowledge and measurement of the hot and cold reference spectra.
Torkashvand, M; Gholivand, M B; Taherkhani, F
2015-10-01
A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Lungu, Bwalya; Waltman, W Douglas; Berghaus, Roy D; Hofacre, Charles L
2012-04-01
Conventional culture methods have traditionally been considered the "gold standard" for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis-specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis-specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies to improve food safety.
Keshet, U; Alon, T; Fialkov, A B; Amirav, A
2017-07-01
An Open Probe inlet was combined with a low thermal mass ultra-fast gas chromatograph (GC), in-vacuum electron ionization ion source and a mass spectrometer (MS) of GC-MS for obtaining real-time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra-fast GC provides ~30-s separation, while if no separation is required, it can act as a transfer line with 2 to 3-s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC-MS provides real-time analysis combined with GC separation and library identification, and it uses the low-cost MS of GC-MS. The operation of Open Probe fast GC-MS is demonstrated in the 30-s separation and 50-s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1-min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is <1 fg, but the concentration is too high and the software noise calculation is untrustworthy. The broad range of compounds amenable for analysis is demonstrated in the analysis of reserpine. The possible use with alternate standard GC-MS and Open Probe fast GC-MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10-s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
2011-01-01
Background Pneumocystis pneumonia (PCP) is a major cause of hospitalization and mortality in HIV-infected African children. Microbiologic diagnosis relies predominantly on silver or immunofluorescent staining of a lower respiratory tract (LRT) specimens which are difficult to obtain in children. Diagnosis on upper respiratory tract (URT) specimens using PCR has been reported useful in adults, but data in children are limited. The main objectives of the study was (1) to compare the diagnostic yield of PCR with immunofluorescence (IF) and (2) to investigate the usefulness of upper compared to lower respiratory tract samples for diagnosing PCP in children. Methods Children hospitalised at an academic hospital with suspected PCP were prospectively enrolled. An upper respiratory sample (nasopharyngeal aspirate, NPA) and a lower respiratory sample (induced sputum, IS or bronchoalveolar lavage, BAL) were submitted for real-time PCR and direct IF for the detection of Pneumocystis jirovecii. A control group of children with viral lower respiratory tract infections were investigated with PCR for PCP. Results 202 children (median age 3.3 [inter-quartile range, IQR 2.2 - 4.6] months) were enrolled. The overall detection rate by PCR was higher than by IF [180/349 (52%) vs. 26/349 (7%) respectively; p < 0.0001]. PCR detected more infections compared to IF in lower respiratory tract samples [93/166 (56%) vs. 22/166 (13%); p < 0.0001] and in NPAs [87/183 (48%) vs. 4/183 (2%); p < 0.0001]. Detection rates by PCR on upper (87/183; 48%) compared with lower respiratory tract samples (93/166; 56%) were similar (OR, 0.71; 95% CI, 0.46 - 1.11). Only 2/30 (6.6%) controls were PCR positive. Conclusion Real-time PCR is more sensitive than IF for the detection of P. jirovecii in children with PCP. NPA samples may be used for diagnostic purposes when PCR is utilised. Wider implementation of PCR on NPA samples is warranted for diagnosing PCP in children. PMID:22123076
Muradrasoli, Shaman; Mohamed, Nahla; Hornyák, Akos; Fohlman, Jan; Olsen, Björn; Belák, Sándor; Blomberg, Jonas
2009-08-01
Coronaviruses (CoVs) can cause trivial or fatal disease in humans and in animals. Detection methods for a wide range of CoVs are needed, to understand viral evolution, host range, transmission and maintenance in reservoirs. A new concept, "Multiprobe QPCR", which uses a balanced mixture of competing discrete non- or moderately degenerated nuclease degradable (TaqMan) probes was employed. It provides a broadly targeted and rational single tube real-time reverse transcription PCR ("NQPCR") for the generic detection and discovery of CoV. Degenerate primers, previously published, and the new probes, were from a conserved stretch of open reading frame 1b, encoding the replicase. This multiprobe design reduced the degree of probe degeneration, which otherwise decreases the sensitivity, and allowed a preliminary classification of the amplified sequence directly from the QPCR trace. The split probe strategy allowed detection of down to 10 viral nucleic acid equivalents of CoV from all known CoV groups. Evaluation was with reference CoV strains, synthetic targets, human respiratory samples and avian fecal samples. Infectious-Bronchitis-Virus (IBV)-related variants were found in 7 of 35 sample pools, from 100 wild mallards (Anas platyrhynchos). Ducks may spread and harbour CoVs. NQPCR can detect a wide range of CoVs, as illustrated for humans and ducks.
Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila
2014-09-01
A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A simple device for long-term radar cross section recordings.
Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni
2009-05-01
A sample and hold circuit with settable delay can be used for recording of radar echo amplitude variations having time scales up to 100 s at the selected range bin in systems utilizing short rf pulses. The design is based on two integrated circuits and gives 1% uncertainty for 70 ns pulses. The key benefit is a real-time display of lengthy amplitude variations because the sample rate is defined by the radar pulse repetition frequency. Additionally we get a reduction in file size at least by the inverse of the radar's duty cycle. Examples of 10 and 100 s recordings with a Ka-band short pulse radar are described.
Tataranni, Mariella; Lardicci, Claudio
2010-01-01
The aim of this study was to analyse the variability of four different benthic biotic indices (AMBI, BENTIX, H', M-AMBI) in two marine coastal areas of the North-Western Mediterranean Sea. In each coastal area, 36 replicates were randomly selected according to a hierarchical sampling design, which allowed estimating the variance components of the indices associated with four different spatial scales (ranging from metres to kilometres). All the analyses were performed at two different sampling periods in order to evaluate if the observed trends were consistent over the time. The variance components of the four indices revealed complex trends and different patterns in the two sampling periods. These results highlighted that independently from the employed index, a rigorous and appropriate sampling design taking into account different scales should always be used in order to avoid erroneous classifications and to develop effective monitoring programs.
Detection of West Nile virus lineage 2 in the urine of acute human infections.
Papa, Anna; Testa, Theodolinda; Papadopoulou, Elpida
2014-12-01
West Nile virus (WNV) lineage 2 emerged in Greece in 2010 and since then outbreaks in humans have been reported for four consecutive years. Laboratory diagnosis is based mainly on serology. A real-time RT-PCR was applied on urine samples obtained from 35 patients with acute WNV infection. WNV RNA was detected in 40% of the samples with cycle threshold (CT) values ranging from 26.95 to 39.89 (mean 33.11). WNV was isolated from two of four urine samples with low CT (<30). Viral load was not associated with patients' age, sex, day of illness, presence of WNV antibodies, and neurological symptoms. However, it seems that sample shipment and storage conditions are very important for virus detection and isolation. The usefulness of the WNV RNA detection in urine as a diagnostic tool of acute WNV infections is discussed. © 2014 Wiley Periodicals, Inc.
Rodil, Rosario; Schellin, Manuela; Popp, Peter
2007-09-07
Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.
Yu, Jianxin; Wu, Caiying; Xing, Jun
2004-05-21
Allyloxy bisbenzo 16-crown-5 trimethoxysilane was first used as precursor to prepare the sol-gel-derived bisbenzo crown ether/hydroxyl-terminated silicone oil (OH-TSO) SPME coating. The coating procedure involving sol solution composition and conditioning process was presented. Compared with commercial SPME stationary phases, the new coatings showed higher extraction efficiency and therefore could provide higher sensitivity for organphosphorous pesticides (OPs). Limits of detection (LODs) were in the range of 0.003-1.0 ng/g for these OPs in food samples (honey, juice, orange and pakchoi). The optimal extraction conditions of the new coatings to OPs in these samples were investigated by adjusting extraction time, salt addition, extraction temperature, and dilution ratios of samples with distilled water by using SPME coupled with gas chromatography (GC)-flame photometric detection (FPD). The method was applied to determine the concentrations of OPs in real samples.
Sabrina, Rabehi; Mossadak, Hamdi Taha; Bakir, Mamache; Asma, Meghezzi; Khaoula, Boushaba
2018-01-01
Aim: The aim of this study was to detect Brucella spp. DNA in milk samples collected from seronegative cows using the real-time polymerase chain reaction (PCR) assay for diagnosis of brucellosis in seronegative dairy cows to prevent transmission of disease to humans and to reduce economic losses in animal production. Materials and Methods: In this study, 65 milk samples were investigated for the detection of Brucella spp. The detection of the IS711 gene in all samples was done by real-time PCR assay by comparative cycle threshold method. Results: The results show that of the 65 DNA samples tested, 2 (3.08%) were positive for Brucella infection. The mean cyclic threshold values of IS711 real-time PCR test were 37.97 and 40.48, indicating a positive reaction. Conclusion: The results of the present study indicated that the real-time PCR appears to offer several advantages over serological tests. For this reason, the real-time PCR should be validated on representative numbers of Brucella-infected and free samples before being implemented in routine diagnosis in human and animal brucellosis for controlling this disease. PMID:29657430
López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio
2010-04-01
The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.
Aitichou, Mohamed; Saleh, Sharron; Kyusung, Park; Huggins, John; O'Guinn, Monica; Jahrling, Peter; Ibrahim, Sofi
2008-11-01
A real-time, multiplexed polymerase chain reaction (PCR) assay based on dried PCR reagents was developed. Only variola virus could be specifically detected by a FAM (6-carboxyfluorescein)-labeled probe while camelpox, cowpox, monkeypox and vaccinia viruses could be detected by a TET (6-carboxytetramethylrhodamine)-labeled probe in a single PCR reaction. Approximately 25 copies of cloned variola virus DNA and 50 copies of genomic orthopoxviruses DNA could be detected with high reproducibility. The assay exhibited a dynamic range of seven orders of magnitude with a correlation coefficient value greater than 0.97. The sensitivity and specificity of the assay, as determined from 100 samples that contained nucleic acids from a multitude of bacterial and viral species were 96% and 98%, respectively. The limit of detection, sensitivity and specificity of the assay were comparable to standard real-time PCR assays with wet reagents. Employing a multiplexed format in this assay allows simultaneous discrimination of the variola virus from other closely related orthopoxviruses. Furthermore, the implementation of dried reagents in real-time PCR assays is an important step towards simplifying such assays and allowing their use in areas where cold storage is not easily accessible.
Stachelska, Milena A
2017-12-04
The aim of this paper was to detect Lactobacillus delbrueckii and Streptococcus thermophilus using real-time quantitative PCR assay in 7-day ripening cheese produced from unpasteurised milk. Real-time quantitative PCR assays were designed to identify and enumerate the chosen species of lactic acid bacteria (LAB) in ripened cheese. The results of molecular quantification and classic bacterial enumeration showed a high level of similarity proving that DNA extraction was carried out in a proper way and that genomic DNA solutions were free of PCR inhibitors. These methods revealed the presence of L. delbrueckii and S. thermophilus. The real-time PCR enabled quantification with a detection of 101-103 CFU/g of product. qPCR-standard curves were linear over seven log units down to 101 copies per reaction; efficiencies ranged from 77.9% to 93.6%. Cheese samples were analysed with plate count method and qPCR in parallel. Compared with the classic plate count method, the newly developed qPCR method provided faster and species specific identification of two dairy LAB and yielded comparable quantitative results.
Yang, Guang-Xin; Zhuang, Hui-Sheng; Chen, Han-Yu; Ping, Xian-Yin; Bu, Dan
2014-02-01
A functionalized gold-nanoparticle bio-barcode assay, based on real-time immuno-PCR (IPCR), was designed for the determination of 3,4,3',4'-tetrachlorobiphenyl (PCB77). 15 nm gold nanoparticles were synthesized, and modified with thiol-capped DNA and goat anti-rabbit IgG. The nanoparticle probes were used to replace antibody-DNA conjugate in the IPCR, and were fixed on the PCR tube wall via the immune reaction. Real-time PCR was performed to quantify the DNA signal directly. Under optimized conditions, the new method was used to detect PCB77 with a linearity range from 5 pg L(-1) to 10 ng L(-1), and the limit of detection (LOD) was 1.72 pg L(-1). Real samples of Larimichthys polyactis, collected from the East China Sea, were analyzed. Recovery was from 82 % to 112 %, and the coefficient of variation (CV) was acceptable. The results were compared with GC-ECD, revealing that the method would be acceptable for providing rapid, semi-quantitative, and reliable test results for making environmental decisions.
NASA Astrophysics Data System (ADS)
Shupp, Aaron M.; Rodier, Dan; Rowley, Steven
2007-03-01
Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.
Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien
2012-11-19
A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Tiejun; Guo, Yuanming; Hu, Hongmei; Zhang, Xiaoning; Jin, Yanjian; Zhang, Xiaojun; Zhang, Yurong
2016-01-01
A simple, efficient, solvent-free, and commercial readily available approach for determination of five volatile chlorinated hydrocarbons in water samples using the static headspace sampling and gas chromatography with electron capture detection has been described. The proposed static headspace sampling method was initially optimized and the optimum experimental conditions found were 10 mL water sample containing 20% w/v sodium chloride placed in a 20 mL vial and stirred at 50ºC for 20 min. The linearity of the method was in the range of 1.2-240 μg/L for dichloromethane, 0.2-40 μg/L for trichloromethane, 0.005-1 μg/L for perchloromethane, 0.025-5 μg/L for trichloroethylene, and 0.01-2 μg/L for perchloroethylene, with coefficients of determination ranging between 0.9979 and 0.9990. The limits of detection were in the low μg/L level, ranging between 0.001 and 0.3 μg/L. The relative recoveries of spiked five volatile chlorinated hydrocarbons with external calibration method at different concentration levels in pure, tap, sea water of Jiaojiang Estuary, and sea water of waters of Xiaomendao were in the range of 91-116, 96-105, 86-112, and 80-111%, respectively, and with relative standard deviations of 1.9-3.6, 2.3-3.5, 1.5-2.7, and 2.3-3.7% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid-liquid extraction on the real water samples (i.e., pure, tap, and sea water, etc.) and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of volatile chlorinated hydrocarbons in different water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M
2004-03-01
A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.
Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal
2012-01-01
The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.
Neubauer, Nicole; Seipenbusch, Martin; Kasper, Gerhard
2013-08-01
A new type of detector which we call the Catalytic Activity Aerosol Monitor (CAAM) was investigated towards its capability to detect traces of commonly used industrial catalysts in ambient air in quasi real time. Its metric is defined as the catalytic activity concentration (CAC) expressed per volume of sampled workplace air. We thus propose a new metric which expresses the presence of nanoparticles in terms of their functionality - in this case a functionality of potential relevance for damaging effects - rather than their number, surface, or mass concentration in workplace air. The CAAM samples a few micrograms of known or anticipated airborne catalyst material onto a filter first and then initiates a chemical reaction which is specific to that catalyst. The concentration of specific gases is recorded using an IR sensor, thereby giving the desired catalytic activity. Due to a miniaturization effort, the laboratory prototype is compact and portable. Sensitivity and linearity of the CAAM response were investigated with catalytically active palladium and nickel nano-aerosols of known mass concentration and precisely adjustable primary particle size in the range of 3-30 nm. With the miniature IR sensor, the smallest detectable particle mass was found to be in the range of a few micrograms, giving estimated sampling times on the order of minutes for workplace aerosol concentrations typically reported in the literature. Tests were also performed in the presence of inert background aerosols of SiO2, TiO2, and Al2O3. It was found that the active material is detectable via its catalytic activity even when the particles are attached to a non-active background aerosol.
Shewale, Jaiprakash G; Schneida, Elaine; Wilson, Jonathan; Walker, Jerilyn A; Batzer, Mark A; Sinha, Sudhir K
2007-03-01
The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.
Mohr, Peter G; Moody, Nicholas J G; Williams, Lynette M; Hoad, John; Cummins, David M; Davies, Kelly R; StJ Crane, Mark
2015-10-16
Viruses of the genus Megalocytivirus have not been detected in wild populations of fish in Australia but circulate in imported ornamental fish. In 2012, detection of a megalocytivirus in healthy platys Xiphophorus maculatus was reported from a farm in Australia during surveillance testing as part of a research project undertaken at the University of Sydney. Confirmatory testing of the original samples at the AAHL Fish Diseases Laboratory verified the presence of an infectious spleen and kidney necrosis virus (ISKNV)-like virus. Additional sampling at the positive farm confirmed the persistence of the virus in the platys, with 39 of 265 (14.7%) samples testing positive. Comparison of 3 separate gene regions of the virus with those of ISKNV confirmed the detection of a virus indistinguishable from ISKNV. Subsequently, ISKNV was also detected in a range of imported ornamental fish from several countries between 2013 and 2014, by screening with real-time PCR and confirmation by conventional PCR and sequence analysis. Accordingly, the current importation of live ornamental fish acts as a potential perpetual source for the establishment of ISKNV viruses within Australia. The testing of the farmed and imported ornamental fish verified the utility of the probe-based real-time PCR assay for screening of ornamental fish for Megalocytivirus.
He, Xiaoqin; Xi, Cunxian; Tang, Bobin; Wang, Guomin; Chen, Dongdong; Peng, Tao; Mu, Zhaode
2014-01-01
A novel analytical method employing solid-phase extraction (SPE) coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous determination of 30 hormones in anti-ageing functional foods (capsules, powders and tablets). The analytes were extracted with acetic acid-acetonitrile (1-99 v/v), methanol and acetone, respectively. The extract was purified using a combined column, followed by analyte detection with electrospray ionisation in positive- or negative-ion modes. The results indicated that the 30 compounds had good linear correlations in the range of 1-1000 μg kg⁻¹, and the correlation coefficients were above 0.99. The limits of detection (LOD) and limits of quantification (LOQ) were 0.03-2 and 0.1-5 μg kg⁻¹, respectively. The average recovery of 30 compounds at the three spiked levels varied from 74.7% to 124.1%, and the relative standard deviation (RSD) was 2.4-15.0%. This method was applied to the analysis of hormones in 14 real samples of which seven hormones (such as estrone, dienestrol) were detected in four samples, but the remainder of the hormones were not detected. The developed method is sensitive, efficient, reliable and applicable to real samples.
Images reveal that atmospheric particles can undergo liquid–liquid phase separations
You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.
2012-01-01
A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443
Images reveal that atmospheric particles can undergo liquid-liquid phase separations.
You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L; Zhang, Xiaolu; Weber, Rodney J; Shilling, John E; Dabdub, Donald; Martin, Scot T; Bertram, Allan K
2012-08-14
A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).
Rapid, Real-time Methane Detection in Ground Water Using a New Gas-Water Equilibrator Design
NASA Astrophysics Data System (ADS)
Ruybal, C. J.; DiGiulio, D. C.; Wilkin, R. T.; Hargrove, K. D.; McCray, J. E.
2014-12-01
Recent increases in unconventional gas development have been accompanied by public concern for methane contamination in drinking water wells near production areas. Although not a regulated pollutant, methane may be a marker contaminant for others that are less mobile in groundwater and thus may be detected later, or at a location closer to the source. In addition, methane poses an explosion hazard if exsolved concentrations reach 5 - 15% volume in air. Methods for determining dissolved gases, such as methane, have evolved over 60 years. However, the response time of these methods is insufficient to monitor trends in methane concentration in real-time. To enable rapid, real-time monitoring of aqueous methane concentrations during ground water purging, a new gas-water equilibrator (GWE) was designed that increases gas-water mass exchange rates of methane for measurement. Monitoring of concentration trends allows a comparison of temporal trends between sampling events and comparison of baseline conditions with potential post-impact conditions. These trends may be a result of removal of stored casing water, pre-purge ambient borehole flow, formation physical and chemical heterogeneity, or flow outside of well casing due to inadequate seals. Real-time information in the field can help focus an investigation, aid in determining when to collect a sample, save money by limiting costs (e.g. analytical, sample transport and storage), and provide an immediate assessment of local methane concentrations. Four domestic water wells, one municipal water well, and one agricultural water well were sampled for traditional laboratory analysis and compared to the field GWE results. Aqueous concentrations measured on the GWE ranged from non-detect to 1,470 μg/L methane. Some trends in aqueous methane concentrations measured on the GWE were observed during purging. Applying a paired t-test comparing the new GWE method and traditional laboratory analysis yielded a p-value 0.383, suggesting no significant difference between the two methods for the current study. Additional field and laboratory experimentation are necessary to justify use beyond screening. However, early GWE use suggests promising results and applications.
Comparison of Abbott and Da-an real-time PCR for quantitating serum HBV DNA.
Qiu, Ning; Li, Rui; Yu, Jian-Guo; Yang, Wen; Zhang, Wei; An, Yong; Li, Tong; Liu, Xue-En; Zhuang, Hui
2014-09-07
To compare the performance of the Da-an real-time hepatitis B virus (HBV) DNA assay and Abbott RealTime HBV assay. HBV DNA standards as well as a total of 180 clinical serum samples from patients with chronic hepatitis B were measured using the Abbott and Da-an real-time polymerase chain reaction (PCR) assays. Correlation and Bland-Altman plot analysis was used to compare the performance of the Abbott and Da-an assays. The HBV DNA levels were logarithmically transformed for analysis. All statistical analyses were performed using SPSS for Windows version 18.0. The correlation between the two assays was analyzed by Pearson's correlation and linear regression. The Bland-Altman plots were used for the analysis of agreement between the two assays. A P value of < 0.05 was considered statistically significant. The HBV DNA values measured by the Abbott or Da-an assay were significantly correlated with the expected values of HBV DNA standards (r = 0.999, for Abbott; r = 0.987, for Da-an, P < 0.001). A Bland-Altman plot showed good agreement between these two assays in detecting HBV DNA standards. Among the 180 clinical serum samples, 126 were quantifiable by both assays. Fifty-two samples were detectable by the Abbott assay but below the detection limit of the Da-an assay. Moreover, HBV DNA levels measured by the Abbott assay were significantly higher than those of the Da-an assay (6.23 ± 1.76 log IU/mL vs 5.46 ± 1.55 log IU/mL, P < 0.001). A positive correlation was observed between HBV DNA concentrations determined by the two assays in 126 paired samples (r = 0.648, P < 0.001). One hundred and fifteen of 126 (91.3%) specimens tested with both assays were within mean difference ± 1.96 SD of HBV DNA levels. The Da-an assay presented lower sensitivity and a narrower linear range as compared to the Abbott assay, suggesting the need to be improved.
The X-33 range Operations Control Center
NASA Technical Reports Server (NTRS)
Shy, Karla S.; Norman, Cynthia L.
1998-01-01
This paper describes the capabilities and features of the X-33 Range Operations Center at NASA Dryden Flight Research Center. All the unprocessed data will be collected and transmitted over fiber optic lines to the Lockheed Operations Control Center for real-time flight monitoring of the X-33 vehicle. By using the existing capabilities of the Western Aeronautical Test Range, the Range Operations Center will provide the ability to monitor all down-range tracking sites for the Extended Test Range systems. In addition to radar tracking and aircraft telemetry data, the Telemetry and Radar Acquisition and Processing System is being enhanced to acquire vehicle command data, differential Global Positioning System corrections and telemetry receiver signal level status. The Telemetry and Radar Acquisition Processing System provides the flexibility to satisfy all X-33 data processing requirements quickly and efficiently. Additionally, the Telemetry and Radar Acquisition Processing System will run a real-time link margin analysis program. The results of this model will be compared in real-time with actual flight data. The hardware and software concepts presented in this paper describe a method of merging all types of data into a common database for real-time display in the Range Operations Center in support of the X-33 program. All types of data will be processed for real-time analysis and display of the range system status to ensure public safety.
Basheer, Chanbasha
2018-04-01
An efficient on-site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro-solid-phase extraction device placed inside a portable battery-operated pump was used for the on-site extraction of seawater samples. Before on-site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on-site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on-site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high-performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05-20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004-0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid-phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9-95.2%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E; Lista, Adriana G; Fragoso, Wallace D; Pontes, Márcio J C; Araújo, Mário C U; Band, Beatriz S Fernández
2010-12-15
In this study, a novel, simple, and efficient spectrofluorimetric method to determine directly and simultaneously five phenolic compounds (hydroquinone, resorcinol, phenol, m-cresol and p-cresol) in air samples is presented. For this purpose, variable selection by the successive projections algorithm (SPA) is used in order to obtain simple multiple linear regression (MLR) models based on a small subset of wavelengths. For comparison, partial least square (PLS) regression is also employed in full-spectrum. The concentrations of the calibration matrix ranged from 0.02 to 0.2 mg L(-1) for hydroquinone, from 0.05 to 0.6 mg L(-1) for resorcinol, and from 0.05 to 0.4 mg L(-1) for phenol, m-cresol and p-cresol; incidentally, such ranges are in accordance with the Argentinean environmental legislation. To verify the accuracy of the proposed method a recovery study on real air samples of smoking environment was carried out with satisfactory results (94-104%). The advantage of the proposed method is that it requires only spectrofluorimetric measurements of samples and chemometric modeling for simultaneous determination of five phenols. With it, air is simply sampled and no pre-treatment sample is needed (i.e., separation steps and derivatization reagents are avoided) that means a great saving of time. Copyright © 2010 Elsevier B.V. All rights reserved.
Kumar, Jyoti S; Saxena, Divyasha; Parida, Manmohan
2014-01-01
The recent outbreaks of West Nile Virus (WNV) in the Northeastern American continents and other regions of the world have made it essential to develop an efficient protocol for surveillance of WN virus. Nucleic acid based techniques like, RT-PCR have the advantage of sensitivity, specificity and rapidity. A one step single tube Env gene specific real-time RT-PCR was developed for early and reliable clinical diagnosis of WNV infection in clinical samples. The applicability of this assay for clinical diagnosis was validated with 105 suspected acute-phase serum and plasma samples from the recent epidemic of mysterious fever in Tamil Nadu, India in 2009-10. The comparative evaluation revealed the higher sensitivity of real-time RT-PCR assay by picking up 4 additional samples with low copy number of template in comparison to conventional RT-PCR. All the real-time positive samples further confirmed by CDC reported TaqMan real-time RT-PCR and quantitative real-time RT-PCR assays for the simultaneous detection of WNV lineage 1 and 2 strains. The quantitation of the viral load samples was done using a standard curve. These findings demonstrated that the assay has the potential usefulness for clinical diagnosis due to detection and quantification of WNV in acute-phase patient serum samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of non-extracted genital swabs for real-time HSV PCR.
Miari, Victoria F; Wall, Gavin R; Clark, Duncan A
2015-01-01
Nucleic acid extraction of clinical samples is accepted as a key requirement in molecular diagnostics. At Barts Health NHS Trust, swabs taken from patients with clinical suspicion of HSV infection were routinely extracted on the Qiagen MDx BioRobot prior to testing with a real-time triplex PCR for HSV1, HSV2, and VZV. The aim of this study was to adapt an existing HSV1/HSV2/VZV real-time PCR by replacing VZV with phocine herpesvirus 1 (PhHV) as an internal control (IC) and evaluate whether this adapted assay required the nucleic acid extraction step for predominantly genital swabs. First 313 non-extracted and extracted swabs were tested in parallel with the existing triplex HSV1/HSV2/VZV real-time PCR. The second stage involved testing 176 non-extracted swabs using a triplex real-time PCR for HSV1, HSV2, and PhHV and comparing the results with the samples extracted and tested by the original triplex assay. The results correlated well when the existing assay was used, with only three non-extracted samples that would have been reported as negative compared to the extracted sample result (Cq s 33, 39, 35-two samples HSV1, one sample HSV2). In the evaluation using the adapted assay containing the IC, two of 176 samples were discordant, where a HSV negative non-extracted sample result would have been reported differently to the extracted sample result (Cq s 32, 33-both HSV1). This study demonstrated that it is feasible to test non-extracted swabs for HSV in a real-time PCR that includes an IC. J. Med. Virol. 87: 125-129, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun
2014-12-19
In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.'s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different situations.
Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa
2005-01-01
Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.
The pattern of Campylobacter contamination on broiler farms; external and internal sources.
Battersby, T; Whyte, P; Bolton, D J
2016-04-01
The aim of this study was to apply the most sensitive molecular techniques in combination with culture-based methods to characterize broiler farms in terms of the timeline ('appearance' and 'pattern') of Campylobacter contamination prior to and post detection in the birds. Faecal and environmental samples were collected from three broiler farms (two flocks per farm). Real-time PCR was used to test for the presence of Campylobacter. Culture-based methods (enrichment and direct plating) were also applied and isolates were subject to a range of confirmatory tests before speciation (multiplex PCR). All flocks were colonized by Campylobacter before first thin and a similar pattern of Campylobacter contamination was observed; (day -1) a range of external and internal samples real-time PCR positive but culture negative; (day 0) chicks negative; (6-9 days pre-detection in the birds) internal samples (feeders, drinkers, barrier and/or bird weigh) culture positive and (post broiler infection) increasing concentrations of Campylobacter in internal samples but also on the tarmac apron and anteroom. It was concluded that; (i) vertical transmission did not occur; (ii) the environment was a potential source of Campylobacter; (iii) testing areas frequented by all birds (e.g. feeders and drinkers), may offer an opportunity for early Campylobacter detection and (iv) once the broilers are infected with Campylobacter, these bacteria are spread from the birds, through the anteroom to the areas surrounding the broiler house, highlighting the need for improved biosecurity. This study has established the pattern of Campylobacter contamination on broiler farms, identified an early detection opportunity, highlighted the need to better understand the role of viable but nonculturable Campylobacter in the ecology of Campylobacter on broiler farms and demonstrated the need for improved biosecurity to prevent the spread of Campylobacter from within the house to the surrounding environment. © 2016 The Society for Applied Microbiology.
Lang, Qiaolin; Yin, Long; Shi, Jianguo; Li, Liang; Xia, Lin; Liu, Aihua
2014-01-15
A novel electrochemical sequential biosensor was constructed by co-immobilizing glucoamylase (GA) and glucose oxidase (GOD) on the multi-walled carbon nanotubes (MWNTs)-modified glassy carbon electrode (GCE) by chemical crosslinking method, where glutaraldehyde and bovine serum albumin was used as crosslinking and blocking agent, respectively. The proposed biosensor (GA/GOD/MWNTs/GCE) is capable of determining starch without using extra sensors such as Clark-type oxygen sensor or H2O2 sensor. The current linearly decreased with the increasing concentration of starch ranging from 0.005% to 0.7% (w/w) with the limit of detection of 0.003% (w/w) starch. The as-fabricated sequential biosensor can be applicable to the detection of the content of starch in real samples, which are in good accordance with traditional Fehling's titration. Finally, a stable starch/O2 biofuel cell was assembled using the GA/GOD/MWNTs/GCE as bioanode and laccase/MWNTs/GCE as biocathode, which exhibited open circuit voltage of ca. 0.53 V and the maximum power density of 8.15 μW cm(-2) at 0.31 V, comparable with the other glucose/O2 based biofuel cells reported recently. Therefore, the proposed biosensor exhibited attractive features such as good stability in weak acidic buffer, good operational stability, wide linear range and capable of determination of starch in real samples as well as optimal bioanode for the biofuel cell. Copyright © 2013 Elsevier B.V. All rights reserved.
Huerta-Fontela, Maria; Pineda, Oriol; Ventura, Francesc; Galceran, Maria Teresa
2012-06-15
Previous studies have demonstrated high removal rates of amphetamine-type-stimulants (ATSs) through conventional drinking water treatments; however the behaviour of these compounds through disinfection steps and their transformation into disinfection-by-products (DBPs) is still unknown. In this work, for the first time, the reactivity of some ATSs such as amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) with chlorine has been investigated under simulated and real drinking water treatment conditions in order to evaluate their ability to give rise to transformation products. Two new DBPs from these illicit drugs have been found. A common chlorinated-by-product (3-chlorobenzo)-1,3-dioxole, was identified for both MDA and MDEA while for MDMA, 3-chlorocatechol was found. The presence of these DBPs in water samples collected through drinking water treatment was studied in order to evaluate their formation under real conditions. Both compounds were generated through treatment from raw river water samples containing ATSs at concentration levels ranging from 1 to 15 ng/L for MDA and from 2.3 to 78 ng/L for MDMA. One of them, (3-chlorobenzo)-1,3-dioxole, found after the first chlorination step, was eliminated after ozone and GAC treatment while the MDMA DBP mainly generated after the postchlorination step, showed to be recalcitrant and it was found in final treated waters at concentrations ranging from 0.5 to 5.8 ng/L. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.
2015-01-01
Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438
Szarka, Mate; Guttman, Andras
2017-10-17
We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.
The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex.
Petroni, Agustin; Cohen, Samantha S; Ai, Lei; Langer, Nicolas; Henin, Simon; Vanderwal, Tamara; Milham, Michael P; Parra, Lucas C
2018-01-01
Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample ( n = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort ( n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli.
Saraji, Mohammad; Ghani, Milad; Rezaei, Behzad; Mokhtarianpour, Maryam
2016-10-21
A new headspace liquid-phase microextraction technique based on using a copper foam nanostructure substrate followed by gas chromatography-flame ionization detection was developed for the determination of volatile organic compounds in water and wastewater samples. The copper foam with highly porous nanostructured walls was fabricated on the surface of a copper wire by a rapid and facile electrochemical process and used as the extractant solvent holder. Propyl benzoate was immobilized in the pores of the copper foam coating and used for the microextraction of benzene, toluene, ethylbenzene and xylenes. The experimental parameters such as the type of organic solvent, desorption temperature, desorption time, salt concentration, sample temperature, equilibrium time and extraction time, were investigated and optimized. Under the optimum conditions, the method detection limit was between 0.06 and 0.25μgL -1 . The relative standard deviation of the method for the analytes at 4-8μgL -1 concentration level ranged from 7.9 to 11%. The fiber-to-fiber reproducibility for three fibers prepared under the same condition was 9.3-12%. The enrichment factor was in the range of 615-744. Different water samples were analyzed for the evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and wastewater samples were in the range of 85-94%. Finally, the extraction efficiency of the method was compared with those of headspace single drop microextraction and headspace SPME with the commercial fibers. Copyright © 2016 Elsevier B.V. All rights reserved.
Walkden-Brown, Stephen W; Islam, A F Aminul; Groves, Peter J; Rubite, Ambrosio; Sharpe, Sue M; Burgess, Susan K
2013-06-01
Results are presented from four studies between 2002 and 2011 into the feasibility of routinely monitoring Marek's disease virus serotype 1 (MDV-1) in broiler house dust using real-time quantitative PCR (qPCR) measurement. Study 1 on two farms showed that detection of MDV-1 occurred earlier on average in dust samples tested using qPCR than standard PCR and in spleen samples from five birds per shed assayed for MDV-1 by qPCR or standard PCR. DNA quality following extraction from dust had no effect on detection of MDV-1. Study 2 demonstrated that herpesvirus of turkeys (HVT) and MDV serotype 2 (MDV-2) in addition to MDV-1 could be readily amplified from commercial farm dust samples, often in mixtures. MDV-2 was detected in 11 of 20 samples despite the absence of vaccination with this serotype. Study 3 investigated the reproducibility and sensitivity of the qPCR test and the presence of inhibitors in the samples. Samples extracted and amplified in triplicate showed a high level of reproducibility except at very low levels of virus near the limit of detection. Mixing of samples prior to extraction provided results consistent with the proportions in the mixture. Tests for inhibition showed that if the template contained DNA in the range 0.5-20 ng/microl no inhibition of the reaction was detectable. The sensitivity of the tests in terms of viral copy number (VCN) per milligram of dust was calculated to be in the range 24-600 VCN/mg for MDV-1, 48-1200 VCN/mg for MDV-2, and 182-4560 VCN/mg for HVT. In study 4 the results of 1976 commercial tests carried out for one company were analyzed. Overall 23.1% of samples were positive for MDV-1, 26.1% in unvaccinated and 16.4% in vaccinated chickens. There was marked regional and temporal variation in the proportion of positive samples and the MDV-1 load. The tests were useful in formulating Marek's disease vaccination strategies. The number of samples submitted has increased recently, as has the incidence of positive samples. These studies provide strong evidence that detection and quantitation of MDV-1, HVT, and MDV-2 in poultry house dust using qPCR is robust, sensitive, reproducible, and meaningful, both biologically and commercially. Tactical vaccination based on monitoring of MDV-1 rather than routine vaccination may reduce selection pressure for increased virulence in MDV-1.
Zgoła-Grześkowiak, Agnieszka; Grześkowiak, Tomasz; Rydlichowski, Robert; Łukaszewski, Zenon
2009-04-01
Water samples from agricultural drains were tested for the presence of nonylphenol and nonylphenol mono- and diethoxylates. The analytes belong to biodegradation products of long-chained nonylphenol ethoxylates, which are used as additives in pesticide formulations. Quantification of these analytes was performed by HPLC with fluorescence detection after isolation by using multi-capillary polytetrafluoroethylene (PTFE) trap extraction. This newly developed technique allowed obtaining about 90% recovery of these analytes in synthetic samples and several percent lower recovery in real samples. Also, no additional sample cleaning was needed before chromatographic analysis. The limit of quantitation for all the analytes was 0.1 microg L(-1). The nonylphenol, nonylphenol mono- and diethoxylates were detected at the concentrations ranging from 0.5 to 6.0 microg L(-1), from 0.2 to 0.7 microg L(-1) and from below 0.02 to 0.4 microg L(-1), respectively. Concentrations of nonylphenol and its derivatives were higher in samples taken in spring than in summer.
Paris, Daniel H; Blacksell, Stuart D; Newton, Paul N; Day, Nicholas P J
2008-12-01
We present a loop-mediated isothermal PCR assay (LAMP) targeting the groEL gene, which encodes the 60kDa heat shock protein of Orientia tsutsugamushi. Evaluation included testing of 63 samples of contemporary in vitro isolates, buffy coats and whole blood samples from patients with fever. Detection limits for LAMP were assessed by serial dilutions and quantitation by real-time PCR assay based on the same target gene: three copies/microl for linearized plasmids, 26 copies/microl for VERO cell culture isolates, 14 copies/microl for full blood samples and 41 copies/microl for clinical buffy coats. Based on a limited sample number, the LAMP assay is comparable in sensitivity with conventional nested PCR (56kDa gene), with limits of detection well below the range of known admission bacterial loads of patients with scrub typhus. This inexpensive method requires no sophisticated equipment or sample preparation, and may prove useful as a diagnostic assay in financially poor settings; however, it requires further prospective validation in the field setting.
Wang, Xianli; Kang, Haiyan; Wu, Junfeng
2016-05-01
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hrouzková, Svetlana; Brišová, Mária; Szarka, Agneša
2017-07-14
A fast, ecological, and efficient method employing vortex-assisted dispersive liquid-liquid microextraction (DLLME) method for isolation and preconcentration of selected endocrine disrupting pesticides from beverages containing some degree of alcohol was developed. The effect of several extraction parameters, such as selection of extractive solvent, its volume and extraction time, the salt addition was investigated. Four different extractive solvents (chloroform, tetrachloroethane, tetrachloromethane and toluene) and their combinations were evaluated for DLLME. Under the following conditions: 1mL of fortified sample, 80μL of tetrachloroethane, 1.5mL of water, vortex assistance for 3min at the speed of 1800rpm, and no salt addition, the method was validated. Linearity was studied in the concentration range of 0.01-250μg/L with coefficient of correlation ranging between 0.9940 and 1.0000, limits of detection and quantification ranging between 0.02-1.4μg/L and 0.07-4.7μg/L, respectively. Recoveries were satisfactory in the range of 70-120%, with the exception of diphenyl, alachlor and fenarimol at the lowest concentration level and p,p-DDE at concentration level of 100 and 250μg/L. The applicability of the developed and validated method was proved by the analysis of real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong
2012-08-01
A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.
NASA Astrophysics Data System (ADS)
Chuan, Dong; Yan-Li, Wei; Shao-Min, Shuang
2003-05-01
Paper substrate room temperature phosphorescence (RTP) of theobromine (TB), caffeine (CF) and theophylline (TP) were investigated. The method is based on fast speed quantitative filter paper as substrate and KI-NaAc as heavy atom perturber. Various factors affecting their RTP were discussed in detail. Under the optimum experimental conditions, the linear dynamic range, limit of detection (LOD), and relative standard deviation (R.S.D.) were 14.41˜576.54 ng per spot, 1.14 ng per spot, 4.8% for TB, 5.44˜699.08 ng per spot, 0.78 ng per spot, 1.56% for CF, 7.21˜360.34 ng per spot, 1.80 ng per spot, 3.80% for TP, respectively. The first analytical application for the determination of these compounds was developed. The recovery of standard samples added to commercial products chocolate, tea, coffee and aminophylline is in the range 92.80-106.08%. The proposed method was successfully applied to real sample analysis without separation.
Rezvani-Eivari, Mostafa; Amiri, Amirhassan; Baghayeri, Mehdi; Ghaemi, Ferial
2016-09-23
The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Bayen, Stéphane; Yi, Xinzhu; Segovia, Elvagris; Zhou, Zhi; Kelly, Barry C
2014-04-18
Emerging contaminants such as antibiotics have received recent attention as they have been detected in natural waters and health concerns over potential antibiotic resistance. With the purpose to investigate fast and high-throughput analysis, and eventually the continuous on-line analysis of emerging contaminants, this study presents results on the analysis of seven selected antibiotics (sulfadiazine, sulfamethazine, sulfamerazine, sulfamethoxazole, chloramphenicol, lincomycin, tylosin) in surface freshwater and seawater using direct injection of a small sample volume (20μL) in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Notably, direct injection of seawater in the LC-ESI-MS/MS was made possible on account of the post-column switch on the system, which allows diversion of salt-containing solutions flushed out of the column to the waste. Mean recoveries based on the isotope dilution method average 95±14% and 96±28% amongst the compounds for spiked freshwater and seawater, respectively. Linearity across six spiking levels was assessed and the response was linear (r(2)>0.99) for all compounds. Direct injection concentrations were compared for real samples to those obtained with the conventional SPE-based analysis and both techniques concurs on the presence/absence and levels of the compounds in real samples. These results suggest direct injection is a reliable method to detect antibiotics in both freshwater and seawater. Method detection limits for the direct injection technique (37pg/L to 226ng/L in freshwater, and from 16pg/to 26ng/L in seawater) are sufficient for a number of environmental applications, for example the fast screening of water samples for ecological risk assessments. In the present study of real samples, this new method allowed for example the positive detection of some compounds (e.g. lincomycin) down to the sub ng/L range. The direct injection method appears to be relatively cheaper and faster, requires a smaller sample size, and is more robust to equipment cross-contamination as compared to the conventional SPE-based method. Copyright © 2014 Elsevier B.V. All rights reserved.
Sobhi, Hamid Reza; Yamini, Yadollah; Esrafili, Ali; Abadi, Reza Haji Hosseini Baghdad
2008-07-04
A simple, rapid and efficient microextraction method for the extraction and determination of some fat-soluble vitamins (A, D2, D3) in aqueous samples was developed. For the first time orthogonal array designs (OADs) were employed to screen the liquid-phase microextraction (LPME) method in which few microliters of 1-undecanol were delivered to the surface of the aqueous sample and it was agitated for a selected time. Then sample vial was cooled by inserting it into an ice bath for 5 min. The solidified solvent was transferred into a suitable vial and immediately melted. Then, the extract was directly injected into a high-performance liquid chromatography (HPLC) for analysis. Several factors affecting the microextraction efficiency such as sample solution temperature, stirring speed, volume of the organic solvent, ionic strength and extraction time were investigated and screened using an OA16 (4(5)) matrix. Under the best conditions (temperature, 55 degrees C; stirring speed, 1000 rpm; the volume of extracting solvent, 15.0 microL; no salt addition and extraction time, 60 min), detection limits of the method were in the range of 1.0-3.5 microgL(-1). The relative standard deviations (RSDs) to determine the vitamins at microg L(-1) levels by applying the proposed method varied in the range of 5.1-10.7%. Dynamic linear ranges of 5-500 mugL(-1) with good correlation coefficients (0.9984
NASA Astrophysics Data System (ADS)
Zhang, Kang
2011-12-01
In this dissertation, real-time Fourier domain optical coherence tomography (FD-OCT) capable of multi-dimensional micrometer-resolution imaging targeted specifically for microsurgical intervention applications was developed and studied. As a part of this work several ultra-high speed real-time FD-OCT imaging and sensing systems were proposed and developed. A real-time 4D (3D+time) OCT system platform using the graphics processing unit (GPU) to accelerate OCT signal processing, the imaging reconstruction, visualization, and volume rendering was developed. Several GPU based algorithms such as non-uniform fast Fourier transform (NUFFT), numerical dispersion compensation, and multi-GPU implementation were developed to improve the impulse response, SNR roll-off and stability of the system. Full-range complex-conjugate-free FD-OCT was also implemented on the GPU architecture to achieve doubled image range and improved SNR. These technologies overcome the imaging reconstruction and visualization bottlenecks widely exist in current ultra-high speed FD-OCT systems and open the way to interventional OCT imaging for applications in guided microsurgery. A hand-held common-path optical coherence tomography (CP-OCT) distance-sensor based microsurgical tool was developed and validated. Through real-time signal processing, edge detection and feed-back control, the tool was shown to be capable of track target surface and compensate motion. The micro-incision test using a phantom was performed using a CP-OCT-sensor integrated hand-held tool, which showed an incision error less than +/-5 microns, comparing to >100 microns error by free-hand incision. The CP-OCT distance sensor has also been utilized to enhance the accuracy and safety of optical nerve stimulation. Finally, several experiments were conducted to validate the system for surgical applications. One of them involved 4D OCT guided micro-manipulation using a phantom. Multiple volume renderings of one 3D data set were performed with different view angles to allow accurate monitoring of the micro-manipulation, and the user to clearly monitor tool-to-target spatial relation in real-time. The system was also validated by imaging multiple biological samples, such as human fingerprint, human cadaver head and small animals. Compared to conventional surgical microscopes, GPU-based real-time FD-OCT can provide the surgeons with a real-time comprehensive spatial view of the microsurgical region and accurate depth perception.
Optimization of sampling pattern and the design of Fourier ptychographic illuminator.
Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan
2015-03-09
Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.
Leach, L.; Zhu, Y.
2017-01-01
ABSTRACT Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 (ITS2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris. The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. PMID:29187562
Leach, L; Zhu, Y; Chaturvedi, S
2018-02-01
Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 ( ITS 2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. Copyright © 2018 Leach et al.
Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi
2016-12-15
Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karakthala, J. B.; Vankar, H. P.; Rana, V. A.
2018-05-01
The complex relative dielectric function ɛ*(ω) = ɛ' - jɛ″ of aqueous solutions of diclofenac potassium (DK) in the frequency range 20 Hz to 2 MHz at 303.15 K was measured using a precision LCR meter. The electrical/dielectric properties of the solutions samples were represented in terms of complex relative dielectric function ɛ*(ω) real part σ'(ω) of complex ac conductivity and dc conductivity. These types of studies can be used to explore various mechanism contributed in the absorption, transportation of drug through tissues and membranes of body as well as interactions of drug with body fluid and blood plasma.
WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie
2014-01-01
The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-7 in June 2015.
Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner
2006-12-01
Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bongers, W. A.; Beveren, V. van; Westerhof, E.
2011-06-15
An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototypemore » system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.« less
Beyki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah
2014-01-01
In this work, the nanoclay was intercalated with acyclovir (9-[(2-hydroxyethoxy) methyl] guanine), the toxicity of which to mammalian cells is very low. We used no organic solvents for preparation of modified clay and desorption of Cu ions from the sorbent. Batch and column methods were used, and sorption of Cu was quantitative (>98%) in the pH range of 7.5 to 10.0. Quantitative desorption occurred with 5.0 mL of 3.0 M HCl, and the amount of Cu(II) was measured by using flame atomic absorption spectrometry. In the initial solution the linear dynamic range and the LOD were 3.0-1000.0 and 0.58 μg/L, respectively. With 500.0 mL of sample, an enrichment factor of 100 was obtained. The RSD was 2.0% (n = 8, concentration = 0.5 mg/L), and the maximum capacity of the sorbent was 45.0 mg/g. The influence of experimental parameters including sample pH, ionic strength, type and volume of the eluent, and interference of some ions on the recoveries of Cu was investigated. The proposed method using a new and easier prepared solid sorbent was applied to the determination of Cu in different real samples with satisfactory results.
Fang, Jing; Wu, Qian; Zhao, Yun; Zhao, Hongzhi; Xu, Shunqing; Cai, Zongwei
2017-01-01
Gas chromatography-triple quadrupole mass spectrometry (GC-QqQMS) was applied for the determination of eight organochlorine pesticides (OCPs) in human serum. OCPs were extracted from the serum sample by solid phase extraction (SPE) and analyzed by gas chromatography mass spectrometry (GC-MS) or gas chromatography tandem mass spectrometry (GC-MS/MS). Electron ionization (EI) and negative chemical ionization (NCI) under two data acquisition modes, namely selected ion monitoring (SIM) and multiple reaction monitoring (MRM), were compared. The use of MRM generally provided higher selectivity and sensitivity because less interference from the sample matrix existed. The EI mode is more suitable for less electronegative compounds such as dichlorodiphenyldichloroethanes (DDDs) with detection limits ranging from 0.0060 to 0.060ng/mL. In the NCI mode, MRM analysis provided good and lower detection limits (0.0011-0.0030ng/mL) for pesticides containing more chlorines. The methods were validated by analyzing the pesticides in spiked serum at different levels with recoveries ranged from 83% to 116% and relative standard deviations of less than 10%. The developed method was applied for the determination of the OCPs in real human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Saraji, Mohammad; Jafari, Mohammad Taghi; Amooshahi, Mohammad Mehdi
2018-01-01
In this work, the microextraction in packed syringe technique combined with corona discharge ion mobility spectrometry was used for determining diazinon in water samples. A new porous composite of nanoclay and polysiloxane was prepared using a sol-gel process. An amount of 2.0 mg of the sorbent was packed in a 250 μL syringe and used for extraction. A volume of 2 mL of the sample was passed through the sorbent bed, and the entrapped analyte was eluted by 25 μL of methanol. Important parameters influencing the extraction performance were investigated. Under optimum experimental conditions, the detection limit for diazinon was 0.07 ng/mL. The intra- and inter-day relative standard deviations were 5.0 and 12.3%, respectively. The calibration curve was linear in the concentration range from 0.2 to 20.0 ng/mL (r 2 = 0.999). The applicability of the method was demonstrated by analyzing spiked real water samples and the spiking recoveries were in the range of 95 to 106%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khan, Sumaira; Kazi, Tasneem G; Baig, Jameel A; Kolachi, Nida F; Afridi, Hassan I; Wadhwa, Sham Kumar; Shah, Abdul Q; Kandhro, Ghulam A; Shah, Faheem
2010-10-15
A cloud point extraction (CPE) method has been developed for the determination of trace quantity of vanadium ions in pharmaceutical formulations (PF), dialysate (DS) and parenteral solutions (PS). The CPE of vanadium (V) using 8-hydroxyquinoline (oxine) as complexing reagent and mediated by nonionic surfactant (Triton X-114) was investigated. The parameters that affect the extraction efficiency of CPE, such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validity of CPE of V was checked by standard addition method in real samples. The extracted surfactant-rich phase was diluted with nitric acid in ethanol, prior to subjecting electrothermal atomic absorption spectrometry. Under these conditions, the preconcentration of 50 mL sample solutions, allowed raising an enrichment factor of 125-fold. The lower limit of detection obtained under the optimal conditions was 42 ng/L. The proposed method has been successfully applied to the determination of trace quantity of V in various pharmaceutical preparations with satisfactory results. The concentration ranges of V in PF, DS and PS samples were found in the range of 10.5-15.2, 0.65-1.32 and 1.76-6.93 microg/L, respectively. 2010 Elsevier B.V. All rights reserved.
Ebrahimi, Bahram
2017-03-01
A new solid-phase extraction (SPE) sorbent was introduced based on acidic-modified (AM) activated carbon (AC) prepared from acorn shells of native oak trees in Kurdistan. Hydrochloric acid (15%, w/w) and nitric acid (32.5%, w/w) were used to condition and modify AC. The IR spectra of AC and AM-AC showed that AM lead to the formation of increasing numbers of acidic functional groups on AM-AC. AM-AC was used in the SPE method for the extraction and preconcentration of Ni+2 prior to flame atomic absorption spectrometric determination at ng/mL levels in model and real food samples. Effective parameters of the SPE procedure, such as the pH of the solutions, sorbent dosage, extraction time, sample volume, type of eluent, and matrix ions, were considered and optimized. An enrichment factor of 140 was obtained. The calibration curve was linear with an R2 of 0.997 in the concentration range of 1-220 ng/mL. The RSD was 5.67% (for n = 7), the LOD was 0.352 ng/mL, and relative recoveries in vegetable samples ranged from 96.7 to 103.7%.
NASA Astrophysics Data System (ADS)
Masson, Y. J.; Pride, S. R.
2007-03-01
Seismic attenuation and dispersion are numerically determined for computer-generated porous materials that contain arbitrary amounts of mesoscopic-scale heterogeneity in the porous continuum properties. The local equations used to determine the poroelastic response within such materials are those of Biot (1962). Upon applying a step change in stress to samples containing mesoscopic-scale heterogeneity, the poroelastic response is determined using finite difference modeling, and the average strain throughout the sample computed, along with the effective complex and frequency-dependent elastic moduli of the sample. The ratio of the imaginary and real parts of these moduli determines the attenuation as a function of frequency associated with the modes of applied stress (pure compression and pure shear). By having a wide range of heterogeneity present, there exists a wide range of relaxation frequencies in the response with the result that the curves of attenuation as a function of frequency are broader than in existing analytical theories based on a single relaxation frequency. Analytical explanations are given for the various high-frequency and low-frequency asymptotic behavior observed in the numerical simulations. It is also shown that the overall level of attenuation of a given sample is proportional to the square of the incompressibility contrasts locally present.
Real-time range generation for ladar hardware-in-the-loop testing
NASA Astrophysics Data System (ADS)
Olson, Eric M.; Coker, Charles F.
1996-05-01
Real-time closed loop simulation of LADAR seekers in a hardware-in-the-loop facility can reduce program risk and cost. This paper discusses an implementation of real-time range imagery generated in a synthetic environment at the Kinetic Kill Vehicle Hardware-in-the Loop facility at Eglin AFB, for the stimulation of LADAR seekers and algorithms. The computer hardware platform used was a Silicon Graphics Incorporated Onyx Reality Engine. This computer contains graphics hardware, and is optimized for generating visible or infrared imagery in real-time. A by-produce of the rendering process, in the form of a depth buffer, is generated from all objects in view during its rendering process. The depth buffer is an array of integer values that contributes to the proper rendering of overlapping objects and can be converted to range values using a mathematical formula. This paper presents an optimized software approach to the generation of the scenes, calculation of the range values, and outputting the range data for a LADAR seeker.
Choodum, Aree; Parabun, Kaewalee; Klawach, Nantikan; Daeid, Niamh Nic; Kanatharana, Proespichaya; Wongniramaikul, Worawit
2014-02-01
The Simon presumptive color test was used in combination with the built-in digital camera on a mobile phone to detect methamphetamine. The real-time Red-Green-Blue (RGB) basic color data was obtained using an application installed on the mobile phone and the relationship profile between RGB intensity, including other calculated values, and the colourimetric product was investigated. A wide linear range (0.1-2.5mg mL(-1)) and a low detection limit (0.0110±0.0001-0.044±0.002mg mL(-1)) were achieved. The method also required a small sample size (20μL). The results obtained from the analysis of illicit methamphetamine tablets were comparable to values obtained from gas chromatograph-flame ionization detector (GC-FID) analysis. Method validation indicated good intra- and inter-day precision (2.27-4.49%RSD and 2.65-5.62%RSD, respectively). The results suggest that this is a powerful real-time mobile method with the potential to be applied in field tests. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Eichenbaum, Adam; Kattner, Florian; Bradford, Daniel; Gentile, Douglas A; Green, C Shawn
2015-08-01
Research indicates that a small subset of those who routinely play video games show signs of pathological habits, with side effects ranging from mild (e.g., being late) to quite severe (e.g., losing a job). However, it is still not clear whether individual types, or genres, of games are most strongly associated with Internet gaming disorder (IGD). A sample of 4,744 University of Wisconsin-Madison undergraduates (Mage=18.9 years; SD=1.9 years; 60.5% female) completed questionnaires on general video game playing habits and on symptoms of IGD. Consistent with previous reports: 5.9-10.8% (depending on classification criteria) of individuals who played video games show signs of pathological play. Furthermore, real-time strategy and role-playing video games were more strongly associated with pathological play, compared with action and other games (e.g., phone games). The current investigation adds support to the idea that not all video games are equal. Instead, certain genres of video games, specifically real-time strategy and role-playing/fantasy games, are disproportionately associated with IGD symptoms.
Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali
2012-03-01
Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.
Design of Warped Stretch Transform
Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram
2015-01-01
Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458
NASA Astrophysics Data System (ADS)
Dickinson, Hugh; Lintott, Chris; Scarlata, Claudia; Fortson, Lucy; Bamford, Steven; Cardamone, Carolin; Keel, William C.; Kruk, Sandor; Masters, Karen; Simmons, Brooke D.; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory; Galaxy Zoo Science Team
2018-01-01
We present a comparision between the Illustris simulations and classifications from Galaxy Zoo, aiming to test the ability of modern large-scale cosmological simulations to accurately reproduce the local galaxy population. This comparison is enabled by the increasingly high spatial and temporal resolution obtained by such surveys.Using classifications that were accumulated via the Galaxy Zoo citizen science interface, we compare the visual morphologies for simulated images of Illustris galaxies with a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey.For simulated galaxies with stellar masses less than 1011 M⊙, significant differences are identified, which are most likely due to the limited resolution of the simulation, but could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Above 1011 M⊙, Illustris galaxy morphologies correspond better with those of their SDSS counterparts, although even in this mass range the simulation appears to underproduce obviously disk-like galaxies. Morphologies of Illustris galaxies less massive than 1011 M⊙ should be treated with care.
Ssebugenyi, I; Kizza, A; Mpoza, B; Aluma, G; Boaz, I; Newell, K; Laeyendecker, O; Shott, J P; Serwadda, D; Reynolds, S J
2011-07-01
The need for viral load (VL) monitoring of HIV patients receiving antiretroviral therapy (ART) in resource-limited settings (RLS) has become apparent with studies showing the limitations of immunological monitoring. We compared the Abbott m2000 Real-Time (Abbott) HIV-1 assay with the Roche AMPLICOR Monitor v1.5 (Roche) HIV-1 assay over a range of VL concentrations. Three hundred and eleven plasma samples were tested, including 164 samples from patients on ART ≥ six months and 147 from ART-naïve patients. The Roche assay detected ≥400 copies/mL in 158 (50.8%) samples. Of these, Abbott produced 145 (91.8%) detectable results ≥400 copies/mL; 13 (8.2%) samples produced discrepant results. Concordance between the assays for detecting HIV-1 RNA ≥400 copies/mL was 95.8% (298/311). The sensitivity, specificity, positive predictive value and negative predictive value of Abbott to detect HIV-1 RNA ≥400 copies/mL were 91.8%, 100%, 100% and 92.2%, respectively. For the 151 samples with HIV-1 RNA ≥400 copies/mL for both assays, a good linear correlation was found (r = 0.81, P < 0.0001; mean difference, 0.05). The limits of agreement were -0.97 and 1.07 log(10) copies/mL (mean ± 2 SD). The Abbott assay performed well in our setting, offering an alternative methodology for HIV-1 VL for laboratories with realtime polymerase chain reaction (PCR) capacity.
Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin
2011-06-24
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Parastar, Hadi; Mostafapour, Sara; Azimi, Gholamhasan
2016-01-01
Comprehensive two-dimensional gas chromatography and flame ionization detection combined with unfolded-partial least squares is proposed as a simple, fast and reliable method to assess the quality of gasoline and to detect its potential adulterants. The data for the calibration set are first baseline corrected using a two-dimensional asymmetric least squares algorithm. The number of significant partial least squares components to build the model is determined using the minimum value of root-mean square error of leave-one out cross validation, which was 4. In this regard, blends of gasoline with kerosene, white spirit and paint thinner as frequently used adulterants are used to make calibration samples. Appropriate statistical parameters of regression coefficient of 0.996-0.998, root-mean square error of prediction of 0.005-0.010 and relative error of prediction of 1.54-3.82% for the calibration set show the reliability of the developed method. In addition, the developed method is externally validated with three samples in validation set (with a relative error of prediction below 10.0%). Finally, to test the applicability of the proposed strategy for the analysis of real samples, five real gasoline samples collected from gas stations are used for this purpose and the gasoline proportions were in range of 70-85%. Also, the relative standard deviations were below 8.5% for different samples in the prediction set. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device.
Thakur, Bhawana; Zhou, Guihua; Chang, Jingbo; Pu, Haihui; Jin, Bing; Sui, Xiaoyu; Yuan, Xiaochen; Yang, Ching-Hong; Magruder, Matthew; Chen, Junhong
2018-07-01
Contamination of surface and drinking water due to the presence of Escherichia coli bacteria is a major cause of water-borne disease outbreak. To address unmet challenges for practical pathogen detection in contaminated samples, we report fabrication of thermally reduced graphene oxide-based field-effect transistor (rGO FET) passivated with an ultrathin layer of Al 2 O 3 for real-time detection of E. coli bacteria. The sensor could detect a single E. coli cell within 50 s in a 1 µL sample volume. The ultrathin layer of Al 2 O 3 acted as a barrier between rGO and potential interferents present in the sample. E. coli specific antibodies anchored on gold nanoparticles acted as probes for selective capture of E. coli. The high density of negative charge on the surface of E. coli cells strongly modulates the concentration of majority charge carriers in the rGO monolayer, thereby allowing real-time monitoring of E. coli concentration in a given sample. With a low detection limit of single cell, the FET sensor had a linear range of 1-100 CFU in 1 µL volume of sample (i.e., 10 3 to 10 5 CFU/ mL). The biosensor with good selectivity and rapid detection was further successfully demonstrated for E. coli sensing in river water. The rGO-based FET sensor provides a low cost and label-free approach, and can be mass produced for detection of a broad spectrum of pathogens in water or other liquid media. Copyright © 2018 Elsevier B.V. All rights reserved.
Radhakrishnan, Renjith Kalathoorakathu; Mittal, Bhagwant Rai; Gorla, Arun Kumar Reddy; Basher, Rajender Kumar; Sood, Ashwani; Bal, Amanjit; Kalra, Naveen; Khandelwal, Niranjan; Singh, Navneet; Behera, Digambar
2017-12-01
The aim of this study was to assess the feasibility and appraise the diagnostic utility of real time 18 F-FDG PET/CT-guided biopsy under automated robopsy arm (ARA) guidance for the evaluation of thoracic lesions with prior inconclusive biopsy results. PET/CT-guided biopsy of thoracic lesions was performed in patients who had at least one previous inconclusive biopsy. A total of 25 patients (male:female-18 males, 7 females; age: range, 13-75; mean, 53.7) were included in this study. All these patients underwent percutaneous needle biopsies under real-time PET/CT guidance using ARA (ROBIO-EX, Perfint healthcare Pvt Ltd, Chennai, India) needle navigation technique. Histopathology and clinical follow-up results were reviewed for assessing the accuracy of procedures. Adequate representative tissue sample could be retrieved in all the patients. No major procedure-related complications were encountered in any patient. Of the 25 procedures, 21 lesions were positive for malignancy and benign findings were observed in the other 4 lesions on histopathology. None of the patients required further biopsy in arriving at a final diagnosis. Overall diagnostic yield of the procedure was 100%. Real time 18 F-FDG PET/CT guidance for percutaneous biopsies of lung and mediastinal lesions is a feasible technique with potential utility in patients with previous inconclusive biopsy results. Advances in knowledge: 18 F-FDG PET/CT guidance reduces the sampling errors by specifically targeting areas of viability and avoiding necrosis/atelectasis. A navigational tool like ARA is thought to help in accurately targeting these areas.
Bièche, I; Olivi, M; Champème, M H; Vidaud, D; Lidereau, R; Vidaud, M
1998-11-23
Gene amplification is a common event in the progression of human cancers, and amplified oncogenes have been shown to have diagnostic, prognostic and therapeutic relevance. A kinetic quantitative polymerase-chain-reaction (PCR) method, based on fluorescent TaqMan methodology and a new instrument (ABI Prism 7700 Sequence Detection System) capable of measuring fluorescence in real-time, was used to quantify gene amplification in tumor DNA. Reactions are characterized by the point during cycling when PCR amplification is still in the exponential phase, rather than the amount of PCR product accumulated after a fixed number of cycles. None of the reaction components is limited during the exponential phase, meaning that values are highly reproducible in reactions starting with the same copy number. This greatly improves the precision of DNA quantification. Moreover, real-time PCR does not require post-PCR sample handling, thereby preventing potential PCR-product carry-over contamination; it possesses a wide dynamic range of quantification and results in much faster and higher sample throughput. The real-time PCR method, was used to develop and validate a simple and rapid assay for the detection and quantification of the 3 most frequently amplified genes (myc, ccndl and erbB2) in breast tumors. Extra copies of myc, ccndl and erbB2 were observed in 10, 23 and 15%, respectively, of 108 breast-tumor DNA; the largest observed numbers of gene copies were 4.6, 18.6 and 15.1, respectively. These results correlated well with those of Southern blotting. The use of this new semi-automated technique will make molecular analysis of human cancers simpler and more reliable, and should find broad applications in clinical and research settings.
Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time
Gandelman, Olga A.; Church, Vicki L.; Moore, Cathy A.; Kiddle, Guy; Carne, Christopher A.; Parmar, Surendra; Jalal, Hamid; Tisi, Laurence C.; Murray, James A. H.
2010-01-01
Background The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Principal Findings Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. Conclusions The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings. PMID:21152399
Leli, Christian; Castronari, Roberto; Levorato, Lucia; Luciano, Eugenio; Pistoni, Eleonora; Perito, Stefano; Bozza, Silvia; Mencacci, Antonella
2016-06-01
Vaginal trichomoniasis is a sexually transmitted infection caused by Trichomonas vaginalis, a flagellated protozoan. Diagnosis of T. vaginalis infection is mainly performed by wet mount microscopy, with a sensitivity ranging from 38% to 82%, compared to culture, still considered the gold standard. Commercial immunochromatographic tests for monoclonal-antibody-based detection have been introduced as alternative methods for diagnosis of T. vaginalis infection and have been reported in some studies to be more sensitive than wet mount. Real-time PCR methods have been recently developed, with optimal sensitivity and specificity. The aim of this study was to evaluate whether there is a molecular sensitivity threshold for both wet mount and imunochromatographic assays. To this aim, a total of 1487 low-risk childbearing women (median age 32 years, interquartile range 27-37) were included in the study, and underwent vaginal swab for T. vaginalis detection by means of a quantitative real-time PCR assay, wet mount and an immunochromatographic test. Upon comparing the results, prevalence values observed were 1.3% for real-time PCR, 0.5% for microscopic examination, and 0.8% for the immunochromatographic test. Compared to real-time PCR, wet mount sensitivity was 40% (95% confidence interval 19.1% to 63.9%) and specificity was 100% (95% CI 99.7% to 100%). The sensitivity and specificity of the immunochromatographic assay were 57.9% (95% CI 33.5% to 79.8%) and 99.9% (95% CI 99.6% to 100%), respectively. Evaluation of the wet mount results and those of immunochromatographic assay detection in relation to the number of T. vaginalis DNA copies detected in vaginal samples showed that the lower identification threshold for both wet mount (chi-square 6.1; P = 0.016) and the immunochromatographic assay (chi-square 10.7; P = 0.002) was ≥100 copies of T. vaginalis DNA/5 mcl of eluted DNA.
Kongklieng, Amornmas; Intapan, Pewpan M; Boonmars, Thidarut; Thanchomnang, Tongjit; Janwan, Penchom; Sanpool, Oranuch; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai
2015-03-01
A real-time fluorescence resonance energy transfer polymerase chain reaction (qFRET PCR) coupled with melting curve analysis was developed for detection of Babesia canis vogeli and Hepatozoon canis infections in canine blood samples in a single tube assay. The target of the assay was a region within the 18S ribosomal RNA gene amplified in either species by a single pair of primers. Following amplification from the DNA of infected dog blood, a fluorescence melting curve analysis was done. The 2 species, B. canis vogeli and H. canis, could be detected and differentiated in infected dog blood samples (n = 37) with high sensitivity (100%). The detection limit for B. canis vogeli was 15 copies of a positive control plasmid, and for H. canis, it was 150 copies of a positive control plasmid. The assay could simultaneously distinguish the DNA of both parasites from the DNA of controls. Blood samples from 5 noninfected dogs were negative, indicating high specificity. Several samples can be run at the same time. The assay can reduce misdiagnosis and the time associated with microscopic examination, and is not prone to the carryover contamination associated with the agarose gel electrophoresis step of conventional PCR. In addition, this qFRET PCR method would be useful to accurately determine the range of endemic areas or to discover those areas where the 2 parasites co-circulate. © 2015 The Author(s).
Determination of sodium benzoate in food products by fluorescence polarization immunoassay.
Ren, Linlin; Meng, Meng; Wang, Peng; Xu, Zhihuan; Eremin, Sergei A; Zhao, Junhong; Yin, Yongmei; Xi, Rimo
2014-04-01
A rapid and sensitive fluorescence polarization immunoassay (FPIA), based on a polyclonal antibody, has been developed for the detection of sodium benzoate in spiked samples. The immunogen and fluorescein-labeled analyte conjugate were successfully synthesized, and the tracer was purified by TLC. Under the optimal assay conditions, the FPIA shows a detection range of 0.3-20.0 μg mL(-1) for sodium benzoate with a detection limit of 0.26 μg mL(-1) in the borate buffer. In addition, the IC₅₀ value was 2.48 μg mL(-1), and the cross-reactivity of the antibodies with ten structurally and functionally related analogs were detected respectively. Four kinds of food samples (energy drink, candy, ice sucker, RIO(TM) cocktail) were selected to evaluate the application of FPIA in real systems. The recoveries were 96.68-106.55% in energy drink; 95.78-100.80% in candy, 86.97-102.70% in ice sucker, and 103.58-109.87% in benzoate contained sample RIO(TM) cocktail, and coefficients of variation of this method were all lower than 11.25%. Comparing with the detection results of HPLC, the developed FPIA has comparative performance in the real sample determination. The results suggest that the FPIA developed in this study is a rapid, convenient and simple method, which is suitable to be used as a screening tool for homogeneous detection of sodium benzoate in food products. Copyright © 2013 Elsevier B.V. All rights reserved.
Detection of West Nile virus in wild birds in Tana River and Garissa Counties, Kenya.
Nyamwaya, Doris; Wang'ondu, Virginia; Amimo, Joshua; Michuki, George; Ogugo, Moses; Ontiri, Enoch; Sang, Rosemary; Lindahl, Johanna; Grace, Delia; Bett, Bernard
2016-11-23
West Nile fever virus is a zoonotic arboviral infection maintained in a sylvatic cycle involving mosquito vectors and birds. It is one the arboviruses whose geographical range is expanding because of climate and land use changes that enhance the densities of mosquitoes and promote mosquito-bird-human interactions. We carried out a survey to determine the reservoirs of WNV among wild birds in Tana River and Garissa counties, Kenya. Blood samples were obtained from 361 randomly trapped wild birds. Using real-time polymerase chain reaction (PCR), all samples were screened for WNV using gene specific primer sets amplifying a portion of the E region of the genome encoding the envelope protein. Sixty five (65) out of 361 birds screened tested positive for WNV on real-time PCR assay. Sequencing of the selected positive samples reveals that the isolated WNV were most closely related to strains isolated from China (2011). A regression analysis indicated that sampling location influenced the occurrence of WNV while species, age, weight and sex of the birds did not have any effect. This study provides baseline information on the existing circulation of WNV in this region among wild bird reservoirs that could spill over to the human population and points to the need for implementation of surveillance programs to map the distribution of the virus among reservoirs. Awareness creation about West Nile fever in this region is important to improve its detection and management.
Gichki, Abdul Samad; Buajeeb, Waranun; Doungudomdacha, Sombhun; Khovidhunkit, Siribang-on Pibooniyom
2012-01-01
Since there is evidence that human papillomavirus (HPV) may play some role in oral carcinogenesis, we investigated the presence of HPV in a group of Pakistani subjects with normal oral cavity using real-time PCR analysis. Two-hundred patients attending the Dental Department, Sandaman Provincial Hospital, Balochistan, Pakistan, were recruited. After interview, oral epithelial cells were collected by scraping and subjected to DNA extraction. The HPV-positive DNA samples were further analyzed using primer sets specific for HPV-16 and -18. It was found that out of 200 DNA samples, 192 were PCR-positive for the β-globin gene and these were subsequently examined for the presence of HPV DNA. Among these, 47 (24.5%) were HPV-positive with the virus copy number ranged between 0.43-32 copies per 1 μg of total DNA (9-99 copies per PCR reaction). There were 4 and 11 samples containing HPV-16 and -18, respectively. Additionally, one sample harbored both types of HPV. Among the investigated clinical parameters, smoking habit was associated with the presence of HPV (p=0.001) while others indicated no significant association. The prevalence of HPV in normal oral cavity in our Pakistani subjects appears to be comparable to other studies. However, the association between the presence of HPV and smoking warrants further investigations whether both of these factors can cooperate in inducing oral cancer in this group of patients.
Lass, Anna; Szostakowska, Beata; Korzeniewski, Krzysztof; Karanis, Panagiotis
2017-10-01
Giardia intestinalis is a protozoan parasite, transmitted to humans and animals by the faecal-oral route, mainly through contaminated water and food. Knowledge about the distribution of this parasite in surface water in Poland is fragmentary and incomplete. Accordingly, 36 environmental water samples taken from surface water reservoirs and wells were collected in Pomerania and Warmia-Masuria provinces, Poland. The 50 L samples were filtered and subsequently analysed with three molecular detection methods: loop-mediated isothermal amplification (LAMP), real-time polymerase chain reaction (real-time PCR) and nested PCR. Of the samples examined, Giardia DNA was found in 15 (42%) samples with the use of LAMP; in 12 (33%) of these samples, Giardia DNA from this parasite was also detected using real-time PCR; and in 9 (25%) using nested PCR. Sequencing of selected positive samples confirmed that the PCR products were fragments of the Giardia intestinalis small subunit rRNA gene. Genotyping using multiplex real-time PCR indicated the presence of assemblages A and B, with the latter predominating. The results indicate that surface water in Poland, as well as water taken from surface wells, may be a source of Giardia strains which are potentially pathogenic for humans. It was also demonstrated that LAMP assay is more sensitive than the other two molecular assays.
Hu, Lu; Wang, Huazi; Qian, Heng; Liu, Chaoran; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang; Xu, Donghui
2016-11-11
An on-site dispersive liquid liquid microextraction base on the solidification of switchable solvent has been developed as a simple, rapid and eco-friendly sample extraction method for the fast determination of pyrethroid insecticides in aqueous samples using high-performance liquid chromatography with ultraviolet detection. In this extraction method, medium-chain saturated fatty acids (n≥10), which can rapidly solidify at low temperatures (<20°C), were investigated as switchable hydrophilic solvents. The fatty acids were converted into the hydrophilic form by adding sodium hydroxide. Microdroplets of the fatty acids were generated when injected into an acidic sample that had been pretreated by the addition of sulfuric acid. The formed cloudy solution was cooled to a low temperature to turn the fatty acids into a solid, which was then separated by filtration, thus avoiding the time-consuming step of centrifugation. The microextraction process was performed in a 10mL syringe and the pretreatment process could thus be finished in 5min. No external energy resources were required in this method, which makes it a potential method for on-site extraction. The optimal experimental parameters were as follows: 350μL of decanoic acid (1mol/L) was used as the extraction solvent, 150μL of sulfuric acid (2mol/L) was used to decrease the pH of the samples, no salt was added, and the temperature of the samples was in the range of 20-40°C. Finally, the sample was cooled in an ice bath for three minutes. Under these optimal conditions, good responses for four pyrethroid insecticides were obtained in the concentration ranges of 1-500μg/L, with coefficients of determination greater than 0.9993. The recoveries of the four pyrethroid insecticides ranged from 84.7 to 95.3%, with relative standard deviations ranging from 1.6 to 4.6%. The limits of detection based on a signal-to-noise ratio of 3 were in the range of 0.24-0.68μg/L, and the enrichment factors were in the range of 121-136. The results demonstrate that this method was successfully applied to determine pyrethroid insecticides in real water samples. No centrifugation or any special apparatus are required, make this a promising method for rapid field-sampling procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
Grande-Martínez, Ángel; Arrebola, Francisco Javier; Moreno, Laura Díaz; Vidal, José Luis Martínez; Frenich, Antonia Garrido
2015-01-01
A rapid and sensitive multiresidue method was developed and validated for the determination of around 100 pesticides in dry samples (rice and wheat flour) by ultra-performance LC coupled to a triple quadrupole mass analyzer working in tandem mode (UPLC/QqQ-MS/MS). The sample preparation step was optimized for both matrixes. Pesticides were extracted from rice samples using aqueous ethyl acetate, while aqueous acetonitrile extraction [modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method] was used for wheat flour matrixes. In both cases the extracts were then cleaned up by dispersive solid phase extraction with MgSO4 and primary secondary amine+C18 sorbents. A further cleanup step with Florisil was necessary to remove fat in wheat flour. The method was validated at two concentration levels (3.6 and 40 μg/kg for most compounds), obtaining recoveries ranging from 70 to 120%, intraday and interday precision values≤20% expressed as RSDs, and expanded uncertainty values≤50%. The LOQ values ranged between 3.6 and 20 μg/kg, although it was set at 3.6 μg/kg for the majority of the pesticides. The method was applied to the analysis of 20 real samples, and no pesticides were detected.
Strittmatter, Nicole; Düring, Rolf-Alexander; Takáts, Zoltán
2012-09-07
An analysis method for aqueous samples by the direct combination of C18/SCX mixed mode thin-film microextraction (TFME) and desorption electrospray ionization mass spectrometry (DESI-MS) was developed. Both techniques make analytical workflow simpler and faster, hence the combination of the two techniques enables considerably shorter analysis time compared to the traditional liquid chromatography mass spectrometry (LC-MS) approach. The method was characterized using carbamazepine and triclosan as typical examples for pharmaceuticals and personal care product (PPCP) components which draw increasing attention as wastewater-derived environmental contaminants. Both model compounds were successfully detected in real wastewater samples and their concentrations determined using external calibration with isotope labeled standards. Effects of temperature, agitation, sample volume, and exposure time were investigated in the case of spiked aqueous samples. Results were compared to those of parallel HPLC-MS determinations and good agreement was found through a three orders of magnitude wide concentration range. Serious matrix effects were observed in treated wastewater, but lower limits of detection were still found to be in the low ng L(-1) range. Using an Orbitrap mass spectrometer, the technique was found to be ideal for screening purposes and led to the detection of various different PPCP components in wastewater treatment plant effluents, including beta-blockers, nonsteroidal anti-inflammatory drugs, and UV filters.
Serrano, Maria; Chatzimitakos, Theodoros; Gallego, Mercedes; Stalikas, Constantine D
2016-03-04
In this study, we describe the synthesis of graphene oxide functionalized with the ionic liquid 1-butyl-3-aminopropyl imidazolium chloride and its use as an adsorbent for the dispersive solid-phase microextraction (micro SPE) of four anabolic steroids and six β-blockers from aqueous samples of environmental importance, prior to their HPLC-diode array detector analysis. As the ionic liquid is covalently attached to graphene oxide sheets, it is made possible for it to participate in the dispersive micro SPE procedure. The limits of detection and limits of quantification of the proposed method were found to be in the range of 7-23ng/L and between 20 and 70ng/L, respectively. The linearity was satisfactory, with the determination coefficients to range from 0.9940 to 0.9998 while the within- and between-day relative standard deviation of the method ranged between 3.1 and 7.6% and from 4.0 to 8.5%, respectively. In order to test the applicability of the proposed method in real-life samples, the effluent from a municipal wastewater treatment plant as well as natural water samples from two rivers and a lake were collected and analyzed. After the analysis of samples, the effluent from municipal wastewater treatment plant was fortified with the analytes, at concentrations equal to 2 and 10 times the LOQs. Recoveries were calculated after subtracting the native (no-spike) concentrations of analytes, when needed. All the recoveries were in the range of 87-98%. A comparison study attests to the superiority of the developed nanomaterial over graphene oxide and graphene for the dispersive micro SPE of steroids and β-blockers. Copyright © 2016 Elsevier B.V. All rights reserved.
Bernardo, M; Gonçalves, M; Lapa, N; Mendes, B
2010-05-01
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the determination of 11 alkylphenols in eluates of chars produced in the co-pyrolysis of different wastes. The optimized DLLME procedure, 4 mL of sample solution, 15 microL of trichloroethylene as extraction solvent, 1 mL of acetone as dispersion solvent and addition of 15% (w/v) of NaCl, was validated. Under the optimum conditions, the enrichment factors were in the range of 82-180. Calibration curves were constructed for each analyte in pure water in the concentration range of 0.5-8 microg/L with correlation coefficients higher than 0.999. The limits of detection were between 0.07 and 0.17 microg/L. The repeatability of the method was evaluated using water samples fortified with the analyte mixture at two concentration levels: the relative standard deviation (RSD) values were between 3.7% and 8.0% for a concentration of 0.5 microg/L, and between 4.2% and 6.4% for a concentration of 3 microg/L. The recoveries of the analytes evaluated by fortification of real eluate samples were in the range of 67.9-97.9% for eluate 1 (obtained from a decontaminated char) and in the range of 61.9-101.4% for eluate 2 (obtained from the untreated char). o-Methylphenol presented low recoveries for both eluates showing a possible matrix effect. The results obtained show that this method is adequate for the determination of alkylphenols in environmental aqueous samples and presents itself as a fast and inexpensive technique, using minor amounts of organic solvents. Copyright (c) 2010. Published by Elsevier Ltd.
Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering
NASA Astrophysics Data System (ADS)
Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki
2018-03-01
We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.
Rapid sampling of stochastic displacements in Brownian dynamics simulations
NASA Astrophysics Data System (ADS)
Fiore, Andrew M.; Balboa Usabiaga, Florencio; Donev, Aleksandar; Swan, James W.
2017-03-01
We present a new method for sampling stochastic displacements in Brownian Dynamics (BD) simulations of colloidal scale particles. The method relies on a new formulation for Ewald summation of the Rotne-Prager-Yamakawa (RPY) tensor, which guarantees that the real-space and wave-space contributions to the tensor are independently symmetric and positive-definite for all possible particle configurations. Brownian displacements are drawn from a superposition of two independent samples: a wave-space (far-field or long-ranged) contribution, computed using techniques from fluctuating hydrodynamics and non-uniform fast Fourier transforms; and a real-space (near-field or short-ranged) correction, computed using a Krylov subspace method. The combined computational complexity of drawing these two independent samples scales linearly with the number of particles. The proposed method circumvents the super-linear scaling exhibited by all known iterative sampling methods applied directly to the RPY tensor that results from the power law growth of the condition number of tensor with the number of particles. For geometrically dense microstructures (fractal dimension equal three), the performance is independent of volume fraction, while for tenuous microstructures (fractal dimension less than three), such as gels and polymer solutions, the performance improves with decreasing volume fraction. This is in stark contrast with other related linear-scaling methods such as the force coupling method and the fluctuating immersed boundary method, for which performance degrades with decreasing volume fraction. Calculations for hard sphere dispersions and colloidal gels are illustrated and used to explore the role of microstructure on performance of the algorithm. In practice, the logarithmic part of the predicted scaling is not observed and the algorithm scales linearly for up to 4 ×106 particles, obtaining speed ups of over an order of magnitude over existing iterative methods, and making the cost of computing Brownian displacements comparable to the cost of computing deterministic displacements in BD simulations. A high-performance implementation employing non-uniform fast Fourier transforms implemented on graphics processing units and integrated with the software package HOOMD-blue is used for benchmarking.
Karataylı, Ersin; Altunoğlu, Yasemin Çelik; Karataylı, Senem Ceren; Yurdaydın, Cihan; Bozdayı, A Mithat
2014-10-01
Internal controls (ICs), are the main components of any real-time PCR based amplification methods, which are co-purified and co-amplified with the actual target. The existence of free circulating nucleic acids in plasma and serum (CNAPS) has been known for many years. The aim of this study was to verify whether CNAPS can be used as ICs in real-time PCR based detection and quantification of DNA or RNA targets in plasma and serum samples. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a housekeeping gene, was chosen at random as CNAPS to serve as an intrinsic internal control in two different real-time PCR based quantification models in plasma and serum. Viral loads of hepatitis B virus (HBV) DNA and hepatitis delta virus (HDV) RNA were quantified as actual targets in parallel to GAPDH as IC in a total of 519 serum or plasma samples including 21 healthy controls, 202 positive chronic hepatitis delta patients, 37 chronic hepatitis C patients, 168 chronic hepatitis B patients, 52 patients with hepatocellular carcinoma, and 39 patients with non-alcoholic steatohepatitis/non-alcoholic fatty liver disease. GAPDH levels did not show significant variance in different patient groups and yielded positive signals in all 519 patients with persistent cycle threshold (CT) values 27.85±1.57 (mean±standard deviation (SD)). Reproducibility of the GAPDH amplification in HDV RNA and HBV DNA quantifications was shown with a SD value of CT ranging from 0.42 to 2.14 (mean SD; 1.18) and 0.24 to 1.75 (mean SD; 1.03), respectively. In conclusion, the freely circulating nucleic acids can clearly be used as internal controls for real-time PCR based detection and quantification of any RNA and mainly DNA targets (pathogens) in serum or plasma and this simply excludes the compulsory external addition of any IC molecules into the reaction. Copyright © 2014 Elsevier B.V. All rights reserved.
Method for Hot Real-Time Sampling of Pyrolysis Vapors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, Marc D
Biomass Pyrolysis has been an increasing topic of research, in particular as a replacement for crude oil. This process utilizes moderate temperatures to thermally deconstruct the biomass which is then condensed into a mixture of liquid oxygenates to be used as fuel precursors. Pyrolysis oils contain more than 400 compounds, up to 60 percent of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during the condensation and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition beforemore » condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors, many challenges must be overcome. Sampling must occur within a narrow range of temperatures to reduce product composition changes from overheating or partial condensation or plugging of lines from condensed products. Residence times must be kept at a minimum to reduce further reaction chemistries. Pyrolysis vapors also form aerosols that are carried far downstream and can pass through filters resulting in build-up in downstream locations. The co-produced bio-char and ash from the pyrolysis process can lead to plugging of the sample lines, and must be filtered out at temperature, even with the use of cyclonic separators. A practical approach for considerations and sampling system design, as well as lessons learned are integrated into the hot analytical sampling system of the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU) to provide industrially relevant demonstrations of thermochemical transformations of biomass feedstocks at the pilot scale.« less
Zundel, J; Ansari, S A; Trivedi, H M; Masters, J G; Mascaro, S
2018-05-07
The purpose of this research is to characterize the effects of mouthwash solutions on oral friction and moisture using a quantitative in vitro approach. The frictional coefficient of in vitro porcine tongue samples was measured using a magnetic levitation haptic device equipped with a custom tactor designed to mimic human skin. A commercially available moisture meter was used to measure moisture content of the samples. Tongue samples were first tested before treatment, then after application of saliva (either human or artificial), and again after application of 1 of 11 different mouthwash solutions. The data indicate that the samples treated with artificial saliva vs real saliva have comparable friction coefficient and moisture content. Furthermore, the moisture and friction coefficient remain relatively constant for up to 60 minutes after exposure to ambient conditions. Samples treated with artificial saliva have an average friction coefficient in the range of 0.70-0.80. Application of mouthwash solutions produced an average friction coefficient of 0.39-0.49 but retained the high moisture content of the artificial salivary layer. Several mouthwash solutions resulted in statistically significant differences in the friction coefficient relative to each other. The results of this study demonstrate that a magnetic levitation device can be an effective tool for in vitro oral tribology and that artificial saliva is an effective substitute for real saliva in extended in vitro experiments. The application of mouthwash generally reduces the coefficient of friction of the tongue samples while preserving a relatively high moisture level, and some mouthwashes reduce friction significantly more than others. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of four commercial quantitative real-time PCR kits with inhibited and degraded samples.
Holmes, Amy S; Houston, Rachel; Elwick, Kyleen; Gangitano, David; Hughes-Stamm, Sheree
2018-05-01
DNA quantification is a vital step in forensic DNA analysis to determine the optimal input amount for DNA typing. A quantitative real-time polymerase chain reaction (qPCR) assay that can predict DNA degradation or inhibitors present in the sample prior to DNA amplification could aid forensic laboratories in creating a more streamlined and efficient workflow. This study compares the results from four commercial qPCR kits: (1) Investigator® Quantiplex® Pro Kit, (2) Quantifiler® Trio DNA Quantification Kit, (3) PowerQuant® System, and (4) InnoQuant® HY with high molecular weight DNA, low template samples, degraded samples, and DNA spiked with various inhibitors.The results of this study indicate that all kits were comparable in accurately predicting quantities of high quality DNA down to the sub-picogram level. However, the InnoQuant(R) HY kit showed the highest precision across the DNA concentration range tested in this study. In addition, all kits performed similarly with low concentrations of forensically relevant PCR inhibitors. However, in general, the Investigator® Quantiplex® Pro Kit was the most tolerant kit to inhibitors and provided the most accurate quantification results with higher concentrations of inhibitors (except with salt). PowerQuant® and InnoQuant® HY were the most sensitive to inhibitors, but they did indicate significant levels of PCR inhibition. When quantifying degraded samples, each kit provided different degradation indices (DI), with Investigator® Quantiplex® Pro indicating the largest DI and Quantifiler® Trio indicating the smallest DI. When the qPCR kits were paired with their respective STR kit to genotype highly degraded samples, the Investigator® 24plex QS and GlobalFiler® kits generated more complete profiles when the small target concentrations were used for calculating input amount.
Muñoz-San Martín, Catalina; Apt, Werner; Zulantay, Inés
2017-04-01
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a major public health problem in Latin America. This parasite has a complex population structure comprised by six or seven major evolutionary lineages (discrete typing units or DTUs) TcI-TcVI and TcBat, some of which have apparently resulted from ancient hybridization events. Because of the existence of significant biological differences between these lineages, strain characterization methods have been essential to study T. cruzi in its different vectors and hosts. However, available methods can be laborious and costly, limited in resolution or sensitivity. In this study, a new genotyping strategy by real-time PCR to identify each of the six DTUs in clinical blood samples have been developed and evaluated. Two nuclear (SL-IR and 18S rDNA) and two mitochondrial genes (COII and ND1) were selected to develop original primers. The method was evaluated with eight genomic DNA of T. cruzi populations belonging to the six DTUs, one genomic DNA of Trypanosoma rangeli, and 53 blood samples from individuals with chronic Chagas disease. The assays had an analytical sensitivity of 1-25fg of DNA per reaction tube depending on the DTU analyzed. The selectivity of trials with 20fg/μL of genomic DNA identified each DTU, excluding non-targets DTUs in every test. The method was able to characterize 67.9% of the chronically infected clinical samples with high detection of TcII followed by TcI. With the proposed original genotyping methodology, each DTU was established with high sensitivity after a single real-time PCR assay. This novel protocol reduces carryover contamination, enables detection of each DTU independently and in the future, the quantification of each DTU in clinical blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Garbuglia, Anna Rosa; Bibbò, Angela; Sciamanna, Roberta; Pisciotta, Marina; Capobianchi, Maria Rosaria
2017-07-01
The Aptima HCV Quant Dx assay (Aptima) is a real-time transcription-mediated amplification assay CE-approved for the diagnosis and monitoring of hepatitis C virus (HCV) infection. Aptima's analytical performance was compared to the Abbott RealTime HCV assay (RealTime) in a clinical routine setting. Overall 295 clinical plasma samples (117 prospective/fresh; 178 retrospective/frozen) from HCV-infected patients were tested in Aptima and RealTime to determine concordance on qualitative and quantitative results. Linearity and precision at low viral loads (VLs; 0.8-3.3LogIU/mL) was tested using dilutions of the 5th WHO standard, in 10 and 20 replicates in the two assays, respectively. The ability to measure different HCV genotypes and accuracy were analyzed using the Seracare EQA panel. Inter-assay agreement for qualitative results (prospective samples) was 88% (kappa=0.78). For the 127 samples with quantitative results in both assays, Aptima yielded on average slightly higher values (by 0.24LogIU/mL; Bland-Altman method) than RealTime. Concordance between assay results was excellent (R=0.98). At low VLs (0.8-3.3LogIU/mL), Aptima demonstrated good linearity and precision, similar to RealTime. Aptima detected and accurately quantified all main HCV genotypes. Aptima demonstrated excellent precision, linearity, and accuracy in all genotypes tested. Good concordance was observed between Aptima and RealTime assays in clinical samples. The performance of the Aptima assay, on the fully automated Panther platform, makes it an excellent candidate for the detection and monitoring of HCV RNA in plasma and serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi
2018-04-30
We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.
Optical spectroscopic characterization of human meniscus biomechanical properties
NASA Astrophysics Data System (ADS)
Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.
2017-12-01
This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.
Use of real-time sensors to characterise human exposures to combustion related pollutants.
Delgado-Saborit, Juana Maria
2012-07-01
Concentrations of black carbon and nitrogen dioxide have been collected concurrently using a MicrAeth AE-51 and an Aeroqual GSS NO(2) sensor. Forty five sampling events with a duration spanning between 16 and 22 hours have collected 10,800 5 min data in Birmingham (UK) from July to October 2011. The high temporal resolution database allowed identification of peak exposures and which activities contributed the most to these peaks, such as cooking and commuting. Personal exposure concentrations for non-occupationally exposed subjects ranged between 0.01 and 50 μg m(-3) for BC with average values of 1.3 ± 2.2 μg m(-3) (AM ± SD). Nitrogen dioxide exposure concentrations were in the range
[Using neural networks based template matching method to obtain redshifts of normal galaxies].
Xu, Xin; Luo, A-li; Wu, Fu-chao; Zhao, Yong-heng
2005-06-01
Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0.0-0.3, the other of 0.3-0.5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.
Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V
2015-01-01
The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.
Electrochemical Determination of Metronidazole in Tablet Samples Using Carbon Paste Electrode
Nikodimos, Yosef
2016-01-01
Cyclic voltammetric investigation of metronidazole at carbon paste electrode revealed an irreversible reduction peak centered at about −0.4 V. Observed peak potential shift with pH in the range 2.0 to 8.5 indicated the involvement of protons during the reduction of metronidazole, whereas the peak potential shift with scan rate in the range 10–250 mV/s confirmed the irreversibility of the reduction reaction. A better correlation coefficient for the dependence of peak current on the scan rate than on the square root of scan rate indicated an adsorption controlled kinetics. Under the optimized method and solution parameters, an excellent linearity between the reductive peak current and the concentration of metronidazole was observed in the concentration range 1.0 × 10−6 to 5.0 × 10−4 M with a correlation coefficient, method detection limit (based on s = 3σ), and limit of quantification of 0.999, 2.97 × 10−7 M and 9.91 × 10−7 M, respectively. Good recovery results for spiked metronidazole in tablet samples and selective determination of metronidazole in tablet formulations in the presence of selected potential interferents such as rabeprazole, omeprazole, and tinidazole confirmed the potential applicability of the developed method for the determination of metronidazole in real samples like pharmaceutical tablets. PMID:27119041
Gustafson, Lori L.; Creekmore, Lynn H.; Snekvik, Kevin R.; Ferguson, Jayde A.; Warg, Janet V.; Blair, Marilyn; Meyers, Theodore R.; Stewart, Bruce; Warheit, Kenneth I.; Kerwin, John; Goodwin, Andrew E.; Rhodes, Linda D.; Whaley, Janet E.; Purcell, Maureen K.; Bentz, Collette; Shasa, Desiree; Bader, Joel; Winton, James R.
2018-01-01
In response to reported findings of infectious salmon anaemia virus (ISAV) in British Columbia (BC), Canada, in 2011, U.S. national, state and tribal fisheries managers and fish health specialists developed and implemented a collaborative ISAV surveillance plan for the Pacific Northwest region of the United States. Accordingly, over a 3-1/2-year period, 4,962 salmonids were sampled and successfully tested by real-time reverse-transcription PCR. The sample set included multiple tissues from free-ranging Pacific salmonids from coastal regions of Alaska and Washington and farmed Atlantic salmon (Salmo salar L.) from Washington, all representing fish exposed to marine environments. The survey design targeted physiologically compromised or moribund animals more vulnerable to infection as well as species considered susceptible to ISAV. Samples were handled with a documented chain of custody and testing protocols, and criteria for interpretation of test results were defined in advance. All 4,962 completed tests were negative for ISAV RNA. Results of this surveillance effort provide sound evidence to support the absence of ISAV in represented populations of free-ranging and marine-farmed salmonids on the northwest coast of the United States.
Gustafson, L L; Creekmore, L H; Snekvik, K R; Ferguson, J A; Warg, J V; Blair, M; Meyers, T R; Stewart, B; Warheit, K I; Kerwin, J; Goodwin, A E; Rhodes, L D; Whaley, J E; Purcell, M K; Bentz, C; Shasa, D; Bader, J; Winton, J R
2018-02-01
In response to reported findings of infectious salmon anaemia virus (ISAV) in British Columbia (BC), Canada, in 2011, U.S. national, state and tribal fisheries managers and fish health specialists developed and implemented a collaborative ISAV surveillance plan for the Pacific Northwest region of the United States. Accordingly, over a 3-1/2-year period, 4,962 salmonids were sampled and successfully tested by real-time reverse-transcription PCR. The sample set included multiple tissues from free-ranging Pacific salmonids from coastal regions of Alaska and Washington and farmed Atlantic salmon (Salmo salar L.) from Washington, all representing fish exposed to marine environments. The survey design targeted physiologically compromised or moribund animals more vulnerable to infection as well as species considered susceptible to ISAV. Samples were handled with a documented chain of custody and testing protocols, and criteria for interpretation of test results were defined in advance. All 4,962 completed tests were negative for ISAV RNA. Results of this surveillance effort provide sound evidence to support the absence of ISAV in represented populations of free-ranging and marine-farmed salmonids on the northwest coast of the United States. © 2017 John Wiley & Sons Ltd.
Wu, Xiaoling; Yang, Miyi; Zeng, Haozhe; Xi, Xuefei; Zhang, Sanbing; Lu, Runhua; Gao, Haixiang; Zhou, Wenfeng
2016-11-01
In this study, a simple effervescence-assisted dispersive solid-phase extraction method was developed to detect fungicides in honey and juice. Most significantly, an innovative ionic-liquid-modified magnetic β-cyclodextrin/attapulgite sorbent was used because its large specific surface area enhanced the extraction capacity and also led to facile separation. A one-factor-at-a-time approach and orthogonal design were employed to optimize the experimental parameters. Under the optimized conditions, the entire extraction procedure was completed within 3 min. In addition, the calibration curves exhibited good linearity, and high enrichment factors were achieved for pure water and honey samples. For the honey samples, the extraction efficiencies for the target fungicides ranged from 77.0 to 94.3% with relative standard deviations of 2.3-5.44%. The detection and quantitation limits were in the ranges of 0.07-0.38 and 0.23-1.27 μg/L, respectively. Finally, the developed technique was successfully applied to real samples, and satisfactory results were achieved. This analytical technique is cost-effective, environmentally friendly, and time-saving. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extraction and Determination of Cyproheptadine in Human Urine by DLLME-HPLC Method
Maham, Mehdi; Kiarostami, Vahid; Waqif-Husain, Syed; Abroomand-Azar, Parviz; Tehrani, Mohammad Saber; Khoeini Sharifabadi, Malihe; Afrouzi, Hossein; Shapouri, MahmoudReza; Karami-Osboo, Rouhollah
2013-01-01
Novel dispersive liquid-liquid microextraction (DLLME), coupled with high performance liquid chromatography with photodiode array detection (HPLC-DAD) has been applied for the extraction and determination of cyproheptadine (CPH), an antihistamine, in human urine samples. In this method, 0.6 mL of acetonitrile (disperser solvent) containing 30 μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5 mL urine sample. After centrifugation, the sedimented phase containing enriched analyte was dissolved in acetonitrile and an aliquot of this solution injected into the HPLC system for analysis. Development of DLLME procedure includes optimization of some important parameters such as kind and volume of extraction and disperser solvent, pH and salt addition. The proposed method has good linearity in the range of 0.02-4.5 μg mL-1 and low detection limit (13.1 ng mL-1). The repeatability of the method, expressed as relative standard deviation was 4.9% (n = 3). This method has also been applied to the analysis of real urine samples with satisfactory relative recoveries in the range of 91.6-101.0%. PMID:24250605
Davarani, Saied Saeed Hosseiny; Pourahadi, Ahmad; Nojavan, Saeed; Banitaba, Mohammad Hossein; Nasiri-Aghdam, Mahnaz
2012-04-13
Electro membrane extraction (EME) as a new microextraction method was applied for extraction of sodium diclofenac (SDF) as an acidic compound from wastewater, urine, bovine milk and plasma samples. Under applied potential of 20 V during the extraction, SDF migrated from a 2.1 mL of sample solution (1mM NaOH), through a supported liquid membrane (SLM), into a 30 μL acceptor solution (10 mM NaOH), exist inside the lumen of the hollow fiber. The negative electrode was placed in the donor solution, and the positive electrode was placed in the acceptor solution. 1-octanol was immobilized in the pores of a porous hollow fiber of polypropylene as SLM. Then the extract was analyzed by means of high-performance liquid chromatography (HPLC) with UV-detection for quantification of SDF. Best results were obtained using a phosphate running electrolyte (10 mM, pH 2.5). The ranges of quantitation for different samples were 8-500 ngmL(-1). Intra- and inter-day RSDs were less than 14.5%. Under the optimized conditions, the preconcentration factors were between 31 and 66 and also the limit of detections (LODs) ranged from 2.7 ng mL(-1) to 5 ng mL(-1) in different samples. This procedure was applied to determine SDF in wastewater, bovine milk, urine and plasma samples (spiked and real samples). Extraction recoveries for different samples were between 44-95% after 5 min of extraction. Copyright © 2012 Elsevier B.V. All rights reserved.
Sharifdini, Meysam; Mirhendi, Hossein; Ashrafi, Keyhan; Hosseini, Mostafa; Mohebali, Mehdi; Khodadadi, Hossein; Kia, Eshrat Beigom
2015-01-01
This study was performed to evaluate nested polymerase chain reaction (PCR) and real-time PCR methods for detection of Strongyloides stercoralis in fecal samples compared with parasitological methods. A total of 466 stool samples were examined by conventional parasitological methods (formalin ether concentration [FEC] and agar plate culture [APC]). DNA was extracted using an in-house method, and mitochondrial cytochrome c oxidase subunit 1 and 18S ribosomal genes were amplified by nested PCR and real-time PCR, respectively. Among 466 samples, 12.7% and 18.2% were found infected with S. stercoralis by FEC and APC, respectively. DNA of S. stercoralis was detected in 18.9% and 25.1% of samples by real-time PCR and nested PCR, respectively. Considering parasitological methods as the diagnostic gold standard, the sensitivity and specificity of nested PCR were 100% and 91.6%, respectively, and that of real-time PCR were 84.7% and 95.8%, respectively. However, considering sequence analyzes of the selected nested PCR products, the specificity of nested PCR is increased. In general, molecular methods were superior to parasitological methods. They were more sensitive and more reliable in detection of S. stercoralis in comparison with parasitological methods. Between the two molecular methods, the sensitivity of nested PCR was higher than real-time PCR. PMID:26350449
Real-Time Non-Intrusive Assessment of Viewing Distance during Computer Use.
Argilés, Marc; Cardona, Genís; Pérez-Cabré, Elisabet; Pérez-Magrané, Ramon; Morcego, Bernardo; Gispets, Joan
2016-12-01
To develop and test the sensitivity of an ultrasound-based sensor to assess the viewing distance of visual display terminals operators in real-time conditions. A modified ultrasound sensor was attached to a computer display to assess viewing distance in real time. Sensor functionality was tested on a sample of 20 healthy participants while they conducted four 10-minute randomly presented typical computer tasks (a match-three puzzle game, a video documentary, a task requiring participants to complete a series of sentences, and a predefined internet search). The ultrasound sensor offered good measurement repeatability. Game, text completion, and web search tasks were conducted at shorter viewing distances (54.4 cm [95% CI 51.3-57.5 cm], 54.5 cm [95% CI 51.1-58.0 cm], and 54.5 cm [95% CI 51.4-57.7 cm], respectively) than the video task (62.3 cm [95% CI 58.9-65.7 cm]). Statistically significant differences were found between the video task and the other three tasks (all p < 0.05). Range of viewing distances (from 22 to 27 cm) was similar for all tasks (F = 0.996; p = 0.413). Real-time assessment of the viewing distance of computer users with a non-intrusive ultrasonic device disclosed a task-dependent pattern.
Normal streamflows and water levels continue—Summary of hydrologic conditions in Georgia, 2014
Knaak, Andrew E.; Ankcorn, Paul D.; Peck, Michael F.
2016-03-31
The U.S. Geological Survey (USGS) South Atlantic Water Science Center (SAWSC) Georgia office, in cooperation with local, State, and other Federal agencies, maintains a long-term hydrologic monitoring network of more than 350 real-time, continuous-record, streamflow-gaging stations (streamgages). The network includes 14 real-time lake-level monitoring stations, 72 real-time surface-water-quality monitors, and several water-quality sampling programs. Additionally, the SAWSC Georgia office operates more than 204 groundwater monitoring wells, 39 of which are real-time. The wide-ranging coverage of streamflow, reservoir, and groundwater monitoring sites allows for a comprehensive view of hydrologic conditions across the State. One of the many benefits this monitoring network provides is a spatially distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.Streamflow and groundwater data are verified throughout the year by USGS hydrographers and made available to water-resource managers, recreationists, and Federal, State, and local agencies. Hydrologic conditions are determined by comparing the statistical analyses of data collected during the current water year to historical data. Changing hydrologic conditions underscore the need for accurate, timely data to allow informed decisions about the management and conservation of Georgia’s water resources for agricultural, recreational, ecological, and water-supply needs and in protecting life and property.
Feasibility of using the linac real-time log data for VMAT treatment verification
NASA Astrophysics Data System (ADS)
Midi, N. S.; Zin, Hafiz M.
2017-05-01
This study investigates the feasibility of using the real-time log data from a linac to verify Volumetric Modulated Arc Therapy (VMAT) treatment. The treatment log data for an Elekta Synergy linac can be recorded at a sampling rate of 4 Hz using the service graphing tool on the linac control computer. A treatment plan that simulates a VMAT treatment was delivered from the linac and all the dynamic treatment parameters including monitor unit (MU), Multileaf Collimator (MLC) position, jaw position, gantry angle and collimator angle were recorded in real-time using the service graphing tool. The recorded raw data were extracted and analysed using algorithms written in Matlab (MathWorks, Natick, MA). The actual treatment parameters logged using the service graphing tool was compared to the prescription and the deviations were analysed. The MLC position errors travelling at the speed range from -3.25 to 5.92 cm/s were between -1.7 mm to 2.5 mm, well within the 3.5 mm tolerance value (AAPM TG-142). The discrepancies of other delivery parameters were also within the tolerance. The real-time linac parameters logged using the service graphing tool can be used as a supplementary data for patient specific VMAT pre-treatment quality assurance.
Spectral feature characterization methods for blood stain detection in crime scene backgrounds
NASA Astrophysics Data System (ADS)
Yang, Jie; Mathew, Jobin J.; Dube, Roger R.; Messinger, David W.
2016-05-01
Blood stains are one of the most important types of evidence for forensic investigation. They contain valuable DNA information, and the pattern of the stains can suggest specifics about the nature of the violence that transpired at the scene. Blood spectral signatures containing unique reflectance or absorption features are important both for forensic on-site investigation and laboratory testing. They can be used for target detection and identification applied to crime scene hyperspectral imagery, and also be utilized to analyze the spectral variation of blood on various backgrounds. Non-blood stains often mislead the detection and can generate false alarms at a real crime scene, especially for dark and red backgrounds. This paper measured the reflectance of liquid blood and 9 kinds of non-blood samples in the range of 350 nm - 2500 nm in various crime scene backgrounds, such as pure samples contained in petri dish with various thicknesses, mixed samples with different colors and materials of fabrics, and mixed samples with wood, all of which are examined to provide sub-visual evidence for detecting and recognizing blood from non-blood samples in a realistic crime scene. The spectral difference between blood and non-blood samples are examined and spectral features such as "peaks" and "depths" of reflectance are selected. Two blood stain detection methods are proposed in this paper. The first method uses index to denote the ratio of "depth" minus "peak" over"depth" add"peak" within a wavelength range of the reflectance spectrum. The second method uses relative band depth of the selected wavelength ranges of the reflectance spectrum. Results show that the index method is able to discriminate blood from non-blood samples in most tested crime scene backgrounds, but is not able to detect it from black felt. Whereas the relative band depth method is able to discriminate blood from non-blood samples on all of the tested background material types and colors.
O'Mahony, Jim; Hill, Colin
2004-01-01
Using fluorescence resonance energy transfer technology and Lightcycler analysis, we developed a real-time PCR assay with primers and probes designed by using IS900 which allowed rapid detection of Mycobacterium avium subsp. paratuberculosis DNA in artificially contaminated milk. Initially, the PCR parameters (including primer and probe levels, assay volume, Mg2+ concentration, and annealing temperature) were optimized. Subsequently, the quantitative ability of the assay was tested and was found to be accurate over a broad linear range (3 × 106 to 3 × 101 copies). The assay sensitivity when purified DNA was used was determined to be as low as five copies, with excellent reproducibility. A range of DNA isolation strategies was developed for isolating M. avium subsp. paratuberculosis DNA from spiked milk, the most effective of which involved the use of 50 mM Tris HCl, 10 mM EDTA, 2% Triton X-100, 4 M guanidinium isothiocyante, and 0.3 M sodium acetate combined with boiling, physical grinding, and nucleic acid spin columns. When this technique was used in conjunction with the real-time PCR assay, it was possible to consistently detect <100 organisms per ml of milk (equivalent to 2,000 organisms per 25 ml). Furthermore, the entire procedure (extraction and PCR) was performed in less than 3 h and was successfully adapted to quantify M. avium subsp. paratuberculosis in spiked milk from heavily and mildly contaminated samples. PMID:15294786
On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.
2001-06-01
Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.
Zhou, Guangni; Zhu, Wenxin; Shen, Hao; ...
2016-06-15
Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in realmore » time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments).« less
12-bit 32 channel 500 MS/s low-latency ADC for particle accelerators real-time control
NASA Astrophysics Data System (ADS)
Karnitski, Anton; Baranauskas, Dalius; Zelenin, Denis; Baranauskas, Gytis; Zhankevich, Alexander; Gill, Chris
2017-09-01
Particle beam control systems require real-time low latency digital feedback with high linearity and dynamic range. Densely packed electronic systems employ high performance multichannel digitizers causing excessive heat dissipation. Therefore, low power dissipation is another critical requirement for these digitizers. A described 12-bit 500 MS/s ADC employs a sub-ranging architecture based on a merged sample & hold circuit, a residue C-DAC and a shared 6-bit flash core ADC. The core ADC provides a sequential coarse and fine digitization featuring a latency of two clock cycles. The ADC is implemented in a 28 nm CMOS process and consumes 4 mW of power per channel from a 0.9 V supply (interfacing and peripheral circuits are excluded). Reduced power consumption and small on-chip area permits the implementation of 32 ADC channels on a 10.7 mm2 chip. The ADC includes a JESD204B standard compliant output data interface operated at the 7.5 Gbps/ch rate. To minimize the data interface related time latency, a special feature permitting to bypass the JESD204B interface is built in. DoE Phase I Award Number: DE-SC0017213.
Caldas, Sergiane S; Bolzan, Cátia M; Cerqueira, Maristela B; Tomasini, Débora; Furlong, Eliana B; Fagundes, Carlos; Primel, Ednei G
2011-11-23
A new method for the determination of clomazone, fipronil, tebuconazole, propiconazole, and azoxystrobin in samples of rice paddy soil is presented. The extraction of the pesticides from soil samples was performed by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Some extraction conditions such as salt addition, sample acidification, use of buffer, and cleanup step were evaluated. The optimized method dealt with a single extraction of the compounds under study with acidified acetonitrile, followed by the addition of MgSO(4) and NaCl prior to the final determination by liquid chromatography-atmospheric chemical pressure ionization-tandem mass spectrometry. Validation studies were carried out in soil samples. Recoveries of the spiked samples ranged between 70.3 and 120% with relative standard deviation lower than 18.2%. The limits of quantification were between 10 and 50 μg kg(-1). The method was applied to the analysis of real samples of soils where rice is cultivated.
Determination of biogenic amine profiles in conventional and organic cocoa-based products.
Restuccia, Donatella; Spizzirri, U Gianfranco; Puoci, Francesco; Picci, Nevio
2015-01-01
Cocoa contains many compounds such as biogenic amines (BAs), known to influence consumer health. Spermidine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine, cadaverine and serotonine have been found in several cocoa-based products using HPLC with UV detection after derivatisation with dansyl-chloride. Once optimised in terms of linearity, percentage recovery, LOD, LOQ and repeatability, this method was applied to real samples. Total concentrations of BAs ranged from 5.7 to 79.0 µg g(-)(1) with wide variations depending on the type of sample. BAs present in all samples were in decreasing order: histamine (1.9-38.1 µg g(-)(1)) and tyramine (1.7-31.7 µg g(-)(1)), while putrescine (0.9-32.7 µg g(-)(1)), spermidine (1.0-9.7 µg g(-)(1)) and spermidine (0.6-9.3 µg g(-)(1)) were present in most of the samples. Cadaverine, serotonine and β-phenylethylamine were present in a few samples at much lower concentrations. Organic samples always contained much lower levels of BAs than their conventional counterparts and, generally speaking, the highest amounts of BAs were found in the most processed products.
Rapid Analysis of Trace Drugs and Metabolites Using a Thermal Desorption DART-MS Configuration.
Sisco, Edward; Forbes, Thomas P; Staymates, Matthew E; Gillen, Greg
2016-01-01
The need to analyze trace narcotic samples rapidly for screening or confirmatory purposes is of increasing interest to the forensic, homeland security, and criminal justice sectors. This work presents a novel method for the detection and quantification of trace drugs and metabolites off of a swipe material using a thermal desorption direct analysis in real time mass spectrometry (TD-DART-MS) configuration. A variation on traditional DART, this configuration allows for desorption of the sample into a confined tube, completely independent of the DART source, allowing for more efficient and thermally precise analysis of material present on a swipe. Over thirty trace samples of narcotics, metabolites, and cutting agents deposited onto swipes were rapidly differentiated using this methodology. The non-optimized method led to sensitivities ranging from single nanograms to hundreds of picograms. Direct comparison to traditional DART with a subset of the samples highlighted an improvement in sensitivity by a factor of twenty to thirty and an increase in reproducibility sample to sample from approximately 45 % RSD to less than 15 % RSD. Rapid extraction-less quantification was also possible.
NASA Astrophysics Data System (ADS)
Theresia Djue Tea, Marselina; Sabarudin, Akhmad; Sulistyarti, Hermin
2018-01-01
A method for the determination of diazinon and chlorantraniliprole in soil samples has been developed. The analyte was extracted with acetonitrile from farmland soil sample. Determination and quantification of diazinon and chlorantraniliprole were perfomed by high perfomance liquid chromatography (HPLC) with an UV detector. Several parameters of HPLC method were optimized with respect to sensitivity, high resolution of separation, and accurate determination of diazinon and chlorantraniliprole. Optimum conditions for the separation of two pesticides were eluent composition of acetonitrile:water ratio of 60:40, 0.4 mL/min of flow rate, and 220 nm of wavelength. Under the optimum conditions, diazinon linearity was in the range from 1-25 ppm with R2 of 0.9976, 1.19 mgL-1 LOD, and 3.98 mgL-1 LOQ; while the linearity of chlorantraniliprole was in the range from 0.2-5 mgL-1 with R2 of 0.9972, 0.39 mgL-1 LOD, and 1.29 mgL-1 LOQ. When the method was applied to the soil sample, both pesticides showed acceptable recoveries for real sample of more than 85%: thus, the developed method meets the validation requirement. Under this developed method, the concentrations of both pesticides in the soil samples were below the LOD and LOQ (0.577 mgL-1 for diazinon and 0.007 mgL-1 for chlorantraniliprole). Therefore, it can be concluded that the soil samples used in this study have neither diazinon nor chlorantraniliprole.
Agagliate, Jacopo; Röttgers, Rüdiger; Twardowski, Michael S; McKee, David
2018-03-01
A flow cytometric (FC) method was developed to retrieve particle size distributions (PSDs) and real refractive index (n r ) information in natural waters. Geometry and signal response of the sensors within the flow cytometer (CytoSense, CytoBuoy b.v., Netherlands) were characterized to form a scattering inversion model based on Mie theory. The procedure produced a mesh of diameter and n r isolines where each particle is assigned the diameter and n r values of the closest node, producing PSDs and particle real refractive index distributions. The method was validated using polystyrene bead standards of known diameter and polydisperse suspensions of oil with known n r , and subsequently applied to natural samples collected across a broad range of UK shelf seas. FC PSDs were compared with independent PSDs produced from data of two LISST-100X instruments (type B and type C). PSD slopes and features were found to be consistent between the FC and the two LISST-100X instruments, but LISST concentrations were found in disagreement with FC concentrations and with each other. FC n r values were found to agree with expected refractive index values of typical marine particle components across all samples considered. The determination of particle size and refractive index distributions enabled by the FC method has potential to facilitate identification of the contribution of individual subpopulations to the bulk inherent optical properties and biogeochemical properties of the particle population.
Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael
2008-04-16
The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.
Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael
2008-01-01
Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983
Kane, Lauren P; Bunick, David; Abd-Eldaim, Mohamed; Dzhaman, Elena; Allender, Matthew C
2016-06-01
Diseases that affect the upper respiratory tract (URT) in chelonians have been well described as a significant contributor of morbidity and mortality. Specifically, herpesviruses are common pathogens in captive chelonians worldwide, but their importance on free-ranging populations is less well known. Historical methods for the diagnosis of herpesvirus infections include virus isolation and conventional PCR. Real-time PCR has become an essential tool for detection and quantitation of many pathogens, but has not yet been developed for herpesviruses in box turtles. Two quantitative real-time TaqMan PCR assays, TerHV58 and TerHV64, were developed targeting the DNA polymerase gene of Terrapene herpesvirus 1 (TerHV1). The assay detected a viral DNA segment cloned within a plasmid with 10-fold serial dilutions from 1.04 × 10(7) to 1.04 × 10(1) viral copies per reaction. Even though both primers had acceptable levels of efficiency and variation, TerHV58 was utilized to test clinical samples based on less variation and increased efficiency. This assay detected as few as 10 viral copies per reaction and should be utilized in free-ranging and captive box turtles to aid in the characterization of the epidemiology of this disease. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rizzo, Andrea Luca; Jost, Hans-Jürg; Caracausi, Antonio; Paonita, Antonio; Liotta, Marcello; Martelli, Mauro
2014-04-01
We present unprecedented data of real-time measurements of the concentration and isotope composition of CO2 in air and in fumarole-plume gases collected in 2013 during two campaigns at Mount Etna volcano, which were made using a laser-based isotope ratio infrared spectrometer. We performed approximately 360 measurements/h, which allowed calculation of the δ13C values of volcanic CO2. The fumarole gases of Torre del Filosofo (2900 m above sea level) range from -3.24 ± 0.06‰ to -3.71 ± 0.09‰, comparable to isotope ratio mass spectrometry (IRMS) measurements of discrete samples collected on the same dates. Plume gases sampled more than 1 km from the craters show a δ13C = -2.2 ± 0.4‰, in agreement with the crater fumarole gases analyzed by IRMS. Measurements performed along ~17 km driving track from Catania to Mount Etna show more negative δ13C values when passing through populated centers due to anthropogenic-derived CO2 inputs (e.g., car exhaust). The reported results demonstrate that this technique may represent an important advancement for volcanic and environmental monitoring.
A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection.
Altintas, Zeynep; Akgun, Mete; Kokturk, Guzin; Uludag, Yildiz
2018-02-15
A fully automated microfluidic-based electrochemical biosensor was designed and manufactured for pathogen detection. The quantification of Escherichia coli was investigated with standard and nanomaterial amplified immunoassays in the concentration ranges of 0.99 × 10 4 3.98 × 10 9 cfu mL -1 and 103.97 × 10 7 cfu mL -1 which resulted in detection limits of 1.99 × 10 4 cfu mL -1 and 50 cfu mL -1 , respectively. The developed methodology was then applied for E. coli quantification in water samples using nanomaterial modified assay. Same detection limit for E. coli was achieved for real sample analysis with a little decrease on the sensor signal. Cross-reactivity studies were conducted by testing Shigella, Salmonella spp., Salmonella typhimurium and Staphylococcus aureus on E. coli specific antibody surface that confirmed the high specificity of the developed immunoassays. The sensor surface could be regenerated multiple times which significantly reduces the cost of the system. Our custom-designed biosensor is capable of detecting bacteria with high sensitivity and specificity, and can serve as a promising tool for pathogen detection. Copyright © 2017 Elsevier B.V. All rights reserved.
MINERVA: A facility to study Microstructure and INterface Evolution in Realtime under VAcuum
NASA Astrophysics Data System (ADS)
Nicklin, Chris; Martinez-Hardigree, Josue; Warne, Adam; Green, Stephen; Burt, Martin; Naylor, John; Dorman, Adam; Wicks, Dean; Din, Salahud; Riede, Moritz
2017-10-01
A sample environment to enable real-time X-ray scattering measurements to be recorded during the growth of materials by thermal evaporation in vacuum is presented. The in situ capabilities include studying microstructure development with time or during exposure to different environmental conditions, such as temperature and gas pressure. The chamber provides internal slits and a beam stop, to reduce the background scattering from the X-rays passing through the entrance and exit windows, together with highly controllable flux rates of the evaporants. Initial experiments demonstrate some of the possibilities by monitoring the growth of bathophenanthroline (BPhen), a common molecule used in organic solar cells and organic light emitting diodes, including the development of the microstructure with time and depth within the film. The results show how BPhen nanocrystal structures coarsen at room temperature under vacuum, highlighting the importance of using real time measurements to understand the as-deposited pristine film structure and its development with time. More generally, this sample environment is versatile and can be used for investigation of structure-property relationships in a wide range of vacuum deposited materials and their applications in, for example, optoelectronic devices and energy storage.
Visualization of nanocrystal breathing modes at extreme strains
NASA Astrophysics Data System (ADS)
Szilagyi, Erzsi; Wittenberg, Joshua S.; Miller, Timothy A.; Lutker, Katie; Quirin, Florian; Lemke, Henrik; Zhu, Diling; Chollet, Matthieu; Robinson, Joseph; Wen, Haidan; Sokolowski-Tinten, Klaus; Lindenberg, Aaron M.
2015-03-01
Nanoscale dimensions in materials lead to unique electronic and structural properties with applications ranging from site-specific drug delivery to anodes for lithium-ion batteries. These functional properties often involve large-amplitude strains and structural modifications, and thus require an understanding of the dynamics of these processes. Here we use femtosecond X-ray scattering techniques to visualize, in real time and with atomic-scale resolution, light-induced anisotropic strains in nanocrystal spheres and rods. Strains at the percent level are observed in CdS and CdSe samples, associated with a rapid expansion followed by contraction along the nanosphere or nanorod radial direction driven by a transient carrier-induced stress. These morphological changes occur simultaneously with the first steps in the melting transition on hundreds of femtosecond timescales. This work represents the first direct real-time probe of the dynamics of these large-amplitude strains and shape changes in few-nanometre-scale particles.
Aerodyne Research mobile infrared methane monitor
NASA Technical Reports Server (NTRS)
Mcmanus, J. B.; Kebabian, P. L.; Kolb, C. E.
1991-01-01
An improved real-time methane monitor based on infrared absorption of the 3.39 micron line of a HeNe laser is described. Real time in situ measurement of methane has important applications in stratospheric and tropospheric chemistry, especially when high accuracy measurements can be made rapidly, providing fine spatial-scale information. The methane instrument provides 5 ppb resolution in a 1 sec averaging time. A key feature in this instrument is the use of magnetic (Zeeman) broadening to achieve continuous tunability with constant output power over a range of 0.017/cm. The instruments optical absorption path length is 47 m through sampled air held at 50 torr in a multipass cell of the Herriott (off-axis resonator) type. A microprocessor controls laser frequency and amplitude and collects data with minimal operator attention. The instrument recently has been used to measure methane emissions from a variety of natural and artificial terrestrial sources.
Direct multiplexed measurement of gene expression with color-coded probe pairs.
Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen
2008-03-01
We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.
A low-cost biomedical signal transceiver based on a Bluetooth wireless system.
Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David
2007-01-01
Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.
The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex
Petroni, Agustin; Langer, Nicolas; Milham, Michael P.
2018-01-01
Abstract Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample (n = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort (n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli. PMID:29379880
Training multitasking in a virtual supermarket: a novel intervention after stroke.
Rand, Debbie; Weiss, Patrice L Tamar; Katz, Noomi
2009-01-01
To explore the potential of the VMall, a virtual supermarket running on a video-capture virtual reality system, as an intervention tool for people who have multitasking deficits after stroke. Poststroke, 4 participants received ten 60-min sessions over 3 weeks using the VMall. The intervention focused on improving multitasking while the participant was engaged in a virtual shopping task. Instruments included the Multiple Errands Test-Hospital Version (MET-HV) in a real mall and in the VMall. Participants achieved improvements ranging from 20.5% to 51.2% for most of the MET-HV measures performed in a real shopping mall and in the VMall. The data support the VMall's potential as a motivating and effective intervention tool for the rehabilitation of people poststroke who have multitasking deficits during the performance of daily tasks. However, because the sample was small, additional intervention studies with the VMall should be conducted.
A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin V.
2016-01-01
Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.
Giannios, Panagiotis; Toutouzas, Konstantinos G.; Matiatou, Maria; Stasinos, Konstantinos; Konstadoulakis, Manousos M.; Zografos, George C.; Moutzouris, Konstantinos
2016-01-01
The refractive index is an optical constant that plays a significant role in the description of light-matter interactions. When it comes to biological media, refraction is understudied despite recent advances in the field of bio-optics. In the present article, we report on the measurement of the refractive properties of freshly excised healthy and cancerous human liver samples, by use of a prism-coupling technique covering the visible and near-infrared spectral range. Novel data on the wavelength-dependent complex refractive index of human liver tissues are presented. The magnitude of the real and imaginary part of the refractive index is correlated with hepatic pathology. Notably, the real index contrast is pointed out as a marker of discrimination between normal liver tissue and hepatic metastases. In view of the current progress in optical biosensor technologies, our findings may be exploited for the development of novel surgical and endoscopic tools. PMID:27297034